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ABSTRACT 
Peripheral neuropathy is estimated to afflict 20 million people in the United States. Most cases 

of neuropathy result from physical injuries and trauma arising from automobile accidents and war. 

Peripheral nerves have the intrinsic ability to regenerate over time, bridging the injury gap. However 

native regeneration is limited to a distance of only a few millimeters. Current methods utilized to assist 

in the regeneration of peripheral nerves over distances exceeding those amenable to native repair 

include nerve autografts and allografts, and implantation of conduits. Nerve autografts are regarded as 

the most effective method but require a second surgical site to access a donor nerve. Allografts are 

similar to autografts except the donor nerve is from another individual and the patient therefore 

requires a prolonged regimen of immunosuppressant medication. Conduits currently on the market 

have equal or lower success rates relative to nerve autografts. Issues that arise with the use of the 

current generation of conduits involve foreign body reaction, and the potential need for second 

surgeries to remove the conduit. It is proposed that a biocompatible material such as nanocellulose may 

serve as a viable alternative conduit construction material. The current work determined means by 

which conduits comprising cellulose nanofibrils may be produced and evaluated their efficacy in 

regeneration after a sciatic nerve injury in a murine model. Development of a GMP compliant process to 

produce such cellulose nanofibril conduits was completed and a tolerability study was conducted in non-

human primates.



iv 
 

ACKNOWLEDGEMENTS 
First, I would like to thank Dr. David Neivandt for his dedication and advisement that began back 

in the first year of my undergraduate college experience. As an instructor he was devoted to ensuring 

his students would succeed in the program. As an advisor he has been both persistent and supportive 

through every step of my graduate school experience. I attribute much of my successes in college to his 

mentorship. 

I would like to express my appreciation to those serving on my thesis committee Dr. Douglas 

Bousfield, Dr. Benjamin Harrison, Dr. Caitlin Howell, and Dr. Paul Sweetnam for continually providing 

support for me during my research through numerous insightful discussions. 

I also would like to thank our collaborators at various organizations such as the Eggan 

Laboratory of Harvard University (Dr. Kevin Eggan, Dr. Maura Charlton, and Dr. Joanie Mok), Nano Terra 

(Dr. Paul Sweetnam), and the Southwest National Primate Research Center. Without these 

collaborations this research would not have been possible. 

I am very grateful to those of The Process Development Center at the University of Maine, Mike 

Bilodeau, Mark Paradis, Dr. Donna Johnson, Keith Hodgins, and Nick Hill for their patience and 

assistance in learning several processes and techniques of the paper industry. 

It was my pleasure to work with and train a lot of great students during this research and as 

such express my gratitude to Marley Dewey, Conor Millard, Roxanne Castillo, Mary Bourque, Izzie Grant, 

and Julia Towne. 

Last but not least, I would like to thank my family and friends for always keeping the pressure on 

and providing plenty of support over the years. I am grateful to all who have been a part of this process 

and assisted in making this a reality.  



v 
 

TABLE OF CONTENTS 
ABSTRACT .................................................................................................................................................... iii 

ACKNOWLEDGEMENTS ............................................................................................................................... iv 

TABLE OF FIGURES ....................................................................................................................................... ix 

TABLE OF TABLES ......................................................................................................................................... xi 

TABLE OF EQUATIONS ................................................................................................................................ xii 

CHAPTER ONE PERIPHERAL NERVOUS SYSTEM ANATOMY, PHYSIOLOGY AND NATIVE REPAIR 

MECHANISMS ............................................................................................................................................... 1 

1.1 PERIPHERAL NERVOUS SYSTEM ......................................................................................................... 1 

1.2 PERIPHERAL NERVE ANATOMY.......................................................................................................... 1 

1.3 ACTION POTENTIALS AND PROPAGATION ........................................................................................ 2 

1.4 SALTATORY CONDUCTION ................................................................................................................. 4 

1.5 WALLERIAN DEGENERATION ............................................................................................................. 5 

1.6 AXONAL REGENERATION ................................................................................................................... 7 

1.7 LIMITATIONS OF NATIVE PERIPHERAL NERVE REGENERATION ....................................................... 8 

CHAPTER TWO SURGICAL INTERVENTIONS TO PROMOTE PERIPHERAL NERVE REPAIR ......................... 10 

2.1 FREQUENCY AND SEVERITY OF PERIPHERAL NERVE INJURIES ....................................................... 10 

2.2 CURRENT APPROACHES TO PERIPHERAL NERVE REPAIR ................................................................ 11 

2.2.1 NEURORRHAPHY ....................................................................................................................... 11 

2.2.2 GRAFTS....................................................................................................................................... 12 

2.2.3 CONDUITS .................................................................................................................................. 12 

2.3 LIMITATIONS OF CURRENT METHODS OF PERIPHERAL NERVE REPAIR ......................................... 15 

2.3.1 NEURORRHAPHY ....................................................................................................................... 16 

2.3.2 GRAFTS....................................................................................................................................... 16 

2.3.3 CONDUITS .................................................................................................................................. 17 

2.4 DESIRED PROPERTIES OF NEURAL CONDUITS ................................................................................. 21 

2.5 TESTING OF THE EFFICACY OF CONDUIT ENTUBULATION FOR PERIPHERAL NERVE REPAIR ........ 23 

2.6 THE POTENTIAL OF CELLULOSE NANOFIBER FOR NEURAL CONDUIT PRODUCTION ..................... 24 

CHAPTER THREE EXPERIMENTAL METHODS ............................................................................................. 26 

3.1 PULP PREPARATION ......................................................................................................................... 26 

3.2 CONFIGURATION OF CONTINUOUS REFINEMENT VIA A SUPERMASSCOLLOIDER ........................ 26 

3.3 SMC OPERATION .............................................................................................................................. 29 

3.4 CNF SLURRY CHARACTERIZATION .................................................................................................... 31 



vi 
 

3.5 CNF MORPHOLOGICAL DETERMINATION/DEVELOPMENT OF CALIBRATION CURVES .................. 32 

3.6 SHEET FORMATION .......................................................................................................................... 34 

3.7 CNF SHEET THICKNESS MEASUREMENTS ........................................................................................ 35 

3.8 TENSILE STRENGTH MEASUREMENTS ............................................................................................. 35 

3.9 AIR PERMEABILITY MEASUREMENTS .............................................................................................. 36 

3.10 OXYGEN PERMEABILITY MEASUREMENTS .................................................................................... 36 

3.11 DIFFUSION COEFFICIENT OF GLUCOSE IN A CELLULOSE NANOFIBER SHEET ................................ 37 

3.12 CNF SHEET POROSITY ..................................................................................................................... 40 

3.13 CNF SHEET TOPOGRAPHY .............................................................................................................. 41 

3.14 CONDUIT FORMATION ................................................................................................................... 41 

3.15 PACKAGING .................................................................................................................................... 42 

3.16 ETHYLENE OXIDE STERILIZATION ................................................................................................... 43 

3.17 CELL CULTURE AND CELL GROWTH STUDIES ................................................................................. 44 

3.18 CONDUIT IMPLANTATION .............................................................................................................. 45 

3.19 GRIP STRENGTH ANALYSIS OF MICE .............................................................................................. 47 

3.20 END OF LIFE ANALYSIS .................................................................................................................... 47 

3.21 SLIDE PREPARATION AND STAINING ............................................................................................. 49 

CHAPTER FOUR CELLULOSE NANOFIBER SHEET CHARACTERIZATION AND NEURAL CONDUIT 

DEVELOPMENT ........................................................................................................................................... 52 

4.1 CNF SHEET CHARACTERIZATION ...................................................................................................... 52 

4.1.1 SHEET THICKNESS ...................................................................................................................... 52 

4.1.2 TENSILE STRENGTH TESTING ..................................................................................................... 53 

4.1.3 SURFACE PROFILOMETRY MEASUREMENTS ............................................................................ 53 

4.1.4 CNF SHEET TRANSPARENCY ...................................................................................................... 55 

4.1.5 AIR PERMEABILITY OF CNF SHEETS ........................................................................................... 56 

4.1.6 MERCURY POROSIMETRY OF CNF SHEETS ............................................................................... 57 

4.1.7 OXYGEN PERMEABILITY OF CNF SHEETS .................................................................................. 58 

4.2 CNF CONDUIT DEVELOPMENT ......................................................................................................... 59 

4.3 CONDUIT SEAL EMPLOYING NON-MECHANICAL MEANS ............................................................... 59 

4.4 EVALUATION OF CONDUIT SEAL INTEGRITY.................................................................................... 60 

4.5 EVALUATION OF THE EFFECT OF CNF SHEET THICKNESS ON CONDUIT INTEGRITY ....................... 62 

4.6 MECHANICAL INTERLOCKING CNF CONDUITS ................................................................................. 64 

4.7 EVALUATION OF THE STABILITY OF MECHANICALLY INTERLOCKED CNF CONDUITS .................... 65 



vii 
 

4.8 CONCLUSION .................................................................................................................................... 66 

CHAPTER FIVE CELLULAR COMPATIBILITY WITH CELLULOSE NANOFIBER AND IN VIVO STUDIES .......... 68 

5.1 CELLULAR PROLIFERATION ON, AND COMPATIBILITY WITH, CELLULOSE NANOFIBER SHEETS .... 68 

5.2 INTRODUCTION TO IN VIVO STUDIES .............................................................................................. 71 

5.3 MURINE STUDY ONE: SCIATIC NERVE TRANSECTION WITH NO TISSUE RESECTION ..................... 71 

5.4 MURINE STUDY TWO: SCIATIC NERVE TRANSECTION WITH TISSUE RESECTION AND CNF 

CONDUIT LENGTH VARIATION ............................................................................................................... 73 

5.5 HISTOLOGICAL ANALYSIS ................................................................................................................. 77 

5.6 NON-HUMAN PRIMATE STUDY: CNF TOLERABILITY ....................................................................... 80 

5.7 CONCLUSION .................................................................................................................................... 82 

CHAPTER SIX FINITE ELEMENT ANALYSIS OF DIFFUSION AND DISTRIBUTION OF OXYGEN AND GLUCOSE 

WITHIN CNF PERIPHERAL NERVE CONDUITS............................................................................................. 84 

6.1 INTRODUCTION: ............................................................................................................................... 84 

6.2 COMSOL MULITPHYSICS® FINITE ELEMENT ANALYSIS ................................................................... 86 

6.3 OXYGEN DIFFUSION AND DISTRIBUTION ........................................................................................ 88 

6.3.1 EFFECT OF CONDUIT DIAMETER ON OXYGEN CONCENTRATION AND DISTRIBUTION ........... 90 

6.3.2 EFFECT OF CONDUIT WALL PERMEABILITY ON OXYGEN CONCENTRATION AND 

DISTRIBUTION ..................................................................................................................................... 94 

6.3.3 EFFECT OF CONDUIT LENGTH EFFECT ON OXYGEN CONCENTRATION AND DISTRIBUTION . 100 

6.4 GLUCOSE DIFFUSION AND DISTRIBUTION ..................................................................................... 104 

6.4.1 EFFECT OF CONDUIT DIAMETER ON GLUCOSE CONCENTRATION AND DISTRIBUTION........ 106 

6.4.2 EFFECT OF CONDUIT LENGTH ON GLUCOSE CONCENTRATION AND DISTRIBUTION ............ 109 

6.4.3 EFFECT OF CONDUIT WALL PERMEABILITY ON GLUCOSE CONCENTRATION AND 

DISTRIBUTION ................................................................................................................................... 114 

6.5 CONCLUSIONS OF FINITE ELEMENT ANALYSIS MODELING OF OXYGEN AND GLUCOSE 

CONCENTRATIONS AND DISTRIBUTIONS WITHIN A CNF PERIPHERAL NERVE CONDUIT .................. 117 

CHAPTER SEVEN  CONCLUSIONS .............................................................................................................. 119 

REFERENCES .............................................................................................................................................. 125 

APPENDIX ................................................................................................................................................. 134 

A1: CLEANROOM DESCRIPTION ........................................................................................................... 134 

A2: CLEANROOM BLUEPRINTS/DIAGRAMS ......................................................................................... 137 

A3: GMP/GLP-BASED PROTOCOLS DOCUMENT .................................................................................. 139 

SCOPE AND APPLICABILITY .............................................................................................................. 140 

SUMMARY OF METHOD ................................................................................................................... 141 



viii 
 

CNF-SOP-01 CELLULOSE PULP STORAGE .......................................................................................... 142 

CNF-SOP-02 GOWNING PROTOCOL ................................................................................................. 146 

CNF-SOP-03 PULP SUSPENSION ....................................................................................................... 150 

CNF-SOP-04 CNF PRODUCTION ........................................................................................................ 154 

CNF-SOP-05 REFINER SYSTEM CLEANING ........................................................................................ 163 

CNF-SOP-06 SLURRY FIBER ANALYSIS .............................................................................................. 167 

CNF-SOP-07 CNF SHEET PRODUCTION ............................................................................................. 173 

CNF-SOP-08 CNF CONDUIT PRODUCTION ....................................................................................... 177 

CNF-SOP-09 GENERAL MAINTENANCE AND CLEANING .................................................................. 183 

CNF-SOP-10 LABELING PROTOCOLS ................................................................................................. 187 

CNF-SOP-11 STABILITY STUDIES ....................................................................................................... 194 

CNF-SOP-12 PRODUCT PACKAGING ................................................................................................. 198 

A4: GLUCOSE DIFFUSION COEFFICIENT ............................................................................................... 202 

A5: STATISTICAL ANALYSES FOR COMPARISONS ................................................................................ 203 

STATISTICAL ANALYSIS FOR COMPARISONS OF TENSILE STRENGTH ............................................. 203 

STATISTICAL ANALYSIS FOR COMPARISONS OF SURFACE ROUGHNESS ........................................ 204 

A6: VARIOUS CNF CONDUIT DESIGNS AND CNF RELATED DEVICES ................................................... 207 

A7: MURINE STUDIES AVERAGE DATA ................................................................................................ 210 

MURINE STUDY 1 – AVERAGE GRIP STRENGTH DATA .................................................................... 210 

MURINE STUDY 2 – GROUP 1 AVERAGE GRIP STRENGTH DATA .................................................... 211 

MURINE STUDY 2 – GROUP 1 AVERAGE GRIP STRENGTH DATA (CONT.) ...................................... 212 

MURINE STUDY 2 – GROUP 2 AVERAGE GRIP STRENGTH DATA .................................................... 213 

MURINE STUDY 2 – GROUP 2 AVERAGE GRIP STRENGTH DATA (CONT.) ...................................... 214 

MURINE STUDY 2 – GROUP 3 AVERAGE GRIP STRENGTH DATA .................................................... 215 

MURINE STUDY 2 – GROUP 3 AVERAGE GRIP STRENGTH DATA (CONT.) ...................................... 216 

MURINE STUDY 2 – GROUP 4 AVERAGE GRIP STRENGTH DATA .................................................... 217 

MURINE STUDY 2 – GROUP 4 AVERAGE GRIP STRENGTH DATA (CONT.) ...................................... 218 

MURINE STUDY 2 – GROUP 5 AVERAGE GRIP STRENGTH DATA .................................................... 219 

MURINE STUDY 2 – GROUP 5 AVERAGE GRIP STRENGTH DATA (CONT.) ...................................... 220 

MURINE STUDY 2 – WEIGHT TRENDS .............................................................................................. 221 

BIOGRAPHY OF THE AUTHOR .................................................................................................................. 222 

 

  



ix 
 

TABLE OF FIGURES 
Figure 1: Peripheral Nerve Structure ............................................................................................................ 2 

Figure 2: Action Potential Propagation ......................................................................................................... 3 

Figure 3: Saltatory Conduction of Action Potentials ..................................................................................... 4 

Figure 4: Wallerian Degeneration and Axonal Regeneration ....................................................................... 6 

Figure 5: Methods of Neurorrhaphy ........................................................................................................... 11 

Figure 6: Method of Entubulation .............................................................................................................. 13 

Figure 7: Supermasscolloider Refining System ........................................................................................... 27 

Figure 8: Supermasscolloider Refining System Components ..................................................................... 29 

Figure 9: Viscosity Characteristics of CNF Production by Percent Fines ..................................................... 31 

Figure 10: MorFi Fiber Characteristic Analysis ............................................................................................ 33 

Figure 11: Correlation of Energy and Fines ................................................................................................. 34 

Figure 12: Glucose Diffusion Experiment .................................................................................................... 38 

Figure 13: Glucose Hexokinase Assay Standard Curve ............................................................................... 39 

Figure 14: Mechanical Interlock Design ...................................................................................................... 42 

Figure 15: Zone Analysis of Tissue Sections ................................................................................................ 49 

Figure 16: Tensile strength testing of CNF sheets ...................................................................................... 54 

Figure 17: Surface Roughness Measurement Results ................................................................................. 55 

Figure 18: CNF Sheet Transparency ............................................................................................................ 56 

Figure 19: Mercury Porosimetery Results .................................................................................................. 57 

Figure 20: MOCON Oxygen Permeability Results ....................................................................................... 58 

Figure 21: Third Conduit Stability Study Results at 24 hours ...................................................................... 65 

Figure 22: Cellular Attachment Modification Study ................................................................................... 69 

Figure 23: First Murine Study Grip Strength Results .................................................................................. 72 

file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266855
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266856
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266857
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266858
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266859
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266860
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266861
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266862
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266863
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266864
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266865
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266866
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266867
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266868
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266869
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266870
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266871
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266872
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266873
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266874
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266875
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266876
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266877


x 
 

Figure 24: Second Murine Study Group Characteristics ............................................................................. 74 

Figure 25: Second Murine Study Grip Strength Results .............................................................................. 76 

Figure 26: Hematoxylin and Eosin Stain of Conduit Containing Tissue Section ......................................... 77 

Figure 27: Calcofluor White Stain of Conduit Containing Tissue Section ................................................... 78 

Figure 28: Luxol Fast Blue Stain of Peripheral Nerve Section ..................................................................... 79 

Figure 29: Histology of Non-Human Primate (Subject #2) Neural Tissue and Suture Material.................. 81 

Figure 30: COMSOL Nerve and Conduit Model .......................................................................................... 87 

Figure 31: COMSOL Modeling Locational Analysis ..................................................................................... 87 

Figure 32: Extrapolation of Oxygen Permeability from MOCON Analyses ................................................. 89 

Figure 33: Oxygen concentration profiles for lowest and highest nerve to conduit diameter ratios ........ 91 

Figure 34: Oxygen Modeling with Variable Nerve to Conduit Diameter Ratio ........................................... 92 

Figure 35: Oxygen Concentration with Varied Nerve to Conduit Diameter Ratio ...................................... 94 

Figure 36: Oxygen Concentrations with Variation of Measured Conduit Permeability ............................. 96 

Figure 37: Oxygen Concentration with Variation of ISF-Based Conduit Permeability ................................ 97 

Figure 38: Oxygen Modeling with Variable Conduit Length ..................................................................... 101 

Figure 39: Oxygen Concentration Plateau Profiles ................................................................................... 103 

Figure 40: Glucose Concentration Profiles of a 16 mm Length Conduit ................................................... 107 

Figure 41: Glucose Concentration Profiles of a 12mm Length Conduit.................................................... 110 

Figure 42: Glucose Concentration Profiles of a 0.70:1.00 Nerve-Conduit Diameter Ratio Conduit ......... 112 

Figure 43: Glucose Concentration Profiles of a 1.00:1.00 Nerve-Conduit Diameter Ratio Conduit ......... 113 

Figure 44: Glucose Concentration Profiles of a Conduit with Varied Conduit Permeability .................... 116 

 

  

file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266878
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266879
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266880
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266881
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266882
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266883
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266884
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266885
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266886
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266887
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266888
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266889
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266890
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266891
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266892
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266893
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266894
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266895
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266896
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266897
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266898


xi 
 

TABLE OF TABLES 
Table 1: Nerve Injury Classifications ........................................................................................................... 10 

Table 2: FDA Approved Peripheral Nerve Repair Devices .......................................................................... 20 

Table 3: Sample of Pre-Clinical Studies Using Neural Conduits .................................................................. 24 

Table 4: Hematoxylin and Eosin Staining Procedure .................................................................................. 50 

Table 5: Sheet Thickness Analysis ............................................................................................................... 52 

Table 6: First Conduit Stability Study Results at 24 Hours .......................................................................... 61 

Table 7: First Conduit Stability Study Results at 14 and 46 Days ................................................................ 62 

Table 8: Second Conduit Stability Study Results at 24 Hours ..................................................................... 63 

Table 9: Second Conduit Stability Study Results at 18 Days ....................................................................... 64 

Table 10: Physical Parameters of Nerve-Conduit Model ............................................................................ 86 

Table 11: Oxygen Diffusion Related Parameters ........................................................................................ 90 

Table 12: Summary of the Dominant Diffusion Regimes ............................................................................ 99 

Table 13: Glucose Diffusion Related Parameters ..................................................................................... 104 

 

  

file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266902
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266903
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266904
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266905
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266906
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266907
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266908
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266909
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266910
file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266911


xii 
 

TABLE OF EQUATIONS 
Equation 1: Fick's First Law Adaptation ...................................................................................................... 37 

file:///C:/Users/Nicklaus/Desktop/NCarter-Thesis-Finalest-est.docx%23_Toc70266912


1 
 

CHAPTER ONE 

PERIPHERAL NERVOUS SYSTEM ANATOMY, PHYSIOLOGY AND NATIVE 

REPAIR MECHANISMS 

1.1 PERIPHERAL NERVOUS SYSTEM 

The human nervous system comprises two elements: the central and the peripheral nervous 

systems. The central nervous system (CNS) consists of the brain and the spinal cord, while the nerves 

branching from the CNS are defined to be components of the peripheral nervous system (PNS) [1, 2]. 

Differences exist in the regenerative abilities of the CNS and PNS, due largely to the presence of 

Schwann cells in the PNS [3, 4]. Injuries to the CNS can be life threatening, or lead to paralysis, as the 

CNS lacks the ability to regenerate [5, 6]. In contrast, injuries to the PNS can often be repaired either 

through native recovery, largely led by Schwann cells, or through surgical intervention [7]. The focus of 

the current work is to improve the efficacy and distance over which peripheral nerve injuries may be 

repaired through surgical intervention and via leveraging of the native ability of the PNS to regenerate. 

1.2 PERIPHERAL NERVE ANATOMY 

The structure of a peripheral nerve may be viewed as a bundle of bundles arrangement in which 

each bundle is encapsulated in a sheath that separates it from its surroundings, see Figure 1 [8]. The 

smallest fiber in a peripheral nerve is the axon (the functional unit of the nerve) which is encapsulated 

by the endoneurium [9, 10]. A bundle of several axons, each encapsulated by endoneurium, constitutes 

a fascicle [10]. The fascicle is encapsulated by the perineurium. A bundle of fascicles comprises the 

nerve as a whole which is wrapped by the epineurium [10]. 
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As stated above, the smallest functional unit of a nerve is the axon [9]. Axons conduct electrical 

signals known as action potentials and are typically surrounded by an insulating layer of myelin which 

comprises a mixture of proteins and phospholipids. Myelin is deposited around the axons via Schwann 

cells in relatively short, repeating segments. Gaps between the myelin segments are known as nodes of 

Ranvier [9]. Interestingly, the myelin sheath of a given axon is deposited by a singular Schwann cell [11]. 

Efficient transfer of action potentials through an axon is dependent on the presence of both the myelin 

sheath and the Nodes of Ranvier and occurs via the phenomenon of saltatory conduction [12]. 

1.3 ACTION POTENTIALS AND PROPAGATION 

Action potentials are electrical signals that are produced by the CNS and PNS to communicate 

and to coordinate anatomical functions [13]. All cells possess a resting membrane potential that is 

maintained through the action of ion channels resident in the plasma membrane [14]. Propagation of an 

action potential occurs due to depolarization and repolarization of a membrane as a result of a stimulus 

that alters the membrane potential to a value that exceeds a threshold depolarization value. There are 

several key stages in action potential development and propagation that are summarized below and 

depicted in Figure 2 [11]. 

Figure 1: Peripheral Nerve Structure  
Adapted from Grinsell et al [104] 
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When the threshold voltage is exceeded due to action of the stimulus, a depolarization cascade 

ensues that drastically increases the membrane voltage (often resulting in membrane voltage changes 

from of the order of negative 70 mV to positive values of the order of 30 mV). Depolarization occurs due 

to an influx of sodium ions into the cell and the concomitant loss of potassium ions from the cell. The 

shift towards a positive membrane potential during depolarization is due to the differential rate of 

transport of sodium and potassium ions. Specifically, the diffusion rate of sodium exceeds that of 

potassium and as such sodium ions enter the cell at a much higher rate than potassium ions leave, 

resulting in an increasingly positive membrane potential. At the peak of the action potential (greatest 

membrane potential), the repolarization phase is initiated via closing of the sodium ion channels and the 

opening of potassium ion channels. Potassium ions are expelled from the cell and the membrane 

potential returns to a negative, polarized, potential. Indeed, during repolarization, potassium ions may 

leave the cell so rapidly that the membrane becomes hyperpolarized, that is temporarily assumes a 

potential below that of the resting membrane potential. The resting membrane potential is however, 

gradually restored [11, 14].  

Figure 2: Action Potential Propagation 
Stages of an action potential, adapted from [105] 
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In the time period after an action potential and during the hyperpolarization phase, the plasma 

membrane has decreased sensitivity to stimuli, a phase referred to as the refractory period. The 

refractory period may be broken into two stages. The first stage is termed the absolute refractory period 

and is characterized by a complete lack of sensitivity to changes in the cellular membrane potential; no 

additional action potentials may be initiated during this stage [14, 15]. The second stage is termed the 

relative refractory period and is characterized by the fact that a second action potential may be 

activated, but the threshold is greatly increased relative to that pre-action potential. Successive action 

potentials are delivered through nerves via saltatory conduction. 

1.4 SALTATORY CONDUCTION 

Action potentials are propagated along both myelinated and unmyelinated nerve fibers of axons 

[16]. The potentials are transferred without any decrease in magnitude. Each action potential stimulates 

an adjacent area of the axon membrane to produce a new action potential. Therefore, each action 

potential causes the production of additional action potentials sequentially along the nerve fiber, that is, 

Figure 3: Saltatory Conduction of Action Potentials 
Comparison of myelinated and unmyelinated axons [106] 
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the action potential is propagated serially by making ‘copies’ of itself. Propagation of action potentials 

along nerve fibers consequently differs from the flow of an electrical current through a wire, see Figure 

3.  

In unmyelinated axons, secondary (generated) action potentials are located immediately 

adjacent to the initial action potentials. In myelinated axon nerve fibers however, the action potential 

generated at one node of Ranvier may propagate rapidly or ‘jump’ (note the Latin word saltare – to 

leap) across the myelinated nerve segment to the next node of Ranvier [11, 12]. Myelinated axons 

propagate action potentials more efficiently than unmyelinated axons as fewer action potentials are 

required to span the length of a given axon. Efficient propagation of action potentials is possible due to 

the insulation provided by the proteins and phospholipids of the myelin sheath. In addition, it is noted 

that the nodes of Ranvier contain a high concentration of sodium ion channels which aid in propagation 

through efficient recreation of the action potential at each junction [16]. The speed of action potential 

propagation is dependent upon the extent of myelination and on axon diameter. Specifically, thicker 

and more abundant myelination as well as greater axon diameter result in increased rates of action 

potential propagation [16]. 

1.5 WALLERIAN DEGENERATION 

Peripheral nerve repair following an injury occurs via a complex pathway that may be broken 

down into degeneration of the affected neural tissue (known as Wallerian degeneration), followed by 

various phases of axonal regeneration, see Figure 4. Wallerian degeneration is the first major phase of 

peripheral nerve repair and entails degeneration and removal of the damaged neural tissue to create an 

environment amenable to nerve regeneration [17].  

Interestingly, Schwann cells, which are responsible for generation of the myelin sheath of 

peripheral nerves, and whose presence differentiates the regeneratable PNS from the non-
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regeneratable CNS, are also crucial in the early stages of the repair process of peripheral nerve injuries 

[18]. When subjected to physical trauma, peripheral nerves fragment and release a variety of cell types, 

growth factors, and debris in the afflicted area. The segment of the axon distal to the injury site 

commences disintegration/degeneration within a 24-36 hour period post injury, degeneration occurs 

until the nearest node of Ranvier is reached [12]. During this time period, factors pertaining to 

myelination are downregulated, while factors attributed to nerve cell adhesion and support are 

upregulated. An immune response cascade is initiated at the distal stump by Schwann cells through 

upregulation of a variety of cytokines [19, 20].  

Removal of degenerated neural tissue, myelin in particular, is key to repair as myelin is 

inhibitory for the regeneration of axons [21]. Macrophages clear the debris via phagocytosis, whilst 

Figure 4: Wallerian Degeneration and Axonal Regeneration  
Stages of reinnervation following a peripheral nerve injury [107] 
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simultaneously excreting factors that aid in Schwann cell migration to the site of the injury [22]. During 

the initial phases of Wallerian degeneration Schwann cells aid in removal of debris. Wallerian 

degeneration acts to remodel the surrounding tissues and provide an environment conducive to nerve 

regeneration across the neural gap. The process is critical for neural repair as the distal stump is 

prepared for reconnection to the proximal stump, and inhibitory debris is removed. Four factors have 

been identified that dictate the efficacy of Wallerian degeneration: 1) the successful recruitment of 

Schwann cells, 2) secretion of neurotrophic factors, 3) existence of the basal lamina (specialized 

extracellular matrix), and 4) preservation of the distal nerve [23]. As the process of Wallerian 

degeneration nears completion, axonal regeneration is initiated.  

1.6 AXONAL REGENERATION 

Whilst debris is cleared, primarily by phagocytosis via Schwann cells and macrophages, a 

population of Schwann cells migrate to the distal end of the injury site, undergo a cell type transition to 

a non-myelinating form, proliferate, and begin to form bands of Bunger [19, 24]. Bands of Bunger, 

comprising longitudinally aligned Schwann cells, form inside each basal lamina tube which previously 

held myelinated axons, thereby creating a columnar pathway that directs axonal growth to achieve 

regeneration [22, 25]. Axonal growth cones in the form of filopodia, sprout from the proximal nerve 

stump and extend towards the bands of Bunger, which provide support for the regenerating nerve [26, 

27]. Axonal elongation is promoted through upregulation of both neural and vascular growth factors. It 

is noted that successful regeneration may be impeded by an excessive distance required to bridge the 

neural gap, and if the microenvironment is not amenable to regrowth. The regenerated nerve is re-

myelinated by Schwann cells, however distinct differences exist between the original nerve and the 

regenerated one in terms of the thickness of the myelin sheath, and the length of nerve covered by each 

myelin segment (i.e. the distance to the node of Ranvier) [17].  
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1.7 LIMITATIONS OF NATIVE PERIPHERAL NERVE REGENERATION 

As outlined above, peripheral nerves have the innate ability to self-repair, however several 

factors dictate the extent to which regeneration is successful, and determine if surgical intervention is 

necessary [28]. The response of the proximal stump to injury is dependent upon the location of the 

transection/crush; if the damage is in the proximity of the neuronal body, then apoptosis may occur, 

otherwise the stump will sprout growth cones and extend toward the residual distal stump. Ideally, the 

response of the distal stump to injury follows the process of Wallerian degeneration leading to neural 

tissue degeneration back to the nearest node of Ranvier, phagocytosis of cellular debris, and the 

formation of bands of Bunger [12, 18].  

Optimal recovery occurs for injuries that result in short axonal disruptions and limited damage 

to the surrounding tissue. Compression and blunt-transection injuries however disrupt the endoneurial 

tubing and create scar tissue which makes it difficult for bands of Bunger to form, leading to 

disorganized tissue growth and poor recovery [12]. Full remyelination of axons may not occur after 

regeneration due to poor stimulation of growth factors and hence limited activity by Schwann cells [29]. 

The length of the neural injury is negatively correlated with successful regeneration, that is, the greater 

the length of neural transection/crush the poorer the prognosis for functional recovery. Unfortunately, 

reinnervation and complete functional recovery are not synonymous. For example, even if neural 

reconnection is successful, for large injuries the time required for repair may be too great and the 

targeted, denervated muscle, may have atrophied beyond recovery [8, 30]. It is noted that muscle 

atrophy may occur in as little as 3 weeks, however structural integrity of the muscle may be maintained 

for up to a year. Fortunately, sensory end organs may maintain their integrity for two to three years 

without enervation, potentially allowing sensory recovery even after functional muscle has been lost. 
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It may be appreciated therefore that native nerve regeneration is possible, but for optimal 

results is limited to specific injury types and extents, and requires the careful orchestration of a range of 

degeneration and regeneration processes [18, 21]. It should not be surprising then that a range of 

surgical interventions have been developed to aid in restructuring the injury site. For example, neural 

transplants are a common approach, as are implants such as conduits that are employed to encase the 

site, isolating it from the surrounding tissue, and concentrating necessary cell types/factors within the 

neural gap [31, 32]. The various surgical methodologies for peripheral nerve repair, and their advantages 

and disadvantages, are presented in the following chapter.   
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CHAPTER TWO 

SURGICAL INTERVENTIONS TO PROMOTE PERIPHERAL NERVE REPAIR 

2.1 FREQUENCY AND SEVERITY OF PERIPHERAL NERVE INJURIES 

Approximately 200,000 surgical procedures are performed each year in the United States to 

address peripheral nerve injuries [33]. Less than 50% of such interventions result in full functional 

recovery, and account for $150 billion of health-care expenditures annually [8, 34]. Most peripheral 

nerve injuries occur in the upper limbs of young men (from 16-38 years old) and are the result of 

traumatic events such as automobile accidents, sport injuries, or occupation-related accidents [35]. 

Common nerves that are affected by these traumas are the brachial plexus, ulnar, median and peroneal 

nerves [35]. Peripheral nerve injuries are commonly graded using the Seddon-Sunderland classification 

system which differentiates injuries via the severity of damage to the nerve (scale of I-V with V being the 

most severe), see Table 1 [9]. 

Table 1: Nerve Injury Classifications 
Summary of Seddon-Sunderland nerve gradations [8, 9, 36] 

Grade Classification Description 

I Neurapraxia 
Internal neural compression, no Wallerian degeneration, address via 

physical therapy 

II 

Axonotmesis 

Axonal disruption, surroundings intact. Surgery generally not necessary. 

Observe, recovery anticipated in months. 

III 

Compression injuries, endoneurium disruption. Wallerian degeneration 

expected. Observe for up to 6 months and if poor recovery, surgery will be 

necessary. 

IV 

Blunt transection injury. Epineurium is only structure intact. Delay repair to 

assess neural damage. Surgical exploration and reconstruction typically 

necessary. 

V Neurotmesis Lacerating injury, whole nerve is transected. Immediate repair required 

Investigation of Table 1 reveals that severe peripheral nerve injuries occur via two means; blunt 

trauma (crush) and laceration. Traumatic crush injuries are classified as grade IV in the Seddon-
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Sunderland system and typically result in only the epineurium remaining intact. Frequently there is a 

need to surgically intervene and debride the injury site to remove necrotic tissue and debris in order to 

promote repair [28]. Lacerated nerve injuries (grade V in the Seddon-Sunderland system) are 

characterized by complete neural discontinuity and require immediate surgical intervention, including at 

a minimum debriding the injury site [36]. 

2.2 CURRENT APPROACHES TO PERIPHERAL NERVE REPAIR 

2.2.1 NEURORRHAPHY 
Neurorrhaphy, also known as end-to-end, or direct, repair is a surgical technique employed 

when there is no loss of neural tissue and the two severed nerve stumps can be sutured together 

without inducing excessive tension on the nerves [28, 36]. It is a common and generally successful 

surgical method with several variants which are dependent upon the specifics of the neural injury as 

presented in Figure 5 [37].  

Figure 5a depicts epineural repair in which the epineurium of the severed nerve is reconnected 

via sutures. Figure 5b presents fascicular repair in which the epineurium is retracted, and individual 

fascicles are sutured together. Epineural sheath repair (Figure 5c) extends the intact epineural sheath of 

one neural stump over the other stump, where it is sutured in place. In order to accomplish the overlap 

of sheaths, a portion of neural tissue of the receiving stump must be resected. Lastly, Figure 5d depicts 

single fascicle repair, a technique in which a single donor fascicle is sutured between the proximal and 

distal nerve stumps. It is noted that all four of the surgical methods presented in Figure 5 require a great 

deal of intricate suturing and have the potential to cause further damage to the injury site [9, 36]. 

Figure 5: Methods of Neurorrhaphy 
a) epineural repair, b) fascicular repair, c) Epineural sheath repair, d) single fascicle repair [108] 
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2.2.2 GRAFTS 
For peripheral nerve injuries in which the neural gap is sufficiently large that the nerve stumps 

cannot be reconnected without imposing significant tension, neural grafts are commonly utilized. Neural 

graft repairs generally have very good regenerative outcomes, and have been termed the ‘gold 

standard’ in peripheral nerve repair [38, 39]. The graft tissue may be sourced from the patient 

themselves (autograft), from another individual (allograft), or be a modified natural material. For an 

autograft, the donated nerve is sourced from a location of the patient deemed less important than the 

injury site [33], and is often the sural nerve, which renders the relevant region of the leg sensationless 

but not functionless [40]. Allografts are sourced from an individual other than the patient and as such 

require a regimen of immunosuppressant treatment to reduce the likelihood of rejection of the 

transplanted nerve [41]. Modified natural material grafts, such as AxoGen’s Avance Nerve Graft, are 

produced from human peripheral nerve allografts processed to create an acellular extra cellular matrix 

derived scaffold [28, 42]. Prior to implantation the grafts are sterilized via gamma irradiation to reduce 

the likelihood of immunogenic responses, however such treatment has been shown to reduce the 

efficacy of regeneration [41]. 

2.2.3 CONDUITS 
Neural conduits are an alternative option for repair of severe injuries, and are typically 

employed for neural gaps of 20 mm and less [41]. Conduits are advantageous in relation to nerve grafts 

in that a second surgical site is not required, and immunosuppressant regimes are generally not needed. 

Neural conduits are typically hollow cylinders into which the proximal and distal neural stumps are 

inserted, as illustrated in Figure 6. Conduits are sutured in place to ensure that the nerve stumps remain 

within the conduit throughout the regeneration process. The surgical methodology of employing a 

conduit for peripheral nerve repair is referred to as entubulation [36].  
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The process of entubulation and the various phases of neural regeneration are depicted in 

Figure 6 [41]. The first phase, known as the fluid phase, occurs on the day of surgical implantation and is 

characterized by the presence of neurotrophic factors in the fluid filling the void within the conduit. 

During the following week, a scaffold of extracellular matrix forms between the proximal and distal 

stumps in preparation of cellular migration, a process known as the matrix phase. During the second 

week post implantation various cell types are recruited into the luminal space, perhaps most notably 

Schwann cells which accumulate at the distal stump, in what is known as the cellular phase, in 

preparation of bands of Bunger formation and axonal regeneration. The final phase, referred to as the 

axonal phase, is characterized by axonal sprouts occurring at the terminus of the proximal stump which 

extend via the bands of Bunger to the distal end to effect neuronal repair. 

When designing a neural conduit, the objective is to create a microenvironment surrounding the 

injury site that is conducive to native regeneration, as outlined above. That is, to create an environment 

Figure 6: Method of Entubulation  
Phases for peripheral nerve repair using conduit assisted repair  [109] 
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that promotes isolation and containment of specific growth factors and cells critical to the regeneration 

process, whilst preventing an influx of inflammatory species [31]. Consequently, characteristics of 

conduits that should be considered include selective permeability, biocompatibility, biodegradability, 

structural stability and flexibility. In addition, the conduit should comprise a material amenable to 

sterilization [28]. The neural conduits employed in early studies were typically comprised of silicon 

(1982) [43] or Gore-tex (ePTFE, 1988) [44]. In the decades since these pioneering studies the number of 

materials used in the production of neural conduits has increased dramatically, as summarized below in 

the context of commercially available products: 

a) Neurotube 

Neurotube comprises polyglycolic acid (PGA), a highly crystalline and rigid polymer with low 

solubility in organic solvents [45]. PGA is resorbable and has beneficial mechanical 

properties for neural regeneration. Of the various FDA approved neural conduits, Neurotube 

has the greatest amount of clinical data available [41]. Neurotube has been highly successful 

in terms of clinical outcomes, surpassing neural grafts in certain studies, and has been 

employed for the repair of neural defects in the range of 2-40 mm, with a few studies 

performed on defects as large as 65 mm [46, 47]. 

b) NeuraGen, Neuroflex, NeuroMatrix, Neuromend and Neurawrap 

NeuraGen, and associated conduits, are comprised of type 1 collagen, which is one of the 

few naturally occurring materials employed in neural conduit production [41]. Collagen is 

the most abundant protein in mammals, is easily isolated and purified, and presents a 

minimal risk for immunogenic responses [41, 48]. NeuraGen and associated conduits have 

performed well clinically, with outcomes that have been comparable to those obtained from 

neural grafts for defects up to 20 mm [49, 50, 51]. 
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c) AxoGuard/Surgisis Nerve Cuff 

AxoGuard/ Surgisis nerve cuffs comprise porcine small intestine submucosa (SIS) which is a 

strong, yet pliable, collagen matrix. Submucosa grafts are cell free and therefore minimally 

immunogenic [52]. SIS has been observed to assists in local tissue remodeling, and to induce 

a systemic response to resist infection [53]. Comparatively little data has been published 

regarding the efficacy of SIS in neural repair, however evidence of enhanced neural 

regrowth has been reported [54].  

d) Neurolac  

Neurolac conduits comprise poly D,L lactide-co-ε-caprolactone (PCL), which is a hydrophobic 

semi-crystalline polymer that is both straightforward and inexpensive to produce [41, 55]. It 

is noted that Neurolac conduits are the only FDA approved transparent products available, 

and are biodegradable, with non-toxic degradation products [55, 56]. Extensive pre-clinical 

data suggests that PCL conduits approach the efficiencies of grafts in the repair of neural 

defects up to 20 mm in length [41, 57, 58, 59, 60]. Clinical data of Neurolac conduit 

entubulation has been reported for defects in the 5-20 mm range with positive results 

observed [46, 61]. 

e) Salutunnel and Salubridge (PVA) 

Salutunnel and Salubridge conduits comprise a non-biodegradable material, Salubria, which 

is a synthetic polyvinyl alcohol hydrogel (PVA). The hydrogel mimics the water content of 

human tissue, yet is readily sterilized and is mechanically stable [41, 62]. No data have been 

published regarding pre-clinical nor clinical studies employing Salutunnel or Salubridge [41]. 

2.3 LIMITATIONS OF CURRENT METHODS OF PERIPHERAL NERVE REPAIR 
As seen above, peripheral nerve repair requires the orchestration of multiple processes to 

efficiently regenerate a nerve [21]. Natural regeneration of peripheral nerves is effective for minor 
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injuries and for those occurring on short length scales, an injury that exceeds the capabilities of the 

native regenerative processes however requires surgical intervention [9]. As would be expected, each of 

the surgical repair methods outlined in the preceding section have limitations and associated 

complications, which are reviewed below. 

2.3.1 NEURORRHAPHY 
Epineural sutures are employed when the damaged nerve has little or no tissue that has been, 

or needs to be, removed. Such injuries often arise from a clean sever of the nerve [32, 37]. Direct repair 

via epineural suturing is generally employed for neural gaps of less than 20 mm, and in scenarios where 

the two neural stumps can be aligned end-to-end without the introduction of excessive tension [9]. The 

process of epineural suturing can however subject the neural stumps to excessive handling and induce 

greater damage than caused by the original injury [8, 9]. Though direct end-to-end repair via epineural 

suturing is a common technique for the repair of minor nerve gaps, the success of the operation is 

heavily reliant on the skill of the surgeon in correctly aligning the nerve stumps and executing effective 

and minimally invasive sutures [9, 32]. Interestingly, some studies have demonstrated that implantation 

of a conduit over a small neural gap had better regenerative results than direct repair via epineural 

sutures, suggesting that conduit implantation may in the future become the preferred surgical repair 

methodology for such injuries. [37] 

2.3.2 GRAFTS 
Neural grafts are often considered the preferred means of peripheral nerve repair, although 

they are not without significant limitations [38, 41]. As stated above, there are two primary methods of 

neural graft repair, autograft and allograft. Autografts are the generally preferred choice as the neural 

tissue is donated by the patient that is receiving the graft and as such tissue rejection and immune 

system responses are rare [42]. However, a significant issue with autografts is that they require an 

additional surgical site and concomitant loss of sensation in the region of donation. If large numbers of 
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grafts are necessary the stocks of lesser-important nerves are diminished and one must resort to more 

impactful donor nerves, or employ alternate methodologies [42]. Conversely, allografts are neural grafts 

donated by an individual other than the patient who is receiving the nerve [41]. Allografts require an 

intense regimen of immunosuppressant medication for a period of approximately 18 months, a process 

which renders the patient susceptible to numerous opportunistic infections, or in some cases, tumor 

formation [41, 63]. Modified natural material grafts are an alternative that may be used to avoid the 

issues associated with donor donation sites and immunosuppressant side effects [42]. Synthetic grafts 

are donated tissues that have been processed to remove cells and hence decrease their 

immunogenicity, such as the product Avance. Limitations that have been observed in the use of acellular 

grafts include increased scarring and fibrosis attributed to host cell rejection, and reduced performance 

as a result of degradation during neural processing and sterilization [41]. As such it may be appreciated 

that while the degree of neural regeneration that can be achieved via grafts may be superior to other 

surgical interventions, they are not without limitations, including those related to availability, 

immunogenic responses, and potential performance issues due to degradation. 

2.3.3 CONDUITS 
Neural conduits are a viable alternative to neural grafts, particularly for neural gaps of 20 mm or 

less. However, the performance of conduits decreases rapidly at larger neural gaps, a major limitation of 

the technology, and one investigated in the present work [41]. Since conduits are a non-native 

construct, the material of choice can be a major determinant of clinical success, or failure. As noted 

above, conduits can be constructed employing natural or synthetic materials, and further, can be 

designed to be biodegradable. Commercially available conduits and their specific limitations are outlined 

below: 
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a) Silicon/Teflon  

Conduits comprising silicon and polytetrafluoroethylene (ePTFE) were employed in the 

formative investigations of neural conduit entubulation. Performance of the conduits were 

deemed acceptable for neural gaps of below 15 mm for silicon and 6 mm for ePTFE conduits 

[43, 44]. Although both materials are considered biocompatible, neither biodegrade in vivo, 

and as such a second surgery was required to remove the conduit post-regeneration. 

Removal of the conduits was necessary as they were observed to restrict and compress the 

regenerating nerve, creating a poor environment for full recovery [41]. 

b) Neurotube 

Neurotube conduits, as stated above, comprise the synthetic polymer polyglycolic acid 

(PGA). The mechanical properties of PGA conduits are favorable for regeneration in terms of 

structural stability and the conduits biodegrade comparatively quickly, obviating the need 

for a second surgery to remove the conduit post-regeneration. However, the degradation of 

PGA produces acidic byproducts that are harmful to the surrounding tissues in the body [41, 

46]. Consequently, while it has been observed that Neurotube conduits aid in the 

regeneration of peripheral nerve injuries with neural gaps in the range of 10-30 mm, the 

surrounding tissue is irritated and damaged upon conduit degradation thereby requiring 

conduit removal despite its biodegradable nature [46, 64, 65]. 

c) NeuraGen, Neuroflex, NeuroMatrix, Neuromend and Neurawrap 

The NeuraGen and associated conduits comprise collagen, which is a natural and abundant 

protein [41]. Collagen is both biocompatible and biodegradable, making it a logical and 

compelling choice for conduit production [48, 49]. The time scale for conduit degradation is 

specific to the various associated conduits. NeuraGen for example has been found to remain 

intact for up to 4 years in vivo, leading to unfavorable nerve compression comparable to 
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that seen in silicon/ePTFE conduits. Other conduits comprising collagen have been found to 

degrade in as few as 8 months [41, 51]. It should also be noted that instances of collagen 

conduits eliciting an immune response, which have required the implementation of an 

immunosuppressant regimen, have been observed [50]. 

d) AxoGuard/Surgisis Nerve Cuff 

AxoGuard/Surgisis nerve cuffs comprise porcine small intestine submucosa (SIS) which have 

been processed to create an acellular matrix comprising primarily collagen [53]. A major 

limitation of SIS conduits is the incidence of immune responses (despite the removal of the 

native cellular species), interestingly the responses appear to be dependent on the species 

from which the material was harvested [41, 53]. The production process of SIS conduits is 

lengthy and relatively expensive. In addition, the resultant conduits have large variability in 

a range of physical/chemical properties, and indeed have a finite risk of infectious disease 

transmission. There are minimal pre-clinical and clinical data for use of SIS conduits, so 

assessments of efficacy are not currently possible [52]. 

e) Neurolac 

Neurolac conduits comprise the polymer poly D,L lactide-co-ε-caprolactone (PCL) and, as 

stated above, are the only FDA approved conduits that are transparent, an attribute that 

aids in visualization of the surgical field during entubulation [41, 57]. PCL is however a very 

rigid material, a fact that has resulted in difficulties in implantation including the inability of 

surgeons to penetrate the conduit walls with needles during suturing, and associated 

disturbances of the injury site [41, 66]. As such, surgeons often use larger needles and 

sutures when implanting Neurolac vs other conduits, which has been observed to result in 

tearing of the neural tissue during implantation or afterwards if the neural stumps are under 

tension. Other issues that have been reported in association with Neurolac conduit 
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implantation include severe swelling, fragmentation of the conduit, and conduit collapse 

[58]. 

f) Salutunnel and Salubridge 

Salutunnel/Salubridge conduits comprise a synthetic polyvinyl alcohol hydrogel called 

Salubria which is intended to mimic the high water content of human tissue [62, 67]. Though 

mechanically stable, Salubria is non-biodegradable and has been shown to lead to neural 

compression and potential tension of the suture attachment sites, further damaging neural 

tissue. To date there have been no clinical studies published on Salutunnel/Salubridge 

conduits making it difficult to gauge its efficacy in neural regeneration [41]. 

Table 2: FDA Approved Peripheral Nerve Repair Devices  
Summary of positive attributes and limitations of device materials  

Material Tradename Positive Attributes Limitations 

Acellular Graft Avance 
Readily available 

No donor site morbidity 
Reduced surgical times 

Increased scarring/fibrosis 
Chance of host rejection 

Requires 
immunosuppression 

PGA-
Polyglycolic 

Acid 
Neurotube 

Excellent degradability 
Very good mechanical 

properties 
High cell viability 

Comparable to grafts (20 mm) 
Good efficacy up to 30 mm 

High rate of degradation 
Degradation products are 

acidic 
Low solubility 

Type I 
Collagen 

Neuragen 
Neuraflex 

Neurawrap 
Neuramatrix 
Neuramend 

Abundant and easily isolated 
Biocompatible 

Supports cell adhesion 
Supports tissue regeneration 

Comparable to grafts (20 mm) 
Good efficacy up to 40 mm 

Slow degradation time 
may lead to compression 

(Neuragen only) 
Most degenerate in 8 

months 
Undesirable immune 

response 

Porcine 
Surgisis 

AxoGuard 
Physically supportive 

Supports tissue regeneration 

Immune response can 
vary 

Very high cost 
Risk of infectious disease 

transmission 
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     Table 2 Continued  

PCL-
Polylactide-

co-
caprolactone 

Neurolac 
Only FDA-approved 
transparent conduit 

Comparable to grafts (20 mm) 

High rigidity, difficult to 
implant 

Requires large 
needles/sutures 

Greater chance of neural 
damage and foreign body 

reactions 

PVA-Polyvinyl 
Alcohol 

Salubridge 
Salutunnel 

Tissue-like water content 
Mechanically stable 

Easily sterilized 

Non-resorbable, may 
cause 

tension/compression 
No published studies on 

efficacy of material 

 

2.4 DESIRED PROPERTIES OF NEURAL CONDUITS 
It is evident that the conduits currently used for entubulation vary greatly in their positive 

attributes and in their limitations. Further, it may be seen that many of the positive aspects and the 

limitations stem from the physical properties of the materials used to create the conduits [41]. In order 

for entubulation to match and/or surpass the regenerative outcomes achieved via neural grafts, 

conduits must be created that have been optimized in terms of their mechanical, biodegradation and 

biocompatible/non-immunogenic properties. The relevant properties of currently available conduits, 

and the areas yet to be fully optimized are addressed below.  

The ability of a conduit to biodegrade in vivo in a manner that is safe, occurs on the relevant 

timescale and that enables the maintenance of favorable mechanical properties during neural 

regeneration is critical. Of the current FDA approved conduits, none meet all of these degradation 

requirements. For example, Salubridge/Salutunnel conduits are non-resorbable and as such cause 

compression of the nerve in the end-stages of regeneration leading to neural degeneration. Other 

conduits, including those comprising PLC, collagen, and PGA do undergo degradation in vivo, but do so in 

non- ideal processes, or on timescales that are incompatible with the regeneration process. For 

example, Neurolac, composed of PLC, is biodegradable but is so rigid that the conduit is difficult to 
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implant, and may fragment during degradation. Collagen conduits have a range of degradation times; 

Neuragen, for example, degrades so slowly (4 years) that it essentially behaves as a non-degradable 

conduit and engenders compression of the regenerating nerve. Neurotube, composed of PGA, degrades 

on a favorable time scale and maintains excellent mechanical stability over the desired time period, 

however the products of the degradation process are acidic, and are detrimental to surrounding tissue. 

Therefore, a material has yet to be identified that has the required mechanical properties, undergoes 

degradation in a timeframe comparable to that of neural regeneration, and whose degradation products 

are benign. 

Material selection for conduit construction must consider its biocompatibility/immunogenicity 

and likely response of the body to its presence. Synthetic materials, such as polylactide-co-caprolactone 

and polyglycolic acid have been observed to promote a foreign body response, and /or to produce tissue 

inflammation upon degradation, as such use of man-made materials is often avoided. Conversely, 

natural materials, such as collagen, which is a native protein in humans, may in fact elicit an immune 

response and require an immunosuppression regimen which may have unintended consequences. 

Attempts have been made to decrease the immunogenicity of naturally derived neural conduits by 

making acellular variants, for example Avance (acellular nerve allograft) and Surgisis (acellular porcine 

small intestine submucosa). The decellularization process employed to create the Avance grafts has 

been shown to decrease the performance of the graft and to result in scarring and fibrosis, characteristic 

of rejection. Surgisis is marketed as a non-immunogenic implant derived from porcine small intestine 

submucosa; however, patient responses to entubulation have been shown to be dependent upon the 

species of pig the conduit was harvested from. In addition, such implants have the potential to transmit 

infectious diseases. 
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2.5 TESTING OF THE EFFICACY OF CONDUIT ENTUBULATION FOR PERIPHERAL NERVE 

REPAIR 
Many animal studies have been performed to investigate the efficacy of conduit entubulation in 

promoting peripheral nerve repair. Such studies have employed a wide range of animal models, and an 

equally wide range of nerve types distributed throughout animals under investigation. To gauge the 

effectiveness of nerve regeneration several forms of analysis have been employed, including grip 

strength, gait analysis, tissue microscopy and histology. The wide variety of animal model, nerve type 

and analytical methodology employed has made inter-experimental comparisons challenging, a fact 

commonly acknowledged in the literature. Broad consensus has been reached, however, that several 

specific conduits have been shown to perform as well as grafts up to a given injury length, and that 

epineural suturing has been determined to be inferior to conduit implantation for small neural gap 

injuries. Beyond these two broad conclusions however, little consensus has been reached. Indeed, 

several sources have stated that there is a dire need for a large-scale experiment to be performed in 

which all conduits available are tested, alongside grafts and neurorrhaphy, in the same animal trial to 

ensure consistency in analytical methods and injury models to provide translational results for inter-

experimental comparisons [23, 33, 41]. Such a large-scale experiment could also provide a standard for 

future conduit development such that new products could be tested in the same manner to create a 

consistent database of products and techniques.  

Table 3 provides a summary of several pre-clinical studies that have been performed to 

determine the efficacy of specific neural conduits in the regeneration of peripheral nerve injuries. 

Investigation of Table 3 highlights the fact that direct comparison of studies using the same animal 

model, conduit, nerve type and analysis methodology is currently infeasible. 
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Table 3: Sample of Pre-Clinical Studies Using Neural Conduits 
MAP-Muscle Action Potential, SAP-Sensory Action Potential, EMG-Electromyography; adapted from Kehoe et al [41] 

Author Animal Model Conduit Used Nerve Used Analysis Techniques 

Tyner 

(2007) 
Rat Neuragen 

Sural, 

peroneal, tibial 

Histology and autonomy 

scoring 

Archibald 

(1995) 

Nonhuman 

primate 
Neuragen 

Median and 

ulnar 

MAP, SAP, 

histomorphology 

Archibald 

(1991) 

Rat and 

primate 
Neuragen 

Sciatic and 

median 
MAP and SAP 

Waitayawinyu 

(2007) 
Rat 

Neuragen 

Neurotube 
Sciatic 

Isometric contraction, 

muscle weight, histology 

Dellon 

(1988) 
Monkey Neurotube Ulnar 

Morphometric analysis and 

electrophysiology 

Meek 

(2009) 
Rat Neurolac Sciatic 

Functional analysis and 

light microscopy 

Meek 

(2009) 
Rat Neurolac Sciatic Microscopy 

Meek 

(2001) 
Rat Neurolac Sciatic 

EMG and video gait 

analysis 

Meek 

(1996) 
Rat Neurolac Sciatic 

Walking track analysis and 

electrostimulation 

2.6 THE POTENTIAL OF CELLULOSE NANOFIBER FOR NEURAL CONDUIT PRODUCTION 
It is evident from the preceding sections that an opportunity and a need exists for the 

development of a neural conduit that minimizes immunogenicity whilst maximizing the characteristics of 

biocompatibility, biodegradability and mechanical stability. Further, such development work should 

employ a common animal model, a readily accessible nerve type, and standardized analysis 

methodologies. Given that the materials employed to construct current neural conduits have all been 

found to be deficient in one or more aspects, an alternate material, one not yet employed for conduit 

production, should be evaluated. 
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Cellulose nanofibrils (CNF) are an emerging natural material which is being evaluated for an 

exponentially increasing number of applications in a large variety of fields. In the biomedical realm it has 

been shown that CNF is relatively bio-inert [68], has excellent mechanical properties [69], degrades over 

time in vivo [70], and is flexible [71]. CNF consists of cellulose fibrils of the order tens to hundreds of 

nanometers in diameter, and hundreds of nanometers to many µm in length. The Process Development 

Center (PDC) of the University of Maine has become one of the top suppliers of cellulose nanomaterials 

in the world and is the only facility in the United States with 1 ton per day production capability [72]. 

CNF may be produced via a range of methodologies from a vast array of cellulosic and lignocellulosic 

feedstock materials. At the University of Maine, CNF is generally produced from a Kraft bleached 

softwood pulp with fiber diameters of tens of µm and is refined through means of mechanical 

defibrillation in an aqueous slurry to attain fibril diameters on the nanoscale. 

Preliminary work by the author demonstrated that CNF can be readily employed in slurry form 

to produce thin sheets without additional treatment or functionalization, as presented in Section 4.1. 

The sheets had sufficient pliability to enable the ready formation of a tube, or conduit. It is evident 

therefore that CNF has the potential to be a viable material for neural conduit production, and that such 

conduits may address many of the deficiencies of current conduits. The following chapters present the 

work performed to develop, produce and characterize CNF neural conduits, to assess their efficacy in 

neural regeneration in a common animal model using standardized testing methods, and to model their 

facilitation of the diffusion of pro-regenerative species into the luminal space to shed light on the results 

of the regenerative studies. 
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CHAPTER THREE 

EXPERIMENTAL METHODS 

3.1 PULP PREPARATION 
Wood pulp is the primary feedstock employed to produce CNF via mechanical defibrillation and 

segmentation of cellulose fibers. Bleached softwood Kraft pulp was acquired through the University of 

Maine Process Development Center from Resolute Forest Products. Oven-dried pulp (280 grams) was 

cut into pieces approximately 15.2 cm x 15.2 cm and placed in an 18.9 L bucket containing 13.72kg of DI 

water (17.4 MΩ-cm) and left overnight. The sheets of pulp were subsequently broken apart manually to 

release fibers and fiber aggregates. The resulting aggregates were less than 1 cm in diameter. 

3.2 CONFIGURATION OF CONTINUOUS REFINEMENT VIA A SUPERMASSCOLLOIDER 
A supermasscolloider was purchased from Masuko Sangyo Co., Ltd (model MKCA6-2J). The 

system was a benchtop model designed for batch refinement in which the lower of two stones (rotor) is 

rotated by an electric motor, and the feed material is pumped into the space between the rotating stone 

and a parallel, static, upper stone (stator). Coarse deep ditch stones (MKE6-46) of 15.2 cm diameter 

were employed to refine CNF from the pulp slurry prepared as described above. It is noted that the 

stones are generally used commercially to create pastes from fruits, vegetables, seeds, beans, rice etc. 

and are constructed of a combination of silicon carbide and aluminum oxide.  

In typical operation, the supermasscolloider (SMC) was designed for batch refining in which the 

slurry makes a single pass through the system. If the desired slurry consistency was not achieved with a 

single pass, additional passes of the slurry through the system would be implemented manually. The 

refining of cellulose pulp to cellulose nanofiber however requires many passes through the SMC, as such 

modifications were made to the supermasscolloider to enable continuous refinement. Specifically, an 

extended hopper was added to increase the volume of feed material to the colloider, a recirculating 
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pump and reservoir (14 L) system were installed, and an overflow line connecting the hopper to the 

pump reservoir was implemented. The system was designed and built to contain a total slurry volume of 

14 L between the overflow and the pump reservoir.  

Figure 7: Supermasscolloider Refining System 
(a) SMC refining system and (b) schematic view 

A 

B 
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As shown in Figure 7, cellulose pulp slurry was gravity fed into the hopper at the highest point of 

the SMC. The feed was directed into the gap between the rotor and stator stones where fibers were 

defibrillated, prior to passing out of the discharge port of the SMC. The gap between the rotor and 

stator was controlled via a manual adjustment with units of µm. The rotor was driven by an electric 

motor (Masuko, 208V 1.5kW) with rotational speed of 800-3000 rpm set via a digital control system. 

Cumulative electrical energy consumed by the motor driving the rotor for a given refining run was 

monitored via both a cumulative and instantaneous wattmeter (Load Controls Inc, KWH-3 cumulative 

meter and DM-100 instantaneous meter). The slurry discharged from the SMC was fed vertically into the 

reservoir of a positive displacement pump (Moyno Sanitary Pump FB1D-SSF-SAA, Baldor General Severe 

Duty 2HP/3-phase Gearmotor), the speed of which was controlled via a SMVector variable frequency 

drive (Lenze AC Tech, ESV152N04TXC). Slurry exiting the pump was subsequently fed into a recirculation 

line that led back to the feed hopper, thus completing a single refining cycle. Valves were incorporated 

into the recirculation line at two separate locations to facilitate removal of slurry from the system. 

Specifically, at the lowest point of the recirculation line a waste port and valve were installed to enable 

complete drainage of the system prior to cleaning. A sampling port and valve were installed 

approximately halfway up the recirculation line and were used to remove aliquots of the slurry as 

desired. As the flow rate of the pump was greater than the observed flow rate of slurry through the 

SMC, an overflow line was installed to direct excess slurry from the feed hopper to the pump reservoir. 

All piping, valves and fittings were 316 stainless steel and approved for food grade applications. The 

SMC was equipped with a water jacket for removal of excess heat generated during refining; cold 

municipal water was fed through the jacket at a rate of 5.1 L/minute. An image and a process flow 

diagram of the supermasscolloider configured for continuous refining may be seen in Figures 7a and 7b, 

respectively. Figure 8 presents detailed images of specific components of the system. 
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In order to provide a consistent and clean environment for CNF production, the SMC system was 

constructed within a temperature-controlled ISO 7 class cleanroom which included four HEPA filters and 

a custom recirculation chamber, see Appendix A1. The cleanroom was divided into a gowning area and a 

working area, with designated zones for each stage of the CNF and conduit production process, see 

Appendix A2. All procedures used in CNF production and neural conduit construction were developed, 

implemented and documented employing Good Manufacturing/Laboratory Practices (GMP/GLP) [73]. 

Appendix A3 provides Standard Operating Procedures (SOP) for all facets of CNF and conduit 

production.  

3.3 SMC OPERATION 
SMC operation was initiated by opening the gap between the refining stones (via the clearance 

adjustment) prior to turning on the drive motor; failure to separate the stones prior to engaging the 

drive motor could result in damaging them and/or the motor. The rotational speed of the stones was 

Figure 8: Supermasscolloider Refining System Components 
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initially set at 2,000 rpm, once this was achieved the gap between the stones was gradually decreased 

until there was a tonal change in the system characteristic of grazing stone contact. The inter-stone 

distance was set to zero under this condition via locking the gauging sleeve, and was used thereafter as 

a reference point, termed the zero point. Once the zero point had been determined and set, the inter-

stone gap was opened to positive 50 µm in preparation for introduction of the pulp suspension to the 

system via the feed hopper. Feeding the system with an open but restricted gap ensured that all of the 

pulp that passed into the system experienced a preliminary refining period and that all fiber aggregates 

were subsequently broken down to dimensions less than the 50 µm inter-stone gap. When sufficient 

pulp suspension had been fed to the system to fill the intake line of the pump (14 L), circulation of the 

suspension was commenced via energizing the pump (set to 14.4 L/min). The system was filled to its 14 

L capacity, at which point the slurry in the hopper continuously passed into the overflow passage for 

recirculation. Once the system was full and recirculation had commenced, a slurry sample, referred to as 

a zero-time sample, was taken from the recirculation line entering the hopper, via filling a 100 mL 

container; the inter-stone gap was subsequently reduced to negative 100 µm. There is intentional 

flexibility in the positioning of the stones such that when they are adjusted to a negative distance 

setting, the fluid between the stones will keep them flexed outward preventing harmful contact of the 

stones whilst providing pressure for grinding.  

At each 15-minute time interval beyond the zero-time of the run, a 100 ml sample was removed 

from the system (with care taken to ensure that the total volume removed for the run did not exceed 1 

L). When sampling from the SMC system, the gap was opened for one minute to positive 100 µm to 

allow the slurry to circulate freely throughout the system and to mix with the contents of the pump 

reservoir. The gap was subsequently returned to negative 100 µm, the cumulative electrical energy 

consumption of the run was recorded from the power meter, and the 100 ml sample was taken for off-

site morphological analysis. It is noted that the SMC was typically run to a targeted cumulative energy 
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consumption value, which was demonstrated to correlate with reproducible CNF fiber morphology, see 

Section 3.5. A final sample was collected before removing the CNF from the system by opening of the 

waste valve on the recirculation line to allow the pump to force the slurry out of the system versus into 

the hopper. The pump was shut off prior to its inlet line being emptied (which would have risked 

damage to the pump). The system was subsequently cleaned by running a copious amount of DI water 

through it; the system was deemed clean when no fibers were visible in the waste stream. 

3.4 CNF SLURRY CHARACTERIZATION 
During the refining process, the viscosity of the pulp slurry increases dramatically as the 

percentage of fines (fibers less than 200 m) increases, see Figure 9. The increase in viscosity is 

attributed to the progressively greater fiber/fibril entanglements that occur as the pulp fibers are 

increasingly segmented and defibrillated. The dramatic increase in viscosity (several orders of 

magnitude) makes refining a challenge as it becomes increasingly difficult to pump the slurry. 

Fortunately, however the CNF slurry is shear thinning, a fact that does enable processing if great care is 

Figure 9: Viscosity Characteristics of CNF Production by Percent Fines 
Viscosity of refined cellulose nanofiber slurries, at ~2% solids by weight, over a range of percent fines 
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taken in system design and operation. It is noted that the high viscosity of the CNF slurry also impedes 

mixing, care must therefore be taken to avoid inconsistencies throughout CNF slurry production, and 

other downstream processes. The viscosity of a CNF slurry is also heavily dependent upon the solids 

content. Care must therefore be taken to ensure CNF slurry production is performed at a solids content 

that enables appropriate fluid flow (typically 3wt% CNF or less). 

3.5 CNF MORPHOLOGICAL DETERMINATION/DEVELOPMENT OF CALIBRATION CURVES 
The MorFi Fiber and Shiv Analyzer (Techpap MorFi Compact) is the standard device employed in 

the pulp and paper industry to measure fiber size, fiber diameter, distribution of these values, kink 

angle, etc. The MorFi Fiber and Shiv Analyzer, referred to hereafter as the MorFi, housed in the Pilot 

Plant of the UMaine Process Development Center was employed throughout the present work for CNF 

fiber analysis. Specifically, a 25 g sample of CNF slurry produced by the supermasscolloider was diluted 

via addition of DI water bringing the solution up to 1 L, followed by a subsequent 1:100 dilution with 

deionized water to produce a 50 mg/L CNF slurry. The diluted suspension was circulated through the 

MorFi where several images of the fibers were taken. The MorFi performed several calculations on the 

images of the fibers in the diluted suspension and determined arithmetic means, distributions etc. of 

fiber physical parameters. Fibers that were greater than 200 µm in length may be measured by the 

MorFi; fibers of smaller dimensions that are not able to be measured are termed ‘fines’ and are 

reported as such. Consequently, a CNF slurry that had been measured by the MorFi as containing 90% 

fines comprised particulates, 90% of which had lengths less than 200 µm. 

MorFi analysis was employed to track the progress of the refining of cellulose pulp to cellulose 

nanofiber through progressive segmentation and defibrillation, see Figure 10. It is important to note 

that the feedstock softwood pulp has a significant native percentage of fines (23%), prior to refinement 

in the SMC. Development of a consistent method to produce CNF resulted in the adoption of a 90% fines 
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slurry at a solids content of 2 wt% as the standard material for production of CNF sheets and hence 

conduits. 

Figure 10: MorFi Fiber Characteristic Analysis 
MorFi fiber analysis of the transition of fiber into fines through refinement of wood pulp (left) into cellulose nanofibers 

(right) 
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Cumulative energy consumption of the drive motor for the rotor of the SMC system (i.e. not 

including the recirculating pump energy consumption) was shown to be strongly correlated with the  

resultant cellulose fiber size, and the fiber distribution. As such, desired fiber distribution values were 

achieved through establishment of calibration curves, in triplicate, between fiber size/distribution and 

cumulative energy consumption values, see Figure 11. 

 

3.6 SHEET FORMATION 
CNF was employed at 2 wt% solids and 90% fines to create sheets by spreading onto stainless 

steel plates. A casting knife film applicator was used to spread CNF into a wet sheet of 75 thousandths of 

an inch (~1.9 mm) thickness. The sheets were left to dry overnight on the stainless-steel plates under 

ambient conditions. The dried sheets were removed using razor blades to gently trim the sheets’ edge 

from the plate followed by lifting the sheets from the top to the bottom as the edges were trimmed. 

After sheet removal, the sheets were left to adjust to standard temperature and humidity (23ºC and 

50%RH) in the Process Development Center (PDC’s) TAPPI room.  

Figure 11: Correlation of Energy and Fines 
Calibration of improved refining system to correlate fines with energy input for three trials 
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3.7 CNF SHEET THICKNESS MEASUREMENTS 
 The thickness (caliper) of dried CNF sheets was measured employing a benchtop digital 

micrometer (TMI, 49-85) housed in the TAPPI room of the Pulp and Paper Process Development Center. 

Prior to making thickness measurements, CNF sheets were allowed to acclimatize for a 24-hour period in 

the 23 ºC, 50% relative humidity conditions of the TAPPI room. Individual sheets were measured in 

twelve locations in a 3 row by 4 column configuration in the landscape orientation, with measurements 

evenly spaced. A mean and standard deviation were calculated from the twelve measurements of each 

sheet.  

3.8 TENSILE STRENGTH MEASUREMENTS 
 The tensile strength of CNF sheets was measured employing a combination of TAPPI standard 

methods 220 (pulp handsheets) and 494 (paper and paperboard). Specifically, the sample size was as 

defined in TAPPI standard method 220 (10 cm in length by 1.5 cm in width), and the rate of elongation 

remained constant as per TAPPI standard method 494 (25 mm/min). CNF sheets were acclimatized to 

the temperature and relative humidity of the TAPPI room for 24 hours prior to measurements being 

made. An Instron model 5564 running the Instron Bluehill software package was employed to perform 

tensile strength measurements. Samples were cut to the specified dimensions and clamped within the 

upper and lower grips of the Instron machine, extension and load were recorded until the sample broke. 

It is noted that when casting the CNF sheets the action of the draw knife spreading the slurry potentially 

creates a ‘machine direction’; as such samples for tensile testing were cut both parallel to, and 

perpendicular to, the machine direction. 

 To calculate the Young’s modulus of each sample, load and extension were converted to stress 

and strain, respectively. Stress was found through dividing load by the cross-sectional area of the test 

strip. Strain was calculated as the ratio of the deformed length to the original length of the test strip. 

Stress was plotted on the y-axis as a function of strain on the x-axis. Young’s modulus is defined as the 
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initial, linear, slope of the stress-strain curve and was determined by maximization of the R-squared 

value of the fitted trend line for each sample [74].  

3.9 AIR PERMEABILITY MEASUREMENTS 
 Air permeability of CNF sheets was measured employing a Gurley 4340N Automatic Densometer 

and Smoothness Tester equipped with an air filter and desiccator to ensure the input air was clean and 

had a low moisture content. The Densometer was housed in the TAPPI room of the Process 

Development Center; all CNF sheets were acclimated in the TAPPI room for 24 hours prior to 

measurements being undertaken. The Densometer measured the amount of time required to pass 100 

cubic centimeters of air through the material being tested, with data reported in Gurley Seconds. The 

greater the number of Gurley Seconds measured for a given sample, the less permeable it was. The 

measurement was performed by placing a CNF sheet into the Densometer where it was clamped in 

place over a charged cylinder that released air onto one surface of the sheet. Air that passed through 

the sheet flowed through an exit chamber equipped with a flow meter. The results from each test were 

recorded manually from the instruments display. 

3.10 OXYGEN PERMEABILITY MEASUREMENTS 
 The oxygen permeability of CNF sheets was determined employing a MOCON OX-

TRAN 2/22 OTR analyzer. CNF sheets were cut and double masked with aluminum foil to an area of 5 

cm2 and adhered to the lightly greased sample cell of the analyzer. The two halves of the sample cell 

were brought together on the respective sides of the sample to hold it in place and were pneumatically 

sealed during testing. Sample cells were subsequently loaded into the analyzer and 8 oxygen 

transmission rate tests were performed at four relative humidity values (duplicate measurements were 

performed at each relative humidity value). The temperature of the sample was maintained at 37ºC and 

the permeant concentration of oxygen was set to 100%. The relative humidity was altered by 

modification of the test and carrier gas humidities permeating the sheet. The relative humidities 
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employed in the present work were 0%, 50%, 80%, and 90%. The duration of the measurement varied as 

the test was performed until a transmission rate was converged upon. Measurements were terminated 

when five consecutive transmission rates differed by less than 1%. The final value of transmission rate 

was converted into a permeation rate via normalization by the thickness of the CNF sheet. The resulting 

data at the four relative humidities were plotted and a value for the permeation rate of the CNF sheet at 

100% was obtained via extrapolation. Oxygen permeability was measured by Dr. Mehdi Tajvidi of the 

University of Maine on CNF sheets provided by the author. 

3.11 DIFFUSION COEFFICIENT OF GLUCOSE IN A CELLULOSE NANOFIBER SHEET 
The diffusion coefficient of glucose in the cellulose nanofiber conduit wall was determined 

experimentally in the present work. Specifically, a series of tanks were designed and constructed that 

were equipartitioned via a cellulose nanofiber sheet comparable to those employed to create the 

conduits (~ 50 m in thickness (dry)). One chamber per tank was filled with a phosphate buffered saline 

(PBS) solution of known glucose concentration (referred to as the donor chamber), the other chamber 

was filled with a PBS solution of zero glucose concentration (referred to as the receiver chamber). Due 

to the concentration gradient, glucose diffused across the CNF sheet from the donor to the receiver 

chamber; glucose concentrations in the receiver container were monitored as a function of time to 

enable calculation of a diffusion coefficient. Specifically, the diffusion coefficient was calculated via a 

method adapted from that of Suhaimi et al. [27], represented by Equation 1: 

where 𝐶𝑑 and 𝐶𝑟 are the initial glucose concentrations of the donor and receiver chambers, respectively, 

in mol/m3. 𝑙 is the thickness of the CNF sheet in meters, 𝐴 corresponds to the area of the CNF sheet in 

m2, 𝑉 represents the volume of the donor/receiver chambers (which were equivalent) in m3, 𝜕𝐶𝑟 is the 

𝜕𝐶𝑑

𝜕𝑡
= −𝐷𝑒 𝐴 ∙

𝐶𝑑 − 𝐶𝑟

𝑙 ∙ 𝑉𝑑
    →    

1

𝐴 ∙
𝐶𝑑 − 𝐶𝑟

𝑙 ∙ 𝑉

 ∙  
𝜕𝐶𝑟

𝜕𝑡
= 𝐷𝑒  

 
Equation 1: Fick's First Law Adaptation 
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difference in glucose concentration measured in the receiver chamber in mol/m3 for a given time 

interval of 𝜕𝑡 in seconds. Finally, 𝐷𝑒 is the effective diffusion coefficient of CNF to glucose in m2/s. It is 

noted that all parameters in Equation 1 are known from the experimental design, or may be measured, 

to yield a diffusion coefficient. 

The bi-chambered tanks, see Figure 12, were constructed from 3.175 mm thick polycarbonate 

with internal dimensions of 50 mm H x 50 mm W x 80 mm L; an acrylic plastic cement adhesive (SciGrip 

16) was employed to glue and seal all joints. A central divider was implemented to separate the tanks 

into two equal sized chambers. The divider was constructed of two 50 mm x 50 mm pieces of 

polycarbonate from which approximately a 40 mm x 42.5 mm rectangle of polycarbonate had been 

removed from the center. A 50 mm x 50 mm sheet of CNF was placed between the two polycarbonate 

divider components and sandwiched in place employing SciGrip 16 adhesive. The divider was 

subsequently glued in place, again employing SciGrip 16 adhesive. After all the joints had cured (24 

Figure 12: Glucose Diffusion Experiment 
Glucose diffusion tank experimental setup for elucidation of the glucose diffusion coefficient of CNF sheets 
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hours), the chambers of a given device were filled with PBS solutions containing, or not, a defined 

concentration of glucose and subsequently sealed from the atmosphere employing Parafilm®.  

Glucose concentration was measured in the receiving chamber employing a glucose hexokinase 

assay kit (Sigma Aldrich GAHK20). The assay kit operates via a two-step enzymatic reaction. Specifically, 

glucose and ATP are enzymatically phosphorylated to glucose-6-phosphate and ADP by hexokinase. 

Subsequently, glucose-6-phosphate dehydrogenase converts glucose-6-phosphate and NAD into 6-

phosphocluconate and NADH. Each reaction is equimolar and consequently the concentration of NADH 

(which may be measured spectroscopically at 340nm) is directly proportional to the amount of glucose 

present in the original sample.  

A calibration curve for NADH absorbance at 340 nm vs glucose concentration was developed 

employing the assay kit and standard solutions prepared with known glucose concentrations in 1x PBS. 

Glucose concentrations spanned the biologically relevant range of 0 – 6 mmol/L in increments of 

1mmol/L. The measured NADH absorbance at 0 mmol/L was invariant from the reference and was 

hence was determined a single time. The remaining 6 standards were tested in triplicate. A linear 

calibration curve resulted from the measured absorbance values with an r-squared value of 0.9997, see 

Figure 13: Glucose Hexokinase Assay Standard Curve 
Standard Curve for known glucose concentrations using a glucose hexokinase assay kit, error bars 

included using one standard deviation 
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Figure 13. Four bi-chambered diffusion tanks were created, resulting in a total of 12 absorbance values 

(and hence glucose concentrations) spanning a measured time range of 3 hrs to 96 hrs, see Appendix 

A4. 

All parameters in Equation 1 were either defined by the experimental design, or readily 

measured, with the exception of CNF sheet thickness. The dry thickness of the sheet was readily 

determined using a digital caliper as 50 ± 2 m. However, the relevant sheet thickness is that in the 

hydrated state. As such wet sheet thickness was measured via a digital caliper as approximately 70 m, 

indicating significant swelling, an observation confirmed via determination of the mass of water uptake. 

A sheet thickness of 70 m was consequently used when employing Equation 1. Employing the data 

gathered from the bi-chambered diffusion experiments the glucose diffusion coefficient in CNF sheets 

was determined to be 1.7 ± 0.9 x 10-11 m2/s, a value employed in subsequent COMSOL modeling.  

3.12 CNF SHEET POROSITY 
 The porosity of CNF sheets was determined via the technique of mercury porosimetry 

employing a Micromeritics Autopore IV porosimeter. Specifically, the mass of a sample of a CNF sheet of 

approximately 0.02-0.03 g was measured to four decimal places and the sample mounted in the 

penetrometer. The penetrometer was subsequently sealed and inserted into the pressure chamber of 

the porosimeter. The pressure exerted on a reservoir of mercury in contact with the sample was 

progressively increased, thereby altering the characteristic contact angle of the mercury and forcing it 

into progressively smaller pores within the sample. The inverse relationship between pore size and 

applied pressure enabled calculation of pore size, pore size distributions, cumulative volume etc. The 

resulting data was exported in both numerical and graphical form. Mercury porosimetry measurements 

were performed by Dr. Lisa Weeks of the University of Maine on CNF sheets provided by the author. 
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3.13 CNF SHEET TOPOGRAPHY 
The topography of CNF sheets was measured employing a Tencor Alphastep 500 mechanical 

profilometer. Specifically, CNF sheets were cut into strips approximately 38 mm long by 6 mm wide. 

Samples were cut in both the machine and cross-machine directions to check for variability. Each sample 

strip was fixed to a glass slide using double-sided tape. Samples were attached with either the side that 

dried in contact with the stainless-steel plate during sheet formation up, or the side that dried exposed 

to air up. Individual samples were loaded into the profilometer such that the stylus could scan from left 

to right, parallel to the length of the sample and centered on the width of the sample. The stylus 

position was set to zero at approximately ¼ of the sample length from the left edge. The profilometer 

was set to scan a 2 mm length and record the average surface roughness. The measurement was 

repeated for a total of three measurements per sample. It is noted that samples were taken from sheets 

cast on two different plates. Each combination of plate used for casting, machine or non-machine 

direction, and exposed surface during drying were tested 6 times. 

3.14 CONDUIT FORMATION 
In early work, conduits were made by employing a simple rectangular pattern of CNF sheet to 

roll cylinders comprising 2 to 7 layers; 2 layers became the standard over time based on feedback from 

surgeons regarding rigidity and transparency. Typically, conduit patterns were cut with dimensions of 

1.5 x 2.5 cm. The pattern was rolled around a mandrel with a diameter of 1.65 mm to produce a 2-

layered conduit that was 2.5 cm in length. Initially, conduits were sealed on the final wrap using water to 

leverage the native hydrogen bonding properties of cellulose. It was discovered however that as the 

diameter of the conduits increased 2 to 3-fold, the water seal was insufficient, and conduits had a 

tendency to delaminate and completely unroll. Improvements were made to the conduit design by 

employing CNF slurry instead of water to seal the final wrap. The slurry seal proved to be a dramatic 

improvement for smaller diameter conduits, however inconsistent results were obtained at the largest 

diameters.  



42 
 

To address the inconsistency of seal effectiveness at large diameters, i.e. 3-fold and larger, a 

mechanical interlock was developed for the outer layer. The interlocks consisted of tabs and 

corresponding slits. The interlocks proved so effective that they were adopted for all diameter conduits, 

and in later work interlocks were applied to the interior layer as well, see Figure 14. CNF slurry was 

applied to the exterior tabs after they had passed through the exterior slits in order to adhere the tabs 

to the conduit wall. 

An additional coating of CNF was applied postproduction to improve the structural integrity of 

the conduits. Specifically, after the slurry seal of the conduit and its tabs had dried, and before removal 

of the conduit from the mandrel, an outer coating of 2 wt% CNF was applied to the conduit by 

submerging it in an aliquot of slurry. The coating was allowed to dry overnight whilst undergoing 

constant rotation, thereby creating a seamless final layer on the conduit. 

3.15 PACKAGING 
Completed conduits were packaged in polypropylene bags in preparation for shipping. Fully 

dried conduits were removed from the mandrels and inspected for any visible defects. It was common 

that residual CNF coating had to be removed from the ends of the conduit in order to provide a perfectly 

smooth and regular conduit. Conduits that passed visual inspection were bagged and sealed using an 

Figure 14: Mechanical Interlock Design 
Conduit design with exterior and interior interlocks to aid in retention of structural stability 
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impulse sealer under ambient conditions (ULINE H-161). Each polypropylene bag was labeled with the 

following information: conduit interior diameter, conduit length, description of conduit pattern, initials 

of producer, date produced, as well as a customized identification code. The identification code allowed 

tracking of production parameters such as pulp changes, slurry changes, which sheet the conduits were 

cut from, as well as additional notes as necessary. After each conduit had been packaged, they were 

sent to an off-site sterilization center where the conduits were subjected to ethylene oxide sterilization. 

3.16 ETHYLENE OXIDE STERILIZATION 
Conduits were sterilized using ethylene oxide gas (Anprolene, model number AN74i). Heat-

sealed packages containing individual conduits were opened and each wrapped in a non-woven fabric 

sheet (Dynarex, CSR wrap) and placed in a resealable plastic bag. Each pouch was equipped with an 

Andersen package closure indicator strip to verify sufficient exposure to ethylene oxide gas upon 

treatment. Progressive exposure to ethylene oxide resulted in migration of a blue indicator bar from the 

left side of the strip toward the right side. Correct exposure to ethylene oxide had been achieved when 

the indicator bar reached a triangular mark on the strip. The resealable pouches, complete with 

indicator strips were left open, packed in a single liner bag and placed into the sterilization chamber. 

Care was taken to ensure that as the pouches were loaded into the liner bags, all pouches remained 

opened and if stacked they were not stacked on the opening of another. An additional indicator strip 

was inserted into approximately the center of the liner bag. One ampoule of ethylene oxide, in a gas-

release bag, was inserted into the top of the liner bag followed by the purge probe. The opening of the 

liner bag was then sealed around the neck of the probe with a Velcro strap. With the door of the 

chamber open, the liner bag was purged for 1.5 minutes, removing some but not all air from the liner 

bag. The ampoule at the top of the liner bag was then carefully broken manually and the sterilization 

cabinet door was quickly closed and locked. The ethylene oxide gas released then filled the liner bag as 

well as the individual resealable pouches. The sterilization cycle proceeded for a 24-hour period; upon 
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completion, a two-hour air purge process was undertaken. All indicator strips were examined to confirm 

sufficient ethylene oxide exposure. Subsequently the chamber was unloaded and the resealable 

pouches were sealed while in the liner bag prior to disconnecting the purge probe from the liner bag. 

The sealed pouches containing the sterilized conduits were removed from the liner bag and set aside for 

future implantations. Ethylene oxide sterilization was performed by Dr. Paul Sweetnam of Redux 

Therapeutics on CNF conduits provided by the author. 

3.17 CELL CULTURE AND CELL GROWTH STUDIES 
Three cell types were employed to assess their ability to grow on CNF sheets. Motor neurons, 

Schwann cells, and macrophages were individually cultured to be seeded on polystyrene cell culture 

dishes, and separately, cellulose sheets. Schwann cells (ScienCell Research Laboratories, 1700) were 

purchased and cultured according to supplier specifications using Schwann cell medium (ScienCell 

Research Laboratories, 1701). Macrophages (ATCC, RAW 264.7 TIB-71) were purchased and cultured 

according to supplier instruction in Dulbecco’s modified eagle’s medium (ATCC, 30-2002). Motor 

neurons were differentiated from human embryonic stem cells (Harvard University, HuES-3 HB9::GFP) in 

mTeSR1 (STEMCELL Technologies, 85850) media [75]. All cells were incubated at 37ºC in a 5% CO2 

environment. 

Three substrates were employed in the cell growth study: standard polystyrene cell culture 

plastic, untreated CNF sheets, and laminin-infused CNF sheets. Prior to seeding cells on the plastic 

substrate, the surface was coated with Matrigel (VWR, 47743-706). CNF sheets were used without 

surface modifications. Laminin infused CNF sheets were formed via the addition of 1 mg of laminin, from 

a 1.19 mg/mL solution (Gibco, 23017015), to 20 mL of CNF slurry prior to sheet formation; no surface 

modifications were employed. Cells were seeded individually on each of the substrates and the 

respective growth media added. Cells were grown for 7 days before staining with Calcein AM 

(ThermoFisher, C1430) and fluorescently imaged. Calcein AM is a cell-permanent dye that is only 
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fluorescent in viable cells. Living cells cleave acetoxymethyl groups by intracellular esterases that 

converts the dye to a green fluorophore. Live cells of all 3 types on each of the substrates were imaged 

employing a fluorescence microscope at a wavelength of 520 nm. Cell culture studies were performed 

by Dr. Paul Sweetnam of Redux Therapeutics using CNF sheets provided by the author. 

3.18 CONDUIT IMPLANTATION 
Two murine studies were performed, in addition to a single non-human primate study, in the 

course of the present work. Murine studies were performed by the Eggan Laboratory at Harvard 

University. The non-human primate study was performed at the Southwest National Primate Research 

Center of the Texas Biomedical Research Institute. All experimental protocols and procedures were 

approved by the Animal Care and Use Review Office (ACURO) and the local Institute of Animal Care and 

Use Committee (IACUC).  

For murine studies, the subjects were anesthetized with either a 1.25% (w/v) injection of 

tribromoethanol-tert-amyl alcohol in DI water (0.5 mL/25 g mouse) or 1-2% (v/v) isoflurane in an oxygen 

flow. The site of implantation was shaved and disinfected with a combination of betadine swabs and 

alcohol. The subjects also received a preemptive dose of buprenorphine, 0.05-0.1 mg/kg, to relieve pain. 

For the surgeries, only the left hindlimb was operated on and the right leg of each subject was left 

unaffected as a control leg. The hindlimbs were secured making a right angle at the knee joint relative to 

the body. An incision was made across the midline of the disinfected area, the skin was gently cut and 

folded back revealing the underlying musculature. The sciatic nerve was revealed in the left hindlimb 

through opening the plane between the gluteus maximus and the anterior head of the biceps femoris. 

Removal of the surrounding fascia allowed for clear access to the nerve to begin excision and 

implantation of the conduit. 

The procedure for conduit implantation began with placement of two polypropylene sutures 

through the nerve at approximately 6 mm apart centered between the sciatic notch and the distal 
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bifurcation, as observed under a light microscope. The neural conduit was subsequently placed over the 

uncut sciatic nerve and the two suture ends at one terminus of the conduit were run axially through the 

interior of the conduit and out of the opposite terminus. Once conduit placement was confirmed and 

the suture ends appropriately positioned, the nerve was transected, creating a neural gap. The conduit 

was subsequently gently worked into the gap and over the nerve stumps by moistening the surgical area 

with sterile saline and inserting the neural stumps into the conduit. Upon successful placement of the 

nerve stumps within the conduit, the sutures were tied together on the outside of the implant. The 

suturing technique allowed for the conduit to remain centered over the neural gap, whilst also ensuring 

that the neural stumps could not be removed from the interior of the conduit. The musculature was 

subsequently sewn together with absorbable sutures, and clips were used to close the external wound. 

The wound clips were removed 7 days post-surgery. 

Due to different objectives (discussed in Chapter 5), the two murine studies varied in several 

surgical details. The first study comprised two separate groups. The first group consisted of mice for 

which the sciatic nerve was transected, but no tissue was deliberately removed from the resulting nerve 

stumps, a conduit was implanted as described above. The second group consisted of mice for which the 

same sciatic nerve transection was performed, but with nerve stumps bridged by a single polypropylene 

suture to maintain neural alignment in the absence of a conduit. The second murine study comprised 

neural gaps created by deliberate excision of 1 mm or 3 mm segments of neural tissue, achieved by 

transection of both neural stumps. Additionally, the second study employed several minor variants of 

repair techniques that were necessitated via the experimental design, the specifics are detailed in 

Section 5.4. 

The non-human primate study employed a radial nerve versus a sciatic nerve model due to the 

accessibility of the radial nerve and anticipated observations of digit mobility as an indicator. 

Comparable surgical methodologies to those employed for the murine study were adopted for the non-
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human primate study. Three subjects were included in the study. Subjects 1 and 3 received conduits 

over a severed nerve, with no tissue removed. Subjects 1 and 2 received sutures at the site of injury to 

assist in alignment of the neural stumps. The results of this study are detailed in Section 5.6. Conduit 

implantation was performed by Dr. Joanie Mok and Dr. Maura Charlton of Harvard University using 

conduits provided by the author. 

3.19 GRIP STRENGTH ANALYSIS OF MICE 
 The grip strength of the hindlimbs of mice was measured using a Bioseb grip strength testing 

device (Bio-GS3). The device was equipped with a T-handle bar attachment. Mice were positioned with 

the hind limb of interest over the bar, which they instinctively gripped. The mice were subsequently 

pulled backwards in the horizontal plane with respect to the device, until they released the bar. The 

peak tensile force recorded by the device was considered the maximum grip strength of the limb. 

Measurements were made in triplicate, and for both limbs, allowing normalization of the data from the 

limb that had been operated on by the control limb. Grip strength analysis was performed by Dr. Joanie 

Mok and Dr. Maura Charlton of Harvard University. 

3.20 END OF LIFE ANALYSIS 
 At the completion of the murine studies (approximately 40 weeks for study one, and 20 weeks 

for study two), the mice were prepared for end of life analysis. Each mouse was weighed, a video taken 

to observe hindlimb locomotion, and the grip strength of the hindlimb, with and without the implant, 

measured. Grip strength was measured in triplicate as described above. Humane euthanasia was 

performed using 100% (v) isoflurane followed by transcardial perfusion with 4% (w/v) paraformaldehyde 

in phosphate buffered saline (PBS) to prepare for dissection and tissue removal. The hindlimbs were 

dissected to reveal the sciatic nerve in the control limb as well as the conduit and nerve in the opposing 

limb. An image was taken of the surrounding tissues prior to resection to allow for qualitative 

assessment of the surgical site. Both the control nerve and the conduit-repaired neural segment were 
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resected from the respective hindlimbs for tissue processing. As the neural segments were removed, 

each received a suture on the proximal end of the segment to ensure consistent alignment and 

orientation during tissue embedding. 

 Neural segments were immersed in 4% (w/v) paraformaldehyde in PBS for 24 hours before 

undergoing several saline wash cycles. Pairs of control and conduit-repaired segments from each animal 

were blotted dry and set into HistoGel (ThermoFisher, 22-110-678} with care taken to ensure proximal 

end correlation, and parallel alignment. The HistoGel-embedded neural segments were placed in a 

biopsy cassette (Globe Scientific, 1090W) to facilitate the paraffin-embedding process. Specifically, the 

samples were subjected to multiple alcohol washes of increasing concentration in order to progressively 

dehydrate the tissues. The samples were subsequently washed with xylene three times (with the 

residence time of each wash progressively increasing from 30 to 60 minutes), and finally washed twice 

with paraffin with a residence time of one hour per wash.  

 Embedding of the tissues in paraffin allowed for the neural segments to be sectioned employing 

a microtome (Leica RM2255). Each tissue block was assigned three zones, labeled A - C as indicated in 

Figure 15, to denote the proximal stump, the conduit region, and the distal stump, respectively. Cross-

sectional samples were collected by floating 4 µm thick sections in triplicate on the water surface in a 

heated water bath and then collecting the sections on a slide submerged at an angle into the water 

bath. Five slides were collected serially per 100 µm of tissue to be analyzed using a variety of histological 

techniques. Excess tissue sections per 100 µm regions were either mounted for test-staining or disposed 

of appropriately. End of life analysis was performed by Dr. Joanie Mok and Dr. Maura Charlton of 

Harvard University. 
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3.21 SLIDE PREPARATION AND STAINING 
Once sectioned and mounted on slides, the paraffin wax in which the tissues were embedded 

had to be moved, and the samples rehydrated, to facilitate staining. Histoclear II (VWR, 64111-04) was 

employed to remove paraffin from the tissue sections. Specifically, slides were washed two times with 

Histoclear for 5 minutes each wash. Samples were subsequently washed with alcohol solutions of 

deceasing concentration to gradually rehydrate the tissues. After two 1-minute washes, in each of the 

three descending alcohol concentrations (100%, 95%, 70%), the slides were washed in DI water for 2 

minutes to fully rehydrate the neural sections. The hydrated tissues were subsequently stained for 

histological analysis. 

Three histological staining systems were employed on the neuronal tissue sections; Hematoxylin 

and Eosin (H&E) for visualization of cellular structure and cell types (Sigma-Aldrich, HHS128 and 

HT1101128), Luxol Fast Blue for identification of myelin (VWR, KT022), and Calcofluor White for 

localization of cellulose (Sigma-Aldrich, 18909). The H&E staining procedure was performed as follows: 

first, hematoxylin was applied to the tissues to stain the nuclei of cells a red-purple color. An acid wash 

was subsequently employed to remove excess hematoxylin from surrounding tissues. Scotts bluing 

Figure 15: Zone Analysis of Tissue Sections 
 Division of zones for tissue sectioning to separate the proximal stump (A), the conduit and regeneration zone in the 

neural gap (B), and the distal stump (C) 
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agent was then applied to darken the hematoxylin stain. Lastly, eosin was employed as a counter stain 

to color non-nuclear elements of the tissue with various shades of red/pink which were viewed via 

brightfield microscopy. The staining procedure for H&E required significant optimization in order to 

maximize contrast, see Table 4. 

The presence and distribution of myelin in the tissue samples was determined via application of 

the myelin-specific stain Luxol Fast Blue. First, a coplin staining jar was filled with approximately 55 ml of 

Luxol Fast Blue, the container was subsequently placed in an oven that had been pre-heated to 60 ºC. 

Once the stain had reached the target temperature, the dewaxed slides were immersed in the solution, 

where they remained for a period of 4 hours at 60 ºC. The slides were subsequently removed from the 

Luxol Fast Blue solution and rinsed with copious amounts of DI water to remove excess stain. The tissues 

were subsequently differentiated using a dropper to apply lithium carbonate to the tissue section for 30 

seconds. Finally, the slides were rinsed again with DI water to remove residual lithium carbonate and 

then placed in clean container for storage. Stained slides were viewed via brightfield microscopy. It is 

noted that a counterstain procedure was not performed, as such myelin in the tissue samples was 

stained deep blue. 

 Alterations in timing to improve staining 

Stain/Step Test #1 Test #2 Test #3 
Hematoxylin 3 min 4 min 4 min 

Water 2 min 2 min 2 min 
Acid Alcohol 2 quick dips 1 quick dip 1 quick dip 

Water 1 min 1 min 1 min 
Scott’s Blue 3 min 3 min 3 min 

Water 1 min 1 min 1 min 
Eosin 1 min 2 min 3 min 

95% EtOH 1 min x2 1 min x2 1 min x2 
100% EtOH 1 min x3 1 min x3 1 min x3 
Histoclear 1 min x3 1 min x3 1 min x3 

 

Table 4: Hematoxylin and Eosin Staining Procedure 
Adaptations performed on general Hematoxylin and Eosin procedures to increase contrast 
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Calcofluor White is a non-specific fluorochrome that binds to cellulose and chitin in cell walls 

and is typically used for detection of yeast and pathogenic fungi. In the present work Calcofluor White 

was employed for identification of cellulose nanofiber comprising the neural conduits. Calcofluor White 

was deposited directly onto the dewaxed tissue sections via a dropper, covering the surface of the tissue 

section. The stain was allowed to equilibrate for 60 seconds before excess was removed from the slide 

by wicking into an absorbent material from the edge of the slide. After removal of excess stain, the 

slides were immediately imaged via fluorescence microscopy. Preliminary histology was performed by 

the author, in addition to Dr. Joanie Mok, and Dr. Maura Charlton of Harvard University. 
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CHAPTER FOUR 

CELLULOSE NANOFIBER SHEET CHARACTERIZATION AND NEURAL 

CONDUIT DEVELOPMENT 

4.1 CNF SHEET CHARACTERIZATION 
CNF sheets were created by casting 100mL of 2 wt% CNF slurry directly onto stainless steel 

plates, as per the methodology detailed in Section 3.6. It should be noted that in the development phase 

of CNF sheet production, a variety of materials were trialed as casting plates with mixed results. 

Specifically, plastic and plastic-coated metal plates created deformed and inconsistent sheets, aluminum 

plates resulted in metal particulate contaminants in the sheet upon removal, and glass plates bound the 

CNF sheets to the extent that they could not be removed intact. CNF sheets were successfully cast on 

stainless steel plates and characterized in a variety of manners as detailed in the following sections. 

4.1.1 SHEET THICKNESS 
A series of 12 CNF sheets were created, 6 each on two different stainless steel plates. The 

thickness of each sheet was measured in order to assess the consistency of sheet formation. Thickness 

Table 5: Sheet Thickness Analysis 
Sheet thickness consistency of 12 CNF sheets cast on two separate stainless steel plates, all values reported in µm. 



53 
 

measurements were made employing a benchtop digital caliper as per the methodology described in 

Section 3.7. The 12 sheets were measured to have an average thickness of 56.2 m with a standard 

deviation of less than 1.5 m (less than 3% of the sheet thickness), see Table 5. It should be noted that 

sheet thickness was found to be readily adjustable through variation of the solids content of the CNF 

slurry employed to cast the sheet. 

4.1.2 TENSILE STRENGTH TESTING 
Tensile strength testing was performed on the CNF sheets in order to ascertain the Young’s 

modulus, or the modulus of elasticity under tension – defined as the ratio of the stress acting on a 

material to the strain produced. Tensile testing was performed as described in Section 3.8 and the 

Young’s modulus was taken as the gradient of the linear portion of each stress vs strain curve, as may be 

seen in Figure 16. Tensile data were recorded for CNF sheets oriented parallel to the machine (blade) 

direction, with Young’s modulus values observed to range from 4.99-5.71 GPa. Tensile data recorded for 

CNF sheets oriented perpendicular to the machine direction (cross machine direction) resulted in 

Young’s modulus values in the range of 4.62-5.10 GPa. Statistical analysis via Minitab (two sample t-test, 

P< 0.001, see Appendix A5) revealed that the average Young’s modulus of samples taken in the parallel 

direction was statistically greater than the average of samples taken in the perpendicular direction. 

4.1.3 SURFACE PROFILOMETRY MEASUREMENTS 
Due to the casting method employed to create the CNF sheets, as described in Section 3.6, the 

resultant sheets possessed two markedly different surfaces. Specifically, the face that dried in contact 

with the stainless steel plate was smoother and had a greater sheen relative to that which dried exposed 

to air, as evidenced by both visual and tactile investigation. To quantify the surface roughness of the 

sheets, sample strips were collected from sheets cast on two different stainless-steel plates (designated 

P1 and P2). Strips were cut in both the machine (blade) and cross-machine direction, (designated M and 

C, respectively). The surface roughness of all strips was measured employing a Tencor Alphastep 500 
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mechanical profilometer, as described in Section 3.13. The surface roughness of both sides of each sheet 

was tested with the side that was dried in contact with the steel plate designated S, and the side that 

was dried exposed to air designated A. For each combination of parameters, two individual CNF strips 

were cut and analyzed (a and b), each individual measurement was performed in triplicate. Figure 17 

presents the surface roughness data obtained. It is evident from examination of Figure 17 that neither 

Figure 16: Tensile strength testing of CNF sheets  
Samples taken in the machine and cross-machine directions 
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the direction that the CNF strip was cut relative to the casting process, nor the individual stainless steel 

plate employed for casting, had any significant effect on the surface roughness of the sheets. However, 

the air-exposed, and stainless steel plate contacting, surfaces were consistently statistically different 

(see Appendix A5, 2 sample t-test with p<0.001). Indeed, the surface dried exposed to air had an 

average surface roughness across all sheets of 3.17 µm, while the surface dried in contact with the 

stainless steel plate had an average surface roughness across all sheets of 0.70 µm. 

4.1.4 CNF SHEET TRANSPARENCY 
 CNF sheets, and hence neural conduits constructed from CNF sheets, inherently possess a 

degree of transparency; a significant attribute that aids surgeons visualize the surgical field. In order to 

ascertain the extent to which CNF sheet transparency could be controlled, sheets of varying thickness 

were created via modification of the solids content of the slurry cast on the stainless steel plates, and by 

variation of the height of the casting knife applicator.  The resulting dried sheets were conditioned in a 

Figure 17: Surface Roughness Measurement Results 
Average surface roughness (Ra) of two distinct sheet sides. P1-plate 1, P2-plate 2, C-cross machine direction, M-machine 

direction, A-air exposed, S-steel contacting, a-sample one, and b-sample 2 
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temperature and humidity-controlled environment, in compliance with TAPPI standards, prior to 

measurement of their thicknesses. All sheets were made in duplicate. One of each duplicate CNF sheet 

was hot calendared in the UMaine Process Development Center via two passes through the nip of two 

heated steel rollers. Figure 18 presents the solids content of the slurry employed, the thickness of the 

sheets resulting from variation of the height of the casting knife applicator, and images depicting the 

transparency of the calendared and non-calendared sheets.  Investigation of Figure 18 reveals that the 

thinner the initial CNF sheet the greater the transparency, and that the transparency is significantly 

increased via calendaring.  

4.1.5 AIR PERMEABILITY OF CNF SHEETS 
The air permeability of CNF sheets was determined employing a Gurley 4340N Automatic 

Densometer and Smoothness Tester via the methodology described in Section 3.9. The densometer 

measures the amount of time required to pass 100 cm3 of air through a sample and reports in units of 

Gurley Seconds over a range of 0-50,000. Testing of CNF sheets consistently resulted in an output of 

Figure 18: CNF Sheet Transparency  
The effect of varying sheet thickness and calendaring on transparency. 
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“Too dense to read”, implying that the sheets were highly impermeable to air and required in excess of 

50,000 seconds for the passage of 100 cm3 of air. 

4.1.6 MERCURY POROSIMETRY OF CNF SHEETS 
The porosity of CNF sheets was determined employing a mercury porosimeter, as described in 

Section 3.11. A representative plot of cumulative pore volume vs pore diameter is presented in Figure 

19. Investigation of Figure 19 reveals that the CNF sheet possess no pores with diameters between 0.01 

and 10 m. It is noted that a spurious data point occurs at a pore diameter of ~10 m which is 

attributed to a mechanical switch in pressure made by the operator to increase the pressure in the 

sample chamber. At extremely small pore diameters, Figure 19 possesses an anomalous peak (in the 

0.01-0.03 m range). Measurements in this pore diameter regime are known to be affected by the 

surface roughness of the sheet. As evidenced by the profilometer measurements, presented earlier in 

this section, the surface of the CNF sheet that was dried in contact with air was statistically rougher than 

the surface that was dried in contact with the stainless steel plate, likely giving rise to the inconsistent 

Figure 19: Mercury Porosimetery Results 
Pore volume analysis of a CNF sheet 
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mercury porosimetry data at very low pore diameters. Taken in combination, the mercury porosimetry 

and the air permeability data suggest that the CNF sheets do not have any pores that completely 

traverse the thickness of the sheet, only small surface vacancies resulting from surface roughness.  

4.1.7 OXYGEN PERMEABILITY OF CNF SHEETS 
The oxygen permeability of CNF sheets was determined employing a MOCON OX-TRAN analyzer 

at relative humidity values of 0, 50, 80, and 90% via the methodology described in Section 3.10. Two 

CNF sheet samples were tested at each humidity, the resultant plot of oxygen permeation rate as a 

function of relative humidity is presented in Figure 20. It is evident from investigation of Figure 20 that 

the CNF sheets are permeable to oxygen and that the permeation rate increases in an exponential 

manner as the relative humidity increases above a value of 50%. Indeed at a relative humidity value of 

90% the oxygen transmission rate of the CNF sheets was measured to be ~ 181 cc/(m2day), not 

dissimilar to the literature value for polyvinyl chloride of 150 cc/(m2day) [76]. It is noted that polyvinyl 

chloride is widely used as a food wrap due to its semi-permeability to oxygen. 

Figure 20: MOCON Oxygen Permeability Results 
CNF sheet oxygen permeability measurements made on a MOCON Ox-Tran from 50-90% relative 

humidity. Initial measurements (blue) and duplicate measurements (orange) 
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4.2 CNF CONDUIT DEVELOPMENT 
 Various options were considered for initial development of CNF conduits, including casting 

methods such as drying the slurry in between an inner and an outer cylinder. However, due to the large 

amount of water that is removed upon drying (~98% of the slurry’s wet weight), and the concomitant 

shrinkage, few methods were deemed viable. Indeed, the simplest, most robust method was 

determined to be rolling multi-layer tubes from sheets of dried CNF. Such a method enabled the 

shrinkage resulting from drying to occur in the sheet formation process, giving rise to changes in sheet 

thickness that could be controlled by the solids content, and the thickness of the slurry spread by the 

casting knife applicator. Once a CNF sheet of suitable thickness had been cast and dried, it was a 

straightforward process to cut the sheet into a rectangular form and roll it into a multilayer conduit 

employing a mandrel.  

It was determined that in order to seal the outer flap of the CNF sheet to the wall of the conduit, 

and thereby produce a self-supporting, robust implant, a method should be developed that avoided the 

use of an adhesive. The decision to avoid the use of an adhesive was made based on the desire not to 

introduce an additional material into the CNF conduit construct that might require regulatory approval. 

As such a range of methods of sealing the outer flap of the CNF sheet to the conduit were evaluated. 

Numerous additional CNF conduit geometries and CNF devices are presented in Appendix A6. 

4.3 CONDUIT SEAL EMPLOYING NON-MECHANICAL MEANS 
 The simplest method to seal the outer flap of the CNF sheet was to wet the inner face of the 

sheet with water and press it onto the conduit wall, thereby using the well-known hydrogen bonding 

nature of CNF to seal the conduit layers together [77]. Initial inspection and qualitative testing of the 

water sealed conduits suggested however, that they were not as stable when exposed to an aqueous 

environment (such as that found in vivo) as was hoped for. An alternative method of sealing the outer 

flap of the conduit was therefore evaluated. Specifically, rather than applying solely water to the inner 
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surface of the flap, 2 wt% CNF slurry was applied thereby enhancing the hydrogen bonding capabilities 

of the seal by including suspended cellulose nanofiber. A final methodology developed to aid in sealing 

the CNF conduit layers was to coat the entire construct in CNF (post construction, with the outer flap 

sealed with CNF slurry) by submerging it in 2 wt% CNF slurry and allowing it to air dry. The coating was 

intended to provide a seamless final layer which would function to prevent delamination of the external 

layer of the conduit. 

4.4 EVALUATION OF CONDUIT SEAL INTEGRITY 
 In order to assess the integrity of the outer seal of the conduits made via water, CNF slurry, and 

CNF slurry coupled with an external CNF coating, a static immersion test was developed. Specifically, 

conduits were immersed in vials containing aqueous solutions of biological relevance, namely water, 

saline solution (9 g NaCl in 1 L water), ringer’s solution (7.2 g NaCl, 0.37 g KCl, and 0.17 g CaCl2 in 1 L 

water), and PBS buffer (1X concentration) and their structural integrity assessed as a function of time. In 

order to determine if the number of CNF sheet wraps employed to construct the conduits factored into 

the stability of the outer seal, conduits employing 1, 2 and 3 wraps were evaluated. Two conduits were 

employed for each of the nine conditions (1 wrap water seal, 2 wraps water seal, 3 wraps water seal, 1 

wrap CNF seal, 2 wraps CNF seal, 3 wraps CNF seal, 1 wrap CNF seal-dip coated, 2 wraps CNF seal-dip 

coated, 3 wraps CNF sealed dip-coated) in each of the four solutions, resulting in a total of 72 conduits. 

Once the pairs of conduits were placed in the relevant vials, they were left undisturbed for the duration 

of the test. 

The structural integrity of each conduit was assessed at three time points: 24 hours (1 day), 2 

weeks (14 days), and 1.5 months (46 days). Conduits that were observed to have delamination of the 

outer layer were assigned a score of 0. A score of 1 was given to conduits that were intact and stable. 

The results for each conduit at the 24-hour time point are presented in Table 6. Investigation of Table 6 

reveals that conduits sealed with water performed poorly with only 25% of the conduits remaining 
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intact. The CNF sealed, and CNF sealed and CNF coated, conduits performed significantly better with 

62.5% and 75% remaining intact, respectively. It was concluded therefore that the water seal was 

inferior to the CNF seal. No clear trend with regard to the stability of the conduits as a function of the 

number of wraps was evident at the 24-hour time point.  

  

Table 7 presents data for conduit stability at the 14 day and 1.5-month time points. 

Investigation of Table 7 reveals that only 8% of the water sealed conduits remained intact after 46 days: 

not a surprising result given the 24 hour and two-week data. As at the earlier time points, the CNF 

sealed conduits performed better than the water sealed conduits, although only 25% remained intact 

after 1.5 months. The CNF sealed and CNF coated conduits performed significantly better than the other 

variants at the 1.5-month time point with ~46% of conduits remaining intact. The data of Table 7 

indicate that the stability of the conduits is not a strong function of the number of wraps of CNF sheet 

employed in their construction, although 2-wrap conduits were consistently either the most stable, or 

equal most stable, versus 1 and 3-wrap conduits. 

 

Table 6: First Conduit Stability Study Results at 24 Hours 
Analysis of conduits composed of varying number of layers and seal techniques after 24 hours in various solutions 
Scoring of 1 means the conduit passed inspection, 0 indicates structural failure 
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4.5 EVALUATION OF THE EFFECT OF CNF SHEET THICKNESS ON CONDUIT INTEGRITY 
A potentially important parameter in the stability of CNF conduits is the effect of the thickness of 

the sheet employed in their construction. CNF sheet thickness was considered to be potentially 

important as the stiffness of the sheet increases with thickness, and the flexibility and pliability decrease 

accordingly. As such a study was performed to determine the effect of CNF sheet thickness on the 

stability of conduits. Employing the findings from the conduit seal investigation, 2 wrap conduits were 

constructed employing the CNF seal and CNF coating method. Sheets of four different thicknesses, 52, 

59, 76, and 86 m were employed to create pairs of conduits which were subsequently placed in vials 

containing the same aqueous solutions employed in the seal integrity study. The stability of the conduits 

was assessed at time points of 24 hours and 18 days, with the binary scoring system of 0 for a 

delaminated conduit and 1 for an intact conduit applied. 

Table 7: First Conduit Stability Study Results at 14 and 46 Days 
Analysis of conduits composed of varying number of layers and seal techniques after 14 and 46 days in various solutions 
Scoring of 1 means the conduit passed inspection, 0 indicates structural failure 
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Table 8 presents data for conduit stability as a function of CNF sheet thickness at the 24-hour time 

point. Investigation of Table 8 reveals that conduit stability decreased monotonically with increasing 

sheet thickness, with conduits constructed from 52 and 59 m CNF sheets remaining largely intact while 

conduits constructed of 76 and 86 m CNF sheets largely failing. Little if any effect of variation of the 

aqueous solution on conduit stability was observed. Table 9 presents data for conduit stability as a 

function of CNF sheet thickness at the 18-day time point. Comparison of the data of Table 9 with those 

of Table 8 reveals very little change. Specifically, the number of structurally intact conduits constructed 

from the two thinnest CNF sheets remained unchanged, while one additional conduit constructed from 

each of the thicker CNF sheets failed. It was concluded from the study that conduits are most stable 

when constructed of thinner CNF sheets, preferably in the ~ 50 m range. It is noted that it is 

challenging to reproducibly create defect free CNF sheets with thicknesses less than 50 m, hence the 

lower limit of the study.  

Table 8: Second Conduit Stability Study Results at 24 Hours 
Analysis of conduits composed of varying sheet thicknesses after 24 hours in various solutions 
Scoring of 1 means the conduit passed inspection, 0 indicates structural failure 
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4.6 MECHANICAL INTERLOCKING CNF CONDUITS 
 The investigations of the effect of CNF seal methodology and sheet thickness on conduit stability 

were highly informative, however it is noted that even the optimized conduit designs had a portion of 

the samples that failed. It was determined therefore that an alternate method of conduit construction 

should be developed, while adhering to the premise that no additional materials should be introduced 

to the design. To achieve this objective, a series of mechanically interlocking closure devices were 

implemented to physically prevent delamination of both the inner and outer CNF layers.  

 Specifically, the previously rectangular CNF form was modified to contain tabs on both the top 

and bottom edges, with corresponding slits in the body of the sheet, see Section 3.14, Figure 14. When 

the CNF sheet was rolled around the mandrel to form a cylinder, the tabs were passed through the slits 

to provide a mechanical interlock, thereby preventing unravelling. The interior interlocks were held in 

place by the tension imparted by the rolling of the conduit. The exterior tabs were folded to pass 

through the slits and then unfurled to provide a profile broader than the slit and hence a mechanical 

Table 9: Second Conduit Stability Study Results at 18 Days 
Analysis of conduits composed of varying sheet thicknesses after 18 days in various solutions 
Scoring of 1 means the conduit passed inspection, 0 indicates structural failure 
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interlock. The tabs were subsequently adhered to the exterior surface of the conduit with CNF slurry, 

and the entire conduit coated in CNF to form a continuous, seamless outer surface.  

4.7 EVALUATION OF THE STABILITY OF MECHANICALLY INTERLOCKED CNF CONDUITS 
In order to evaluate the stability of the mechanically interlocked CNF conduits relative to their 

non-mechanically interlocked predecessors, and to do so in a relatively short time frame, a more 

intensive stability assay was developed. Specifically, conduits were immersed in DI water within 50 mL 

plastic centrifuge tubes and placed horizontally on an orbital shaker table (Innova 2000). The table was 

set to an agitation speed of 140 rpm and run for a 24-hour period. At the completion of the agitation 

cycle each conduit was evaluated with regard to mechanical stability/integrity. 

 The newly developed agitation assay was employed to perform a study of the effectiveness of 

the mechanical interlock in maintaining the structural integrity of the CNF conduit. Specifically, three 

types of conduits were assessed: mechanical interlock with a CNF coating, mechanical interlock without 

a CNF coating, and a non-mechanically interlock CNF sealed conduit with a CNF coating. Three conduits 

were constructed for each condition. Figure 21 presents an image of the nine conduits within their 

respective centrifuge tubes upon completion of the 24-hour agitation cycle. Investigation of Figure 21 

reveals that the conduits created employing a mechanical interlock and a CNF coating (A-C) maintained 

    A                 B               C              D               E               F             G               H              I 

Figure 21: Third Conduit Stability Study Results at 24 hours 
Third conduit stability study 24-hour analysis of three groups: mechanical interlock with CNF coating (A-
C), mechanical interlock without CNF coating (D-F), and non-mechanical interlock with CNF coating(G-I) 

that were graded by retention of structure 
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their mechanical stability and experienced only occasional lifting of the external tabs. The conduits 

created employing a mechanical interlock but without a CNF coating (D-F) universally lost their 

mechanical integrity, as did the non-mechanical interlock conduits created with a CNF seal and CNF 

coating (G-I). It is evident therefore that conduits created employing a mechanical interlock and a CNF 

coating are remarkably stable, even under extreme conditions.  

4.8 CONCLUSION 
Neural conduits comprising CNF were successfully created from sheets of CNF. To create well 

defined and consistent conduits the precursor CNF sheets were thoroughly characterized. Specifically, 

sheets were cast on stainless steel plates and were determined to have a dried thickness of 56.2 ±1.3 

m. A mechanical profilometer was employed to determine that the two sides of the CNF sheets had 

very different surface roughnesses; the side dried with exposure to air had an average roughness of 3.17 

m, while the side dried in contact with the stainless steel plate had an average roughness of 0.70 m. 

The sheets were determined to be non-porous via both Gurley densometer and mercury porosimetry 

measurements. The CNF sheets were found to be semi-permeable to oxygen, with permeability 

increasing with relative humidity. The tensile strength of the CNF sheets was comparatively high with a 

Young’s modulus average of approximately 5.3 GPa in the machine direction and 4.9 GPa in the cross-

machine direction. It was determined that the transparency of the CNF sheets increased with decreasing 

sheet thickness, and increased with the application of hot calendaring.  

 Conduits were created from the CNF sheets by wrapping a CNF form around a mandrel. Various 

means of closing the outer flap of the conduit were evaluated and tested. Adhering the outer flap to the 

conduit via wetting with water was found to result in loss of conduit structural integrity in aqueous 

solutions. Adhering the outer flap with CNF slurry gave improved results, but still led to a large 

proportion of conduit failures. Adding a coating of CNF to CNF sealed conduits further improved conduit 

stability, however with extended immersion times conduit failures were still observed. It was 
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determined that a CNF sheet of approximately 50 m thickness was optimal for conduit stability. 

Conduits closed with internal and external mechanical interlocks were developed to promote structural 

integrity. It was determined that conduits created with the interlocking tabs adhered with CNF slurry, 

and the entire conduit coated in CNF were extremely stable, even under testing conditions far more 

rigorous than found in vivo.   
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CHAPTER FIVE 

CELLULAR COMPATIBILITY WITH CELLULOSE NANOFIBER AND IN VIVO 

STUDIES 

5.1 CELLULAR PROLIFERATION ON, AND COMPATIBILITY WITH, CELLULOSE NANOFIBER 

SHEETS 
In order to determine if CNF is in fact a viable material from which to construct neural conduits, 

a study was performed to evaluate the ability of various relevant cell types to be cultured on CNF. In 

addition, CNF sheets were modified via the inclusion of the extracellular matrix protein laminin to 

ascertain whether cellular interaction with the sheet could be tailored/enhanced. Three cell types were 

investigated: macrophages, Schwann cells and motor neurons. Macrophages were selected as they are 

one of critical cell types associated with a foreign body/inflammatory response and their interaction 

with CNF could be an indicator of the potential of CNF to induce a negative in vivo reaction. Schwann 

cells were investigated since they are the primary non-neural cell type associated with peripheral nerve 

regeneration and their interaction with CNF could potentially be predictive of the likelihood of CNF to 

directly support Schwann cell proliferation. Motor neurons were studied to determine if CNF could 

directly support neural regeneration.  

CNF sheets were prepared via the procedures outlined in Section 3.6. Laminin containing CNF 

sheets were prepared by adding 1 mg of murine-derived laminin (Gibco, 23017015) to 20 mL of CNF 

slurry at 2 wt% solids and proceeding with sheet formation as per the standard procedure. Cell culture 

was performed via the methodologies presented in Section 3.17. As quantified in Section 4.1.3, the CNF 

sheets produced in the present work were distinctly ‘sided’; cell culture was performed on the side dried 

with exposure to air given its comparatively high surface roughness (RMS average ~ 3.17 m) and hence 

greatest likelihood of cellular attachment. Cellular number, distribution and morphology were 
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determined in a qualitative fashion employing fluorescent image analysis. Images were collected on a 

fluorescence microscope after cells were fluorescently labeled employing Calcein AM via methodologies 

presented in Section 3.16. Each cell type was cultured directly on standard cell culture plastic 

(polystyrene coated with Matrigel), on an untreated CNF sheet, and on a laminin-infused CNF sheet. 

Representative images of each condition are presented in Figure 22. 

Investigation of Figure 22 reveals that macrophage growth was greatest on the plastic substrate, 

and further, that the cellular morphology was elongated/non-spherical indicating activation. 

Macrophage growth on the CNF sheet was negligible, with a single cell in the field of view. It is 

interesting to note that the single cell is comparatively spherical, indicating a non-activated state. The 

addition of laminin to the CNF sheet resulted in greater macrophage growth relative to the neat CNF 

sheet, although the numbers were comparatively low; a non-spherical morphology indicated a degree of 

activation. It is evident from Figure 22 that Schwann cell proliferation on the plastic substrate was 

Figure 22: Cellular Attachment Modification Study 
Analysis of cellular attachment of Schwann cells, macrophages, and motor neurons on a plastic substrate, a CNF 

sheet, and a Laminin-infused CNF sheet. Motor neuron on plastic adapted from Moakley et al. [113] 



70 
 

significant and that the cellular morphology was elongated indicating activation. Schwann cells had a 

comparable proliferation on the CNF sheet as on the plastic substrate, however their morphology was 

largely spherical suggesting an inactive state. The proliferation of Schwann cells on the laminin infused 

CNF substrate was extensive and the morphology was elongated. Motor neurons of the same cell line 

were cultured on the plastic substrate by Moakley et al. As may be seen in Figure 22, the cell culture 

plastic did support modest motor neuron growth and neurite extension. Unmodified CNF did not 

support motor neuron growth as may be seen from their absence in Figure 22. However, infusing a CNF 

sheet with laminin did lead to the growth and neurite extension of motor neurons, as evidenced by the 

lower right panel of Figure 22.  

It may be concluded from the cellular proliferation and compatibility study that the plastic cell 

culture substrate led to macrophage proliferation and activation, an undesirable result. The plastic 

substrate did however promote Schwann cell proliferation and extension, in addition to modest motor 

neuron growth and neurite extension. CNF sheets were shown to be non-supportive of macrophage 

proliferation and extension-likely meaning that CNF would not elicit a significant foreign 

body/inflammatory response in vivo, a very important and positive finding. Schwann cells and motor 

neurons were largely not effective in proliferation and extension on CNF sheets, suggesting that CNF will 

likely not play an active role in neural regeneration, but rather may be present as an inert material 

construct. Interestingly, laminin infused CNF was largely non-supportive of macrophages, suggesting it 

may elicit only a weak foreign body/inflammatory response, but was highly successful in promoting 

Schwann cell and motor neuron proliferation and extension. The latter findings are extremely 

interesting and provide a path forward if in fact a conduit is desired that actively promotes and 

participates in neural regeneration. 
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5.2 INTRODUCTION TO IN VIVO STUDIES 
With confidence that macrophages have very little if any interaction with CNF, and were 

certainly not activated by the material, and further, that Schwann cells and motor neurons experienced 

limited interactions with CNF, it was determined that in vivo studies of conduit implantation were viable. 

Two murine studies were performed to determine the efficacy of CNF neural conduits in promoting 

regeneration of peripheral nerves. A single, preliminary, non-human primate study was performed to 

determine the tolerance of the animal to CNF conduits. The murine studies were performed in 

collaboration with the Eggan Laboratory of Harvard University, while the non-human primate study was 

performed in collaboration with the Southwest National Primate Research Center of the Texas 

Biomedical Research Institute. All experimental protocols and procedures were approved by ACURO and 

local IACUC. 

5.3 MURINE STUDY ONE: SCIATIC NERVE TRANSECTION WITH NO TISSUE RESECTION 
 The first murine study was aimed at determining the efficacy of implantation of CNF conduits 

over a severed sciatic nerve when no neural tissue was resected. Twenty, 8-week old female mice were 

employed. Female mice were used as age-related decline in motor nerve conduction has been shown to 

be less than that of male mice [78]. The cohort was broken into two groups, the first group comprised 

five animals which underwent surgery to have the sciatic nerve in the left leg severed and the nerve 

stumps sutured to surrounding tissues to keep them in place; no conduits were implanted in these 

animals. The second group comprised fifteen animals which underwent surgery to have the sciatic nerve 

in the left leg severed and a conduit sutured over the neural gap as per the methodology detailed in 

Section 3.18. The conduits used were 1 mm in diameter, 2 mm in length, approximately 100 m in 

thickness, and sealed with water. In both groups, the sciatic nerve was severed in the left leg, therefore 

the right leg was used as a control to provide initial/maximum grip strength data. Over the course of 40 

weeks the grip strength of the left and the right leg of each animal (both groups) were measured at 4-
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week intervals employing the methodology described in Section 3.19, see Figure 23. Grip strength data 

are presented in Appendix A7. 

 Investigation of Figure 23 reveals that sciatic nerve regeneration within an implanted CNF 

conduit was far superior to regeneration when a conduit was not employed (sham surgeries). The grip 

strength of the conduit implanted legs increased monotonically to a maximum value at approximately 

30 weeks and was of the order of six times the grip strength of legs that underwent the sham surgeries 

at the same time point. Indeed, comparison of the strength of the left leg with the right leg (control) 

enabled calculation of the percent recovery for each group. The conduit-implanted group obtained 

approximately 66% of the initial grip strength, while the sham surgery group obtained approximately 

11% of the initial grip strength.  

Figure 23: First Murine Study Grip Strength Results 
Grip Strength measurements for first murine study over 40 weeks. Weeks 2-40 were measured from the left hindlimb 

whereas the control leg measurements were taken from the right hindlimb for both conduit and sham groups 
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 The study was concluded at the 40-week time point when it became clear that grip strength 

recovery had plateaued for mice that had received a CNF conduit implant. It may be concluded from the 

data of the study that CNF does serve as a viable material from which to construct peripheral nerve 

conduits, and that such implants are highly effective in promoting neural regeneration. It should be 

noted however that in some respects the first murine study was, by design, limited. First, the number of 

animals employed was low, a decision made for ethical reasons given the uncertainty associated with 

implantation of a new material. Second, no neural tissue was resected; the nerves were transected and 

then the stumps abutted resulting in minimal neural gap. Third, no variation in the dimensions (length in 

particular) of the conduit was investigated. As such, and with the knowledge that CNF conduit 

implantation does indeed promote neural regeneration, a second murine study was undertaken to 

address these observations. 

5.4 MURINE STUDY TWO: SCIATIC NERVE TRANSECTION WITH TISSUE RESECTION AND 

CNF CONDUIT LENGTH VARIATION 
 The second murine study was conducted to determine the efficacy of CNF conduits in promoting 

peripheral nerve repair when various amounts of neural tissue were resected. In addition, the study 

aimed to determine the effect of varying the conduit length on neural repair. One hundred and ten, 8-

week old female mice were employed and were broken into five groups of twenty mice and one group 

of ten mice. The latter group served as a control in which the animals underwent no surgery. As per the 

first murine study, a sciatic nerve model was employed with mice in groups 1 through 5 having surgeries 

performed on the left leg, with the right leg serving as a control. Neural tissue of 1mm or 3 mm length 

was excised, and conduits were either not employed, or were employed in lengths of 3 or 5 mm. The 

specifics of the surgeries performed on each group were as follows: 3mm excision of neural tissue 

without a conduit or suture (Group 1), 3 mm excision of neural tissue without a conduit and with a 

suture connection (Group 2), 3 mm excision of neural tissue with a 5 mm conduit (Group 3), 1 mm 

excision of neural tissue with a 5 mm conduit (Group 4), and a 1 mm excision of neural tissue with a 3 
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mm conduit (Group 5). Figure 24 provides a graphical depiction of the surgeries performed on each 

group. 

 The surgical configurations of Groups 1 and 2 were selected to provide baseline data for neural 

regeneration with significant tissue rescission (3 mm) versus that employed in the first study (no 

rescission). Specifically, Group 1 investigated regeneration in the absence of any intervention, while 

Group 2 investigated regeneration when a suture was employed to stabilize the relative positions of the 

neural stumps. The surgical configuration of Group 3 was selected to investigate the effect of employing 

a 5 mm long conduit over the same 3 mm neural gap employed in Groups 1 and 2. The surgical 

configuration of Group 4 was selected to study neural regeneration using a fixed conduit length (5 mm) 

but a shorter neural gap (1 mm) by comparison with Group 3. The configuration of the surgery 

performed on Group 5 was selected to approximate that of the first murine study, that is use of a 3 mm 

conduit and a minimal neural gap (nominally zero in the first study and 1 mm in the second study). 

Group 5 therefore provided some continuity between the two studies. In addition, the configuration of 

the surgery performed on Group 5 enabled study of the effect on neural regeneration of shortening the 

conduit employed over a fixed neural gap (1 mm) by comparison to Group 4.  

 The grip strength of the left and right leg of each mouse was measured every two weeks for the 

20-week duration of the study and is presented in Figure 25 in the same manner as the data from the 

first murine study. It is noted that the second murine study was half the length of the first murine study, 

Figure 24: Second Murine Study Group Characteristics 
Groupings for second study picturing variation in repair techniques, neural gap size, and conduit length for five groups 

Suture 
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a fact dictated by the more rapid obtainment of a maxima/plateau in the data of the second study. 

Investigation of Figure 25 reveals that the neural regeneration of mice in Group 1 was lowest, not a 

surprising result given the large tissue excision (3 mm) and the lack of any surgical intervention. Indeed, 

the magnitude of the grip strength approximates that observed for mice undergoing the sham surgeries 

of the first murine study. The addition of a suture bridging the 3 mm gap between the two neural 

stumps resulted in a modest increase in the average grip strength of mice in Group 2 vs those in Group 

1, indicating that even a minor surgical intervention fixing the position of the neural stumps has 

regenerative advantages. Comparison of the grip strength for mice in Group 3 with those in Groups 1 

and 2 indicates that the implantation of a 5 mm long CNF conduit over a 3 mm neural gap does indeed 

promote greater neural regeneration than either no surgical intervention (Group 1), or a suture bridging 

the nerve gap (Group 2). The observation that implantation of a CNF conduit supports neural 

regeneration is consistent with the findings of the first murine study, but importantly extends the work 

to large neural gaps. Indeed, application of allometric scaling laws indicates that a 3 mm neural gap in a 

mouse is equivalent to approximately a 9 cm gap in a human, a fact that emphasizes the importance of 

the data of Figure 25. It is noted that the grip strength data of Group 3 has an apparent plateauing trend 

in the 12 to 20-week time period, potentially indicating the maximum extent of regeneration possible 

with the surgical configuration employed. 

The grip strength data of mice in Group 4 (1 mm nerve gap and 5 mm conduit) approximated 

those of mice in group 3 (3 mm nerve gap and 5 mm conduit), a somewhat surprising result that appears 

to indicate that the extent of neural regeneration within a conduit is independent of the extent of tissue 

excision, at least at the length scales employed in the present study. Investigation of the grip strength 

data of Group 5 (1 mm nerve gap and 3 mm conduit) reveals that a maximum value of approximately 

10g was reached at the 16-week time point, the greatest value observed in the entire study. Given the 

uncertainty in the data it is unclear if the maximum value was maintained for the remainder of the time 
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course of the study, or if a minor decrease occurred. Interestingly, comparison of the data for Groups 4 

and 5 indicates that for a fixed nerve gap (1 mm) decreasing the length of the conduit from 5 to 3 mm, 

respectively, increases the maximum extent of neural regeneration. Comparison of the data of Group 5 

of the second murine study with the approximately 20 week data of the first murine study reveals that 

the average grip strength of mice that underwent a 1 mm nerve resection was considerably less than 

those without a recession when both received a 3 mm long conduit implant. Analysis of the weight of 

each mouse indicated that each group (1-5) gained weight over the course of the study. Available grip 

strength and weight data are presented in Appendix A7. 

Two major conclusions may be drawn from the second murine study. First, CNF conduits 

promote neural regeneration and do so over gaps that scale to very large injuries in humans. Second, 

the extent of neural regeneration is dependent upon the length of the conduit employed and appears to 

Figure 25: Second Murine Study Grip Strength Results 
Grip strength measurements for five groups in the second murine study over 20 weeks, error bars are standard deviation 



77 
 

be greatest for shorter conduits. The cause for the greater neural regeneration engendered by shorter 

conduits is not known, but it may be hypothesized that it could relate to the rates of diffusion in and out 

of the conduit of pro and anti-regenerative species, a possibility that is investigated in silico in Chapter 6.  

5.5 HISTOLOGICAL ANALYSIS 
 A preliminary histological analysis was performed on select tissue samples from the second 

murine study. The aim of the work was to optimize the staining methods to facilitate investigation of 

neural tissues, and to determine cell types and distribution within the conduit. Hematoxylin and Eosin 

(H&E) stains were employed for visualization of cellular structure and to aid in identification of cell 

types, Luxol Fast Blue was used for identification of myelin, and Calcofluor White was employed to 

facilitate localization of cellulose. The tissue sectioning, mounting and staining methods employed are 

detailed in Section 3.21. Images of cross sections of conduits/tissues were taken in quadrants to enable 

assembly of the images and hence construction of a complete image of the full cross section. Images 

were overlaid manually by identification and alignment of distinct features within the tissue/conduit.  

A representative image of an H&E stained cross section is presented in Figure 26, the cross 

section was located 600 µm into zone B from the proximal side. It is evident from investigation of Figure 

Figure 26: Hematoxylin and Eosin Stain of Conduit Containing Tissue Section 

200 μm 

CNF Conduit 

Lumen 

Suture 
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26 that there are extensive tissues within the lumen of the conduit, as may been seen from the large 

number of cellular nuclei that were stained purple by the Hematoxylin stain, each surrounded by the 

non-nuclear cellular material stained pink by the Eosin stain. Interestingly the non-stained, light regions 

of the image are identified as the CNF sheet comprising the conduit. The two-layer wrap structure of the 

conduit is evident, as are some minor cellular populations in between the CNF layers themselves, and on 

the outside of the conduit. On the left side of the image the outer flap of the conduit may be seen, and 

in the center of the lumen it appears that the inner flap may have delaminated, a possibility that will be 

investigated more fully with the Calcofluor White stain. The light blue anomaly observed in upper right 

of the image is the suture employed for implantation. The sutures ran through the length of the conduit 

in sets of two in opposite directions such that 2-4 sutures were commonly identified in each tissue 

section. Suture segments were observed to be subject to shifting within the tissue section during 

microtoming, an unfortunate phenomenon that left gouges in the tissue section and clear vacancies.  

In order to clearly identify and characterize the condition of the CNF conduit, Calcofluor White 

staining was performed, see the representative image of Figure 27. Investigation of Figure 27 confirms 

the impressions gained from analysis of Figure 26, that is, that the conduit had largely retained its 

Figure 27: Calcofluor White Stain of Conduit Containing Tissue Section 
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tubular conformation, however the outer flap had commenced delamination, and the inner flap was 

extensively detached. It should be noted that the conduits used in the second murine study were non-

mechanically interlocked and used solely CNF on the outer flap, followed by coating the full conduit in 

CNF. Detailed investigation of Figure 27, particularly at the edges of the CNF sheets, reveals a loss of 

integrity of the sheets themselves, that is, the onset of an apparent fraying/degrading process. Given 

that the intent of the CNF conduit is to promote neural regeneration and then to degrade in vivo, 

thereby obviating the need for a second surgery to remove the conduit, the apparent CNF degradation 

at the 20-week time point is highly encouraging.  

In order to determine if Luxol fast blue was a suitable stain for the myelin sheath surrounding 

nerve fibers of axons, a preliminary test was performed on a tissue section from the first murine study. 

The tissue section was taken approximately one-third of the conduit length from the proximal end in 

order to ensure the presence of myelinated nerves. Figure 28 presents an image of the resultant stained 

tissue. Investigation of Figure 28 reveals the presence of a large number of dark blue annuli that 

represent the cross sections of the myelin coatings of healthy nerves. Also evident in Figure 28 is the 

non-stained wall of the CNF conduit in the lower left of the image. It is concluded therefore that Luxol 

Figure 28: Luxol Fast Blue Stain of Peripheral Nerve Section 
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fast blue is indeed an appropriate stain for the myelin sheath of the nerve fibers of axons and could be 

employed in future studies to elucidate the presence and distribution of nerves. 

5.6 NON-HUMAN PRIMATE STUDY: CNF TOLERABILITY 
The non-human primate (baboon) study was conducted to assess the ability of the animal to 

tolerate the CNF implant and to thereby determine the extent of biocompatibility of the CNF conduits in 

an animal closely related to humans. The study and all protocols were approved by ACURO and the local 

IACUC. In order to minimize the invasiveness of the surgery, the radial motor nerve in the forearm was 

transected versus the sciatic nerve in the hind limb as was done in the murine studies. The initial study 

employed a single animal. The radial nerve was severed and a 1.5 cm long mechanical interlocked CNF 

conduit of ~3.2 mm diameter was implanted employing a comparable methodology to that employed in 

the murine studies, see Section 3.18. It should be noted that the sutures used to implant the conduit 

were non-resorbable polypropylene Surgipro sutures, as were employed in the previous murine studies. 

Vicryl 2-0 sutures, commonly used in nonhuman primate surgeries, were used to close the exterior 

wound.  

Observation of the baboon in the days and weeks post-surgery indicated that there was no 

significant difference in the motor function of the arm/wrist/fingers relative to that prior to the 

procedure. It was concluded therefore that transection of the radial nerve resulted in a decrease in 

sensory function rather than motor function. In addition, it was noted that the wound site was inflamed, 

a fact that could potentially be attributed to poor hygiene, self-mutilation, a response to the suture 

and/or the conduit, or a combination of these factors. As such, the animal was taken down for 

histopathological analysis. Histological analysis revealed elevated levels of neutrophils localized around 

the Surgipro sutures. Additionally, giant cells were found to be present, and to contain an unidentified 

foreign material, again indicative of an inflammatory/foreign body response. 
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Based upon the available data, it was determined that the baboon had likely experienced a 

foreign body response to the Surgipro sutures used to implant the CNF conduit. To test this hypothesis a 

two animal, follow-on study was performed to identify the source of inflammation. Specifically, subjects 

2 and 3 had the same radial nerve severed as the initial animal (subject 1), however alternate repair 

techniques were employed. For subject 2 a Surgipro suture was employed to bridge the neural gap 

between the nerve stumps. For subject 3 a 1.5 cm long, ~2.4 mm diameter mechanical interlock CNF 

conduit was placed over the nerve gap, however it was not sutured into place. Vicryl 2-0 sutures were 

employed to close the external wound of both animals. 

 Subjects 2 and 3 were monitored for four weeks post-surgery before being taken down for 

evaluation. No changes in behavior were observed post-surgery in the subjects. Histological analysis of 

the tissues of subject 2 revealed extensive neutrophil and Giant cell infiltration at the site of the 

Surgipro suture, see Figure 29, an observation consistent with that of the first study. Analysis of the 

tissues of subject 3, revealed no evidence of neutrophil or Giant cell infiltration in the region of the 

conduit. It was concluded therefore that the inflammation observed in initial non-human primate study 

arose from the suture employed to implant the CNF conduit, and was not attributable to the conduit 

itself. Indeed, the second study demonstrated that the CNF conduit was well tolerated and elicited no 

foreign body/inflammatory response. 

Figure 29: Histology of Non-Human Primate (Subject #2) Neural Tissue and Suture Material 
A) Hematoxylin and Eosin stain showing suture material and surrounding neutrophils and Giant cells. B) Polarized light 

demonstrating foreign material (suture). C) Closer look of extreme neutrophil invasion (blue arrow) at site of active 
inflammation surrounding suture (Red arrow) 
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5.7 CONCLUSION 
In order to determine if cellulose nanofiber is a viable material from which to construct neural 

conduits, an ex vivo cellular proliferation and compatibility study was performed in cell culture. It was 

determined that macrophages had very little interaction with CNF, a fact that likely means implants 

comprising CNF will not elicit a strong foreign body/inflammatory response. In addition, it was shown 

the neither Schwann cells nor motor neurons proliferate well on CNF, suggesting that a CNF conduit 

would likely be a non-participatory material in a neural conduit. Importantly, CNF infused with the 

extracellular matrix protein laminin had a significantly stronger macrophage response, but also was 

highly supportive of both Schwann cell and motor neuron attachment and proliferation - thereby 

potentially providing a ready means of modifying the behavior of a CNF conduit from non-participatory 

to strongly participating in neural regeneration. 

Two murine studies and one non-human primate study were performed to determine the 

efficacy of CNF conduits in peripheral nerve repair. The first murine study employed a sciatic nerve 

model where the nerve was transected, but no tissue was excised. The nerve ends were abutted and 

entubulated within a CNF conduit; the conduit was subsequently sutured in place. Neural regeneration 

was assessed via functional recovery of grip strength of the hind limb. Conduit implant results were 

compared to those of sham surgeries where the nerve was transected, but no conduit was implanted. It 

was found that at 30 weeks the grip strength of the hind limb with the implanted conduit was 6 times 

greater than that of the limb that underwent the sham surgeries, representing an approximately 66% 

recovery of initial grip strength and indicating that CNF conduits were very effective in promoting 

peripheral nerve regeneration. 

The second murine study was undertaken to determine the efficacy of CNF conduits in 

promoting peripheral nerve repair when various amounts of neural tissue were resected. In addition, 

the study aimed to determine the effect of varying the conduit length on neural repair. A comparable 
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experimental approach to that of the first murine study was employed with additional controls 

implemented. It was concluded from the study that CNF conduits promote neural regeneration and do 

so over gaps that scale to very large injuries in humans. In addition, and somewhat surprisingly, it was 

shown that the extent of neural regeneration is dependent upon the length of the conduit employed 

and appears to be greatest for shorter conduits. Histological analysis revealed the presence of significant 

tissue in the luminal space of the conduit. Treatment with a cellulose specific stain revealed that the CNF 

conduit largely retained its tubular geometry, although delamination of the inner and outer flaps was 

evident, suggesting the need for a mechanical interlock design rather than solely a CNF slurry seal and 

coating. The cellulose specific staining also revealed the onset of CNF conduit degradation at the 20 

week time point, an important observation consistent with the desire to create a biodegradable conduit 

that would obviate the need for a second surgery to remove it post neural regeneration. 

The non-human primate study was undertaken to determine the ability of an animal species 

known to be very sensitive to foreign bodies to tolerate the CNF conduit. It was determined that 

conduits comprising CNF were very well tolerated and histological examination showed no evidence of a 

foreign body/inflammatory response, a finding consistent with the cell culture study. The suture 

employed in both the murine and the non-human primate surgeries to implant the conduit, however, 

engendered a strong foreign body/inflammatory response. It is recommended that future in vivo studies 

in non-human primates employ an alternate suture.  
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CHAPTER SIX 

FINITE ELEMENT ANALYSIS OF DIFFUSION AND DISTRIBUTION OF 

OXYGEN AND GLUCOSE WITHIN CNF PERIPHERAL NERVE CONDUITS 

6.1 INTRODUCTION 
 Functional recovery data from the second murine study revealed that implantation of a 3 mm 

long conduit over a 1 mm neural gap was more efficacious in promoting regeneration than implantation 

of a 5 mm conduit (see Section 5.4). It was hypothesized that the increased conduit length may have 

altered the diffusive path of molecules known to be beneficial, and conversely detrimental, to peripheral 

nerve regeneration; for example oxygen, calcium, glucose, and carbon dioxide [24, 31]. Indeed, it is 

known that a critical aspect of conduit performance is facilitation of diffusion of pro-regenerative 

molecules into the interior of the conduit, and promotion of diffusion of waste materials out of the 

conduit [31]. In addition to length, other conduit parameters considered likely to be relevant to 

molecular diffusion include wall permeability and nerve to conduit diameter ratio. 

One of the primary molecules of interest in the present work was oxygen, arguably the most 

critical chemical species required for homeostasis. In addition, it is noted that while necessary for 

successful nerve regeneration, the detailed role of oxygen in nerve regeneration is unclear [79, 80]. For 

example, Cho et al. found that intermittent hypoxia may be beneficial to nerve regrowth as the lack of 

oxygen triggers the activation of Hypoxia-Inducible Factor (HIF) [81]. When activated, this transcriptional 

mediator recruits co-activators and modifies the chromatin structure of the injured nerve, which 

controls gene expression for the transcriptional response. It was discovered that the absence of HIF 

resulted in impaired nerve regeneration, suggesting that hypoxia may potentially enhance nerve 

regeneration [81]. In addition, Yao et al. have shown that hypoxic conditions indirectly improve neural 

regeneration by enhancing cell migration to the injury, particularly Schwann cells [82]. 
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Conversely, other studies have indicated that hyperbaric oxygen (HBO) therapy (inducing 

hyperoxygenation) may be an effective treatment for nerve injuries [83, 84]. Indeed, HBO studies 

employing a murine sciatic nerve model demonstrated greater nerve regeneration with less evidence of 

edema, coupled with enhanced conservation of cytostructural features versus controls [85]. HBO is a 

method of treatment that has been employed for more than 30 years and promotes regeneration 

through hyperoxygenation as well as several secondary mechanisms [85]. For example, increased 

oxygen concentration is known to be correlated with increased ATP and GTP levels. HBO is also known 

to reduce the inflammatory response and aids in the conservation of healthy tissue by reducing 

oxidative stress and preventing apoptosis [85]. Interestingly, Lim et al. have demonstrated that the 

regenerating proximal nerve consumes approximately twice as much oxygen as a healthy nerve, 

supporting the concept that elevated concentrations of oxygen may be beneficial [86]. Clearly such 

findings are, however, contrary to those indicating that hypoxic conditions support repair, and highlight 

the need for a greater understanding of the role of oxygen in nerve regeneration. 

 Perhaps equally important as oxygen for the regeneration of peripheral nerves is the 

concentration and distribution of glucose, the primary energy source for neural function [87, 88]. 

Indeed, it has been estimated that at homeostasis, 60-70% of the energy derived from glucose is used 

for maintenance of the membrane potential required for neural signal propagation (see Section 1.3) 

[89]. Under conditions of nerve regeneration, however, glucose consumption is expected to be far 

greater and may potentially be rate limiting [90]. It is important to ensure that glucose concentrations 

are maintained above ~4 mol/m3, as concentrations lower than this value are considered hypoglycemic 

and are associated with deleterious effects on tissues [91]. As such, knowledge of the concentration and 

distribution of both oxygen and glucose within a peripheral nerve conduit during regeneration is critical 

to the design of effective and efficient neural conduits. Consequently, COMSOL Multiphysics®, a finite 

element analysis software package, was employed to model the diffusive behavior of oxygen, and 
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separately, glucose within a peripheral nerve conduit system as a function of conduit length, the nerve 

to conduit diameter ratio, and the permeability of the conduit wall. 

6.2 COMSOL MULITPHYSICS® FINITE ELEMENT ANALYSIS 
 COMSOL Multiphysics® is a powerful finite element analysis programing suite which employs 

various supplemental physics packages to study phenomena such as heat transfer, fluid flow, acoustics, 

etc. The specific package employed in the present work was Transport of Diluted Species. A model of a 

CNF conduit implanted over a peripheral nerve injury was constructed in COMSOL to replicate select 

conditions of the second murine study. Specifically, the larger of the two nerve gaps employed in the in 

vivo study (3 mm), was chosen in order to maximize the concentration gradients. The nerve diameter 

was set to be 3 mm and conduit diameters were ranged from 3 mm to 4.28 mm. The conduit wall 

thickness was selected to be twice the thickness of the CNF sheet employed to construct the physical 

conduits since two layers of CNF sheet were used in creation of the conduits. The conduit length and 

conduit diameter were varied during the analyses as presented in Table 10. It is noted that the conduit 

diameter was varied to give progressive, specific, values of the ratio of the diameter of the nerve to the 

diameter of the conduit. The ratio ranged from 1.00:1.00 to 0.75:1.00 and was referred to as the nerve 

to conduit diameter ratio. It is noted that at a nerve to conduit diameter ratio of 1.00:1.00 the nerve and 

conduit were the same diameter and no luminal space existed between them. At a nerve to conduit 

diameter ratio of 0.75:1.00 however the nerve had a smaller diameter than the conduit and significant 

Table 10: Physical Parameters of Nerve-Conduit Model  
Dimensions of neural tissue, conduit, and interstitial space in COMSOL model 



87 
 

luminal space existed between the outer surface of the nerve and the inner wall of the conduit. Such 

space, and the space existing between the nerve ends, was modeled to be filled with interstitial fluid. 

 The nerve-conduit system was modeled to comprise 3 components; the nerve stumps were 

modeled as two cylinders spaced by the neural gap, while the conduit was considered a hollow cylinder 

centered over the neural gap, see Figure 30. COMSOL Multiphysics was employed to determine the 

concentration of oxygen, and separately glucose, at three locations within the conduit; at the center of 

the distal stump (Location 1), the center of the gap between the nerve stumps (Location 2), and at the 

center of the proximal stump at the intersection of the regenerating tip (a 1 mm long segment at the 

end of the stump) and baseline sections (Location 3), see Figure 31. Location 1 was chosen as a 

representation of a region with normal, baseline oxygen and glucose consumption by a nerve. Location 2 

was chosen to be the center of the nerve gap, and the center of the conduit. At Location 2 there was no 

direct oxygen or glucose consumption by the nerves (due to their absence), however oxygen and 

glucose could potentially be depleted from this region due to consumption by the two neighboring 

nerve stumps. Location 3 was selected because initial testing indicated that the interface between the 

Figure 30: COMSOL Nerve and Conduit Model 
Model view of neural stumps and conduit. Solid angled view (top) and 

transparent side view (bottom) 

Figure 31: COMSOL Modeling Locational Analysis 
Three locations observed during modeling (top) and sample 

concentration profile (bottom) 
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regenerating nerve and the baseline proximal stump consistently had the lowest oxygen concentration 

in the system. Analysis of the oxygen and glucose concentration at each location as a function of time 

provided insight into how these species diffused into the luminal space, and how variation of system 

parameters altered concentration profiles. 

6.3 OXYGEN DIFFUSION AND DISTRIBUTION 
In order to model the concentration of oxygen at the three locations within the nerve-conduit 

system as a function of time, a series of parameters required quantification. In addition to the physical 

dimensions of the neural stumps and conduits derived from the murine studies and defined in Table 10, 

values for initial concentrations of oxygen at the three locations, the diffusion coefficient of oxygen 

through the conduit wall, neural tissue and interstitial fluid, and the rates of oxygen consumption at the 

three locations required definition. Appropriate values were derived from literature, calculated, or 

determined experimentally as described below.  

The baseline oxygen concentration in the ISF was taken to be that of the average partial 

pressure of oxygen in arterioles (PO2 = 26.4mmHg) [92] and was assumed to be constant since the 

vasculature continuously replenishes it. The oxygen diffusion coefficient for ISF was estimated to be 

equivalent to that for water and was obtained by extrapolating data of oxygen diffusion coefficient vs. 

temperature reported by Han et al. [93] to physiologic temperature. The oxygen diffusion coefficient 

through mouse peripheral nerve tissue was assumed to be equivalent to that through rat peripheral 

nerve tissue as reported by Lagerlund et al. [94]. Oxygen consumption rates were based on the premise 

that the only entities consuming oxygen in the system were the nerve stumps, and that consumption 

was through both normal metabolic processes [93], and through active repair mechanisms [86]. Two 

studies ( [86] and [93]) provided values for baseline metabolic consumption that were almost identical 

(within a few percent), the higher value was adopted for use in the present work. 
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A critical parameter that was determined experimentally in the present work was the diffusion 

coefficient of oxygen through the conduit wall. Since the in vivo experiments involved implantation of 

the conduits in an aqueous environment, the diffusion coefficient of oxygen under comparable 

conditions had to be determined. As described in Section 4.1.7, a MOCON OX-TRAN Model 22/2 (L) 

instrument was employed to measure the oxygen permeability of CNF sheets at a series of relative 

humidity (RH) values over the range of 50-90% and a value for the oxygen permeability of CNF at 100 

%RH obtained via extrapolation. Specifically, two oxygen permeability values were obtained at 50, 80 

and 90 %RH and plotted versus relative humidity, see Figure 32. A linear extrapolation to 100%RH was 

performed by plotting the inverse of the permeability values on the y-axis versus the relative humidity 

on the x-axis. A trendline with an R2 value of 0.969 was fit to the data points which, when extrapolated 

to 100 %RH, resulted in a permeability of 1.41 x 10-13 m2/s. When the data were replotted with the 

inclusion of the value obtained from the extrapolation however it was evident that the projected value 

was a low estimate. A secondary extrapolation of the data was therefore performed using only the data 

points from the 80 and 90 %RH permeability measurements; a value of 2.22 x 10-13 m2/s was obtained at 

100 %RH via a trendline with an R2 value of 1.00. The latter value was considered a high estimate for the 

Figure 32: Extrapolation of Oxygen Permeability from MOCON Analyses 
Extrapolated data from oxygen permeability through CNF sheets 
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value of the permeability of the CNF sheet at 100 %RH, as such the average value of the two 

extrapolated numbers was employed, namely 1.8 x 10-13 m2/s. Table 11 presents a summary of the 

oxygen diffusion coefficient, concentration and consumption values employed in the modeling work. 

 The COMSOL model was run for a simulated time range of 1500 minutes by which time oxygen 

concentrations throughout the conduit had either plateaued or reached a value of 0. The mesh that was 

employed for the COMSOL analyses was ‘extra fine’ to ensure accurate iterative calculations. 

6.3.1 EFFECT OF CONDUIT DIAMETER ON OXYGEN CONCENTRATION AND DISTRIBUTION 
 One of the major variables of interest was the effect of nerve to conduit diameter ratio on 

oxygen concentration profiles. In order to evaluate the effects, the COMSOL Multiphysics® model was 

run at the six different nerve to conduit diameter ratio values over the time period required to reach 

equilibrium, or until oxygen concentrations at Location 1 reached the minimum possible value of 0 

mol/m3. Figure 33 presents the final oxygen concentration profile of the model run for the lowest and 

highest nerve to conduit diameter ratios and is presented as an axial-cut plane on a continuous color 

scale of blue (0 mol/m3) to maroon (1.4 mol/m3). 

Table 11: Oxygen Diffusion Related Parameters 
Initial oxygen concentration, diffusion coefficient and consumption rate for the 
conduit neural tissue and interstitial fluid 
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It may be seen from investigation of Figure 33 that the regions of lowest oxygen concentration 

were located toward the end of the nerve stumps within the conduit, and that the lowest overall 

concentration was at the interface of the regenerating region and the baseline region of the proximal 

stump where oxygen consumption is twice that of baseline nerve consumption. It is further evident from 

Figure 33 that varying the ratio of the nerve to conduit diameter does not change the general oxygen 

distribution profile, however the actual oxygen concentration at given points is affected. Specifically, 

lower oxygen concentrations are observed within the conduit for higher nerve to conduit diameter 

ratios (that is, when the conduit diameter approaches that of the nerve diameter), a fact likely 

attributable to decreased axial diffusion due to the reduced volume of luminal interstitial fluid (ISF). The 

oxygen concentration in the center of the nerve gap is greater than toward the ends of the nerve 

stumps, an observation which is consistent with the lack of consumption. At the ends of the conduit 

where the nerve stumps transition from being enclosed to non-enclosed, the oxygen concentration is 

Figure 33: Oxygen concentration profiles for lowest and highest nerve to conduit diameter ratios 
The conduit was 15 mm long and the model was run for 30 minutes and 50 minutes respectively 

0.70:1.00 Ratio 

1.00:1.00 Ratio 

Distal End        Proximal End 
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observed to rapidly increase to that of the exterior oxygen concentration present in the ISF. The 

qualitative representation of the oxygen concentration data of Figure 33 may be presented in a 

B 

C 

A 

Figure 34: Oxygen Modeling with Variable Nerve to Conduit Diameter Ratio 
Oxygen concentration profiles of a 16 mm length conduit with variable nerve to conduit diameter 

ratio at (A) Location 1, (B) Location 2, and (C) Location 3 
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quantitative manner employing the three locations described above and plotting oxygen concentration 

vs time at each, see Figure 34. 

Investigation of the graphs of Figure 34 reveals several interesting attributes of the model and 

its relationship to conduit oxygen permeability. First, it is noted that at Location 3 the oxygen 

concentration for all nerve to conduit diameter ratios reached a concentration of 0 mol/m3 in the 

shortest time period of the three locations (under 60 minutes for all nerve to conduit diameter ratios), a 

finding that is consistent with the observation from the qualitative data of Figure 33 that the oxygen 

concentration at Location 3 was lower than at locations 1 and 2. Additionally, analysis of the 

concentration vs time curves of Figure 34 (A), (B) and (C) indicates that the curves for locations 1 and 3 

are of similar shape, although of different scale, with a rapid, near linear, initial decline followed by a 

transition to a more gradual decay. Conversely the curves for Location 2 have a shallower initial decline 

followed by a transition to a slightly more rapid decay. For each location a clear trend in the oxygen 

concentration at a given time as a function of the nerve to conduit diameter ratio is evident, with 

concentration decreasing at all locations as nerve to conduit diameter increases. Figure 35 presents a 

plot of oxygen concentration vs nerve to conduit diameter ratio at an arbitrary time point of 25 minutes. 

 From investigation of Figure 35 it is evident that there is a relatively linear relationship between 

decreasing oxygen concentration and increasing nerve to conduit diameter ratio at all locations. 

Location 2 has the highest overall oxygen concentration, a fact attributable to the lack of oxygen 

consumption in the region between the two nerve stumps. Location 3, conversely, has the lowest overall 

oxygen concentration, an observation that is consistent with the proximal stump terminating with a 

region that consumes twice the oxygen of a non-regenerating nerve. The observed relationship of 

decreasing oxygen concentration within the conduit with increasing nerve to conduit diameter ratio may 

be understood via consideration of the resultant decrease in luminal ISF volume that results from a 

more closely matched nerve and conduit diameter (i.e. greater nerve to conduit diameter ratio). 
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Specifically, as the nerve to conduit diameter ratio increases, the distance between the nerve and the 

conduit inner wall (filled with ISF) decreases and hence the cross sectional area through which oxygen 

within the ISF can diffuse axially into the conduit decreases, leading to lower oxygen concentrations at 

locations within the conduit. The high linearity of the relationship between oxygen concentration and 

nerve to conduit diameter ratio suggests that there is very little influence of radial diffusion of oxygen 

through the walls of the conduit (or that it is invariant with nerve to conduit diameter ratio).  

6.3.2 EFFECT OF CONDUIT WALL PERMEABILITY ON OXYGEN CONCENTRATION AND 

DISTRIBUTION 
To determine the sensitivity of the model predictions to the permeability of the conduit walls to 

oxygen, simulations were run employing CNF permeabilities one order of magnitude above and one 

order of magnitude below the value listed in Table 11. The results of this analysis are presented in Figure 

36 as plots of oxygen concentration vs time at the three locations within the conduit employing CNF 

permeabilities spanning two orders of magnitude.  

Figure 35: Oxygen Concentration with Varied Nerve to Conduit Diameter Ratio 
Nerve to conduit diameter ratio at t=25 min for all 3 Locations 

0.70:1.00         0.80:1.00        0.90:1.00        1.00:1.00 
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Investigation of Figure 36 reveals that varying the oxygen permeability of the CNF conduit walls 

by two orders of magnitude has only a minimal effect on the oxygen concentration within the conduit. 

As such, it is concluded that the value employed for the oxygen permeability of CNF in the present work 

is likely sufficiently accurate to give the COMSOL Multiphysics® model reliable predictive power. It is 

noted however that the majority of the model predictions trend to zero oxygen concentration within the 

conduit in a timeframe that is very short (typically hours) relative to the implant durations (weeks-

months), a continuously hypoxic scenario that is likely not favorable for nerve regeneration in vivo. It 

was therefore determined that simulations should be run with significantly greater conduit wall 

permeability in order to verify the veracity of the model itself, and to provide insight into how radial 

diffusion pathways affect the resultant oxygen concentration profile when employing conduits with 

greater wall oxygen permeability. 

In order to determine an appropriate range for testing the effect of the oxygen permeability of 

the conduit wall on oxygen concentrations within the conduit, the permeability of materials currently 

used for conduit construction were reviewed, and related to the limiting case of a conduit wall with the 

permeability of the surrounding media, i.e. interstitial fluid (ISF). Specifically, the oxygen permeability of 

a material commonly employed for peripheral nerve conduit fabrication, collagen, is of the order of 10-10 

m2/s [95]. By comparison, the oxygen permeability of interstitial fluid is reported to be 2.7269x10-9 m2/s 

[93], approximately an order of magnitude higher than that of collagen. It is noted that the oxygen 

permeability of CNF is approximately an order of magnitude lower than that of collagen. As such, a 

range of oxygen permeabilities was selected from 10 times lower than ISF (1 order of magnitude  

collagen) to 100 times lower (two orders of magnitude  CNF). Specifically, the oxygen permeability of 

the conduit wall was modeled employing values of 10x, 20x, 50x, and 100x less than that of ISF. The 

resultant oxygen concentration vs time graphs for each conduit permeability (not shown) were very 



96 
 

similar to those presented in Figure 34, however it is noted that as the conduit became progressively 

less permeable, the curves took longer to plateau and plateaued at significantly lower oxygen 

concentrations. Figure 37 presents the plateau values for oxygen concentration as a function of nerve to  

Figure 36: Oxygen Concentrations with Variation of Measured Conduit Permeability  
Employing a CNF oxygen permeability value as per Table 11 (standard), a permeability on order of magnitude 

lower (low), and a permeability one order of magnitude higher (high). Shown for (A) Location 1, (B) Location 2, and 
(C) Location 3 from t=0min to t=100min 
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Figure 37: Oxygen Concentration with Variation of ISF-Based Conduit Permeability 
Nerve to conduit diameter ratio at Locations 1 (A), 2 (B) and 3 (C) for varying conduit wall oxygen permeabilities of 10 

(blue), 20 (orange), 50 (grey) and 100 (yellow) times less than ISF 

 

0.70:1.00      0.75:1.00    0.80:1.00    0.85:1.00     0.90:1.00   0.95:1.00    1.00:1.00 

0.70:1.00      0.75:1.00    0.80:1.00    0.85:1.00     0.90:1.00   0.95:1.00    1.00:1.00 

0.70:1.00      0.75:1.00    0.80:1.00    0.85:1.00     0.90:1.00   0.95:1.00    1.00:1.00 
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conduit diameter ratio for the 10, 20, 50 and 100 times less than ISF wall permeability values at 

locations 1, 2 and 3. Figure 37 was generated in a manner comparable to that employed to create Figure 

35.  

It is evident from investigation of Figure 37 that the 10, 20, and 50 times less permeable than ISF 

wall variants maintained oxygen concentrations greater than zero at all nerve to conduit diameter 

ratios, at all three locations. Further, it is noted that the oxygen concentrations were consistently lower 

at all locations at comparable nerve to conduit diameter ratios with progressively decreasing wall 

permeability. Taken together these two findings suggesting that oxygen diffusion radially across the wall 

of the conduit does indeed impact concentrations within the conduit and is modulated by the 

permeability of the wall. The data for the 100 times less than ISF wall permeability variants have oxygen 

concentrations that trend to 0 mol/m3 as the nerve to conduit diameter ratio approaches 1, an 

observation made at all three locations. As such, for the 100 times less permeable than ISF wall variants, 

the interior of the conduit is completely hypoxic at all nerve to conduit diameter ratios once the oxygen 

concentration plateaus, a finding consistent with the CNF modeling results.  

It may also be seen from investigation of Figure 37 that for the 10 times less permeable than ISF 

wall variants there is little to no effect on the oxygen concentration at a given location as the nerve to 

conduit diameter ratio increases, suggesting that the wall is so permeable to oxygen that radial diffusion 

dominates over axial diffusion irrespective of the volume of ISF between the inner wall of the conduit 

and the nerve stumps. It is noted however that the baseline oxygen concentrations at the three 

locations do follow the expected trend of highest at Location 2 where there is no consumption, lowest 

at Location 3 where there is twice the baseline oxygen consumption, and intermediate at Location 1. As 

the wall permeability is decreased to 20 times less permeable than ISF, the oxygen concentration vs the 

nerve to conduit diameter curves at Locations 1 and 3 (where there is oxygen consumption) trend 

negatively, indicating that radial diffusion of oxygen across the conduit wall is less dominant, and that 
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axial diffusion in the ISF filled space between the nerve and the inner wall of the conduit becomes 

progressively more important. Interestingly at Location 2 the oxygen concentration remains invariant 

with nerve to conduit diameter ratio at the 20 times less permeable than ISF wall permeability, an 

observation potentially attributable to the fact that there is no oxygen consumption at this location 

making it less susceptible to restricted supply and that radial diffusion remains dominant. A further 

decrease in wall permeability to 50 times less permeable than ISF results in negative trends in the 

oxygen concentration vs nerve to conduit diameter ratio curves at all locations, indicating dominance of 

axial diffusion over radial diffusion, driven by the restricted oxygen diffusion across the conduit wall. It is 

noted however that radial diffusion of oxygen does occur at this wall permeability value and is critical to 

maintaining an oxygenated environment within the conduit; a finding exemplified by the hypoxic 

environment at all locations observed at the 100 time less permeable than ISF wall variants. A summary 

of the findings derived from Figure 37 is presented in Table 12. Specifically, the conduit wall 

permeability and location in the model are paired in order to provide an overview of the mode of 

diffusion that is dominant. 

 
10x 20x 50x 100x 

Location 1 Radial Wall 

Diffusion 

Axial Gap 

Diffusion 

Axial Gap 

Diffusion 

Axial Gap 

Diffusion 

Location 2 Radial Wall 

Diffusion 

Radial Wall 

Diffusion 

Axial Gap 

Diffusion 

Axial Gap 

Diffusion 

Location 3 Radial Wall 

Diffusion 

Axial Gap 

Diffusion 

Axial Gap 

Diffusion 

Axial Gap 

Diffusion 

 

Table 12: Summary of the Dominant Diffusion Regimes 
Observed for paired conduit wall permeabilities (relative to ISF) and locations within the conduit. All combinations apply to 
conduits of any length in the tested range of 12-16mm. 
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6.3.3 EFFECT OF CONDUIT LENGTH EFFECT ON OXYGEN CONCENTRATION AND DISTRIBUTION 
Due to the data from the second murine study indicating that for a fixed nerve gap the length of 

the conduit employed has a significant effect on peripheral nerve regeneration (see Section 5.4), 

modeling was performed to explore the effect of conduit length on oxygen concentration and 

distribution. Five different conduit lengths were tested, ranging from 12 mm to 16 mm in 1 mm 

increments. The base CNF permeability of Table 11 was employed, and the model was run until the 

oxygen concentration reached 0 mol/m3. Figure 38 presents the resultant oxygen concentration vs time 

data as a function of conduit length for a nominal nerve to conduit diameter ratio of 0.70:1.00.  

Investigation of Figure 38 indicates that as the conduit length increases the time required for the 

oxygen concentration to reach 0 mol/m3 progressively decreases, a trend observed at all three locations 

and attributable to impaired axial diffusion due to enhanced luminal distances. The data at Location 1 

show greater dependence of the gradient of the curves at varying conduit lengths relative to those at 

Locations 2 and 3, a fact attributable to the shorter axial diffusion distance for Location 1 vs that at 

either Location 2 or 3 and hence a greater sensitivity of oxygen concentration to conduit length. It is 

noted that these observations are specific to conditions promoting dominance of axial diffusion over 

radial diffusion (low nerve to conduit diameter ratio, and low conduit wall permeability). Finally, 

comparison of the data for the 16 mm conduit (dark blue line) of Figure 38 with the comparable data of 

Figure 34 (red line) reveals complete agreement, implying internal consistency of the model.  
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One significant point of interest under conditions such as those above in which axial diffusion is 

dominant over radial diffusion, is that the trends observed in oxygen concentrations with varying nerve 

to conduit diameter ratios were typically comparatively linear (or biphasic linear). The observed linearity 

B 

C 

A 

Figure 38: Oxygen Modeling with Variable Conduit Length 
Oxygen concentration profiles of a conduit with a 0.70:1.00 nerve to conduit diameter ratio and 

variable conduit length at (A) Location 1, (B) Location 2, and (C) Location 3 
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is somewhat surprising given that the cross section of the model is cylindrical, and as such changes in 

the radius of the conduit relative to the nerve results in changes in the cross-sectional area of the ISF 

filled gap by r2. As such one would predict that the relationship between oxygen concentration and 

nerve to conduit diameter ratios should have an r2 dependence in axial diffusion dominant regimes. One 

potential reason that the observed data did not exhibit a strong r2 dependence is that the difference 

between the oxygen diffusion coefficients in ISF and in the nerve itself is very small (see Table 11). In 

order to test this hypothesis, the conduit wall oxygen permeability was set at zero (to force the system 

into an axial diffusion dominant regime), and an artificially large difference in oxygen diffusion 

coefficients for ISF and the nerve were implemented. Specifically, the diffusion coefficient of oxygen 

through the ISF was increased by a factor of 100, and the nerve diffusivity was maintained at its base 

value. Setting the parameters as indicated essentially made changes in conduit radii and hence the 

cross-sectional area of ISF, the sole variable impacting oxygen concentration within the conduit. Figure 

39 presents an analysis of oxygen concentration at Locations 1, 2, and 3 as a function of nerve to conduit 

diameter ratio, in both a qualitative and quantitative manner. 

Investigation of Figure 39 (a) indicates that when there is a substantial cross-sectional area of ISF 

through which oxygen can readily diffuse (0.70:1.00 nerve to conduit diameter ratio) there is significant 

oxygen concentration throughout the interior of the conduit. Conversely, when the nerve diameter and 

the conduit diameter are equal and no cross-sectional area of ISF exists (Figure 39 (b)), oxygen can only 

diffuse through the nerve tissue and as a result virtually the entire interior of the conduit is hypoxic with 

essentially zero oxygen concentration. Figure 39 (c, d, e) present the plateau oxygen concentration 

values as a function of nerve to conduit diameter ratios for Locations 1, 2 and 3 respectively. It is evident 

that at all locations there is only a slight dependence of oxygen concentration on nerve to conduit 

diameter ratio until a value of approximately 0.90:1.00, at which point a reverse logarithmic decay trend 

is observed. It is noted that the final data points of Figure 39 (c, d, e) are plotted as negative oxygen 
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concentrations, which hold no physical meaning - however they are included to illustrate that indeed 

the model does predict a strong non-linear dependence of oxygen concentration on nerve to conduit 

diameter ratio under axial diffusion dominant conditions. 

Figure 39: Oxygen Concentration Plateau Profiles 
Nerve to conduit diameter ratios (A) 0.70:1.00 ratio and (B) 1.00:1.00 ratio. Oxygen concentration vs nerve to conduit 

diameter ratio for (C) Location 1 (D) Location 2 and (E) Location 3. Note that the conduit wall oxygen permeability was set 
to zero and the ISF oxygen diffusion coefficient was increased to 100 times its baseline value. Negative oxygen 

concentration values clearly have no physical meaning but are included to highlight the r2 dependence of the data. 
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6.4 GLUCOSE DIFFUSION AND DISTRIBUTION 
In order to model the concentration and distribution of glucose, the primary energy source for 

neural regeneration, within the CNF conduit, a series of parameters required definition. The physical 

dimensions of the nerve and conduit remained the same as were employed for the oxygen modeling 

study and are summarized in Table 11. Additional parameters that required definition included the 

initial concentration of glucose within the conduit, the neural tissue and the ISF, the diffusion coefficient 

of glucose through the conduit wall, within the neural tissue and through the ISF, and finally the 

consumption rate of glucose by the conduit, the neural tissue and the ISF. Each of these parameters 

were derived from literature, or experimentally determined as described below, and are summarized in 

Table 13. 

Blood glucose levels of healthy individuals are known to be in the range of 4.2 to 8.3 mmol/L 

[91], with most individuals having a blood glucose level of greater than 5 mmol/L [96]. In addition, it has 

been shown that interstitial fluid glucose concentration is comparable to that of blood plasma, with no 

measurable lag time [97]. As such a nominal value of 6 mmol/L was selected as the initial interstitial fluid 

glucose concentration. The neural tissue was assumed to have equilibrated with the large glucose 

reservoir of the body’s interstitial fluid and was therefore assigned an initial concentration of 6 mmol/L. 

The CNF conduit was assigned an initial glucose concentration within the wall of 0 mmol/L. 

Table 13: Glucose Diffusion Related Parameters 
Initial glucose concentration, diffusion coefficient and consumption rate for the conduit 
neural tissue and interstitial fluid 
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A literature value for the rate of consumption of glucose by peripheral neural tissue was 

unavailable, as such a range was determined via known values for consumption of glucose by brain 

tissue, and via application of a known relationship between neural oxygen consumption (which is well 

established) and the rate of glucose consumption. First, Mergenthaler reported a value of 5.6 mg of 

glucose consumed per 100 mg of human brain tissue per minute [88]. Employing average values for 

brain volume [98] and weight [99], coupled with the molecular mass of glucose, enabled calculation of a 

glucose consumption rate of 5.828 x 10-3 mol/(m3∙s). It is known that the brain consumes glucose at a 

greater rate than peripheral neural tissue [100], although the precise proportionality is unknown, as 

such this value should be considered a high (likely maximum) value. Second, Mergenthaler [88], and 

separately Lim et al. [90], have reported that there is a direct relationship between the rate of oxygen 

consumption by neural tissue and the rate of glucose consumption by the same tissue. Specifically, the 

rate of glucose consumption is 5.5-5.8 times lower than that of oxygen consumption. Oxygen 

consumption in a regenerating nerve has been found Lim et al, [90] to be approximately twice that of a 

healthy nerve. Given the known linear relationship between neural oxygen and glucose consumption 

rates [88, 101], it follows that the glucose consumption rate in a regenerating nerve should be double 

the baseline value. Applying this scaling factor to known oxygen consumption rates of peripheral neural 

tissue at baseline metabolic conditions and under active repair conditions (as reported by Lim et al. [86, 

90] and Han et al. [93]) results in estimated values for glucose consumption rates of 1.673 and 3.345 x 

10-4 mol/(m3∙s), respectively. It is noted that these values are approximately an order of magnitude 

lower than those obtained employing the known glucose consumption rate of brain tissue (which are 

certainly an over estimation for peripheral neural tissue) and are adopted here for the non-regenerating 

regions of the nerve stumps, and the regenerating tip of the proximal nerve, respectively. 

The permeability of the neural tissue was approximated via a value for the glucose diffusion 

coefficient reported by Khalil et al. for epithelial tissue and dura mater as 2.64 x 10-10 m2/s [102]. It is 
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noted however that the ends of the proximal and distal nerves not within the conduit were modeled as 

impermeable to glucose since in vivo they would extend significant distances within the body and would 

not be subject to glucose flux axially from an open end. The diffusion coefficient of interstitial fluid was 

approximated via a value reported by Suhaimi et al. for glucose diffusivity in cell culture medium as 5.67 

x 10-10 m2/s [103]. Lastly, the diffusion coefficient of glucose in the cellulose nanofiber conduit wall was 

determined experimentally in the present work to be 1.7x10 -11 ± 0.9 x 10-11 m2/s see Section 3.11.  

COMSOL Multiphysics® simulations were run for a duration of 1000 minutes, by which time 

glucose concentrations had generally either plateaued, or had decreased below the hypoglycemic 

threshold value of 4 mol/m3 [91].  

6.4.1 EFFECT OF CONDUIT DIAMETER ON GLUCOSE CONCENTRATION AND DISTRIBUTION 
 An investigation into the effect of variation of the nerve to conduit diameter ratio on the 

glucose concentration profile and distribution was performed for a 16mm conduit over a range of 

0.70:1.00 to 1.00:1.00 in increments of 0.05, see Figure 40. It is evident that at all three locations within 

the conduit the glucose concentration progressively decreases as the nerve to conduit diameter ratio 

increases, that is, as the nerve and conduit diameters tend toward the same value. It is also noted that 

glucose concentrations plateaued in the range of ~5-5.75 mol/m3, i.e. above the upper limit of 

hypoglycemia of 4 mol/m3 [91]. The sensitivity of glucose concentration to nerve to conduit diameter 

ratio at the three locations may be understood in terms of length of the diffusion path axially within the 

conduit, the length of the radial diffusion pathway from the inner conduit wall to the nerve, and on the 

relative glucose consumption rates at the given locations. Notably, at Location 1 the axial diffusion path 

for glucose is the shortest of the three locations and hence axial diffusion is a significant contributor to 

the instantaneous glucose concentration. The effect of nerve to conduit diameter ratio is greatest at 

Location 1 (greatest range of plateau concentration values), a fact that may be attributed to the 

decrease in volume of interstitial fluid between the inner conduit wall and the nerve as the conduit  
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A 

Nerve to Conduit Diameter Ratio 

Figure 40: Glucose Concentration Profiles of a 16 mm Length Conduit  
Variable nerve to conduit diameters at (A) Location 1, (B) Location 2, and (C) Location 3 
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diameter approaches that of the nerve. The diffusion coefficient of glucose in interstitial fluid is 

approximately twice that of neural tissue, and more than an order of magnitude greater than in the CNF 

conduit wall, as such the effect of reduction of ISF volume is significant in regimes that have a 

dependence on axial diffusion. It is expected that radial diffusion of glucose does contribute to the 

instantaneous concentration at Location 1, although changes in nerve to conduit diameter are not 

expected to result in large changes in glucose concentrations resulting from radial diffusion since the 

change in diffusion distance from the inner conduit wall to the nerve is minor when compared to typical 

axial diffusion paths. It is noted that the plateau glucose concentrations at Location 1 are intermediate 

between those of Locations 2 and 3, a fact attributed to baseline neural glucose consumption, versus no 

consumption at Location 2 and twice baseline consumption at Location 3. At Location 2 the axial 

diffusion distance for glucose is the greatest of the three locations, as such it is expected that axial 

diffusion will play a minor role in the instantaneous glucose concentration, and that radial diffusion will 

dominate. The glucose concentration at Location 2 plateaued to the same value irrespective of the 

nerve to conduit diameter, an observation attesting to the dominance of radial diffusion over axial 

diffusion. As observed above, the instantaneous glucose concentrations at Location 2 are the highest of 

the three locations, a fact attributed to the lack of neural consumption in the gap between the nerve 

stumps. Location 3 resides at an axial distance from the end of the conduit that is intermediate between 

that of Locations 1 and 2 and as such likely has instantaneous glucose concentrations that are influenced 

by both axial and radial diffusion. Indeed, a similar but less strong dependence on nerve to conduit 

diameter ratio is observed at Location 3 versus that at Location 1, suggesting not quite as strong an axial 

diffusion dependence, and a greater radial diffusion dependence. It is noted that the glucose 

consumption rate is twice that which occurs at Location 1, a fact reflected in the glucose concentrations 

at Location 3 being the lowest of the three locations.  
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6.4.2 EFFECT OF CONDUIT LENGTH ON GLUCOSE CONCENTRATION AND DISTRIBUTION 
 To assess the impact of the potentially confounding effect of changing conduit length on the 

trends observed in glucose concentrations as a function of nerve to conduit diameter ratio, a similar 

analysis to that performed in Figure 40 on the longest (16mm) conduit was performed on the shortest 

(12mm) conduit, see Figure 41. It is evident from comparison of Figures 41 and 42 that the shorter 

conduit resulted in higher glucose concentrations at Location 1, but invariant concentrations at 

Locations 2 and 3. The findings suggest that axial diffusion is a significant contributor to the 

instantaneous glucose concentration at Location 1. However, at Locations 2 and 3 radial diffusion 

dominates over axial diffusion as evidenced by the negligible effect a significant reduction of the axial 

diffusion distance had on the instantaneous glucose concentrations. 

A comprehensive analysis of the effect of conduit length on glucose concentration profiles and 

distributions was performed at a nerve to conduit diameter ratio of 0.70:1.00 over the full conduit 

length range of 12 to 16mm in 1mm increments, see Figure 42. Investigation of Figure 42 reveals that at 

all locations within the conduit the glucose concentration plateaus to a positive value, above 4 mol/m3, 

for all conduit lengths. It is noted that the plateau concentrations follow the same trend as observed in 

sensitivity to nerve to conduit diameter ratio as a result of axial diffusion path length, radial diffusion 

path length, and rate of glucose consumption, namely highest at Location 2, intermediate at Location 1 

and lowest at Location 3. Further, at each location the glucose concentration progressively decreases 

with incremental increases in conduit length, a fact attributed to the increasing axial diffusion path 

length for glucose to reach each of the three locations within the conduit. 
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Figure 41: Glucose Concentration Profiles of a 12mm Length Conduit 
Variable nerve to conduit diameter ratio at (A) Location 1, (B) Location 2, and (C) Location 3 



111 
 

In order to test the dependence of the glucose concentration profiles on conduit length when 

the luminal volume of interstitial fluid was minimized, simulations were run for conduit lengths varying 

from 12 to 16mm in 1mm increments at a nerve to conduit diameter ratio of 1.00:1.00, see Figure 43. 

Comparison of Figures 43 and 44 reveals that increasing the nerve to conduit diameter ratio from 

0.70:1.00 to 1.00:1.00 decreases the glucose concentrations at all three locations and for all conduit 

lengths, although the decreases are comparatively minor, particularly at Locations 2 and 3. The glucose 

concentration at Location 1 decreased by approximately 0.3 mol/m3 upon increasing the nerve to 

conduit diameter ratio. At Locations 2 and 3 minor decreases in glucose concentrations were observed 

upon increasing the nerve to conduit diameter ratio, and the effect on glucose concentration of 

modification of the length of the conduit was suppressed. The observed differences revealed that the 

glucose concentration profiles at Location 1 were most sensitive to changes in conduit length and 

diameter due to its comparatively short axial diffusion path and baseline consumption rate, however the 

sensitivities at Locations 2 and 3 were far less pronounced, showing very minor, if any, shifts in 

concentration. These data demonstrate the importance of axial diffusion of glucose through the 

interstitial fluid resident in the gap between the nerve and the inner conduit wall, particularly at 

Location 1. Specifically, if the gap and hence the interstitial fluid, are removed by employing a conduit 

with the same diameter as the nerve, glucose concentrations are decreased as the only modes of 

potentially active diffusion are axially through the nerve itself, and radially across the conduit wall. The 

findings suggest that the minor decreases in glucose concentrations seen by both increasing the length 

of the conduit and increasing the nerve to conduit diameter ratio are due to reduction of axial diffusion. 

It is noted that glucose concentrations remain well above hypoglycemic conditions with axial diffusion 

pathway reductions suggesting that diffusivity of glucose radially through the CNF conduit wall and/or 

axially along the neural tissue itself is sufficient for maintaining healthy glucose levels. 
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Figure 42: Glucose Concentration Profiles of a 0.70:1.00 Nerve-Conduit Diameter Ratio Conduit 
 Variable conduit length at (A) Location 1, (B) Location 2, and (C) Location 3 
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Figure 43: Glucose Concentration Profiles of a 1.00:1.00 Nerve-Conduit Diameter Ratio Conduit 
Variable conduit length at (A) Location 1, (B) Location 2, and (C) Location 3 
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6.4.3 EFFECT OF CONDUIT WALL PERMEABILITY ON GLUCOSE CONCENTRATION AND 

DISTRIBUTION 
Clearly, limiting the axial diffusion of glucose through the interstitial fluid resident in the luminal 

space between the nerve and the inner conduit wall via reduction of the conduit diameter has only a 

minor effect on the glucose concentration and distribution within the conduit. Radial diffusion across 

the CNF conduit wall, and/or axially through the neural tissue appear to be the dominant diffusion 

modalities. As such an investigation of the effect of varying the permeability of the conduit wall to 

glucose was performed to determine if a reduction in radial diffusion into the luminal space may lead to 

hypoglycemic levels. Conduit parameters for the investigation were set at a nerve to conduit diameter 

ratio of 0.70:1.00 and a conduit length of 16 mm. The baseline conduit diffusion coefficient employed in 

the work to date has been 1.7 x 10-11 m2/s, a value based on the experimental measurement of glucose 

diffusion through a cellulose nanofiber sheet. It is of interest to explore the effect of varying the conduit 

wall permeability over a practical range. The highest obtainable conduit wall permeability would arise 

from a wall material with a glucose diffusion coefficient equivalent to that of interstitial fluid, i.e. 5.7 x 

10-10 m2/s, this value was therefore selected as the upper boundary of the glucose diffusion coefficient. 

Two additional diffusion coefficient values were selected based on the application of one standard 

deviation above and below the measured experimental value yielding values of 2.6 x 10-11 and 8.0 x 10-12 

m2/s, respectively. Finally, a lower boundary value of 1 x 10-12 m2/s was selected given that it represents 

the lowest value in the order of magnitude in which the experimental value minus one standard 

deviation fell. Figure 44 presents the instantaneous glucose concentrations plotted as a function of time 

at the three locations within the conduit employing the five selected conduit wall diffusion coefficients. 

It may be seen from investigation of Figure 44 that employing a conduit wall diffusion coefficient 

equivalent to that of interstitial fluid (5.7 x10-10 m2/s) results in glucose concentrations at all locations 

that are only slightly lower than the baseline interstitial fluid concentration, a fact arising from the 

absence of a barrier for radial diffusion across the conduit wall and therefore dominance of the radial 
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diffusion mode over the axial diffusion mode. It is noted however that at the locations where glucose 

consumption occurs (1 and 3), the plateau concentrations are lower than at Location 2. Decreasing the 

diffusion coefficient of the conduit wall progressively to the experimental value plus one standard 

deviation, the experimental value, and the experimental value minus one standard deviation is observed 

to result in monotonic reductions in the plateau values of the glucose concentrations at all three 

locations within the conduit, with the relative concentrations following the previously observed trend of 

highest at Location 2, intermediate at Location 1, and lowest at Location 3. Reducing the diffusion 

coefficient to the lower boundary value of 1 x 10-12 m2/s resulted in a dramatic decrease in the 

instantaneous glucose concentrations and the lack of attainment of a plateau concentration in the 

timescale investigated at all 3 locations. Running the simulation for a longer period of time indicated 

that at Location 1, a plateau value of 3.8 mol/m3 was eventually reached (at ~ 3000 minutes). It is noted 

that a concentration of 3.8 mol/m3 is below the threshold of hypoglycemia. At Locations 2 and 3, the 

application of the lower boundary value of the diffusion coefficient resulted in a glucose concentration 

profile that entered the hypoglycemic regime at 800 and 700 minutes, respectively. The data of Figure 

44, coupled with the experimentally measured glucose diffusion coefficient for cellulose nanofiber 

sheets, implies that under the conditions of the present study radial diffusion through the conduit wall is 

the dominant pathway for glucose to enter the luminal space, and that axial diffusion, while present, 

appears to have only marginal significance, primarily at Location 1. 



116 
 

 

A 

 

 

 

 

 
 

B 

 

 

 

 

 

C 

Conduit Permeability to Glucose 

Figure 44: Glucose Concentration Profiles of a Conduit with Varied Conduit Permeability 
0.70:1.00 nerve to conduit diameter ratio and conduit length of 16 mm with variable conduit 

permeability at (A) Location 1, (B) Location 2, and (C) Location 3 
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6.5 CONCLUSIONS OF FINITE ELEMENT ANALYSIS MODELING OF OXYGEN AND GLUCOSE 

CONCENTRATIONS AND DISTRIBUTIONS WITHIN A CNF PERIPHERAL NERVE CONDUIT 
In order to provide insight into the concentration and distribution of oxygen and glucose within 

a peripheral nerve conduit, a COMSOL Multiphysics® model of a peripheral nerve injury comprising a 3 

mm gap between the proximal and distal stumps was created. The injury site was enclosed within a 

cellulose nanofiber conduit. The end of the regenerating proximal stump was modeled to consume 

twice the oxygen and glucose per unit time vs baseline nerve consumption (as per literature). The 

concentration and distribution of oxygen and glucose at three locations within the conduit were 

analyzed as a function of the nerve to conduit diameter ratio, the permeability of the conduit wall to 

oxygen and glucose, and the length of the conduit.  

It was found that the lowest oxygen concentration within the conduit occurred at the end of the 

proximal stump where regeneration was occurring. The end of the distal stump had the second lowest 

oxygen concentration (with baseline oxygen consumption), with the gap in between the stumps having 

the highest concentration (where no oxygen consumption occurs). Increasing the nerve to conduit 

diameter ratio (effectively decreasing the ISF filled gap between the nerve and the inner wall of the 

conduit) led to progressively lower oxygen concentrations for all conduit lengths and locations tested 

and for conduit wall oxygen permeabilities in accordance with those used in in vivo studies. The findings 

were attributed to the dominance of axial diffusion over radial diffusion of oxygen and the decreased ISF 

filled axial volume as the nerve and conduit diameters approach each other. Increasing the oxygen 

permeability of the conduit walls to values 10 times less than that of ISF (vs the baseline case of 100 

times less permeable than ISF) resulted in the oxygen concentration at all locations within the conduit 

being invariant with the nerve to conduit diameter ratio, implying that radial diffusion of oxygen across 

the conduit wall is the dominant mechanism of oxygen migration for highly permeable conduits. 

Progressively decreasing the conduit wall permeability led to reversion to the axial diffusion regime at all 

locations. Increasing the length of the conduit employing the baseline wall permeability resulted in a 
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consistent decrease in oxygen concentration at all locations within the conduit as the axial distance 

required for oxygen diffusion increased. The model was shown to be internally consistent, and to follow 

expected trends with regard to the effect of changes of conduit radii and concomitant change of the ISF 

filled axial volume on oxygen concentration in an axial diffusion-controlled regime. 

 It was found that as the nerve to conduit diameter ratio increased, the glucose concentration at 

all locations decreased, a finding consistent with decreased axial diffusion. It was noted however that 

the small changes in glucose concentration that resulted suggest that axial diffusion was not the 

dominant diffusion mode. Investigation of the effect of variation in conduit length revealed similar 

trends. As conduit length increased, glucose concentrations progressively decreased, although again the 

effects were comparatively minor in the nerve gap and proximal nerve, suggesting that radial diffusion is 

the dominant regime at these locations. Lastly, the effect of variation of the glucose diffusion coefficient 

of the cellulose nanofiber conduit wall was investigated. Progressively decreasing the glucose diffusion 

coefficient of the CNF conduit wall consistently reduced the instantaneous glucose concentrations at all 

locations. At a diffusion coefficient of 1 x 10-12 m2/s, more than an order of magnitude below the 

experimentally determined value, the glucose concentrations at all locations were reduced below the 

hypoglycemic threshold of 4 mol/m3, a finding attributed to inhibited radial diffusion of glucose. It is 

concluded therefore, that under the experimental conditions employed, radial diffusion of glucose into 

the luminal space of the conduit is the dominant diffusion modality at all locations, with axial diffusion 

only contributing to a minor extent in the distal nerve stump due to the shorter axial distance from the 

end of the conduit to the monitoring location. 
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CHAPTER SEVEN  

CONCLUSIONS 

The present work developed conduits comprising cellulose nanofiber (CNF) which showed great 

efficacy in promotion of peripheral nerve repair. CNF was produced from bleached softwood pulp via 

mechanical segmentation and defibrillation. A recirculating flow supermasscolloider was constructed 

within a temperature-controlled cleanroom at the University of Maine Technology Research Center. A 

series of GMP/GLP based protocols were developed to ensure production of verifiable quality CNF. 

Importantly, a cumulative energy meter was installed on the supermasscolloider to track the total 

energy applied to the cellulose slurry, which was shown to correlate well with the resulting fines content 

of the CNF. 

Cylindrical neural conduits were created by rolling two layers of a sheet of CNF around a plastic 

mandrel, followed by sealing of the outer flap. As such, it was critical that CNF sheets be reproducibly 

created from the CNF slurry derived from the defibrillation process. It was found that dried CNF sheet 

thickness was proportional to the percent solids content of the CNF slurry employed to cast the sheet, 

as well as the thickness of the wet sheet spread by the casting knife film applicator. The CNF sheet 

production process was optimized to produce sheets with a thickness of 56.2 ±1.3 m. Physical 

characterization of the sheets was performed to determine strength, surface roughness, 

porosity/permeability and transparency. Tensile strength testing revealed that the Young’s modulus of 

the CNF sheets was of the order of 4.6 to 5.7 GPa. Due to the fact that the CNF sheets were cast on a 

stainless steel plate and hence had two surfaces that dried in contact with different media (stainless 

steel and air), the surface roughness of the two sides were considerably different. Specifically, the side 

of the CNF sheet that dried in contact with the stainless steel plate was comparatively smooth with an 
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average roughness, as determined by mechanical profilometry, of 0.5-1.0 m, while the side that dried 

in contact with air was comparatively rough with an average roughness of 2.5-4.0 m. 

Sheet porosity and permeability were characterized in order to understand the likely extent of 

passage of pro and anti-regenerative species through the CNF walls of the neural conduits. 

Measurement of air passage through the CNF sheets was unsuccessful, indicating that they were non-

permeable, at least in the dry state. Mercury porosimetry measurements of CNF sheets confirmed the 

findings of the air permeability analysis; no evidence for sheet porosity was found down to the limit of 

the technique of 10 nm. Sheet transparency was shown to increase with decreased sheet thickness, and 

to increase with hot calendaring.  Oxygen diffusion across the CNF sheets was measured as a function of 

relative humidity in the range of 50-90 %RH. The data enabled extrapolation to a diffusion coefficient of 

1.8 x 10-13 m2/s at the physiologically relevant condition of 100% relative humidity. The diffusion 

coefficient of glucose through the CNF was experimentally determined to be 1.7 ± 0.9 x 10-11 m2/s, 

approximately two orders of magnitude greater than that of oxygen. It was noted CNF sheets swell 

significantly in aqueous solutions, expanding to approximately 70 m thickness in the wet state from an 

initial dry thickness of approximately 50 m. 

A significant amount of work was performed to develop an effective means of sealing the 

internal and external flaps of the multi-layer CNF conduits, and to determine the optimal CNF sheet 

properties. The efficacy of various sealing methods, CNF sheet thickness, and number of CNF sheet 

layers were determined by evaluating the mechanical stability of conduits in a range of aqueous 

solutions under both static and dynamic conditions. In terms of mechanical stability, it was determined 

that the optimal number of CNF sheet layers was two and that sheets of approximately 52 m thickness 

were most effective. Three different sealing methods were investigated. Applying an aqueous layer 

beneath the flap was found to be ineffective for extended periods of time. Applying CNF slurry beneath 
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the flap and coating the finished conduit in CNF slurry was found to produce a product with very good 

stability for up to approximately 6 weeks. The final and most stable method developed for sealing the 

conduit flaps was to employ mechanical interlocks on the inner and outer CNF layers; such conduits 

maintained their integrity even under dynamic conditions far more extreme than would be experienced 

in vivo. 

CNF conduits were implanted in two murine sciatic nerve animal studies, and one non-human 

primate tolerability study. The first murine trial demonstrated that the conduits were well tolerated by 

the animals and were highly effective in promoting peripheral nerve regeneration when the sciatic nerve 

was transected, and no tissue excised. Indeed grip strength measurements of the hindlimbs of the test 

subjects 30 weeks post-surgery demonstrated approximately six times greater grip strength (~66% 

functional recovery) in animals that received a CNF conduit vs animals that had the sciatic nerve 

transected but did not receive a conduit. The second murine study investigated the efficacy of repair of 

the sciatic nerve employing five different repair techniques. Specifically, Group 1 used a 3mm nerve gap 

and no assistive repair intervention, Group 2 employed a suture to connect the nerve stumps across a 

3mm nerve gap, Group 3 employed a 5mm conduit over a 3mm nerve gap, Group 4 employed a 5mm 

conduit over a 1mm nerve gap, and Group 5 employed a 3mm conduit over a 1mm nerve gap. It was 

concluded from the study that CNF conduits promote neural regeneration and do so over gaps that scale 

to very large injuries in humans. In addition, and somewhat surprisingly, it was shown that the extent of 

neural regeneration is dependent upon the length of the conduit employed and appears to be greatest 

for shorter conduits. Histological analysis revealed the presence of significant tissue in the luminal space 

of the conduit. Treatment with a cellulose specific stain revealed that the CNF conduit largely retained 

its tubular geometry, although delamination of the inner and outer flaps was evident, suggesting the 

need for a mechanical interlock design rather than solely a CNF slurry seal and coating. The non-human 

primate study was undertaken to determine the ability of an animal species known to be very sensitive 
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to foreign bodies to tolerate the CNF conduit. It was determined that conduits comprising CNF were 

very well tolerated and histological examination showed no evidence of a foreign body/inflammatory 

response, a finding consistent with a cell culture study. The suture employed in both the murine and the 

non-human primate surgeries to implant the conduit, however, engendered a strong foreign 

body/inflammatory response in the baboons. 

The observation in the second murine study that the physical dimensions of the CNF conduit 

employed directly impacted the extent of neural regeneration led to the development of a finite 

element analysis model of the peripheral nerve-conduit system. Specifically, COMSOL Multiphysics® was 

employed to model the peripheral nerve-conduit system, and to predict the concentration and 

distribution of species likely to be important for neural regeneration as a function of the physical 

dimensions of the conduit, and the permeability of its walls. Indeed the time-dependent concentrations 

of oxygen, and separately, glucose were modeled throughout the nerve-conduit system as a function of 

conduit length, the nerve to conduit diameter ratio, and the permeability of the CNF conduit wall to the 

species of interest. It was found that all three parameters influenced the concentration and distribution 

of oxygen and separately, glucose, throughout the nerve/conduit system. Oxygen concentrations within 

the conduit were found to be heavily influenced by the conduit dimensions and to be dominated by 

axial diffusion through the ISF filled luminal space between the nerve and the inner conduit wall; little 

dependence on radial diffusion across the CNF wall of the conduit was found, a fact attributed to the 

relative impermeability of CNF to oxygen. Conversely, glucose concentrations within the conduit were 

found to be heavily influenced by radial diffusion across the CNF conduit wall, a fact attributed to the 

high permeability of CNF to glucose; axial diffusion of glucose through the ISF filled luminal space 

between the nerve and the inner conduit wall was found to be far less significant. The outcomes of the 

COMSOL Multiphysics® modeling study are significant in that they demonstrate that oxygen 

concentration within a CNF conduit in vivo may be modulated by the physical dimensions of the implant 
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relative to the nerve; and further that glucose concentration within the conduit is mostly controlled by 

the diffusion coefficient of glucose across the conduit wall. The in vivo murine studies revealed that 

neural regeneration was greatest when a shorter conduit was implanted over a fixed neural gap, a 

condition that the COMSOL model predicts would result in greater oxygen concentrations within the 

conduit, and glucose concentrations well above the hypoglycemic threshold. It is concluded therefore 

that the COMSOL model was predictive and explanatory of the in vivo results. Extension of the model to 

determine the concentration and distribution of the primary waste product of metabolism, carbon 

dioxide, would be an interesting future effort. 

 In addition to modeling the impact of conduit properties on carbon dioxide concentration, other 

aspects of the CNF conduit that could modulate neural regeneration should be explored in future 

studies to target an optimal regenerative environment. Indeed, although the first and second murine 

studies demonstrated that conduit implantation resulted in greater neural regeneration than was 

achieved in their absence, it was observed that the degree of regeneration decreased as the neural gap 

increased. Research is therefore required to increase the extent of neural regeneration in CNF conduits 

over large neural gaps.  To this end, preliminary work was undertaken by the author and collaborators 

to embed axial growth guidance cables in the inner wall of the CNF conduit that could potentially 

support and direct neural regeneration. Further, chemical and/or biological modifications of the conduit 

could be undertaken to convert the implant from an essentially inert construct into one which actively 

promotes cellular proliferation. Indeed, the author and collaborators demonstrated the potential of the 

extracellular matrix protein laminin to favorably modify CNF in such a manner. Such an approach could 

be utilized to spatially template growth tracks for the regenerating neurons along the inner wall of the 

conduit, and/or could be coupled with guidance cables to further enhance regeneration. In addition, 

pro-regenerative species such as growth factors that are necessary to initiate regeneration could be 

incorporated into the conduit to guarantee threshold concentrations are met. Finally, the ability of the 
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CNF slurry/hydrogel itself to support cellular growth should be evaluated. If shown to be viable, CNF 

conduits could be filled with CNF slurry comprising essential cells and growth factors prior to 

implantation. Such a CNF construct could provide not only a microenvironment conducive to neural 

regeneration, but also a reservoir of supportive cells and factors. 
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APPENDIX 

A1: CLEANROOM DESCRIPTION 
A cleanroom was constructed off site at the Technology Research Center of the Forest 

Bioproduct Research Institute to house a refining center and laboratory space for conduit development 

from wood pulp feedstock. The overall cleanroom exterior dimensions of the cleanroom were 13’ wide x 

17’ long x 12’ tall. The interior ceiling height was 10 ft, creating a 2 ft tall air chamber in the ceiling of the 

entire cleanroom for air flow. Installed in the ceiling were four HEPA air filtration units as well as four 

flat panel LED lights. The two longest sides of the cleanroom were constructed with a double wall with 

approximately a 1-foot gap for air recirculation. The air flow in the room blew down from the ceiling and 

was separated into two streams; airflow into the recirculation chambers of the double walled sides and 

excess air pushed through a sweeper seal at the bottom of the entrances. The air flow created positive 

pressure in the room meaning a constant flow of air outward from the room preventing unwanted 

particles drifting into the room. A prefilter was installed in the roof of the cleanroom such that fresh, 

filtered air could be pulled into the air chamber, mixed with recirculated air, and cycled into the 

cleanroom. An 18,000 BTU air conditioner and heat pump (Home Depot, 309068909) was installed in 

the ceiling space to maintain temperature of the cleanroom space. 

The interior space was divided into two separate rooms, a working area and a gowning area. 

Doors existed to partition the gowning area from the outside, and separately, the work area from the 

gowning area. Only one should be opened at any given time to ensure maintenance of the clean positive 

pressure environment. The gowning area, approximately 4’ x 12’, contained a storage shelf for personal 

protective equipment (PPE), a coat rack, a shoe rack, and a bench. All PPE was donned while in the 

gowning room with both doors closed. Once PPE was donned, an individual could enter the work area. 

The work area was 10’ x 12’ with two 6’ x 3’ stainless steel work benches delineating two distinct work 

areas (dry and wet). Dry work consisted of pulp preparation, sheet production, conduit production, and 
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other work in which water could potentially damage products. Wet work was performed on the second 

bench which housed the supermasscolloider.  

The supermasscolloider (SMC) setup was the centerpiece of the cleanroom and was employed 

to refine bleached softwood kraft pulp into cellulose nanofiber. The SMC was configured to enable 

continuous refinement. A food grade positive displacement pump was employed, sized appropriately to 

move slurry prepared at 2% solids by weight. All contacting surfaces of the sanitary fittings were 316 

stainless steel, joined with silicone gaskets, and were secured with quick lock fittings made of 304 

stainless steel. The diameters of the fittings and lines ranged from 1” ID on the recirculation line, 

sampling port, and waste line on the output side of the pump, 2” for the input of the pump, 3” on the 

overflow, 4” on the pump reservoir and 6” for the SMC output receiver. The larger diameter on the 

pump input side were necessary for the gravity-fed flow of viscous CNF slurry. 

The ability to operate the SMC as a continuous, recirculating system relied upon the ability for 

fluid flow to occur simultaneously in the pump and in the colloider. If either section of equipment were 

to possess stagnant slurry, damage to the equipment and potential contamination of the slurry could 

occur. It was critical to size each fitting volumetrically such that the entire volume of slurry in the system 

(14 liters) could be held in the pump reservoir, and that the recirculation line and hopper volume 

together were less than half of the system volume. Compliance with the volumetric restrictions meant 

that with a full recirculation line, hopper and overflow line, neither the pump nor colloider were in 

danger of dry operation. Optimizing the pump reservoir volume was key for consistent slurry production 

as it maximized mixing of the slurry. Operationally it should be noted that as the viscosity of the slurry 

increases with the extent of refining, the pump speed should be slowed to account for the decreased 

flow from the gravity fed overflow line.  
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 The SMC is an open system that was designed for continuous refining of wood pulp dispersed in 

water into a CNF slurry. Air quality was critical, hence the placement in a clean room. Similarly, water 

quality was controlled via use of purification system. To ensure consistent, high quality CNF production 

amenable to the creation of biomedical implants, Standard Operation Procedures and Protocols were 

developed for each stage of the process from pulp preparation to conduit packaging. All protocols were 

based on GMP and GLP protocols commonly used in the pharmaceutical industry. Quality Control 

Checklists were developed for different stages of the process to ensure consistency and the prevention 

of downstream complications. The Standard Operating Procedures and Quality Control Checklists may 

be found in the subsequent appendices. 

  

Figure 1: Optimization of Continuous SMC System 
Alterations were made to the pump speed and pump reservoir to increase the mixing capabilities 
of the system. Sample aliquots were taken from the hopper and aggregate aliquots were taken 

from the whole slurry after dispensing from the system. 
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A2: CLEANROOM BLUEPRINTS/DIAGRAMS 

 

Figure 2: Technical Drawing of the Cleanroom 

Figure 3: Image of the Constructed Cleanroom 
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SCOPE AND APPLICABILITY 
The purpose of the following documents is to establish a clean process with multiple levels of quality 

control and quality assurance to produce and distribute cellulose nanofibril (CNF) conduits. The methods 

described in the Standard Operating Procedures (SOPs) enclosed are used to produce a medical-grade 

CNF conduit from bleached cellulose pulp to be used for neural applications. The SOPs and Quality 

Control Checklists (QCCs) do not include tests for pathogens, microbial growths, or sterility beyond 

multiple visual inspections during production. The University of Maine has partnered with researchers in 

the Eggan Laboratory at Harvard University, Nano Terra, and the Southwest National Primate Research 

Center (SNPRC) of the Texas Biomedical Research Institute in San Antonio, Texas to test the conduits for 

efficacy in vivo, and these teams have developed their own protocol to sterilize the conduits prior to 

implantation.  

Two specialized environments are needed to produce CNF conduits: A humidity-controlled environment 

is required to store the cellulose pulp. A clean room with air filters and a gowning area prior to entry is 

required for pulp suspension production, CNF slurry production, conduit production, and stability 

studies (see Appendix A.1 and 2). The workflow plan for the cleanroom is presented in Appendix A.3. 

The TAPPI-certified room in the University of Maine’s Process Development Center (PDC) stores the pulp 

(see Appendix B.1 for PDC and TAPPI room floor plans) and a clean room housed in the University of 

Maine’s Technology Research Center (TRC) is employed for production (see Appendix C for TRC floor 

plan.) See Appendix D for further specifications and maintenance protocol of the clean room. The 

analysis of cellulose pulp moisture content and the measurement of fines and fibers using a MorFi Fiber 

Analyzer may take place in any laboratory environment. For the pilot operation described, separate 

laboratory spaces in the facilities of the University of Maine in Orono are used (see Appendix B.2, and 3 

for floor plans). 

All operations and facilities are designed to adhere to the following Good Manufacturing Practices 

(GMP): WHO GMP for active pharmaceutical ingredients stated as per Annex 2- WHO Technical Report 

Series(TRS), No. 957, 2010; GMP guide for Active Pharmaceutical Ingredients ICH Harmonised Triplicate 

Guideline stated as per ICH Q9; and GMP requirements as per Directives No. 2001/83/EC latest 

amended vide Directive 2011/62/EU). See Appendix E for the whole-facility self-appraisal based on 

these GMP guidelines. The whole-facility self-appraisal will be reevaluated on a yearly basis and all 

revisions made will be documented. 

See next page for a listing of the operation’s SOPs and QC checklists.  
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SUMMARY OF METHOD 
Nicklaus Carter, a Ph.D. candidate at the University of Maine (2017), has worked laboriously with 

developing the process to product neural conduits. Therefore, Nicklaus was the originator of all SOPs 

and QCCs. Mary Bourque, pursuing a B.S. in Chemical Engineering at Columbia University (2018), was a 

participant of the NSF-funded Research Experience for Undergraduates (REU) in the Forest Bioproducts 

Research Institute (FBRI) at the University of Maine and worked closely with Nicklaus to complete the 

SOPs and QCCs. The SOPs and QCCs are numbered in the order they should be completed. The following 

is a summary of methods detailed in each SOP document: 

1. (CNF-SOP-01) Cellulose pulp sample is obtained, properly stored in a humidity-controlled 

environment, and analyzed for moisture content, adhering to ISO 287 protocol. 

2. (CNF-SOP-02) Personnel change into appropriate PPE prior to entering the clean room. 

3. (CNF-SOP-03) Cellulose pulp is added to water and allowed to sit overnight. The pulp is agitated 

and broken down into smaller particulates. 

4. (CNF-SOP-04, CNF-SOP-05, CNF-SOP-06) The pulp suspension is circulated through a super mass 

colloider (SMC) where it is refined until 90% fines is achieved. A calibration curve relating the 

cumulative energy and fines content using a MorFi Fiber Analyzer is used to determine the level of 

refinement while running the SMC. The SMC is cleaned after each batch.  

5. (CNF-SOP-07) The slurry collected from the SMC is used to form CNF sheets by using a film 

applicator and air drying. 

6. (CNF-SOP-08) Dry sheets are measured for thickness before being rolled and employed as neural 

conduits. 

7. (CNF-SOP-09) The clean room and all equipment are cleaned regularly for quality control 

measures.  

8. (CNF-SOP-10) A detailed log of QCCs are kept to properly label each product. Example labels are 

included.  

9. (CNF-SOP-11) Products are tested for stability in different environments and timescales.  

10. (CNF-SOP-12) The supervisor approves distribution of products, ensuring all QCCs are complete.  

Quality Control and Quality Assurance  

The following quality control checklists have been developed for applicable steps of production to 

ensure consistent products as well as to create a traceable log of batch details and personnel 

responsibility: 

1. Cellulose Pulp (CNF-QCC-01)  

2. Processed Fiber (CNF-QCC-06) 

3. Sheet Production (CNF-QCC-07) 

4. Conduit Production (CNF-QCC-08)  
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1.0 Purpose 

1.1. To store cellulose pulp in a temperature and humidity-controlled environment such that the 

moisture content of an aliquot can be calculated. 

2.0 Health and Safety Warnings 

2.1. Take care when lifting or carrying large or heavy loads: Improper form or the inability to lift 

heavy loads can cause strains and sprains. 

2.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

2.3. Work in a well-ventilated laboratory area. 

2.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

2.5. Hazardous waste must be disposed in designated waste container. 

2.6. Be familiar with the MSDS/SDS for all chemicals employed in the procedure. 

3.0 Cautions  

3.1. The sample of cellulose pulp used for the pulp suspension must be stored in a temperature 

and humidity-controlled environment in order for the calculated moisture content to be 

representative of the entire sample.  

3.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials, and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.  

3.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

3.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

4.0 Interferences  

4.1. Improper storage of the pulp sample (malfunctioning temperature and moisture control, 

improperly sealed bags, storage of the pulp sample in an open environment, etc.) will yield 

inaccurate calculations of the weight percent solids of the pulp suspension.   

5.0 Personnel Responsibilities and Qualifications 

5.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

5.2. The Operator: 
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● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

● Must be able to lift up to 50 pounds. 

6.0 Equipment and Materials  

6.1. Equipment 

6.1.1. Laboratory scale (Fisher Scientific, 01-920-120) 

6.1.2. Heating/drying oven (Fisher Scientific, 15-10-0508) 

6.2. Materials (as listed or equivalent) 

6.2.1. Bleached cellulose pulp (Vendor, Cat #XXXXX) 

7.0 Quality Control and Quality Assurance  

7.1. Complete the quality control checklist CNF-QCC-01 (Cellulose Pulp) for the pulp sample to 

be stored in the TAPPI room. Remove a sample of approximately five sheets of pulp from 

the lot and store in a temperature and humidity-controlled environment for a minimum of 

24 hours prior to analysis of moisture content. Calculate the moisture content using the ISO 

287 standard procedure using an aliquot of the sample. The moisture content calculated will 

be representative of the entire sample removed from the lot and stored in a temperature 

and humidity-controlled environment. Moisture content need only be recalculated if 

storage conditions of the sample change or a new sample from the lot has been stored in 

the TAPPI room to be used. While performing this SOP, record in the accompanying quality 

control checklist CNF-QCC-01, Cellulose Pulp: 

7.1.1. Storage conditions in the TAPPI room 

7.1.2. Mass of sample 

7.1.3. Moisture content (%) of aliquot 

7.1.4. Visual inspection 

7.1.5. Notes 

7.1.6. Initials and date 

8.0 References 

8.1. CNF-QCC-01 (Cellulose Pulp Quality Control Checklist) 

8.2. ISO 287 (Paper and board – Determination of moisture content of a lot – Oven-drying 

method) 
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8.3. CNF-SOP-09 (General Maintenance and Cleaning Protocol) 

8.4. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 

9.0 Procedures 

9.1. Calculation of Moisture Content (as outlined in ISO 287) 

9.1.1. Remove a pulp sample (five sheets) from the lot and store in the TAPPI room for a 

minimum of 24 hours prior to analysis of moisture content 

9.1.2. Transfer an aliquot of pulp (100g) from the sample to a dry container and obtain the 

mass 

9.1.3. Dehydrate the aliquot of pulp in a drying oven at a temperature of 105°C  2°C 

9.1.4. Reweigh the pulp aliquot. Repeat drying and weighing until there is no change in mass 

9.1.5. Obtain a moisture content value of the aliquot. The aliquot’s moisture content will be 

representative of the sample stored in the TAPPI room 

9.2. Cleaning and Maintenance 

9.2.1. Clean the station as outlined in CNF-SOP-09. Record all maintenance and cleaning 

performed in the maintenance and cleaning logs at the station.  
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1.0 Purpose 

1.1. To ensure that the cleanroom is entered by all personnel in a clean and consistent manner 

2.0 Health and Safety Warnings 

2.1. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

2.2. Work in a well-ventilated laboratory area.   

2.3. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

2.4. Hazardous waste must be disposed in designated waste container. 

2.5. Be familiar with the MSDS/SDS for all chemicals employed in the procedure. 

3.0 Cautions  

3.1. Improper execution of the gowning procedure may contaminate all products within the 

room. 

3.2. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

3.3. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

3.4. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.0 Personnel Responsibilities and Qualifications 

4.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

4.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the clean room. 

5.0 Equipment and Materials 

5.1. Materials (as listed or equivalent) 
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5.1.1. Bouffant (Fisher Scientific, 17-624-136) 

5.1.2. Clean room specific shoes (Vendor, Cat #) 

5.1.3. Shoe covers (Fisher Scientific, 17-624-136) 

5.1.4. Frocks (Fisher Scientific, 19-162-628) 

5.1.5. Gloves (Fisher Scientific, 19-169-069) 

5.1.6. Beard cover (Fisher Scientific, 17-100-925) 

5.1.7. Hand sanitizer (Fisher Scientific, 12-544-105) 

6.0 Quality Control and Quality Assurance  

6.1. Visually inspect all materials to be brought into the clean room. Be sure all containers are 

closed and sealed prior to entry.  

7.0 Procedures 

7.1. General Attire 

7.1.1. Ensure that all personnel are NOT wearing open toed shoes, shorts, skirts, or dresses 

7.1.2. Ensure that all personnel are following a regular schedule of hygiene 

7.2. Before entering the gowning room 

7.2.1. Remove bulky outerwear such as coats, scarves, sweatshirts, etc. 

7.2.2. Remove shoes, hats, and any jewelry 

7.2.3. Ensure that hair is tied back and that there are no dangling items of clothing or 

jewelry 

7.2.4. Turn the lights on to the clean room 

7.2.5. Ensure filters have been on and running for at least 24 hours. If the filters have not 

been on for at least 24 hours, ensure the filters are on and wait until a full 24 hours 

has passed 

7.2.6. Record the status of the HEPA filters and clean room and gowning pressures on the 

clean room sign-in sheet. If the clean room pressure is not twice that of the gowning 

room, do not enter the clean room 

7.2.7. Close and seal all containers to be brought into the clean room 

7.2.8. Enter the gowning room and close the door to the surrounding facility 

7.3. Before entering the clean room 

7.3.1. Ensure that the air filtration system is operating  

7.3.2. Ensure that there is a supply of clean room garments in the gowning room 
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7.3.3. Apply hand sanitizer 

7.3.4. Put on clean room shoes stored in the gowning area and place shoe covers over them, 

one pair per individual should be stored in the gowning room 

7.3.5. Put on frock, bouffant, and beard cover as necessary 

7.3.6. Put on gloves and be sure that the glove cuffs overlap the cuffs of the frock 

7.3.7. Perform a self-review to ensure the individual entering is wearing a bouffant, clean 

room shoes, shoe covers, frock, gloves, and beard cover (if applicable) 

7.3.8. Make sure that the gowning room door is closed before entering the clean room 
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1.0 Purpose 

1.1. To prepare a cellulose pulp suspension: An unrefined dispersion of hardwood, softwood or 

other cellulosic fibers in water 

2.0 Definitions 

2.1. CNF: Cellulose nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

3.0 Health and Safety Warnings 

3.1. Take care when lifting or carrying large or heavy loads: Improper form or the inability to lift 

heavy loads can cause strains and sprains. 

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area.   

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed in designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals employed in the procedure. 

4.0 Cautions  

4.1. The whole sample of cellulose pulp used for the pulp suspension must be stored in a 

temperature and humidity-controlled environment for the calculated moisture content of 

the aliquot to be representative of the entire sample.  

4.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials, and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.  

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences  

5.1. Improper storage of the pulp sample (malfunctioning temperature and moisture control, 

improperly sealed bags, storage of the pulp sample in an open environment, etc.) will yield 

inaccurate calculations of the weight percent solids of the pulp suspension.  

6.0 Personnel Responsibilities and Qualifications 

6.1. Supervisor: 
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● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

6.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

● Must be able to lift up to 50 pounds. 

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. 5-Gallon plastic pail (ULINE, S-7914W) 

7.1.2. Gamma seal lid for plastic pail (ULINE, S17945W) 

7.1.3. Laboratory scale (Global Industrial, 240878) 

7.1.4. Heating/drying oven (Fisher Scientific, 15-103-0508) 

7.2. Materials (as listed or equivalent) 

7.2.1. 280 g bleached cellulose pulp (Vendor, Cat #XXXXX) 

7.2.2. 13.72 kg sterile deionized-distilled water (17.45-17.46 Megaohms-cm) 

8.0 Quality Control and Quality Assurance  

8.1. Before commencing the procedure in this document, complete the quality control checklist 

CNF-QCC-01 (Cellulose Pulp) for the pulp sample to be used. Store the sample from the pulp 

lot in the temperature and humidity-controlled environment of the TAPPI room for a 

minimum of 24 hours prior to analysis of moisture content. Calculate the moisture content 

using the ISO 287 standard procedure for an aliquot of the sample. The moisture content 

calculated will be representative of the entire sample removed from the lot and stored in 

the TAPPI room. 

9.0 References 

9.1. CNF-QCC-01 (Cellulose Pulp Quality Control Checklist) 

9.2. ISO 287 (Paper and board – Determination of moisture content of a lot – Oven-drying 

method) 

9.3. CNF-SOP-09 (General Maintenance and Cleaning Protocol) 

9.4. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 
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10.0 Procedures 

10.1. Preparation of the Cellulose Pulp Mixture 

10.1.1. Visually inspect all containers prior to use: If an individual container does not pass 

visual inspection, clean according to CNF-SOP-09, General Maintenance and Cleaning 

Protocol.  

10.1.2. Add 13.720 kg of DIW to the 5-gallon pail 

10.1.3. Obtain 280 g pulp on a dry basis (or humid equivalent after obtaining moisture 

content of the sample) to create a suspension of 2% solids by weight 

10.1.4. Submerge the sample of cellulose pulp in the pail  

10.1.5. Cover the mixture and allow the pulp to saturate for a minimum of 12 hours 

10.2. Dispersing pulp in suspension 

10.2.1. Agitate the saturated pulp  

10.2.2. Repeat stirring/shearing until the suspension is a continuous dispersion  

10.2.3. Break down any large particulates into particles smaller than 1” diameter to prevent 

plugging lines in the SMC 

10.3. Cleaning and Maintenance 

10.3.1. Clean the station as outlined in CNF-SOP-09. Record all maintenance and cleaning 

performed in the maintenance and cleaning logs at the station.  
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1.0 Purpose 

1.1. To operate a super mass colloider (SMC) to refine a cellulose pulp suspension into a 

cellulose nanofibril (CNF) slurry 

2.0 Definitions 

2.1. CNF: Cellulose nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. SMC: Super mass colloider 

3.0 Health and Safety Warnings 

3.1. Do not put fingers or any other part of the body below the overflow inside the hopper, 

inside of the discharge, or near the grinding stones of the SMC when in operation. Doing so 

could cause personal injury.   

3.2. Take care when lifting or carrying either large or heavy loads: Improper form or the inability 

to lift heavy loads can cause strains and sprains. 

3.3. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.4. Work in a well-ventilated laboratory area.   

3.5. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.6. Hazardous waste must be disposed in designated waste container. 

3.7. Be familiar with the MSDS/SDS for all chemicals employed in the procedure. 

3.8. Must be able to lift up to 50 pounds overhead.  

4.0 Cautions 

4.1. The Moyno pump used during this operation must not be turned on when there is no fluid 

in the holding tank.  Operating the pump dry will cause damage to its internal components. 

4.2. Do not operate the system with both the recirculation and sample port valves closed.  

4.3. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials, and make note of any damaged or lost material in the corresponding 

QC checklist as well as report the loss to Dr. Neivandt.   

4.4. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.5. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences  
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5.1. If the pulp solution does not recirculate properly through the system, the refinement and 

production of CNF will not be uniform.  

6.0 Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

6.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

● Must be able to lift up to 50 pounds overhead. 

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. Super mass colloider (Masuko, MKCA6-2) 

7.1.2. Energy Measuring Universal Power Cell (Load Controls, UPC-KWH)  

7.1.3. Digital Energy Meter (Load Controls, KWH-3) 

7.1.4. Digital Load Meter (Load Controls, DM-100) 

7.1.5. Stainless steel piping system, various fittings (McMaster Carr. See Appendix 8.1) 

7.1.6. Moyno sanitary positive displacement pump (Atlantic Pump and Engineering, 

MOFB1D-SSQ-SAA)   

7.1.7. 4 oz. plastic portion cups with covers, (Uline, S-21201 and S21202) 

7.1.8. 5-gallon pail (ULINE, S-7914W) 

7.2. Materials (as listed or equivalent) 

7.2.1. Cellulose pulp suspension (CNF-SOP-03, Creation of Cellulose Pulp Suspension) 

8.0 Quality Control and Quality Assurance  

8.1. Create a calibration curve of cumulative energy and total fines produced prior to running 

the SMC for a product of end use. To create the calibration curve, follow the procedure 

outlined in this SOP, collecting 50 mL samples of refined suspension from the SMC hopper 

with a 100-mL container-with-cover for analysis of fines and fibers (CNF-SOP-06, Analysis of 
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Fines and Fibers in CNF Slurry) every 15 minutes, noting the cumulative energy at each time 

of sampling.  

8.2. After a calibration curve has been created, the SMC can be run to produce CNF. Samples 

should be collected every 15 minutes and analyzed for fines and fibers to validate the 

calibration curve and identify possible interferences in the process. If parts are replaced in 

the SMC, new materials are used, or other environmental changes occur, the calibration 

curve should be reproduced. 

8.3. Record the following data in the accompanying quality control checklist, CNF-QCC-06, 

Processed Fiber:  

8.3.1. Pulp sample used 

8.3.2. Date produced 

8.3.3. Cumulative Energy 

8.3.4. Time elapsed during refinement 

8.3.5. Final fines % 

8.3.6. Weight percent of solids  

8.3.7. Volume of slurry collected 

8.3.8. Additional notes 

8.3.9. Initial and Date  

9.0 References 

9.1. CNF-QCC-01 (Cellulose Pulp Quality Control Checklist) 

9.2. CNF-SOP-03 (Creation of Cellulose Pulp Suspension) 

9.3. CNF-SOP-05 (Protocol for Cleaning of the Colloider and Piping System) 

9.4. CNF-QCC-06 (Processed Fiber Quality Control Checklist) 

9.5. CNF-SOP-09 (General Maintenance and Cleaning Protocol) 

9.6. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 

10.0 Procedures 

10.1. Calibration of the SMC grinding stones 

10.1.1. Prior to operation of the SMC, the gap between the grinding stones needs to be 

calibrated and the SMC must be visually inspected for cleanliness. If equipment is not 

clean, follow the procedure outlined in CNF-SOP-05, Colloider Cleaning Procedure, 

and CNF-SOP-09, General Cleaning Procedure 
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10.1.2. Turn the stone-gap micrometer (see Appendix 11.2) counterclockwise a minimum of 

5 full turns to open the gap, ensuring no contact between the stones occurs during 

start up 

10.1.3. Turn on the SMC and set stone rotation to 2,000 RPM 

10.1.4. Carefully turn the stone-gap micrometer clockwise until the stones just slightly touch 

while spinning.  Contact is achieved when a slight clicking of the stones is heard 

10.1.5. Mark position as the calibrated zero-point: Unlock the stone-gap micrometer handle 

when the stones make contact and adjust such that the micrometer shows zero 

when re-locked 

10.2.  Filling the SMC 

10.2.1. Open the stone-gap to positive 5, relative to the zero point, while the SMC is running 

at 2000 RPM  

10.2.2. Slowly pour the 14 L of pulp solution into the SMC such that the hopper is not 

overfilled into the overflow tube, ensuring all pulp uniformly passes through the 

stones prior to circulation through the system 

10.2.3. The Moyno pump used during this operation must not be turned on when there is 

no fluid in the pump reservoir.  Operating the pump dry will cause damage to its 

internal components: When the pump reservoir is full, turn on the pump. Once 

recirculation of the slurry is observed (i.e. slurry is pumping through all lines without 

becoming plugged), adjust the stone-gap to negative 10 for continued refining 

10.2.4. Begin a timer to record the elapsed time of refinement 

10.3. Sampling from the SMC 

10.3.1. Every 15 minutes a sample of slurry will be removed to measure fines for quality 

control. Before removing the sample, open the stone-gap to plus 15 while the SMC is 

still running to completely drain the hopper into the pump reservoir, mixing the 

slurry contained in the SMC 

10.3.2. Return the stone-gap to the zero point, refilling the hopper. Visually inspect to 

ensure a clean sampling container to remove a 50-mL sample from the hopper and 

record the cumulative energy at each time of sampling. Return the stone-gap to 

negative 10. Do not put fingers or any other part of the body near the grinding stones 

when the SMC is operating. Doing so could cause personal injury 

10.3.3. Seal the sample for later measurement of fines content using a Techpap MorFi Fiber 

Analyzer, located in the Process Development Center (CNF-SOP-06) 

10.4. Collection of Slurry 

10.4.1. Run the SMC until the energy reading corresponds to a fines percentage of 90%, as 

determined by the calibration curve produced in Section 8.1 
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10.4.2. Place a clean (visually inspected) 5-gallon bucket underneath the sample port. Open 

the sample port valve and then close the recirculation line valve to begin pumping 

slurry into the bucket 

10.4.3. The Moyno pump used during this operation must not be turned on when there is 

no fluid in the holding tank.  Operating the pump dry will cause damage to its 

internal components: Take caution to turn off the pump before the reservoir 

empties and/or before the collection container becomes too full  

10.4.4. Stop the timer and record the elapsed time of refinement and the cumulative energy 

10.5. Determination of Weight Percent of Solids in CNF Slurry 

10.5.1. Weigh the mass of a new, empty, 100 mL container 

10.5.2. Fill the container with 100mL of newly refined slurry 

10.5.3. Weigh the mass of the full container (full container mass minus the mass of the 

empty container is equivalent to mass of CNF collected) 

10.5.4. Place the container in the oven just as in the evaluation of moisture content (CNF-

SOP-01) 

10.5.5. As the mass of the container of dry CNF plateaus, calculate the weight percent of 

solids as seen below (subtracting container mass renders the mass of dried CNF): 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐷𝑟𝑦  𝐶𝑁𝐹 

𝑀𝑎𝑠𝑠 𝑜𝑓 𝐶𝑁𝐹 𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑
× 100 ~ 2% (𝐷𝑒𝑠𝑖𝑟𝑒𝑑 𝑊𝑡 % 𝑜𝑓 𝑆𝑜𝑙𝑖𝑑𝑠) 

10.6. Cleaning and Maintenance 

10.6.1. Clean the station as outlined in CNF-SOP-09 and CNF-SOP-05. Record all maintenance 

and cleaning performed in the maintenance and cleaning logs at the station 

10.7. Assembly/disassembly of the SMC (if necessary) 

10.7.1. To disassemble the system, remove the sections, starting at the highest points in 

manageable portions: Start with the recirculation section, then the overflow section, 

and finally the pump reservoir section 

10.7.2. Break down each section into the individual fittings by removal of all quick clamps 

and gaskets 

10.7.3. Assemble the system in reversed order of disassembly 
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11.0 Appendices 

11.1. McMaster Carr Fittings 

Quantity Description Item Code 

4 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 1" Tube OD, 4" Long 
50485K73 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 1" Tube OD, 6" Long 
50485K73 

4 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 1" Tube OD, 12" Long 
50485K73 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 1" Tube OD, 18" Long 
50485K73 

7 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel 90 

Degree Elbow Connector for 1" Tube OD 
50485K111 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Inline 

Tee Connector for 1" Tube OD 
50485K141 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Adapter 

for 1" Tube OD x 1" Barbed Hose ID 
50485K773 

3 On/Off Valve for Food and Beverage Sanitary Quick-Clamp for 1" Tube OD 44755K113 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Adapter 

for 3" Tube x Butt-Weld, 1-13/16" Long 
50485K185 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 3" Tube OD, 4" Long 
50485K39 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 3" Tube OD, 12" Long 
50485K39 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel 90 

Degree Elbow Connector for 3" Tube OD 
50485K115 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Connector for 4" Tube OD, 12" Long 
50485K41 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting, 316L Stainless Steel 90 

Degree Elbow Connector for 4" Tube OD 
50485K116 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting, 316L Stainless Steel Inline 

Tee Connector for 4" Tube OD 
50485K146 
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1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Reducer for 2" x 1" Tube OD 
50485K232 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Reducer for 3" x 2" Tube OD 
50485K237 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Reducer for 4" x 3" Tube OD 
50485K239 

1 
High-Polish Quick-Clamp Sanitary Tube Fitting 316L Stainless Steel Straight 

Reducer for 6" x 4" Tube OD 
50485K242 

25 
High-Polish Quick-Clamp Sanitary Tube Fitting 304 Stainless Steel Clamp 

with Wing Nut for 1" and 1-1/2" Tube OD 
4322K152 

2 
High-Polish Quick-Clamp Sanitary Tube Fitting 304 Stainless Steel Clamp 

with Wing Nut for 2" Tube OD 
4322K153 

5 
High-Polish Quick-Clamp Sanitary Tube Fitting 304 Stainless Steel Clamp 

with Wing Nut for 3" Tube OD 
4322K155 

6 
High-Polish Quick-Clamp Sanitary Tube Fitting 304 Stainless Steel Clamp 

with Wing Nut for 4" Tube OD 
4322K156 

25 High-Temperature Silicone Gasket for Quick-Clamp Fittings, for 1" Tube OD 4520K43 

2 High-Temperature Silicone Gasket for Quick-Clamp Fittings, for 2" Tube OD 4520K45 

5 High-Temperature Silicone Gasket for Quick-Clamp Fittings, for 3" Tube OD 4520K47 

6 High-Temperature Silicone Gasket for Quick-Clamp Fittings, for 4" Tube OD 4520K48 

3 
Washdown Threaded-Rod-Mount Clamping Hanger Vibration-Damping 

Silicone Rubber Cushion, 1" ID 
8831T35 

1 
Washdown Threaded-Rod-Mount Clamping Hanger Vibration-Damping 

Silicone Rubber Cushion, 3" ID 
8831T41 
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11.2. Colloider Diagram and Stone-Gap Micrometer Operation  

 

11.3. Colloider Piping System  
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1. Purpose 

1.1. To remove debris and sanitize the colloider system 

2. Definitions 

2.1. CNF: Cellulose nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose nanofibrils that are less than 200 μm in length 

2.4. SMC: Super mass colloider 

3. Health and Safety Warnings 

3.1. Acidic cleaning solution can cause irritation to eyes and skin: Wear gloves.  

3.2. Take care when lifting or carrying either large or heavy loads: Improper form or the inability 

to lift heavy loads can cause strains and sprains. 

3.3. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.4. Work in a well-ventilated laboratory area.   

3.5. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.6. Hazardous waste must be disposed in designated waste container. 

3.7. Be familiar with the MSDS/SDS for all chemicals being employed in the procedure. 

4. Cautions  

4.1. Follow instructions for dilution of alkaline and acidic cleaners: Failing to do so may corrode 

or damage to equipment. 

4.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5. Interferences 

5.1. Creating a cleaning solution that is too dilute may not clean and sanitize the equipment 

effectively. 

6. Personnel Responsibilities and Qualifications 
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6.1. The Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed  

6.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation.  

● Complete this procedure as instructed.  

● Report any deviations to this procedure to Dr. Neivandt.  

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the clean room.  

● Must be able to lift up to 50 pounds.  

7. Equipment and Materials 

7.1. Equipment 

7.1.1. 2 - 116 Qt. storage tote (Home Depot, SKU #1000030696) 

7.1.2. PBW-Alkali Cleaner (Northern Brewer Homebrew Supply, SKU#U005) 

7.1.3. Star San (Northern Brewer Homebrew Supply, SKU#U001) 

7.1.4. 1 - 32 oz. Spray Bottle (Home Depot, SKU#255852) 

7.2. Materials (as listed or equivalent) 

7.2.1. Deionized Water (17.45-17.46 Megaohms-cm) 

8. Quality Control and Quality Assurance 

8.1. Cleaning of the SMC should occur after every batch production of slurry. The system has 

been properly sanitized when it has demonstrated proper recirculation and there is no 

visible debris or particulates on the equipment.  

9. References  

9.1. CNF-SOP-04 (Production of CNF Using a Super Mass Colloider) 

10. Procedures 

10.1. Preparation of alkaline scrub solution – Tote mix 

10.1.1. Fill the tote marked “alkaline” with 10 gallons of water 

10.1.2. Weigh 10 ounces of PBW powder and mix into the water 

10.2. Preparation of acidic sanitary solution – Tote mix 

10.2.1. Fill the tote marked “acidic” with 10 gallons of water 
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10.2.2. Measure 2 ounces of Star San (Bettix bottle) and mix into the water 

10.3. Cleaning the colloider system in place 

10.3.1. Recirculate the PBW “alkaline” solution through the system in the same manner as 

refining a cellulose slurry, but with the stone gap opened by 3 turns 

10.3.2. After 30 minutes of PBW recirculation, drain the PBW solution and circulate DIW 

through the system to rinse remaining PBW 

10.3.3. Drain the DIW. Gently recirculate the Star San “acidic” solution (Turn off the 

colloider and ensure that the gap is open by 3 full turns 

10.3.4. Circulate the solution for 5 minutes, drain the Star San solution, and rinse a final 

time with DIW 

10.3.5. Allow the system to air dry for 12 hours 

10.3.6. Record cleaning in the cleaning log at the wet table station 

10.4. Cleaning stainless steel surfaces 

10.4.1. Use the PBW solution to clean debris from surfaces.  

10.4.2. Rinse surfaces with DIW and let dry 

10.4.3. Apply the Star San via the 32 oz spray bottle solution 

10.4.4. Let the Star San solution contact the surfaces for 2 minutes, then wipe dry 

10.4.5. Apply a DIW rinse 

10.4.6. Fill out the station’s cleaning log 
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1.0 Purpose 

1.1. To determine the level of refinement of cellulose nanofibrils (CNF) by analyzing the 

percentage of fines present in a sample of slurry 

2.0 Definitions 

2.1. CNF: Cellulose Nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose Nanofibrils that are less than 200 μm in length 

2.4. SMC: Super mass colloider 

3.0 Health and Safety Warnings 

3.1. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.2. Work in a well-ventilated laboratory area.   

3.3. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.4. Hazardous waste must be disposed of in the designated waste container. 

3.5. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4.0 Cautions 

4.1. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.2. Visually inspect all equipment prior to operation: If equipment does not pass visual 

inspection, clean using protocol outlined in CNF-SOP-09, General Maintenance and Cleaning 

Protocol. 

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences 

5.1. Ensure the DIW in the wash beaker is replaced after every run. The wash beaker has a 

designated position (position 6) on the MorFi Fiber Analyzer carousel and should not be 

moved. 

5.2. Improper calculations during the two dilutions of slurry will yield inaccurate concentrations 

and percent total fines.  
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6.0 Personnel Responsibilities and Qualifications  

6.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

6.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. 1 L Griffin Beakers, (Fisher Scientific, 14-379-019) 

7.1.2. 100 mL sample containers with covers, (Uline, S-9934) 

7.1.3. 1 L Graduated Cylinder, (Fisher Scientific, 14-379-140) 

7.1.4. 100 mL Graduated Cylinder, (Fisher Scientific, 14-379-142) 

7.1.5. Laboratory scale (Fisher Scientific, 01-920-120) 

7.1.6. Laboratory spatula (Fisher Scientific, 14-357Q) 

7.1.7. MorFi Fiber Analyzer (Techpap. MorFi Compact) 

7.2. Materials (as listed or equivalent) 

7.2.1. 100 mL samples of fully processed or partially processed CNF 

8.0 Quality Control and Quality Assurance 

8.1. Record the following data in the accompanying quality control checklist, Processed Fiber 

(CNF-QCC-06):  

8.1.1. Pulp sample used 

8.1.2. Date CNF was produced 

8.1.3. Cumulative Energy 

8.1.4. Time elapsed during refinement 

8.1.5. Final fines % 
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8.1.6. Weight percent of solids  

8.1.7. Volume of slurry collected 

8.1.8. Additional notes 

8.1.9. Initial and Date  

9.0 References  

9.1. CNF-SOP-04 (Production of CNF Using a Super Mass Colloider) 

9.2. CNF-QCC-06 (Processed Fiber) 

9.3. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 

10.0 Procedures 

10.1. Preparation of Sample 

10.1.1. Measurement of the length and fines of the fibers requires a 50 mg/L solids content 

of the slurry 

10.1.2. Calculate the mass of slurry necessary to generate the 50 mg/L solids content, from 

the 100 mL sample collected from SMC 

10.1.2.1. 50 mg/L is divided by sample concentration (% solids content, estimated from 

input of pulp mass/ water mass) 

10.1.2.2. This value is then multiplied by ten to account for a dilution step 

10.1.2.3. The final value, in grams, describes the mass of slurry from the sample that 

must be used in the first 1L dilution. 

50
𝑚𝑔

𝐿
×

1

% 𝑠𝑜𝑙𝑖𝑑𝑠
×

1 𝑔

1000 𝑚𝑔
×

1000 𝑚𝐿

100 𝑚𝐿
× 1𝐿

= 𝑀𝑎𝑠𝑠 (𝑔) 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑓𝑟𝑜𝑚 𝑠𝑙𝑢𝑟𝑟𝑦 𝑠𝑎𝑚𝑝𝑙𝑒 

10.1.3. Dilute Sample to 50 mg/L 

10.1.3.1. Measure out calculated mass of sample from 100 mL slurry sample container 

into a small beaker using a spatula 

10.1.3.2. Add sample to 1 L graduated cylinder, then fill to 1 L with DIW 

10.1.3.3. Mix solution thoroughly between two 1L beakers and measure out 100 mL 

into the 100 mL graduated cylinder; discard remaining material and rinse out 

the empty containers 

10.1.3.4. Add the 100 mL dilution to the 1 L graduated cylinder and fill to 1 L with DIW 

once more 

10.1.3.5. Mix thoroughly and pour contents into a 1 L beaker. The 1L dilution will be 

used for fiber analysis 
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10.1.3.6. Discard the remaining solutions by diluting with water: the slurry is safe to 

discard down the floor drain 

10.1.4. Loading samples on MorFi Fiber Analyzer carousel 

10.1.4.1. The carousel has 6 positions correlating to 5 samples and 1 wash of DIW 

10.1.4.2. The DIW in the wash beaker should be replaced each run 

10.1.4.3. Up to 5 samples can be run at a time, and as few as one 

10.1.4.4. The wash beaker has a designated position (position 6) and should not be 

moved 

10.1.4.5. The samples can be placed in any other carousel position 

10.2. Operation of the MorFi Fiber Analyzer 

10.2.1. Turn on the computer and open the “MorFi” software 

10.2.2. Click the “Carousel” button in the bottom bar of the screen to open sample menu 

10.2.3. In the sample menu the following information must be provided: 

10.2.3.1. Family: Select “HR - Fibers and Fines”, preset measuring protocol selection 

10.2.3.2. Consistency: Enter “50 mg/L”, the concentration of the sample 

10.2.3.3. ID: Enter “Operator’s Initials and day/month/year”, the filename for the saved 

file (i.e. NRC-8-14-17) 

10.2.3.4. Coarseness: Enter “Material-timepoint of sample refinement”, additional file 

differentiation (i.e. cotton-90mins) 

10.2.3.5. Number: Enter “#”, correlates to the position of sample on the carousel 

10.2.4. When all information is entered into the window, the measurement can be initiated 

in one of two ways: 

10.2.4.1. “Start with List Open”: Select this option if there are more samples to 

measure. It will start measuring the first in line and keep the menu open to 

add additional samples to the queue. 

10.2.4.2. “Start and Close List”: Select this option if the info just entered is the only 

sample or the last sample being analyzed. 

10.2.5. The device will measure each sample, with a rinse in between, and save the data 

according to the user provided ID and coarseness 

10.2.6. Reports can be printed at the end of the measurement during a time delay between 

samples or can be accessed from the saved files. All reports are to be printed and 

stored in the clean room 
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10.2.7. After all measurements are complete discard solutions and clean all containers for 

future samples 
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1.0 Purpose 

1.1. To spread CNF slurry to form a CNF sheet that is 50 µm thick 

2.0 Definitions 

2.1. CNF: Cellulose Nanofibrils  

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

3.0 Health and Safety Warnings 

3.1. Blades are sharp and can cause cuts: Use caution when using razor blades.  

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area.   

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed of in the designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4.0 Cautions  

4.1. Visually inspect all equipment prior to use: If equipment does not pass visual inspection, 

clean using protocol outlined in CNF-SOP-09, General Maintenance and Cleaning Protocol. 

4.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials, and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences  

5.1. Overloading the film applicator may create an uneven spread of slurry. 

6.0 Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

6.2. The Operator: 
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● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. Casting Knife Film Applicator, 8” wide, (Elcometer, K0003580M007) 

7.1.2. Stainless Steel Plate, 12” x 18” x ⅜” thick, (McMaster Carr, 8983K252) 

7.1.3. Single Edge Razor Blades, (Harbor Freight, 39748) 

7.1.4. Benchtop Digital Micrometer, (Testing Machines Inc., 49-85) 

7.1.5. 150 mL Griffin Beakers, (Fisher Scientific, 14-379-022) 

7.2. Materials (as listed or equivalent) 

7.2.1. CNF slurry (CNF-SOP-04, Production of CNF Using a Super Mass Colloider) 

8.0 Quality Control and Quality Assurance 

8.1. Record the following data in the accompanying quality control checklist, Processed Sheet 

(CNF-QCC-07):  

8.1.1. Slurry used 

8.1.2. Date/Time spread  

8.1.3. Date/Time lifted 

8.1.4. Volume of slurry used  

8.1.5. Casting thickness  

8.1.6. Dried thickness  

8.1.7. End use 

8.1.8. Additional notes 

8.1.9. Initial and Date  

8.2. The final sheet thickness must be within  5% of the accepted dried sheet thickness 

9.0 References  

9.1. CNF-SOP-04 (Production of CNF Using a Super Mass Colloider) 
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9.2. CNF-QCC-07 (Processed Sheet Quality Control Checklist) 

9.3. CNF-SOP-09 (General Maintenance and Cleaning Protocol) 

9.4. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 

10.0 Procedures 

10.1. Spreading the CNF slurry 

10.1.1. Measure 100 mL of the CNF slurry in a griffin beaker 

10.1.2. Pour the slurry onto a stainless steel plate in a line such that the length doesn’t 

exceed the width of the film applicator (8”) 

10.1.3. Set the height of the applicator blade to 0.075 inches (1.9 mm) 

10.1.4. Drag the applicator down the plate to start spreading the slurry into a sheet with a 

vertical chopping action 

10.1.5. Use a smooth second pass of the film applicator to even out the ridges left from 

chopping 

10.1.6. Trim and discard irregular edges of the sheet with a new single edged razor blade 

(razor blades are discarded daily in the sharps container) 

10.1.7. Move the stainless steel plate to a secluded area on the dry table and leave to dry 

for 24 hours (be sure it is away from items that may fall into the wet sheet) 

10.2. Measuring CNF sheet thickness 

10.2.1. Lift the dried sheet from the plate using a single edged razor blade: Slide the blade 

approximately ¼” under the sheet around the entire perimeter 

10.2.2. Remove the sheet from the plate and transfer it into a resealable bag for 

transportation. 

10.2.3. Transport the sheet to the TAPPI room, in the PDC, to adjust to the humidity for 24 

hours and measure the thickness using the benchtop digital micrometer 

10.2.4. Measure the sheet thickness at several points across the width of the sheet 

10.2.5. Repeat this process as you move perpendicular to the measurement direction, 

measuring 3 rows of 4 data points each (12 points total) 

10.2.6. Calculate the average thickness and standard deviation of the measurements 

10.2.7. Place the sheet in a labeled bag as described in CNF-SOP-10 (Labeling Procedure for 

Stocks, Samples, and Products) 

10.3. Cleaning and Maintenance 

10.3.1. Clean the station as outlined in CNF-SOP-09. Record all maintenance and cleaning 

performed in the maintenance and cleaning logs at the station.   
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1.0 Purpose 

1.1. To fabricate a neural conduit using a CNF sheet  

2.0 Definitions 

2.1. CNF: Cellulose Nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

3.0 Health and Safety Warnings 

3.1. Blades are sharp and can cause cuts: Use caution when using razor blades.  

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area.   

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed of in the designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4.0 Cautions  

4.1. Take care not to damage the CNF sheets employed for the fabrication of conduits. 

4.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials, and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences  

5.1. Visually inspect conduits after dipping in slurry: Ensure there is no buildup of slurry on the 

top and bottom ends of the cylinder. 

6.0 Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

● Ensure operators are trained on this procedure. 

● Ensure operators conduct procedures as instructed. 

6.2. The Operator: 
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● Must be trained on all equipment and procedures prior to operation. 

● Complete this procedure as instructed. 

● Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. 1 mL disposable syringe (Fisher Scientific, 14-823-30) 

7.1.2. 20-gauge blunt tip needle, 304SS, 2” length (Fisher Scientific, 14-815-608) 

7.1.3. Plastic mandrel, OD 1.6 mm (Vendor, Cat #XXXXX) 

7.1.4. Utility knife (Fisher Scientific, 18-999-28) 

7.1.5. Tubing Cutter (Fisher Scientific, 11-187-15) 

7.1.6. Microspatula (Fisher Scientific, 14-357Q) 

7.1.7. Acrylic Template (McMaster-Carr, 8589K41) 

7.1.8. Rotating drying rack (Fisher Scientific, 05-450-127) 

7.2. Materials (as listed or equivalent) 

7.2.1. CNF sheet (CNF-SOP-07) 

7.2.2. CNF slurry (CNF-SOP-04) 

8.0 Quality Control and Quality Assurance  

8.1. Visually inspect all equipment prior to use: If equipment does not pass visual inspection, 

clean using protocol outlined in CNF-SOP-09, General Maintenance and Cleaning Protocol. 

8.2. Visually inspect slurry prior to use: If slurry shows signs of mold or microbial contamination, 

DO NOT USE. Label with red tape and remove from operation area for proper disposal. 

Slurry may be used for up to 6 months after refinement. 

8.3. Record the following data in the accompanying quality control checklist CNF-QCC-08, 

Conduit Production: 

8.3.1. Sheet Used 

8.3.2. Slurry Used for Seal/Dip 

8.3.3. Date rolled  

8.3.4. Type of Seal 
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8.3.5. Inner diameter  

8.3.6. Number of layers  

8.3.7. Length of conduit  

8.3.8. End use  

8.3.9. Additional Notes 

8.3.10. Initials and Date 

9.0 References  

9.1. CNF-SOP-07 (CNF Sheet Fabrication) 

9.2. CNF-QCC-08 (Processed Roll Quality Control Checklist) 

9.3. CNF-SOP-09 (General Maintenance and Cleaning Protocol) 

9.4. CNF-SOP-10 (Labeling Procedure for Stocks, Samples, and Products) 

10.0 Procedures 

10.1. Creating an acrylic template 

10.1.1. Measure and draw out the desired conduit pattern on the acrylic platform 

10.1.2. Score the template over the lines drawn on the acrylic with a utility knife (as 

presented in Appendix 11.1) 

10.1.3. Repeat the above step until a continuous notch is made around the designated 

template 

10.1.4. The utility knife must be able to freely travel within the notches of the template for 

consistent cutting of the pattern from CNF sheets 

10.2. Cutting a CNF conduit pattern 

10.2.1. Place the sheet over an acrylic template of conduit size specifications (1.5 x 2.5 cm 

rectangular pattern) 

10.2.2. Position the sheet such that the direction of casting is in alignment with the longer 

edge of the pattern. 

10.2.3. Cut the CNF sheet using a utility knife and follow the notches in the acrylic template. 

Blades are sharp and have potential to injure the operator: Use caution when using 

razor blades 

10.2.4. If the template requires intricate geometrical entities to be removed from inside the 

rectangular outer shape, cut the interior geometry prior to the border 

10.3. Rolling a CNF conduit 
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10.3.1. Place the long edge of the conduit cutout over the plastic mandrel. This edge will be 

noted as the starting edge, and the opposite edge will be the finishing edge 

10.3.2. Roll the finishing edge overtop the start edge  

10.3.3. Keep the successive wraps tight to the mandrel 

10.3.4. Prior to completion of the final wrap, a seal of slurry is applied, via blunt tip needle, 

to the last half of the wrap to prevent unraveling. Visually inspect slurry prior to use: 

If slurry shows signs of mold or microbials, DO NOT USE. Label with red tape and 

remove from operation area 

10.4. Sealing a CNF conduit 

10.4.1. Fill a 1 mL syringe connected to a 20 gauge blunt tip needle with CNF slurry  

10.4.2. Apply the slurry to the interior facing side of the finishing edge in a zig zag pattern 

10.4.3. Fold the flap over and onto the conduit and gently press to seal the conduit 

10.4.4. Gently wipe off excess slurry from the seal with a microspatula 

10.4.5. Leave conduit on the mandrel and let dry for 24 hours in a secluded area. Record 

the batch of slurry used on the respective QCC 

10.5. Coating a CNF conduit 

10.5.1. Allocate the respective slurry into a separate container (100 mL beaker) such that 

the depth of the slurry in the container exceeds the length of the conduit. Designate 

this container as CNF slurry for conduit coating 

10.5.2. Submerge the dried and sealed conduit in the designated container of CNF slurry 

10.5.3. Remove conduit from the slurry, removing excess coating with a microspatula if 

uneven 

10.5.4. Repeat dipping thrice until a consistent coating can be attained 

10.5.5. Leave the coated conduit on the mandrel and relocate to a secluded area. Rotate 

the conduit during the drying process by fixing mandrel to the rotating drying rack. 

10.6. Removing the CNF conduit 

10.6.1. Cut the conduits to length, still on the mandrel, using tubing cutters 

10.6.2. Inspect each conduit for a clean-edge cut and ensure there is no delamination of the 

outer layer 

10.6.3. Package in a sealable bag and label, as per CNF-SOP-10 

10.7. Cleaning and Maintenance 

10.7.1. Clean the station as outlined in CNF-SOP-09. Record all maintenance and cleaning 

performed in the maintenance and cleaning logs at the station.  
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11.0 Example of Notched Template on Acrylic platform 
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1. Purpose 

1.1. To outline routine cleaning and maintenance procedures and schedule 

2. Definitions 

2.1. CNF: Cellulose nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose nanofibrils that are less than 200 μm in length 

2.4. SMC: Super mass colloider 

3. Health and Safety Warnings 

3.1. Acidic cleaning solution can cause irritation to eyes and skin. 

3.2. Take care when lifting or carrying either large or heavy loads: Improper form or the 

inability to lift heavy loads can cause strains and sprains. 

3.3. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety 

glasses when applicable) while working in the laboratory. 

3.4. Work in a well-ventilated laboratory area.   

3.5. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.6. Hazardous waste must be disposed of in the designated waste container. 

3.7. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4. Cautions  

4.1. Follow instructions for dilution of alkaline and acidic cleaners: Failing to do so may cause 

corrosion or damage to equipment. 

4.2. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before 

entry to prevent contamination due to airborne particles. 

4.3. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5. Interferences 

5.1. Producing a cleaning solution that is too dilute may not clean and sanitize the equipment 

properly. 

6. Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

• Ensure operators are trained on this procedure. 
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• Ensure operators conduct procedures as instructed. 

6.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

• Complete this procedure as instructed. 

• Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

• Must be able to lift up to 50 pounds.  

7. Equipment and Materials 

7.1. Equipment 

7.1.1.  2 - 116 Qt. storage totes (Home Depot, SKU #1000030696) 

7.1.2. PBW-Alkali Cleaner (Northern Brewer Homebrew Supply, SKU#U005) 

7.1.3. Star San (Northern Brewer Homebrew Supply, SKU#U001) 

7.1.4. 1 - 32 oz. Spray Bottle (Home Depot, SKU#255852) 

7.1.5. Cleanroom Wipe – part of a cleaning kit, (NCI, WW-MAINTK-1) 

7.2. Materials (as listed or equivalent) 

7.2.1. Deionized Water (17.45-17.46 Megaohms-cm) 

8. Quality Control and Quality Assurance 

8.1. This procedure is to be used for all dirty surfaces and stainless steel equipment. It should 

be repeated after every station use.  

9. References  

9.1. All QC checklists and SOPs in the master binder 

10. Procedures 

10.1. Preparation of alkaline scrub solution - Tote mix 

10.1.1. Fill the tote marked “alkaline” with 10 gallons of water 

10.1.2. Weigh 10 ounces of PBW powder and mix into the water 

10.2. Preparation of acidic sanitary solution - Tote mix 

10.2.1. Fill the tote marked “acidic” with 10 gallons of water 

10.2.2. Measure 2 ounces of Star San (Bettix bottle) and mix into the water 
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10.3. Preparation of acidic sanitary solution - Spray bottle mix 

10.3.1. Fill spray bottle with mix from tote if available 

10.3.2. Fill the 32 oz spray bottle with water (0.25 gallons) 

10.3.3. Mix 0.05 oz of Star San with the water 

10.4. Cleaning stainless steel surfaces 

10.4.1. Use the PBW solution to clean debris from surfaces.  

10.4.2. Rinse surfaces with DIW and let dry 

10.4.3. Apply the Star San via the 32 oz spray bottle solution 

10.4.4. Let the Star San solution sit for 1-2 minutes, then wipe dry 

10.4.5. Apply a DIW rinse 

10.4.6. Fill out the station’s cleaning log 

10.5. Cleaning Walls of the Cleanroom 

10.5.1. It is recommended that the walls of the cleanroom are cleaned weekly 

10.5.2. Use a cleanroom wipe and DI water to wipe down the acrylic panels. 
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1.0 Purpose 

1.1. To thoroughly label all materials, samples, and products to create a traceable account of all 

materials through a comprehensive log 

2.0 Definitions 

2.1. CNF: Cellulose Nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose Nanofibrils that are less than 200 μm in length 

3.0 Health and Safety Warnings  

3.1. Take care when lifting or carrying either large or heavy loads: Improper form or the inability 

to lift heavy loads can cause strains and sprains. 

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area. 

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed of in the designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4.0 Cautions 

4.1. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.2. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Personnel Responsibilities and Qualifications 

5.1. Supervisor: 

• Ensure operators are trained on this procedure. 

• Ensure operators conduct procedures as instructed. 

5.2. The Operator: 

● Must be trained on all equipment and procedures prior to operation. 

• Complete this procedure as instructed. 

• Report any deviations to this procedure to Dr. Neivandt. 
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● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

• Must be able to lift up to 50 pounds.  

6.0 Equipment and Materials 

6.1. Equipment 

6.1.1. Brady BBP33 Label Printer (Brady, BBP33-C) 

6.1.2. Brady Workstation Labeling Software (Brady, Free Online) 

6.2. Materials (as listed or equivalent) 

6.2.1. Adhesive Paper Label Roll, 2in x 1in (Brady, B33-17-424) 

6.2.2. Black Thermal Transfer Print Ribbon (Brady, B30-R4300) 

7.0 References  

7.1. All QC checklists and SOPs contained in master binder. Labeling procedure applies to all 

stations of operation.  

8.0 Procedures (Refer to respective quality control checklists) 

8.1. Labeling raw material – in bags 

8.1.1. Label the raw material as presented in Appendix 9.2.1 

8.1.2. In respective log entry: source, lot#, quantity/mass, visual inspection results, etc. as 

presented in Appendix 9.3.1 

8.2. Labeling cellulose pulp solutions - in buckets 

8.2.1. Label solution as “unrefined,” as presented in Appendix 9.2.2 

8.2.2. In respective log entry: pulp type, amount of pulp/water, etc. 

8.3. Labeling cellulose slurries - in buckets 

8.3.1. Label slurry as “refined,” as presented in Appendix 9.2.3 

8.3.2. In respective log entry: % fines, cumulative energy, etc. as presented in Appendix 

9.3.2 

8.4. Labeling cellulose sheets - in bags 

8.4.1. Label sheets as presented in Appendix 9.2.4 

8.4.2. In respective log entry: % fines, thickness, material composition, etc. 

8.4.3. as presented in Appendix 9.3.3 

8.5. Labeling cellulose conduits - in bags/vials 
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8.5.1. Label conduits as presented in Appendix 9.2.5 

8.5.2. In respective log entry: inner diameter, number of layers, length, etc. as presented in 

Appendix 9.3.4 

8.6. Labeling various other products 

8.6.1. Material dependent, follow the examples seen in Appendix 9.2 

8.7. Packaging cellulosic materials 

8.7.1. Dry materials are stored individually in plastic bags that are sealable 

8.7.2. Wet materials are stored in appropriate containers with sealable covers 

8.8. Labeling Compromised Materials  

8.8.1. Label any materials that do not pass visual inspection or materials that are past their 

expiry date (6 months post-inception) with red tape; record the reason for product 

removal and the date applied. Report to Dr. Neivandt.  

8.9. Creating Labels 

8.9.1. Turn on the printer and the connected laptop 

8.9.2. Data from the QCC’s are entered into the Labeling Excel file, in the respective 

sections. 

8.9.3. Open the respective labeling file from the Brady Workstation profile. 

8.9.4. Ensure that the Excel Import tool is refreshed by reopening the Excel file and 

importing the data from the Labeling file. 

8.9.5. Select the labels needed to print through the print menu, and select print 

9.0 Labeling Examples 

9.1. Sample Labeling Method 

9.2. Examples of Sample Labeling for Tracking 
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9.2.1. Labeling Pulp Samples 

Sample: Pulp - Eucalyptus 5/1/17

NRCCode: P01

Bleached Eucalyptus Pulp 200 g

 

9.2.2. Labeling Solution Samples 

Sample: Pulp/Water - Eucalyptus 5/1/17

NRCCode: P01 – Unrefined

Eucalyptus Suspension, 200g in 14 L

 

9.2.3. Labeling Slurry Samples 

Sample: 89% fines and 2%wt 5/1/17

NRCCode: P01 – R01

Eucalyptus CNF Slurry (E-89)

 

9.2.4. Labeling Sheet Samples 

Sample: 52 micron 5/2/17

NRCCode: P01 – R01 – S01

E-89 CNF Sheet – No visible defects
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9.2.5. Labeling Conduit Samples 

Sample: 2WD Conduit 5/2/17

NRCCode: P01 – R01 – S01 – C01

Two Layered Conduit – Slurry Sealed/
Dipped

 

9.3. Examples of Sample Logs for Tracking  

9.3.1. Log for Raw Pulp  

9.3.2. Log for CNF Slurry 

 

9.3.3. Log for CNF Sheet 

 

Sample from 

lot 

“P” 

Storage 

Conditions in 

TAPPI room 

Mass of 

Sample 

Moisture 

Content (%) 

Of Aliquot 

Visual 

Inspection 
Notes 

Employee 

Initials and 

Date 

P01 

25 ºC 

 

50% 

Humidity 

200 grams 10% 

No 

discoloration 

of any sort 
Eucalyptus 

NRC 
 

5-1-17 

 

 
Sample # 

 

“R” 

Pulp 

Sample 

Used 
(QCC-01) 

Date CNF 

was 

Produced 

Cumulative 

Energy 

Time 

Spent 

Refining 

Final % 

Fines 

Weight 

% of 

Solids 
(SOP-04) 

Volume of 

Slurry 

Collected 
(Estimation) 

Notes 
Employee 

Initials 

and Date 

R01 P01 5-1-17 
4300 

kW-hr 
1.5 hrs 89% 2.01% 15 Liters  

NRC 
 

5-1-17 

 

Sample # 

 

“S” 

Slurry 

Used 
(QCC-06) 

Date/Time 

Spread 

Date/Time 

Lifted 

Volume 

of Slurry 

Spread 

Casting 

Thickness 

Dried 

Thickness 
(Avg.  St. Dev. 

Of 15pts) 

End Use 

(Destination) 
Notes 

Employee 

Initials 

and Date 

S01 R01 
9 am 

5-1-17 

10 am 

5-2-17 
120 mL 1.9 mm 

52 µm 

 1.7 µm 

Shipped to 

Harvard 

Mouse Trial 

 
NRC 

5-2-17 
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9.3.4. Log for CNF Conduit 

 

 

  

Sample 

# 

“C” 

Sheet 

Used 
(QCC-07) 

Slurry 

Used for 

Seal/Dip 
(QCC-06) 

Date 

Rolled 

Type of 

Seal 

Inner 

Diameter 

Number 

of Layers 

Length 

of 

Conduit 

End Use 

(Destination) 
Notes 

Employee 

Initials 

and Date 

C 01 S01 R01 5-2-17 
CNF 
seal 

and dip 
0.65mm 2 layers 2.5 cm 

Shipped to 

Harvard 

Mouse Trial 

 
NRC 

5-2-17 
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CNF-SOP-11 STABILITY STUDIES 
 

 

Nanocellulose Conduit Production 

Standard Operating Procedure #11 

Material Stability Studies 

 

 

 

Rev Date Description 

1 6/30/2017 Draft Development Document-Nicklaus Carter 

2 7/28/2017 Revision-Mary Bourque 

3 8/14/17 Revision – Nicklaus Carter 

 

 

 

 

Approved by: Signature Date 

Originator Nicklaus Carter  

Manager David Neivandt  

Quality Assurance David Neivandt and Caitlin Howell  
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1. Purpose 

1.1. To test the material stability of all materials, samples, and products 

2. Definitions 

2.1. CNF: Cellulose Nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose Nanofibrils that are less than 200 μm in length 

3. Health and Safety Warnings 

3.1. Take care when lifting or carrying either large or heavy loads: Improper form or the inability 

to lift heavy loads can cause strains and sprains. 

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area. 

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed of in the designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4. Cautions 

4.1. Ensure stable conditions when storing each material for a predetermined amount of time. 

Changing conditions may invalidate results.  

4.2. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.3. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5. Interferences 

5.1. All conditions must be carefully monitored and recorded.  

6. Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

• Ensure operators are trained on this procedure. 

• Ensure operators conduct procedures as instructed. 

6.2. The Operator: 

• Must be trained on all equipment and procedures prior to operation. 
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• Complete this procedure as instructed. 

• Report any deviations to this procedure to Dr. Neivandt. 

• Must be able to lift up to 50 pounds.  

7. Equipment and Materials 

7.1. Equipment 

7.1.1. Shaker Table (Fisher Scientific, 11-676-339) 

7.2. Materials (as listed or equivalent) 

7.2.1. 50 ml centrifuge tubes (Fisher Scientific, 22170265) 

8. Quality Control and Quality Assurance 

8.1. Repeat tests to ensure no outliers in conditions. The stability studies in this SOP are meant 

to ensure high quality products that can withstand different environments.  

9. References  

9.1. All SOPs and QC checklists in the master binder  

10. Procedures 

10.1. Slurry Stability 

10.1.1. Dispense the desired amount of CNF slurry into a new sealed container and label 

accordingly 

10.1.2. Leave the slurry undisturbed for a predetermined amount of time in a 

predetermined environment 

10.1.3. Visually inspect the slurry for contaminants/growth 

10.2. Sheet Stability - Dry Stability 

10.2.1. Leave sheets of CNF in a predetermined environment for a designated amount of 

time and label accordingly 

10.2.2. Analyze sheets visually and record observations  

10.2.3. Measure sheet thickness at each temporal observation 

10.3. Sheet Stability - In Liquid 

10.3.1. Submerge CNF sheets in desired solution and label accordingly 

10.3.2. Visually inspect the sheets for degradation 

10.3.3. Visually inspect the solution for increase in particulate concentration 

10.4. Conduit Stability - Dry Test 
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10.4.1. Leave CNF conduits in a predetermined environment for a designated amount of 

time and label accordingly 

10.4.2. Analyze conduits visually and record observations 

10.4.3. Measure conduit diameter at each temporal observation  

10.5. Conduit Stability - In Liquid 

10.5.1. Fill centrifuge tubes with at least 3 inches of the predetermined solution to ensure 

coverage of the conduit and label accordingly 

10.5.2. Visually inspect conduits for degradation 

10.5.3. Observe the solution for increase in particulate concentration 

10.5.4. Leave tubes stationary or place on shaker table 

10.6. Conduit Stability - Bending Test 

10.6.1. Leave conduits in predetermined solution for a predetermined amount of time and 

label accordingly 

10.6.2. Remove conduit and fix at both ends using a mandrel: The mandrel is placed within 

the conduit ends ¼” in 

10.6.3. Place the conduit with mandrels assembly on a smooth platform where the conduit 

can be bent by moving the mandrel ends 

10.6.4. Bend the conduit and record the angle at the point of outer layer tearing or collapse 

of the middle region 
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CNF-SOP-12 PRODUCT PACKAGING 
 

 

Nanocellulose Conduit Production 

Standard Operating Procedure #12 

Packaging Products Prior to Distribution 

 

 

 

Rev Date Description 

1 4/25/2017 Draft Development Document-Nicklaus Carter 

2 7/28/2017 Revision-Mary Bourque 

3 8/14/17 Revision – Nicklaus Carter 

 

 

 

  

Approved by: Signature Date 

Originator Nicklaus Carter  

Manager David Neivandt  

Quality Assurance David Neivandt and Caitlin Howell  
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1.0 Purpose 

1.1. To ensure all products are properly packaged and the log reflects complete characterization 

prior to distribution 

2.0 Definitions 

2.1. CNF: Cellulose nanofibrils 

2.2. DIW: Deionized distilled water (17.45-17.46 Megaohms-cm) 

2.3. Fines: Cellulose nanofibrils that are less than 200 μm in length 

3.0 Health and Safety Warnings  

3.1. Take care when lifting or carrying either large or heavy loads: Improper form or the inability 

to lift heavy loads can cause strains and sprains. 

3.2. Use appropriate personal protective equipment PPE (laboratory coats, gloves, safety glasses 

when applicable) while working in the laboratory. 

3.3. Work in a well-ventilated laboratory area. 

3.4. PPE is worn only in laboratory areas and removed before entering non-laboratory areas. 

3.5. Hazardous waste must be disposed of in the designated waste container. 

3.6. Be familiar with the MSDS/SDS for all chemicals being used in this procedure. 

4.0 Cautions  

4.1. Improper storage of materials could result in damage or degradation of samples. 

4.2. Do not process recovered, re-conciliated, or damaged materials or equipment. Visually 

inspect all materials and make note of any damaged or lost material in the corresponding 

QC checklist as well as reporting the loss to Dr. Neivandt.   

4.3. Ensure filters have been on and running for at least 24 hours. If the filters have not been on 

for at least 24 hours, turn the filters on and wait until a full 24 hours has passed before entry 

to prevent contamination due to airborne particles. 

4.4. If the clean room pressure is not twice that of the gowning room, do not enter the clean 

room, for this may indicate end of the filter life. 

5.0 Interferences  

5.1. Be sure all materials are packaged properly with the correct labels and log sheets included.  

6.0 Personnel Responsibilities and Qualifications 

6.1. Supervisor: 

• Ensure operators are trained on this procedure. 

• Ensure operators conduct procedures as instructed. 
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6.2. The Operator: 

• Must be trained on all equipment and procedures prior to operation. 

• Complete this procedure as instructed. 

• Report any deviations to this procedure to Dr. Neivandt. 

● Follow Safety and Environmental Management (SEM) lock-out tag-out procedure for 

equipment that needs repair. Remove broken equipment from the room. 

• Must be able to lift up to 50 pounds.  

7.0 Equipment and Materials 

7.1. Equipment 

7.1.1. Tabletop impulse sealer with cutter (ULINE, H-161) 

7.2. Materials (as listed or equivalent) 

7.2.1. Pre-designed labels (CNF-SOP-10) 

7.2.2. Flat sealable polypropylene bags, 4mil 4x6” (ULINE, S-11585) 

7.2.3. Resealable plastic bags, 2mil 10x13” (ULINE, S-596) 

7.2.4. Glass jar with metal lids, 16 oz. or ~500mL (ULINE, S-17984M) 

7.2.5. Glass jar with metal lids, 32 oz. or ~1L (ULINE, S-19316M) 

8.0 Quality Control and Quality Assurance  

8.1. Quality Assurance Supervisor MUST approve all QC checklists prior to distribution. 

8.2. Visually inspect all packaging and storage materials prior to use: If packaging materials are 

dirty or damaged, discard immediately and report to Dr. Neivandt.  

9.0 References  

9.1. All QC checklists and SOPs contained in master binder.  

10.0 Procedures (Refer to respective quality control checklists) 

10.1. Packaging cellulose pulp slurries 

10.1.1. Fill screw top glass containers with slurry (500mL or 1L container depending on the 

amount of slurry being packaged) 

10.1.2. Cover and label containers accordingly 

10.1.3. If the log corresponding to the slurry is complete, notate in the log the amount 

removed and the receiving organization in the “end use” column  

10.2. Packaging cellulose sheets 
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10.2.1. Label bag accordingly 

10.2.2. Package cellulose sheets in resealable plastic bag 

10.2.3. If the log corresponding to the sheet is complete, notate the receiving organization 

in the end use column 

10.3. Packaging cellulose conduits 

10.3.1. Label bag accordingly 

10.3.2. Place one conduit in the unsealed bag 

10.3.3. Seal the bag using the impulse heat sealer, making sure to not crimp the conduit 

10.3.4. If the log corresponding to the conduit is complete, notate the receiving 

organization in the end use column  

10.4. Distribution of Products 

10.4.1. When an order is received, the products are procured in the order in which they 

were made (line clearance methodology). 

10.4.2. All log sheets must be collected for the procured products 

10.4.3. Ensure that the log sheets are filled out thoroughly 

10.4.4. Ensure that all products of acceptable quality (yields, visually inspect, etc.) 

10.4.5. Final approval of shipment must be given by Dr. Neivandt. 

10.5. Recalled/Defective Products 

10.5.1. Recalls will be dealt with on a case-to-case basis with Dr. Neivandt to establish an 

acceptable procedure for future occurrences. 
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A4: GLUCOSE DIFFUSION COEFFICIENT 
The glucose concentration in the receiver chamber of the bi-chambered tanks was measured as a 

function of time until either failure of the CNF sheet was observed, or the concentration approached 

that of the donor chamber. Aliquots of receiver chamber solution (50 μL) were taken at a given time and 

the absorbance of the samples measured employing a UV-Visible spectrometer (Thermo Scientific, 

GENESYS 10S) at a wavelength of 340 nm. The glucose concentration of each sample was obtained 

employing the calibration curve of Section 3.11, see below. 

 

Tank Time Absorbance Concentration (mmol/L) 

#1 3hrs 0.033 0.107 

    

#2 3hrs 0.023 0.073 

 6hrs 0.216 0.729 

 9hrs 0.145 0.488 

 3days 0.870 2.955 

 4days 0.953 3.237 

    

#3 3hrs 0.131 0.440 

 6hrs 0.194 0.655 

 9hrs 0.404 1.369 

 27hrs 0.714 2.424 

 33 hrs 0.754 2.560 

    

#4 3hrs 0.114 0.382 
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A5: STATISTICAL ANALYSES FOR COMPARISONS 
Statistical analyses were performed in Minitab 19 Statistical Software. Several comparisons were made 

regarding CNF sheets in both the tensile testing and surface roughness measurements. In tensile testing 

samples were taken both the with and cross to the direction of sheet casting. Surface roughness analysis 

compared the two surfaces of CNF sheets when plated on a stainless-steel plate: the air-exposed surface 

versus the steel contacting surface. The following readouts are resultant of Minitab’s assistant function 

for statistical hypothesis testing. 

 

STATISTICAL ANALYSIS FOR COMPARISONS OF TENSILE STRENGTH 

 

Samples used for tensile testing were taken from both with and cross to the direction of sheet casting, 

noted as parallel and perpendicular respectively. From the t test directly above, it can be confirmed that 

samples taken in the parallel direction statistically had a higher Young’s modulus value than those taken 

in the perpendicularly. 
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STATISTICAL ANALYSIS FOR COMPARISONS OF SURFACE ROUGHNESS 

 

Duplicate CNF samples were taken from two sheets in both with and cross casting directions and 

mounted on glass slides with either the presumed rough or smooth side exposed. Each combination of 

variables was measured in triplicate resulting in 48 total measurements. All samples with the rough side 

exposed were grouped, regardless of other parameters, and compared to group of samples with the 

smooth side exposed. From the readout directly above, the average roughness of the air-exposed 

surface (rough side of the sheet) was statistically greater than the average roughness of the steel-

contacting surface (smooth side of the sheet).  
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Duplicate CNF samples were taken from two sheets in both with and cross casting directions and 

mounted on glass slides with either the presumed rough or smooth side exposed. Each combination of 

variables was measured in triplicate resulting in 48 total measurements. All samples with the air-

exposed surface were grouped (24), and comparisons were made between samples taken cross-casting 

direction against those taken with-casting direction (12 each). From the readout directly above, the 

average roughness of the air-exposed surface samples did not significantly differ as an effect of casting 

direction.   
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Duplicate CNF samples were taken from two sheets in both with and cross casting directions and 

mounted on glass slides with either the presumed rough or smooth side exposed. Each combination of 

variables was measured in triplicate resulting in 48 total measurements. All samples with the steel 

contacting surface (smooth) were grouped (24), and comparisons were made between samples taken 

cross-casting direction against those taken with-casting direction (12 each). From the readout directly 

above, the average roughness of the steel-contacting surface samples did not significantly differ as an 

effect of casting direction.  
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A6: VARIOUS CNF CONDUIT DESIGNS AND CNF RELATED DEVICES 
Over the course of conduit development a range of sealing techniques and device designs were reduced 

to practice for a range of potential applications, see the table below. 

Title Image Production Potential Application 

Simple 

Conduit 

 

4.5x2.5cm rectangle of CNF sheet 

was rolled onto a mandrel and 

then sealed with CNF 

Severed nerves 

Mechanical 

Interlock 

Conduit 

 

Uses various slits and tabs to 

reinforce the closure of the 

conduit for increased stability 

within solution. The tabs are 

inserted through the slits during 

rolling. This allows for the sealing 

method to be applied as in 

previous conduits  

Physically ‘locked’ 

conduit for severed 

nerves with 

increased stability 

Collared 

Conduit 

 

4.5x2.5cm rectangle of CNF sheet 

with two integral rectangles with 

triangular tops removed, then 

rolled onto a mandrel and sealed 

with CNF 

Reinforces suturing 

of severed nerves 

Web and 

Guiding 

Cable 

Conduit 
 

Simple conduit rolled and sealed 

accordingly. It was then threaded 

with a needle and thread to add 

webs to both ends and then an 

inner connecting thread 

Directional guidance 

of nerve 

regeneration, 

severed nerves  

Suture 

Conduit 

 

Created a wet sheet of CNF as 

established. The wet sheet was 

then shaped into a 4.5x2.5cm 

rectangle. Sutures were added 

across the top of the wet sheet 

and then the sheet was left to dry. 

Directional guidance 

of nerve 

regeneration, 

severed nerves  
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It was then rolled and sealed with 

CNF 

Branched 

Conduits 

 

Three simple conduits were 

produced and then the ends were 

trimmed to form the branch. CNF 

was used to seal the conduits and 

the point of branching. Branching 

can used to create tees, 90-degree 

bends, etc. 

Experimental 

Curved 

Conduits 

 

Wrapped a rectangular sheet of 

CNF around a curved mandrel and 

sealed with CNF. Alternatively, a 

mold could be used, and the two 

halves could be sealed together 

with CNF 

Experimental 

Hinged 

Conduits 

 

Simple conduit cut down the 

middle, then a strip of a CNF sheet 

was sealed along the inside of the 

conduit which left two flaps that, 

when pulled on, would open the 

conduit 

Nerve crush injuries 

Windowed 

Conduits 

 

Simple conduit with squares 

removed equidistant from one 

another. When rolled on a 

mandrel, the cut-out squares line 

up perfectly with each other and 

create a window 

Visualization of 

regeneration or aid in 

surgery 
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Double-Layer 

Conduits 

 

Simple conduit made of one 

material rolled and dried on a 

mandrel, then a second layer is 

wrapped around the dried conduit 

of a different material to create a 

conduit with two different layers 

Enhance 

regeneration by use 

of two materials 

Tapered-End 

Conduits 

 

Created a simple conduit and then 

fused the two ends together by 

wetting with water and then 

sealed the ends together with 

CNF. To reduce sharp edges, once 

dried the edges were trimmed and 

the slurry seal reapplied. 

Drug delivery 

Capsules 

 

Using hermetic alodined pans as 

molds, CNF was poured over the 

pans to create sheets with indents 

when dried. Two sheets were then 

sealed together with DNF and the 

edges were cut away to create a 

capsule. 

Drug delivery 
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A7: MURINE STUDIES AVERAGE DATA 
To gauge functional recovery in both murine studies, grip strength analysis was performed. Grip 

strength was measured in grams for both the control hindlimb and the hindlimb which had been 

operated upon. Measurements were recorded in triplicate; the following data represents the averages 

of the triplicate measurements. 

 

MURINE STUDY 1 – AVERAGE GRIP STRENGTH DATA 
Data below are those available from the first murine study. All recorded grip strength measurements are 

in grams. 

  

Group Week 2 Week 6 Week 8 

Conduit 16.36 39.08 42.82 

Sham 9.16 18.86 19.84 
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MURINE STUDY 2 – GROUP 1 AVERAGE GRIP STRENGTH DATA 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 1 AVERAGE GRIP STRENGTH DATA (CONT.) 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 2 AVERAGE GRIP STRENGTH DATA 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 2 AVERAGE GRIP STRENGTH DATA (CONT.) 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 3 AVERAGE GRIP STRENGTH DATA 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 

 

  

 

A
n

im
a

l 
ID

 
G

ro
u

p
 

W
e

e
k 0

 
w

k 0
 

W
e

e
k 

1
 

w
k 1

 
W

e
e

k 
2

 
w

k 2
 

W
e

e
k 

4
 

w
k 4

 
W

e
e

k 
6

 
w

k 6
 

W
e

e
k 

8
 

w
k 8

 
W

e
e

k 
1

0
 

w
k 

1
0

 

2
1

9
3

 
3

 
3

2
.2

0
 

2
4

.9
0

 
1

.2
0

 
2

7
.9

0
 

0
.8

0
 

1
8

.9
0

 
1

.7
0

 
2

4
.5

0
 

2
.2

3
 

3
4

.4
7

 
1

.7
0

 
3

2
.1

7
 

1
.4

0
 

3
7

.0
7

 

2
1

9
5

 
3

 
3

4
.8

0
 

2
8

.7
0

 
1

.7
0

 
2

0
.2

0
 

0
.4

0
 

2
6

.2
0

 
3

.0
0

 
2

5
.3

0
 

2
.2

7
 

2
9

.9
0

 
1

.5
0

 
3

9
.2

7
 

1
.6

7
 

3
7

.8
0

 

2
1

9
6

 
3

 
2

7
.9

0
 

3
0

.0
0

 
0

.4
0

 
1

7
.6

0
 

0
.0

0
 

2
8

.7
0

 
1

.7
0

 
3

3
.5

0
 

1
.6

3
 

3
0

.0
3

 
2

.6
3

 
3

8
.3

7
 

6
.8

3
 

4
3

.2
3

 

2
1

8
4

 
3

 
3

4
.3

0
 

3
7

.8
0

 
1

.7
0

 
2

3
.2

0
 

2
.5

0
 

2
5

.3
0

 
2

.5
0

 
2

6
.6

0
 

2
.1

3
 

2
5

.0
3

 
1

0
.0

0
 

3
7

.5
0

 
1

2
.4

7
 

3
8

.3
7

 

3
 

3
 

3
2

.2
0

 
2

1
.0

0
 

0
.8

0
 

2
6

.2
0

 
1

.2
0

 
3

6
.5

0
 

2
.5

0
 

4
6

.8
0

 
3

.5
3

 
2

9
.1

7
 

5
.8

3
 

4
3

.1
0

 
8

.5
3

 
3

5
.9

3
 

2
6

 
3

 
3

3
.9

0
 

3
8

.6
0

 
3

.7
0

 
4

1
.2

0
 

2
.1

0
 

4
6

.8
0

 
1

.6
7

 
2

9
.3

3
 

1
.4

0
 

3
6

.0
3

 
2

.4
0

 
4

6
.3

7
 

3
.9

7
 

4
1

.4
7

 

2
8

 
3

 
4

2
.5

0
 

3
0

.0
0

 
3

.0
0

 
4

0
.5

0
 

1
.2

0
 

3
5

.6
0

 
2

.2
3

 
2

7
.7

7
 

5
.5

3
 

3
7

.7
7

 
6

.5
3

 
3

7
.5

0
 

7
.1

0
 

4
1

.6
7

 

2
9

 
3

 
2

9
.2

0
 

2
7

.9
0

 
0

.8
0

 
3

1
.3

0
 

1
.7

0
 

3
1

.8
0

 
2

.1
0

 
2

7
.3

0
 

2
.2

7
 

3
2

.3
3

 
2

.5
0

 
3

8
.9

0
 

3
.5

0
 

4
1

.5
0

 

3
3

 
3

 
2

2
.3

0
 

3
5

.2
0

 
3

.0
0

 
3

6
.5

0
 

2
.1

0
 

3
8

.2
0

 
1

.8
3

 
4

1
.0

7
 

3
.3

7
 

2
9

.5
7

 
5

.0
0

 
3

5
.7

7
 

3
.9

7
 

3
5

.6
0

 

3
7

 
3

 
2

5
.3

0
 

3
5

.6
0

 
1

.7
0

 
2

5
.8

0
 

1
.3

7
 

3
4

.1
3

 
1

.6
7

 
4

1
.9

3
 

4
.9

3
 

4
0

.2
0

 
5

.9
7

 
3

7
.2

0
 

8
.9

7
 

3
5

.0
3

 

4
2

 
3

 
2

1
.4

0
 

3
5

.2
0

 
 

 
 

 
 

 
 

 
 

 
 

 

5
0

 
3

 
4

4
.2

0
 

4
0

.8
0

 
1

.2
3

 
2

4
.0

3
 

0
.6

7
 

3
0

.6
3

 
 

 
4

.3
3

 
3

5
.3

3
 

5
.8

3
 

3
7

.9
7

 
6

.5
3

 
3

8
.3

3
 

6
0

 
3

 
3

4
.8

0
 

3
4

.8
0

 
1

.8
3

 
2

0
.0

0
 

1
.4

0
 

2
7

.1
7

 
 

 
6

.7
0

 
3

4
.9

3
 

8
.5

7
 

3
3

.6
0

 
8

.4
0

 
3

9
.6

3
 

6
1

 
3

 
4

3
.4

0
 

4
7

.2
0

 
1

.9
7

 
2

4
.7

7
 

0
.8

3
 

2
9

.6
0

 
 

 
1

.2
3

 
3

8
.5

0
 

0
.9

3
 

4
2

.3
7

 
1

.4
0

 
4

2
.6

0
 

6
3

 
3

 
3

5
.2

0
 

3
9

.9
0

 
0

.6
7

 
3

0
.3

3
 

1
.9

7
 

4
1

.3
3

 
2

.8
0

 
4

2
.0

0
 

3
.8

0
 

4
7

.2
3

 
5

.5
7

 
4

9
.3

7
 

4
.8

0
 

4
9

.6
7

 

6
5

 
3

 
3

9
.5

0
 

3
6

.9
0

 
0

.6
7

 
3

1
.3

0
 

1
.2

3
 

4
4

.2
0

 
1

.5
0

 
4

1
.6

7
 

1
.8

0
 

3
6

.6
3

 
1

.2
0

 
3

9
.2

3
 

6
.2

7
 

4
7

.8
0

 

7
1

 
3

 
4

2
.1

0
 

4
7

.7
0

 
0

.9
7

 
2

4
.3

0
 

1
.2

3
 

3
8

.0
7

 
3

.6
7

 
3

6
.2

0
 

5
.1

3
 

4
0

.2
3

 
6

.2
3

 
3

8
.5

0
 

6
.1

0
 

4
0

.7
7

 

8
0

 
3

 
3

4
.8

2
 

3
4

.8
2

 
1

.2
3

 
3

9
.5

0
 

2
.7

0
 

4
3

.0
7

 
3

.2
7

 
4

4
.7

7
 

0
.9

3
 

3
6

.2
0

 
1

3
.8

3
 

4
1

.5
0

 
1

1
.8

0
 

4
3

.0
7

 

8
4

 
3

 
3

6
.0

7
 

3
2

.8
6

 
1

.2
3

 
4

2
.0

7
 

 
 

2
.1

0
 

4
3

.6
3

 
2

.9
3

 
3

7
.3

3
 

4
.5

0
 

4
6

.1
0

 
5

.5
3

 
4

3
.5

0
 

8
7

 
3

 
3

6
.7

2
 

3
5

.4
9

 
1

.7
0

 
3

8
.6

3
 

1
.6

7
 

3
5

.4
7

 
1

.6
7

 
4

2
.8

0
 

2
.2

3
 

4
0

.2
0

 
3

.2
3

 
4

1
.6

7
 

4
.2

3
 

4
5

.6
3

 

1
0

7
 

3
 

5
2

.9
3

 
4

5
.4

0
 

1
.0

7
 

4
0

.6
3

 
1

.0
7

 
3

0
.8

7
 

1
.5

0
 

3
7

.2
0

 
7

.8
3

 
4

2
.0

7
 

1
0

.0
0

 
4

2
.0

7
 

1
5

.0
0

 
3

7
.0

3
 

1
1

2
 

3
 

3
6

.7
7

 
4

2
.8

0
 

1
.3

7
 

2
8

.7
7

 
1

.3
7

 
3

6
.8

0
 

2
.1

3
 

4
6

.5
3

 
1

.6
7

 
4

3
.9

3
 

1
.6

7
 

3
2

.7
3

 
2

.1
0

 
4

5
.8

0
 



216 
 

MURINE STUDY 2 – GROUP 3 AVERAGE GRIP STRENGTH DATA (CONT.) 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 4 AVERAGE GRIP STRENGTH DATA 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 4 AVERAGE GRIP STRENGTH DATA (CONT.) 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 5 AVERAGE GRIP STRENGTH DATA 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – GROUP 5 AVERAGE GRIP STRENGTH DATA (CONT.) 
‘Week’ denotes operated leg data, ‘wk’ denotes control leg data. All measurements reported in grams. 
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MURINE STUDY 2 – WEIGHT TRENDS 
The weights of subjects in the 2nd murine study were measured at the same time as grip strength 

measurements were made. Weights were averaged per group for each week and trends were plotted, 

see below. At the pre-surgery time point, weights were grouped closely. The no treatment group 

showed steadily increasing weights over the course of 28 weeks. Groups 1-5 showed a slight initial 

decrease in the first week after surgery, but thereafter recovered and all groups maintained similarly 

increasing trends in weight as the no treatment group for the remainder of the study duration. 
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