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Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) that 

mediate PG bioactivities, including signal transduction, tissue morphogenesis, and matrix assembly. To 

understand GAG function, it is important to understand GAG structure and biophysics at atomic 

resolution. This is a challenge for existing experimental and computational methods because GAGs are 

heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharides. 

Molecular dynamics (MD) simulations come close to overcoming this challenge but are only feasible for 

short GAG polymers. To address this problem, we developed an algorithm that applies conformations 

from unbiased all-atom explicit-solvent MD simulations of short GAG polymers to rapidly construct 3-D 

atomic-resolution models of GAGs of arbitrary length. 

MD simulations of GAG 10-mers (i.e., polymers containing 10 monosaccharides) and 20-mers 

were run and conformations of all monosaccharide rings and glycosidic linkages were analyzed and 

compared to existing experimental data. These analyses demonstrated that (1) MD-generated GAG 

conformations are in agreement with existing experimental data; (2) MD-generated GAG 10-mer ring and 

linkage conformations match those in corresponding GAG 20-mers, suggesting that these conformations 

are representative of those in longer GAG biopolymers; and (3) rings and linkages in GAG 10- and 20-

mers behave randomly and independently in MD simulation. Together, these findings indicate that MD-



 
 

generated GAG 20-mer ring and linkage conformations can be used to construct thermodynamically-

correct models of GAG polymers. Indeed, our findings demonstrate that our algorithm constructs GAG 

10- and 20-mer conformational ensembles that accurately represent the backbone flexibility seen in MD 

simulations. Furthermore, within a day, our algorithm constructs conformational ensembles of GAG 200-

mers that we would reasonably expect from MD simulation, demonstrating the efficiency of the 

algorithm and reduction in its time and computational cost compared to simulation. 

While there are other programs that can quickly construct atomic-resolution models of GAGs, 

those programs use conformations from short GAG subunits in solid state. Our findings suggest that 

GAG 20-mers are more flexible than short GAG subunits, meaning our program constructs ensembles 

that more accurately represent GAG polymer backbone flexibility and provide valuable insights toward 

improving the understanding of the structure and biophysics of GAGs.
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CHAPTER 1 

INTRODUCTION 

1.1 Proteoglycans 

Proteoglycans (PGs) are fundamental components of tissue structures and regulators of signaling 

pathways in animals. PGs are a diverse group of protein-carbohydrate conjugates strategically positioned 

in the extracellular matrix (ECM), on cell surfaces, and inside cells to serve structural and signaling roles 

at the cell-tissue interface and within the cell [1-12]. Specifically, they are found in fibroblasts, 

chondrocytes [5-9], immune cells [9], mast cells [9,13], several hematopoietic cells [9,13], endothelial cells 

[9,14,15], embryonic stem cells [9,16], axons [1-5,11], and many other cell types. PGs are also found in 

cytoplasmic granules of mast cells, neutrophils, cytotoxic T lymphocytes, eosinophils, endocrine and 

neuroendocrine cells, and secretory cells in epithelia where they activate other proteins, aid in protein 

transport after release, mediate storage of other granule components, organize and concentrate other 

proteins in granules, and protect other proteins from deactivation or destruction [9]. PGs also act as 

receptors and bind growth factors [1-5,11,17-22] and growth factor-binding proteins [5], enzymes and 

enzyme inhibitors [5,22], membrane receptors [22], and ECM molecules [5,9,22]. These bioactivities make 

PGs key modulators of various biological processes including cell growth, differentiation, proliferation, 

migration, adhesion, spreading, guidance, and development [1-5,11,23,24] as well as homeostasis [22], 

signal-transduction [9,25], tissue morphogenesis [1-5], chemoattraction [5], matrix assembly [5], 

lipoprotein uptake [5], and extracellular proteolysis [5,22]. PGs also aid in delivery of certain molecules to 

the nucleus [9,26], bind to molecules inside the nucleus to facilitate their packaging [9,27], and may 

influence gene expression [9,28,29]. 

1.2. Glycosaminoglycans 

Glycosylation of PG core proteins plays a key functional role in development and physiological 

processes. This is because many PG bioactivities are mediated by their covalently linked 
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glycosaminoglycan (GAG) chains, which typically account for more than half the molecular weight of 

PGs [6,30]. GAGs are linear carbohydrate polymers consisting of variably sulfated repeating disaccharide 

units which typically contain a hexosamine, i.e., N-acetylglucosamine (GlcNAc) or N-acetylgalactosamine 

(GalNAc), and an uronic acid (UA), i.e., glucuronic acid (GlcA) or iduronic acid (IdoA). 

1.2.1. Biosynthesis 

GAG biosynthesis is a multistep process that, for most GAGs, is initiated by glycosylation of a PG 

core protein serine residue by a tetrasaccharide linker [-GlcA b1-3 galactose b1-3 galactose b1-4 xylose b1-

O-serine], a stepwise process which starts in the endoplasmic reticulum (ER) and ends in the Golgi 

[6,31,32]. Next, alternating hexosamine and UA residues are added successively in the Golgi. During 

polymerization, individual monosaccharides can be modified. For example, a given GlcA may be 

epimerized to IdoA and any GlcA, IdoA, or hexosamine may be variably sulfated [6,9,22,32-36]. This 

process is nontemplate based [37] and the length, UA composition, and sulfation pattern of the GAG 

chain are dependent upon the cell-specific polymerase, epimerase, and sulfotransferase enzymes, 

respectively. Once synthesized, fully-glycosylated PGs are transported to the cell surface and either 

remain embedded in the cell membrane or are released into the ECM [9]. The PG does not necessarily 

remain intact. ECM enzymes can cleave the protein, releasing the GAG-containing protein into the ECM, 

or the GAG chain itself, releasing functional free-floating GAGs [38]. 

1.2.2. Binding Properties 

The negatively charged UA residues and sulfate groups give GAGs a high negative charge 

density that dictates GAG binding of ECM cations to regulate ion mobility [11,39] as well as collagen, 

elastin, and water to form gels that enable absorption of stress on joints and tissues [35,40]. The negative 

charge density of GAGs also contributes to formation of covalent and noncovalent complexes of PGs with 

other biomolecules to activate signaling pathways. GAG binding sites on proteins are determined by 

protein secondary structure, conformation, charge, and amino acid sequence [22,41]. GAG binding is 
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type-specific [11,42,43] suggesting that GAG structural composition also determines binding affinity and 

specificity [22]. Additionally, GAG conformational flexibility allows binding to a wide range of 

biomolecules with varying affinity and specificity as well as multiple interactions with the same GAG 

chain [22]. Thus, GAG biophysics, and therefore function, is determined by GAG structure and 

conformational flexibility. 

1.2.3. GAG Types 

1.2.3.1. Chondroitin Sulfate. The GAG chondroitin sulfate (CS) is the most abundant GAG in the body 

[33,44-52]. CS consists of repeating units of [-4GlcAβ1-3GalNAcβ1-]n and can be variably sulfated. CS 

composition depends on cell type [11,53-56]. For example, nonsulfated chondroitin is necessary for 

morphogenesis and cell division in embryos of Caenorhabditis elegans (C. elegans) [2,57,58] and Drosophila 

melanogaster [59] suggesting a possible role in cytokine and growth factor signaling during embryonic 

development. 

CS is found in several different cell types including natural killer cells [60], platelets [61], 

macrophages [62], leukocytes [63,64], and mast cells [9,12,65-69] and is the major GAG in most 

hematopoeitic cells [9]. CS is the most abundant GAG in the ECM of the central nervous system (CNS) 

[10,11] where it is important for formation, development, and maintenance of brain morphology and 

function [2,70-73] and might be a binding partner or co-receptor for neurotrophic factors [11,74-76]. For 

example, CS in the CNS interacts with the chemoattractive protein semaphorin 3A [77,78] to guide 

neuronal migration [79] and modulate synapse morphology and function [80], transmembrane 

glycoprotein amyloid precursor protein (APP) which is involved in neural growth and repair [11,81], 

collapsin response mediator protein-4 (CRMP-4) which induces growth cone collapse in the CNS [11,82-

85], orthodenticle homeobox protein 2 (Otx2) which plays a role in postnatal development and controls 

plasticity [11,86], receptor protein tyrosine phosphatase (RPTP) which is involved in neural development 

[87-89], and neural cell adhesion molecule (N-CAM) which is a cell surface glycoprotein [11,72]. In 
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addition, CS on certain PGs modulates signaling pathways. For example, NRP1 PG containing CS has 

enhanced ability to bind its co-receptor vascular endothelial growth factor (VEGF) compared to NRP1 

core protein without a GAG chain, indicating that CS modulates VEGF signaling [90]. CS is also the most 

abundant GAG in cartilage ECM [33,51,52,91] where it binds collagen to modulate matrix assembly 

[47,92,93], inhibits chondrocyte apoptosis, cartilage degradation, and proinflammatory enzyme activation 

[94,95], and is involved in articular surface integrity [96,97], the calcification process [96,97], cartilage 

maturation [96-99], and modulation of cartilage growth plate morphogenesis [36]. 

1.2.3.2. Hyaluronan. Hyaluronan (a.k.a. hyaluronic acid; HA) consists of repeating units of [-4GlcAβ1-

3GlcNAcβ1-]n and is always nonsulfated. HA biosynthesis is unique from that of other GAGs in that it 

takes place at the plasma membrane rather than the Golgi and does not involve a core protein [9]. 

Instead, HA synthases are synthesized in the ER then move through the Golgi to the plasma membrane 

where they are embedded and activated to initiate HA synthesis [100-102].  

HA is anchored to cell surfaces, either by HA synthases or cell surface receptors like CD44 

[103,104], where it is hydrated and binds PGs, forming the gel-like perineuronal nets in CNS cells [56,105] 

and pericellular matrices surrounding cells like chondrocytes [106], fibroblasts [107], and smooth muscle 

cells [108,109]. These pericellular matrices are necessary for ECM assembly and cell proliferation and 

migration. HA is also found intracellularly in brain cells [71,110], chondrocytes [111,112], hepatocytes 

[113-115], and keratinocytes [116-118]. It is thought that this intracellular localization of HA may result 

from receptor-mediated endocytosis to catabolize HA [111,112,117,118]. 

1.2.3.3. Dermatan Sulfate. Dermatan sulfate (DS) is structurally similar to CS in that it may contain 

disaccharide units [-4GlcAβ1-3GalNAcβ1-]n (i.e., the same sequence as CS) and can be variably sulfated. 

However, during synthesis of DS, some or all GlcA residues are epimerized to IdoA. Consequently, DS 

primarily consists of repeating units of [-4IdoAα1-3GalNAcβ1-]n but a single DS GAG may contain a 

mixture of GlcA and IdoA monosaccharides. This is sometimes referred to as a CS/DS hybrid chain which 
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is found, for example, in the CNS, promoting neurite outgrowth [119-121]. DS fragments containing only 

IdoA as the UA monosaccharide are shown to control coagulation via binding to heparin cofactor II [122-

131], collagen matrix assembly via binding to tenascin-X [132], and cellular proliferation and 

organogenesis via binding to hepatocyte growth factor/scatter factor (HGF/SF) [133,134]. 

1.2.3.4. Keratan Sulfate. Keratan sulfate (KS) is unique from other GAGs in that it contains galactose (Gal) 

in place of UA and it can be anchored to a PG core protein via GlcNAc–asparagine or GalNAc–

serine/threonine linkages [9]. KS consists of repeating units of [-3Galβ1-4GlcNAcβ1-]n and can be variably 

sulfated. KS is found in ECM, on cell surfaces, and intracellularly in corneal [135-138], cartilage [91,139-

141], and brain [73,142-146] cells where it regulates development and differentiation. For example, KS 

regulates corneal development by interacting with a wide variety of ECM, kinase, cytoskeletal, and 

neuroregulatory proteins in the cornea, including SLIT2 which is a nerve growth signaling protein, 

EFNA1 which is a tyrosine kinase receptor, nerve growth factor receptor (NGFR), and many others [138]. 

1.2.3.5. Heparan Sulfate. Heparan sulfate (HS) has the highest degree of sequence variability of all GAGs. 

Not only do UA composition (i.e., GlcA/IdoA) and sulfation pattern vary, but the glucosamine derivative 

can be either N-acetylated (i.e., GlcNAc), N-sulfated (i.e., GlcNS), or unsubstituted (GlcN). HS primarily 

consists of highly sulfated “S-domains” containing mostly 2-O-sulfated IdoA and variably O-sulfated 

GlcNS ([-4IdoA(2S)α1-4GlcNSα1-]n), low sulfated domains containing nonsulfated UA (primarily IdoA 

but sometimes GlcA) and alternating GlcNAc/GlcNS ([-4IdoAα1-4GlcNAc/NSα1-]n), and nonsulfated 

domains [-4GlcAβ1-4GlcNAcα1-]n [30,147]. The latter domains are closest to the PG core protein and have 

not been shown to interact with other proteins [147]. 

HS is a key regulator in the cardiovascular system. For example, HS is thought to immobilize 

fibroblast growth factor (FGF) in the ECM. Heparanase enzymes from platelets [148], neutrophils [149], 

and lymphocytes [150,151] degrade HS and consequently release active FGF which stimulates cellular 

adhesion, migration, proliferation, and differentiation [148-153]. In addition, HS regulates anticoagulant 
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activity by binding antithrombin III, inducing a conformational change that allows antithrombin III to 

bind its targets thrombin and factor Xa [154,155]. 

1.2.4. GAGs in Pathology and Therapeutics 

GAGs are key effectors of onset, progression, and outcome of infection and disease. Due to the 

ability of GAGs to interact with a diverse array of both ligands and receptors, GAGs can cause abnormal 

activation of cell signaling pathways and thus promote viral and bacterial infections [1-5,156,157], 

inflammation [1-4], and development of cancer [158-161] and many other diseases. For example, CS has 

been implicated in a number of neuropathological conditions including epilepsy [162], stroke [163], 

schizophrenia [164], Alzheimer’s disease [165], and Parkinson’s disease [166]; HA-mediated activation of 

CD44 has been implicated in tumor growth and metastasis [167,168]; binding of DS to HGF/SF may aid in 

tumor progression [133,134] and DS deficiency has been implicated in a new form of Ehlers-Danlos 

Syndrome [35,169,170]; KS is released from damaged articular cartilage thus serum KS is elevated in early 

stage osteoarthritis [171,172] and in the cerebral cortex of patients with Alzheimer’s disease, decreases in 

overall KS levels and in sulfation of existing KS are seen [142]; and degradation of HS by heparanase 

triggers an excessive inflammatory response during sepsis, inducing septic shock [173,174], and activates 

FGF, which is thought to play an important role in tumor metastasis [150,175,176], inflammation [149], 

and autoimmunity [151]. 

On the other hand, their diverse capabilities give GAGs diagnostic and therapeutic potential. For 

example, screening for urinary DS may be used as a diagnostic tool for Ehlers-Danlos Syndrome [35] and 

KS may be used as a marker for early-stage osteoarthritis [171,172]. Pathogenesis can be inhibited via 

supplementation of or gene knockdown against enzymes involved in GAG biosynthesis [157] which 

would alter GAG structure and therefore receptor and ligand binding activities. For example, sodium 

chlorate, which prevents the normal extent of GAG sulfation, has been shown to inhibit hepatitis B viral 

infection [177]. Therapeutic effects are also seen when GAGs and GAG-degrading enzymes are targeted. 
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For example, a peptide interacting with heparanase has been shown to act as an anti-inflammatory agent 

during sepsis, thus preventing septic shock [173,174]. Removal of GAGs can also have therapeutic effects. 

For example, enzymatic removal of chondroitin sulfate may aid in recovery after spinal cord injury [178-

181] and enhancing plasticity thus improving memory retention in neurodegeneration [182]. 

Additionally, GAG mimetics have shown promising results for use as viral inhibitors [157] as well as 

anti-cancer and anti-inflammatory agents [183-187]. For example, HS hexasaccharide HS06 activates p38 

MAP kinase, inhibiting self-renewal in colorectal, breast, and pancreatic cancer stem cells [184] and a 

modified CS inhibits cell proliferation and induces apoptosis in myeloma and breast cancer cells [187]. 

The biggest challenges currently associated with using GAGs as therapeutics are the diverse structure 

and functions of GAGs [183]. Alteration of a given GAG structure or supplementation with GAG 

mimetics may inhibit pathogenesis but activate another pathway causing adverse side effects [157,183]. 

Uncovering mechanisms behind GAG-mediated pathogenesis will help unlock the therapeutic potential 

of GAGs. 

1.2.5. Gap in Knowledge 

The aforementioned studies have provided valuable information about the effects of GAGs in 

various tissues and pathways throughout the body. However, many of the mechanisms by which GAGs 

perform their functions have yet to be elucidated. GAG-protein binding is determined by the sequence, 

structure, charge, and shape (i.e., conformation) of both the GAG and the GAG-binding site on the 

protein [22,41]. Therefore, examining the three-dimensional structure and conformation of GAGs at 

atomic resolution is necessary to understand GAG binding properties and, thus, GAG bioactivity. 

However, this presents an unsolved problem due to the complexity of GAGs. For example, nontemplate 

based synthesis and enzymatic modifications (e.g., sulfation and UA isomerization) give GAGs variable 

length, sequence, sulfation, and charge. Furthermore, GAGs are conformationally complex due to 

flexibility of monosaccharide rings [188] and glycosidic linkages between monosaccharides [189-193]. 
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Toward addressing the problem of studying these heterogeneous, polydisperse, and conformationally 

flexible biomolecules, this thesis describes the development of a method for rapidly producing three-

dimensional atomic-resolution models of GAGs of arbitrary length. This is a key step toward improving 

understanding of the structure and biophysics of GAGs. 
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CHAPTER 2 

METHODS 

This chapter discusses some methods currently used to study GAGs and provides an in-depth 

explanation of the key methods used in this dissertation project. 

2.1. Laboratory Methods 

Studying GAG structural and thermodynamic properties presents a challenge for existing 

experimental methods, which are often labor intensive and require large quantities of GAGs. Each 

individual method has its own strengths and additional limitations. For example, reversed-phase ion-pair 

high performance liquid chromatography (HPLC) mass spectrometry has been used for structural 

analyses of tissue- and stage-specific glycosaminoglycans in C. elegans and Drosophila and provided direct 

measures of unsaturated CS disaccharides [58]. This is an effective method for determining GAG 

composition but not conformational properties and is limited to measuring disaccharide units. Isothermal 

titration calorimetry (ITC) has been used to determine the GAG binding site on a protein as well as 

binding specificity and affinity [43]. This method shows the thermodynamics of binding in solution but 

might not show polymer concentration and there may be cases in which ITC shows only the equilibrium 

part of the binding process and will not detect dissociation [194] and thus the thermodynamics of the 

dissociated protein and ligand which may be of functional importance. NMR experiments have proposed 

stable pyranose ring conformers [195] and are capable of revealing binding sites between a protein and 

ligand by observing chemical shifts before and after binding [196,197]. However, NMR data provide 

limited understanding because (1) they vary depending upon sample preparation and molecular 

composition and length and (2) GAG backbone and monosaccharide ring flexibility in aqueous solution 

produces various conformations in equilibrium thus NMR data can be explained by multiple different 

conformations [198] and is not sufficient to predict GAG structure and dynamics [199]. X-ray 

crystallography has been used to produce atomic-resolution images of GAG-protein complexes but these 
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include only short oligosaccharides corresponding to the binding site of the protein [200-204], which are 

not necessarily the complete GAG structures participating in those complexes. Crystallization of these 

complexes is challenging because of the heterogeneity of GAGs and the fact that there may be multiple 

binding poses due to ionic interactions of GAGs with proteins [205]. 

2.2. Computational Methods 

Computational methods can complement knowledge gained by experimental methods. For 

example, docking has been used to find potential binding poses of GAGs on proteins [206-209]. One 

problem with this methodology is that it screens rigid molecules, so while attractive and repulsive forces 

between fixed conformations of the GAG and protein are shown, it does not take into account the 

dynamic changes that take place before, during, and after binding. Docking can be used as a tool to help 

generate hypotheses or help interpret previous observations but it is not sufficient to study the dynamics 

of an interaction [207]. 

2.2.1. Molecular Dynamics Simulations 

It is important to study molecular dynamics at an atomic level to determine biophysics, and thus 

bioactivity, of the molecule(s) of interest. This can be accomplished through molecular dynamics (MD) 

simulations, which capture random, realistic atomic movement with respect to surrounding atoms in a 

system and reveal thermodynamic properties of molecules in aqueous solution [210-214]. Many studies 

have validated MD data with experimental methods. For example, results from liquid chromatography-

mass spectrometry [215], x-ray diffraction [216], and NMR [216-221] have validated GAG structures and 

conformations produced by MD, demonstrating the predictive power of MD simulations. Due to the 

ability to provide additional insights that cannot be obtained using experimental methods and its well-

established predictive power, applications of MD for structure and activity prediction have expanded 

beyond academic research into drug design and pharmacophore modeling [222-225] as well as materials 

science [226-228]. 
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2.2.1.1. Force Field. MD simulations are performed using a series of equations and parameters based on 

experimentally determined atomic and molecular properties (e.g., atomic radii, partial charges, bond 

lengths and angles of carbohydrates, lipids, nucleic acids, amino acids, and water molecules). 

Collectively, these equations and parameters are referred to as a force field. A force field uses a potential 

energy function to describe energy changes as a function of atomic movements and interactions and is 

used to construct a molecular mechanical model. The CHARMM force field [229-232] potential energy 

function (Equation 2.1) for a system with a particular spatial arrangement of atoms is equal to the sum of 

the energy costs of bond distortion, angular distortion, dihedral rotation, out-of-plane angle (or 

improper) distortion, and a nonbonded term which includes the strength of the interaction in units of 

energy and distance of interaction (!!"#
"
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(2.1) [232] 

In Equation 2.1: 𝑘 values are force constants; 𝑏 − 𝑏$ represents the bond distortion (i.e., the 

difference between the current and most energetically-favorable, or equilibrium, bond length; Figure 

2.1.); 𝜃 − 𝜃$ represents the distortion of the angle between three bonded atoms from equilibrium; 𝑛 

represents the multiplicity of the dihedral function, which corresponds to the number of energy minima 

as the bond is rotated through 360°; 𝜙 represents a dihedral angle (i.e., angle of rotation about the central 

bond between four bonded atoms); 𝛿 represents the phase shift of the trigonometric function of the 

dihedral from that at equilibrium; 𝜔 −𝜔$ represents the out-of-plane (improper) angular distortion; 𝑖 and 

𝑗 represent a nonbonded pair of atoms; 𝜖 is the well depth of the Lennard-Jones potential (i.e., minimum 

energy), which is a measure of the strength of interaction between two atoms; 𝑟67 is the distance between 

two nonbonded atoms (𝑖 and 𝑗); 𝑅40'$% is the value of the interatomic distance at the Lennard-Jones 
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potential energy minimum (i.e., the equilibrium distance between two atoms); and 𝑞 is the partial atomic 

charge. 

 
Figure 2.1. Bond distortion energy [𝑉#&'( = 𝑘#(𝑏 − 𝑏$)%] as a function of bond length 𝑏 (𝑘# is the bond 

stretching force constant) and molecular graphics of the same carbon-carbon bond with three different 

bond lengths (1.52 Å, 3.00 Å, and 5.00 Å). The red dotted lines on the plot mark the bond lengths shown. 

The shortest bond (1.52 Å) is the equilibrium bond length (i.e., where 𝑉#&'( = 0 kcal/mol). 

MD simulations combine the force field equation with a modified Newton’s equation to generate 

the time evolution of molecular coordinates at a given temperature. The resulting ensemble of states 

(conformations) can be used to create a statistical mechanical model of an atomic system. MD can also be 

used for modeling atomic and molecular kinetics, which describes the rates of change of the system. It 

does so by integrating the equations of motion. MD also can provide thermodynamic properties 

(thermodynamics is a measure of the system’s energy and entropy at equilibrium). MD does so by 

sampling equilibrium states of the statistical mechanical model. All of this allows MD to give atomic 
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position, movement trajectories (Figure 2.2), and free energies as a function of time for a given atomic 

system [233,234]. 

 
Figure 2.2. Three subsequent snapshots from a MD trajectory of a GAG 10-mer. Solvent atoms are not 

shown. 

Each of the four main types of biomolecules (i.e., carbohydrates, lipids, nucleic acids, and 

proteins) has its own unique properties. Therefore, there are different parameter sets for different 

biomolecule types. The most commonly used force fields for carbohydrates include the AMBER [235], 

GLYCAM [236,237], OPLS [238,239], GROMOS [240-242], and CHARMM [214,243-245] force fields [246]. 

While each of these has been compared to experimental results and validated to some degree, not all 

force fields have demonstrated the same predictive power. For example, it has been shown that the 

CHARMM36 force field for carbohydrates [214,243-245] best reproduces ring conformations observed by 

NMR, compared to the general AMBER force field (GAFF1) [235] and GLYCAM06 [236,237] force fields 

for carbohydrates [221]. Furthermore, compared to GROMOS [242] and OPLS [239], CHARMM36 [243] 

gives more accurate predictions of the rotation about the improper angle 𝜔 in carbohydrates (namely 

gluco- and galactopyranosides) [246-250]. This may, in part, be due to the fact that, unlike other 

carbohydrate force fields like GAFF1 [235] and OPLS [238,239], CHARMM does not dampen 1—4 

nonbonded electrostatic interactions (i.e., between atoms separated by three adjacent bonds) relative to 

longer range interactions. Historically, 1—4 interactions were scaled in force fields for proteins and kept 

in force fields for carbohydrates for simplicity. However, dampening 1—4 nonbonded interactions 

relative to longer-range interactions causes a problem with the energetics for the rotation of improper 
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dihedral (𝜔) angles (n.b.: 1—4 nonbonded atoms participate in the same dihedral angles), and thus 

should not be used for carbohydrates [238,251]. 

2.2.1.2. Periodic Boundary Conditions. Periodic boundary conditions (PBCs) allow simulation of atoms 

and molecules in an infinite system by defining a unit cell, which is a periodic box with penetrable walls 

that is constrained so that the number of atoms is constant [233]. When an individual particle (i.e., ion or 

molecule) exits one side of the unit cell, it reenters the unit cell from the opposite side. This minimizes the 

number of solvent atoms in a system, making the system feasible to simulate without placing unrealistic 

restrictions on the movement of the atoms through space. The location of each particle within the unit cell 

is based on the Cartesian coordinates of the center of mass of the particle. For example, in Figure 2.3.c,d, a 

portion of the molecule appears to be outside the unit cell but the center of mass of the molecule is within 

the unit cell in each panel. 

 
t = 0 ps t = 100 ps 

Infinite 
System 

  

PBC 
Unit 
Cell 

  

Figure 2.3. Snapshots of a GAG 10-mer at two different time (t) points in (a,b) an “infinite” system and 

(c,d) a unit cell with periodic boundary conditions; solid borders represent the edges of the unit cell 
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(edges have the same Cartesian coordinates at each time point in a MD trajectory). Solvent atoms are not 

shown. 

2.2.1.3. All-Atom Explicit-Solvent MD. “All-atom” means that each atom in a biomolecule is treated as a 

separate particle, allowing full conformational flexibility (as opposed to treating clusters of atoms or an 

entire molecule as a single particle so that only the intermolecular interactions are revealed). Calculating 

energies of bonded and close-range nonbonded atom pairs within biomolecules reveals full 

conformational free energy landscapes, which can be used to study covalent conformational properties 

and noncovalent binding properties. 

“Explicit solvent” means the user chooses the solvent conditions in which to simulate their 

molecule(s) of interest. Specifically, they can define the number of water molecules, ion type and 

concentration, pH, temperature, and pressure. For example, for simulation of molecules in human ECM, 

the solvent can be set to include n water molecules (based on solute and periodic unit cell dimensions) 

with 140 mM NaCl and neutralizing Na+ or Cl- counterions and have a temperature of 310 K (98.6 °F) and 

a pressure of 1 atm. As water molecules and ions play a crucial role in GAG conformation and bioactivity, 

solvent effects must be taken into account [252]. Therefore, all-atom explicit-solvent MD is an appropriate 

method to simulate bioactivity and improve understanding of conformational thermodynamics of short 

GAG biopolymers (e.g., up to 20 monosaccharide units) at atomic resolution. 

2.2.1.4. Challenges with All-Atom Explicit-Solvent MD. One drawback of all-atom explicit-solvent MD 

is that atomic-resolution simulations of large systems are computationally taxing so there is a limit to the 

number of atoms in a system that is feasible to simulate. Due to the linear nature of GAGs, each 

additional monosaccharide unit leads to an increase in periodic box dimensions and thus an exponential 

increase in the number of solvent atoms in the system. Therefore, simulating GAGs with biologically-

relevant chain lengths presents a challenge for all-atom explicit-solvent MD. 
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Another form of MD, known as coarse-grained (CG) simulations, can model 3-D structures of 

GAGs of any given composition but uses implicit solvent [253,254] and treats clusters of atoms as a single 

particle. This gives much fewer degrees of freedom for the system [218] and makes the simulation less 

taxing and thus much faster, allowing handling of much larger systems [255]. Therefore, CG MD can 

generate conformational ensembles of longer GAGs than all-atom explicit-solvent MD. However, since 

clusters of atoms are treated as a single particle and the solvent is treated as a continuum, CG MD-

generated GAG conformational ensembles may not be as accurate as those generated by all-atom explicit-

solvent MD. 

2.2.2. Conformational Analysis 

Conformational thermodynamics of molecules can impact binding properties. A GAG’s shape, 

along with sequence and charge, must be complementary to a biomolecule in order to bind. Studying 

atomic-resolution conformational thermodynamics of GAGs opens the door to predicting GAGs’ binding 

capabilities with other biomolecules. 

2.2.2.1. Glycosidic Linkage Dihedral Free Energy Changes ΔG(ϕ, ψ). Free energy calculations are 

widely used to examine conformational landscapes and binding properties. For example, MD and free 

energy analyses were performed to determine binding poses and thermodynamics of experimentally 

determined protein-GAG complexes [209] and glycosidic linkage free energy calculations are commonly 

used to study GAG backbone conformation and compare MD predictions to experimental data 

[216,240,256-259].  

Glycosidic linkage flexibility is important because the linkage conformations have the greatest 

effect on the overall shape of a GAG. For example, rigid glycosidic linkages will favor extended, linear 

GAG conformations, whereas highly flexible glycosidic linkages will give a wide range of compact (i.e., 

curved) and extended GAG conformations and be able to conform to a wider variety of protein binding 

sites. 
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Glycosidic linkage conformations are quantified by ϕ and ψ, which represent the angles of 

rotation about glycosidic dihedrals (Figure 2.4). The change in Gibbs free energy as a function of these 

angles—ΔG(ϕ, ψ)—quantifies the stability of a given conformation relative to another at equilibrium. In 

MD analysis, ΔG(ϕ, ψ) (Equation 2.2) is calculated based on the frequency of a given conformation during 

simulation, which can be determined by binning ϕ and ψ values into, for example, 2.5° x 2.5° bins and 

counting the occurrences of a conformation in each bin. 

 
Figure 2.4. GAG trisaccharide showing ϕ and ψ dihedral rotations about glycosidic linkage bonds. 

ΔG(ϕi, ψj) = -RTln(nij) – k (2.2) 

In equation 2.2: R is the universal gas constant; T is the temperature of the MD simulation; nij is 

the bin count for the bin corresponding to ϕi, ψj; and k is a constant chosen so that the global free energy 

minimum (equilibrium conformation) is located at DG = 0 kcal/mol. 

In this work, glycosidic linkage ΔG(ϕ, ψ) values were compared both within individual GAG 

polymers and between GAG polymers of the same type but different lengths to determine (1) glycosidic 

linkage flexibility and (2) if glycosidic linkage conformations are independent of adjacent glycosidic 

linkage and monosaccharide ring conformations and GAG polymer length. Glycosidic linkage dihedral 

free energy analyses from all-atom explicit-solvent MD-simulated GAGs suggest that different glycosidic 

ϕ ψ 
ϕ ψ 
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linkage types have varying degrees of flexibility but all exhibit random behavior when GAGs are free 

floating in aqueous solution [188,260]. 

2.2.2.2. Monosaccharide Ring Cremer-Pople Parameters ϕ, θ, Q. Cremer-Pople (C-P) parameters 

quantify pyranose ring conformations [261]. These parameters are the standard for analyzing pyranose 

ring puckering and have been used extensively in studies of GAG conformational thermodynamics 

[216,219,262,263]. To calculate C-P parameters using Cartesian coordinates of the atoms in a ring, the ring 

is treated as a sphere with polar and equatorial planes [261,264] (Figure 2.5). The C-P parameters ϕ and θ 

represent the angular distortions of the endocyclic ring atoms from the polar and equatorial planes (n.b.: 

by historical convention, the glycosidic linkage dihedral ϕ and C-P parameter ϕ are referred to by the 

same symbol but are completely different geometric properties). Q is the puckering amplitude, which 

describes the displacement of atoms from the point where the polar and equatorial planes meet. Of note, 

the name of the ring pucker indicates the type of conformation (e.g., “chair” conformation is represented 

by “C”) and position of carbon atoms with respect to polar and equatorial planes from the standard view 

(i.e., oriented such that carbons 1-3 are in the front and carbon 1 is on the far right of the plane of view); 

e.g., in 4C1 chair conformation, carbon 4 is located above the equatorial plane and to the left of the polar 

plane (hence “4…”) and carbon 1 is located below the equatorial plane and to the right of the polar plane 

(hence “…1”). 
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Figure 2.5. (a) Spherical map of pyranose ring conformations represented by C-P parameters ϕ, θ, and Q 

(image taken from Figure 2 in Reference [264]) and (b) an atomic-resolution molecular graphic of a 

carbohydrate ring in 4C1 chair conformation (oxygen atom in red; carbon atoms in cyan and numbered 

according to standard numbering scheme). 

In this work, C-P parameters of all monosaccharides of the same type (e.g., all GalNAc 

monosaccharides) within a GAG polymer and between GAG polymers of the same type but different 

lengths were compared to determine (1) the ring flexibility of each monosaccharide type and (2) if ring 

puckering is independent of adjacent glycosidic linkage and monosaccharide ring conformations and 

GAG polymer length. C-P analyses of all-atom explicit-solvent MD-simulated GAGs indicate that 

different monosaccharide types have varying degrees of flexibility but all exhibit random behavior when 

GAGs are free floating in aqueous solution [188,260]. This conclusion, along with that drawn from GAG 

glycosidic linkage free energy analyses, informed the development of the methodology presented in this 

dissertation. 

2.2.3. Algorithm to Construct 3-D Models of Glycosaminoglycans 

As a single GAG may contain up to 200 monosaccharide units, all-atom explicit-solvent MD 

cannot routinely be applied to generate atomic-resolution conformational ensembles of GAG biopolymers 
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in aqueous solution because of the enormous computational costs. This dissertation describes an 

algorithm that was developed to overcome this technical barrier presented by MD simulations of GAGs 

with biologically-relevant chain lengths in fully-solvated systems (containing millions of atoms). This 

algorithm applies glycosidic linkage and monosaccharide ring conformations from unbiased all-atom 

explicit-solvent MD simulations of nonsulfated GAG chains containing 20 monosaccharide units (i.e., “20-

mers”) to construct 3-D atomic-resolution models of GAGs of arbitrary chain length. Due to its efficient 

computational performance, this algorithm can generate tens of thousands of 3-D atomic-resolution 

models (representative of snapshots from a MD trajectory) of a given long-chain GAG (e.g., 200-mer) in 

under a day. For perspective, a MD simulation of a fully-solvated GAG 20-mer system (containing 

~191,000 atoms) produced a trajectory with 10,000 snapshots in one month. 
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CHAPTER 3 

EFFICIENT CONSTRUCTION OF ATOMIC-RESOLUTION MODELS OF NONSULFATED 

CHONDROITIN GLYCOSAMINOGLYCAN USING MOLECULAR DYNAMICS DATA 

This chapter has been published as: 

Whitmore, E.K.; Vesenka, G.; Sihler, H.; Guvench, O. Efficient Construction of Atomic-Resolution Models 
of Non-Sulfated Chondroitin Glycosaminoglycan Using Molecular Dynamics Data. Biomolecules. 
2020, 10(4), 537. doi:10.3390/biom10040537 

(Note that minor edits have been made for consistency in this dissertation.) 

3.1. Introduction 

The diverse group of protein–carbohydrate conjugates called proteoglycans (PGs) is a 

fundamental component of tissue structure in animals and can be found in the extracellular matrix (ECM) 

as well as on and within cells. PGs bind growth factors [1-3,5,11,17-22,265], enzymes [5,22], membrane 

receptors [22], and ECM molecules [5,9,22]. By doing so, they modulate signal transduction [9,25], tissue 

morphogenesis [1-3,5,265], and matrix assembly [5,47,92,93]. PG bioactivity is often dependent on the 

covalently linked carbohydrate chains called glycosaminoglycans (GAGs), which are linear, highly 

negatively charged, and structurally diverse carbohydrate polymers. GAGs mediate receptor–ligand 

complex formation by either forming noncovalent complexes with proteins or inhibiting the formation of 

complexes with other biomolecules. This makes GAGs key modulators in many diseases, giving them 

potential therapeutic applications. For example, heparan sulfate (HS) is released during sepsis and 

induces septic shock [266,267]; the removal of chondroitin sulfate (CS) may enhance memory retention 

and slow neurodegeneration in patients with Alzheimer’s disease [182,268,269]; and dermatan sulfate 

(DS) deficiency has been implicated in Ehlers–Danlos syndrome, thus the screening of DS in urine could 

be used as an early diagnostic tool [169,170]. 

GAG binding sites on proteins are determined by protein sequence and structure, with 

requirements for both shape and charge complementarity [22,41]. Thus, GAG function depends on GAG 
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three-dimensional structure and conformation. Even subtle structural differences impact GAG function. 

For example, while CS and DS have many functional differences, the only structural difference is in the 

chirality of the uronic acid monosaccharides. While much is known about GAG function, attempting to 

study GAG conformational thermodynamics at atomic resolution presents a largely unsolved problem for 

existing experimental methods. This is largely due to the structural and conformational complexities of 

GAGs. For example, a given GAG consists of a repeating sequence of a particular disaccharide, but 

conformational complexity is introduced through flexibility in the glycosidic linkages between 

monosaccharides [189-193] (Figure 3.1). Additional complexity results from nontemplate-based synthesis 

[37] and variable enzymatic sulfation [270], which means a biological sample of a GAG composed of a 

specific disaccharide repeat will be polydisperse and heterogeneous owing to the variable length and 

sulfation of the individual polymer molecules. Liquid chromatography–mass spectrometry (LC-MS) [271-

273],  X-ray crystallography [200-205], and nuclear magnetic resonance (NMR) [195,215,274,275] are used 

to study GAGs but are limited in their ability to account for all of these complexities. Additionally, some 

studies have used results from LC-MS [215], X-ray crystallography [216], and NMR [216-221] to compare 

and validate conformational data from molecular dynamics (MD) simulations. This suggests that MD 

simulations can produce results complementary to experimental analysis methods by providing realistic 

three-dimensional atomic-resolution molecular models of GAG conformational ensembles [210-214]. 



23 
 

 

Figure 3.1. Compact nonsulfated chondroitin 20-mer conformation arising from flexible glycosidic 

linkages (red) between monosaccharide rings (GalNAc in blue and GlcA in cyan). The molecular graphics 

throughout are produced with the VMD program [276]. 

A critical challenge with MD simulations of GAGs is that a single biological GAG polymer chain 

may contain up to 200 monosaccharide units [2]. When fully solvated, the resulting system will have in 

excess of 106 atoms. It is not feasible to routinely simulate such a system using the current graphics 

processing unit (GPU)-accelerated MD code with a modern GPU and multi-core CPU. This limits the 

utility of all-atom explicit-solvent MD as a tool for routine conformational analysis of GAGs of this size. 

Coarse-grained (CG) MD simulations are the most feasible current alternative to all-atom explicit-

solvent MD as they entail fewer degrees of freedom for the solute [218] and often an implicit (continuum) 

description of the solvent [253,254]. This can make CG MD two to three orders of magnitude faster, 

thereby allowing for the handling of large systems [255], such as GAG 200-mers. Indeed, a recent CG 

model using glycosidic linkage and ring pucker energy functions has provided previously-unseen details 

of the structure–dynamics relationship of GAGs in the context of PGs [218]. An important insight from 
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that study was that GAGs, in contrast to the unique ordered conformations of folded proteins, need to be 

considered as existing in conformational ensembles containing a large diversity of three-dimensional 

conformations. 

As an alternative approach to using CG MD to generate such conformational ensembles for 

GAGs, we propose using glycosidic linkage and monosaccharide ring conformations from unbiased all-

atom explicit-solvent MD simulations [214,243-245] of short GAG polymers to rapidly construct 

conformational ensembles for GAGs of an arbitrary length. Toward this end, we studied a nonsulfated 

chondroitin 20-mer with the sequence [-4 glucuronate β1-3 N-acetylgalactosamine β1-]10 for its simplicity 

and homogeneity. We first ran a microsecond-scale all-atom explicit solvent MD on the 20-mer and used 

the resulting trajectories to develop a database of conformations. From this database, we randomly 

selected individual values for the bond lengths, bond angles, and dihedral angles in the glycosidic 

linkages connecting glucuronate (GlcA) and N-acetylgalactosamine (GalNAc) and in the monosaccharide 

rings. These values were used to construct a 20-mer conformational ensemble. The comparison of the 

constructed ensemble with the MD-generated ensemble of 20-mer conformations revealed similar end-to-

end distance distributions, with a strong bias toward extended conformations in both cases. Short end-to-

end distances associated with more compact conformations were facilitated by the sampling of non-4C1 

ring puckering by GlcA. This change in ring geometry, which occurs rarely on the microsecond timescale, 

introduced kinks into the polymer, causing it to bend back toward itself. The fact that the MD-generated 

ensemble had a great deal of variability in both end-to-end distances and radii of gyration demonstrates 

the inherent flexibility of the chondroitin polymer in aqueous solution. The fact that the constructed 

ensemble has very similar conformational properties to the MD-generated ensemble suggests that there is 

little correlation between the individual dihedral angle values that determine the internal geometry of a 

given conformation. Therefore, on the timescale of the simulations, nonsulfated chondroitin 20-mer does 

not appear to have any higher-order structure, in contrast to, for example, the secondary and tertiary 
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structure seen in proteins. This lack of higher-order structure was borne out in a comparison of end-to-

end distances for constructed vs. MD-generated ensembles of 10-mers, with the constructed ensemble 

built using the 20-mer database. Finally, we used the methodology to produce conformational ensembles 

of 100-mers and of 200-mers. The ability to model polymers with biologically-relevant chain lengths (e.g., 

100- to 200-mers) will provide insights into GAG binding by other biomolecules. This will be especially 

useful in understanding the formation of complexes containing multiple biomolecules bound to a single 

GAG. 

Other programs that construct three-dimensional atomic-resolution models of GAG polymers 

exist, for example, Glycam GAG Builder [277], POLYS Glycan Builder [278], CarbBuilder [279], and 

MatrixDB GAG Builder [280,281], which allow the user to choose GAG type, length, and sequence and 

are useful tools for producing an initial structure for MD simulations. Glycam and POLYS Glycan Builder 

allow the user either to specify particular glycosidic linkage dihedral angle values or use default 

parameters pulled from their databases. The databases used by Glycam, POLYS Glycan Builder, and Carb 

Builder include GAG mono- and disaccharide structures determined by molecular mechanics and/or MD. 

MatrixDB pulls from databases of experimentally determined conformations of GAG disaccharides from 

crystallized GAG–protein complexes. While the user has the option to choose the GAG length, these tools 

are intended for shorter GAG polymers. In contrast to these tools, our algorithm pulls from a database of 

full conformational landscapes of unbound GAG 20-mers. Additionally, our algorithm is intended for 

modeling long GAG polymers with biologically-relevant chain lengths and can quickly produce large 

ensembles (e.g., on the order of 10,000 3-D models) of polymer conformations that we would expect to see 

in simulation. Thus, it eliminates the need for simulation, reducing time and computational cost. 
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3.2. Materials and Methods 

3.2.1. Molecular Dynamics 

3.2.1.1. System Construction. Coordinates for all systems were constructed using the CHARMM software 

[229-231] v. c41b2 with the CHARMM36 (C36) biomolecular force field for carbohydrates [214,243-245]. 

Of note, it has been shown that MD simulations can reproduce ring puckers observed by NMR [219-221], 

with one study demonstrating the capacity of the CHARMM36 force field to reproduce NMR data for an 

iduronate derivative in the context of a heparin analogue [221]. The initial conformation for an MD 

simulation of nonsulfated chondroitin 20-mer was fully extended, with glycosidic linkage dihedrals ϕ = -

83.75° and ψ = -156.25° in all GlcAβ1-3GalNAc linkages and ϕ = -63.75° and ψ = 118.75° in all GalNAcβ1-

4GlcA linkages. These glycosidic linkage dihedral angle values were found to be the most energetically 

favorable in MD-simulated nonsulfated chondroitin disaccharides [212]. All other internal coordinates 

were taken from the force-field files. In this conformation, the 20-mer had an end-to-end distance of 101.8 

Å and was solvated in a cubic periodic unit cell with an edge length of 124.3 Å (~63,000 water molecules). 

The explicit solvent consisted of the TIP3P water model [282,283], neutralizing Na+ counterions, and 140 

mM sodium chloride. 

3.2.1.2. Energy Minimization and Heating. The NAMD program [284] v. 2.12 

(http://www.ks.uiuc.edu/Research/namd/) was used to minimize the potential energy for 1000 steps 

using the conjugate gradient method [285,286] then heat the system to the target temperature of 310 K by 

reassigning velocities from a random distribution at the target temperature every 1000 steps for 20,000 

steps with a timestep of 0.002 ps (40 ps). During heating, harmonic positional restraints were placed on 

nonhydrogen atoms of the solute and constraints [287-289] were applied to maintain equilibrium values 

for TIP3P geometries and for bond lengths involving hydrogen atoms. The Lennard-Jones (L-J) [290] and 

electrostatic potential energies had cutoff distances of 10 Å. An energy switching function [291] was 

applied to L-J interactions between 8 and 10 Å and an isotropic pressure correction accounted for 
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contributions from L-J interactions beyond the cutoff [292]. The particle mesh Ewald (PME) method [293] 

with fourth order B-spline interpolation for a cubic unit cell and fast Fourier transform (FFT) grid spacing 

of 1.0 Å along each axis was used to account for electrostatic interactions beyond the cutoff. Consistent 

with the CHARMM additive force fields for proteins, nucleic acids, lipids, and small molecules [294], 

carbohydrate 1-4 nonbonded interactions were not scaled (i.e., scaling factor = 1.0). Heating was done 

under constant pressure with pressure regulated at 1 atm by a Langevin Piston barostat [295]. A 500,000-

step (1-ns) unbiased constant particle number/constant pressure/constant temperature (NPT) MD run 

followed with a temperature of 310 K maintained by a Langevin thermostat [296] and without positional 

restraints. The average periodic cell parameters from the last half of this NPT ensemble trajectory (123.7 

Å) were used as cell basis vectors for the quadruplicate canonical (NVT) ensemble MD simulations 

detailed below. These were preceded by minimization and heating as detailed above, with the exception 

of constant volume (i.e., no Langevin piston barostat) with a box edge length of 123.7 Å. 

3.2.1.3. Production Simulations. Unbiased canonical (NVT) ensemble MD was run using CHARMM 

software with the OpenMM GPU acceleration interface [297-302] on CUDA platform and GTX 1080 Ti 

graphics cards (NVIDIA Corp., Santa Clara, USA.). Nonbonded interaction truncations and energy 

calculations were performed using the same methods from the heating stage, and Ewald summation of 

Gaussian electrostatic charge density distributions [303,304] with a width of 0.320 was performed. The 

SHAKE algorithm [287] was used to constrain all water geometries and bonds involving hydrogen atoms 

using bond distances from the parameter table and the leapfrog Verlet integration algorithm [305] was 

used for Langevin dynamics with a friction coefficient of 0.1 ps-1, a constant temperature of 310 K, and a 

0.002-ps timestep. Prior to production, each of four replicates was equilibrated for 50,000 steps (100 ps). 

Simulations were run for 250,000,000 steps (500 ns) and atomic coordinates were saved at 25,000-step (50-

ps) intervals for analyses (10,000 snapshots per quadruplicate simulation). 
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3.2.1.4. Conformational Analysis. Chondroitin conformational properties were quantified by bond 

length, bond angle, and dihedral angle values. Glycosidic linkage conformational values considered were 

bond lengths for C1-O and O-Cn, bond angles defined by O5-C1-O and C1-O-Cn, and ϕ and ψ dihedral 

angles with IUPAC definitions: ϕ = O5-C1-O-Cn and ψ = C1-O-Cn-C(n−1) (Figure 3.2). Glycosidic linkage 

dihedral free energies ΔG(ϕ, ψ) were analyzed to characterize potential conformational patterns. ϕ, ψ 

dihedral values from the MD-generated 20-mer ensemble are taken to have uniform probabilities. ΔG(ϕ, 

ψ) is therefore computed by binning these values into 2.5° x 2.5° bins and then using the relationship 

ΔG(ϕi,ψj) = -RTln(nij) – k, where nij is the bin count for the bin corresponding to ϕi,ψj, R is the universal gas 

constant, T is the temperature of the MD simulations, and k is chosen so that the global minimum is 

located at ΔG = 0 kcal/mol. 

 

Figure 3.2. Nonsulfated chondroitin trisaccharide with glycosidic linkage dihedral angles, 

monosaccharide ring atoms, and linker oxygen atoms labeled; glycosidic linkage parameters used in the 

construction algorithm include C1-O and O-Cn bond lengths, O5-C1-O and C1-O-Cn bond angles, and ϕ = 

O5-C1-O-Cn and ψ = C1-O-Cn-C(n−1) dihedral angles. 

Geometric values defining monosaccharide ring conformations included all bond lengths, bond 

angles, and dihedral angles within the ring and in exocyclic functional groups that are not part of a 

glycosidic linkage. To characterize potential conformational patterns in monosaccharide rings, Cremer-
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Pople (C-P) ring-puckering parameters (ϕ, θ, Q) of each monosaccharide ring in the MD-simulated 20-

mer ensemble were computed. Conformations of each element (i.e., each GlcA monosaccharide, GalNAc 

monosaccharide, b1-3 linkage, and b1-4 linkage) were extracted separately from each saved snapshot of 

the 20-mer MD trajectories. Initially, data were separated out by run and residue/linkage number and 

aggregated across all snapshots in each run to determine if conformational data were the same in 

different runs and if individual linkage and ring conformations are dependent upon one another. 

Subsequently, all individual conformations were aggregated across all snapshots in all runs (e.g., 10,000 

snapshots * 4 runs * 10 GlcA monosaccharides = 400,000 samples of GlcA monosaccharide conformations) 

to yield one set of data for each of: (1) GlcA monosaccharide conformation, (2) GalNAc monosaccharide 

conformation, (3) b1-3 linkage conformation, and (4) b1-4 linkage conformation. 

3.2.2. Construction Algorithm to Generate GAG Conformational Ensembles 

The conformational data described above served as inputs to an algorithm we developed to 

generate chondroitin polymer conformational ensembles of user-specified length and with a user-

specified number of conformations. The algorithm works as follows: 

1. In each constructed polymer conformation, each glycosidic linkage and monosaccharide ring is 

treated independently, and conformational parameters are randomly selected from the database 

containing the corresponding linkage or ring conformations from the 20-mer MD trajectories; 

2. Two CHARMM stream files are written, one to define the sequence and linkages in the polymer 

and another to perform the following procedure for each frame: (1) All internal geometry 

conformation values selected by the algorithm are assigned and used to construct atomic 

coordinates. (2) End-to-end distance (i.e., distance between C1 of the reducing end and C4 of the 

nonreducing end) and radius of gyration are calculated. (3) A 100-step steepest descent (SD) 

potential energy minimization followed by a 100-step conjugate gradient minimization, each with 

intramolecular restraints, is performed to relieve bonded strain and steric clashes. The Lennard–
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Jones potential (𝐸:;<) is calculated on an atom–atom pair (𝑖, 𝑗) basis using an energy switching 

function, as implemented in CHARMM with ron = 7.5 Å and roff = 8.5 Å [229]. As there is no 

solvent and thus no solvent screening of electrostatic interactions, electrostatics are excluded 

from energy calculations to prevent the nonphysical intramolecular association of charged and 

polar groups. All glycosidic linkage and endocyclic ring dihedral angles, along with a dihedral 

angle in each GlcA carboxylate group (C4-C5-C6-O61) and GalNAc N-acetyl group (C-N-C2-C3), are 

restrained to their starting values (i.e., those randomly selected from the database) during 

minimization so as not to change the conformations observed in simulation. Dihedral restraint 

energy (𝐸2(01.) is calculated by comparing each restrained dihedral angle’s database value (𝜙$) to 

its value (𝜙8) in the current frame of minimization with a force constant (𝑘(01.) of 100.0 

kcal/mol/radian/radian (Equation 3.1) 

𝐸2(01. = 𝑘(01. ∗$(𝜙8 − 𝜙$)% (3.1); 

3. To ensure conformational ensembles do not contain nonphysical conformations, a bond potential 

energy (𝐸#) cutoff is applied. This cutoff is the sum of a polymer-length-specific cutoff and a 

constant independent of polymer length. The length-specific component of the cutoff is the bond 

potential energy after energy minimization, performed using the same restraints and 

minimization protocol used for each frame of the constructed ensemble (outlined above), of the 

polymer constructed in a fully-extended conformation (i.e., with the same glycosidic linkage ϕ 

and ψ angles as the starting conformation for MD simulations). The constant is added as a buffer 

to account for slight variations in the energies of other extended conformations. As linkage and 

ring conformations are treated independently and selected at random, it is possible to have a 

bond piercing another monosaccharide ring that may not be corrected by minimization. To 

estimate the ring-piercing bond strain energy for each exocyclic bond not participating in a 

glycosidic linkage, a system containing two nonbonded monosaccharides (i.e., GlcA and GalNAc, 
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GlcA and GlcA, or GalNAc and GalNAc) was constructed such that an exocyclic bond of one 

monosaccharide pierces the ring of the other. To estimate the bond strain energy for each bond 

participating in a glycosidic linkage, a system containing one disaccharide unit (i.e., GlcAβ1-

3GalNAc or GalNAcβ1-4GlcA) and a single monosaccharide (i.e., GlcA or GalNAc) was 

constructed such that a linkage bond in the disaccharide pierces the ring of the single 

monosaccharide. Systems containing interlocking rings (i.e., GlcA-GalNAc, GlcA-GlcA, and 

GalNAc-GalNAc) were also constructed to estimate the bond strain energy of the bonds piercing 

the opposite ring. The same energy minimization protocol used in the algorithm was performed 

on this conformation, as well as a conformation in which the nonbonded saccharide units are 20 

Å apart, and the post-minimization lengths of the bond piercing the ring in the initial 

conformation were compared. The pierced bond length (𝑥%), the nonpierced bond length (𝑥8), and 

the equilibrium bond length (𝑥$) and corresponding force-field bond-stretching constant (𝑘#) 

from the CHARMM parameter file were used to estimate a lower bound on the energy (Δ𝐸#) 

resulting from the bond distortion (Equation 3.2). 

Δ𝐸# = 𝑘# ∗ [(𝑥% − 𝑥$)% −	(𝑥8 − 𝑥$)%] (3.2) 

Of all conformations that still had a bond piercing a ring after minimization, the smallest Δ𝐸# = 

132.3 kcal/mol. Of the conformations in which ring piercing was corrected during minimization, 

the maximum Δ𝐸# < 1 kcal/mol. Thus, a buffer of 100 kcal/mol is added to the post-minimization 

bond potential of the initial extended conformation for any given polymer length. If the post-

minimization bond potential of a given frame is beyond this cutoff, the frame is excluded from 

the ensemble. 

For internal validation of our implementation of the algorithm, bond length probability 

distributions for each type of bond (i.e., C-C single bond, C-O single bond, C=O double bond, C-O partial 

double bond of GlcA carboxylate group, C2-N single bond between GalNAc amide and ring carbon, C-N 
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single bond within GalNAc amide, C-H bond, O-H bond, and N-H bond), free energies ΔG(ϕ,ψ) for b1-3 

and b1-4 glycosidic linkages, C-P parameters of GlcA and GalNAc monosaccharide rings, end-to-end 

distance distributions, and scatterplots of radius of gyration as a function of end-to-end distance from 

MD-generated ensembles and constructed ensembles both before and after energy minimization were 

compared. Additionally, bond potential energy distributions from constructed ensembles after energy 

minimization were plotted to verify that the algorithm calculated an appropriate energy cutoff and gave 

the expected energy distributions for the given polymer size. 

To assess the expediency of application of MD-generated 20-mer conformations to construct 

chondroitin polymers of variable length, we constructed a nonsulfated chondroitin 10-mer ensemble 

using the algorithm and compared it to chondroitin 10-mer conformational ensembles generated by MD 

using the same protocol as the 20-mer simulations. We also constructed conformational ensembles of a 

nonsulfated chondroitin 100-mer and 200-mer to demonstrate the efficacy and efficiency of our algorithm 

to construct conformational ensembles of chondroitin polymers with biologically-relevant chain lengths. 

3.3. Results and Discussion 

3.3.1. Glycosidic Linkage Geometries 

In nonsulfated chondroitin 20-mer MD simulations, we found that all ϕ, ψ dihedrals sampled in 

GlcAβ1-3GalNAc linkages were centered about a global free energy minimum (Min I) while GalNAcβ1-

4GlcA linkages showed more flexibility. In addition to a global minimum, ΔG(ϕ, ψ) for GalNAcβ1-4GlcA 

also had two local minima (Min II and Min II’) (Figure 3.3 and Table 3.1). To validate these observed 

glycosidic linkage geometries, we looked at the free energy minima of nonsulfated chondroitin glycosidic 

linkage dihedrals from biased MD simulations of disaccharides (using dihedral definitions ϕ = O5-C1-O-

Cn and ψ = C1-O-Cn-C(n+1) as opposed to the IUPAC ψ = C1-O-Cn-C(n−1) used in our study) [212] (Table A.1). 

We found that at each free energy minimum in β1-3 and β1-4 linkages, our ϕ dihedrals differed by no 

more than +/-2.5° and our ψ dihedrals differed by no more than +/-127.5°, which is in close agreement if 
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we assume C1-O-C3-C2 = C1-O-C3-C4 + 120° and C1-O-C4-C3 = C1-O-C4-C5 - 120°. Additionally, our data 

were mostly in agreement with the most energetically-favorable glycosidic linkage dihedrals (i.e., at 

global minima) in nonsulfated chondroitin hexasaccharides from MD simulations (using dihedral 

definitions ϕ = O5-C1-O-Cn and ψ = C1-O-Cn-C(n+1)) and validated by NMR [259] (Table A.1). The biggest 

difference was in our β1-3 ψ dihedrals, which differed by about +100° (+120° difference expected). This 

study restrained pyranose rings to 4C1 chair and did not use explicit solvent in simulations. Each of these 

factors may contribute to interactions between neighboring monosaccharides and thus glycosidic linkage 

conformation, which would explain the variation from our results. 
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Figure 3.3. ΔG(ϕ, ψ) in nonsulfated chondroitin 20-mer ensembles for aggregated GlcAβ1-3GalNAc and 

GalNAcβ1-4GlcA glycosidic linkage data (a,b) MD-generated ensembles, (c,d) constructed ensembles 

before minimization, and (e,f) constructed ensembles after minimization; contour lines every 1 kcal/mol. 

(a) (b) 

(c) (d) 

(e) (f) 
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Table 3.1. Glycosidic Linkage Dihedrals (ϕ, ψ) 1 and Free Energy (ΔG(ϕ, ψ) kcal/mol) Minima. 

 MD-Generated 20-mer 
Ensemble 

Constructed 20-mer Ensemble 
(Before Energy Minimization) 

Constructed 20-mer Ensemble 
(After Energy Minimization) 

 GlcAβ1-3 
GalNAc 

GalNAcβ1-4 
GlcA 

GlcAβ1-3 
GalNAc 

GalNAcβ1-4 
GlcA 

GlcAβ1-3 
GalNAc 

GalNAcβ1-4 
GlcA 

Min ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG 

I 
-81.25°, 
-153.75° 0.00 

-66.25°, 
116.25° 0.00 

-76.25°, 
-148.75° 0.00 

-66.25°, 
116.25° 0.00 

-81.25°, 
-153.75° 0.00 

-68.75°, 
121.25° 0.00 

II   -58.75°, 
-33.75° 1.57   -61.25°, 

-33.75° 1.54   -58.75°, 
-33.75° 1.57 

II’   -86.25°, 
-73.75° 1.80   -86.25°, 

-73.75° 1.71   -86.25°, 
-78.75° 1.73 

1 ϕ, ψ dihedral angles were sorted into 2.5° bins. 

For internal validation of the construction algorithm, we compared glycosidic linkage input and 

output data. If the algorithm is performing correctly, ΔG(ϕ, ψ) from the MD ensemble and the 

constructed ensemble before minimization will be nearly identical, and ΔG(ϕ, ψ) from the constructed 

ensemble after minimization will not be substantially different. Performing the comparison between the 

ensemble of 40,000 20-mer conformations from the MD and a constructed ensemble of the same size 

confirmed this to be the case. Figure 3.3 demonstrates that ΔG(ϕ, ψ) for GlcAβ1-3GalNAc and for 

GalNAcβ1-4GlcA glycosidic linkages were qualitatively identical when comparing the MD-generated 

and constructed ensembles. Quantitative analysis (Table 3.1) showed that the global minima (Min I) for 

both types of linkages and the secondary local minima (Min II and Min II’) for GalNAcβ1-4GlcA linkages 

were basically identical with 0° to 5° differences between the MD-generated input data and the 

constructed ensemble output data before minimization. The minimization in the construction algorithm, 

used to resolve any steric clashes, resulted in relatively minor changes in the location of the global 

minima, also ranging from 0° to 5°. Constructed ensemble glycosidic dihedral values after minimization 

were within 5° of the MD data, and ΔG(ϕ, ψ) values were within 0.1 kcal/mol. 
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As detailed in Methods and discussed below, the minimization portion of the construction 

algorithm not only relieves any steric clashes, but also is used to detect bond-strain energies indicative of 

ring piercing. The close similarity of ΔG(ϕ, ψ) for the constructed ensemble after minimization in 

comparison to the MD-generated ensemble suggests that few constructed conformations had large steric 

clashes, resulting in large conformational shifts after minimization. It also suggests that a few constructed 

conformations had ring-piercing events that necessitated their exclusion from the constructed ensemble 

altogether. Indeed, this was the case: during the creation of the 40,000-member constructed ensemble, 

only 18 conformations were excluded because they failed to meet the bond-strain energy criterion. 

3.3.2. GlcA Ring Pucker Effects 

An initial implementation of the construction algorithm used default force-field geometries for all 

GalNAc and GlcA rings. The result was that all GalNAc and GlcA rings in an algorithmically-constructed 

conformation had the same internal geometries. Ensembles constructed using this version of the 

algorithm had longer average end-to-end distances than MD-generated ensembles (Figure A.1), which 

meant that, on average, constructed conformations were overly extended. The default force-field ring 

pucker geometry for both types of monosaccharides was 4C1. With that ring pucker, all βGlcA and all but 

one βGalNAc exocyclic functional groups are equatorial, and therefore the 4C1 ring pucker is expected to 

be strongly preferred to other ring pucker geometries. To validate this simple approach to assigning ring 

pucker geometry, we computed C-P parameters of each monosaccharide ring in the MD-simulated 20-

mer ensemble (10 * 40,000 = 400,000 ring conformations for each of the two monosaccharide types). As 

seen in NMR and force-field studies, the stable 4C1 chair ring pucker was the principal conformer for both 

GlcA [220,259,306-308] and GalNAc [216,259,307,309] in the MD simulations, with slight deformations (0° 

< C-P q < 30°) (Figure 3.4.a,b). However, a small minority of GlcA ring conformers were skew-boat or 

boat, namely 3S1, B1,4, 5S1, 2,5B, 2SO, B3,O, 1S3, 1,4B, and 1S5 (60° < C-P q < 120°) (Figure 3.4.b). Studies that 

performed unbiased MD simulations with other force fields observed skew-boat and boat ring puckers of 
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nonsulfated GlcA monosaccharides on the microsecond timescale but the occurrences were negligible 

due to high energy barriers [220,307]. In line with those findings, we observed only occasional GlcA 

skew-boat and boat pucker transitions in chondroitin 20-mers in our 500-ns unbiased CHARMM 

simulations. However, the C-P ϕ values in non-4C1 GlcA conformers in these studies differed from ours. 

Specifically, one study found 2SO, B3,O, 1S3, 1,4B, and 1S5 [307]. Slight differences could be explained by 

differing ion concentrations which likely impacts pyranose ring puckers [310]. However, it is likely that 

the differences primarily result from intramolecular interactions. The aforementioned literature data 

come from simulated GlcA monosaccharides only, whereas our results come from simulated chondroitin 

20-mers. 
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Figure 3.4. Cremer–Pople data for GalNAc and GlcA in (a,b) MD-generated ensembles and constructed 

ensembles (c,d) before and (e,f) after energy minimization; geometries from the four sets of each type of 

ensemble are represented by red, green, blue, and magenta dots, respectively and the force-field 

geometry is represented by a single large black dot. Cremer–Pople parameters (ϕ, θ) for all rings in every 

tenth snapshot from each ensemble were plotted (i.e., 10 rings * 1,000 snapshots per run * 4 runs = 40,000 

parameter sets). As the algorithm reads all ring conformations sampled in MD, not all datapoints in 

panels c, d, e, and f are seen in panels a and b but the full MD-generated dataset contains all datapoints in 

the constructed ensembles. 

(a) (b) 

(c) (d) 

(e) (f) 
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The MD-generated 20-mer GlcA ring conformations can be separated into two broad categories: 

those that do not introduce a kink into the polymer and those that do. With the inclusion of 4C1, the 

former category encompasses 4C1 and 2SO GlcA ring puckers, both of which place the two glycosidic 

linkage oxygen atoms, located at opposite ends of the ring, in an equatorial conformation (Figure 3.5.a). 

As such, the O-C1 and C4-O bond vectors therein are approximately parallel and promote extended 

polymer conformations. The latter category encompasses 3S1, B1,4, 5S1, 2,5B, B3,O, 1S3, 1,4B, and 1S5 GlcA ring 

puckers (Figure 3.5.b). These ring puckers all place one of these glycosidic linkage oxygen atoms in the 

equatorial position and the other in the axial position. For these ring puckers, the O-C1 and C4-O bond 

vectors are approximately perpendicular, which results in a kink in the polymer chain, and can reduce 

end-to-end distance even when the remainder of the polymer is fully extended (Figure 3.5.b). 
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Figure 3.5. (a) 20-mer conformation with a 2SO GlcA conformer (colored by atom type with flanking 

linkage atoms highlighted in purple) and close-ups of GlcA monosaccharide rings in 4C1 and 2SO 

conformations (shows endocyclic ring atoms and linker oxygen atoms only); (b) 20-mer conformation 
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with a kink at a 5S1 GlcA conformer (colored by atom type with flanking linkage atoms highlighted in 

purple) and GlcA monosaccharide rings in 5S1, 3S1, B1,4, 2,5B, B3,O, 1S3, 1,4B, and 1S5 conformations (shows 

endocyclic ring atoms and linker oxygen atoms only); (c) 20-mer conformation with a curve caused by 

flexible glycosidic linkage geometries (highlighted in purple) and all monosaccharides in 4C1 

conformations; all images came from MD-generated ensembles. 

As such, the final version of the construction algorithm uses MD-generated ring conformations 

instead of default force-field topology geometries. As an added benefit, this approach includes not only 

MD-generated ring dihedral angles but also bond lengths and angles. Using this finalized version of the 

algorithm, the peak in the end-to-end distance histogram for the constructed ensemble was shifted left 

compared to that resulting from force-field topology ring geometries (Figure 3.6 vs. Figure A.1) and much 

more closely matched the reference MD-generated ensemble data. This finding shows the importance of 

accounting for ring flexibility in constructing chondroitin glycosaminoglycan polymer conformations 

similar to those sampled in all-atom explicit-solvent MD simulations. Of note, the radius of gyration was 

also analyzed as a function of end-to-end distance in MD-generated and constructed ensembles after 

minimization (Figure A.2.a,b). These results showed that the radius of gyration is highly correlated with 

end-to-end distance in both MD-generated and constructed ensembles. 
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Figure 3.6. End-to-end distance probability distribution of MD-generated (blue dashed lines) and 

constructed (red solid lines) 20-mer ensembles; each type of ensemble includes four sets of 10,000 

conformations; probabilities were calculated for end-to-end distances sorted into 0.5 Å bins. 

While polymer kinks from ring puckering can lead to the shortening of polymer end-to-end 

distances, they are not required to achieve this. For 20-mers, flexibility in the glycosidic linkages even 

with 4C1 ring puckering in all constituent monosaccharides can be sufficient to produce compact 

conformations (Figure 3.5.c). Furthermore, because of the flexibility in the glycosidic linkages flanking 

non-4C1 ring puckers, polymer kinks from ring puckering do not always lead to compact conformations. 

Thus, the leftward shift in the end-to-end distance histogram upon the inclusion of non-4C1 ring puckers 

supplements glycosidic linkage flexibility in yielding compact conformations. 

3.3.3. Treating Glycosidic Linkage and Ring Pucker Geometries as Independent Variables 

To determine if linkage geometries and ring deformations are interdependent, individual 

glycosidic linkage ΔG(ϕ, ψ) plots (Figure A.3) were created (as opposed to the aggregate data ΔG(ϕ, ψ) 

plots in (Figure 3.3) and no distinguishing patterns emerged. These per-linkage glycosidic linkage data 

were also examined in the context of C-P plots of adjacent rings (Figure A.4), for which there were also no 

distinguishing patterns. Additionally, ϕ and ψ values in linkages flanking GlcA rings not in a 4C1 chair 

conformation were checked. For each linkage type, these conformations were all centered about the 

global ΔG(ϕ, ψ) minima for the aggregate data (Figure 3.3), and 99.96% of conformations fell within the 

basin extending to ΔG(ϕ, ψ) = +2 kcal/mol (Figure 3.7). Furthermore, different types of non-4C1 chair 

conformers did not have unique flanking linkage geometries. As no connection between linkage and ring 

conformations was observed in this analysis of the MD data, each linkage conformation and ring pucker 

was treated independently in the construction algorithm. 

(a) (b) 
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Figure 3.7. ΔG(ϕ, ψ) plots for glycosidic linkages flanking non-4C1 GlcA conformers in nonsulfated 

chondroitin 20-mer MD-generated ensembles: (a) GlcAβ1-3GalNAc and (b) GalNAcβ1-4GlcA. 

3.3.4. Handling Nonphysical Constructed Conformations 

To determine a criterion to exclude nonphysical conformations from constructed ensembles, 

energy minimization with restrained endocyclic ring and glycosidic linkage dihedrals was performed on 

each conformation, and post-minimization bond potential energy and bond length probability 

distributions were analyzed. Conformations with outlying bond energies and abnormally long bonds 

may point to ring piercing (Figure 3.8) that cannot be fixed by minimization. To confirm this possibility, 

the post-minimization conformations with bond energies greater than that of the fully-extended 20-mer 

conformation after minimization were visualized. As anticipated, among these conformations, most with 

outlying total bond energies contained pierced rings which were not resolved by minimization. For each 

of the 12 20-mer conformations with a pierced ring, the difference between the post-minimization bond 

energy and that of the fully-extended 20-mer conformation was greater than the predicted energy change 

caused by bond distortions of that pierced ring (Table A.2). The six conformations with outlying bond 

energies that did not contain pierced rings had kinks that resulted in bond length and bond angle 

distortions in glycosidic linkages that were nearly overlapping even after minimization. Of note, those 

conformations with bond energies that were not outlying were fully extended. These findings motivated 

using a bond potential energy cutoff in the construction algorithm. As stated previously, applying this 
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cutoff resulted in 18 conformations being excluded during creation of the 40,000-member constructed 

ensemble. The resulting constructed ensemble contains no outlying bond lengths (Figure A.5). 

 

Figure 3.8. Constructed 20-mer conformation with a GlcA ring pierced by a GalNAc C-CT bond and a 

closeup panel showing atoms involved in the ring pierce; Eb = 787.7 kcal/mol, fully-extended 20-mer post-

minimization Eb = 29.6 kcal/mol, ΔEb = 758.1 kcal/mol (Table A.2). 

Dihedral angles before and after energy minimization were compared by analyzing glycosidic 

linkage ΔG(ϕ, ψ) (Table 3.1 and Figure 3.3.c-f), monosaccharide ring C-P parameters (Figure 3.4.c-f), and 

the change in ϕ and ψ dihedral angles due to minimization. All ΔG(ϕ, ψ) and C-P plots after energy 

minimization matched those from before energy minimization and 99.6% of all ϕ and ψ dihedral angle 

differences before and after minimization were within 4° (Figure A.6). This confirmed that dihedrals did 

not undergo any major changes during minimization. Additionally, differences in end-to-end distance 

before and after minimization were calculated and the maximum change was 2.13 Å with 99.9% of 

changes under 0.5 Å, confirming that overall backbone conformation did not change as a result of 

minimization. According to these results, the selected bond potential energy cutoff and restraint scheme 

during minimization gave conformations with little deviation from the initial constructed conformations 

before minimization. 



45 
 

3.3.5. Internal Validation on 10-mers 

To further validate the algorithm and test the use of conformational parameters from MD-

generated 20-mer ensembles to construct polymers of variable length, we constructed nonsulfated 

chondroitin 10-mer ensembles and compared them to MD-generated 10-mer ensembles. All linkage and 

most ring conformations in MD-generated 10-mer (Figures 3.9 and A.7) and 20-mer ensembles matched 

(Figures 3.3.a,b and 3.4.a,b), with the exception of non-4C1 GlcA rings which were not sampled in 10-mer 

simulations. This finding, combined with the report from NMR and force-field studies suggesting that 

GlcA skew-boat and boat conformations are negligible in nonsulfated chondroitin mono- and 

oligosaccharides [220,307] suggests that these GlcA conformations may result from intramolecular 

interactions in longer GAG polymers. 

 

Figure 3.9. ΔG(ϕ, ψ) plots for each glycosidic linkage in nonsulfated chondroitin 10-mer MD-generated 

ensembles: (a) GlcAβ1-3GalNAc and (b) GalNAcβ1-4GlcA. 

Additionally, the end-to-end distance distributions of constructed and MD-generated 10-mer 

ensembles matched with minimal difference in the most probable end-to-end distance (Figure 3.10 and 

Table 3.2). Further, the radius of gyration was highly correlated with end-to-end distance in both MD-

generated and constructed ensembles (Figure A.2.c,d). Of note, the end-to-end distance distributions of 

MD-generated 20-mer ensembles more closely matched those of 20-mer ensembles constructed using 

MD-generated 20-mer conformations (Figure 3.6) than those of 20-mer ensembles constructed using MD-

generated disaccharide conformations (Figures A.8 and A.9). Together, these findings suggest that MD-

(a) (b) 
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generated 20-mer conformational parameters are ideal for constructing chondroitin polymers of different 

lengths. 

 

Figure 3.10. End-to-end distance probability distribution of MD-generated (blue dashed lines) and 

constructed (red solid lines) 10-mer ensembles; each type of ensemble includes four sets of 10,000 

conformations; probabilities were calculated for end-to-end distances sorted into 0.25 Å bins. 
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Table 3.2. Most Probable End-to-End Distances (d) in MD-Generated and Constructed Ensembles 1. 

 20-mer Ensembles 10-mer Ensembles 

 
MD-

Generated 
d (Å) 

Constructed 
d (Å) % Difference 

MD-
Generated 

d (Å) 

Constructed 
d (Å) % Difference 

Run 1 88.5 83.0  45.25 44.50  
Run 2 88.5 85.5  45.25 43.50  
Run 3 86.0 85.0  45.50 44.50  
Run 4 86.5 85.0  45.25 44.25  
All 2 88.5 85.0 4.03% 45.25 44.50 1.671% 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer ensembles 

and 0.25 Å bins for the 10-mer ensembles. 2 All = end-to-end distance distribution aggregated across all 

four runs. 

3.3.6. Application to Longer Chondroitin Polymers 

To implement the algorithm in the construction of conformational ensembles of nonsulfated 

chondroitin polymers of biologically-relevant chain lengths, chondroitin 100-mer and 200-mer ensembles 

were constructed and the end-to-end distance (Figures 3.11 and 3.12), radius of gyration (Figure A.2.e,f), 

and bond potential energy distributions (Figure A.10.c,d) were examined. The skewness of the end-to-

end distance distributions shifted toward the right with increasing polymer length. This stands to reason, 

as there is a greater chance of folding with longer chains. This also explains why there were more frames 

excluded from these ensembles (i.e., 457 and 1407 frames excluded from the 100-mer and 200-mer 

ensembles, respectively). Bond potential energy distributions had similarly-shaped curves in all polymer 

lengths (Figure A.10) and energy values increased linearly as a function of atom count (Figure A.11). 

These results suggest that 100-mer and 200-mer conformational ensembles constructed using our 

algorithm (Figures 3.11 and 3.12) are reasonable predictions of biological conformations given their high 

number of degrees of freedom. 



48 
 

 

Figure 3.11. (a) End-to-end distance probability distribution of constructed 100-mer ensemble; includes 

four sets of 10,000 conformations; probabilities were calculated for end-to-end distances sorted into 5 Å 

bins. (b,c) Snapshots of the nonsulfated chondroitin 100-mer having the most-probable end-to-end 

distance (225 Å in both snapshots) from constructed ensembles. 

(a) 

(b) 

(c) 



49 
 

 

Figure 3.12. (a) End-to-end distance probability distribution of constructed 200-mer ensemble; includes 

four sets of 10,000 conformations; probabilities were calculated for end-to-end distances sorted into 10 Å 

bins. (b,c) Snapshots of the nonsulfated chondroitin 200-mer having the most-probable end-to-end 

distance (300 Å in both snapshots) from constructed ensembles. 

(a) 

(b) 

(c) 
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3.4. Conclusions 

With (1) all bond, bond angle, and dihedral angle conformational parameters from MD 

incorporated into the algorithm, (2) monosaccharide rings and glycosidic linkages treated independently, 

(3) energy minimization performed on each constructed conformation, and (4) a bond potential energy 

cutoff applied, end-to-end distance probability distributions from constructed and MD-generated 

ensembles matched with minimal differences in most probable end-to-end distances (Table 3.2 and 

Figures 3.6, 3.10, 3.11, and 3.12) suggesting that our algorithm produces conformational ensembles that 

mimic the backbone flexibility seen in MD simulations of nonsulfated chondroitin polymers. 

Our program is also valuable for its efficiency. For example, the fully-solvated chondroitin 20-

mer system contains ~191,000 atoms and took about one month to simulate. It took only about 12.5 h to 

construct the 20-mer conformational ensembles using our algorithm, in which all end-to-end distances, 

radii of gyration, bond lengths, dihedral angles, monosaccharide ring PDB files for C-P analysis of every 

tenth frame, and bond and system potential energies before and after minimization, C-P parameters of 

every GlcA ring in every frame, and PDBs of all conformations with bond energies greater than that of 

the fully-extended 20-mer (including conformations with pierced rings) were written. The fully-solvated 

chondroitin 10-mer system contains ~36,000 atoms and took about five days to simulate. The 10-mer 

ensembles were constructed using our algorithm in about 40 min and energies, dihedral angles, end-to-

end distances, and radii of gyration after minimization, C-P parameters of every GlcA ring in every 

frame, and PDBs of all conformations with bond energies greater than that of the fully-extended 10-mer 

were written. Fully-solvated chondroitin 100-mer and 200-mer systems would contain ~3,370,000 atoms 

and ~75,450,000 atoms, respectively. Systems of this magnitude are not feasible to simulate with current 

computational resources but if they could be simulated, they would take on the order of years to 

complete. Construction of the chondroitin 100-mer and 200-mer conformational ensembles using our 

algorithm took about four and nine hours, respectively, and the algorithm produced the same output 
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data types as for the 10-mer (n.b.: these timings are less than the 20-mer timing above because of all of the 

additional output written to disk for analysis in the case of the 20-mer ensemble construction). 

In conclusion, our algorithm, incorporating glycosidic linkage and monosaccharide ring 

conformations from the MD simulation of nonsulfated chondroitin 20-mers, can be used to efficiently 

generate conformational ensembles of nonsulfated chondroitin polymers of arbitrary length. We are 

investigating the applicability of this approach to various sulfo-forms of CS and different types of GAGs, 

including hyaluronan (HA), dermatan sulfate (DS), heparan sulfate (HS), and keratan sulfate (KS). Given 

the variability and complexity of GAGs, as well as existing barriers to the experimental characterization 

of the three-dimensional conformational properties of GAGs of lengths relevant in the context of PGs, 

there are currently very few efforts to target GAGs. We anticipate that the presented algorithm, combined 

with experimental data on PG core proteins and conformational analysis of the linker tetrasaccharide 

[210,218,311-313], may provide a useful means of generating atomic-resolution three-dimensional models 

of full PGs. The algorithm could also be used to model full GAG–protein complexes, which may provide 

insights into potential interactions between multiple biomolecules within a single GAG complex. The 

ability to model these complex biomolecules would be a key step towards improving understanding of 

GAG bioactivity, assessing the druggability of GAGs, designing agonists or antagonists to treat disease, 

and developing diagnostic tools. Thus, this methodology may open a new avenue into disease 

modulation. 
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CHAPTER 4 

CONSTRUCTING 3-DIMENSIONAL ATOMIC-RESOLUTION MODELS OF NONSULFATED 

GLYCOSAMINOGLYCANS WITH ARBITRARY LENGTHS USING 

CONFORMATIONS FROM MOLECULAR DYNAMICS 

This chapter has been published as: 

Whitmore, E.K.; Martin, D.; Guvench, O. Constructing 3-Dimensional Atomic-Resolution Models of 
Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular 
Dynamics. International Journal of Molecular Sciences. 2020, 21(20), 7699. doi:10.3390/ijms21207699 

4.1. Introduction 

Proteoglycans (PGs) are a diverse group of proteins in the extracellular matrix (ECM), as well as 

on and within cells in animal tissue. PGs play key roles in signal transduction [9,25], tissue 

morphogenesis [1-3,5,265], and matrix assembly [5,47,92,93] by binding growth factors [1-3,5,11,17-

22,265], enzymes [5,22], membrane receptors [22], and ECM molecules [5,9,22]. Many of these functions 

are mediated by glycosaminoglycans (GAGs), which are linear, highly negatively charged, and 

structurally diverse carbohydrate chains covalently linked to PGs. Specifically, GAGs can form covalent 

and noncovalent complexes with proteins or inhibit complex formation with other biomolecules. All of 

these functions allow GAGs to modulate disease. For example, hyaluronan can predict disease outcome 

and is used as a treatment for osteoarthritis [314,315]; deficiency of dermatan sulfate has been linked to 

Ehlers-Danlos syndrome, so screening of dermatan sulfate in urine may present a method of diagnosis 

[169,170]; reduced cerebral cell keratan sulfate levels have been implicated in Alzheimer’s disease [142]; 

and heparan sulfate has been shown to induce septic shock [173,267]. 

GAG-protein binding is determined by the sequence, structure, shape, and charge of the GAG 

and GAG-binding region of the protein [22,41]. Therefore, the three-dimensional structure and 

conformation of GAGs determine their bioactivity, and even subtle structural differences can change their 

function. For example, while hyaluronan and chondroitin have many functional differences, the only 
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structural difference is in the chirality of carbon four in the amide monosaccharide derivatives (i.e., N-

acetylglucosamine and N-acetylgalactosamine, respectively). The structural and conformational 

complexities of GAGs make studying GAG conformational thermodynamics at atomic resolution a 

challenge using existing experimental methods. Structural complexities arise from nontemplate-based 

synthesis [37] and variable sulfation [270], which means a single GAG type can have variable lengths and 

sulfation patterns, making it polydisperse and heterogeneous. Conformational complexities result from 

glycosidic linkage flexibility [188-193] and ring puckering [188]. There are several experimental 

techniques for studying GAGs, including liquid chromatography-mass spectrometry (LC-MS) [271-273], 

X-ray crystallography [200-205], and nuclear magnetic resonance (NMR) [195,215,274,275], but no single 

technique is able to account for all of these complexities. While each has its limitations, these 

experimental techniques provide a critical means to validate molecular dynamics (MD) simulations [215-

221]. MD can be used to generate atomic-resolution conformational ensembles of GAGs under 

physiological conditions, and agreement between MD-generated results and available experimental data 

builds confidence that MD does indeed generate realistic three-dimensional atomic-resolution GAG 

models [210-214]. However, all-atom explicit-solvent MD is not a feasible tool for routine simulation of 

large systems, and GAG biopolymers may consist of up to 200 monosaccharide units [2], which, when 

fully solvated, would result in a system with over 106 atoms. Coarse-grained (CG) MD is a feasible 

alternative for simulations of long GAG polymers, but may be limited because it lacks the atomic 

resolution and the accurate treatment of solvation provided by all-atom explicit-solvent MD [218,253-

255]. 

As an alternative approach to obtaining atomic-resolution, three-dimensional, conformational 

ensembles of long GAG biopolymers, we developed an algorithm that uses glycosidic linkage and 

monosaccharide ring conformations from unbiased all-atom explicit-solvent MD simulations [214,243-

245] of GAG 20-mers (i.e., 20 monosaccharide units) to rapidly generate GAG polymer conformational 
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ensembles of user-specified length and with a user-specified number of conformations [188]. In our 

previous work, we examined nonsulfated chondroitin GAGs. Here, we aim to expand the application of 

our algorithm to hyaluronan and to nonsulfated forms of dermatan, keratan, and heparan. Nonsulfated 

forms were chosen for their simplicity and homogeneity. The algorithm is expected to produce 

conformational ensembles that mimic the backbone flexibility observed in simulations only if individual 

ring and linkage conformations of GAG 20-mers behave randomly and independently in simulation. This 

means that the algorithm will not produce polymer conformations with higher-order structures. 

It has been suggested that hyaluronan may take on higher-order structures [316] and while it has 

been shown that helical structures occur in hyaluronan oligosaccharides [317,318], this behavior may not 

necessarily be extrapolated to long polysaccharides under physiological conditions. Hyaluronan 

oligosaccharides have been shown to exhibit rigid structures in aqueous solution, possibly resulting from 

electrostatic effects and hydrogen-bonding between neighboring monosaccharides [257,309,317,319-323]. 

MD studies of hyaluronan di- and tri- saccharides in aqueous solution (without ions) revealed that 

hydrogen-bonds form but do not remain for long periods of time, and do not always occur at the same 

time in different regions of the oligosaccharide [257,319]. It has been shown that under physiological 

conditions, the extended conformations and large hydrodynamic radius of hyaluronan can be attributed 

primarily to hydrogen-bonding between adjacent monosaccharides (and less so to electrostatic effects) 

[320]. It is important to note that each of these studies examined short hyaluronan oligosaccharides; thus, 

atomic-resolution conformational properties of long polysaccharides under physiological conditions have 

not been reported. 

We sought to determine (1) if longer polysaccharides of hyaluronan and nonsulfated dermatan, 

keratan, and heparan took on a higher-order structure during MD simulations in an aqueous solution 

with physiological ion strength and, consequently, (2) if our algorithm could construct conformational 

ensembles of GAGs that mimic the backbone flexibility observed in MD simulations. To this end, we ran 
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a microsecond-scale, all-atom, explicit-solvent MD on 20-mers of each GAG type with sequences [-4 

glucuronate β1-3 N-acetylglucosamine β1-]10 (hyaluronan), [-4 iduronate α1-3 N-acetylgalactosamine β1-

]10 (dermatan), [-3 galactose β1-4 N-acetylglucosamine β1-]10 (keratan), and [-4 iduronate α1-4 N-

acetylglucosamine α1-]10 (heparan). Analysis of glycosidic linkage and monosaccharide ring 

conformations revealed no apparent correlation between individual rings and flanking linkages in any of 

the 20-mers. Glycosidic linkages took on experimentally-observed helical conformations, and some 

linkages sampled secondary conformations that caused a kink in the polymer. No patterns of 

interdependence between adjacent linkage conformations were seen. While ring and linkage 

conformations did not reach equilibrium in hyaluronan simulations on the microsecond timescale, overall 

hyaluronan 20-mer appeared to behave randomly. End-to-end distance distributions revealed mostly 

extended conformations (n.b.: we use the term “extended” throughout to describe conformations with 

high end-to-end distances; this does not necessarily contradict helical structure) with some compact 

conformations resulting from non-4C1 ring puckering, which brought the oxygen atoms in sequential 

glycosidic linkages closer together, and certain glycosidic linkage conformations that brought 

neighboring monosaccharides closer together. Thus, these ring and linkage conformations both introduce 

a kink in the polymer. These conformations are independent and occur rarely on the microsecond 

timescale. The variability in individual ring and linkage conformations, as well as end-to-end distances 

and the radii of gyration, demonstrate the flexibility and lack of stable higher-order structures of each of 

these nonsulfated GAG polymers during simulation in aqueous solution. 

For each nonsulfated GAG type, monosaccharide ring and glycosidic linkage conformations from 

MD-generated 20-mers were used as inputs in our algorithm to generate conformational ensembles of 10-

, 20-, and 200-mers. For each GAG type, 10- and 20-mer constructed ensembles were compared to 10- and 

20-mer MD-generated ensembles. In each case, end-to-end distances in constructed and MD-generated 

ensembles match, with minimal differences in most probable end-to-end distances. The similarities in 
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backbone conformation of constructed and MD-generated 10- and 20-mer ensembles provide further 

evidence that there is little correlation between individual glycosidic linkage and ring conformations, and 

thus, that nonsulfated GAG 10- and 20-mers do not exhibit a higher-order structure. This suggests that 

our program can be used to construct realistic conformations of long GAG biopolymers (e.g., 200 

monosaccharides), and the resulting atomic-resolution models may be used to develop further insights 

into GAG binding properties, and thus, GAG-protein complex formation. These will be especially useful 

for studying complexes in which there are multiple biomolecules bound to the same GAG. 

Other programs exist which are capable of constructing three-dimensional, atomic-resolution 

GAG polymer models including Glycam GAG Builder [277], POLYS Glycan Builder [278], CarbBuilder 

[279], MatrixDB GAG Builder [280,281], and CHARMM-GUI [324-327]. These are useful tools for 

constructing the initial structures of GAGs having user-specified sequences and lengths for MD 

simulations. Additional features of Glycam and POLYS Glycan Builder include user specification of 

glycosidic linkage dihedral angle values or construction using conformations from their databases. 

Glycam, POLYS Glycan Builder, and Carb Builder databases consist of GAG mono- and di- saccharide 

structures sampled in MD and/or determined by molecular mechanics calculations. The MatrixDB 

databases contain GAG disaccharide conformations from GAG-protein complex crystal structures. 

CHARMM-GUI uses the CHARMM software [229-231] to construct GAGs with user-specified sequences, 

using default force field parameters for carbohydrates [214,243-245], adding explicit solvents with user-

specified water box size and ion concentrations, and generating inputs for MD equilibration and 

production simulations. Although the user has the option to choose the GAG length, these tools are best 

used for short GAG oligosaccharides. Our algorithm differs from these tools in that it draws upon our 

databases containing full MD-generated unbound GAG 20-mer atomic-resolution conformational 

ensembles. Furthermore, our algorithm is developed for modeling long GAG biopolymers (e.g., 200-

mers), and can efficiently produce large conformational ensembles (e.g., 10,000 3-D models) of long GAG 
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biopolymers. Therefore, our algorithm provides an alternative to MD simulation that takes much less 

time and computational resources. 

4.2. Materials and Methods 

The following protocol was conducted for each of the hyaluronan and nonsulfated dermatan, 

keratan, and heparan GAGs. 

4.2.1. Molecular Dynamics: System Construction, Energy Minimization, Heating, and Production 

Simulations 

System construction, energy minimization, and heating followed the same protocol we described 

previously [188]. Briefly, all polymers were constructed with an explicit solvent using the CHARMM 

software [229-231] v. c41b2 with the CHARMM36 (C36) biomolecular force field for carbohydrates 

[214,243-245]. The initial conformation of each GAG 10- and 20-mer had glycosidic linkage dihedrals 

(with IUPAC definitions: ϕ = O5-C1-O-Cn and ψ = C1-O-Cn-C(n−1)) set to ϕ = −83.75° and ψ = −156.25° in all 

GlcAβ1-3GlcNAc (hyaluronan), IdoAα1-3GalNAc (dermatan), and Galβ1-4GlcNAc (keratan) linkages 

and ϕ = −63.75° and ψ = 118.75° in all GlcNAcβ1-4GlcA (hyaluronan), GalNAcβ1-4IdoA (dermatan), and 

GlcNAcβ1-3Gal (keratan) linkages. These dihedral values were the most energetically stable in 

nonsulfated chondroitin disaccharide glycosidic linkages during MD simulation [212]. In heparan 10- and 

20-mers, all IdoAα1-4GlcNAc glycosidic linkage dihedrals were set to ϕ = −69° and ψ = 147° and all 

GlcNAcα1-4IdoA linkage dihedrals were set to ϕ = 77° and ψ = 30°. These dihedral values were found in 

an NMR and force field study of heparan disaccharides [191] and gave extended heparan polymer 

conformations. With these glycosidic linkage conformations, 20-mer end-to-end distances were 99.0 Å, 

89.7 Å, 85.8 Å, and 87.5 Å for hyaluronan, dermatan, keratan, and heparan, respectively. GAG 20-mers 

were solvated in cubic periodic unit cells with edge lengths of 124.3 Å (63,347 water molecules), 115.0 Å 

(50,066 water molecules), 111.9 Å (46,103 water molecules), and 111.9 Å (46,122 water molecules) for 

hyaluronan, dermatan, keratan, and heparan, respectively. Each of these edge lengths is at least 10 Å 
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longer than the maximum dimension of the corresponding 20-mer in a fully-extended (i.e., maximum 

end-to-end distance) conformation. The TIP3 water model [282,283] as implemented in the CHARMM 

force field, was used for all simulations, and neutralizing Na+ counterions and 140 mM NaCl [328] were 

added. 

The NAMD program [284] v. 2.12 (http://www.ks.uiuc.edu/Research/namd/) was used to 

minimize the potential energy and heat the system to the target temperature of 310 K under constant 

pressure at 1 atm. An unbiased constant particle number/constant pressure/constant temperature (NPT) 

MD run followed, and average periodic cell parameters from the last half of this trajectory were used as 

cell basis vectors for the quadruplicate canonical (NVT) ensemble MD simulations. NVT MD simulations 

were preceded by minimization and heating at constant volume with box edge lengths of 123.7 Å, 114.4 

Å, 111.3 Å, and 111.3 Å for hyaluronan, dermatan, keratan, and heparan, respectively. 

Production simulations were performed using a similar protocol as previously described [188] 

but with a longer timescale and lower frequency for saving snapshots. Briefly, using the CHARMM 

software, each of four replicates (per GAG system) was equilibrated. Then, unbiased canonical (NVT) 

ensemble MD simulations were run for 500,000,000 steps (1 µs) and atomic coordinates were saved at 

50,000-step (100-ps) intervals for analyses (10,000 snapshots per simulation, 40,000 snapshots per GAG). 

4.2.2. Conformational Analysis 

GAG conformational parameters include bond length, bond angle, and dihedral angle values. 

The glycosidic linkage conformational parameters considered were bond lengths for C1-O and O-Cn, bond 

angles for O5-C1-O and C1-O-Cn, and dihedral angles ϕ and ψ (Figure 4.1). To characterize potential 

patterns in glycosidic linkage conformations, dihedral angle free energies ΔG(ϕ, ψ) were analyzed. As ϕ, 

ψ dihedral values from MD-generated ensembles were taken to have uniform probabilities, ΔG(ϕ, ψ) was 

calculated by sorting dihedral angle values into 2.5° × 2.5° bins and then using the formula ΔG(ϕi, ψj) = -

RTln(nij) – k, where nij is the bin count for the bin corresponding to ϕi, ψj, R is the universal gas constant, T 
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is the temperature of the MD simulations, and k was chosen so that the global minimum was located at 

ΔG = 0 kcal/mol. 

 
Figure 4.1. GAG trisaccharides: (a) hyaluronan [GlcNAcβ1-4GlcAβ1-3GlcNAc], (b) nonsulfated dermatan 

[GalNAcβ1-4IdoAα1-3GalNAc], (c) nonsulfated keratan [GlcNAcβ1-3Galβ1-4GlcNAc], (d) nonsulfated 

heparan [GlcNAcα1-4IdoAα1-4GlcNAc]; endocyclic ring atoms and oxygen atoms linking adjacent rings 

are labeled; arrows indicate rotations about glycosidic linkage bonds C1-O and O-Cn (quantified by ϕ and 

ψ dihedral angles, respectively); glycosidic linkage parameters used in the construction algorithm include 

C1-O and O-Cn bond lengths, O5-C1-O and C1-O-Cn bond angles, and ϕ = O5-C1-O-Cn and ψ = C1-O-Cn-C(n−1) 

dihedral angles. Molecular graphics throughout are produced with the VMD program [276]. 

Monosaccharide ring geometries are quantified by all bond lengths, bond angles, and dihedral 

angles within the ring and in exocyclic functional groups that are not part of a glycosidic linkage. Cremer-

Pople (C-P) ring puckering parameters (ϕ, θ, Q) [261] of each monosaccharide ring in the MD-generated 

20-mer ensembles were computed to characterize potential ring puckering patterns. Conformations of 

each monosaccharide and each linkage of the 20-mers were extracted separately from each snapshot of 
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the MD trajectories. First, to determine if conformational data in different runs matched, and if there was 

interdependency in the individual linkage and ring conformations, data were separated by run and 

monosaccharide/linkage number and aggregated across all snapshots in each MD simulation run. Next, 

all individual conformations were aggregated across all snapshots in all runs (e.g., 10,000 snapshots * 4 

runs * 10 GlcA monosaccharides = 400,000 samples of GlcA monosaccharide conformations in hyaluronan 

20-mer) to generate a single dataset for each of the two monosaccharide types and two linkage types in 

each GAG (e.g., GlcA monosaccharide, GlcNAc monosaccharide, β1-3 glycosidic linkage, and β1-4 

glycosidic linkage conformations in hyaluronan 20-mer). 

4.2.3. Construction Algorithm to Generate GAG Conformational Ensembles 

The MD-generated conformational datasets described above made up the database used for the 

algorithm we developed to generate GAG polymer conformational ensembles of user-specified length 

and with a user-specified number of conformations (previously described) [188]. Essentially, our 

algorithm (1) incorporates all bond, bond angle, and dihedral angle conformational parameters from MD 

simulation of GAG 20-mers, (2) treats monosaccharide rings and glycosidic linkages independently, (3) 

performs a restrained energy minimization on each constructed conformation to relieve steric overlap 

while maintaining polymer conformation, and (4) applies a bond potential energy cutoff to exclude 

conformations that remain nonphysical after minimization. A nonphysical conformation results from 

either overlapping bonds or a bond that pierces the center of another monosaccharide ring in the initial 

constructed conformation (Figure B.1). As dihedral angles are restrained, minimization addresses these 

issues by stretching the overlapping or ring-piercing bonds to nonphysical lengths, which increases the 

post-minimization bond potential energy by more than 132 kcal/mol [188]. The energy cutoff is the sum 

of a 100 kcal/mol buffer and a polymer-length specific cutoff, which is equal to the post-minimization 

bond potential energy of the fully-extended conformation. This conformation was constructed by 

assigning energetically-favorable glycosidic linkage dihedrals from the corresponding MD simulations of 
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each GAG type that give a fully-extended conformation (i.e., with the maximum end-to-end distance 

observed in simulation). We used the algorithm to construct 20-mer conformational ensembles of each 

nonsulfated GAG. 

For internal validation of the algorithm, glycosidic linkage dihedral free energies ΔG(ϕ,ψ), 

monosaccharide ring C-P parameters, end-to-end distance distributions, and radii of gyration from MD-

generated ensembles and constructed ensembles were compared. Additionally, post-minimization bond 

potential energy distributions from constructed ensembles were analyzed to validate the calculated bond 

potential energy cutoff and verify that the ensemble had expected energy distributions for the given 

polymer length. 

To evaluate application of MD-generated 20-mer conformations to construct GAG polymers of 

variable length, we constructed 10-mer ensembles using the algorithm and compared them to 10-mer 

ensembles generated using the same protocol as 20-mer MD simulations. To assess the efficacy and 

efficiency of our algorithm to construct conformational ensembles of GAG polymers with biologically-

relevant chain lengths, we also constructed 200-mer ensembles. 

4.3. Results and Discussion 

4.3.1. Hyaluronan 

4.3.1.1. Molecular Dynamics Simulations: Glycosidic Linkage and Monosaccharide Ring Geometry 

Effects on Polymer Backbone Flexibility. To examine the backbone flexibility of hyaluronan 20-mers, 

end-to-end distances and radii of gyration were analyzed in each of the four MD simulation runs. One of 

the four runs produced more compact conformations, i.e., with lower end-to-end distances and radii of 

gyration than the other three (Figures 4.2 and B.2.a and Table 4.1). The system potential energy 

distributions were identical for all four runs, suggesting that this outlying run was energetically stable 

(Figure B.3). To uncover the conformational factors that contributed to end-to-end distance and explain 
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the differences in backbone flexibility in the different MD runs, the monosaccharide ring and glycosidic 

linkage conformations were examined. 

 
Figure 4.2. End-to-end distance probability distribution of MD-generated hyaluronan 20-mer ensemble; 

each of the four runs includes 10,000 conformations; probabilities were calculated for end-to-end 

distances sorted into 0.5 Å bins. 

Table 4.1. Most Probable End-to-End Distances (d) in MD-Generated and Constructed 

Hyaluronan Ensembles 1. 

 20-mer Ensembles 10-mer Ensembles 

 
MD-

Generated 
d (Å) 

Constructed 
d (Å) % Difference 

MD-
Generated 

d (Å) 

Constructed 
d (Å) % Difference 

Run 1 81.5 80.5  43.00 42.25  
Run 2 81.0 78.0  42.50 41.75  
Run 3 83.0 80.5  44.00 42.75  
Run 4 85.0 78.0  43.50 42.75  
All 2 80.0 78.0 2.53% 43.50 41.75 4.11% 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer ensembles 

and 0.25 Å bins for the 10-mer ensembles. 2 All = end-to-end distance distribution aggregated across all 

four runs. 
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Analysis of C-P parameters of GlcNAc monosaccharide rings revealed mostly 4C1 chair 

conformations, as found in crystal structures [329-336] and NMR and force field studies [257,337-339], 

with a minority of samples in boat and skew-boat conformations, namely B3,O, 1S3, 1,4B, and 1S5 (Figures 

4.3.a and 4.4.a). While non-4C1 conformations of GlcNAc are rare, they have been observed in crystal 

structures of protein co-complexes [332,340-343]. For example, one GlcNAc ring in the crystal structure of 

a hyaluronan tetramer in complex with hyaluronidase was found in the 1,4B boat conformation [332]. 

Additionally, GlcNAc boat/skew-boat conformations have been sampled in biased MD [307], 1-µs 

unbiased MD [344], and 10-µs unbiased MD simulations of GlcNAc monosaccharides [337]. One NMR 

and force field study suggested that these conformations were important for GAG-protein interactions 

[337]. Analysis of individual GlcNAc rings in each run revealed that these non-4C1 conformations were 

not specific to any particular region of the 20-mer and did not occur simultaneously in multiple rings in 

the same snapshot (Figure B.4). Furthermore, GlcNAc rings that sampled non-4C1 puckers returned to 4C1 

chair conformations relatively quickly, i.e., in under 25 ns (Figure B.4). 

 

 
Figure 4.3. Cremer–Pople data for MD-generated hyaluronan ensembles: (a) GlcNAc and (b) GlcA in the 

20-mer and (c) GlcNAc and (d) GlcA in the 10-mer; geometries from the four sets of each ensemble are 

(a) (b) 

(d) (c) 
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represented by red, green, blue, and magenta dots, respectively and the force-field geometry is 

represented by a single large black dot; Cremer–Pople parameters (ϕ, θ) for all rings in every tenth 

snapshot from each ensemble were plotted (i.e., 10 rings * 1,000 snapshots per run * 4 runs = 40,000 

parameter sets for the 20-mer and 20,000 parameter sets for the 10-mer). 
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Figure 4.4. MD-generated hyaluronan conformations: (a) 20-mer with a 1,4B GlcNAc conformer (ring 

atoms in blue; linkage atoms in red) and 4C1, B3,O, 1S3, 1,4B, and 1S5 GlcNAc monosaccharide conformations 

(endocyclic ring atoms and linker oxygen atoms only); (b) 20-mer with a 5S1 GlcA conformer (ring atoms 

in cyan; linkage atoms in red) and 3S1, B1,4, 5S1, 2,5B, 1S3, 1,4B, and 1S5 GlcA monosaccharide conformations 

(endocyclic ring atoms and linker oxygen atoms only); (c) 20-mer with a 2SO GlcA conformer (ring atoms 
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in cyan; linkage atoms in red) and 4C1 and 2SO GlcA monosaccharide conformations (endocyclic ring 

atoms and linker oxygen atoms only); in each 20-mer snapshot, all gray rings are in 4C1 conformations. 

C-P analysis of GlcA monosaccharide rings in hyaluronan 20-mer showed that GlcA is found 

mostly in 4C1 chair conformations (Figure 4.3.b), as seen in crystal structures [329-332] and NMR and 

force field studies [220,257,307,308,338,339,345], with some boat and skew-boat conformations, including 

3S1, B1,4, 5S1, 2,5B, 2SO, 1S3, 1,4B, and 1S5 (Figures 4.3.b and 4.4.b,c), which were also observed in GlcA rings in 

unbiased MD simulations of nonsulfated chondroitin 20-mers [188]. Some of these conformations were 

also sampled rarely in unbiased MD simulations of GlcA monosaccharides [220,307]. The slight 

differences between boat/skew-boat conformations in our simulations and monosaccharide simulations 

may have arisen from intramolecular interactions in the hyaluronan 20-mer. As with GlcNAc rings, these 

conformations did not occur consistently in any one region of the 20-mer, did not occur simultaneously in 

multiple rings in the same snapshot, and returned to 4C1 chair conformations quickly, i.e., within 40 ns 

(Figure B.5). Except for 2SO, each of these GlcA and GlcNAc boat and skew-boat conformations brought 

the linker oxygen atoms closer together, causing a kink in the polymer chain (Figure 4.4), which may 

have contributed to more compact polymer conformations. To investigate this, end-to-end distances and 

radii of gyration of 20-mer conformations with non-4C1 ring puckers were analyzed (Figure B.6) and both 

compact and extended conformations were observed. This can be explained by the flexibility in the 

glycosidic linkages. Of note, MD-generated atomic-resolution snapshots before and after a 

monosaccharide ring underwent a conformational change between 4C1 and non-4C1 were visualized in 

VMD to check for ionic interactions (e.g., between Na+ and carboxylate O- atoms and/or partially-charged 

hydroxyl O atoms in GlcA, between Cl- and hydroxyl H atoms in GlcA, between Na+ and partially-

charged N-acetyl N or O atoms and/or hydroxyl O atoms in GlcNAc, or between Cl- and H atoms of 

methyl and/or hydroxyl groups in GlcNAc). Specifically, we looked for ions within 5 Å of the exocyclic 
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atoms of the monosaccharide of interest and found that ionic interactions were most often absent during, 

and thus, did not significantly contribute to, ring puckering in the MD simulation of hyaluronan 20-mer. 

To analyze glycosidic linkage conformations, free energies of glycosidic linkage dihedrals ΔG(ϕ, 

ψ) were calculated (Figure 4.5.a,b and Table 4.2). If we assume O5-C1-O-Cn = H1-C1-O-Cn - 120° for ϕ 

values and C1-O-C3-C2 = C1-O-C3-H3 - 120° and C1-O-C4-C3 = C1-O-C4-H4 + 120° for ψ values, our data 

match well with X-ray diffraction and force field data from hyaluronan tetrasaccharides [216] as well as 

NMR and molecular mechanics data from hyaluronan tetrasaccharides [346], hexasaccharides [256], and 

octasaccharides [347]. If we assume C1-O-C3-C2 = C1-O-C3-C4 + 120° and C1-O-C4-C3 = C1-O-C4-C5 - 120°, 

our data are also in close agreement with X-ray diffraction and quantum molecular modeling data 

[317,348-350] as well as NMR and MD data [339]. This agreement is with conformations sampled about 

the global minimum in each linkage in our MD simulations. All of these conformations were helical, so it 

stands to reason that 2-, 3-, and 8-fold helices were observed in hyaluronan oligosaccharides. This does 

not necessarily mean that adjacent glycosidic linkage conformations were interdependent. In fact, 

variation in the types of helices observed in the force field and experimental studies in only short 

oligosaccharide units suggests a lack of consistent and uniform helical structures in long hyaluronan 

polymers. 
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Figure 4.5. ΔG(ϕ, ψ) in the MD-generated hyaluronan ensembles for aggregated GlcAβ1-3GlcNAc and 

GlcNAcβ1-4GlcA glycosidic linkage data in the (a,b) 20-mer and (c,d) 10-mer, respectively; contour lines 

every 1 kcal/mol. 

Table 4.2. Hyaluronan Glycosidic Linkage Dihedrals (ϕ,ψ) 1 and 

Free Energy (ΔG(ϕ,ψ) kcal/mol) Minima. 

 MD-Generated 20-mer 
Ensemble 

MD-Generated 10-mer  
Ensemble 

Constructed 20-mer 
Ensemble 

 
GlcAβ1-3 
GlcNAc 

GlcNAcβ1-4 
GlcA 

GlcAβ1-3 
GlcNAc 

GlcNAcβ1-4 
GlcA 

GlcAβ1-3 
GlcNAc 

GlcNAcβ1-4 
GlcA 

Min ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG 

I −71.25°, 
−123.75° 0.00 −68.75°, 

116.25° 0.00 −71.25°, 
−123.75° 0.00 −68.75°, 

118.75° 0.00 −71.25°, 
−123.75° 0.00 −71.25°, 

116.25° 0.00 

II −53.75°, 
91.25° 

3.06 −83.75°,  
−73.75° 

1.31 −58.75°, 
86.25° 

3.08 −81.25°, 
−76.25° 

1.16 −56.25°, 
91.25° 

3.01 −83.75°, 
−73.75° 

1.29 

II’   −58.75°, 
−33.75° 1.42   −53.75°, 

−36.25° 1.27   −56.25°, 
−36.25° 1.40 

1 ϕ, ψ dihedral angles were sorted into 2.5° bins. 

(a) (b) 

(d) (c) 
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Our data also show that a secondary basin was sampled in each linkage type in our MD 

simulations. In GlcAβ1-3GlcNAc linkages, conformations in the upper left quadrant (−ϕ, +ψ) were 

sampled. A molecular modeling study that reportedly sampled the full allowable range of glycosidic 

linkage conformations in agreement with experimental data for several disaccharide units also revealed 

hyaluronan GlcAβ1-3GlcNAc linkage conformations in a secondary basin similar to ours [351]. 

Furthermore, crystal structures of hyaluronan oligosaccharides in complexes with proteins [329-332] were 

examined and we found that most glycosidic linkage conformations were similar to the most 

energetically-favorable conformations observed in MD simulation, with the exception of one GlcAβ1-

3GlcNAc linkage conformation with −ϕ, +ψ dihedrals, which was seen in a hyaluronan hexasaccharide in 

complex with hyaluronidase [331]. This suggests that, although rare, this is a physical conformation. 

Analysis of individual glycosidic linkages in individual runs (Figure B.7) showed that this basin was 

sampled mostly in two particular GlcAβ1-3GlcNAc linkages in the MD run with the lowest end-to-end 

distance distribution. Therefore, 20-mer MD snapshots with these glycosidic linkage conformations were 

analyzed; we found that these linkage conformations were associated with lower end-to-end distances 

(Figure B.8 and Table B.1). Visual analysis of these snapshots showed that GlcAβ1-3GlcNAc glycosidic 

linkages with −ϕ, +ψ dihedrals caused a kink in the polymer, which explains the more compact polymer 

conformations in comparison to those containing only linkage conformations at the global free energy 

minimum (Figure B.8). To find out if there was a connection between these glycosidic linkage 

conformations and non-4C1 puckers of adjacent monosaccharide rings, glycosidic linkages flanking non-

4C1 ring puckers were plotted, and they were all centered about the global minimum, i.e., −ϕ, −ψ (Figure 

B.9). In fact, there did not appear to be any correlation between GlcAβ1-3GlcNAc linkage −ϕ, +ψ 

conformations and a non-4C1 ring pucker in any region of the polymer. 

Analysis of GlcNAcβ1-4GlcA glycosidic linkage conformations (Figure 4.5.b and Table 4.2) 

revealed secondary minima in the lower left quadrant (−ϕ, −ψ), which was also seen in a molecular 
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modeling study of GAG disaccharides with results validated by experimental data [351]. In hyaluronan 

20-mer MD simulations, these conformations were sampled more in the GlcNAcβ1-4GlcA linkages 

neighboring the GlcAβ1-3GlcNAc linkages with −ϕ, +ψ dihedrals in the MD run with the lowest end-to-

end distances. The same analyses to those performed on 20-mer conformations with GlcAβ1-3GlcNAc 

linkages with −ϕ, +ψ dihedrals were performed on MD-generated 20-mer snapshots with GlcNAcβ1-

4GlcA linkages with −ϕ, −ψ dihedrals. Similarly, these glycosidic linkage conformations caused a kink in 

the polymer chain and were associated with lower end-to-end distances (Figure B.10 and Table B.1). To 

determine if there was a correlation between GlcAβ1-3GlcNAc −ϕ, +ψ linkage dihedrals and GlcNAcβ1-

4GlcA −ϕ, −ψ linkage dihedrals, snapshots with both of these linkage conformations flanking the same 

monosaccharide ring were examined. It was found that there were very few snapshots in which this was 

the case. GlcNAcβ1-4GlcA linkage conformations flanking non-4C1 monosaccharide rings were also 

analyzed, and these conformations were centered about the global minimum, i.e., −ϕ, +ψ (Figure B.9). 

Additionally, ionic interactions (e.g., between Na+, O- in GlcA carboxylate group, and O in C=O of 

adjacent GlcNAc N-acetyl group, between Cl-, H in GlcNAc methyl group, and H in GlcA hydroxyl 

groups, or between Na+ and O atoms or Cl- and H atoms of hydroxyls in adjacent monosaccharides) did 

not appear to play a role in the transition of glycosidic linkage conformations between their primary and 

secondary ϕ, ψ basins. 

Hyaluronan 10-mers were also simulated and showed the same conformations as the 20-mer in 

MD simulation except for GlcNAc monosaccharide rings, which sampled only 4C1 chair conformations in 

the 10-mer (Figures 4.3.c,d and 4.5.c,d and Table 4.2). This was expected, as these conformations occurred 

very few times in 20-mer MD simulations, and there were half as many samples (i.e., monosaccharide 

rings) in the 10-mer. 

Together, these results suggest that (1) realistic helical glycosidic linkage conformations in 

hyaluronan 10- and 20-mers are seen in MD simulation, (2) non-4C1 ring puckers, −ϕ, +ψ dihedrals in 
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GlcAβ1-3GlcNAc linkages, and −ϕ, −ψ dihedrals in GlcNAcβ1-4GlcA linkages all contribute to more 

compact conformations, and (3) monosaccharide rings and glycosidic linkages in hyaluronan 10- and 20-

mers behave randomly and independently in MD simulation. 

4.3.1.2. Construction Algorithm. Our construction algorithm was used to construct four sets of 

hyaluronan 20-mer ensembles with 10,000 conformations each (40,000 conformations total). A comparison 

of end-to-end distance distributions (Figure 4.6.a and Table 4.1) and radii of gyration (Figure B.2.a,b) 

showed that our construction algorithm produces ensembles that mimic backbone flexibility observed in 

MD simulations. Furthermore, the C-P parameters (Figure B.11) and glycosidic linkage dihedral free 

energies ΔG(ϕ, ψ) (Figure B.12) of constructed conformations post minimization matched those of MD-

generated ensembles (i.e., construction algorithm input data; Figures 4.3.a,b and 4.5.a,b and Table 4.2), 

indicating that dihedral angles were properly restrained and that minimization did not change the overall 

ring and linkage conformation. 
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Figure 4.6. End-to-end distance probability distributions of MD-generated (blue dashed lines) and 

constructed (red solid lines) hyaluronan ensembles: (a) 20-mer and (b) 10-mer; probabilities were 

calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer and 0.25 Å bins for the 10-mer; 

each ensemble includes four sets of 10,000 conformations. 

A hyaluronan 10-mer ensemble with 40,000 conformations was also constructed using the 

algorithm; similarly, the end-to-end distances and radii of gyration of the constructed 10-mer ensemble 

matched those of the MD-generated 10-mer ensemble (Figures 4.6.b and B.2.c,d and Table 4.1). Both 

ensembles contained mostly extended conformations, as expected for short oligosaccharides with fewer 

opportunities for kinks or curves. 

(a) 

(b) 
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Finally, a hyaluronan 200-mer ensemble containing four sets of 10,000 conformations was 

constructed using the algorithm. The construction procedure produced end-to-end distances, radii of 

gyration, and bond potential energies of all conformations, as well as PDB files of conformations with 

most probable end-to-end distances, bond potential energies above that of the fully-extended 

conformation, and all excluded conformations (for a total of about 1,000 PDBs for each of the four sets) for 

visualization and validation of the bond potential energy cutoff. As seen in MD-generated hyaluronan 10- 

and 20-mer ensembles, we expected the end-to-end distance distribution curve skewness to shift toward 

the right (i.e., lower end-to-end distances indicating more compact conformations) with increasing 

polymer length, as there were more opportunities for kinks and curves resulting from ring puckering and 

the flexibility of the glycosidic linkages. This pattern was seen in the end-to-end distance distributions of 

the hyaluronan 200-mer constructed ensembles (Figure 4.7) and in those of nonsulfated chondroitin 100- 

and 200-mer constructed ensembles [188]. The relationship between end-to-end distance and radius of 

gyration was decreasingly linear with increasing polymer length. In other words, conformations with the 

same end-to-end distance have a wider range of radii of gyration in longer polymers. This was evidenced 

by comparison of R2 values of the end-to-end distance vs. radius of gyration regression lines of 

hyaluronan 20- and 10-mer ensembles, both MD-generated and constructed (Figure B.2.a–d). As 

expected, the end-to-end distance and radius of gyration relationship was decreasingly linear with 

increasing polymer length, as shown by comparison of hyaluronan 10-, 20-, and 200-mer constructed 

ensembles (Figure B.2.b,d,e). This suggests that our algorithm constructs hyaluronan 200-mer ensembles 

with the backbone conformations that we would expect to see in MD simulations. 
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Figure 4.7. End-to-end distance probability distribution of constructed ensemble of hyaluronan 200-mer; 

most probable end-to-end distance across all four sets is 235 Å; probabilities were calculated for end-to-

end distances sorted into 5 Å bins; the ensemble contains four sets of 10,000 conformations. 

4.3.2. Nonsulfated Dermatan 

4.3.2.1. Molecular Dynamics Simulations: Glycosidic Linkage and Monosaccharide Ring Geometry 

Effects on Polymer Backbone Flexibility. MD simulations of nonsulfated dermatan 20-mer revealed 

relatively rigid and linear backbone conformations, as evidenced by the narrow and highly left-skewed 

end-to-end distance distributions, which match in all four MD runs (Figure 4.8 and Table 4.3), and the 

linear relationship between end-to-end distance and radius of gyration (Figure B.13.a). To understand the 

factors contributing to this rigid behavior of the dermatan 20-mer in simulation, conformations of 

monosaccharide rings and glycosidic linkages were analyzed. 



75 
 

 
Figure 4.8. End-to-end distance probability distribution of MD-generated nonsulfated dermatan 20-mer 

ensemble; each of the four runs includes 10,000 conformations; probabilities were calculated for end-to-

end distances sorted into 0.5 Å bins. 

Table 4.3. Most Probable End-to-End Distances (d) in MD-Generated and Constructed 

Nonsulfated Dermatan Ensembles 1. 

 20-mer Ensembles 10-mer Ensembles 

 
MD-

Generated 
d (Å) 

Constructed 
d (Å) % Difference 

MD-
Generated 

d (Å) 

Constructed 
d (Å) % Difference 

Run 1 81.5 81.5  42.25 42.75  
Run 2 82.5 83.5  42.50 42.00  
Run 3 83.5 84.0  42.00 42.75  
Run 4 81.0 81.5  42.25 42.75  
All 2 83.5 81.5 2.42% 42.25 42.75 1.18% 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer ensembles and 

0.25 Å bins for the 10-mer ensembles. 2 All = end-to-end distance distribution aggregated across all four 

runs. 

GalNAc monosaccharide ring C-P parameters (Figure 4.9.a) show mostly 4C1 conformations, as 

well-established by X-ray diffraction [216,343,352], NMR [217,353], and force field [188,216,217,307] data. 

Biased MD simulations of β-GalNAc monosaccharides showed that nonsulfated β-GalNAc sampled boat 
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and skew-boat conformations, namely B3,O, 1S3, and 1,4B, with relatively high free energies [307]. In line 

with this study, our simulations showed very few boat and skew-boat puckers, namely 1S3, 1,4B, 1S5 (Figure 

4.4.a; -3GalNAcβ1- endocyclic ring and linker oxygen atoms were identical to those of -3GlcNAcβ1-), and 

B2,5, on the microsecond timescale. These puckers were sampled by different rings of the 20-mer in 

different MD runs and returned to 4C1 within 10 ns (Figure B.14), suggesting that this behavior was 

random, and confirming that non-4C1 GalNAc puckers are not energetically favorable. While these boat 

and skew-boat conformations caused a kink in the polymer chain, there were so few occurrences of this 

that they did not impact the overall end-to-end distance distribution. 

 

 
Figure 4.9. Cremer–Pople data for MD-generated nonsulfated dermatan ensembles: (a) GalNAc and (b) 

IdoA in the 20-mer and (c) GalNAc and (d) IdoA in the 10-mer; geometries from the four sets of each 

ensemble are represented by red, green, blue, and magenta dots, respectively and the force-field 

geometry is represented by a single large black dot; Cremer–Pople parameters (ϕ, θ) for all rings in every 

tenth snapshot from each ensemble were plotted (i.e., 10 rings * 1,000 snapshots per run * 4 runs = 40,000 

parameter sets for the 20-mer and 20,000 parameter sets for the 10-mer). 

(a) (b) 

(d) (c) 
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IdoA monosaccharide rings in 20-mer MD sampled a majority of 1C4 and, to a lesser degree, 2SO 

and 4C1 puckers (Figure 4.9.b and Table B.2), as observed in NMR and force field studies 

[190,217,220,262,275,306,307,310,354-356]. Literature reports of the relative proportions of these three ring 

puckers in nonsulfated IdoA vary, which may be explained by differences in the structure of neighboring 

residues (or lack thereof) [275,310,354,355] and differences in ion concentrations [310]. Furthermore, 

existing studies were conducted on IdoA monosaccharides and short IdoA-containing GAG 

oligosaccharides (i.e., <20 monosaccharides). NMR data have shown that, when at the nonreducing 

terminal in GAG oligosaccharides, nonsulfated IdoA is in equilibrium with 1C4, 2SO, and 4C1 puckers, and 

when flanked by nonsulfated N-acetylated sugar derivatives (i.e., GalNAc or GlcNAc), nonsulfated IdoA 

is primarily in 1C4 and 2SO conformations [310] with fewer than 10% of samples in 4C1 [275,355]. Indeed, 

we found this to be the case in our dermatan 20-mer MD simulations (Table B.2). Importantly, none of the 

1C4, 2SO, or 4C1 puckers introduced a kink in the polymer chain, so we would not expect variations in the 

relative proportions of these ring puckers to alter overall polymer backbone conformations. IdoA also 

sampled other boat and skew-boat conformations in 20-mer MD simulations, specifically B1,4, 5S1, 2,5B, B3,O, 

1S3, 1,4B, and 1S5 (Figure 4.9.b and Table B.2), which is in agreement with results from MD simulations of 

IdoA monosaccharides [263,307]. Another force field study showed that 2,5B and B3,O IdoA conformers are 

also feasible interpretations of existing NMR data [357]. Furthermore, a force field study that mapped X-

ray diffraction and NMR data for dermatan sulfate [262] and a molecular modeling study of IdoA 

monosaccharides [263] showed that interconversion between different boat/skew-boat forms of IdoA is 

much more common than that between boat/skew-boat and chair forms, as it is less energetically costly, 

which helps explain the sampling of multiple different boat/skew-boat IdoA conformations. As each of 

these boat/skew-boat puckers (except for 2SO) introduces a kink in the polymer chain (Figures 4.10 and 

4.4.b,c; -4IdoAα1- endocyclic ring and linker oxygen atoms are identical to those of -4GlcAcβ1-), end-to-

end distances of 20-mer conformations with these puckers were analyzed to determine if they were 
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associated with more compact conformations. The end-to-end distance distribution of conformations with 

boat/skew-boat ring puckers (other than 2SO) matched that of the average of the four runs from the full 

MD-generated 20-mer ensemble (Figure B.15), indicating that these ring puckers do not necessarily give 

compact polymer conformations. Additionally, the end-to-end distance distribution of 20-mer 

conformations with 2SO IdoA conformations was compared to that of the full MD ensemble (Figure B.15). 

These distributions were similar, further suggesting that 2SO conformations are not associated with more 

or less compact 20-mer conformations. To determine if IdoA ring puckering in nonsulfated dermatan 20-

mer MD was random, an analysis was performed of C-P parameters of individual IdoA monosaccharides 

in each of the four MD runs (Figure B.16). This revealed that (1) not all IdoA rings overcame the energy 

barrier to sample a 4C1 pucker, (2) no single IdoA ring sampled 4C1 in all four MD runs, (3) each IdoA ring 

overcame the energy barrier to sample boat/skew-boat puckers (i.e., C-P θ ~ 90°) in at least one MD run, 

and (4) after sampling boat/skew-boat puckers, some IdoA rings returned to 1C4 in as little as 165 ns, 

while others remained in boat/skew-boat conformations for the remainder of the 1-µs trajectory. These 

observations support the idea that monosaccharide rings in a nonsulfated dermatan 20-mer behave 

randomly and independently in unbiased MD simulation. 



79 
 

  
Figure 4.10. MD-generated nonsulfated dermatan conformations: (a) 20-mer with a B3,O IdoA conformer 

(ring atoms in cyan; linkage atoms in red) and B3,O IdoA and 1C4 IdoA monosaccharide conformations 

(endocyclic ring atoms and linker oxygen atoms only); (b) 20-mer with a 2SO IdoA conformer highlighted 

(ring atoms in cyan; linkage atoms in red; 2SO α-IdoA is identical to 2SO β-GlcA in Figure 4.4.c); in both 20-

mer conformations, all IdoA monosaccharides in gray are in 1C4 and all GalNAc monosaccharides are in 

4C1. 

Analysis of dihedral free energies revealed a single ΔG(ϕ, ψ) minimum for each of IdoAα1-

3GalNAc and GalNAcβ1-4IdoA glycosidic linkages (Figure 4.11.a,b and Table 4.4). This is consistent 

across all linkages in all runs for each linkage type. The lack of secondary basins in ϕ, ψ dihedral samples 

may explain the higher degree of rigidity and tendency toward extended backbone conformations of 

nonsulfated dermatan 20-mer in comparison to hyaluronan and nonsulfated chondroitin [188] 20-mers in 

MD simulation. An X-ray diffraction study of sodium dermatan sulfate observed three different helical 

forms (i.e., right-handed, left-handed, and achiral) [352] and quantified their dihedral angles, which were 

defined by: ϕ = O5-C1-O-Cn and ψ = C1-O-Cn-C(n + 1). Assuming C1-O-C3-C2 = C1-O-C3-C4 + 120° and C1-O-

C4-C3 = C1-O-C4-C5 - 120°, we see that the right-handed and achiral helical forms corresponded to high 

ΔG(ϕ, ψ) values in our nonsulfated dermatan 20-mer MD simulations, and the left-handed helical form 

(a) 

O 

O 
O5 C1 

C2 C3 C4 

C5 

1C4 

O 

O 

O5 
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corresponded to glycosidic linkage conformations very close to the ΔG(ϕ, ψ) global minimum. In line 

with our results, force field studies that compared MD results to existing NMR and X-ray diffraction data 

of dermatan sulfate dismissed right-handed and achiral helical forms and confirmed the presence of left-

handed helical structure [216,262]. A quantitative comparison of our MD-generated glycosidic linkage 

data to their findings and other NMR data for dermatan tetrasaccharides [217] showed close agreement if 

we assume O5-C1-O-Cn = H1-C1-O-Cn - 120° for all ϕ values, C1-O-C3-C2 = C1-O-C3-H3 - 120° for α1-3 

linkage ψ values, and C1-O-C4-C3 = C1-O-C4-H4 + 120° for β1-4 linkage ψ values. 

 

 
Figure 4.11. ΔG(ϕ, ψ) in the MD-generated nonsulfated dermatan ensembles for aggregated IdoAα1-

3GalNAc and GalNAcβ1-4IdoA glycosidic linkage data in the (a,b) 20-mer and (c,d) 10-mer, respectively; 

contour lines every 1 kcal/mol. 

(a) (b) 

(d) (c) 
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Table 4.4. Nonsulfated Dermatan Glycosidic Linkage Dihedrals (ϕ, ψ) 1 and 

Free Energy (ΔG(ϕ, ψ) kcal/mol) Minima. 

 MD-Generated 20-mer 
Ensemble 

MD-Generated 10-mer  
Ensemble 

Constructed 20-mer 
Ensemble 

 
IdoAβ1-3 
GalNAc 

GalNAcβ1-4 
IdoA 

IdoAβ1-3 
GalNAc 

GalNAcβ1-4 
IdoA 

IdoAβ1-3 
GalNAc 

GalNAcβ1-4 
IdoA 

Min ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG 

I −66.25°, 
−123.75° 0.00 −61.25°, 

106.25° 0.00 −68.75°, 
−121.25° 0.00 −58.75°, 

108.75° 0.00 −68.75°, 
−121.25° 0.00 −61.25°, 

108.75° 0.00 

1 ϕ, ψ dihedral angles were sorted into 2.5° bins. 

MD simulations of a nonsulfated dermatan 10-mer produced mostly linear backbone 

conformations (Figure B.13.c) and similar monosaccharide ring (Figure 4.9) and glycosidic linkage (Figure 

4.11 and Table 4.4) geometries to nonsulfated dermatan 20-mer. The major difference was that in 10-mer 

MD simulations, 9% of all IdoA rings in all runs were found in 4C1 form; this was almost exclusively in 

the nonreducing terminal IdoA (i.e., ring #10; Figure B.17 and Table B.2), which is mostly in line with the 

aforementioned NMR study of IdoA ring conformations [275]. However, based on the findings from the 

NMR study and from our dermatan 20-mer MD simulations, we would still expect the nonterminal IdoA 

rings in a GAG polymer to sample some 4C1 conformations. This supports our position that GAG 20-mers 

are better-suited for predictions of long-chain backbone conformations than short GAG oligosaccharides. 

These findings suggest that (1) monosaccharide rings and glycosidic linkages in nonsulfated 

dermatan GAG 20-mers behave randomly and independently in MD simulation, (2) nonsulfated 

dermatan polymers take on rigid left-handed helical structure with a tendency toward linear backbone 

conformations in unbiased MD simulations, and (3) nonsulfated dermatan 20-mer conformations in MD 

simulation provide a realistic representation of longer nonsulfated dermatan polymer conformations. 

4.3.2.2. Construction Algorithm. Four sets of 10,000 conformations of a nonsulfated dermatan 20-mer 

were constructed using our algorithm and compared to conformations seen in nonsulfated dermatan 20-
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mer MD. As expected, the C-P parameter plots (Figure B.18) and glycosidic linkage free energies (Figure 

B.19) in the constructed 20-mer ensemble matched those in the MD-generated 20-mer ensemble (Figures 

4.9.a,b and 4.11.a,b and Table 4.4). Furthermore, the end-to-end distances (Figure 4.12.a) and radii of 

gyration (Figure B.13.a,b) in the constructed ensemble matched those in the MD-generated ensemble, 

with only a 2.42% difference in most probable end-to-end distance (Table 4.3). This demonstrates that our 

algorithm produces nonsulfated dermatan 20-mer ensembles that mimic 20-mer backbone flexibility seen 

in MD simulations. 

 

 
Figure 4.12. End-to-end distance probability distributions of MD-generated (blue dashed lines) and 

constructed (red solid lines) nonsulfated dermatan ensembles: (a) 20-mer and (b) 10-mer; probabilities 

(a) 

(b) 
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were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer and 0.25 Å bins for the 10-

mer; each ensemble includes four sets of 10,000 conformations. 

The nonsulfated dermatan 10-mer ensemble with 40,000 conformations constructed by the 

algorithm had very similar end-to-end distance and radius of gyration data compared to the MD-

generated ensemble (Figures 4.12.b and B.13.c,d and Table 4.3). The algorithm was also used to create a 

nonsulfated dermatan 200-mer ensemble. As expected, the 200-mer end-to-end distance distribution 

(Figure 4.13) and radii of gyration (Figure B.13.e) showed that conformations tended to be more compact 

as polymer length increased. The shift in skewness of the end-to-end distance distribution with increasing 

polymer length was more subtle in nonsulfated dermatan than in hyaluronan, as there were fewer 

linkage and ring conformations causing kinks in the polymer. 

 
Figure 4.13. End-to-end distance probability distribution of constructed ensemble of nonsulfated 

dermatan 200-mer; most probable end-to-end distance across all four sets is 365 Å; probabilities were 

calculated for end-to-end distances sorted into 5 Å bins; the ensemble contains four sets of 10,000 

conformations. 
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4.3.3. Nonsulfated Keratan 

4.3.3.1. Molecular Dynamics Simulations: Glycosidic Linkage and Monosaccharide Ring Geometry 

Effects on Polymer Backbone Flexibility. In MD simulations, nonsulfated keratan 20-mers showed rigid 

backbone behavior and favored extended backbone conformations, as evidenced by end-to-end distance 

distributions (Figure 4.14 and Table 4.5) which were identical in all four MD runs, and the high 

correlation of end-to-end distance to radius of gyration (Figure B.20.a). To understand the causes of this 

rigid behavior, monosaccharide ring and glycosidic linkage conformations were analyzed. 

 
Figure 4.14. End-to-end distance probability distribution of MD-generated nonsulfated keratan 20-mer 

ensemble; each of the four runs includes 10,000 conformations; probabilities were calculated for end-to-

end distances sorted into 0.5 Å bins. 
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Table 4.5. Most Probable End-to-End Distances (d) in MD-Generated and Constructed 

Nonsulfated Keratan Ensembles 1. 

 20-mer Ensembles 10-mer Ensembles 

 
MD-

Generated 
d (Å) 

Constructed 
d (Å) 

% Difference 
MD-

Generated 
d (Å) 

Constructed 
d (Å) 

% Difference 

Run 1 88.0 86.0  45.50 45.00  
Run 2 90.0 87.5  46.00 45.75  
Run 3 90.0 87.0  45.75 45.00  
Run 4 89.0 86.0  45.50 45.00  
All 2 90.0 87.0 3.39% 45.50 45.00 1.10% 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer ensembles 

and 0.25 Å bins for the 10-mer ensembles. 2 All = end-to-end distance distribution aggregated across all 

four runs. 

C-P parameters of GlcNAc monosaccharides in keratan 20-mer MD (Figure 4.15.a) showed 

similar conformations to GlcNAc in hyaluronan 20-mer. There were predominantly 4C1 chair 

conformations, which are also found in a keratan sulfate tetrasaccharide crystal structure [358], with very 

few transitions (i.e., no more than one per ring or two per run) to boat/skew-boat conformations (i.e., 2SO, 

1S3, 1,4B, and 1S5), which were sampled for no more than 20 ns before returning to 4C1 chair (Figure B.21). 

Analysis of end-to-end distance and radius of gyration of 20-mer conformations containing non-4C1 ring 

puckers showed that these ring puckers were not associated with compact 20-mer conformations (Figure 

B.22). C-P analysis of Gal monosaccharides showed that for the duration of the keratan 20-mer MD 

simulations, Gal remained in 4C1 chair (Figure 4.15.b), which was the predominant conformation found in 

NMR [353,359-361] and force field data [307] for Gal in general, and in a keratan sulfate tetrasaccharide 

crystal structure [358]. 
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Figure 4.15. Cremer–Pople data for MD-generated nonsulfated keratan ensembles: (a) GlcNAc and (b) 

Gal in the 20-mer and (c) GlcNAc and (d) Gal in the 10-mer; geometries from the four sets of each 

ensemble are represented by red, green, blue, and magenta dots, respectively and the force-field 

geometry is represented by a single large black dot; Cremer–Pople parameters (ϕ, θ) for all rings in every 

tenth snapshot from each ensemble were plotted (i.e., 10 rings * 1,000 snapshots per run * 4 runs = 40,000 

parameter sets for the 20-mer and 20,000 parameter sets for the 10-mer). 

Glycosidic linkage free energy ΔG(ϕ, ψ) analysis of Galβ1-4GlcNAc linkages revealed a global 

minimum in the basin with −ϕ, +ψ and a secondary minimum in the basin with −ϕ, −ψ (Figure 4.16.a and 

Table 4.6), similar to hyaluronan GlcNAcβ1-4GlcA linkages (Figure 4.5.b,d and Table 4.2), but with 

additional rare conformations in +ϕ, +ψ. A molecular modeling study, which was shown to agree with 

experimental data, showed that β1-4 linkages in keratan sulfate disaccharides took on the same 

conformations as β1-4 linkages in hyaluronan disaccharides [351], confirming the primary and secondary 

basins sampled in our 20-mer MD simulations. Keratan 20-mer conformations with glycosidic linkage 

conformations in the tertiary basin (i.e., +ϕ, +ψ) were visualized and end-to-end distances were analyzed 

(a) (b) 

(d) (c) 



87 
 

(Figure B.23). These conformations formed a slight bend in the polymer chain and were associated with 

more compact polymer backbone conformations. However, there did not appear to be any close contacts 

between atoms of adjacent monosaccharides in this conformation or in previous snapshots that could 

explain these linkage bond rotations. Furthermore, this conformation was not specific to any particular 

region of the polymer. Therefore, this behavior was likely random. As −ϕ, −ψ β1-4 linkage conformations 

are associated with compact hyaluronan polymer conformations, and nonsulfated keratan 20-mer is 

relatively rigid and favors extended conformations in contrast to hyaluronan, we sought to determine the 

effects of Galβ1-4GlcNAc linkage conformations in the secondary (i.e., −ϕ, −ψ) basin on keratan 20-mer 

backbone flexibility in MD simulations. As in hyaluronan, these conformations caused a kink in the 

keratan 20-mer chain and were associated with more compact conformations (Figure B.23 and Table B.1). 

However, these conformations were slightly less stable in keratan 20-mer MD (Table 4.6) than in 

hyaluronan MD (Table 4.2), and were, therefore, less common. 

 

 
Figure 4.16. ΔG(ϕ, ψ) in the MD-generated nonsulfated keratan ensembles for aggregated Galβ1-4GlcNAc 

and GlcNAcβ1-3Gal glycosidic linkage data in the (a,b) 20-mer and (c,d) 10-mer, respectively; contour 

lines every 1 kcal/mol. 

(a) (b) 

(d) (c) 
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Table 4.6. Nonsulfated Keratan Glycosidic Linkage Dihedrals (ϕ, ψ) 1 and 

Free Energy (ΔG(ϕ, ψ) kcal/mol) Minima. 

 MD-Generated 20-mer 
Ensemble 

MD-Generated 10-mer  
Ensemble 

Constructed 20-mer 
Ensemble 

 
Galβ1-4 
GlcNAc 

GlcNAcβ1-3 
Gal 

Galβ1-4 
GlcNAc 

GlcNAcβ1-3 
Gal 

Galβ1-4 
GlcNAc 

GlcNAcβ1-3 
Gal 

Min ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG 

I −73.75°, 
116.25° 0.00 −81.25°, 

−156.25° 0.00 −71.25°, 
116.25° 0.00 −81.25°, 

−156.25° 0.00 −71.25°, 
118.75° 0.00 −81.25°, 

−158.75° 0.00 

II −56.25°, 
−31.25° 1.75   −56.25°, 

−36.25° 1.67   −53.75°, 
−33.75° 1.75  

  

1 ϕ, ψ dihedral angles were sorted into 2.5° bins. 

Analysis of GlcNAcβ1-3Gal glycosidic linkages showed a global free energy minimum in the −ϕ, 

−ψ basin (Table 4.6) similar to that of IdoAβ1-3GalNAc linkages in nonsulfated dermatan MD (Figure 

4.11.a,c and Table 4.4), but with additional rare occurrences in a secondary basin in −ϕ, +ψ, confirmed by 

the aforementioned molecular modeling study [351], and a small tertiary basin in +ϕ, −ψ (Figure 4.16.b). 

To determine the effects of GlcNAcβ1-3Gal linkage conformations in these secondary and tertiary basins 

on backbone conformation, we visualized 20-mer conformations containing these glycosidic linkage 

conformations and analyzed end-to-end distances (Figure B.24). Glycosidic linkage conformations in the 

tertiary basin caused a kink and were associated with more compact 20-mer conformations. In contrast to 

hyaluronan, nonsulfated keratan β1-3 glycosidic linkage conformations in the secondary basin (i.e., −ϕ, 

+ψ) caused only a slight bend in the polymer chain, but were still associated with compact 20-mer 

conformations (Table B.1). Both secondary and tertiary GlcNAcβ1-3Gal linkage conformations were rare 

in keratan 20-mer MD, which helps explain why the keratan 20-mer chain was relatively rigid and 

favored extended conformations in MD simulation. 

Backbone conformational analysis of nonsulfated keratan 10-mer MD revealed that the 10-mer 

chain was rigid and favored extended conformations (Figure B.20.c and Table 4.5), which is similar 



89 
 

behavior to that of nonsulfated keratan 20-mer in MD simulation. This stands to reason, as conformations 

of monosaccharide rings (Figure 4.15) and glycosidic linkages (Figure 4.16 and Table 4.6) in keratan 10-

mer MD matched those in keratan 20-mer MD, with the only differences being that (1) Gal briefly (i.e., for 

< 5 ns) sampled a 1S5 skew-boat conformation once in each of two of the 10-mer MD runs (Figure B.25), 

and (2) GlcNAcβ1-3Gal linkages in the 10-mer did not sample conformations in the tertiary basin (i.e., +ϕ, 

−ψ) sampled in the 20-mer. Boat/skew-boat conformations including 1S5 were shown to have a high 

secondary free energy minimum (i.e., > 4 kcal/mol) in biased MD simulations of Gal monosaccharides 

[307] indicating that while possible, these conformations are not very stable in Gal monosaccharides. In 

both biased and unbiased MD simulations of a tetrasaccharide with a central Gal-GlcNAc disaccharide 

unit, the free energy minimum of Gal boat/skew-boat conformations was much higher (i.e., ~7 kcal/mol) 

[344], suggesting that non-4C1 conformations are less stable in Gal linked to other monosaccharides. This 

could explain why Gal does not sample non-4C1 conformations in keratan 20-mer MD, and suggests that 

these conformations would not be seen in long polymers. Although +ϕ, −ψ conformations in GlcNAcβ1-

3Gal linkages are rare, they are physical conformations [351] that minorly contribute to polymer 

backbone flexibility. This further supports our belief that conformational landscapes from 20-mer MD are 

better-suited to construct conformational ensembles of GAGs with biologically-relevant chain lengths 

than those of short GAG oligosaccharides. 

The higher degree of rigidity and probability of extended conformations in nonsulfated keratan 

MD compared to hyaluronan MD can be explained by the facts that: (1) for each glycosidic linkage type, 

the conformations that caused a kink in the polymer chain were less stable and, thus, rarer in nonsulfated 

keratan MD than in hyaluronan MD; and (2) GlcNAc and Gal are mostly rigid 4C1 chair conformers in 

nonsulfated keratan whereas GlcNAc and GlcA took on more boat/skew-boat conformations that caused 

kinks in hyaluronan. Importantly, nonsulfated keratan 10- and 20-mers behaved randomly, and 

glycosidic linkages and monosaccharide rings behaved independently in MD simulations. 



90 
 

4.3.3.2. Construction Algorithm. Nonsulfated keratan 20-mer conformational ensembles (four sets of 

10,000 conformations) were constructed using our algorithm and compared to MD-generated keratan 20-

mer ensembles. The monosaccharide ring (Figure B.26) and glycosidic linkage (Figure B.27) 

conformations in the constructed keratan 20-mer ensemble were identical to the input data (i.e., MD-

generated keratan 20-mer conformations; Figures 4.15.a,b and 4.16.a,b and Table 4.6), as expected. The 

end-to-end distances (Figure 4.17.a and Table 4.5) and radii of gyration (Figure B.20.a,b) were similar in 

constructed and MD-generated ensembles, demonstrating that nonsulfated keratan 20-mer 

conformational ensembles provide an accurate representation of backbone flexibility in nonsulfated 

keratan 20-mer MD simulations. 
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Figure 4.17. End-to-end distance probability distributions of MD-generated (blue dashed lines) and 

constructed (red solid lines) nonsulfated keratan ensembles: (a) 20-mer and (b) 10-mer; probabilities were 

calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer and 0.25 Å bins for the 10-mer; 

each ensemble includes four sets of 10,000 conformations. 

Four sets of nonsulfated keratan 10-mer ensembles with 10,000 conformations each were 

constructed, and the results were compared to those of nonsulfated keratan 10-mer MD. The end-to-end 

distances (Figure 4.17.b and Table 4.5) and radii of gyration (Figure B.20.c,d) in constructed 10-mer 

ensembles matched those of MD-generated 10-mer ensembles, demonstrating that MD-generated 20-mer 

conformations can be applied to construct ensembles of keratan polymers of different lengths that mimic 

(a) 

(b) 
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backbone flexibility seen in MD simulation. A nonsulfated keratan 200-mer ensemble was constructed 

and, as expected, the end-to-end distance distribution (Figure 4.18) and radii of gyration (Figure B.20.e) 

showed that as the polymer length increased, conformations tended to be more compact. Notably, this 

shift in the end-to-end distance distribution curve was more subtle in keratan than in hyaluronan, which 

stands to reason, as monosaccharide rings and glycosidic linkages are more rigid and tend to be more 

extended in keratan 20-mer MD than in hyaluronan 20-mer MD. 

 
Figure 4.18. End-to-end distance probability distribution of constructed ensemble of nonsulfated keratan 

200-mer; most probable end-to-end distance across all four sets is 305 Å; probabilities were calculated for 

end-to-end distances sorted into 5 Å bins; the ensemble contains four sets of 10,000 conformations. 

4.3.4. Nonsulfated Heparan 

4.3.4.1. Molecular Dynamics Simulations: Glycosidic Linkage and Monosaccharide Ring Geometry 

Effects on Polymer Backbone Flexibility. The backbone flexibility of nonsulfated heparan 20-mer, 

quantified by the end-to-end distances (Figure 4.19 and Table 4.7) and radii of gyration (Figure B.28.a) in 

MD simulations was analyzed. The wide end-to-end distance distribution curves and tendency toward 

lower end-to-end distances, relative to those of the extended 20-mer conformation, indicated that 

nonsulfated heparan 20-mer was highly flexible and tended toward compact conformations in MD 
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simulations. To determine factors contributing to this conformational flexibility, monosaccharide ring and 

glycosidic linkage conformations were examined for patterns. 

 
Figure 4.19. End-to-end distance probability distribution of MD-generated nonsulfated heparan 20-mer 

ensemble; each of the four runs includes 10,000 conformations; probabilities were calculated for end-to-

end distances sorted into 0.5 Å bins. 

Table 4.7. Most Probable End-to-End Distances (d) in MD-Generated and Constructed 

Nonsulfated Heparan Ensembles 1. 

 20-mer Ensembles 10-mer Ensembles 

 
MD-

Generated 
d (Å) 

Constructed 
d (Å) % Difference 

MD-
Generated 

d (Å) 

Constructed 
d (Å) % Difference 

Run 1 68.5 70.0  37.00 37.25  
Run 2 68.5 72.0  36.25 38.25  
Run 3 67.5 67.5  37.50 37.25  
Run 4 66.5 71.5  36.75 36.75  
All 2 68.5 72.0 4.98% 37.00 37.25 0.67% 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer ensembles 

and 0.25 Å bins for the 10-mer ensembles. 2 All = end-to-end distance distribution aggregated across all 

four runs. 
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C-P parameters of GlcNAc rings (Figure 4.20.a) revealed all 4C1 chair conformations, in line with 

NMR and force field data for α-GlcNAc [353]. This stands to reason, as we would not expect much 

difference in ring conformation between α- and β-GlcNAc, because the only structural difference is the 

orientation of the exocyclic oxygen atom on C1 (i.e., the linker oxygen on nonterminal GlcNAc 

monosaccharides in GAG polysaccharides). This structural difference will impact glycosidic linkage 

conformation but is less likely to impact GlcNAc ring conformation. The IdoA monosaccharide C-P 

parameters (Figure 4.20.b) from nonsulfated heparan 20-mer MD were similar to those of IdoA in 

nonsulfated dermatan 20-mer MD (Figure 4.9.b): predominantly 1C4, 2SO, and some 4C1, which is also in 

line with NMR and force field data for nonsulfated IdoA in heparan sulfate oligosaccharides [310,354] 

and nonsulfated heparan trisaccharides [263], and occasional boat and skew-boat conformations (Figure 

4.4.b,c; -4IdoAα1- endocyclic ring and linker oxygen atoms in heparan are identical to those of -4GlcAβ1- 

in hyaluronan). As with GalNAc in dermatan, the presence of neighboring GlcNAc monosaccharides 

substantially decreased sampling of 4C1 conformations [310], which is in line with our results. One NMR 

and force field study reported 19– 49% 2SO conformations of nonsulfated IdoA in heparan sulfate 

hexasaccharides, and found that as the degree of GlcNAc sulfation increased, the percentage of 2SO 

conformations in adjacent nonsulfated IdoA decreased [354]. As we studied only nonsulfated heparan, 

we would expect to see a higher proportion of IdoA 2SO conformations (i.e., close to 49%) if simulated 

under the same conditions. However, the aforementioned study performed MD in aqueous solution with 

only neutralizing Na+ ions, whereas our systems contained an additional 140 mM NaCl. Another NMR 

and molecular modeling study showed that increasing NaCl salt concentrations caused a shift in 

equilibrium of 1C4 and 2SO toward 1C4 conformations of 2-O-sulfated IdoA flanked by sulfated 

glucosamine [310]. This may explain the tendency toward 1C4 IdoA conformations, with ~54% of IdoA 

rings across all four 20-mer MD runs in 1C4, ~25% in 2SO, and ~4% in 4C1 (Table B.3). Furthermore, very 

few IdoA rings sampled 4C1 chair conformations, and one run contained no IdoA 4C1 chair conformations 
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(Figure B.29), which is in contrast to the more random distribution of IdoA 4C1 chair conformations in 

nonsulfated dermatan 20-mer MD (Figure B.16). This is likely the result of random kinetic trapping 

during nonsulfated heparan 20-mer MD simulations, which means IdoA only rarely overcame energy 

barriers between boat/skew-boat and 4C1 conformations. Importantly, it appears that all relevant IdoA 

conformations (i.e., those in line with the literature) were sampled in nonsulfated heparan 20-mer MD 

simulations. Therefore, we believe our database of MD-generated 20-mer conformations contains a full 

conformational landscape of IdoA rings in nonsulfated heparan. 

 

 
Figure 4.20. Cremer–Pople data for MD-generated nonsulfated heparan ensembles: (a) GlcNAc and (b) 

IdoA in the 20-mer and (c) GlcNAc and (d) IdoA in the 10-mer; geometries from the four sets of each 

ensemble are represented by red, green, blue, and magenta dots, respectively and the force-field 

geometry is represented by a single large black dot; Cremer–Pople parameters (ϕ, θ) for all rings in every 

tenth snapshot from each ensemble were plotted (i.e., 10 rings * 1,000 snapshots per run * 4 runs = 40,000 

parameter sets for the 20-mer and 20,000 parameter sets for the 10-mer). 

(a) (b) 

(d) (c) 
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The primary goal of our algorithm is to predict backbone conformations of long GAG chains, 

which requires that (1) monosaccharide rings in GAG 20-mers behave independently in MD simulation 

and (2) contributions of ring puckers to backbone flexibility match those expected in nonsulfated heparan 

polymers in aqueous solution. There did not appear to be any interdependency between adjacent rings, 

suggesting that monosaccharide rings behave independently in nonsulfated heparan 20-mer MD 

simulations. To determine the effects of IdoA ring puckering on polymer backbone conformations, end-

to-end distances of 20-mer conformations containing monosaccharides in (1) boat and skew-boat 

conformations that caused a kink in the polymer chain and (2) 2SO conformations, were analyzed (Figure 

B.30). The end-to-end distance distribution of 20-mer conformations with the ring puckers that caused a 

kink was similar to that of the average of the four MD runs and the most probable end-to-end distance 

was only 1 Å lower in conformations with ring puckers that caused a kink, suggesting that boat and 

skew-boat conformations that introduce a kink do not necessarily give less compact 20-mer 

conformations, and thus are not major factors contributing to backbone flexibility. The distribution curve 

of 20-mer conformations with 2SO IdoA ring puckers and that of 20-mer conformations with non-2SO 

boat/skew-boat puckers that caused a kink were qualitatively similar to that of the full 20-mer MD 

ensemble, but had additional peaks in probability of higher end-to-end distances. These findings suggest 

that IdoA boat/skew-boat conformations are associated with the full range of 20-mer backbone 

conformations in MD simulations with only a slight tendency toward extended 20-mer conformations. 

Therefore, the proportion of IdoA 2SO conformations likely does not have a major effect on nonsulfated 

heparan 20-mer backbone flexibility. 

Next, glycosidic linkage dihedral free energies ΔG(ϕ, ψ) were examined (Figure 4.21 and Table 

4.8). IdoAα1-4GlcNAc glycosidic linkages sampled primarily −ϕ, +ψ with secondary basins in −ϕ, −ψ and 

GlcNAcα1-4IdoA glycosidic linkages sampled conformations in a single basin (+ϕ, +ψ). We compared our 

results to those of an NMR and force field study that performed two sets of MD on each of nonsulfated 
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IdoAα1-4GlcNAc and GlcNAcα1-4IdoA disaccharides, one with IdoA restrained to 1C4 and the other with 

IdoA restrained to 2SO, each with a biasing potential on glycosidic linkage dihedrals defined by ϕ = H1-C1-

O-C4 and ψ = C1-O-C4-H4 [191]. If we assume O5-C1-O-C4 = H1-C1-O-C4 - 120° in IdoAα1-4GlcNAc 

linkages, O5-C1-O-C4 = H1-C1-O-C4 + 120° in GlcNAcα1-4IdoA linkages, and C1-O-C4-C3 = C1-O-C4-H4 + 

120° in both linkage types, our data are in close agreement with theirs. 

 

 
Figure 4.21. ΔG(ϕ, ψ) in the MD-generated nonsulfated heparan ensembles for aggregated IdoAα1-

4GlcNAc and GlcNAcα1-4IdoA glycosidic linkage data in the (a,b) 20-mer and (c,d) 10-mer, respectively; 

contour lines every 1 kcal/mol. 

(a) (b) 

(d) (c) 
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Table 4.8. Nonsulfated Heparan Glycosidic Linkage Dihedrals (ϕ, ψ) 1 and 

Free Energy (ΔG(ϕ, ψ) kcal/mol) Minima. 

 MD-Generated 20-mer 
Ensemble 

MD-Generated 10-mer  
Ensemble 

Constructed 20-mer 
Ensemble 

 
IdoAα1-4  
GlcNAc 

GlcNAcα1-4 
IdoA 

IdoAα1-4 
GlcNAc 

GlcNAcα1-4 
IdoA 

IdoAα1-4 
GlcNAc 

GlcNAcα1-4 
IdoA 

Min ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG ϕ, ψ ΔG 

I −73.75°, 
128.75° 0.00 76.25°, 

88.75° 0.00 −76.25°, 
128.75° 0.00 73.75°, 

88.75° 0.00 −76.25°, 
128.75° 0.00 −71.25°, 

116.25° 0.00 

II −103.75°,  
−68.75° 3.13   −103.75°,  

−63.75° 2.66   −98.75°,  
−68.75° 3.23   

II’ −66.25°, 
−31.25° 3.38   −66.25°, 

−33.75° 2.99   −61.25°, 
−36.25° 3.34   

1 ϕ, ψ dihedral angles were sorted into 2.5° bins. 

GlcNAcα1-4IdoA glycosidic linkage conformations differ from any other GAG glycosidic linkage 

conformation because of the orientation of the linker oxygen atom with respect to GlcNAc. Specifically, 

the oxygen atom on C1 of α-GlcNAc is in the opposite orientation as that on C1 of any other GAG 

monosaccharide (Figure 4.1). The GlcNAcα1-4IdoA linkages have a coiled conformation (Figure B.31), 

which helps explain the high tendency toward compact conformations in nonsulfated heparan compared 

to other GAGs. 

As IdoAα1-4GlcNAc linkages have secondary conformations, we sought to determine if their 

behavior was random and independent. ΔG(ϕ, ψ) was plotted for each individual IdoAα1-4GlcNAc 

linkage in each MD run and there did not appear to be any connection between adjacent IdoAα1-

4GlcNAc linkages or any patterns across different MD runs. To determine the effects of IdoAα1-4GlcNAc 

linkages with −ϕ, −ψ dihedrals on 20-mer backbone flexibility, end-to-end distances of 20-mer 

conformations with these glycosidic linkage conformations were analyzed. Although these linkage 

conformations caused a kink in the polymer chain (as with hyaluronan GlcNAcβ1-4GlcA linkages), they 

were not associated with more compact conformations (Figure B.32). In fact, the end-to-end distance 
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distribution of heparan 20-mer conformations with IdoAα1-4GlcNAc linkage −ϕ, −ψ dihedrals was 

similar to that of the full MD-generated 20-mer ensemble. This was likely because these linkage 

conformations occurred infrequently in nonsulfated heparan 20-mer MD, meaning a single heparan 20-

mer conformation was not likely to have many kinks resulting from these −ϕ, −ψ linkage dihedrals. These 

findings are in line with the literature, which suggests that IdoA ring conformational flexibility in 

heparin/heparan sulfate oligo- and polysaccharides does not affect glycosidic linkage conformation or 

overall backbone shape [362]. 

To determine if there was any interdependency between different IdoA ring puckers and 

flanking IdoAα1-4GlcNAc linkage geometries in 20-mer MD simulations, conformations of all IdoAα1-

4GlcNAc linkages flanking each of 1C4, 2SO, 4C1, and boat/skew-boat (non-2SO) conformations were 

analyzed separately (Figure B.33). There did not appear to be strong associations between any particular 

IdoA ring conformation and flanking IdoAα1-4GlcNAc linkage conformation, which is in line with 

IdoAα1-4GlcNAc disaccharide data from NMR and MD with restrained 1C4 and 2SO IdoA ring 

conformations and a biasing potential on glycosidic linkage dihedrals [191]. This supports our hypothesis 

that glycosidic linkages and monosaccharide rings behave independently in MD simulation of 

nonsulfated heparan 20-mer. 

Backbone conformational analysis of nonsulfated heparan 10-mer in MD simulation revealed 

flexible, compact conformations (Figure B.28.c and Table 4.7), as seen in nonsulfated heparan 20-mer MD. 

Monosaccharide ring and glycosidic linkage conformations in nonsulfated heparan 10-mer MD were 

similar to those of nonsulfated heparan 20-mer MD. These findings indicate that in MD simulations of 

nonsulfated heparan 10- and 20-mers, (1) IdoAα1-4GlcNAc glycosidic linkages with −ϕ, −ψ dihedrals 

cause a kink in the polymer chain but are rare and thus do not contribute to compact polymer 

conformations and (2) monosaccharide rings and glycosidic linkages behave randomly and 

independently. 
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4.3.4.2. Construction Algorithm. A nonsulfated heparan 20-mer ensemble with 40,000 conformations was 

constructed by the algorithm. Monosaccharide ring C-P parameters (Figure B.34) and glycosidic linkage 

conformations (Figure B.35) post minimization in the constructed ensemble matched the input data 

(Figures 4.20.a,b and 4.21.a,b), as expected. Additionally, the end-to-end distance distribution and radii of 

gyration of the constructed ensemble closely resembled those of the MD-generated 20-mer ensemble 

(Figures 4.22.a and B.28.a,b and Table 4.7), demonstrating that our algorithm generates nonsulfated 

heparan 20-mer ensembles with backbone conformations that mimic backbone flexibility seen in 20-mer 

MD. 
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Figure 4.22. End-to-end distance probability distributions of MD-generated (blue dashed lines) and 

constructed (red solid lines) nonsulfated heparan ensembles: (a) 20-mer and (b) 10-mer; probabilities 

were calculated for end-to-end distances sorted into 0.5 Å bins for the 20-mer and 0.25 Å bins for the 10-

mer; each ensemble includes four sets of 10,000 conformations. 

A nonsulfated heparan 10-mer ensemble with 40,000 conformations was also constructed by the 

algorithm and had end-to-end distances and radii of gyration that matched those of MD-generated 

nonsulfated heparan 10-mer ensembles (Figures 4.22.b and B.28.c,d and Table 4.7). This demonstrates that 

nonsulfated heparan 20-mer conformations from MD can be used to construct 10-mer ensembles that 

mimic the backbone flexibility seen in nonsulfated heparan 10-mer MD.  

(a) 

(b) 
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The constructed nonsulfated heparan 200-mer ensemble had reasonably expected end-to-end 

distance probability distributions (Figure 4.23), i.e., the skewness of the curves shifted toward the right, 

indicating more compact conformations with increasing polymer length. The heparan 200-mer end-to-

end distance distribution curve was qualitatively similar to that of hyaluronan 200-mer (i.e., the 

probability peak was of similar magnitude and most probable end-to-end distances were similar), which 

stands to reason, as ring and linkage conformations in nonsulfated heparan 20-mer MD cause more 

compact backbone conformations, as in hyaluronan 20-mer MD. 

 
Figure 4.23. End-to-end distance probability distribution of constructed ensemble of nonsulfated heparan 

200-mer; most probable end-to-end distance across all four sets is 260 Å; probabilities were calculated for 

end-to-end distances sorted into 5 Å bins; the ensemble contains four sets of 10,000 conformations. 

4.4. Conclusions 

Collectively, our findings support our hypotheses that (1) glycosidic linkages and 

monosaccharide rings in hyaluronan and nonsulfated dermatan, keratan, and heparan GAG 20-mers 

behave randomly and independently in MD simulation and (2) using a database of conformations from 

corresponding GAG 20-mer MD simulations and treating glycosidic linkages and monosaccharide rings 

independently, our algorithm can efficiently construct conformational ensembles of hyaluronan and 
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nonsulfated dermatan, keratan, and heparan GAG 10- and 20-mers that mimic backbone flexibility 

observed in corresponding MD simulations. Additionally, our algorithm constructed sets of 10,000 

molecular conformations of nonsulfated GAG 200-mers with backbone conformations that we would 

reasonably expect to see in MD simulation and did so within 12 h. This suggests that the algorithm can 

generate conformational ensembles of nonsulfated heterogeneous GAG polymers of arbitrary length in 

under a day. For perspective, 1-µs MD simulations, each producing 10,000 snapshots (i.e., 3-D atomic 

coordinate sets), of GAG 10- and 20-mers were completed in about 1–2 weeks and 1–2 months, 

respectively, and using modern GPU-accelerated hardware and software. Furthermore, the algorithm’s 

potential energy minimization and bond potential energy cutoff criterion exclude nonphysical 

conformations from constructed ensembles, leaving only conformations with reasonably expected bond 

energies (Figures B.36, B.37, B.38, and B.39). 

A comparison of the different GAG 20-mer MD simulations provided further insights into the 

relationship between GAG structure and conformation. For example, no associations between adjacent 

monosaccharide conformations were seen in any of the GAG 20-mer MD simulations, but differences in 

conformations of the same monosaccharide ring type in different GAGs were observed. This indicates 

that the structure of adjacent monosaccharides contributes to ring conformation. Furthermore, IdoA 

monosaccharides were much more conformationally flexible than GlcA monosaccharides in GAG 10- and 

20-mer MD simulations, even though the structural difference between these two monosaccharide types 

(specifically, the orientation of the carboxylate group on C5) is subtle. Interestingly, dermatan and 

heparan are the only GAGs with IdoA monosaccharides, yet hyaluronan and heparan showed the most 

conformational flexibility, and heparan showed the greatest tendency toward compact conformations 

compared to other GAGs. This was likely because of variability in glycosidic linkage conformation, which 

is independent of monosaccharide ring conformation. Independence of glycosidic linkages and 

monosaccharide rings was further evidenced by the fact that despite differences in flanking 
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monosaccharide structure in different GAG types, there were similarities between all 1–3 linkage 

conformations and between all 1–4 linkage conformations, with the exception of GlcNAcα1–4IdoA 

linkages in heparan. 

A comparison of MD-generated GAG 20-mer conformations to those of GAG 10-mers and to 

existing experimentally-determined conformations of monosaccharides and GAG oligosaccharides 

supported the use of 20-mer data for the construction of longer GAG polymers. For example, certain IdoA 

conformations (namely 4C1 chair) were found more in unbound monosaccharide rings and terminal rings 

of GAG oligosaccharides than in central rings. Similarly, galactose occasionally sampled non-4C1 

conformations in monosaccharide rings and short oligosaccharides, including nonsulfated keratan 10-mer 

in MD simulation, but boat/skew-boat conformations of galactose were decreasingly common in central 

rings of polymers of increasing length. This is in line with our observation that only 4C1 conformations of 

galactose were sampled in nonsulfated keratan 20-mer MD. Additionally, some nonhelical glycosidic 

linkage conformations that caused a kink in the polymer chain, and thus contributed to compact GAG 

backbone conformations, were found more in GAG 20-mers than in short GAG oligosaccharides. 

Therefore, conformational landscapes from GAG 20-mer MD simulations likely provide a better 

representation of conformations of long GAG polymers than existing conformational landscapes of 

monosaccharides and GAG oligosaccharides. 

A comparison of backbone conformational analyses of 200-mers of different GAG types provided 

insights into structural features and conformational behaviors contributing to GAG polymer backbone 

flexibility. For example, 200-mer end-to-end distance distribution curves were qualitatively similar in 

nonsulfated dermatan (Figure 4.13), keratan (Figure 4.18), and chondroitin [188], whereas hyaluronan 

and nonsulfated heparan polymer end-to-end distance distributions (Figures 4.7 and 4.23, respectively) 

showed an even higher tendency toward compact conformations with increasing polymer length than 

other nonsulfated GAGs. To find possible explanations for this, we compared observations from MD 
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analyses of all GAG types. In hyaluronan 10- and 20-mer MD simulations, (1) GlcNAc conformations 

were similar to those in nonsulfated keratan and heparan MD, and (2) GlcA conformations were similar 

to those in nonsulfated chondroitin MD [188]. Furthermore, IdoA rings showed more flexibility in MD 

simulation of nonsulfated dermatan and heparan than GlcA rings in hyaluronan and chondroitin MD 

[188]. However, boat/skew-boat conformations (except for 2SO) in IdoA did not appear to cause more 

compact polymer backbone conformations than 1C4, 2SO, and 4C1 IdoA conformations, while boat/skew-

boat GlcA ring conformations were more highly associated with more compact polymer backbone 

conformations in hyaluronan and chondroitin [188]. Additionally, in hyaluronan 10- and 20-mer MD 

simulations, (1) GlcNAcβ1-4GlcA linkages took on the same conformations as Galβ1-4GlcNAc linkages in 

nonsulfated keratan MD, IdoAα1-4GlcNAc linkages in nonsulfated heparan MD, and GalNAcβ1-4GlcA 

in nonsulfated chondroitin MD [188] (i.e., primarily −ϕ, +ψ with a secondary basin at −ϕ, −ψ) and (2) 

GlcAβ1-3GlcNAc linkages took on the same conformations as IdoAα1-3GalNAc in nonsulfated dermatan 

MD, GlcNAcβ1-3Gal in nonsulfated keratan MD, and GlcAβ1-3GalNAc linkages in nonsulfated 

chondroitin MD [188] (i.e., primarily −ϕ, −ψ), but with more conformations at −ϕ, +ψ. All secondary and 

tertiary conformations (i.e., −ϕ, −ψ in 1–4 linkages and −ϕ, +ψ in 1–3 linkages) were nonhelical and caused 

a kink or slight bend in the polymer chain, and were, therefore, associated with more compact 

conformations. The differences in energetic stability of secondary and tertiary linkage conformations 

between different GAG types can be explained by the adjacent monosaccharide structure. The major 

observation that is unique to hyaluronan is that both glycosidic linkage types take on more of these 

nonhelical secondary conformations in 10- and 20-mer MD simulations than any of nonsulfated 

dermatan, keratan, or chondroitin [188] in 10- and 20-mer MD simulations. Heparan is unique, in that it 

has all 1–4 linkages, while all other GAGs have alternating 1–3 and 1–4 linkages, and it contains α-

GlcNAc, which gives unique conformations in GlcNAcα1-4IdoA linkages. These characteristics give 

nonsulfated heparan a tendency toward more coiled structures than other GAGs. 
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Based on these observations and the fact that nonsulfated dermatan, keratan, and chondroitin 

showed more extended polymer backbone conformations than hyaluronan and nonsulfated heparan in 

MD simulations, it is likely that: (1) monosaccharide structure and conformational flexibility determine 

adjacent monosaccharide conformational flexibility; (2) although there is a much higher degree of ring 

flexibility in IdoA than in GlcA, the flexibility of GlcA rings is more highly associated with GAG polymer 

backbone flexibility than that of IdoA rings; and (3) nonhelical glycosidic linkage conformations, which 

cause kinks in GAG polymer chains, contribute to more compact GAG polymer backbone conformations 

and, thus, a higher degree of GAG polymer backbone flexibility. These are valuable insights that would 

be difficult to obtain from conformational analyses of only solid-state structures and MD-generated 

conformational ensembles of short GAG oligosaccharides. Other important insights that can be gained 

from 3-D atomic-resolution conformational ensembles of GAG polymers include potential binding 

properties, and thus, predictions of binding poses with other biomolecules of interest. Models of long-

chain GAG polymers (Figure 4.24 and [188]) can help characterize complete PGs and GAG-mediated 

complexes between multiple biomolecules, and consequently, improve our understanding of the 

bioactivity and function of GAG biopolymers in animal tissue. 
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Figure 4.24. Constructed 200-mer conformations with probable end-to-end distances for each GAG type: 

(a) hyaluronan, (b) nonsulfated dermatan, (c) nonsulfated keratan, (d) nonsulfated heparan; n.b.: depth is 

not shown, so some conformations appear to have overlap.  

(a) (b) 

(c) (d) 
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APPENDIX A: SUPPORTING INFORMATION FOR “EFFICIENT CONSTRUCTION OF  

ATOMIC-RESOLUTION MODELS OF NONSULFATED CHONDROITIN 

GLYCOSAMINOGLYCAN USING MOLECULAR DYNAMICS DATA” 

Table A.1. Comparison to Observed Literature Values of Glycosidic Linkage Dihedrals (ϕ, ψ) in 

Nonsulfated Chondroitin 

  GlcAβ1-3GalNAc GalNAcβ1-4GlcA 
 Min ϕ Diff ψ Diff 1 ϕ Diff ψ Diff 2 

Biased MD-generated 
2-mer Ensembles [212] 3 

I -83.75° +2.5° 83.75° +122.5° -63.75° -2.5° -121.25° -122.5° 
II     -58.75° 0° 93.75° -127.5° 
II’     -83.75° -2.5° 48.75° -122.5° 

Unbiased MD-Generated 
and NMR-Validated 

6-mer Ensembles [259] 4 
I -72° -9° 108° +98° -73° +7° -117° -127° 

Diff = (xobs - x) +/- 360° where xobs = ϕ or ψ observed in our 20-mer simulations. 1 Expected difference for 

β1-3 = +120°. 2 Expected difference for β1-4 = -120°. 3 ϕ, ψ dihedral angles were sorted into 2.5° bins. 4 ϕ, ψ 

dihedral angles were sorted into 1° bins; only global minima (I) were reported. 

Table A.2. Bond Energies (Eb) of Constructed Chondroitin 20-mer Conformations with Pierced Rings. 

Piercing Bond Pierced Ring Pierce Type 1 Eb 

(kcal/mol) 
DEb = Eb - Eb,cut 2 

(kcal/mol) 

Estimated DEb 3 

(kcal/mol) 
GalNAc C5-C6 GalNAc Exocyclic 721.0 592.2 285.2 
GalNAc C6-O6 GalNAc Exocyclic 784.2 655.4 132.3 
GalNAc C6-O6 GalNAc Exocyclic 793.0 664.2 132.3 
GalNAc C-CT GlcA Exocyclic 787.7 658.9 253.4 

GlcA C5-C6 GlcA Exocyclic 720.2 591.4 294.6 
GalNAc C3-O3 GlcA Linkage 715.8 587.0 224.1 

GlcA C4-O4 GalNAc Linkage 714.8 586.0 238.6 
GlcA GalNAc Interlocking 981.2 852.4 725.2 
GlcA GalNAc Interlocking 941.6 812.8 725.2 
GlcA GlcA Interlocking 961.4 832.6 723.7 

GalNAc GalNAc Interlocking 1053 924.2 520.3 
GalNAc GalNAc Interlocking 1110 981.2 520.3 

1 Exocyclic: the piercing bond is an exocyclic bond not participating in a glycosidic linkage; Linkage: the 

piercing bond is part of a glycosidic linkage; Interlocking: the rings are interlocking (i.e. there are two 
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piercing bonds and the estimated DEb is the sum of the estimated DEb of these two bonds). 2 Eb,cut = 128.85 

kcal/mol (bond energy cutoff). 3 Bond strain energy of this piercing bond estimated by comparing this 

bond energy in individual nonbonded saccharide systems with and without ring piercing. 

 
Figure A.1. End-to-end distance probability distribution of 20-mer ensembles generated by MD (blue 

dashed lines) and an early version of the construction algorithm (red solid lines) which applied glycosidic 

linkage geometries from MD-generated 20-mer ensembles and standard force field geometries for all 

monosaccharide rings; each type of ensemble includes four sets of 10,000 conformations; probabilities 

were calculated for end-to-end distances sorted into 0.5 Å bins. 
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Figure A.2. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and 

constructed ensembles of nonsulfated chondroitin (a,b) 20-mer and (c,d) 10-mer, respectively, and 

constructed ensembles of the chondroitin (e) 100-mer and (f) 200-mer. Each plot has 40,000 samples and 

shows linear regression and R2. 
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(e) (f) 
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Figure A.3. ΔG(ϕ, ψ) plots for each glycosidic linkage in the chondroitin 20-mer from MD-generated 

ensembles; (a) GlcA2←GalNAc1, (b) GalNAc3←GlcA2, (c) GlcA4←GalNAc3, (d) GalNAc5←GlcA4, (e) 

GlcA6←GalNAc5, (f) GalNAc7←GlcA6, (g) GlcA8←GalNAc7, (h) GalNAc9←GlcA8, (i) GlcA10←GalNAc9, 

(j) GalNAc11←GlcA10, (k) GlcA12←GalNAc11, (l) GalNAc13←GlcA12, (m) GlcA14←GalNAc13, (n) 

GalNAc15←GlcA14, (o) GlcA16←GalNAc15, (p) GalNAc17←GlcA16, (q) GlcA18←GalNAc17, (r) 

GalNAc19←GlcA18, and (s) GlcA20←GalNAc19; monosaccharides are numbered from reducing to 

nonreducing end; ϕ, ψ separated into 2.5° bins. 

(p) (q) (r) 

(s) 
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Figure A.4. (a-t) C-P plots for each monosaccharide ring in the chondroitin 20-mer from MD-generated 

ensembles; monosaccharides are numbered from reducing to nonreducing end; each of the 4 runs is 

represented by different color. 
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Figure A.5. (a-i) Probability histograms of bond lengths for each type of bond in the chondroitin 20-mer; 

blue lines represent bond lengths in MD-generated ensembles (which match those in constructed 

ensembles before minimization) and red lines represent bond lengths in constructed 20-mer ensembles 

after minimization. (Note: bond lengths involving hydrogen atoms (g-i) are fixed during MD but not 

during minimization in the algorithm.) 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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Figure A.6. Probability histogram showing changes in glycosidic linkage ϕ and ψ dihedral angles during 

energy minimization in constructed 20-mer ensembles; 99.6% of all differences are within 4°. 

  
Figure A.7. C-P plots of (a) GalNAc and (b) GlcA in MD-generated chondroitin 10-mer ensembles; 

geometries from the four sets of each type of ensemble are represented by red, green, blue, and magenta 

dots, respectively and the force field geometry is represented by a black dot. C-P parameters of all rings 

in every tenth snapshot from each ensemble were plotted (i.e. 5 rings * 1,000 snapshots per run * 4 runs = 

20,000 parameter sets). 

(a) (b) 
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Figure A.8. End-to-end distance probability distribution of chondroitin 20-mer ensembles generated by 

MD (blue dashed lines) and an early version of the construction algorithm (red solid lines) which applied 

glycosidic linkage geometries from Adaptive Biasing Force (ABF) [363,364] MD-generated ensembles of 

nonsulfated chondroitin disaccharides [212] and standard force field geometries for all monosaccharide 

rings; each type of ensemble includes four sets of 10,000 conformations; probabilities were calculated for 

end-to-end distances sorted into 0.5 Å bins. 
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Figure A.9. ΔG(ϕ, ψ) plots for GlcAβ1-3GalNAc and GalNAcβ1-4GlcA glycosidic linkages in (a,b) 

nonsulfated chondroitin disaccharides simulated using MD with ABF on glycosidic linkage dihedrals (ϕ, 

ψ separated into 1° bins) and (c,d) 20-mer ensembles constructed using glycosidic linkage dihedral 

probabilities from ABF MD-generated disaccharides and standard force-field monosaccharide ring 

geometries (ϕ, ψ separated into 2.5° bins); contour lines every 1 kcal/mol; in ABF MD simulations, all 

values of ϕ, ψ were sampled but contours for data with ΔG(ϕ, ψ) > 7 kcal/mol are given values of 7 

kcal/mol in plots (a,b) for clarity (shown in red). 

(a) (b) 

(d) (c) 
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Figure A.10. Bond energy distribution probability histograms from constructed ensembles of the (a) 10-

mer (cutoff = 115.49 kcal/mol), (b) 20-mer (cutoff = 128.85 kcal/mol), (c) 100-mer (cutoff = 274.89 kcal/mol), 

and (d) 200-mer (cutoff = 449.26 kcal/mol). 

(a) (b) 

(d) (c) 
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Figure A.11. Average bond energies, standard deviations (calculated by fitting energies to gaussian 

curve), and regression line as a function of polymer length. Of note, (1) the regression equation calculated 

using only 10-mer and 20-mer constructed data: Eb = 1.383n + 0.028 (regression line plotted) closely 

matches (2) the regression equation calculated using 10-, 20-, 100-, and 200-mer constructed data: Eb = 

1.391n – 0.139. Average bond energies of the 100-mer and 200-mer predicted by regression equation (1), 

Eb,predicted(100) = 138.3 kcal/mol and Eb,predicted(200) = 276.6 kcal/mol, are within 2 kcal/mol of the true 

averages, Eb(100) = 138.8 kcal/mol and Eb(200) = 278.2 kcal/mol. 
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APPENDIX B: SUPPORTING INFORMATION FOR “CONSTRUCTING 3-DIMENSIONAL 

ATOMIC-RESOLUTION MODELS OF NONSULFATED GLYCOSAMINOGLYCANS 

WITH ARBITRARY LENGTHS USING CONFORMATIONS 

FROM MOLECULAR DYNAMICS” 

Table B.1. Most Probable End-to-End Distances (d) in MD-Generated 20-mer Conformations with 

Glycosidic Linkage Conformations in Secondary Basins 1. 

 Hyaluronan Nonsulfated Keratan 
 GlcAβ1-3GlcNAc 

-ϕ, +ψ 
d (Å) 

GlcNAcβ1-4GlcA 
-ϕ, -ψ 
d (Å) 

Galβ1-4GlcNAc 
-ϕ, -ψ 
d (Å) 

GlcNAcβ1-3Gal 
-ϕ, +ψ 
d (Å) 

Run 1 81.5 74.0 88.5 79.5 
Run 2 73.0 73.5 85.0 84.0 
Run 3 61.0 74.0 84.5 88.5 
Run 4 77.0 76.5 84.5 73.5 
All 2 66.0 74.0 84.5 84.0 

1 Probabilities were calculated for end-to-end distances sorted into 0.5 Å bins. 2All = end-to-end distance 

distribution aggregated across all four runs. 

Table B.2. Percent of Occurrences of Different IdoA Ring Puckers in  

Nonsulfated Dermatan MD Simulations 

 20-mer Ensemble 10-mer Ensemble 
1C4 68.727% 70.100% 
4C1 7.062% 9.025% 
B1,4 0.018% 0.005% 
5S1 0.740% 0.685% 
2,5B 3.213% 2.610% 
2SO 19.702% 17.065% 
B3,O 0.080% 0.070% 
1S3 0.125% 0.125% 
1,4B 0.178% 0.115% 
1S5 0.155% 0.200% 

 



147 
 

Table B.3. Percent of Occurrences of Different IdoA Ring Puckers in 

Nonsulfated Heparan MD Simulations 

 20-mer Ensemble 10-mer Ensemble 
1C4 54.222% 64.645% 
4C1 4.410% 6.730% 
3S1 0.003% 0.000% 
B1,4 0.085% 0.035% 
5S1 4.120% 3.110% 
2,5B 12.510% 8.550% 
2SO 24.505% 16.520% 
B3,O 0.008% 0.000% 
1S3 0.035% 0.085% 
1,4B 0.047% 0.155% 
1S5 0.055% 0.170% 

 

 

 
Figure B.1. Excluded constructed hyaluronan 20-mer conformation with GlcA 20 ring pierced by C1-O3 

bond in GlcA 6 β1-3 GlcNAc 5 linkage post minimization (Eb = 690.5 kcal/mol; closeup shows atoms 

involved in the ring pierce); Eb, cutoff = 128.5 kcal/mol.  
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Figure B.2. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and 

constructed ensembles of hyaluronan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) constructed 

ensemble of hyaluronan 200-mer; each plot has 40,000 samples and shows linear regression and R2. 

(a) (b) 

(d) (c) 

(e) 
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Figure B.3. System potential energy probability distribution of the MD-generated hyaluronan 20-mer 

ensemble; each MD run is represented by a different color. 
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Figure B.4. (a,c,e,g,i,k,m,o,q,s) C-P plots and (b,d,f,h,j,l,n,p,r,t) C-P parameter θ timeseries for each 

GlcNAc monosaccharide ring in the MD-generated hyaluronan 20-mer ensemble; monosaccharides are 

numbered from reducing to nonreducing end; each of the 4 runs is represented by different color. 
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Figure B.5. (a,c,e,g,i,k,m,o,q,s) C-P plots and (b,d,f,h,j,l,n,p,r,t) C-P parameter θ timeseries for each GlcA 

monosaccharide ring in the MD-generated hyaluronan 20-mer ensemble; monosaccharides are numbered 

from reducing to nonreducing end; each of the 4 runs is represented by different color. 

 
Figure B.6. Scatterplot of radius of gyration as a function of end-to-end distance in MD-generated 

hyaluronan 20-mer conformations with non-4C1 ring puckers (pink) overlaid on data for full MD-

generated hyaluronan 20-mer ensemble (blue) and corresponding linear regression (Figure B.2.a). 
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Figure B.7. ΔG(ϕ, ψ) plots for each glycosidic linkage in the MD-generated hyaluronan 20-mer ensemble; 

(a) GlcA2→GlcNAc1, (b) GlcNAc3→GlcA2, (c) GlcA4→GlcNAc3, (d) GlcNAc5→GlcA4, (e) 

GlcA6→GlcNAc5, (f) GlcNAc7→GlcA6, (g) GlcA8→GlcNAc7, (h) GlcNAc9→GlcA8, (i) GlcA10→GlcNAc9, 

(j) GlcNAc11→GlcA10, (k) GlcA12→GlcNAc11, (l) GlcNAc13→GlcA12, (m) GlcA14→GlcNAc13, (n) 

GlcNAc15→GlcA14, (o) GlcA16→GlcNAc15, (p) GlcNAc17→GlcA16, (q) GlcA18→GlcNAc17, (r) 

GlcNAc19→GlcA18, and (s) GlcA20→GlcNAc19; monosaccharides are numbered from reducing to 

nonreducing end; ϕ, ψ separated into 2.5° bins. 

(p) (q) (r) 

(s) 
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Figure B.8. Snapshots from hyaluronan 20-mer MD: (a) 20-mer conformation with GlcA 8 (cyan) β1-3 

GlcNAc 7 (blue) linkage dihedrals near ΔG(ϕ, ψ) min II (ϕ = -52.1° and ψ = +91.0°), which causes a kink 

(linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of the same disaccharide unit 

with linkage dihedrals near ΔG(ϕ, ψ) min I (ϕ = -70.9° and ψ = -119.1°). (c-f) End-to-end distance 

probability distributions of MD-generated hyaluronan 20-mer conformations with β1-3 linkages with -ϕ, 

+ψ dihedrals in each of the four runs; as the end-to-end distance distribution from run 2 appeared to be 

(c) (d) 

(e) (f) 

(a) (b) 
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an outlier, these data were compared to the average end-to-end distance distribution of all snapshots in 

MD runs 1, 3, and 4 (black dashed line). 

 
 

 
Figure B.9. Scatterplots for dihedrals ϕ and ψ of glycosidic linkages flanking non-4C1 ring puckers in the 

MD-generated hyaluronan 20-mer ensemble: (a) GlcAβ1-3GlcNAc flanking GlcNAc, (b) GlcAβ1-3GlcNAc 

flanking GlcA, (c) GlcNAcβ1-4GlcA flanking GlcNAc, (d) GlcNAcβ1-4GlcA flanking GlcA; contour lines 

come from corresponding aggregated MD-generated ΔG(ϕ, ψ) data. 

(a) (b) 

(d) (c) 
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Figure B.10. Snapshots from hyaluronan 20-mer MD: (a) 20-mer conformation with GlcNAc 17 (blue) β1-4 

GlcA 16 (cyan) linkage dihedrals near ΔG(ϕ, ψ) min II (ϕ = -86.8° and ψ = -78.6°), which causes a kink 

(linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of this disaccharide unit with 

linkage dihedrals near ΔG(ϕ, ψ) min II’ (ϕ = -55.7° and ψ = -39.7°), (c) closeup of the same disaccharide 

unit with linkage dihedrals near ΔG(ϕ, ψ) min I (ϕ = -68.3° and ψ = +115.2°). (d-g) End-to-end distance 

probability distributions of MD-generated hyaluronan 20-mer conformations with β1-4 linkages with  

(d) (e) 

(g) (f) 

(a) 

(c) 

(b) 
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-ϕ, -ψ dihedrals in each of the four runs; as the end-to-end distance distribution from run 2 appeared to 

be an outlier, these data were compared to the average end-to-end distance distribution of all snapshots 

in MD runs 1, 3, and 4 (black dashed line). 

 

 
Figure B.11. C–P data for (a) GlcNAc and (b) GlcA in the constructed hyaluronan 20-mer ensemble; each 

of the 4 runs is represented by different color and the force-field geometry is represented by a single large 

black dot; each run contains 10,000 parameter sets. 

 
Figure B.12. ΔG(ϕ, ψ) in the constructed hyaluronan 20-mer ensemble for aggregated (a) GlcAβ1-

3GlcNAc and (b) GlcNAcβ1-4GlcA glycosidic linkage data; contour lines every 1 kcal/mol. 

(a) (b) 

(a) (b) 
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Figure B.13. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and 

constructed ensembles of nonsulfated dermatan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) 

constructed ensemble of nonsulfated dermatan 200-mer; each plot has 40,000 samples and shows linear 

regression and R2. 
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Figure B.14. (a-j) C-P parameter θ timeseries for each GalNAc monosaccharide ring in the MD-generated 

nonsulfated dermatan 20-mer ensemble; monosaccharides are numbered from reducing to nonreducing 

end; each of the 4 runs is represented by different color. 

 
Figure B.15. End-to-end distance distributions of MD-generated nonsulfated dermatan 20-mer 

conformations with boat/skew-boat ring puckers that cause a kink in the polymer chain, i.e. non-2SO (pink 

solid line; most probable end-to-end distance is 83.5 Å) and 2SO conformations (green solid line; most 

probable end-to-end distance is 84.0 Å) and the average of all four runs in the full MD-generated 

ensemble (black dashed line; most probable end-to-end distance is 83.5 Å); probabilities were calculated 

for end-to-end distances sorted into 0.5 Å bins. 
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Figure B.16. (a,c,e,g,i,k,m,o,q,s) C-P plots and (b,d,f,h,j,l,n,p,r,t) C-P parameter θ timeseries for each IdoA 

monosaccharide ring in the MD-generated nonsulfated dermatan 20-mer ensemble; monosaccharides are 

numbered from reducing to nonreducing end; each of the 4 runs is represented by different color. 
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Figure B.17. (a,c,e,g,i) C-P plots and (b,d,f,h,j) C-P parameter θ timeseries for each IdoA monosaccharide 

ring in the MD-generated nonsulfated dermatan 10-mer ensemble; monosaccharides are numbered from 

reducing to nonreducing end; each of the 4 runs is represented by different color. 

 
Figure B.18. C–P data for (a) GalNAc and (b) IdoA in the constructed nonsulfated dermatan 20-mer 

ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented 

by a single large black dot; each run contains 10,000 parameter sets. 

 
Figure B.19. ΔG(ϕ, ψ) in the constructed nonsulfated dermatan 20-mer ensemble for aggregated (a) 

IdoAβ1-3GalNAc and (b) GalNAcβ1-4IdoA glycosidic linkage data; contour lines every 1 kcal/mol. 

(a) (b) 

(a) (b) 
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Figure B.20. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and 

constructed ensembles of nonsulfated keratan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) 

constructed ensemble of nonsulfated keratan 200-mer; each plot has 40,000 samples and shows linear 

regression and R2. 
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Figure B.21. (a,c,e,g,i,k,m,o,q,s) C-P plots and (b,d,f,h,j,l,n,p,r,t) C-P parameter θ timeseries for each 

GlcNAc monosaccharide ring in the MD-generated nonsulfated keratan 20-mer ensemble; 

monosaccharides are numbered from reducing to nonreducing end; each of the 4 runs is represented by 

different color. 

 
Figure B.22. Scatterplot of radius of gyration as a function of end-to-end distance in MD-generated 

nonsulfated keratan 20-mer conformations with non-4C1 ring puckers overlaid on data for full MD-

generated nonsulfated keratan 20-mer ensemble and corresponding linear regression (Figure B.20.a). 
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Figure B.23. Snapshots from nonsulfated keratan 20-mer MD: (a) 20-mer conformation with Gal 2 (cyan) 

β1-4 GlcNAc 1 (blue) linkage dihedrals in tertiary basin (ϕ = +13.8° and ψ = +131.1°), which causes a slight 

bend (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of this disaccharide unit 

with linkage dihedrals in secondary basin, i.e. near ΔG(ϕ, ψ) min II (ϕ = -98.8° and ψ = -71.0°), (c) closeup 

of the same disaccharide unit with linkage dihedrals in primary basin near ΔG(ϕ, ψ) min I (ϕ = -86.2° and 

ψ = +100.5°). (d) End-to-end distance probability distributions of MD-generated nonsulfated keratan 20-

mer conformations with β1-4 linkages with +ϕ, +ψ (pink solid line; most probable end-to-end distance is 

85.0 Å) and -ϕ, -ψ (green solid line; most probable end-to-end distance is 84.5 Å) dihedrals in all four 

runs; these data were compared to the average end-to-end distance distribution of all snapshots in all 

four MD runs (black dashed line; most probable end-to-end distance is 90.0 Å). 

(d) 

(a) 

(c) 

(b) 
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Figure B.24. Snapshots from nonsulfated keratan 20-mer MD: (a) 20-mer conformation with GlcNAc 3 

(blue) β1-3 Gal 2 (cyan) linkage dihedrals in tertiary basin (ϕ = +38.8° and ψ = -127.3°), which causes a 

kink (linker oxygen is red), and closeup of this disaccharide unit, (b) closeup of GlcNAc 5 (blue) β1-3 Gal 

4 (cyan) disaccharide unit with linkage dihedrals in secondary basin (ϕ = -95.3° and ψ = +39.9°), (c) 

closeup of the same disaccharide unit with linkage dihedrals in primary basin (ϕ = -80.7° and ψ = -138.2°). 

(d) End-to-end distance probability distributions of MD-generated nonsulfated keratan 20-mer 

conformations with β1-3 linkages with +ϕ, -ψ (pink solid line; most probable end-to-end distance is 82.0 

Å) and -ϕ, +ψ (green solid line; most probable end-to-end distance is 84.0 Å) dihedrals in all four runs; 

these data were compared to the average end-to-end distance distribution of all snapshots in all four MD 

runs (black dashed line; most probable end-to-end distance is 90.0 Å). 
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Figure B.25. (a,c,e,g,i) C-P plots and (b,d,f,h,j) C-P parameter θ timeseries for each Gal monosaccharide 

ring in the MD-generated nonsulfated keratan 10-mer ensemble; monosaccharides are numbered from 

reducing to nonreducing end; each of the 4 runs is represented by different color. 

 
Figure B.26. C–P data for (a) GlcNAc and (b) Gal in the constructed nonsulfated keratan 20-mer ensemble; 

each of the 4 runs is represented by different color and the force-field geometry is represented by a single 

large black dot; each run contains 10,000 parameter sets. 

 
Figure B.27. ΔG(ϕ, ψ) in the constructed nonsulfated keratan 20-mer ensemble for aggregated (a) Galβ1-

4GlcNAc and (b) GlcNAcβ1-3Gal glycosidic linkage data; contour lines every 1 kcal/mol. 

(a) (b) 

(a) (b) 
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Figure B.28. Scatterplots of radius of gyration as a function of end-to-end distance in MD-generated and 

constructed ensembles of nonsulfated heparan (a,b) 20-mer and (c,d) 10-mer, respectively, and (e) 

constructed ensemble of nonsulfated heparan 200-mer; each plot has 40,000 samples and shows linear 

regression and R2. 
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Figure B.29. (a-j) C-P parameter θ timeseries for each IdoA monosaccharide ring in the MD-generated 

nonsulfated heparan 20-mer ensemble; monosaccharides are numbered from reducing to nonreducing 

end; each of the 4 runs is represented by different color. 

 
Figure B.30. End-to-end distance distributions of MD-generated nonsulfated heparan 20-mer 

conformations with boat/skew-boat ring puckers that cause a kink in the polymer chain, i.e. non-2SO (pink 

solid line; most probable end-to-end distance is 73.0 Å) and 2SO conformations (green solid line; most 

probable end-to-end distance is 68.5 Å) and the average of all four runs in the full MD-generated 

ensemble (black dashed line; most probable end-to-end distance is 68.5 Å); probabilities were calculated 

for end-to-end distances sorted into 0.5 Å bins. 



181 
 

 
Figure B.31. Snapshot of nonsulfated heparan 20-mer from MD simulation; GlcNAcα1-4IdoA linkages are 

highlighted; linker oxygen atoms in red and carbon atoms (GlcNAc C1 and IdoA C4) in cyan. 

 
Figure B.32. End-to-end distance probability distribution of MD-generated nonsulfated heparan 20-mer 

conformations with IdoAα1-4GlcNAc linkages with -ϕ, -ψ dihedrals aggregated across all four MD runs 

(pink solid line; top two most probable end-to-end distances are 65.5 Å and 73.5 Å); these data were 

compared to the average end-to-end distance distribution of all snapshots in all four MD runs (black 

dashed line; most probable end-to-end distance is 68.5 Å). 
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Figure B.33. Scatterplots for dihedrals ϕ and ψ of IdoAα1-4GlcNAc linkages flanking different IdoA 

conformations in the MD-generated nonsulfated heparan 20-mer ensemble: (a) 1C4, (b) 2SO, (c) boat/skew-

boat (non-2SO), and (d) 4C1; contour lines come from corresponding aggregated MD-generated ΔG(ϕ, ψ) 

data. 

 
Figure B.34. C–P data for (a) GlcNAc and (b) IdoA in the constructed nonsulfated heparan 20-mer 

ensemble; each of the 4 runs is represented by different color and the force-field geometry is represented 

by a single large black dot; each run contains 10,000 parameter sets. 

(a) (b) 

(d) (c) 

(a) (b) 
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Figure B.35. ΔG(ϕ, ψ) in the constructed nonsulfated heparan 20-mer ensemble for aggregated (a) 

IdoAα1-4GlcNAc and (b) GlcNAcα1-4IdoA glycosidic linkage data; contour lines every 1 kcal/mol. 

 
Figure B.36. Bond potential energy probability distributions from constructed ensembles of hyaluronan 

(a) 20-mer (cutoff = 128.5 kcal/mol), (b) 10-mer (cutoff = 112.8 kcal/mol), and (c) 200-mer (cutoff = 412.2 

kcal/mol). 

(a) (b) 

(a) (b) 

(c) 
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Figure B.37. Bond potential energy probability distributions from constructed ensembles of nonsulfated 

dermatan (a) 20-mer (cutoff = 131.9 kcal/mol), (b) 10-mer (cutoff = 117.5 kcal/mol), and (c) 200-mer (cutoff 

= 397.7 kcal/mol). 
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Figure B.38. Bond potential energy probability distributions from constructed ensembles of nonsulfated 

keratan (a) 20-mer (cutoff = 126.3 kcal/mol), (b) 10-mer (cutoff = 111.5 kcal/mol), and (c) 200-mer (cutoff = 

397.3 kcal/mol). 
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Figure B.39. Bond potential energy probability distributions from constructed ensembles of nonsulfated 

heparan (a) 20-mer (cutoff = 130.3 kcal/mol), (b) 10-mer (cutoff = 115.8 kcal/mol), and (c) 200-mer (cutoff = 

391.5 kcal/mol). 
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