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In recent years, ultra-high performance concrete (UHPC) has become a material of interest for 

structures needing resistance to impact and blast loadings. These types of loadings have induced brittle 

flexural failure in UHPC due to punching shear from the impactor. One way to improve the impact 

resistance, energy absorption, and ductility of UHPC is by adding fiber-reinforced polymer (FRP) skins to 

the front and rear faces of the concrete, resulting in a sandwich configuration. In this study, E-glass 

fiber-reinforced thermoplastic laminates were bonded to UHPC panels using a heated consolidation 

process known as stamp thermoforming. The bond between the UHPC and thermoplastic laminates was 

specifically of interest, so two variables, adhesive type and consolidation pressure, were investigated. 

The adhesives of interest were polyethylene terephthalate glycol (PETG) neat resin and ethylene acrylic 

acid (EAA), known by the trade name Surlyn by DuPont. PETG neat resin has been used in previous work 

on this project and has been proven to successfully bond thermoplastic laminates and UHPC. EAA was a 

new material of interest due to its reputable impact behavior and advantageous self-healing properties. 

Two pressures of 80 and 100 psi were used to consolidate the sandwich panels during manufacturing. 



 
 

The impact resistance of the thermoplastic-reinforced UHPC panels was investigated through a 

combination of quasi-static and low-velocity drop weight impact tests. The bond between the UHPC and 

thermoplastic laminates was analyzed using both three-point bending tests and direct single-lap shear 

tests. Preliminary results from these tests showed that EAA performed better under impact and 

produced a stronger bond between UHPC and the thermoplastic laminates than the PETG neat resin. A 

consolidation pressure of 100 psi was shown to produce a stronger bond than one of 80 psi. More work 

must be performed to enhance the impact resistance of the thermoplastic-reinforced UHPC sandwich 

panels and the bond between UHPC and thermoplastic laminates.
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CHAPTER 1 

INTRODUCTION 

Ultra-high-performance concrete (UHPC) has become widely popular in the infrastructure industry in 

recent decades. The material was first used by the U.S. Army Corps of Engineers in the 1980s and 

became commercially available in the U.S. in 2000. UHPC is known for its advantageous qualities such as 

high flexural and compressive strength, durability, and long-term stability compared to conventional 

concrete. Its high strength and durability can be attributed to the use of densely packed materials 

combined with small particle size, creating a homogenous and nearly impermeable matrix. 

Penetration tests performed in recent decades showed that increasing concrete compressive strength 

resulted in a decrease of projectile penetration depths (O'Neil, et al., 1999), making UHPC an attractive 

building material for protective structures needing resistance to impact, blast, and other explosive 

loadings. The addition of steel fibers increases the appeal of UHPC for these types of structures, as fibers 

have been shown to decrease the brittleness effect of UHPC and increase resistance against punching 

action on the front face of an element during impact (Dancygier & Yankelevsky, 1996). Steel fibers 

enhance the cracking resistance of UHPC through the phenomenon of fiber bridging (Verma, et al., 

2016). 

Internal steel fiber reinforcement has been shown to reduce brittle failure of UHPC, but it does not 

eliminate it. In addition to internal fibers, external reinforcement sheets can be added to UHPC cores to 

increase the element’s flexural strength and improve its resistance to impact. In recent years, two major 

types of concrete external reinforcement have been investigated: steel plates and fiber-reinforced 

polymer (FRP) plates. A popular construction that utilizes this type of reinforcement is a sandwich panel 

system, in which stiff plates are adhesively bonded to both faces of a concrete core. Sandwich panel 

setups have been shown to significantly improve the impact behavior of UHPC by shear plugging and 
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seizing the concrete debris on the rear face and by providing added resistance on the rear face, which in 

turn decreases residual velocity and penetration of the projectile (Feng, et al., 2020).  

Both steel and FRP plates significantly increase concrete’s resistance to impact. However, FRP holds 

many advantages over steel including its high stiffness to weight ratio, high strength to weight ratio, and 

structural tailorability. Strength and stiffness of an FRP laminate can be altered by adjusting the stacking 

sequence of the laminate, as the impact resistance of composite materials is greatly dependent on the 

order in which the laminas are stacked (Cantwell & Morton, 1991; J. Morton, 1989). Because of these 

advantages, FRP laminates were chosen as the external reinforcement in this research. 

1.1 Objective 

The main objective of this study was to increase the impact resistance of UHPC using externally-bonded 

thermoplastic composite laminate reinforcement. Literature showed that the weakest component of 

concrete-FRP systems is the bond between the two materials. Therefore, a main goal of this research 

was to perform a sensitivity study on the bond between UHPC and thermoplastic composite laminates. 

Two important factors that affect the concrete-FRP bond were of interest including adhesive type and 

consolidation pressure. The adhesives and consolidation pressures were explored to determine how 

they affect the impact behavior of the UHPC-thermoplastic system. 

1.2 Organization 

This thesis is organized in order of the research, design, manufacturing, and mechanical testing 

processes of the thermoplastic-composite reinforced UHPC panels. An extensive literature review was 

first conducted on four main topics: impact resistance of UHPC, impact resistance of composite 

laminates, impact resistance of sandwich composites, and the background of the concrete-FRP bond. 

The details of this literature review are in Chapter 2. The next step in the development process was the 

design and manufacturing of the thermoplastic-reinforced UHPC sandwich panels, discussed in Chapter 



3 
 

3. This chapter includes material selection and specimen fabrication. Mechanical testing begins in 

Chapter 4, in which the thermoplastic-UHPC sandwich panels were tested in low-velocity impact. The 

next step in the development process was characterizing the bond between thermoplastic laminates 

and UHPC, as discussed in Chapter 5. This section discusses both three-point bending tests and direct 

single-lap shear tests to assess the bond. Recommendations for future work is found in Chapter 6. 
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CHAPTER 2  

LITERATURE REVIEW 

To improve the impact behavior of the thermoplastic laminate-UHPC sandwich panels, an in depth 

literature review was necessary to understand how the materials respond to impact loadings. It was also 

important to understand the behavior of the bond between concrete and FRP. This chapter presents the 

findings of the literature review for four major subjects: impact resistance of UHPC, impact resistance of 

thermoplastic laminates, impact resistance of sandwich composites, and the background of the 

concrete-FRP bond. 

2.1 Impact Resistance of UHPC 

Since UHPC is an attractive material for protective structures, many studies exist involving impact tests 

on the material. Two types of impact loadings are investigated in the literature when it comes to UHPC: 

low-velocity impact and high-velocity impact. Low-velocity impact consists of a low projectile velocity 

and a high projectile mass. Low-velocity impact occurs at velocities below 10 m/s (Safri, et al., 2014). An 

example of low velocity impact is flying waterborne or windborne debris. Under low-velocity impact, the 

time of contact between the target and projectile is relatively long, resulting in a response of the entire 

structure. Kinetic energy is transferred to points far from the point of impact, causing a large area of 

delamination and reduction of residual strength (Cantwell & Morton, 1989). Contrarily, high-velocity 

impact consists of a high projectile velocity and a low projectile mass. High velocity impact occurs at 

velocities ranging from 50 m/s to 1000 m/s (Safri, et al., 2014). The most common example of high 

velocity impact is ballistics. High-velocity impact creates a more localized damage, resulting in energy 

dissipation over a smaller region and a smaller area of delamination (Cantwell, 1988). 

A prevalent theme found in the literature was UHPC’s superiority over normal strength concrete under 

impact. Due to its high strength and high fiber content, UHPC is capable of dissipating large amounts of 

energy at very large stress rates (Bindiganavile, et al., 2002). UHPC has been shown to reduce projectile 
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depth, spallation, and cracking under impact when compared to normal strength concrete (Resnyansky 

& Weckert, 2009). Nevertheless, like normal-strength concrete, unreinforced UHPC is a brittle material 

and can experience brittle failure under impact loadings. UHPC’s brittleness can be minimized by the 

addition of fibers, which enhance its tensile strength, ductility, and cracking resistance (Verma, et al., 

2016; Jamnam, et al., 2020; Carey, et al., 2020). Literature showed that the proportion of fibers within 

the UHPC matrix has a direct effect on the compressive behavior of the material. Most studies have 

found that the addition of fibers had significant effects on compressive strength and resistance to 

failure, in which fibers were shown to provide a 50% or greater increase in compressive strength 

(Ibrahim, et al., 2017; Wang & Gao, 2016). Other studies have found that the addition of fibers had little 

effect on compressive strength, only increasing it by 10% or less (Alsalman, et al., 2017; Hoang & 

Fehling, 2017). It is important to note that increasing fiber content past a certain point could have an 

unfavorable effect on UHPC compressive strength. Meng and Khayt reported a decrease in UHPC 

compressive strength when the fiber content exceeded 3% volume (Meng & Khayat, 2018). The cause of 

this was assumed to be the clustering of fibers and entrapped air. Dingquiang et al. showed that fiber 

volume fractions greater than 2% decreased packing density of UHPC (Dingqiang, et al., 2021), which in 

turn decreases compressive strength. Literature also showed that the proportion of fibers has a 

substantial effect on the low-velocity impact behavior of UHPC. Increasing fiber content reduces 

concrete crack width due to the fibers’ ability to bridge and arrest these cracks. It also increases the 

amount of cracks the UHPC can withstand before failure (Othman & Marzouk, 2016). This was shown 

through a series of flexural tests performed on ultra-high performance fiber-reinforced concrete 

(UHPFRC) beams with varying fiber contents. The UHPFRC beams experienced a 14% and 30% increase 

in peak flexural load for fiber volume fractions of 1% and 2%, respectively, compared to that of UHPFRC 

with a 0% fiber volume fraction (Cao, et al., 2019). 
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The literature grouped the local damage of UHPC under impact into five major categories: penetration, 

spalling, scabbing, radial cracking, and perforation. Penetration occurs when a projectile enters the front 

face of a target without exiting through the back face. Scabbing and spalling occur when fragments of 

the specimen fall off the front and back face of a target, respectively. Radial cracking is described by 

cracks that propagate from the point of impact towards the edges of the specimen. The most 

catastrophic local damage is perforation, which occurs when a projectile exits the specimen with 

residual velocity (Sukontasukkul, et al., 2002).  

Failure patterns of UHPC have been shown to vary depending on the impact energy of a projectile. A 

recent study performed impact tests on UHPC beams at varying impact energies of 6.7, 33.5, and 67 J 

(Yao, et al., 2021). A “rebound” phenomenon was shown for impact energies of 6.7 and 33.5 J, which is 

caused by the release of elastic energy stored during impact. The rebound phenomenon was 

determined by a large decrease in specimen deflection at the end of the impact. No visible cracks were 

seen for the 6.7 J impact and only subtle cracks were seen for the 33.5 J impact. Partial crack closing was 

observed for the 33.5 J impact which can be attributed to fiber bridging and elastic deformation of the 

fibers. The largest impact energy of 67 J was shown to propagate a crack significantly faster, indicating 

energy release. The specimens tested at 67 J experienced complete fiber pullout and did not experience 

the rebound phenomena like the specimens tested at the lower impact energies. As shown in this study, 

the type of local damage experienced by a UHPC specimen is heavily influenced by the impact energy, 

which is directly correlated to the impact velocity. 

Under low velocity impact, UHPC has shown to exhibit flexural failure (Jia, et al., 2021; Verma, et al., 

2016; Yao, et al., 2021). When a striker impacts a UHPC specimen, the impact region experiences 

compression while the distal region experiences tension, known as the wave phenomenon. Compressive 

waves generated by the projectile propagate from the top face of the specimen to the bottom face, and 

when these waves are reflected, tensile waves are induced at the bottom of the specimen. These tensile 
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waves catalyze cracking in concrete specimens that ultimately lead to failure. The flexural damage 

distribution of UHPC has been shown in the literature through low-velocity impact testing on both 

beams and thin panels. Low-velocity impact tests were conducted on simply supported UHPC beam 

specimens under multiple impacts to observe the failure in steps. After the first impact, concrete 

scabbing occurred on the top surface, and a flexural crack propagated from the bottom of the beam 

directly under the load head. After the second and third impacts, the scabbing area increased 

significantly, and the flexural crack enlarged and propagated closer to the top face of the beam. Fibers 

played an important role in bridging the cracks to resist global failure of the specimen during these 

impacts. The fourth impact resulted in complete failure of the beam, as it separated into two pieces with 

fiber pullout at the crack surface (Cao, et al., 2020). This study showed a ductile performance of UHPC, 

as the internal fibers were able to arrest the cracks due to impact and prolong global failure of the 

specimen. Similar ductile failure modes were seen in another impact study that tested UHPC beams 

under various impact energies. The smallest impact energies induced fine flexural cracks within the 

beam which were arrested by the fiber bridging phenomena. At the highest energy, the UHPC beam 

experienced localized failure, collapse, and complete fiber pullout (Yao, et al., 2021). The ductile 

performance of UHPC has also been seen in the low-velocity impact testing of thin UHPC panels. Under 

repeated low-velocity impacts, UHPC panels showed no significant spalling or scabbing and all panels 

reached the target cumulative residual displacement limit (Othman & Marzouk, 2016).  

An interesting study by Ranade et al. did not demonstrate a ductile performance of UHPC. Drop weight 

impact tests were performed on Cor-Tuf, a type of UHPC developed by the U.S. Army Corps of 

Engineers. Thin Cor-Tuf slabs failed well before 20 impacts and exhibited quasi-brittle flexural and shear 

failures compared to high-strength, high-ductility concrete (HSHDC) slabs that survived 20 impacts. 

Large localized cracking and substantial spalling was seen within the Cor-Tuf panels, and premature 

punching shear failure was observed as the loading head of the impactor was reduced (Ranade, et al., 
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2017). This study suggests that in addition to internal fibers, other forms of reinforcement may be 

needed to increase the flexural strength and ensure a ductile failure of UHPC under impact. This 

conclusion was crucial in the development of the UHPC thermoplastic laminate sandwich panels and 

signified the importance of adding external FRP skins to the UHPC to avoid brittle failure. 

It is important to acknowledge the difference of damage patterns in UHPC between low-velocity impact 

tests and high-velocity impact tests. As mentioned previously, low-velocity impact induces a more 

globalized damage pattern while high-velocity impact induces a more localized damage pattern. High-

velocity impact tests have been performed on UHPC concrete slabs to analyze damage distribution. The 

overall damage pattern is characterized by a penetration borehole on the front face of the specimen, 

including a frontal crater and a following tunnel. In most cases, craters and/or spalling is seen on the 

rear face. Resnyansky and Weckert performed high-velocity impact tests on UHPC to observe its impact 

resistance. A shaped charge jet was fired against the concrete targets. Failure patterns of the UHPC 

panels included a borehole on the front face, cracking, and very minimal back spalling. No radial cracking 

occurred from the impact point, and the damage area was relatively small (Resnyansky & Weckert, 

2009). This damage pattern differs greatly from those seen in the low-velocity impact tests where radial 

cracking and large damage areas have been observed. 

Like low-velocity impact, several studies showed that high-velocity impact behavior was affected by the 

proportion of steel fibers in the UHPC. The addition of steel fibers was shown to decrease the damage 

area under high-velocity impact by increasing energy absorption of UHPC (Dancygier, et al., 2007; 

Jamnam, et al., 2020). Yu et al. found that hooked fibers were the most effective in improving UHPC 

capacity under high-velocity impact, as they increase the force needed to achieve fiber pullout (Yu, et 

al., 2016). Literature noted that optimization of the proportion of steel fibers can lead to improved high-

velocity impact behavior. 
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Because UHPC is used for military purposes, this material is often subject to blast and other explosive 

loadings in addition to low-velocity and high-velocity impact loadings. A main concern for materials 

under blast loadings is the shrapnel effect, defined by fragments of a bomb, shell, or other objects in 

flight due to an explosion. Shrapnel can cause severe injury to people behind a concrete barrier, for 

example. Normal strength concrete does a poor job at reducing the shrapnel effect, as it does not 

absorb enough energy to prevent creation of shrapnel. UHPC however greatly reduces the shrapnel 

effect due to its high energy absorption and therefore is an attractive material for structures needing 

resistance to blast loadings. Researchers have found that UHPC resists blast explosions without or with 

very minimal fragmentation from the back specimen face and greatly reduces the shrapnel effect 

(University of Liverpool, 2009; Barnett, et al., 2010). 

The information obtained in this literature review greatly influenced the development process of the 

thermoplastic-reinforced UHPC sandwich panels. Because low-velocity impact tests induce a global 

damage distribution, these tests are most commonly used to study and characterize the fundamental 

failure mechanisms of UHPC. Low-velocity impact tests are also much simpler to carry out in a 

laboratory setting due to the availability of equipment and a higher level of safety. For these reasons, 

low-velocity impact tests were chosen over high-velocity impact tests or blast tests for this study. The 

literature review also revealed that fiber-reinforced UHPC can exhibit quasi-brittle failure, as shown in 

the study by Ranade et al. To combat this issue, external thermoplastic skins were chosen to further 

reinforce UHPC under impact in this study.  

2.2 Impact Resistance of Composite Laminates 

To improve the impact resistance of the thermoplastic-reinforced UHPC system, it was important to 

understand how the composite laminates alone behave under impact. Literature showed that 

composite materials offer many advantages over conventional materials including great formability, 

light weight, high mechanical strength, high resistance to corrosion, and recyclability. Conventional 
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fiber-reinforced composite laminates can however be highly susceptible to impact damage, and this 

damage can significantly decrease the strength and stiffness of a composite structure. A variety of 

factors have been shown to affect the impact behavior of composite laminates, including fiber type, 

resin type, layup thickness, loading velocity, and projectile type (Abrte, 2005). 

A composite laminate’s resistance to impact damage is highly dependent on the material makeup of the 

composite, including its fiber and matrix. Many studies have been performed to investigate the role of 

the fiber, matrix, and fiber-matrix interface in the impact resistance of a composite. High-strain fibers 

have been found to absorb a larger amount of strain energy, which is beneficial for residual properties 

of the laminate (Cantwell, et al., 1986). The impact energy required to initiate damage in composites 

with high-strain fibers was found to be twice that in composites with high-strength fibers (Cantwell, et 

al., 1986). Tough matrices have also shown to have a higher resistance to impact. Morton demonstrated 

that a tougher thermoplastic carbon fiber composite exhibited a higher compressive strength and less 

damage post-impact than other epoxy-based composites (Morton, 1989). This is consistent with a study 

by Vieille, who found that a carbon thermoplastic laminate experienced less delamination than a softer 

carbon epoxy-based laminate. Carbon thermoplastic laminates were shown to reduce the amount of 

damage, confirming that a tougher matrix can lead to better impact performance (Vieille, et al., 2013).   

Literature showed that one of the most important factors affecting the impact behavior of composite 

laminates is fiber stacking sequence. It has been proven that impact resistance of composite materials is 

directly affected by how the plies are stacked (Cantwell & Morton, 1991). Unidirectional laminates with 

fibers orientated in one direction are extremely weak in the transverse direction and typically fail at low 

energies through matrix cracking, fiber breaking, and fiber-matrix debonding (Sya, et al., 2018). The 

brittle failure mode of unidirectional laminates makes them unsuitable for impact loadings. By 

orientating fibers in various directions, stiffness and strength of the composite laminate are enhanced. 

Multidirectional composites have also been found to be more flexible than unidirectional composites, 
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allowing them to dissipate more energy elastically. Cantwell and Morton conducted a review on the 

impact response of composite laminates in which they analyzed the effect of fiber orientation on 

composite impact behavior (Cantwell & Morton, 1991). In their review, it was shown that plies 

orientated at [+/- 45°] offered superior impact resistance and improved residual strengths. Plies at [+/- 

45°] were seen to protect load bearing plies orientated at 0° from a projectile. The review discussed 

work by Stevanovic et al. who conducted a series of impact tests on multidirectional carbon fiber 

composites and demonstrated that plies orientated at [+/-45°] absorbed significantly more energy than 

plies orientated at [0/90°], [0°, +/-45°], and [0°, 90°, +/-45°] (Stevanović, et al., 1987). The review by 

Cantwell and Morton also discussed work performed by Liu, in which the level of delamination was 

predicted based on fiber orientation. It was found that a greater level of delamination occurred between 

plies with a greater change in fiber orientation. For example, it was predicted that greater delamination 

would occur between [0°, 90°] plies than between [0°, 45°] plies (Liu, 1988). This was confirmed by a 

study that tested the impact resistance of composites with various stacking sequences. The study 

showed that laminates with an orientation of [0, 90, +/- 45]s had a greater delaminated area than those 

with an orientation of [0, 45, 90, -45]s (Hongkarnjanakul, et al., 2013). A greater delamination area 

indicates a greater amount of energy dissipated (Jalalvand, et al., 2016), so it can be inferred that the [0, 

90, +/-45] laminate dissipated more energy. Another study further confirmed this claim, showing that 

quasi-isotropic laminates had a greater energy dissipation than cross-pry laminates (Strait, et al., 1992). 

These studies influenced the design decision to orientate the reinforcing laminate at [0, 90, -/+ 45]s. 

Another important factor affecting the impact response of FRP laminates is the loading velocity. 

Cantwell and Morton performed a study on the comparison of low- and high-velocity impact response of 

composite laminates. Low-velocity impact tests were conducted using a conventional drop tower, and 

high-velocity impact tests were conducted using a nitrogen gas gun. An eight-layer [0°2, +/-45°]s 

laminate was used for both tests. In low-velocity impact, the laminate failed in flexure, as the tensile 
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stresses on the dismal face of the composite exceeded the ultimate failure stress of the fibers. As impact 

energy increased, the laminate failed in matrix cracking, delamination, and fiber fracture throughout the 

thickness of the laminate. Cracking and delamination propagated to points well away from the area of 

impact. At the highest impact energy, the laminate was penetrated by the impactor, resulting in 

perforation fracture of the composite. In high-velocity impact loading, initial matrix cracking occurred at 

a lower impact energy than low-velocity impact. As impact energy increased, the composite experienced 

spalling on the dismal surface of the laminate. Complete penetration by the target occurred at a higher 

energy than low-velocity impact and similarly resulted in a conically-shaped shear zone around the area 

of impact. Similar amounts of fiber damage were seen to that of low-velocity impact, however, the level 

of delamination was much greater for high-velocity impact. A significant conclusion from this study was 

that high-velocity impact loading creates a more localized target response, where energy is dissipated 

over a small zone. Oppositely, low-velocity impact induces an overall target response, where energy is 

dissipated at points well away from the target zone (Cantwell & Morton, 1989). For both types of 

loading velocities, high energy absorption is an important and necessary quality of a composite laminate 

under impact. Therefore, the laminate used to protect the UHPC core in this research was designed to 

have a high energy absorption capacity. 

2.3 Impact Resistance of Sandwich Panels 

Composite sandwich construction consists of a light core material sandwiched between two stiff skins 

and offers a favorable solution to types of applications where high strength, stiffness, and energy 

absorption capacity is needed, such as in military structures. Because of these favorable qualities, a 

sandwich configuration was ideal for increasing the impact resistance of UHPC in this study. Types of 

sandwich composites most investigated in the literature include thin face sheets on foam or aluminum 

honeycomb cores, as these configurations are widely popular in the aerospace industry. The two most 

common sandwich composites for use in protective structures are concrete cores reinforced with thin 
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steel plates or FRP skins. For this study, it was important to understand how these hybrid systems 

respond to impact loads. 

The literature provided a plethora of information on steel and concrete sandwich configurations. The 

effect of steel face sheets on the response of concrete panels under impact was investigated in a study 

by Abdel-Kader and Fouda (Abdel-Kader & Fouda, 2014). The following panel setups were tested: 

concrete panels with no external steel reinforcement, concrete panels with a steel skin only on the front 

face, concrete panels with a steel skin only on the rear face, and concrete panels with steel skins on 

both the front and rear faces. Major observations for concrete panels with reinforcement only on the 

front face included perforation on the front face and scabbing on the rear face. There was a 17% 

improvement of specimen perforation with the addition of the front steel skin. Panels with steel skins on 

the rear face showed perforation on the front face but no scabbing on the rear face. The presence of the 

rear steel skin improved perforation resistance by more than 36%. The panels with steel skins on both 

faces showed minimal perforation with no scabbing on the rear face. This study revealed that adding a 

reinforcing skin only on the back face increases impact resistance of UHPC more so than adding a 

reinforcing skin only on the front face, but the impact resistance of UHPC can be most improved by 

adding reinforcing skins to both faces. 

Limited studies have been conducted on FRP and concrete sandwich systems. However, many have 

been performed on foam cores sandwiched between FRP skins. Similar failure modes in these FRP 

sandwich composites were seen compared to those in steel-concrete sandwich composites. In a study 

by Aryal et al., Nomex cores were sandwiched by FRP composite laminates and tested under low-

velocity impact. The local damage included perforation and rupture of the FRP skin and crushing of the 

core. The front skin was found to slow down the projectile and resist considerably less load than the rear 

skin. The load resisted by the rear skin was greater than that of the front skin for all tested specimens. It 

was inferred from load-displacement plots that the impactor is slowed down by resistance of the front 
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skin, resulting in an increase in force. This increase in force must then be dissipated by the rear face 

sheet (Aryal., et al., 2019). Similar damage patterns were shown in a study by Villanueva and Cantwell, 

where aluminum foam cores sandwiched between plastic composite laminates were tested under 

impact. The top skin was seen to exhibit fiber breakage, perforation of the impactor, and fiber-matrix 

delamination. The aluminum foam core experienced crushing, and the rear composite skin experienced 

fiber fracture and delamination. These sandwich systems exhibited numerous energy absorption 

mechanisms such as fiber-matrix delamination, longitudinal splitting, and fiber fracture in the composite 

skins. Impact testing revealed that these sandwich systems are capable of withstanding perforation 

energies of about 23% higher than their individual composite constituents (Villanueva & Cantwell, 

2004). 

An interesting study was conducted to explore the effect of external E-glass/epoxy FRP skins on the 

impact resistance of ceramic tiles. Four tile configurations were tested including a bare ceramic tile, a 

ceramic tile reinforced only on the front face, a ceramic tile reinforced only on the rear face, and a 

ceramic tile reinforced on both the front and rear faces. The bare ceramic tiles experienced brittle 

failure and fragmentation under impact, similar to UHPC. The addition of FRP reinforcement to the front 

face improved the ballistic efficiency by 23%, and the addition of FRP reinforcement to the back face 

delayed rear laminate displacement by about 25 microseconds (Sarva, et al., 2007). This study showed 

that a thin membrane restraint can help confine pulverized debris of brittle materials and increase their 

impact resistance. This information was helpful to determine how externally bonded face sheets can 

increase the flexural strength of brittle materials, such as UHPC. 

Various production methods exist to bond FRP skins to the core material. The three methods that are 

most common in the literature include adhesive bonding, wet layup, and vacuum infusion (Manalo, et 

al., 2017). Adhesive bonding is the most conventional bonding method, where the FRP skin is bonded to 

the concrete using an adhesive layer. Pressure is applied to the sandwich system using weights or a 
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hydraulic press to adhere the materials (Manalo, et al., 2017; Kulpa & Siwowski, 2019). Wet layup is also 

a common bonding method in which dry fibers are infused with resin and laid out on the core. The wet 

layup is performed by hand or using the spray-up method (Manalo, et al., 2017; Mosallam, 2016). 

Vacuum infusion is another common bonding process, where the dry laminates and core are placed in a 

vacuum bag and infused with resin. This method has shown to only introduce the minimum amount of 

resin, and is not well suited for small composite specimens (Manalo, et al., 2017). 

Vacuum infusion and adhesive bonding through stamp thermoforming have been used in previous work 

on this project in an attempt to bond thermoplastic laminates to UHPC cores. Vacuum infusion was 

shown to be extremely labor intensive and created some manufacturing issues. Problems arose due to 

vacuum leaks in the bag and difficult removal of the concrete specimens after infusion. Vacuum infusion 

did not provide significant advantages in specimen impact strength compared to stamp thermoforming 

(Gillis, 2018), and therefore, this manufacturing method was not used in this study. Adhesive bonding 

through a stamp thermoforming process was selected as the bonding mechanism for this work. 

There were two main goals for this study. The first goal was to prevent quasi-brittle failure of UHPC 

under impact, as seen in the experiments by Ranade et al. The second goal was to prevent the shrapnel 

effect of UHPC under impact loadings, as discussed in Section 2.1. This literature review showed that 

both steel and FRP thin plates improve impact behavior of brittle materials by increasing their flexural 

strength and energy absorption capacity, making them ideal external reinforcement for UHPC. The 

literature review also showed the importance of an external rear skin in preventing the shrapnel effect 

by decreasing the amount of scabbing on the rear face of the UHPC core. 

2.4 Concrete-FRP Bond Background 

The concrete to FRP bond is known as the weak link in a concrete-FRP system. A poorly bonded FRP-

reinforced element will likely result in premature debonding, causing failure at load capacities lesser 
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than for which it was designed (Karbhari & Ghosh, 2009). In order to improve the impact behavior of the 

thermoplastic-UHPC sandwich system, it was extremely important to know how the bond behaves, what 

affects the bond, and how the bond can be enhanced. Many studies exist in the literature on externally 

bonding FRP to concrete, as this has become a widely used method of strengthening and retrofitting 

concrete structures in the last few decades. The addition of FRP reinforcement greatly increases 

concrete strength. Stresses in the concrete are transferred to the different layers of the FRP skin, 

allowing the hybrid composite to take on a high load capacity. 

The bond behavior depends on a variety of factors including type of loading, thickness and stiffness of 

the composite laminate, adhesive type and thickness, surface preparation of the concrete, 

environmental conditions, etc. (Lorenzis, et al., 2001). This research will focus on two variables that 

directly affect the concrete-FRP bond, including adhesive type and consolidation/bonding pressure. 

Literature review showed that surface preparation of the concrete specimen has been proven to directly 

affect the average bond strength of FRP and concrete (Lorenzis, et al., 2001) and may be one of the 

most important factors affecting the performance of the bond. Surface preparation removes laitance 

and residue, opens voids, and roughens the concrete surface (American Concrete Institute, 2012). 

Common surface preparation methods include sandblasting, grinding, and using high pressure water. 

Almost all surface preparation techniques have been proven to increase bond strength between FRP and 

concrete (Toutanji & Ortiz, 2001). Chajes et al. conducted a study to compare the effectiveness of 

different surface preparation procedures on the bond strength of concrete and FRP. It was found that 

from the following procedures: no surface preparation, grinding with a stone wheel, and mechanically 

abrading with a wire wheel, mechanically abrading was most effective (Chajes, et al., 1996). For this 

research, the concrete surfaces were mechanically grinded using a 4-inch wire diamond wheel.  
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The type of adhesive used to bond the FRP to the concrete has also been seen to have a direct effect on 

the bond strength. Adhesives are categorized by their elastic moduli as soft, normal, or stiff. Shi et al. 

explored how properties of the adhesive affect the bond strength between concrete and FRP. In the 

study, an adhesive with an elastic modulus below 2.0 GPa was considered soft, an adhesive with an 

elastic modulus between 2.0-4.0 GPa was considered normal, and an adhesive with an elastic modulus 

greater than 4.0 GPa was considered stiff (Shi, et al., 2019). Stiff adhesives have been thought to be 

superior since they transfer interfacial stresses more efficiently (Saadatmanesh & Ehsani, 1990). 

However, stiff adhesives have actually been seen to cause FRP debonding at lower stress levels and 

lower bond capacities. Contrarily, adhesives with a lower elastic moduli, categorized as soft and normal 

adhesives, have been shown to delay FRP debonding (Harries, et al., 2007). Harmon et al. performed an 

FRP-to-concrete bond characterization study in which a stiff and a flexible adhesive were used. The 

study showed that the more flexible adhesive created a larger bond transfer zone in the beam specimen 

and resulted in a load at failure twice as high as the stiff adhesive (Harmon, et al., 2003). These 

conclusions were considered when developing the thermoplastic-reinforced UHPC sandwich panels. 

Two adhesives with varying elastic moduli were used in this research to further explore the effect of 

adhesive type on concrete-FRP bond strength. 

The major failure mode of FRP-strengthened concrete is debonding of the FRP from the concrete. 

Debonding in concrete-FRP systems occurs in areas with high stress concentrations and is usually 

associated with discontinuities in the material and cracking along the interfaces. Debonding can occur at 

the concrete-adhesive interface or the adhesive-FRP interface and can cause a substantial decrease in 

the member capacity, leading to premature failure. Only about 30% of the FRP strength can be utilized 

once FRP debonding occurs (Zhou, et al., 2013; Mukhtar & Faysal, 2018).  

UHPC exhibits a flexural behavior when loaded in impact (Yao, et al., 2021; Ranade, et al., 2017). 

Therefore, further review was performed to explore debonding of FRP from concrete when tested in 
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bending. The fundamental debonding mechanisms under flexural loading can be categorized as: FRP 

debonding from a flexural-shear crack, FRP debonding from a flexural crack, FRP debonding from the 

plate end, and plate end shear failure (Büyüköztürk & Yu, 2006). These debonding mechanisms will be 

considered when observing the failure modes of the thermoplastic-reinforced UHPC sandwich 

specimens. 

2.4.1 Bond Tests 

A main objective of this study was to improve the bond between composite laminates and UHPC. 

Therefore, it was important know the types of concrete-FRP bond tests that currently exist. A literature 

review was conducted on concrete-FRP bond tests. The literature categorized these tests into five major 

groups: single-lap shear, double-lap shear, bending, direct tension, and mixed-mode loading (Mukhtar & 

Faysal, 2018). The following sections describe the various test types. The information obtained from this 

literature review was used to select the most appropriate concrete-FRP bond test method for this study. 

2.4.1.1 Single-Lap Shear 

Single-lap shear tests are the most popular method to test the concrete-FRP bond and have been 

utilized to test the bond in pure shear. In typical single-lap shear tests, an FRP strip is bonded to a 

concrete block so that it overhangs the concrete. The specimen is anchored in a material testing system 

and an axial tensile load is applied to the FRP, producing direct shear between the concrete and FRP. A 

measurement of shear stress along the bond line is then easily acquirable. Many researchers have 

performed direct single-lap shear tests to characterize the concrete-FRP bond. (Zhang, et al., 2020; 

Santandrea, et al., 2020; Hadigheh, et al., 2012). Specimen failure is most commonly caused by various 

debonding modes including debonding at the adhesive-concrete interface and debonding at the 

adhesive-FRP interface. As a result, the condition of the concrete bonding surface and preparation of the 

concrete surface is extremely important in single-lap shear tests. 
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2.4.1.2 Double-Lap Shear 

Double-lap shear tests have been conducted by many researchers to test the concrete-FRP bond (Zheng, 

et al., 2015; Yang & Li, 2019). Double-lap shear tests are similar to single-lap shear tests in which the 

concrete-FRP bond is tested in pure shear. Double-lap shear tests however consist of two bonded areas 

of concrete and FRP. Typical double-lap shear specimens are fabricated by casting two identical concrete 

blocks in a mold with a threaded rod in the center. A strip of FRP is bonded to two opposite sides of the 

specimen. The specimen is gripped by the rod in a material testing machine and loaded in uniaxial 

tension. Like single-lap shear tests, the shear stress along the bond line can easily be calculated. 

2.4.1.3 Bending Test 

Another popular approach is to test the concrete-FRP bond in either three or four-point bending (Jia, et 

al., 2021; Gartner, 2007). Literature showed that these tests are utilized to examine the bond of FRP and 

concrete due to their simplicity and because they provide a more realistic behavior of the bond when 

subjected to flexural loads. The tests consist of concrete beams with an externally-bonded FRP sheet on 

the tension face. A notch or a hinge is usually used to initiate debonding between the FRP and concrete. 

As the flexural load puts the bottom of the specimen in tension, shear stresses develop and the forces 

are transferred between the concrete and FRP. Fracture energy or shear stress along the bond line is 

typically calculated using this method. 

2.4.1.4 Direct Tension Pull-off Test 

The direct tension pull-off test is a popular test method to assess the quality of the FRP-to-bond. It is the 

only standardized concrete-to-FRP bond test, known as American Society for Testing and Materials 

(ASTM) D7522 (ASTM 2009). The test method involves bonding a steel plate to FRP-reinforced concrete. 

A groove is made around the plate and direct tension is applied to the plate (Mukhtar & Faysal, 2018). 
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2.4.1.5 Mixed-Mode Loading 

Mixed-mode loading tests are the least common concrete-FRP bond tests. The bond interface is 

considered to be in mixed-mode loading if it is subjected to both shear and peeling effects. There is no 

standard test method for mixed mode loading. Ghorbani et al. investigated the FRP-to-concrete bond 

under mixed-mode I/II loading conditions by conducting a test similar to a single-lap shear test. To 

experience mode I/II conditions, the FRP sheet was loaded at an angle. Due to the misalignment of the 

vertical force and the concrete substrate, there became a vertical component PII and a horizontal 

component PI of the applied force. PII created the mode II shear force in the specimen and PI created the 

mode I tensile opening force in the specimen (Ghorbani, et al., 2017). Other approaches use a standard 

beam type test method with slight variations such as a hinge or pin to induce peeling effects. 

The most appropriate concrete-FRP test methods for this study were three-point bending tests and 

single-lap shear tests. Chapter 5 will discuss these tests further. 
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CHAPTER 3 

DESIGN OF THERMOPLASTIC-REINFORCED UHPC PANELS 

Literature review showed that externally bonded plates significantly enhance impact performance of 

UHPC. For this reason, a thermoplastic composite and UHPC sandwich hybrid system was developed to 

improve the impact behavior of UHPC. The materials were bonded using a stamp thermoforming 

process. This chapter will discuss the material selection and the manufacturing process of the 

thermoplastic-UHPC sandwich panels. 

3.1 Materials 

This section discusses the materials used in the thermoplastic-UHPC sandwich panels. These include the 

UHPC cores, thermoplastic composite tapes, and adhesives. 

3.1.1 Ultra-High Performance Concrete Core 

The UHPC mix used for this research was developed at the U.S. Army Engineer Research and 

Development Center (ERDC) in Vicksburg, MS. The constituents of the mix include: Portland Lime 

Cement (PLC), silica fume, silica sand, superplasticizer, and 19 mm long, 0.009 mm diameter Nycon-RC 

nylon fibers. Despite the literature’s praise of steel fiber reinforcement in UHPC, ERDC selected nylon 

fibers over steel fibers because of nylon’s lighter weight and easier handling. A future goal of this project 

is to use the thermoplastic-reinforced sandwich panels as the building material for military protective 

structures, and nylon fibers would be much more practical to work with on site. The nylon fibers are 

shown in Figure 1.  
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Figure 1: 19 mm long, 0.009 mm diameter Nycon RC nylon fibers 

The proportion of fibers was determined by attempting to maximize the amount of fibers while 

preserving workability of the mix. Table 1 summarizes the proportions of the mix constituents. 

Table 1: UHPC Mix Proportions 

Mix Constituent Proportion by Weight 

Portland Lime Cement 0.374 

Silica Fume 0.066 

Silica Sand 0.461 

Superplasticizer 0.012 

Water 0.087 

Nylon Fibers 0.003 
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The silica fume and silica sand were first combined in a mixer. Separately, the superplasticizer and water 

were mixed. The superplasticizer/water mixture was slowly added to the fume and sand until a desired 

workability of the mix was achieved. Only about 84-88% of the superplasticizer/water mixture was 

added to the mix. Once the volume of the mix significantly decreased, the PLC was added. The nylon 

fibers were then evenly dispersed into the mix. 

12” x 12” x ½” UHPC panels were fabricated both at ERDC and at the University of Maine. Panels were 

first made at ERDC. Each batch of UHPC produced (15) panels and (3) 3” x 6” cylinders. To ensure 

consistency throughout the panels, the density of the nylon fiber-reinforced UHPC mix was calculated to 

find the weight needed to fill each mold. Each mold was filled with approximately 6.25 pounds (± 0.01 

pound) of UHPC mix. The molds were transferred to a vibration table to consolidate and level the 

panels. The molds were then placed in a fog room for 24 hours. After 24 hours, the molds were taken 

apart and the UHPC panels were placed in an insulated Japanese soaking tub outfitted with a steam 

generator, as shown in Figure 2. The tub was covered with visqueen and burlap for top insulation, and 

the panels were steamed at 90°C for 48 hours. The panels were shipped to the University of Maine after 

curing. 
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Figure 2: Insulated Japanese soaking tub with steam generator used to cure UHPC panels (left) and tub 

covered in visqueen and burlap insulation (right). 

The UHPC panels manufactured at ERDC were not a constant thickness, causing cracking issues during 

initial consolidation trials (see Section 3.2). This required the fabrication of more UHPC panels at the 

University of Maine. Each batch of UHPC mixed at the University of Maine produced (1) 12” x 12” x ½” 

panel and (3) 2 in3 cubes. With the intent of casting UHPC panels at a uniform thickness, a six-sided mold 

setup was used. Small channels were cut out of a five-sided mold, as shown in Figure 3. After mixing, the 

UHPC was placed in the mold so the concrete slightly overflowed the mold. The mold was transferred to 

a vibration table to level the panels. An acrylic sheet was then applied on top of the mold. The setup was 

clamped together using C-clamps. As the clamps were tightened, the excess UHPC squeezed out of the 

mold through the small channels. The six-sided mold setup is shown in Figure 4. 
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The UHPC specimens were then placed in a wet room at a temperature of 24°C and a humidity of 95% 

for 24 hours. After 24 hours, the panels were removed from the molds and returned to the wet room to 

cure for 28 days. 

 

Figure 3: Small channels cut out of 5-sided UHPC panel mold. 
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Figure 4: UHPC panel cast in the six-sided mold setup. 

For the 4 batches of UHPC fabricated at ERDC, two UHPC cylinders from each batch were tested per 

ASTM C39. The tests were run by technicians at ERDC. At the University of Maine, (3) 2 inch cubes were 

tested in compression per ASTM C109. The measured compressive strengths recorded at the University 

of Maine were highly variable from panel to panel and also highly variable within the same panel batch. 

This variance stems from the variability of the different UHPC batches. Additional variability is most 

likely due to an uneven dispersion of the nylon fibers throughout the batch as well as the small size of 

the cube specimens. Table 2 presents a summary table of the compressive strength data including 

average compression strength, standard deviation, and coefficient of variation (COV) of the data.  
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Table 2: Comparison of UHPC Compressive Strengths Batched at ERDC and the University of Maine 

Location of 
Batching 

Average 
Batch 

Compressive 
Strength 

(MPa) 

Standard 
Deviation 

(MPa) 
COV (%) 

Specimen Size 
and Type 

Curing Method 

ERDC 164 10.9 
6.6 3” dia x 6” 

cylinders 
Steamed at 90°C 

for 48 hours 

University of 
Maine 

108 15.7 
14.5 

2 in3 cubes 
Steamed at 24°C 

for 28 days 

 

The difference in curing methods is assumed to have caused the significant difference in compressive 

strength between the UHPC batched at ERDC and the UHPC batched at the University of Maine. An 

increase in curing temperature has been shown to increase compressive strength (Ibrahim, et al., 2017). 

The UHPC batched at ERDC was cured at a higher temperature than the UHPC batched at the University 

of Maine. Additionally, the varying compressive specimen size and type could have played a role. Size 

variations in test specimens have been reported to influence compressive strength results (Fladr & Bily, 

2018). 

3.1.2 E-glass/PETG Pre-Impregnated Tapes 

The second material in this study is a pre-impregnated (prepeg) unidirectional thermoplastic tape for 

external reinforcing of the concrete core. Polyethylene terephthalate glycol (PETG) was chosen as the 

polymer in the thermoplastic tapes due to its high toughness, high impact resistance, and high 

durability. PETG is an amorphous thermoplastic material, allowing it to easily be thermoformed and 

bonded to adhesives. PETG softens at a glass transition temperature (Tg) of about 80°C and hardens 

among cooling. Polystrand IE 5842 tapes manufactured by Avient were selected for this study, consisting 

of continuous E-glass reinforcement and PETG polymer with a fiber volume fraction of 58%. The IE 5842 

tapes were manufactured at a width of 2” and laid up using an automatic Dieffenbacher tape layup 
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machine at the Advanced Structures and Composites Center (ASCC). Mechanical properties of the IE 

5842 tapes are presented in Table 3, as published by Avient (Avient Corporation, 2020). 

Table 3: Mechanical Properties of Unidirectional E-glass/PETG Pre-Impregnated Tapes 

Mechanical Property Typical Value Test Method 

Longitudinal Tensile Strength 945 MPa ASTM D3039 

 Transverse Tensile Strength 23.4 MPa 

Longitudinal Compressive Strength 594 MPa 
ASTM D6641 

Transverse Compressive Strength 57.9 MPa 

Poisson’s Ratio 0.28 ASTM D3039 

 

3.1.3 Adhesives 

The third and fourth materials used in this study were PETG neat resin and ethaline acrylic acid (EAA), 

which is sold under the trade name Surlyn by DuPont. These materials were used as adhesives to bond 

the thermoplastic laminates to the concrete. PETG neat resin has been used in previous work on this 

project and has been successful in bonding the thermoplastic tapes to UHPC (Gillis, 2018). PETG is a 

copolymer of polyethylene terephthalate (PET) and is a material that is widely used for thermoforming 

due to its amorphous structure. EAA is a new material of interest and was recommended by Christian 

Carloni, Ph.D, an Associate Professor of Structural Mechanics at Case Western Reserve University. 

Carloni found that EAA was successful in bonding FRP to concrete. EAA is an ionomer resin known for its 

high toughness, durability, and high chemical resistance. It is also known to exhibit self-healing 

properties. The first significant study to explore the self-healing properties of EAA was carried out by 

Fall, in which bullet penetration tests were performed on sheets of EAA (Fall, 2001). This study showed 

that EAA self-healed after being struck by a 9-mm standard bullet. The self-healing properties following 
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the projectile impact were caused by the ionic content and the order-disorder transition. The order-

disorder transition refers to the transitions between different phases of a copolymer (Shi, 2013). It was 

hypothesized that if sufficient energy is transferred to EAA during the impact, the material is heated 

above the order-disorder transition and disorders the ionic aggregates. When this heat energy is 

dissipated, the ionic aggregates reorder themselves, resulting in self-healing of the material (Reynolds, 

2011; Fall, 2001). Other studies have shown EAA’s respectable impact performance. One study 

discovered that EAA nearly recovered to its initial shape within seconds after being dynamically 

compressed by a split-Hopkinson pressure bar (Sierakowski & Hughes, 2006). Because of its high impact 

resistance and self-healing properties, EAA is an important material of interest in this research. 

The mechanical properties of PETG neat resin and EAA, acquired from McMaster Carr and Entec 

Polymers, respectively, are presented in Table 4 (McMaster-Carr, n.d.; Entec, 2020). Each property 

presented in Table 4 differs greatly between the PETG neat resin and EAA adhesives. Categorizing the 

stiffnesses of the adhesives according to the study by Shi et al., PETG neat resin is considered a normal 

adhesive and EAA is considered a soft adhesive (Shi, et al., 2019). The impact strength of EAA is about 11 

times greater than that of PETG neat resin. This information alone indicates that EAA most likely has 

better impact behavior than PETG neat resin. In addition, the melting point of the PETG neat resin is 

about five times that of EAA, and the Tg of PETG is almost twice that of EAA (Lu & Li, 2016; Miwa, et al., 

2018). It should also be noted that the EAA resin sheet is twice the thickness of the PETG neat resin 

sheet. EAA resin sheets are only commercially available at a minimum thickness of 0.125 inches. 
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Table 4: Mechanical Properties of PETG Neat Resin and EAA 

 

3.2 Stamp Thermoforming of the Sandwich Panels 

This section discusses the manufacturing process of the sandwich composite panels used for impact 

testing and three-point bending. The first step in the manufacturing process was surface roughening of 

the UHPC. Concrete surface roughening has been proven to improve the bond between FRP and 

concrete (Lorenzis, et al., 2001). The UHPC surfaces were mechanically grinded using a 4-inch diamond 

wire wheel and sprayed with pressurized air to remove dust. Figure 5 shows a panel before and after 

surface preparation. 

Adhesive 
Type 

Flexural 
Modulus 

(GPa) 

Ultimate 
Tensile 

strength 
(MPa) 

Impact 
Strength 
(ft-lbs/in) 

Melting 
Point 
(°C) 

Tg 
(°C) 

Thickness 
(in) 

PETG neat 
resin 

2.07 53.1 1.7 500 80 0.0625 

EAA 0.350 33.0 19 94 47 0.125 



31 
 

 

Figure 5: UHPC panel surface prior to surface preparation (left) and after surface preparation (right). 

The next step in the sandwich panel manufacturing process was laying up the E-glass/PETG prepeg 

tapes. Literature review showed that the impact resistance of composite laminates is directly affected 

by the order in which the laminas are stacked. Stevanovic et al. found that laminas stacked at [+/- 45] 

were capable of absorbing more energy than unidirectional laminates and laminates stacked at [0,90], 

[0,+/-45], and [0,90,+/-45] (Stevanović, et al., 1987). The laminate stacking sequence was adopted from 

previous work on this project by Gillis Smith. An 8-layer laminate was used with a stacking sequence of 

[0, 90, -/+ 45]s (Gillis, 2018). The orientation of the fibers is illustrated in Figure 6, and the mechanical 

properties of the laminate are presented in Table 5. These values were tabulated using the Computer 

Aided Design Environment for Composites (CADEC) software. 12” x 12” laminates were laid up and 

consolidated at a temperature of about 165°C and an effective pressure of 100 psi prior to bonding 

them to the concrete. 
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Figure 6: Fiber orientation of the thermoplastic laminates. 

Table 5: Mechanical Properties of [0, 90, -/+ 45]s E-glass/PETG Laminate 

Property Tabulated Value 

Laminate modulus of 
elasticity, Ex (GPa) 

21.2 

Laminate modulus of 
elasticity, Ey (GPa) 

21.2 

Laminate shear modulus, 
Gxy (GPa) 

8.11 

Poisson’s ratio, νxy 0.305 

 

The next step of the manufacturing process was bonding the thermoplastic laminates to the UHPC 

cores. One goal of this study was to improve the manufacturing process of the sandwich panels used in 

0° 
+45° -45° 

90° 90° 
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previous work on this project. To accomplish this, an 800-metric ton heated press was used for 

consolidation, and four sandwich panels were consolidated at once. The first consolidation trials used 

the UHPC panels fabricated at ERDC. The materials were stacked in the following order from bottom to 

top: thermoplastic laminate, adhesive sheet, UHPC core, adhesive sheet, and thermoplastic laminate. 

Figure 7 shows a sandwich panel setup in the press. Note that the thermoplastic laminates are a 

different color than that shown in Figure 6. The black color is caused by a dye added to the tapes to 

increase resistance to ultraviolet light. The color does not affect the material properties of the laminate. 

 

Figure 7: UHPC-thermoplastic sandwich panel in 800-ton heated press. 

The panels were consolidated at 180°C and at an effective pressure of 100 psi. The press was turned off 

once the panels reached the desired temperature. The panels remained in the press for 24 hours to 

cool. 
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Significant issues arose following this consolidation trial. The first issue was that two out of the four 

concrete cores shattered. It was assumed that this was due to a non-uniform thickness throughout the 

panels. A high point in the concrete panel could have caused an uneven stress distribution once 

pressure was applied, catalyzing cracking throughout the panel. The second issue was displacement of 

the concrete cores from the thermoplastic laminates. The displacement of the concrete cores was most 

likely due to overheating of the adhesive sheets. The resin became very viscous and most likely caused 

the concrete cores to slide. A sandwich panel following the first trial of consolidation is shown in Figure 

8. 

 

Figure 8: Issues with the sandwich panels following the first consolidation trial. 

To avoid cracking and sliding of the concrete cores, preventive measures were taken in the second 

thermoforming trial. Silicone mats with a thickness of ¼” were placed on the top and bottom of the 

sandwich panels within the press to comply with the unevenness of the UHPC panel and serve as 

protection for the concrete when pressure was applied. In addition, to prevent sliding of the concrete 

cores, a steel retainer for the sandwich panels was manufactured. Four 12” x 12” squares were cut out 

of a ¼”-thick steel sheet. The retainer was laid on the press, and the sandwich panels were placed in the 
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square cutouts. Figure 9 shows the sandwich panels held by the steel retainer in the press. The panels 

were heated to 168°C and an effective pressure of 100 psi was applied. 

 

Figure 9: UHPC-thermoplastic panels held by the steel retainer in the 800-ton press. 

Issues still arose from this manufacturing technique. Cracking occurred in one of the four UHPC panels. 

In addition, the panels were almost impossible to remove from the steel frame without damaging them. 

Due to the difficulties from using the 800-ton press, this manufacturing process was no longer used.  

As a result, the manufacturing process used in previous work was utilized which entailed a two-step 

consolidation process. The first step was to heat the sandwich panels in an oven to an appropriate 

bonding temperature. The second step was to transfer the panels to a non-heated press and consolidate 

the panels. A total of 12 thermoplastic-bonded UHPC panels were manufactured using this technique, 

following the consolidation test matrix shown in Table 6. There were three key variables in this test 

matrix: adhesive type, consolidation pressure, and concrete type. PETG neat resin and EAA were the 

adhesives explored, as well as two consolidation pressures of 80 and 100 psi. Two UHPC panels cast at 

ERDC were used in the test matrix along with the UHPC panels cast at the University of Maine to 

determine if the concrete behaved similarly. 
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Table 6: Consolidation Test Matrix for UHPC-Thermoplastic Sandwich Panels 

Adhesive 
Consolidation 
Pressure (psi) 

Concrete Type Quantity 

PETG neat 
resin 

100 
University of 

Maine 
2 

80 
University of 

Maine 
2 

EAA 

100 

University of 
Maine 

3 

ERDC 1 

80 

University of 
Maine 

3 

ERDC 1 

 

The composite sandwich panels were stacked in the same order as the previous manufacturing process. 

For heating, 12” x 12” aluminum caul sheets were placed on the top and bottom of the specimen to 

encourage uniform heating throughout the thermoplastic layups. Chemlease 41-90 was applied to the 

caul sheets to prevent the laminate and adhesive from adhering to it. A thermocouple wire was inserted 

between the top thermoplastic laminate and adhesive sheet, as shown in Figure 10. The thermocouple 

wire was connected to a data logger which reported the temperature of the bond throughout the 

heating process. The thermocouple wire setup is shown in Figure 11. 
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Figure 10: Thermocouple wire inserted between layup and adhesive layers. 

 

Figure 11: Thermocouple wire set up to panel prior to heating. 
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The specimens manufactured with PETG neat resin adhesive were heated in an oven until the 

thermocouple logger read 165°C. This oven temperature was chosen using previous knowledge of E-

glass/PETG prepeg tapes at the ASCC. As shown in Table 4, the melting temperatures of PETG neat resin 

and EAA differ greatly. The melting temperature of PETG neat resin is about five times greater than the 

melting temperature of EAA. As a result, an attempt was made to bond the thermoplastic laminates to 

the concrete using a lower oven temperature of 100°C for EAA specimens. This attempt was 

unsuccessful however, as the PETG tape laminates were not heated high enough to melt and 

successfully bond to the concrete. The bond area between the laminate and EAA was poor, causing the 

thermoplastic layups to easily rip off of the adhesive. As a result, the remaining EAA specimens were 

heated to the same temperature as the PETG neat resin specimens of 165°C. 

After heating, the panels were transferred to a 400-kip Baldwin testing frame, shown in Figure 12. ¼” 

silicone mats were placed on the top and bottom of the panel setup. A 12” x 12” x ¼” steel sheet was 

then placed on top of the entire setup to act as a top platen for the press. The part undergoing 

consolidation is shown in Figure 13. 
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Figure 12: 400-kip Baldwin testing frame used for consolidation. 
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Figure 13: UHPC-thermoplastic sandwich panel undergoing consolidation. 

The panels were pressed at their corresponding consolidation pressures for 10 minutes. The 

thermocouple wire was left in the specimen to record heat loss when in the press. From the time the 

part was taken out of the oven to the start of consolidation, the temperature of the bond dropped by 

roughly 20°C. After being pressed for 10 minutes, the temperature of the bond dropped an average of 

80°C from the initial temperature. Following consolidation, the panels were left to cool for at least three 

days before cutting and testing. 

Because the EAA resin was heated at a temperature much higher than its melting point, issues arose 

with displacement of the concrete cores for specimens manufactured with this adhesive. In addition to 

overheating, the EAA resin sheets were 0.0625 inches thicker than the PETG neat resin sheets. The 

combination of the thick resin sheet and the high consolidation temperature caused the EAA to become 

extremely viscous, leading to displacement of some of the concrete cores. This was not an issue with the 

specimens manufactured with PETG neat resin. 
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CHAPTER 4 

LOW-VELOCITY IMPACT TESTING 

Low-velocity impact tests are typically used to gain a fundamental understanding of composite sandwich 

impact behavior, as low-velocity impact induces global damage to the specimen. In this study, a 

combination of low-velocity impact tests and quasi-static tests were used to investigate the impact 

behavior of the thermoplastic-reinforced UHPC panels. The following sections will discuss the 

experimental procedures, results and discussion, and summary and conclusions of these tests. 

4.1 Introduction 

An estimate of energy absorption was desired for the thermoplastic laminate-reinforced UHPC sandwich 

panels using both quasi-static testing and low-velocity impact testing. The quasi-static testing performed 

before and after impact provided the change in compliance and residual deflection that the specimen 

underwent as a result of impact. The low-velocity impact testing provided the maximum impact force. 

Drop weight testing is the most typical low-velocity impact testing method. Many researchers have used 

this method to assess the failure mechanisms of UHPC (Ranade, et al., 2017; Verma, et al., 2016; 

Sukontasukkul, et al., 2002). Since a future goal of this project is to test the thermoplastic-UHPC 

sandwich panels under high-velocity impact, a drop tower setup that mimicked a high-velocity projectile 

was selected. A striker with a small diameter and low mass was used in the drop weight testing. The 

impact energy of the drop weight system was calculated as a function of mass and drop height. The low 

mass required a high drop height and a high velocity. Although the high velocities of ballistics are not 

achievable using a drop tower setup, a fundamental understanding of the UHPC failure mechanisms 

under impact was gained through these tests. 

It is important to consider inertial effects when discussing low-velocity impact testing. It has been 

established that due to inertial effects, the observed impact load is not the true bending load of the 
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specimen, and the true load may only be a fraction of the reported impact load. The inertial load can be 

defined by the force caused by the acceleration of a specimen from rest to a velocity near that of the 

impactor (American Society for Testing and Materials, 1973). Ong et al. accounted for inertial effects by 

using two accelerometers during impact testing. One accelerometer was instrumented inside the tup, 

and the other was attached to the tested concrete slabs. The accelerometer inside the tup measured 

the observed acceleration of the drop weight system, and the accelerometer attached to the slabs 

measured acceleration of the specimens due to impact. The inertial impact load was then calculated 

through equations of virtual work, and the inertial impact load was subtracted from the reported drop-

tower impact load to get the true impact load (Ong, et al., 1999). 

Two studies have shown that there are certain situations in which inertial effects can be neglected 

(Leissa, 1969; Verma, et al., 2016). Leissa reported that if the mass of the impactor is greater than 2 

times the mass of the panel, inertial effects of the panel can be neglected (Leissa, 1969). This conclusion 

was used in the work of Verma et al., as inertial effects were ignored in drop-weight tests since the mass 

of the impactor was 3.5 times the mass of the panels (Verma, et al., 2016). For this research, the mass of 

each thermoplastic-UHPC sandwich panel was less than 1 kilogram, and the total mass of the impactor 

was 3.50 kilograms. The mass of the impactor therefore was at least 3.5 times greater than that of the 

panel. Considering the technical report by Leissa and the study by Verma et al., inertial effects were not 

considered in this study. 

4.2 Experimental Procedure 

Following the stamp thermoforming process, each 12” x 12” composite panel was cut into (3) 5.75” x 

5.75” impact plates and (5) 5.75” x 1” beams using a waterjet. The beams were used in three-point 

bending and will be discussed in Chapter 5. Figure 14 presents the cutting layout of the 12” x 12” panels. 

Impact plates were cut from quadrants 1, 2, and 4, and beams were cut from quadrant 3. A top and side 

view of an impact plate is shown in Figure 15. 
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Figure 14: Cutting layout of the 12” x 12” thermoplastic-UHPC sandwich panels. 
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Due to the concrete sliding that occurred during consolidation of the EAA specimens, some of the 12” x 

12” sandwich panels were extremely misaligned. As a result, not all impact plates cut from each panel 

were salvageable and testable. Table 7 presents the test matrix for low-velocity impact and presents 

each panel name with its corresponding adhesive type, consolidation pressure, type of concrete used, 

and the number of testable impact plates cut from the 12” x 12” panel. The acronym UM under concrete 

type represents the concrete manufactured at the University of Maine. 

Figure 15: Top and side view of thermoplastic-UHPC sandwich impact plate. 
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Table 7: Number of Impact Plates Tested from Each Consolidated Sandwich Panel 

Panel Name 
Adhesive 

 Type 
Consolidation 
Pressure (psi) 

Concrete 
Type 

No. of 
Testable 
Impact 
 Plates 

P1 PETG 100 UM 3 

P2 PETG 100 UM 2 

P3 PETG 80 UM 3 

P4 PETG 80 UM 3 

SUR1 EAA 100 ERDC 2 

SUR2 EAA 80 ERDC 0 

SUR3 EAA 80 UM 2 

SUR4 EAA 80 UM 3 

SUR5 EAA 80 UM 2 

SUR6 EAA 100 UM 0 

SUR7 EAA 100 UM 3 

SUR8 EAA 100 UM 2 

 

Prior to testing, each impact plate was measured using a dial caliper. A measurement of total depth, 

UHPC depth, and length was taken on each side of the panel for a total of four measurements per panel. 

These measurements were then averaged for each panel. The panels were also massed. All units of 

length were recorded in millimeters and units of mass were recorded in grams. 

4.2.1 Quasi-Static Testing 

A total of (25) 5.75” x 5.75” sandwich panels were tested statically prior to low-velocity impact and after 

low-velocity impact. Quasi-static testing was performed to gain an understanding of stiffness, 

compliance, residual deflection, and overall damage experienced from impact testing. The static portion 

of the test was performed using a 100 kN servo-hydraulic Instron. The test fixture and load head were 

designed with the same geometry as the test fixture and load head used for impact testing. A 16-mm 
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ball bearing acted as the load head and was centered in the middle of the panel. The test fixture 

consisted of a two-piece 6” x 6” square steel frame. The top piece of the fixture held the panel in place 

and the bottom piece of the fixture was gripped by the hydraulic grips on the Instron. A linear variable 

differential transformer (LVDT) was mounted to the bottom piece of the steel frame and contacted the 

bottom-center of the panel to measure residual displacement. Figure 16 shows the quasi-static testing 

setup. 

 

Figure 16: Quasi-static testing setup on a 100-kN Instron. 
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The LVDT was balanced before contacting the specimen. The specimen was then preloaded to 300 N. 

The LVDT was adjusted to have a reading between 0.2 mm and 0.5 mm to ensure that the LVDT was 

engaged. The specimens were tested under a load control rate of 5000 N/min until the load reached 

2500 N. The specimens were then unloaded at the same rate. This provided a measure of stiffness prior 

to impact. The test was paused and the specimen was removed from the Instron and tested under low-

velocity impact, as discussed in the next section. Once finished low-velocity impact testing, the specimen 

was returned to the 100-kN Instron and again tested statically under a load control rate of 5000 N/min 

until the load reached 2500 N. The specimen was then unloaded at the same rate. The second round of 

static-testing provided a measurement of stiffness after impact. Data from the quasi-static tests were 

analyzed using MATLAB by plotting the load-displacement curves. Residual deflection and change in 

compliance from pre to post impact were acquired from the data. 

4.2.2 Low-Velocity Impact Testing 

A total of (25) 5.75” x 5.75” sandwich panels were tested in low-velocity impact. The low-velocity impact 

testing was performed using an Instron CEAST 9350 drop tower impact system. The test fixture had the 

same geometry as the fixture used for quasi-static testing and consisted of a 6” x 6” square steel 

retention frame. To prevent the panel from residual shock movement, tape was placed around the 

edges of the panel and bolts and washers were used to secure the panel. A 16-mm hemispherical tup 

acted as the striker. This was identical to the loading head used in the quasi-static testing portion. An 

additional mass of 1 kg was added to the loading frame. Figure 17 presents the labeled Instron CEAST 

9350 impact machine, and Figure 18 shows a test specimen in the test fixture prepared for impact. 
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Figure 17: Labeled components of the Instron CEAST 9350 drop tower. 
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Figure 18: UHPC-PETG panel ready for impact. 

The Instron CEAST drop tower was controlled by a computer system with the Instron Visual IMPACT 

software. The software took an input of either impact energy, desired drop height, or desired mass. The 

remaining parameters were automatically set by the software using formulas of kinetic energy. As 

shown in Figure 17, there is an adjustable photocell on the Instron CEAST setup. This measures the 

velocity of the impactor. A load cell was present within the tup which recorded the impact load and 

calculated acceleration using Newton’s Second Law of Motion, 𝐹 = 𝑚𝑎. The tup displacement was then 

found by integrating the acceleration data. This data was transferred to the Visual IMPACT software. 
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The software was programmed to impact the panels with 50 J of energy. The falling weight parameters 

are listed in Table 8. Following impact, delamination area and qualitative impact damage were recorded 

for both faces of the specimen. The specimen was then returned to the 100-kN Instron to be tested 

statically for post-impact damage. 

Table 8: Instron CEAST 9350 Falling Weight Parameters 

Impact energy (J) 50 

Mass (kg) 3.50 

Impact Velocity (m/s) 5.35 

Drop Height (m) 1.46 

 

4.3 Results and Discussion 

The results from the impact tests can be separated into two categories depending on the testing type: 

quasi-static testing and impact testing. The data collected from the quasi-static tests provided a 

measure of impact damage by calculating the change in the specimen’s compliance and residual 

deflection from the impact. The data acquired from the CEAST impact machine and its data acquisition 

system was impact force. The following sections discuss the results of the quasi-static and impact 

testing. 

4.3.1 Qualitative Impact Damage 

The low-velocity impact tests revealed that the specimens manufactured with PETG neat resin and the 

specimens manufactured with EAA resin performed quite differently under impact. Figures 19 and 20 

show the typical delamination pattern of the PETG neat resin specimens and the EAA specimens, 

respectively. The EAA specimens typically underwent a smaller, more contained damage area on the 

front face of the panel. They experienced radial delamination on the front face with a diameter ranging 
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from 3-9 centimeters and experienced larger radial delamination on the back face with a diameter 

ranging from 7-14 centimeters. 14% of the EAA specimens experienced no delamination on the back 

face, and about 80% of the EAA specimens experienced no debonding of the laminates from the UHPC 

core. The PETG neat resin specimens experienced larger radial delamination on the front face with a 

diameter ranging from 8-11 centimeters. Multiple “sprays” of delamination propagating from the center 

of the panel to the edges of the panel were also observed, as shown in Figure 19. These sprays were 

common in about 70% of the PETG neat resin panels. Radial and overall delamination occurred on the 

back face of the panels with a diameter ranging from 12-14.5 centimeters. 90% of the PETG neat resin 

specimens experienced debonding of the laminate from the UHPC core on the back face. The failure 

typically occurred at the concrete-adhesive interface. 

 

Figure 19: Typical delamination of specimens manufactured with EAA resin on the front face (left) and 

the back face (right). 
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Figure 20: Typical delamination of specimens manufactured with PETG neat resin on the front face (left) 

and the back face (right). 

Shear failure of the concrete was observed in multiple PETG neat resin specimens. Figure 21 shows a 

typical shear crack in the concrete core following impact of the specimen. The shear crack propagated 

along the adhesive-concrete interface, resulting in debonding of the laminate and adhesive from the 

concrete core. 
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Figure 21: Shear failure of the UHPC core following low-velocity impact test. 

The laminates on the rear face were removed from the concrete cores to inspect cracking patterns. The 

cracking patterns differed greatly between the PETG neat resin specimens and the EAA specimens. 

Figures 22 and 23 show the cracking patterns on the rear face of the PETG neat resin specimens and EAA 

specimens, respectively. The UHPC cores of the PETG neat resin specimens exhibited a more brittle 

failure than those of the EAA specimens. Radial cracking and back spalling of the UHPC was seen in the 

PETG neat resin specimens. The UHPC cores in the EAA specimens experienced less radial cracking and 

nearly no back spalling. It can be inferred from the qualitative data that the EAA adhesive has a greater 

level of ductility than the PETG neat resin adhesive, allowing it to dissipate a greater amount of energy 

under impact. 

shear failure of concrete 

debonding of laminate 
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Figure 22: Typical cracking pattern on the rear face of UHPC core for a specimen manufactured with 

PETG neat resin. 
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Figure 23: Typical cracking pattern on the rear face of UHPC core for a specimen manufactured with EAA 

resin. 

4.3.2 Quasi-Static Testing 

Change in compliance and residual deflection were the results of interest from the quasi-static testing. 

Change in compliance will be discussed first and residual deflection second. 

4.3.2.1 Change in Compliance 

It is important to consider stiffness and compliance in structural engineering applications. The stiffness 

of a structure is defined by its ability to resist deformation when loads are applied. Compliance is the 

inverse of stiffness. A material that is more compliant will have a greater displacement when loads are 

applied. Compliance was found in this study from the load-deflection plots of each specimen. The pre-
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impact and post-impact stiffnesses were calculated by finding the slopes of the loading curves before 

and after impact. The change in compliance was calculated by taking the inverse and difference of these 

values. Figure 24 illustrates the undamaged specimen stiffness pre impact and damaged specimen 

stiffness post impact on a load-deflection plot. The slopes of the red lines in Figure 24 were calculated to 

approximate the stiffnesses of each specimen before and after impact. 

 

Figure 24: Load-deflection plot showing undamaged specimen stiffness and damaged specimen stiffness 

of impact plates. 

Figure 25 shows a typical load-deflection plot for a specimen manufactured with PETG neat resin and for 

a specimen manufactured with EAA. As shown in Figure 25, the change in slope from pre to post impact 

for the PETG neat resin specimen is much greater than that of the EAA specimen, implying that the 

change in compliance was greater for PETG neat resin specimens than EAA specimens.  

Undamaged specimen  

Damaged specimen  
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Figure 25: Load-displacement plot comparing the change in compliance of the EAA and PETG neat resin 

specimens. 

A summary of the change in compliance data is presented in Table 9 including the average, standard 

deviation, and COV for each adhesive type and consolidation pressure. Figures 26 presents the average 

change in compliance based on adhesive type and consolidation pressure, and Figure 27 presents the 

percent change in compliance for each individual panel. It should be noted that panels SUR2 and SUR6 

are not shown in Figures 26 and 27. Due to a manufacturing error, these panels were delaminated prior 

to testing and were not used. The quasi-static data including change in compliance and residual 

deflection for each specimen can be found in Appendix A. 

EAA 
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Table 9: Summary of Change in Compliance Data 

Adhesive 
Type 

Consolidation 
Pressure (psi) 

Average 
(mm/kN) 

Standard Deviation 
(mm/kN) 

COV (%) 

PETG neat 

resin 

80 1.03 0.350 34 

100 0.92 0.313 34 

EAA 
80 0.18 0.136 74 

100 0.13 0.154 114 

 

 

Figure 26: Change in compliance of each panel based on adhesive type and consolidation pressure. 
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Figure 27: Percent change in compliance based on adhesive type and consolidation pressure. 

Looking at Table 9 and Figure 26, it is highly evident that the specimens manufactured with EAA had a 

smaller change in compliance than the specimens manufactured with PETG neat resin. The average 

change in compliance increased by 472% from the EAA specimens to the PETG neat resin specimens for 

a consolidation pressure of 80 psi. The average change in compliance increased by 608% from the EAA 

specimens to the PETG neat resin specimens for a consolidation pressure of 100 psi. This trend can 

further be seen in Figure 27, as majority of the percent changes in compliance were far less for the EAA 

panels than for the PETG neat resin panels. All PETG neat resin specimens had a change in compliance 

close to 100%, meaning that the compliance nearly doubled from pre to post impact. Some EAA 

specimens had a high change in compliance of around 90%, but many of the specimens had changes in 

compliance significantly less. One EAA specimen manufactured at 100 psi even had a 0% change in 

compliance, which cannot be shown in Figure 27 but should be noted. Since compliance is a measure of 
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impact damage, it can be concluded from this data that the EAA specimens experienced less damage 

during impact, resulting in a small change in stiffness and compliance. It can also be inferred that the 

EAA resin has a greater level of ductility than the PETG neat resin, as it dissipated a greater amount of 

energy than the PETG neat resin. It should be noted however that the EAA resin sheets were double the 

thickness of the PETG neat resin sheets, as reported in Table 4. Thicker adhesive sheets have been 

shown to decrease shear stress on the adhesive layer, allowing it to avoid failure and decrease 

fragmentation of the brittle core under impact, increase energy absorption of the back face sheet, and 

transfer stresses from the core to the reinforcement under impact (Lo´pez-Puente, et al., 2005). While 

these results show that EAA performed better under impact than PETG neat resin, the difference in 

adhesive thickness should be taken into consideration. 

The effect of consolidation pressure on change in compliance was not significant. Looking at Table 9 and 

Figure 26, the panels manufactured with PETG neat resin had a relatively greater change in compliance 

for panels consolidated at 80 psi than those consolidated at 100 psi. The average change in compliance 

for PETG neat resin panels consolidated with pressures of 80 and 100 psi was 1.03 and 0.92 mm/kN, 

respectively. Similarly, for the panels manufactured with EAA, those consolidated at 80 psi had a greater 

change in compliance than those consolidated at 100 psi. The average change in compliance for EAA 

panels consolidated with pressures of 80 and 100 psi was 0.18 and 0.13 mm/kN, respectively. It seems 

as though the panels consolidated with 100 psi performed slightly better than those consolidated with 

80 psi, but the difference is small. 

The data for change in compliance was relatively variable, specifically for the EAA specimens. Looking at 

Table 9, the standard deviation of the change in compliance data was less for the EAA specimens, 

however, the COV was much greater for the EAA specimens. The variability of the EAA specimens is also 

shown in Figure 27. The EAA specimens had far more variability than the PETG neat resin specimens. 

The variability of the data is most likely due to the manufacturing process of the thermoplastic-
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reinforced UHPC sandwich panels. The panels were not continuously heated during consolidation, 

causing a non-uniform temperature gradient throughout the panel. This can cause non-uniform bonding 

of the thermoplastic laminate to the concrete. In other words, some areas of the panel may have been 

better bonded than others, leading to high variability of specimens within the same panel. Nevertheless, 

the EAA specimens had a more favorable baseline than the PETG neat resin specimens. Even though the 

COV was smaller for PETG specimens, Figure 27 shows that the change in compliance of the PETG panels 

was consistently high. The EAA specimens had a larger COV, however, these specimens showed to have 

a smaller change in compliance than the PETG neat resin specimens. 

4.3.2.2 Residual Deflection 

Residual deflection is defined by the deflection from an applied load which remains after the load is 

removed. Residual deflection was considered as a measurement of impact damage in this study and was 

determined by finding the difference in displacement from pre to post impact, as shown in Figure 28. 
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Figure 28: Load-deflection plot showing residual deflection. 

Figure 29 presents the average residual deflection of each panel. Looking at Figure 29, it is highly evident 

that the residual deflection of the PETG neat resin specimens was greater than that of the EAA 

specimens. The average residual deflection for all EAA specimens was 0.81 millimeters, while that of the 

PETG neat resin specimens was 2.29 millimeters. This is a 183% increase in residual deflection from the 

EAA to the PETG neat resin specimens. 

The effect of consolidation pressure on residual deflection was not entirely clear. The average residual 

deflection of the PETG neat resin specimens was higher for a consolidation pressure of 100 psi. 

However, the average residual deflection of the EAA specimens was higher for a consolidation pressure 

of 80 psi. No conclusion can be drawn regarding the consolidation pressure’s effect on residual 

deflection. 

Residual deflection 
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Figure 29: Average residual deflection of each panel based on adhesive type and consolidation pressure. 

4.3.3 Low-Velocity Impact Testing 

The Visual IMPACT software from the CEAST 9350 impact drop-tower provided measurements of force, 

impact energy, velocity, and displacement. Impact force was the main parameter of interest and was 

used as a measure of initial compliance. It should be noted that the impact force obtained from the tup 

does not represent the actual impact force applied to the panel due to inertial effects (Fujikake, et al., 

2013), i.e. a portion of the impact load is used to accelerate the specimen from its resting position to the 

direction opposite the acceleration. Figure 30 presents the force-time plots of two PETG neat resin 

impact plates, P4-6 and P1-7, and two EAA specimens, SUR5-7, and SUR5-8 under impact. It typically 

took the EAA specimens a longer amount of time to reach their peak impact force. The impact force of 

the EAA specimens was also generally larger than the impact force of the PETG neat resin specimens. 
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This is most likely due to the higher impact resistance of the top EAA adhesive layer compared to the top 

PETG neat resin layer. The resistance of the laminate and EAA adhesive slowed down the impactor, 

resulting in a spike in load (Aryal., et al., 2019). The higher peak impact force for the EAA specimens 

indicates that this adhesive was more well-suited for impact loads than the PETG neat resin. 

 

Figure 30: Typical Force-Time plots for the thermoplastic-reinforced UHPC panel impacts for both PETG 

neat resin and EAA adhesives. 

Figure 31 presents the maximum impact force recorded for each panel under impact. The average 

maximum impact force for EAA panels and PETG neat resin panels was 49.4 and 56 kN, respectively. The 

maximum force was about 13% greater for the EAA specimens than that of the PETG neat resin 
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specimens. Panel SUR8 had the greatest maximum impact force of 67.9 kN. This is 24% greater than the 

maximum impact force of PETG neat resin specimens of 54.7 kN for panel P1. 

Looking at Figure 31, there is not a clear trend between consolidation pressure and maximum impact 

force. There was a large amount of scatter in the data. The standard deviations of the PETG neat resin 

specimens with consolidation pressures of 80 and 100 psi were 2.58 and 12.0 kN, respectively. The 

standard deviations of the EAA specimens with consolidation pressures of 80 and 100 psi were 9.27 and 

8.05 kN, respectively. This high variability is most likely due to the manufacturing process of the 

specimens, as mentioned previously. The variability could also be due to an error in the CEAST 9350 

impact machine. 
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Figure 31: Maximum impact force recorded of each panel based on adhesive type and consolidation 

pressure. 

 

4.4 Summary and Conclusions 

The impact tests revealed that the EAA adhesive generally performs better under impact than the PETG 

neat resin. The EAA adhesive resulted in a smaller and more confined area of delamination, a smaller 

change in compliance, a smaller residual deflection, and a larger maximum impact load than the PETG 

neat resin. The rear thermoplastic skin rarely debonded from the back face of the UHPC panel when 

bonded with EAA. The rear thermoplastic skin almost always debonded from the back face of the UHPC 

panel when bonded with PETG neat resin. One cause of concern is the difference in thickness of the 

adhesives. The EAA adhesive was 0.125 inches thick while the PETG neat resin was 0.0625 inches thick. 

The thickness of the EAA was double that of the PETG neat resin, which could have enhanced its ability 

to perform under impact. Therefore, this data does not provide a direct comparison between the EAA 
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and PETG neat resin. In future work, UHPC-thermoplastic panels should be manufactured with EAA and 

PETG neat resin adhesives with the same thickness. EAA resin sheets were only commercially available 

at a minimum thickness of 0.125 inches, but this should be further investigated in the future. If EAA 

adhesive sheets can’t be purchased at a thickness of 0.0625 inches, two options should be considered. 

Option 1 would require two PETG neat resin adhesive sheets to be used per panel side to achieve an 

adhesive thickness equal to that of the EAA. Option 2 would require melting the EAA adhesive sheets 

prior to consolidation which would cause the resin sheet to expand and minimize in thickness. 
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CHAPTER 5 

UHPC-THERMOPLASTIC BOND ANALYSIS 

The most widely used tests to analyze the bond between concrete and FRP are bending tests and single-

lap shear tests. The literature review presented in Chapter 2 revealed that bending tests are most 

representative of how the bond responds to flexural loads. The literature review also revealed that 

single-lap shear tests are the most common test method to acquire a quantitative bond-strength of the 

concrete and FRP. The following sections will discuss the experimental procedures, results, discussion, 

and conclusions of these tests. 

5.1 Introduction 

The bond between the thermoplastic laminate and UHPC core is the most crucial part of the composite 

system. Studies have shown that the most common failure mode of externally bonded FRP composites 

to concrete is premature FRP debonding from the concrete substrate (Franco & Royer-Carfagni, 2014). It 

is important to understand the behavior of the bond between FRP and concrete so that it can be 

optimized. Optimization of this bond will ultimately result in better impact performance of the entire 

composite system. 

Results from the low-velocity impact tests revealed that EAA exhibited greater ductility and the ability to 

protect the UHPC core under impact more so than the PETG neat resin. A quantitative measurement 

was necessary to understand how the EAA and PETG neat resin affect the bond between the 

thermoplastic laminates and UHPC. To achieve this, concrete-thermoplastic bond tests were performed. 

Initially, three-point bending tests were utilized in this study to test the bond between UHPC and 

thermoplastic laminates due to their simplicity and because these tests provide a more realistic behavior 

of the bond in flexure. As mentioned in Section 2.1, UHPC exhibits flexural behavior under impact, so it 

seemed most appropriate to test the sandwich composite in flexure. Testing revealed that the bond 
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exhibited a more ductile behavior in bending than a brittle one. The typical failure mode of the beam 

specimens was shear cracking of the concrete that propagated to the concrete-adhesive interface and 

resulted in debonding of the adhesive and laminate from the concrete. The bond between the laminate 

and concrete did not fail before the concrete itself. To further investigate the bond between UHPC and 

the thermoplastic laminate, direct single-lap shear tests were performed. 

The following chapter will first discuss the experimental procedure and results of the three-point 

bending tests. The main results acquired from these tests were energy dissipation and maximum bond 

strength. The manufacturing process, experimental procedure, and relevant results will then be 

discussed for the direct single-lap shear tests. 

5.2 Three-Point Bending 

Three-point bending tests were performed on thermoplastic-UHPC sandwich beams. The following 

subsections will discuss the experimental procedure, results, and discussion of the three-point bending 

tests. 

5.2.1 Experimental Procedure 

A total of (53) UHPC-thermoplastic sandwich beams were tested in three-point bending. 5.75” x 1” 

beams were cut from the 12” x 12” UHPC thermoplastic-reinforced sandwich panels, as shown in Figure 

14. Figure 32 shows a typical sandwich beam specimen.  
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Figure 32: Top and side view of a UHPC thermoplastic-reinforced sandwich beam specimen. 

On average, five beams were cut from each panel. However, due to the concrete sliding that occurred 

during consolidation of the EAA specimens, some of the 12” x 12” sandwich panels were extremely 

misaligned. As a result, not all beam specimens cut from each panel were salvageable and testable. 

Table 10 presents the number of beams that were testable from each 12” x 12” sandwich panel. 

Table 10: Number of Beams Tested from Each Consolidated Sandwich Panel 

Panel Name 
Adhesive 

 Type 

Consolidation 

Pressure (psi) 

Concrete 

Type 

No. of 

Testable 

Beams 

P1 PETG 100 UM 5 

P2 PETG 100 UM 5 

P3 PETG 80 UM 5 

P4 PETG 80 UM 5 

SUR1 EAA 100 ERDC 5 

SUR2 EAA 80 ERDC 3 

SUR3 EAA 80 UM 5 

SUR4 EAA 80 UM 5 

SUR5 EAA 80 UM 5 

SUR6 EAA 100 UM 0 

SUR7 EAA 100 UM 4 

SUR8 EAA 100 UM 6 
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Prior to testing, each beam was measured for average width, average depth, average length, and mass. 

Beam specimens were tested using a 5-kN servo-hydraulic Instron. Two external LVDTs were used to 

measure the deflection of the beams at midspan. A thin aluminum plate was placed between the load 

head and the beam specimen to act as the contact surface for the LVDTs during testing. A preload of 

about 300 N was set on the specimen and the LVDTs were adjusted to read a small displacement prior to 

beginning the test. The beam span measured 140 mm. The specimens were loaded in displacement 

control at a rate of 0.5 mm per minute until failure. Figure 33 shows a beam in flexure in the three-point 

bending test setup. 
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Figure 33: Beam specimen in the three-point bending test setup. 

5.2.2 Results and Discussion 

Test results of the three-point bending tests including major failure modes, energy dissipation, and bond 

strength of the thermoplastic-UHPC sandwich beams are reported in the following subsections. 

5.2.2.1 Failure Modes 

Two main failure modes existed in the three-point bending tests. The dominating failure mode of the 

thermoplastic-reinforced UHPC beams was shear failure of the concrete, as shown in Figure 34.  
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Figure 34: Typical concrete shear failure of the beams. 

Specimens that underwent this failure mechanism initially experienced interlaminar cracking in the 

thermoplastic laminate and a small shear crack in the concrete. As the load increased, this shear crack 

propagated towards the bottom concrete-adhesive interface and grew along this interface until it 

reached the edge of the beam. The laminate and adhesive debonded from the concrete beam, ending 

the test. Note that this is the same failure mode that was seen in the low-velocity impact tests. Figure 35 

presents a typical load-deflection plot of the beam specimens that failed in concrete shear, leading to 

debonding of the thermoplastic laminate and adhesive from the concrete. As shown in Figure 35, there 

are small drops in load at the beginning of the test. These drops represent the small interlaminar 

cracking of the thermoplastic laminate. The load increases until a large shear crack grows in the 

specimen, resulting in a sudden drop in load. The laminate then debonds from the specimen and the 

specimen is unloaded. 
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Figure 35: Typical load-displacement plot of concrete shear cracking failure mode.  

The second main failure mode was debonding of the thermoplastic laminates from the adhesive and 

concrete. This failure mode only occurred in specimens manufactured with EAA. These particular 

specimens typically experienced laminate debonding before the concrete even cracked, indicating that 

the bond area between the layup and EAA adhesive was poor. A poor bond area can be seen in Figure 

36. The light spots on the left edges of the beams were totally unbonded areas between the EAA resin 

and the thermoplastic laminate. These poorly bonded areas appeared in panels SUR5 and SUR6 

following waterjet cutting of the panels, indicating that the debonded areas were due to a 

manufacturing error. Data was acquirable from panel SUR5 but not from panel SUR6. As a result, the 

data from panel SUR6 were not considered in this study. 

Interlaminar cracking in 

thermoplastic layup 

Shear cracking and 

failure of concrete 

Debonding along 

concrete/adhesive 

bond line 
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Figure 36: Poorly bonded area between thermoplastic laminate and EAA. 

5.2.2.2 Energy Dissipation 

UHPC has been shown to exhibit flexural failure when tested under impact (Verma, et al., 2016; Ranade, 

et al., 2017). A parameter of interest when conducting impact tests is the amount of energy dissipated 

by the specimen. To simulate this, the energy dissipated was calculated for the thermoplastic-reinforced 

UHPC beams under flexure. The energy dissipated was calculated by finding the area under the load-

deflection curve, as shown in Figure 35. Figure 37 presents the average energy dissipated for each panel. 
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Figure 37: Energy Dissipated Based on Adhesive Type and Consolidation Pressure 

The average energies dissipated by the PETG neat resin specimens at consolidation pressures of 80 and 

100 psi were 0.917 and 1.21 kN-mm, respectively. Those of the EAA specimens at 80 and 100 psi were 

1.21 and 1.75 kN-mm, respectively. On average, the bond strength of the EAA specimens was 32% and 

44.6% greater than the PETG neat resin specimens for consolidation pressures of 80 and 100 psi, 

respectively. Additionally, the bond strength of specimens manufactured with a consolidation pressure 

of 100 psi within the same adhesive was greater than those manufactured with 80 psi. For the PETG 

neat resin specimens, the bond strength was 32% greater for specimens consolidated at 100 psi than 

those consolidated at 80 psi. For the EAA specimens, the bond strength was 45% greater for those 

manufactured at 100 psi than those manufactured at 80 psi. There was an upper outlier for the EAA 

specimens at a consolidation pressure of 100 psi, with an energy dissipation of 5.37 kN-mm. The 
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variability in the data was greater for specimens manufactured with EAA. For EAA specimens 

manufactured at 80 and 100 psi, the standard deviation of the data was 0.586 and 0.872 MPa, 

respectively. For PETG neat resin specimens manufactured at 80 and 100 psi, the standard deviation of 

the data was 0.242 and 0.364 MPa, respectively. The variability in the EAA data is most likely due to the 

variability in the manufacturing process of the specimen, as mentioned in previous sections. Regardless 

of the high variability, the EAA specimens, on average, showed higher energy dissipation. Greater values 

of energy dissipation indicate a greater level of ductility and better impact performance. 

5.2.2.3 Bond Strength 

Since there was no brittle failure along the UHPC and thermoplastic bond line, a fracture mechanics 

approach to bond characterization was deemed inappropriate, and a strength-based approach was 

used. The maximum bond strength of the UHPC-thermoplastic bond was calculated along the UHPC-

adhesive bond line using Equation 1. 

Equation 1: Maximum bond shear strength for a composite beam. 

𝜏𝑚𝑎𝑥 =  
𝑉𝑄𝑡𝑟

𝐼𝑡𝑟𝑡
 

Where 𝜏𝑚𝑎𝑥 = maximum shear stress in the UHPC-thermoplastic bond (MPa); V = peak shear force (N); 

𝑄𝑡𝑟= transformed first moment of area between the location of where the shear stress is being 

calculated and the neutral axis of specimen (mm3); 𝐼𝑡𝑟 = transformed moment of inertia of the cross 

section (mm4); t= width of the cross section (mm). 

The three-material composite beam was transformed into the same material. The PETG thermoplastic 

laminates and adhesive sheets were transformed into UHPC based on their stiffnesses provided in Table 

4. The elastic modulus of the UHPC was estimated using Equation 2 developed by Ma et al. for UHPC 

containing no coarse aggregates, where Ec is the elastic modulus of the concrete (psi) and f’c is the 
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compressive strength of the concrete (psi) (Ma, et al., 2004; Ma & Schneider, 2005). Figure 38 presents 

the normal cross section and the transformed cross section of the composite beam. 𝐼𝑡𝑟 and 𝑄𝑡𝑟 were 

found using the transformed section, and 𝑡 was taken as the width of the UHPC. 

Equation 2: Elastic modulus of UHPC containing no coarse aggregate 

𝐸𝑐 = 525,000 (
𝑓′

𝑐

10
)1/3 

 

Figure 38: Untransformed and transformed section used to find bond shear stress. 

The maximum shear stress in the bond line will be referred to as the maximum bond strength from 

hereafter. Table 11 presents a summary of the maximum bond strength data based on adhesive type 

and consolidation pressure. Figure 39 presents the maximum bond strength of the UHPC-thermoplastic 

beams based on their adhesive type and consolidation pressure. 

Table 11: Summary of Maximum Bond Strength Data 

Adhesive 
Type 

Consolidation 
Pressure (psi) 

Average 
(MPa) 

Standard Deviation 
(MPa) 

COV (%) 

PETG 
80 0.554 0.104 19 

100 0.668 0.125 19 

EAA 
80 0.555 0.142 26 

100 0.840 0.154 18 
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Figure 39: Maximum bond strength based on adhesive type and consolidation pressure 
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On average, the bond strength of the PETG and EAA specimens for a consolidation pressure of 80 psi 

was about the same. For a consolidation pressure of 100 psi, the EAA specimens on average had a 

greater bond strength than the PETG neat resin specimens by 26%.  

Additionally, the bond strength of specimens manufactured with a consolidation pressure of 100 psi 

within the same adhesive was greater than those manufactured with 80 psi. For the PETG neat resin 

specimens, the bond strength was 21% greater for specimens consolidated at 100 psi than those 

consolidated at 80 psi. For the EAA specimens, the bond strength was 51% greater for those 

manufactured at 100 psi than those manufactured at 80 psi.  

The variability in the data was greater for specimens manufactured with EAA, as shown in Table 11. Both 

the standard deviation and COV was greater for EAA. This is most likely due to the manufacturing 

process and the overheating of the EAA resin. It is possible that there was resin bleed out during 

consolidation which affected the bond strength within these panels. Nevertheless, on average, the EAA 

specimens showed a higher bond strength in flexure than the PETG neat resin specimens. 

5.3 Direct Single-Lap Shear 

To further investigate the bond between UHPC and thermoplastic laminates, a series of direct single-lap 

shear tests were performed. The following subsections will discuss the manufacturing process of the 

single-lap shear specimens, experimental procedure, results, and conclusions of the single-lap shear 

tests. 
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5.3.1 Manufacturing 

Typical concrete-FRP single-lap shear tests are conducted using rectangular concrete blocks (Mazzotti, et 

al., 2009; Khshain, et al., 2015). Blocks could not be fabricated from the panels used in previous work, as 

the depth of the panels was far too thin. As a result, a new manufacturing process was developed to 

fabricate single-lap shear specimens. A total of (8) 6” x 10” x 3” UHPC blocks were cast at the University 

of Maine using the same mix proportions presented in Section 3.1.1. Each batch of UHPC produced (1) 

UHPC block and (3) 2 in cubes for compressive testing. The block and cubes were placed in a wet room 

for 24 hours at 24°C and 95% humidity and then removed from their molds. The specimens were then 

placed in a hot water bath at 70°C for 7 days. Studies have shown that hot water baths greatly 

accelerate curing time of concrete specimens. Among four curing regimes: ambient air curing, hot air 

curing, hot water bath curing, and boiling water curing, hot water baths have shown to produce the 

highest concrete compressive strength (Hiremath & Yaragal, 2017). The optimum temperature range for 

accelerated concrete strength development was reported as 74°C to 82°C (McGhee, 1970), and it was 

found that concrete cured in a hot water bath at 75°C achieved 70% of its 28-day strength in just one 

day (Ramakrishnan & Dietz, 1975). Therefore, 70°C was a reasonable temperature to cure the concrete 

blocks at. The setup of the hot water bath is shown in Figure 40.   
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Figure 40: Hot water bath to accelerate curing process of UHPC blocks. 

Once the specimens were cured, the concrete cubes were tested in compression per ASTM C109. The 

average compressive strength of the cubes is presented in Table 12. 

Table 12: Average Compressive Strength of UHPC used for Single-Lap Shear Testing 

Average Batch 
Compressive 

Strength (MPa) 

Standard 
Deviation (MPa) 

COV (%) 
Specimen Size 

and Type 

124 12.0 10 2 in cubes 
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The next step in the specimen development process was bonding of the thermoplastic laminates to the 

UHPC blocks. The surfaces of the concrete blocks were first roughened using a 4-inch wire diamond 

wheel, and the specimens were blown with pressurized air to remove any dust. The thermoplastic 

laminates used for the single-lap shear specimens consisted of the same layup as the thermoplastic-

reinforced UHPC sandwich panels, mentioned in Section 3.2. The 12” x 12” laminates were pre-

consolidated at a temperature of 165°C and an effective pressure of 100 psi prior to bonding them to 

the concrete. The laminates were then cut into the shape shown in Figure 41 using a waterjet. The 

intent of this shape was to create FRP strips for single-lap shear tests. 

 

Figure 41: Waterjet-cut thermoplastic laminates for single-lap shear specimens. 

A thermoplastic laminate was bonded to one side of the concrete block using the same stamp 

thermoforming procedure discussed in Section 3.2. The test parameters considered were adhesive type 
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and consolidation pressure, as in the impact testing and three-point bending. The consolidation test 

matrix is shown in Table 13. Each consolidation was designed to produce three specimens for single-lap 

shear testing. 

Table 13: Consolidation and Test Matrix of Single-Lap Shear Specimens 

Specimen ID Adhesive Type 
Consolidation 

Pressure (psi) 

No. of 

Consolidations 

No. of Single-Lap 

Shear Testing 

Specimens 

P1_80 and 

P2_80 
PETG Neat Resin 

80 2 6 

P1_100 and 

P2_100 

100 2 6 

SUR1_80 and 

SUR2_80 
EAA 

80 2 6 

SUR1_100 and 

SUR2_100 

100 2 6 

 

The stacking setup for heating of the single-lap shear specimen is shown in Figure 42. The concrete block 

was offset from the laminate so that the laminate tabs overhung the concrete. A 4-inch wide adhesive 

sheet was placed in between the concrete and the laminate. The entire setup was placed on a 12” x 12” 

aluminum caul sheet for easy transfer from the oven to the press. Chemlease 41-90 was applied to the 

caul sheet to prevent the laminate and adhesive sheet from adhering to it. 
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Figure 42: Stacking setup for heating of single-lap shear specimens. 

A thermocouple wire was placed between the adhesive sheet and thermoplastic laminate to read the 

temperature of the bond throughout the heating process. This entire setup was placed in an oven until 

the thermocouple read 165°C. The setup was then transferred to the 400-kip Baldwin press. A ¼” 

silicone sheet was placed underneath the caul sheet and another ¼” silicone sheet was placed on top of 

the concrete block. A 12” x 12” x ¼” steel sheet was then placed on top of the entire setup, acting as a 

top platen for the press. Each specimen was consolidated for 10 minutes at its appropriate consolidation 

pressure. 

Each FRP-bonded UHPC block was then cut using a waterjet. The final single-lap shear test specimen was 

a 3” x 3” x 6” concrete block bonded to a 2” x 8” FRP strip. The bond length of the FRP strip and UHPC 

was 4 inches. A single-lap shear test specimen is presented in Figure 43. 

UHPC block 

Aluminum caul 

sheet 

Adhesive sheet 

Thermoplastic 

laminate 



86 
 

 

Figure 43: Single-lap shear UHPC-thermoplastic specimen. 

5.3.2 Experimental Procedure 

A total of (22) FRP-bonded concrete specimens were tested in single-lap shear using a 100-kN servo-

hydraulic Instron. Prior to testing, 2” x 2” aluminum plates were adhered to the end of the FRP strip with 

an epoxy resin to grip the laminate during testing. A steel L-bracket was adhered to the start of the 

bonded area using an epoxy resin to act as the contact surface for the LVDT during testing. The 

aluminum plates and L-bracket are shown in the test setup in Figure 44. 

6” 

4” 

4” 

2” 
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The test fixture consisted of a bottom steel plate that was gripped into the bottom hydraulic grips on 

the Instron and a top steel plate that resisted vertical displacement of the concrete block when loaded 

in tension. These plates where attached using four threaded rods and nuts. The test fixture was spring-

loaded for easy removal and transfer of the specimens. The Instron hydraulic grips gripped the FRP strip. 

The LVDT contacted the L-shape bracket to measure global slip. The test setup is shown in Figure 44. 

 

 

The specimen was then preloaded to 300 N. The tests were conducted under displacement control at a 

constant rate of 1 mm/min until failure. Failure modes were recorded, and the load and displacement 

data were analyzed using MATLAB. 

Figure 44: UHPC-thermoplastic single-lap shear test setup. 
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5.3.3 Results and Discussion 

Maximum bond strength was the main result of interest for the single-lap shear tests. In conventional 

single-lap shear tests, multiple strain gages are placed along the FRP to record the bond-slip behavior of 

the FRP-concrete bond. The placement of the strain gages on small specimens can become difficult and 

highly scattered stress-slip relationships can occur. As a result, a method developed by Dai et al. (Dai, et 

al., 2005) to determine bond stress was intended to be used. In this method, the FRP strain vs. slip curve 

at the start of the bonded area must be obtained by experimental testing. The interfacial bond-slip 

models can be represented by the function indicated in Equation 3. 

Equation 3: Strain-displacement curve fit proposed by Dai et al. 

𝜀 = 𝐴(1 − 𝑒−𝐵𝛿) 

Where 𝜀 is the strain of the FRP strip, and 𝛿 is the displacement of the FRP strip 𝛿 (mm). Displacement is 

found using an LVDT during testing, strain is found using Equation 4, and A and B are parameters found 

by performing exponential regression of the experimental data. 

Equation 4: Laminate strain calculation using pullout load and laminate properties. 

𝜀 =
𝐹

𝐸𝑓𝑏𝑓𝑡𝑓
 

Where F is the pullout force recorded from the load cell (N) and 𝐸𝑓, 𝑏𝑓, and 𝑡𝑓 are the elastic modulus 

(MPa), width (mm), and thickness of the FRP plate (mm), respectively. Parameters A and B in Equation 2 

are used to find the maximum bond strength, 𝜏𝑚𝑎𝑥 (MPa), the interfacial fracture energy, 𝐺𝑓 (N/mm) , 

and the maximum pullout load, 𝑃𝑚𝑎𝑥 (N), as indicated in Equations 5, 6, and 7. 

Equation 5: Bond fracture energy proposed by Dai et al. 

𝐺𝑓 = 0.5𝐴2𝐸𝑓𝑡𝑓 
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Equation 6: Maximum bond strength proposed by Dai et al. 

𝜏𝑚𝑎𝑥 = 0.5𝐵𝐺𝑓 

Equation 7: Maximum pullout load proposed by Dai et al. 

𝑃𝑚𝑎𝑥 = 𝑏𝑓𝐸𝑓𝑡𝑓𝐴 

The two-parameter nonlinear model has been widely accepted and used by many researchers to analyze 

the nonlinear bond stress-slip data of FRP and concrete (Mohammadi, 2014; Bencardino, et al., 2017; 

Dong & Hu, 2016). As a result, the method by Dai et al. seemed like an appropriate method to calculate 

the bond strength of the UHPC and thermoplastic laminate in this study. However, this method assumes 

stable crack growth throughout testing and also assumes a relatively ductile failure. Majority of the 

UHPC-thermoplastic specimens tested in single-lap shear failed in a brittle manner, and the strain vs. slip 

data did not follow the curve fit presented in Equation 3. A typical experimental strain-slip curve is 

presented in Figure 45, represented by the blue line. The orange line represents the curve fit presented 

by Dai et al. It is clear that this curve fit does not accurately represent the strain-slip data. The strain-slip 

curve for the experimental data is much more linear than Dai et al.’s approximation due to the brittle 

failure of the specimen. Therefore, the nonlinear bond-slip method proposed by Dai et al. was deemed 

inappropriate for this study and was not used to calculate bond strength. 

Further investigation of the literature was performed to approximate the bond strength of concrete 

bonded to FRP that fails in a brittle manner. The literature provided a review of bond-slip models for FRP 

sheets bonded to concrete in single-lap shear (Lu, et al., 2005). Most models included in the review 

assumed a failure at the concrete-adhesive interface and a ductile failure (Tanaka, 1996; Hiroyuki & Wu, 

1997; van Gemert, 1980; Maeda, et al., 1997; Cheng & Teng, 2005). One of the proposed models 

assumed a linear-brittle failure, but this method was deemed to be unrealistic (Neubauer & Rostasy, 

1997; Lu, et al., 2005). As a result, an appropriate way to estimate the nonlinear bond strength was not 



90 
 

found in the literature, and a quantitative measure of bond strength was not calculated from the single-

lap shear tests. The qualitative results were closely analyzed instead. 

 

Figure 45: Experimental strain-slip data compared to curve fit proposed by Dai et al. 

The main failure mode of the single-lap shear tests was debonding of the FRP strip. The interface at 

where the failure occurred depended on the specimen’s adhesive type. Specimens manufactured with 

PETG neat resin experienced debonding at the concrete-adhesive interface. The laminate remained 

bonded to the adhesive sheet and was removed from the concrete as a single entity. A layer of the 

concrete substrate was left on the adhesive sheet, as shown in Figure 46. Specimens manufactured with 

EAA experienced debonding at the laminate-adhesive interface. The adhesive sheet remained bonded to 

the concrete, and the laminate debonded from the adhesive sheet. Only one EAA specimen experienced 

debonding at the concrete-adhesive layer. Figure 47 shows the debonding mechanism at the adhesive-
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laminate interface. There was not a clear relationship between adhesive type and type of failure, i.e. 

ductile or brittle. Both adhesive types experienced ductile and brittle failures.  

 

Figure 46: Debonding of PETG neat resin specimens at the concrete-adhesive interface. 
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Figure 47: Debonding of EAA specimens at the adhesive-laminate interface. 

The peak load was noticeably different between the PETG neat resin specimens and the EAA specimens. 

The EAA specimens were typically able to undergo a higher maximum load than the PETG neat resin 

specimens. The peak load for the single-lap shear specimens based on adhesive type and consolidation 

pressure is presented in Figure 48. Note that several of the UHPC-FRP specimens made with PETG neat 

resin are not included in Figure 48. Specimens P1_80 and P2_100 were completely unbonded prior to 

testing. The reason of the debonding is most likely a manufacturing issue. This issue did not occur with 

specimens made from EAA, indicating that the bond between EAA and the laminate may be of higher 

quality than that of the PETG neat resin and laminate. 
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Figure 48: Peak load of single-lap shear specimens based on adhesive type and consolidation pressure. 

The average maximum peak loads of the PETG neat resin specimens manufactured at 80 and 100 psi 

were 6.84 and 4.51 kN, respectively. Those of the EAA specimens manufactured at 80 and 100 psi were 

9.02 and 9.29 kN, respectively. On average, the EAA specimens had a 31.9% and 106% increase in peak 

load for consolidation pressures of 80 and 100 psi, respectively. The scatter for the EAA data was greater 

than that for the PETG neat resin data. EAA specimens with a consolidation pressure of 80 psi had a 

small outlier of 1.84 kN. However, it is important to note that only three PETG neat resin specimens 

manufactured were tested at 80 psi and 100 psi due to a manufacturing issue. The small amount of 

specimens tested for PETG neat resin most likely lowered its variability. Nevertheless, the UHPC-

thermoplastic specimens bonded with EAA underwent a higher peak load, on average, than those 

bonded with PETG neat resin. 
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5.4 Summary and Conclusions 

This section will first discuss the summary and conclusions of the three-point bending tests and will then 

discuss the summary and conclusions of the direct single-lap shear tests. 

5.4.1 Three-Point Bending 

The three-point bending tests revealed that the EAA resin produced a stronger bond between the 

thermoplastic laminate and UHPC than the PETG neat resin. The beams manufactured with EAA resulted 

in a higher maximum bond strength in three-point bending. Again, a reason for concern is the difference 

in adhesive thickness. The EAA resin sheet was double the thickness of the PETG neat resin sheet, which 

may have contributed to its higher bond strength. However, in the calculation of the bond strength 

using Equation 1, adhesive thickness was considered when calculating the transformed moment of 

inertia, Itr. Therefore, the calculated bond strengths can be considered to be a direct comparison 

between the EAA and PETG neat resin specimens. The three-point bending results also showed that 

specimens manufactured with a consolidation pressure of 100 psi generally performed better than 

those manufactured with a consolidation pressure of 80 psi within the same adhesive type. Therefore, 

the optimal bond for this study was achieved by using the EAA resin and a consolidation pressure of 100 

psi. 

The three-point bending tests also provided a measurement of energy dissipation of the beam 

specimens. On average, the EAA specimens dissipated more energy than the PETG neat resin specimens. 

This is a good indicator of impact performance. A specimen that dissipates more energy is more likely to 

withstand higher impact loads. As mentioned previously, a cause for concern is the adhesive thickness. 

The greater thickness of the EAA most likely contributed to its higher energy absorption, and therefore 

this is not a direct comparison between EAA and PETG neat resin. However, literature revealed EAA’s 

respectable performance under impact due to its self-healing properties (Fall, 2001). These material 

properties allow EAA to return almost to its original shape after experiencing a force. This characteristic 
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of EAA most likely played a large role in increasing the energy absorption capacity of the beams under 

bending. 

The major failure mode of the beams in three-point bending was similar to the cracking patterns seen 

the panels manufactured with PETG neat resin in low-velocity impact testing. Both tests resulted in 

shear failure of the concrete which led to debonding along the adhesive-concrete layer. This conclusion 

solidifies the claim that these sandwich panels perform similar in flexure as they do under impact. As a 

result, three-point bending tests should continue to be utilized to analyze the concrete-thermoplastic 

bond.  

5.4.2 Direct Single-Lap Shear 

The single-lap shear tests were all in all unsuccessful. The specimens tested in single-lap shear did not 

experience stable crack growth or a ductile failure, which is what most bond-slip models assume. As a 

result, the experimental data did not accurately fit nonlinear bond-slip models found in the literature, 

and a quantitative measure of bond strength was not able to be calculated. The average bond strength 

could have been calculated by dividing the maximum load by the bond area, however this is not 

necessarily accurate for FRP bonded to concrete. Instead, maximum pullout load was compared among 

specimens. On average, the EAA specimens underwent a greater maximum pullout load than the PETG 

neat resin specimens. The consolidation pressure did not have a significant effect on the maximum 

pullout load. The single-lap shear tests showed some interesting qualitative information, specifically 

regarding the failure modes and failure interfaces. The failure interface differed depending on the type 

of resin. The specimens manufactured with EAA resin almost always failed at the adhesive-laminate 

interface. The specimens manufactured with the PETG neat resin almost always failed at the concrete-

adhesive interface. These results are not consistent with the failure interfaces of the three-point 

bending tests. All of the PETG neat resin specimens failed at the concrete-adhesive interface in three-

point bending. 70% of the EAA specimens failed at the concrete-adhesive interface as well. This reveals 
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that the bond between the concrete and thermoplastic behaves differently when tested in three-point 

bending versus single-lap shear. 

A few difficulties arose during the single-lap shear testing. Several of the FRP strips became completely 

unbonded to the UHPC block prior to testing due to a manufacturing error. Therefore, there were 

minimal specimens to test. Additionally, when the specimens were placed in the Instron, it was 

extremely difficult to directly align the FRP strip under the load head. When the FRP strips weren’t 

directly aligned with the load head, torsion occurred in the FRP strip which induced mixed mode loading. 

It is possible that not all specimens were tested in complete direct shear. Due to the manufacturing and 

testing difficulties, as well as the inability to obtain a quantitative bond strength measurement, single 

lap shear tests are not recommended to be conducted in future work. Three-point bending tests should 

be utilized instead. These tests proved to be simpler, the test specimens were easier to manufacture, 

and the results were much more accurate than the single-lap shear tests. 
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CHAPTER 6 

SUMMARY AND RECOMMENDATIONS FOR FUTURE WORK 

The externally-bonded thermoplastic laminates were effective in increasing UHPC’s impact resistance 

and decreasing brittle behavior of UHPC under impact. Two main processing parameters were of 

interest throughout this research: adhesive type and consolidation pressure. The adhesive type had a 

direct effect on the impact strength of UHPC. The consolidation pressure had a slight effect on the bond 

strength between the UHPC and the thermoplastic laminate. The following sections with discuss 

recommendations for future work regarding manufacturing, bond analysis, and impact testing. 

6.1 Manufacturing of UHPC-Thermoplastic Panels 

The EAA resin overall performed better under impact than the PETG neat resin. The specimens 

manufactured with EAA underwent less impact damage, dissipated a greater amount of energy, and 

produced a stronger bond with the UHPC. It is, of course, important to consider the greater adhesive 

thickness for the EAA resin, which may have contributed to its superior impact behavior and bond 

strength. Nevertheless, the literature noted the impressive impact performance of EAA, as this material 

possesses self-healing properties (Fall, 2001; Sierakowski & Hughes, 2006). The impact strength of EAA is 

also about 11 times that of the PETG neat resin, as shown in Table 4. Therefore, EAA should be 

considered an important material of interest in future work. Further investigation of this material should 

be performed to enhance the impact resistance of the UHPC-PETG laminate sandwich panels. 

The consolidation pressure did not have a significant effect on the impact behavior of the UHPC-

thermoplastic sandwich specimens in low-velocity impact. It did however, have a slight effect on the 

bond strength and energy dissipation of these specimens in three-point bending. For both EAA and PETG 

neat resin adhesives, the bond strength was higher, on average, for those consolidated with 100 psi than 

those consolidated with 80 psi. The energy dissipated by the beams was also greater on average for 

beams consolidated with 100 psi. In future work, panels should be consolidated at 100 psi. 
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In addition to consolidation pressure and adhesive type, consolidation temperature is an extremely 

important processing parameter for the bond between the thermoplastic laminates and UHPC. The 

manufacturing process used in this study was not suitable to test the effect of consolidation 

temperature on the bond between UHPC and the thermoplastic laminate because the temperature was 

not easily controlled. The press was not heated, and therefore the specimens underwent heat loss 

during bonding. In future work, consolidation temperature of the UHPC-thermoplastic sandwich panels 

should be explored using a heated press during manufacturing. Using a heated press would be more 

efficient and would decrease variability of bond strength in the specimens. In addition to using a heated 

press, a singular panel should be consolidated at a time. As mentioned in Section 3.2, the UHPC panels 

experienced cracking during the initial stamp thermoforming trials. These initial trials consolidated four 

panels at a time. The causes of the cracking are most likely due to the uneven concrete thickness within 

a singular panel and the uneven concrete thickness among the four different panels in one consolidation 

round. The UHPC cracking is expected to be minimized if one panel is consolidated a time. 

Since a heated press will be utilized in future work, displacement of the concrete cores becomes a 

concern. Displacement of the concrete cores was seen in the initial thermoforming trials due to 

overheating of the resin sheets. To prevent this issue, a retention frame should be manufactured for a 

singular panel to hold the panel in place during consolidation. This retention frame must be fairly heavy 

in order to prevent movement of the concrete core. Another issue that occurred with the initial 

thermoforming trials was the difficulty to remove the panels from the retention frame without 

damaging the panels. Therefore, the retention frame used in future work should be designed for easy 

removal of the panels. This could include adding a hinge to the frame to easily open the frame and 

remove the specimens. 

Heating the specimens manufactured with EAA to lower temperatures should be explored in future 

work. In this study, the EAA resin was heated far past its Tg and melting temperature, making the 
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manufacturing process of these specimens difficult due to the high viscosity of the resin. Overheating 

the EAA resin may have also caused much of the variability in this data. The temperature used to 

consolidate the UHPC-thermoplastic panels in the future needs to be high enough to bond the PETG 

laminates to the adhesive but not too high to cause the EAA resin to flow. Testing different 

temperatures would be an effective way to improve the manufacturing process of the specimens 

fabricated with EAA. 

A challenge to be tackled in future work is large-scale production of the UHPC-thermoplastic sandwich 

panels. A future goal of this work is to expand the panels from a square foot to a square yard (Gillis, 

2018). Production of the thermoplastic laminates would remain the same and would be fabricated in the 

automatic Dieffenbacher tape layup machine at the ASCC. This machine is capable of laying up laminates 

much larger than a square yard. The more challenging aspect would be the manufacturing of a square 

yard UHPC panel. This will require more material, equipment, and labor. A large area of concern is 

cracking of the concrete panel when consolidated in a hydraulic press. Cracking of the concrete was an 

issue in the UHPC panels at the current scale. One defect or abnormality in the concrete surface or 

thickness caused an unequal stress distribution when pressure was applied which catalyzed cracking 

throughout the panel. This issue is even more probable at a larger scale. As a result, a six sided mold 

would need to be used to cast the UHPC panel to ensure a uniform thickness. Thick silicone pads would 

also need to be used within the press to protect the concrete from the platens. 

6.2 Bond Analysis 

Three-point bending and single-lap shear tests were performed in this study to characterize the bond 

between UHPC and the thermoplastic laminate. Three-point bending tests proved to be simpler than 

single-lap shear tests and also provided a quantitative measurement of bond strength. In future work, 

three-point bending tests should be utilized to analyze the bond behavior between UHPC and the 

thermoplastic laminate. In addition to the simplicity, concrete performs similarly in flexure as it does 
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under impact, as shown in the cracking patterns of the three-point bending and impact tests. Testing the 

UHPC-thermoplastic bond in bending will provide a better representation of how the bond behaves 

under impact loading.  

The bond analysis of the UHPC-thermoplastic laminates can be further improved by using a test method 

that was developed by Gartner et al. to specifically test the bond capacity between FRP composites 

bonded to small concrete beams (Gartner, et al., 2011). This is a three-point bending test method and 

requires the application of an FRP sheet that is two-thirds of the beam span length. The test method 

also requires a saw cut within the concrete at the midspan of the beam that is half of the concrete beam 

depth. This saw cut is to be performed prior to bonding it to the FRP sheet, hence the saw cut is only to 

be present within the concrete beam. The intent of the saw cut is to develop concentrated moment at 

the cut and weaken the section so that a flexural crack will form at the tip of the saw cut to allow the full 

developmental length of the composite to be reached (Gartner, et al., 2011). The depth to width and 

span to depth ratios are also important for this beam test. The depth to width ratio shall be equal to 1, 

while the span to depth ratio shall be equal to 3. Figure 49 shows the proposed beam configuration for 

the concrete-FRP three point bending tests. 



101 
 

 

Figure 49: Proposed future three-point bending setup developed by Gartner et al. 

The bond strength can then be calculated using Equation 8. This equation assumes a linear stress 

distribution over the concrete compressive zone. 
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Equation 8: Maximum bond strength of FRP sheet and concrete beam proposed by Gartner et al. 

𝜏𝑏 =  
3𝑃𝐿

5ℎ𝑤𝑆
 

Where 𝜏𝑏= average shear stress in the UHPC-thermoplastic bond (MPa), P = peak load applied at 

midspan (N), L = beam span length (mm), h = beam height (mm), w = width of FRP sheet (mm), and S = 

length of FRP sheet (mm) (Gartner, et al., 2011). 

The beam configuration shown in Figure 49 will require different fabrication and manufacturing 

processes than the ones used for the sandwich panels. The depth to width ratio of the beams used in 

this work was only 0.5 and the span to depth ratio was 11.5. The depth to width and span to depth 

ratios required for the proposed test method are 1 and 3, respectively. As a result, beams should be cast 

at a size of 2” x 2” x 6”. Following casting, a 1”-deep saw cut can be cut at the midspan of the beams 

prior to bonding them to the laminate. A PETG laminate should then be bonded only to the tension face 

of the beam. 

Since the laminate will not cover the full span of the beam, the laminate should be cut into the shape 

presented in Figure 50 prior to bonding it to a UHPC panel. Figure 50 shows a plan view of the laminate 

placed over the UHPC panel for consolidation. The setup requires the laminate to overhang the concrete 

panel by an amount equal to 𝐿𝑝 − 𝐿𝑐, where Lp is the length of the FRP laminate and Lc is the length of 

the concrete panel. This will allow for easy alignment of the laminate and the concrete panel during 

consolidation. Two adhesive sheets with a width of the FRP sheet should be placed directly underneath 

the contact area between the thermoplastic laminate and the UHPC panel. Once the panel is 

consolidated, it can be cut in half along the centerline shown in Figure 50. It can then be cut 

longitudinally to acquire beam specimens. This manufacturing process will fabricate beam specimens 

needed for the setup shown in Figure 49. 
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Figure 50: Plan view of proposed UHPC-thermoplastic laminate setup for new three-point bending 

specimens. 

 

6.3 Impact Testing 

As mentioned in section 4.1, it is important to consider inertial effects when performing impact tests. 

Because the mass of the panels used in this study was less than 2 times the mass of the impactor, 

inertial effects were not considered (Leissa, 1969; Verma, et al., 2016). However, in future work, inertial 

effects should be investigated. This could be accomplished by using two accelerometers like the study by 

Ong et al. (Ong, et al., 1999). One accelerometer could be instrumented inside or attached to the tup 

and the other accelerometer could be attached to the test specimen. The inertial load due to impact of 

the specimen can then be subtracted from the total impact load to get the true impact load. 
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The low-velocity impact tests revealed that the addition of thermoplastic skins significantly increased 

the impact resistance of UHPC and minimized its brittle failure behavior. Impact resistance could be 

improved even more by altering the stacking sequence and thicknesses of the thermoplastic laminates. 

Literature showed that the energy absorption capacity, strength, and flexibility of a composite laminate 

are directly affected by its stacking sequence and thickness (Cantwell & Morton, 1991). Literature also 

showed that the load resisted by the rear skin is greater than that of the front skin under impact (Aryal., 

et al., 2019). Therefore, the rear skin should be designed with higher ductility and energy absorption 

capacity than the front skin. This could be achieved by altering the stacking sequence of the laminate or 

adding additional plies to the laminate to increase the thickness. A more flexible and energy absorbing 

rear skin would potentially reduce scabbing, reduce delamination, and catch concrete debris from the 

rear face of the panel. An E-glass/PETG laminate with high ductility should be developed for the rear 

face of the UHPC panel to further prevent brittle failure of the UHPC. 

Future work should look more carefully into high-velocity and blast loadings, as a main goal of this work 

is to use this sandwich composite system in military structures. High-velocity impact tests should first be 

carried out on the current design and scale of the UHPC-thermoplastic sandwich panels. The CEAST 9350 

impact drop tower system located at the ASCC is unable to perform high velocity impact tests, as its 

maximum impact speed is 4.65 m/s which falls in the low-velocity impact range (Safri, et al., 2014). As a 

result, high-velocity impact tests should be conducted by ERDC using bullet penetration tests. Once 

high-velocity impact tests are performed and analyzed, blast loadings can be tackled. 
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APPENDIX A: LOW-VELOCITY IMPACT TESTING DATA 

This appendix consists of the data from the quasi-static and low-velocity impact testing, including 

maximum impact load, residual displacement, change in compliance, front face delamination area, back 

face delamination area, and failure interface. The specimen ID begins with P if the specimen was 

manufactured with PETG neat resin and begins with SUR if the specimen was manufactured with EAA. 

Debonding in the adhesive-concrete interface is denoted as A-C in the failure-interface column, and 

debonding in the thermoplastic-adhesive interface is denoted as T-A. 

Table 14: Data Acquired from Quasi-Static Testing for All Specimens 

Specimen 
ID 

Consolidation 
Pressure (psi) 

Residual 
Displacement 

(mm) 

Change in 
Compliance 

(mm/kN) 

Change in 
Compliance 

(%) 

P1-6 100 2.45 1.14 96 

P1-7 100 1.88 0.39 91 

P1-8 100 2.2 1.25 94 

P2-6 100 2.1 1.07 97 

P2-8 100 3.17 0.74 95 

P3-6 80 2.38 1.31 96 

P3-7 80 2.13 0.4 87 

P3-8 80 2.04 1 97 

P4-6 80 2.43 1.19 97 

P4-7 80 2.04 1.36 98 

P4-8 80 2.06 0.92 97 

SUR1-4 100 0.86 0.4 89 

SUR1-5 100 0.68 0.33 87 

SUR3-6 80 1.41 0.21 75 

SUR3-8 80 1.26 0.19 73 

SUR4-6 80 1.1 0.31 91 

SUR4-7 80 0.1 0.01 22 

SUR4-8 80 2.2 0.95 92 

SUR5-7 80 0.13 0.01 26 

SUR5-8 80 0.93 0.37 91 

SUR7-6 100 0.26 0 0 

SUR7-7 100 0.83 0.03 35 
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Table 14 Continued 

SUR7-8 100 0.63 0.08 59 

SUR8-4 100 data not 
acquirable 

0.05 62 

SUR8-5 100 0.1 0.01 21 
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Table 15: Data Acquired from Drop-Weight Testing for All Specimens 

Specimen 
ID 

Consolidation 
Pressure (psi) 

Maximum 
Impact 

Load (kN) 

Front Face 
Delamination 
Area (mm2) 

Rear Face 
Delamination 
Area (mm2) 

Failure 
Interface 

P1-6 100 53.1 7.09E+03 2.11E+04 T-A 

P1-7 100 56.8 6.36E+03 2.09E+04 T-A 

P1-8 100 54.1 5.03E+03 7.25E+03 A-C 

P2-6 100 47.5 5.03E+03 1.54E+04 A-C 

P2-8 100 23.8 6.36E+03 1.33E+04 A-C 

P3-6 80 47.5 6.36E+03 1.43E+04 T-A 

P3-7 80 
data not 

acquirable 
7.85E+03 1.13E+04 none 

P3-8 80 51.9 5.03E+03 1.54E+04 T-A 

P4-6 80 50.6 7.85E+03 2.12E+04 A-C 

P4-7 80 55.1 9.50E+03 2.10E+04 A-C 

P4-8 80 53.4 6.36E+03 2.09E+04 A-C 

SUR1-4 100 50.2 2.83E+03 1.65E+04 none 

SUR1-5 100 59.9 7.85E+03 1.33E+04 none 

SUR3-6 80 62 6.36E+03 1.65E+04 A-C 

SUR3-8 80 37.9 3.85E+03 2.04E+04 T-A 

SUR4-6 80 51 5.68E+03 1.65E+04 none 

SUR4-7 80 63 7.85E+03 0.00E+00 none 

SUR4-8 80 44.5 5.03E+03 1.33E+04 A-C 

SUR5-7 80 61 7.07E+02 4.42E+03 none 

SUR5-8 80 61.1 5.03E+03 1.13E+04 none 

SUR7-6 100 61.3 6.36E+03 1.26E+03 none 

SUR7-7 100 48.4 3.85E+03 1.13E+04 none 

SUR7-8 100 48.4 5.03E+03 1.33E+04 none 

SUR8-4 100 67.7 6.36E+03 0.00E+00 none 

SUR8-5 100 68.1 6.36E+03 1.77E+02 none 
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APPENDIX B: THREE-POINT BENDING DATA 

This appendix consists of the data from the three-point bending tests, including peak load, peak 

displacement, energy dissipated, failure mode, and debonding interface. The specimen ID begins with 

“P” if the specimen was manufactured with PETG neat resin, and it begins with “SUR” if the specimen 

was manufactured with EAA. Debonding in the adhesive-concrete interface is denoted as A-C in the 

failure-interface column, and debonding in the thermoplastic-adhesive interface is denoted as T-A. 

Table 16: Three-Point Bending Data for PETG Neat Resin Specimens 

Specimen 
ID 

Consolidation 
Pressure (psi) 

Peak 
Load 
(N) 

Peak 
Displace-

ment 
(mm) 

Energy 
Dissipated 

(N-mm) 

Bond 
Strength 

(MPa) 

Failure 
Mode 

Failure 
Interface 

P1-1 100 1631 1.06 982 0.657 
concrete 

shear 
A-C 

P1-2 100 1881 1.19 1245 0.758 
concrete 

shear 
A-C 

P1-3 100 2030 1.37 1655 0.818 
concrete 

shear 
A-C 

P1-4 100 1997 1.24 1516 0.805 
concrete 

shear 
A-C 

P1-5 100 1917 1.21 1405 0.772 
concrete 

shear 
A-C 

P2-1 100 1920 1.35 1644 0.691 
concrete 

shear 
A-C 

P2-2 100 1684 1.04 1093 0.606 
concrete 

shear 
A-C 

P2-3 100 1802 1.09 1243 0.648 
concrete 

shear 
A-C 

P2-4 100 1478 1.00 921 0.531 
concrete 

shear 
A-C 

P2-5 100 1104 0.75 400 0.397 
concrete 

shear 
A-C 

P3-1 80 1413 0.94 824 0.541 
concrete 

shear 
A-C 

P3-2 80 1586 0.90 839 0.607 
concrete 

shear 
A-C 

P3-3 80 1751 0.95 964 0.671 
concrete 

shear 
A-C 

P3-4 80 1836 1.05 1140 0.703 
concrete 

shear 
A-C 

P3-5 80 1712 1.19 1333 0.656 
concrete 

shear 
A-C 
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Table 16 Continued 

 

   

P4-1 80 1205 0.86 688 
0.398 

concrete 
shear 

A-C 

P4-2 80 1145 0.75 407 
0.378 

concrete 
shear 

A-C 

P4-3 80 1500 0.90 906 
0.495 

concrete 
shear 

A-C 

P4-4 80 1645 1.01 1003 
0.543 

concrete 
shear 

A-C 

P4-5 80 1648 0.96 1070 
0.544 

concrete 
shear 

A-C 
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Table 17: Three-Point Bending Data for EAA Specimens 

Specimen 
ID 

Consolidation 
Pressure (psi) 

Peak 
Load 
(N) 

Peak 
Displace-

ment (mm) 

Energy 
Dissipated 

(N-mm) 

Bond 
Strength 

(MPa) 

Failure 
Mode 

Failure 
Interface 

SUR1-1 100 1322 1.12 570 0.621 
concrete 

shear 
A-C 

SUR1-2 100 2745 3.26 5372 1.290 
concrete 

shear 
A-C 

SUR1-3 100 1788 2.59 3212 0.840 
concrete 

shear 
A-C 

SUR1-6 100 1987 1.68 1219 0.933 
concrete 

shear 
A-C 

SUR1-7 100 1635 2.01 1085 0.768 
concrete 

shear 
none 

SUR2-2 80 2104 1.72 1739 1.104 
concrete 

shear 
A-C 

SUR2-3 80 1816 1.53 1163 0.952 
concrete 

shear 
A-C 

SUR2-4 80 2202 2.08 2464 1.155 
concrete 

shear 
A-C 

SUR3-1 80 1832 1.41 1587 0.680 
concrete 

shear 
A-C 

SUR3-2 80 1921 1.52 1839 0.713 
concrete 

shear 
A-C 

SUR3-3 80 1998 1.59 2000 0.742 
concrete 

shear 
A-C 

SUR3-4 80 2007 1.36 1171 0.745 
concrete 

shear 
A-C 

SUR3-5 80 1769 0.755 641 0.657 
concrete 

shear 
T-A 

SUR4-1 80 1620 1.3 1422 0.601 
concrete 

shear 
A-C 

SUR4-2 80 1563 1.4 1296 0.580 
concrete 

shear 
A-C 

SUR4-3 80 1780 1.3 1468 0.661 
concrete 

shear 
A-C 

SUR4-4 80 1792 1.14 1228 0.665 
concrete 

shear 
A-C 

SUR4-5 80 1569 1.22 1277 0.583 
concrete 

shear 
A-C 

SUR5-1 80 1375 0.807 495 0.510 
concrete 

shear 
A-C 

SUR5-2 80 1684 0.887 762 0.625 
laminate 

debonding 
A-C 

SUR5-3 80 1177 0.626 329 0.437 
concrete 

shear 
T-A 

SUR5-4 80 983 1.34 567 0.365 
laminate 

debonding 
T-A 

SUR5-5 80 987 0.817 311 0.366 
laminate 

debonding 
T-A 
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Table 17 Continued 

SUR7-1 100 1856 1.68 1795 0.689 
concrete 

shear 
A-C 

SUR7-2 100 1854 1.82 2217 0.689 
concrete 

shear 
A-C 

SUR7-3 100 1834 1.43 1588 0.681 
concrete 

shear 
A-C 

SUR7-4 100 1963 1.55 2065 0.729 
concrete 

shear 
A-C 

SUR8-1 100 576 2.55 877 0.756 flexure T-A 

SUR8-2 100 2351 1.64 2229 0.241 
concrete 

shear 
T-A 

SUR8-3 100 1853 1.21 1259 0.983 
concrete 

shear 
T-A 

SUR8-6 100 2180 2.59 3817 0.775 
concrete 

shear 
T-A 

SUR8-7 100 2156 1.36 1594 0.912 
concrete 

shear 
T-A 

SUR8-8 100 1673 1.53 1040 0.902 
concrete 

shear 
T-A 
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 APPENDIX C: SINGLE-LAP SHEAR TESTING DATA 

This appendix consists of the data from the single-lap shear tests, including peak load and failure 

interface. The specimen ID begins with “P” if the specimen was manufactured with PETG neat resin, and 

it begins with “SUR” if the specimen was manufactured with EAA. Debonding in the adhesive-concrete 

interface is denoted as A-C in the failure interface column, and debonding in the thermoplastic-adhesive 

interface is denoted as T-A. 

Table 18: Single-Lap Shear Data for All Specimens 

Specimen ID Consolidation 
Pressure (psi) 

Peak Load (N) Failure Interface 

P1_100_1 100 2046 A-C 

P1_100_2 100 4123 A-C 

P1_100_3 100 4887 A-C 

P2_80_1 80 6257 A-C 

P2_80_2 80 5220 A-C 

P2_80_3 80 9030 A-C 

SUR1_100_1 100 10355 A-C 

SUR1_100_2 100 11285 T-A 

SUR1_100_3 100 10411 T-A 

SUR2_100_1 100 7448 T-A 

SUR2_100_2 100 8966 T-A 

SUR2_100_3 100 7274 T-A 

SUR1_80_1 80 6959 T-A 

SUR1_80_2 80 8354 T-A 

SUR1_80_3 80 1844 T-A 

SUR2_80_1 80 12710 T-A 

SUR2_80_2 80 8057 T-A 
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