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This dissertation involves several hydrogenolysis reactions but is mainly focused on

hydrodechlorination (HDC) of chlorobenzene (PhCl) and hydrodeoxygenation (HDO) of

2-furancarboxylic acid (FCA). Hydrodechlorination of PhCl has been the subject of

research for some time. Here, we used a Pd/C catalyst to study this reaction though

rigorous kinetics and mechanistic analyses in a CSTR reactor. The H2 /D2 kinetic isotope

effect (KIE) experiment revealed that H2 is not involved in a rate controlling step. The

kinetics data are in agreement with similar systems reported before and follow a first-order

dependence on chlorobenzene, half order for hydrogen and an inverse first order with

respect to HCl. These data suggest a mechanism that involves C-Cl cleavage in the rate

controlling step preceded by adsorption of reactant and followed by desorption of products

from the surface. The derived rate expression was used in a microkinetic model to predict

the observed rates of this reaction. This model successfully captures the experimental

trends observed in the kinetic studies. Moreover, motivated by the applications of in situ

spectroscopic techniques, the detailed design of an FTIR cell which enables both steady

state and transient studies to measure kinetics and investigate the mechanism of reactions

at a molecular level, is included.



Hydrodeoxygenation of 2-furancarboxylic acid was investigated to produce

δ-valerolactone, which represents a series of functionalized lactone molecules that have a

potential to be used in prospective polymers. Motivated by excellent HDO activity

reported for Ru/TiO2 catalysts, and with the aim of taking advantage of the built-in

bifunctionality of this catalyst when introduced to hydrogen, we have used Ru/TiO2 to

quantitatively synthesize the functionalized lactone monomer (FDHL). The focus of our

work has been to optimize process parameters, including temperature, solvent, catalyst

support, metal loading, weight of the catalyst and reaction time, to achieve an acceptable

yield for the target product. The yield of 53% to δ-hexalactone (DHL) for a simple

5-methyl-2-furancarboxylic acid was significantly greater than the previous reports.
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CHAPTER 1

INTRODUCTION1

1.1 Motivation

Biomass is the only renewable organic carbon-neutral source with many advantages

including abundance and low price.13 Ever increasing research revolving around biomass in

the past decades has been focused on the selective conversion of highly functionalized

sugars and lignin-derived chemicals into aliphatic fuels and aromatics. Heterogeneous

catalysis is a highly efficient chemical process to efficiently transform biomass to meet the

market demand while keeping its environmental impact minimal. Biomass catalysis may

have been born from existing knowledge of petroleum industries,14 initially with traditional

catalytic materials employed in the industry while research has already steered towards

discoveries of new catalytic materials,15 with the help of computational16,17 and

experimental techniques18,19 tailored for biomass conversion. Since current infrastructure

for petroleum-based refineries is in place, it is reasonable to think that this effort will likely

be focused on trying to replace petroleum-derived analogues.20 Cheap production of North

American shale gas comes at a historic moment since it might be viewed as a potential

market competitor, however, shale gas and biomass in fact have a symbiotic

relationship.21,22 Bio-based feedstocks are made of large molecules that are highly oxidized,

demanding the use of upgrading technologies such as hydrotreating and hydroprocessing to

be suitable for market demands especially in the energy industry; therefore, hydrogen has

been identified as the major economic cost for implementation of catalytic biomass

processes. On the other hand, shale gas is made of light alkanes, mostly methane and small

1This is from a paper, J. Tavana, D. V. Stück, T. J. Schwartz. “Hydrogenolysis of C-X bond through
heterogeneous catalysis: A Review” (In preparation)
My contribution is equal to the second author in research and writing the paper.
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(<C4) hydrocarbons, and can provide cheap hydrogen right now instead of waiting for

sustainable alternative energy sources in the future.23

Important components of biomass, e.g. cellulose and lignin, can be depolymerized into

important platform chemicals like 5-hydroxymethylfurfural (HMF) and

5-chloromethylfurfural (CMF) that are especially important because their structures

contain reactive groups with a strong chemical reactivity that paves the way to be

upgraded to a wide range of value-added chemicals.24 Upgrading reactions of these

platform structures involves removal of chlorine and oxygen namely hydrodechlorination

(HDC) and hydrodeoxygenation (HDO), respectively. There are even reports for the

confluence of these reactions improved reactivity and selectivity of the target chemicals.25

1.2 C-Cl Catalytic Hydrogenolysis

Chloroarenes are used in many industries from dyes, herbicides, pesticides, solvents to

their application as intermediates in organic synthesis;26 therefore, these compounds are

one of the main sources of chlorine released to the environment.27 On the other hand,

removal of chlorine before HDO in reactions like production of 2,5-dimethylfuran (DMF)

from CMF, opens routes to intermediates, like ether products that are not easily degradable

and can even improve the kinetics of the HDC reaction.24 Studying hydrodechlorination

(HDC) is usually performed on compounds like chlorobenzene (PhCl) and chlorophenol

(CP) since they represent the halogenated species found in many organic wastes,28 and in

turn this knowledge could be applied to HDC of pseudo-aromatics like CMF.

Catalytic hydrodechlorination (HDC) of chloroaromatics is a non-destructive, low

energy approach for the removal of chloride in the production value added products,29–32 as

intermediates in organic synthesis33 and for treatment of hazardous wastes.34–38

hydrodechlorination can be performed in both the liquid- and gas-phase; however the latter

has some advantages over the former in terms of improved catalyst stability, such as no

requirement for additional solvent and high efficiency.39 hydrodechlorination of chlorinated
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organics is usually performed with supported transition metal catalysts such as Pd,2,40–42

Pt,43 Rh,2,44 Ru,45,46 Ni42,47–49 and bimetallic catalysts that modify the electronic

properties of the metal phase (e.g. Pd–Fe,50,51 Pd–Ni,52,53 Cu–Ni,54 Pd–Rh44). However,

non-noble metal catalysts tend to deactivate due to surface poisoning by HCl, which forms

inactive surface metal halides55,56 The support has been reported to play a role in the

activity, selectivity and stability of some catalysts used for HDC.47,57 Basically, inorganic

and organic materials can be selected as supports as long as they are stable under corrosive

conditions (i.e. high concentrations of HCl and HF and/or high temperatures) and avoid

secondary reactions such as Cl/F exchange or coupling reactions.28 Urbano and Marinas28

have categorized catalytic supports suitable or hydrodehalogenation (HDH) reactions into

organic and inorganic supports. Inorganic supports are mainly alumina,38,43,51,53,58–61

silica,38,41,43,62–64 and other metal oxides such as MgO,65 ZrO2
66 etc. The main

disadvantage of these supports is that they are readily attacked by hydrogen halides

formed during the reaction and they favor unwanted reactions leading to selectivity loss.

Activated carbons40,41,45,52,63,67,68 are the main organic supports and most widely used for

this reaction due to their chemical resistance, high surface area and low cost.57 Diverse

reaction conditions for HDH reactions (e.g. gas-phase versus liquid-phase, aliphatic halides

versus aromatics, etc.) might make it difficult to draw general conclusions about the

reaction mechanism.28 This chapter will deal with kinetics and mechanism of catalytic

HDC reactions chlorinated aromatics in gas and liquid phase.

1.2.1 Gas Phase Hydrodechlorination

In one of the earlier studies on the mechanism of gas phase HDC of PhCl, Coq et al. 2

used Pd/Al2O3 and Rh/Al2O3 catalysts at 353K. The authors propose a reaction scheme

similar to the Mars-van Krevelen (MvK) mechanism for oxidation of hydrocarbons through

which PhCl interacts with the surface and forms an adsorbed chloride and gaseous

benzene; hydrogen recovers a site and HCl competes with the reactant for chlorination
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step. They conclude that the rate determining step is the reaction between dissociated

hydrogen and PhCl, and adsorption of HCl and PhCl is competitive.

Palladium possesses intrinsic resistance to poisoning and usually is reported to have

minor or no deactivation;69 however, other catalysts exhibit lower activity and are believed

to be strongly structure sensitive. Recent studies have shown improved activity (up tp 70

times faster reactions) for Pd-decorated Au catalyst for aqueous phase HDC.70,71 Klokov

et al. 72 observed better reactivity for Co/C nanocomposites when compared with cobalt in

C shell structure and Co/CNT composites. Jujjuri and Keane 41 argue that Pd/SiO2

catalysts with bigger particle sizes show better reactivity. The reason for these observations

is attributed to the electrodeficient character of small particles causing a susceptibility to

chlorine attack which in turn leads to deactivation and selectivity loss.

Cl

*

Cl Cl

*

Cl

**

k3 kd

k4

k1

Scheme 1.1: Reaction scheme for HDC of PhCl proposed by Coq et al. 2 .

Due to the concerns around stability of monometallic catalysts, some research is focused

on the modification of monometallic catalytic systems by combining it with another

transitional metals. Hagh and Allen 73 used NiMo/γ-Al2O3 for hydrodechlorination of

chlorobenzene and drew an analogy between the HDC mechanism of chlorinated aromatics

and hydrodesulfurization (HDS) where sulfur anion vacancies exposing Mo+3 are the active

sites responsible for HDS reaction. The surface anion vacancies are believed to have a pi

bond interaction with the aromatic ring. Seshu Babu et al. 53 assumed the same role for Ni

in Pd–Ni/Al2O3 catalysts with the formation of a diadsorbed chloroaromatic species. The
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resonant structure of the benzene ring is weakened by adding electrons to the antibonding

orbital followed by the attack of a proton which results in the formation of an arenium ion

as the transition state. Despite the insufficiency of existing database on bimetallic catalysts

in HDC reactions for drawing any generic conclusions, it is generally acknowledged that

catalytic HDC, is strongly influenced by the electronic structure of the active metal sites.

Cl

+ H
+

HCl

+ Cl
+

Scheme 1.2: Reaction mechanism on a bimetallic surface.

The gas-phase HDC of a range of chlorinated aromatics was studied over the

temperature range 473 K-573 K using Ni/SiO2 catalysts.47,48,74 Adsorption of chlorinated

compound is reported to occur through the partially positive carbon atom connected to

chlorine while another hydrogen adatom attacks the adsorbed molecule to cleave the C-X

(X= Cl, Br74) bond which is assumed to be the rate determining step. When considering

polychlorinated products such as dichlorophenol (DCP), it is expected that due to the high

electronegativity of the chlorine atom, the dissociation energy of C-Cl increases

proportionately.48 Moreover, the activity and selectivity would be affected by steric effects

when chlorine is close to the substitution (i.e. ortho position), the chlorine removal occurs

in a concerted step.

Keane and Murzin 47 compared different mechanistic assumptions offered in the

literature.2,48,50,62,73 Their results suggest a non-uniform surface is involved in the reaction,

which highlights the role of spillover hydrogen from the support as necessary to explain the

experimental observations. Amorim and Keane 75 even considered improving the activity

by increasing the spillover hydrogen through adding Al2O3 component to Ni and Pd. They
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found no significant changes when using Pd, which is intrinsically active for the reaction,

while Ni showed an increased activity.

Cobalt-based amorphous catalysts have been reported to demonstrate low activity in

HDC of chlorobenzenes and chlorophenols.31 Since non-noble metal catalysts are more

likely to deactivate in the presence of HCl in HDC reaction, encapsulation of the active

metal nanoparticles by a thin layer of carbon is suggested to be a promising solution to

prevent deactivation.72 Cecilia et al. 55 suggest a synergic metallic effect in cobalt phosphide

catalysts that leads to the activation of the C–Cl bond facilitated by spillover hydrogen.

Hydrodechlorination of chlorobenzene and 1,3-dichlorobenzene was performed over

Pd/SiO2 (1.4-8.3 wt% Pd loading) over the temperature range of 373-423K.41 In a

chemically controlled condition, varying inlet H2 partial pressure affects HDC rate

according to a Langmuir–Hinshelwood type model, suggesting competitive dissociative

hydrogen adsorption and associative chlorinated aromatic adsorption with no product

limitation. They observed better reactivity when the Pd loading and particle size increased

possibly indicating a structure sensitive reaction.

Platinum and palladium supported on alumina, silica, titania, and silica-alumina at

298K was carried out in gas phase for HDC of PhCl.43 The observed activity for supports

with Brønsted acidity such as SiO2 – Al2O3 and titania was not sufficient, and even for very

weak Lewis acidic supports such as aerosil-silica, only moderate activities were observed.

However, alumina supports with Lewis acidic sites showed good activities for the HDC of

HACs. The dipole moment in chlorobenzene, a polar bond (Cδ– –Clδ+), leads to adsorption

on the Lewis acid site (L). This adsorbed PhCl is then attacked by dissociated hydrogen on

or spilled over the metal. Similar trend was observed for the case DCB and TCB; however,

increasing the contact time was necessary to overcome higher bond strength of multiple

chlorines in their structure which resulted in more hydrogenated products.
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M +H2 M +H− +H+

L +Cl−C6H5 L Cl−C6H5

L Cl−C6H5 +H− L Cl− +C6H6

L Cl− +H+ L +HCl

M +C6H6 M C6H6

M C6H6 + 6 H M +C6H12

L +C6H6 L C6H6

L C6H6 + 6 H L +C6H12

Pd supported on mesoporous silica-carbon nanocomposites (Pd/MSC) showed high

activity for HDC of chlorophenyl at 258-313K.64 A combination of density functional

theory (DFT) technique and using triethylamine as a probe confirmed that Pd defects are

mainly responsible for HDC of chlorophenols at low temperature. Chlorophenyl adsorption

on Pd(III) is through either π or σ complex (Figure 1.1), where hydrogen adatoms play an

important role in the HDC reaction.
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Figure 1.1: Calculated structures of 4-CP on Pd(111), ((A) top and (B) side views of σ adsorption, (C) top and (D) side views

of π adsorption) and Pd (211), ((E) top and (F) side views of σ adsorption, G top and H side views of π adsorption surfaces);

the H atoms are purple, the C atoms are gray, the O atoms are red and the Cl atoms are green. Reprinted by permission from

Elsevier.64

Nickel and NiP catalysts supported on silica were used for gas phase HDC of PhCl.56

The small positive charge on Ni in NiP catalyst along with the ensemble effect of P, helped

decrease deactivation by lowering the coverage of chlorine on Ni.56,76 The ensemble effect is

a dilution of surface by another element. Decreased chlorine coverage on NiP surface is

reported to lower the energy barrier of hydrogen spillover on the silica-supported NiP

which, in turn, causes an abundant spillover hydrogen from the silica support that can

promote the HDC. However, studies showed that NiP catalysts exhibit an induction period

during hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) which was attributed

to blocking of Ni sites by P which will be adjusted during the course of the reaction when

P content decreases and more active site will be recovered.77 This induction period can be

controlled by manipulating the initial Ni/P ratio, increasing the H2 flow rate, higher

temperature and longer reduction time when preparing the catalyst.

The study of HDC reaction of chlorobenzene with a presulfided hexagonal-Mo2C-(001)

catalyst was performed using DFT calculations.78 A weaker adsorption of chlorobenzene

was observed as a result of adsorbed sulfur which prevents π-type bonding; therefore,

avoiding carbonation and chlorination of the catalyst. Their results show that HDC
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reaction can follow two reaction mechanisms, the direct mechanism involving

hydrogenation of PhCl from a Mo-H species and two steps mechanism involving formation

of S–H from an adjacent hydride and hydrogenation of PhCl from S–H. The energetics

favor the direct mechanism; however, the authors do not rule out the possibility of the

two-step mechanism, since extra energy consumption of about 0.6 eV is required, which

could be achieved under the reaction conditions (623 K).

The addition of small quantities of Fe to Pd/Al2O3
51 improves the catalyst resistance

to HCl poisoning which can be related to the formation of positive Pd active species on the

Pd–O–Fe interfaces to facilitate weak adsorption of chlorine. Bimetallic Pd–Fe was used

by Chen and Liu 3 in the dechlorination of dichlorobenzene and investigated the kinetics.

Their contribution considers deviations from Langmuirian adsorption as a result of

interactions between adsorbates or between adsorbate and adsorbent, and utilized the

cooperative adsorption theory. The theory is based on multi-layer adsorption, like BET

except for surface reactions, as in a surface reaction, chemicals are reactive only if they are

attached to the catalyst surface. Apparent multi-layer adsorption was utilized to model this

theory mathematically. This model considers active sites as consisting of multiple potential

energies and chemicals will attach to these sites based on their energies, highest energy as

the first layer, if the highest energy sites are occupied then the second layer will be formed

for the second highest energy site and so on. A kinetic model was developed based on this

theory which is the summation of two rates from the first layer and the second layer.
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Cl

Cl

Cl

k1

k2

k3

Scheme 1.3: Step wise and concerted mechanisms of HDC for DCB proposed by Chen and

Liu 3

The gas phase (1 atm, 423 K) catalytic HDC of 2,4-DCP over Au/Fe2O3 was carried

forward through a step-wise electrophilic mechanism4 and the main product was 4-CP

mainly because the chlorinated reactant adsorbed from the –OH group promoting

activation of the ortho–C–Cl bond and selective catalytic hydrogenolysis of sterically

constrained Cl substituents.
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-HCl
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Scheme 1.4: Reaction pathways for the HDC of 2,4-DCP4.

In spite of recent attempts to explain the mechanism of HDC of HACs, there is no

consensus on whether the mechanism is radically or ionic, including nucleophilic or

electrophilic attack.

1.2.2 Liquid Phase Hydrodechlorination

Many researchers are devoted to the palladium catalyzed liquid-phase HDH of aromatic

compounds,31,37,40,52,68,79,80 some deal with the decontamination of the environment from

chlorinated compounds,31,52 while others are focused on theoretical approaches to shed
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some light on the reaction including kinetics, mechanism, catalysts, influence of the solvent,

addition of base compounds, etc.

The liquid-phase catalytic HDH reaction suffers from strong deactivation of catalysts,

caused from the hydrogen halide formed in the reaction.28 Therefore, increasing the

resistance to chlorine by incorporating basic supports, using basic solvents as proton

scavengers,81 and switching to more active catalysts such as Pd, with a more inherent

resistance to HCl along with adjusting the particle size are necessary.37

HDC of PhCl in liquid phase at 313 K was studied using Pd on four different supports

of different acid-base properties consisting zirconium oxide, magnesium oxide, a mixed

system from aluminum orthophosphate and silica,65 to find an optimum support that

inhibits deactivation caused by Cl poisoning of the active site. Catalyst supports such as

ZrO2 can immobilize chloride species; therefore, choosing the right support has a significant

effect in the stability of the catalyst. A higher resistance to chloride poisoning was

observed for lower dispersion and higher particle size caused from refreshing the outer

surface for further reaction by the migration of chloride species into large particles.

Ma et al. 68 investigated Pd/C and Raney Ni catalysts and compared for HDH of HACs.

As C–X cleavage is the rate determining step in HDH of HACs, they expected the

reactivity of these catalysts to follow C–X bond energies, C– I (∆H = 222 kJ mol−1 ) >

C–Br (∆H = 280 kJ mol−1) >C–Cl (∆H = 339 kJ mol−1) > C–F (∆H = 456 kJ mol−1),

which was followed in the case of Raney Ni. However, because of halogens inductive effect,

appearance of partial charges on the neighboring bonds of carbon-halogen at short

distances caused by electronegativity difference,82 iodoarenes adsorbs more strongly on

Pd/C catalyst which caused the reactivity to be in order of C–Br>C–Cl>C–I>C–F.

Multi-substituted chlorinated phenols have been reported to have preferential

adsorption through the less steric sterically hindered group in para position. The

adsorption of 2,4–DCP occurs on defect atoms of Pd nanoparticles in palladium supported

on mesoporous silica carbon nanoparticles (MSCN).63 Their observations suggested that
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the product desorption should be the rate limiting step following an ionic reaction

mechanism. Moreover, since HCl formed in this reaction has an inhibiting effect, more

polar solvents such as methanol, are better for the reaction since they facilitate the transfer

of chloride species from the catalyst surface into the reaction media.

It is believed that surface chemistry of the supports governs adsorptivity of reactant on

the catalysts.81 The HDC reaction of chlorinated benzenes using Ni over inactive supports,

activated carbon, SiO2,Al2O3 and Raney Ni showed that Ni on activated carbon shows the

highest activity because PhCl adsorbs better on this support. Their kinetics studies

suggest a near zero and 1.9 order reaction with respect to PhCl and hydrogen pressure,

respectively. The fact that the reaction only proceeds in the presence of NaOH suggests

that the rate limiting step involved desorption of chlorine.

Several reports on structure sensitivity of the reaction and significant role of the

support on the activity and stability, inspired some researchers to find a creative solution to

synthesize better supports.Le et al. 79 synthesized high surface area Fe3O4@SiO2@m-SiO2

support that can be recovered using a magnetic field from the reaction mixture. Authors

believe that catalytic HDC of 4-CP and 4-nitrophenol (4-NP) using

Pd/Fe3O4@SiO2@m-SiO2 starts with dissociative adsorption of hydrogen on the active site,

followed by C–Cl bond dissociation through adsorbed hydrogen attack to form phenol83.
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Figure 1.2: Reduction of 4-NP and HDC of 4-CP catalyzed by the Pd/Fe3O4@SiO2@m-SiO2 catalyst.

HDC of chlorinated aromatic as well as polychlorinated biphenyls (PCBs) were

investigated using bimetallic 10% Pd/C–H2–Mg catalyst at low temperatures and

pressures84 in which 10% Pd/C can be reused and will be active after five cycles. The

reaction response to the addition of 7,7,8,8-Tetracyanoquinodimethane (TCNQ) as a single

electron scavenger drastically reduced the HDC; therefore, the authors believe that Mg

functions as a single electron donor (Scheme 1.5) to create anion radical (B) which will

undergo dechlorination to create dechlorinated product (C).
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Scheme 1.5: Proposed reaction mechanism of the Mg metal mediated dechlorination of

aromatic chlorides.

The electrophilic attack of activated hydrogen onto the aromatic ring was suggested by

some researchers35,37 while the possibility of nucleophilic or radical attacks were also put

forth in HACs by Yakovlev et al. 5 Isotope exchange experiments were performed and the

presence of biphenyl in product is indicative of a radical mechanism of dechlorination.

Moreover, the results from D-NMR suggests the presence of both deuterated products as

well as non-isotopic products which suggested competition for hydrogen supply from
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adsorbed hydrogen and the solvent. The structure sensitivity of the reaction was also

suggested based on the experimental data where larger Pd particles had more activity.

Cl

Cl

+H
-

-HCl

+H

Scheme 1.6: Reaction pathways for HDC of PhCl proposed by Yakovlev et al. 5

1.3 C-O Catalytic Hydrogenolysis

C-O bond cleavage in aromatics is a widely used reaction for lignin depolymerization to

phenolic compounds and deoxygenation to most suitable chemicals. In this context,

hydrogenolysis of lignocellulosic compounds has been previously studied and

reviewed.12,85–92 Model substrates from lignin-derived bio-oils were widely used, most

commonly phenol, m-cresol, guaiacol, anisole, vanillin and eugenol have been studied.93

Catalytic systems that were developed for this reaction include metals, like Ru, Pt, Pd

and Ni,58,94 and bimetallic systems like combination of noble with transition metals like Fe,

Ni, Cu, Zn or Sn form highly selective catalysts.93,95,96 Moreover, alloying group VIII with

oxophilic metals such as Sn, Re, or Fe will decrease the interaction with the ring and

enhance the interaction with the carbonyl or hydroxyl group.8

The selectivity for hydrodeoxygenation (HDO) can be influenced by the properties of

the support.97 Noble metals over acidic supports can offer good selectivity for direct

deoxygenation (DDO) of the C–O bond, but also oxophilicity, metal dispersion, strength of
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metal-support interactions and deactivation effects by coking formation needs to be

considered for the selection of the right metal-support combination. Based on Sabatier’s

rule, an oxide support with moderate metal-oxygen bond strength is ideal.6 If the the bond

between metal and oxygen is too strong, it is difficult to create surface vacancies for

oxygenated groups adsorption, but if the metal-oxygen bond strength is too low it would

make the catalyst unable to abstract oxygen effectively.98 In this regard, the strength of

metal-oxygen bond were evaluated as follow: Mg > Al > Zr > Ti > W > Cr > Zn > V >

Sn > Fe > Ge > Mn > Ni > Bi > Cu > Pb.93

Some combinations of metals and supports in heterogeneous catalysts are known to

exhibit what known as strong metal-support interactions (SMSI) and being about

physicochemical properties that were not present when metals and supports were just

physically mixed. SMSI generally arises due to the electronic perturbation of metallic

atoms by surrounding atoms from the supports, which would result in the change of

electronic properties of the metal catalyst.93 Therefore, mild to moderate acidic supports

such as TiO2, ZrO2, zeolites, Al2O3 and CeO2 are often used for HDO process due to their

ability to catalyze C-O bond hydrogenolysis with minimal coking effect.98 Basic support

(CoMo/MgO) catalyst are more likely to resist sintering and coking effects but offers

significantly lower HDO activity.93

• Oxygenated groups can be adsorbed through Lewis acid/base interaction and

activated on:6

– Coordinate unsaturated metal sites: For bimetallic catalysts, instead of the

presence of an active support, the second metal act as the enhancement agent

for oxygen adsorption.99

– Oxygen vacancies on the support

– Exposed cations on the support
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• An oxygenated aromatic with more than one oxygen atom may have different

adsorption sites on the supports.100

• At the same time, the aromatic ring is easy to bond into a catalytic surface.101

• H+ donation is available directly from

– Phosphides, carbides, nitrides

– Brønsted acid -OH groups

– –SH groups

– Metals and noble metals by H spillover.6 Noble metals are particularly efficient

catalysts in activating molecular hydrogen.

Cresol deoxygenation over Pt/Al2O3 catalysts at atmospheric pressure generates

toluene and benzene but methylcyclohexane remains as the main reaction products.102 In

the conversion of m-cresol over Pd/SiO2, hydrogenation of the aromatic ring is favored, but

using ZrO2 as a support helps create oxophilic sites favoring direct deoxygenation (DDO)

pathway.103

Particularly, Ni/SBA–15 catalyst exhibit higher catalytic performance for

hydrodeoxygenation of the aromatic ring (HYD) of anisole. On the contrary, the direct

hydrogenolysis of the methoxy group from anisole is favored over Co/SBA–15, leading to

much higher aromatic selectivity.104

A mechanism for HDO of 2-ethylphenol over a CoMoS/Al2O3 catalyst was proposed in

Scheme 1.7. On MoS/Al2O3 catalysts vacancy sites are created by the removal of H2S in

presence of H2
6. H2 is activated by heterolytic dissociation forming one S–H and one

Mo–H groups; the oxygenated group is adsorbed on those vacancy sites formed an

adsorbed carbocation after receiving a proton from the S–H group. This intermediate

undergoes direct C–O bond cleavage and generates ethylbenzene. The vacancy site is

recovered by the formation of H2O from the adsorbed OH and H groups. The addition of
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cobalt to this catalyst CoMoS/Al2O3 enhances the direct C–O bond scission, because of an

increment in the number of active sites, some of them being new sulfur vacancies7.
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Scheme 1.7: Mechanism of direct deoxygenation of 2-ethylphenol over CoMoS/Al2O3.6,7

ReS2/ZrO2 is greatly active for guaiacol DDO, reactions with H2 breaks in first instance

the C–O bond for the methoxy group and then breaks the formed hydroxyl group,

producing mostly catechol and phenol. Here, demethoxylation occurs on the vacancies of

the sulfide metal ReS2. The use of sulfated ZrO2 as support provides a stronger interaction

with Re precursor leading to a highly dispersed catalyst.105 The mechanism for HDO over

sulfided NiW is similar to the previously proposed.11

Bifunctional catalyst have been lately studied for DDO reactions. The presence of Fe

and Ni–Fe bimetallic catalysts supported on SiO2 promotes the hydrogenation of the C–O

group of m-cresol. Hydrogenation of the non-aromatic tautomer produces a reactive

alcohol, which is further easily dehydrated (Scheme 1.8). The favorable sites for this process

come from Lewis acids associated with the incomplete reduction of Fe and/or Ni cations.

Here, the aromatic ring is repulsed from the catalyst surface, while the oxygenated group

strongly interact with the acid sites, promoting the oxygen removal reaction pathway.8
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Scheme 1.8: Mechanism of deoxygenation of m-cresol over Ni, Fe and Ni-Fe Catalysts.8

When studying Hydrodeoxygenation (HDO) of m-cresol over Pt/C and Pt–WOx/C,

the latter was much more active and selective towards DDO.99 Hydrodeoxygenation

reaction on Pt–WOx/C proceeds selectively in m-cresol, because of the synergic effect

between the Pt and the redox supported WOx complexes. Pt stabilizes the partially

reduced tungsten oxide sites and favors the formation of oxygen vacancies, where the

hydroxyl group is adsorbed, by forming a Pt–W bond. These sites are very important for

selective C–O scission, because they limit the interaction of the aromatic ring with the Pt

surface, avoiding its parallel adsorption that could cause ring hydrogenation.99

Selective C–O hydrogenolysis of vanillin was also found over Au–Pt/CeO2 using formic

acid as the hydrogen source. Pt interact with Au forming Au–Pt alloys showing excellent
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performance. Presence of small nanoparticles, the CeO2 support, the good

dehydrogenation ability of formic acid and the hydrogenolysis of C––O species are also key

factors for this reaction. The strong activity of this catalyst is, again, because of oxygen

vacancies that interacts with the hydroxyl groups, which facilitates the C–O bond

cleavage. The remaining oxygen is removed by hydrogenation forming water, thus leading

to the formation of new oxygen defects.100

Some supports are discovered to be active in the molecular mechanism of C–O bond

hydrogenolysis, those will be called active support and its performance were in some cases

very well studied. Improvements of inert supports like carbon modified into a

nitrogen-doped hierarchical porous carbon (NHPC), has also been developed, reaching

higher performances for C–O cleavages. On vainillin It was proposed a direct

hydrogenolysis or hydrogenation-hydrogenolysis reaction mechanism for vainillin. Here,

Ni/NHPC favors full oxygen removal of a broad set of oxygenated aromatics. The reason of

its high activity is the structure of the modified nickel interacting with nitrogen dopant

contributed by the hierarchical porous structure of the carbon.103

A strontium (Sr)-substituted lanthanum cobaltite (La0.8Sr0.2CoO3) was recently found

to be selective towards C–O and C–C hydrogenolysis on anisole by stabilizing the

Co0/CoII sites. This stabilization effect plays an important role on the activity of the

catalyst. CoII sites were favored at low temperatures and performed selective C–O

hydrogenolysis by existence of oxygen vacancies generated Sr-substitution. With the

participation of Co0 sites in close proximity to CoII sites, the adsorbed anisole can also

form H-deficient intermediates.104
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Scheme 1.9: Proposed mechanism for anisole hydrodeoxygenation over La0.8Sr0.2CoO3.

Phenolic compounds could be very strong adsorbed on oxides. Adsorption of phenolic

compounds over SiO2 and Al2O3 was studied. As seen in Scheme 1.10, over silica the main

interaction mechanism is H-bonding, while over alumina the main adsorption mode is

chemisorption.9 Despite that a hydroxyl adsorption on the surface could be beneficial for

HDO processes, the strong interaction between the phenolic compounds and the alumina

support could also generates severe catalyst poisoning.106
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Scheme 1.10: Mechanism of phenolic model compound adsorption over (a) silica and (b)

alumina supports. Extracted from Popov et al. 9

The use of reducible metal oxides as supports, like MoO3, WO3, Fe2O3, TiO2 and SnO2

leads to the Mars and Van Krevelen mechanism.7,105 Here, the lattice oxygen reacts with

H2 generating oxygen vacancies, after the catalytic cycle, the oxygen vacancies are filled

with the oxygen from the oxy-compounds. For active supports, the mechanism is proposed

in Scheme 1.11.10,11
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catalysts with active supports. Extracted from Mendes et al. 10 , van Duijne et al. 11 , He

and Wang 12 .

As a particular example for C–O bond hydrogenolysis, Ru/TiO2 demonstrated an

outstanding performance: unusual and high selectivity towards direct deoxygenated

component, without the hydrogenation of the aromatic ring.107 This is due the active

nature of the support TiO2. Different groups107,108 have investigated the catalytic

conversion on model compounds over this catalyst. It is been demonstrated that the direct

deoxygenation pathway of phenol and guaiacol on titania involves a bifunctional catalyst,
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where the metal-support interface is participating in the reaction, while there is no

apparent support, pore size or morphology effects for the HYD pathway.109

For the DDO pathway, the overall activity and selectivity is higher for catalysts with

larger interfacial sites .107,108 Previous conrtibutions,109,110 demonstrate the interfacial

direct deoxygenation mechanism.
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Scheme 1.12: Proposed molecular mechanism of DDO pathway for phenol over Ru/TiO2

The mechanism shown in Scheme 1.12 starts with a surface hydroxyl in the support.

This hydroxyl group facilitates, in first instance, the adsorption of a H2 molecule on the

interface and its further heterolytic cleavage, by acting as a Brønsted base (1). This

cleavage generates an active site consisting of a Brønsted acid, (H+ donor) on the support

in close proximity to a reductive ruthenium hydride (2). The DDO of phenol begins with

its adsorption at the interface. The aromatic ring is adsorbed by the metal and the

phenolic oxygen is adsorbed by the now protonated surface hydroxyl. Here the surface

hydroxyl functions as a Brønsted acid that protonates the phenolic oxygen, weakening the

C–O bond (3). The weakened C–O bond is then cleaved, while the Brønsted base donates

a proton to the released hydroxyl group generating a desorbed water molecule. Finally, the

adsorbed benzene is protonated by the ruthenium hydride, and desorbed out of the metal.

Now the catalyst is in the same initial state ready to start a new catalytic cycle (4). Under

this mechanism, it’s been demonstrated that the presence of a water molecule in close

proximities of the interface avoid the formation of an oxygen vacancy sites and generates

the surface hydroxyl groups that favor direct deoxygenation pathways, lowering the

activation barrier of the process. Water act as a co-catalyst of the reaction, favoring the
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hydrogen cleavage and stabilizing the adsorbed molecule of phenol at the interface, as long

as water concentration is not high enough to act as a site blocking term.

The enhancement in DDO activity of TiO2 was also proposed for other metals, even if

the reaction mechanism is not demonstrated to happen at the interface. The use of TiO2

support shows a preferential activation of C–O bond. HDO reactants formed activated

complexes with higher orderly bonding configurations. Their proposed kinetic model

confirmed that phenol hydrogenolysis and hydrogenation are the respective rate-limiting

steps for DDO and HYD pathways respectively.111

Furanic platform chemicals like HMF and furfural have been the subject of many

contributions because of their ease of production and can easily be upgraded to bio-based

products; however, unsaturated aldehyde group make them rather unstable which is one of

their major shortcomings. Research on the production of their oxidized analogues that are

stable solid crystalline compounds, 2,5-furandicarboxylic acid (FDCA) and

2-furancarboxylic acid (FCA), respectively, has been an attractive field while the use of

FCA and FDCA as sources of biobased compounds is extremely limited except application

of FDCA as a monomer as an alternative to terphthalaic acid in production of

polyesters.112 Reactions that involve the reduction of carboxylic acid in these molecules are

not attractive since FDCA and FCA are produced through oxidation of their reactive

sources. The production of adipic acid from FDCA was first discussed in a patent,Boussie

et al. 113 and later improved systems were reported.114,115 This reactions involve

hydrogenation of the furan ring and subsequent C-O cleavage of tetrahydrofuran ring with

HI as the key intermediate in the C-O dissociation step. Direct HDO of FCA into valeric

acid using bifunctional catalysts, Pt–MoOx/TiO2
116,117 and Pt/Al2O3,118 were performed;

although the target products (VA or 5-HVA derivatives) were not accessible through

formation of tetrahydro-2-furancarboxylic acid (THFCA, c.f. Scheme 1.13). In another

report, THFCA was converted to DVL+5-HVA using Rh–WOx/SiO2 with the highest

conversion of 61.8% and extremely low yield of 8.8% which was only achieved after
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optimizing process conditions. Limited publications on the subject of reduction of FCA like

molecules with the intention of retention of carboxylic acid heavily relies on the usage of

bifunctional systems which often leads to bimetallic catalysts that suffer greatly from

instability during real process conditions. In this regard, there is a need to explore

catalysts that show a built-in bifunctionality when introduced to hydrogen. Therefore, we

have explored previously studied catalyst Ru/TiO2
107 that exhibit unusually high activity

towards DDO of phenolic compounds for HDO of FCA and functionalized FCA (FFCA).

This reaction takes place with the intention of production of monomer, functionalized

δ-hexalactone (FDHL). This monomer is then employed in successful polymerization of

functionalized molecules with retention of carboxylic acid in the target polymer while the

functionality, phenolic compounds, gives a tunable characteristic to the process and enables

us to practice a range of different polymers.
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It is important to notice that many different mechanisms had been proposed for direct

deoxygenation of aromatic and pseudo-aromatic compounds some of which are in close

agreement with each other, like the presence of an oxygen vacancy site that favor the

adsorption of the oxygenated group. Others may have been suggested to go through a

tautomerization mechanism as a different point of view for this reaction. These reactions

pose an attractive pathway to alternative chemical goods with the same quality of

petroleum-based analogues. With the shale gas boom on the horizon as a cheap source of

hydrogen it is expected that biomass catalysis to shift towards more and more hydrogen

assisted processes like HDO and HDC and graduate from their parent catalysts that were

adopted from petroleum industry.

1.4 Thesis Scope

Considering the lack of consensus on the mechanism of HDC reactions, it is necessary

to perform the reaction in a simplified system where the outcome is not affected by the

perturbation of factors like effect of support and transport limitation. Therefore, the first

target of my thesis is to work on HDC of a simple chlorinated aromatic, chlorobenzene

(PhCl) over Pd on an inert support which will be performed in detailed kinetic study in

Chapter 2. For future investigation, Appendix A will consider the need for a molecular

observation of such reaction and is focused on the design of an quartz cell that allows for

infrared (IR) observations of the reaction in steady state with the option of performing

transient experiments.

Converting biomass into bio-based thermoplastics with the objective of improving

characteristics like glass transition temperature (Tg) is the focus of Chapter 3. This work is

essentially divided into two thrusts, 1) producing the monomer from biomass; and 2)

polymerization. The first thrust is carried out by me which is discussed in detail to study

the possibility of monomer production quantitatively, and the second thrust is carried out

by Dr. William Gramlich and his group from the UMaine Department of Chemistry.
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Therefore, Chapter 3 is focused on the process optimization of monomer production rather

than kinetics or mechanistic studies.

Chapter 4 summarized the results in a collaboration with Dr. Brian G. Fredrick from

the UMaine Department of Chemistry on acrolein HDO over tungsten oxide bronze

catalysts. I will discuss the details of a microkinetic model using Matlab® software.
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CHAPTER 2

HYDROGENOLYSIS OF CHLOROBENZENE1

2.1 Introduction

Chlorinated aromatics have been used extensively for the production of herbicides,

pesticides, intermediates for organic synthesis, pharmaceuticals, and dye33,119–121. However,

there is a significant environmental concern associated with the use of chloroaromatics if

they are not treated appropriately at the end of their life cycle119. In particular, these

molecules exhibit high toxicity due to the strength of the C–Cl bond

(∆H = 399.6 kJ mol−1)122, and this toxicity increases nonlinearly as more chorine atoms are

added to the structure26. There is, thus, an impetus to mitigate the toxicity of waste

chlorocarbons, and one way this can be accomplished is via reductive dechlorination (i.e.,

hydrogenolysis of the C–Cl bond).

The selective hydrogenolysis of C–Cl bonds in organohalogen compounds is typically

accomplished using noble metal catalysts26,123–125, with cleavage of the C–Cl bond in

chlorobenzene (i.e., phenyl chloride, PhCl) often used as a model reaction47,49. This

reaction is also referred to as hydrodechlorination (HDC), in a reference to the related

classes of hydrotreating reactions (e.g., hydrodesulfurization, hydrodenitrogenation,

hydrodeoxygenation, etc.). Group VIII metals are typically active for this class of reaction,

including Ni, Pt, Rh, Ru and Pd1,2,121,126–128. Among these metals, Pd is reported to be the

most active and selective for dechlorination of chloroaromatics2,40,47,48,61,64,68,69,129,130,

although it is often reported to be susceptible to deactivation2,69,76,125,130,131. In addition to

careful choice of the metal, there is some evidence that judicious choice of the support can

inhibit poisoning by chloride ions65, and more generally the support must be chosen to

1This chapter is from a paper: J. Tavana, M. Algharrawi, M.C. Wheeler and T. J. Schwartz,
“Chlorobenzene hydrodechlorination: reaction mechanism and kinetic modeling”, Journal of Applied
Catalysis A, 2020. (In preparation)
My contribution is doing kinetics measurements, data analysis and writing the paper.
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withstand corrosion caused by HCl, which is formed as a byproduct of the reaction.

Moreover, it has been reported that common supports such as alumina and silica can

participate in the reaction2,47–49,64,68,69,132, while carbon is an inert support that can

withstand corrosive environments133,134. Although , the published contributions on HDC of

chlorinated chemicals have contributed to understanding of the underlying kinetics and a

compilation of rate data for specific systems, the mechanism of C–Cl hydrogenolysis is still

unresolved and authors have appealed to different models to explain the observed kinetic

behavior132,135,136.

The difference between the proposed mechanisms seems to be rooted in the assumed

nature of reactive adsorbed species73. Keane and Murzin 47 suggest that HDC of PhCl

occurs on a non-uniform surface which requires spilled over hydrogen from the support. In

contrast, according to Sinfelt 137 , hydrogenolysis of carbon-heteroatom bonds (i.e., scission

of C-X bonds by addition of H2, where X= C, O, N, or Cl) in simple molecules can all be

explained by a similar mechanism wherein cleavage of the C-X bond is the rate-controlling

step. Ribeiro et al.130 extended the application of this mechanism to chlorofluorocarbons,

suggesting a transition state structure where Pd inserted into the C–Cl bond, forming

Pd–C and Pd–Cl on the same active site. In this study, the gas-phase hydrodechlorination

of chlorobenzene over Pd/C in atmospheric conditions and low temperatures, is subjected

to a kinetic and mechanistic study through kinetic isotope effect, temperature and partial

pressure effects experiments, and the proposed mechanism have been modeled to predict

the experimental data.

2.2 Experimental

2.2.1 Catalyst Preparation

A 5 wt% palladium catalyst was prepared by incipient wetness impregnation of an

aqueous solution of Pd2(NO3) ⋅xH2O (Strem Chemicals, 99.9%) onto a carbon black

support (Cabot Corporation, Vulcan XC-72). The Vulcan XC-72 support used here was
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chosen for its inertness and lack of S and N impurities that may influence the reaction

kinetics. The catalyst was dried overnight at 383 K, after which it was reduced directly in

a 50 sccm stream of flowing dihydrogen (Matheson, 99.999%) for 4 hours at 533 K (10 K

min-1). The catalyst was passivated for 12 hours at room temperature in a dilute mixture

of air and argon.

2.2.2 Catalyst Characterization

CO chemisorption measurements were performed in a Micromeritics ASAP 2020

instrument. The passivated catalysts were placed in a quartz sample tube between two

layers of quartz wool, the sample was then evacuated, after which it was re-reduced at 673

K for 2 hr. Adsorbed hydrogen atoms were removed by desorption under vacuum (10-5

torr) at 673 K for 1 hr. CO chemisorption was performed at 308 K using CO equilibrium

pressures ranging between 0.5 to 313 torr. Pd dispersion and the average Pd nanoparticle

size was obtained from the CO saturation coverage assuming a CO:Pd stoichiometry of

1:2138,139 and a relationship between dispersion,D, and particle size,d, of d = 1.1
D

140.

The catalyst morphology and particle size distributions were evaluating using

transmission electron microscopy (Philips CM10) at 200 kV. A few milligrams of the

catalyst sample was dispersed in water and the suspension was sonicated for 10 min to

prevent possible agglomeration. A small droplet of sample suspension was transferred onto

an amorphous carbon film, coated by a 200 mesh Cu grid, glow discharged for 30 sec to

improve hydrophilicity of the grid, and dried at room temperature before TEM analysis.

TEM micrographs were acquired from different samples to capture a variety of particle

sizes; 1540 particles were analyzed using ImageJ . The size analysis was carried out on the

converted grayscale (TEM) images into black and white by thresholding which makes it

possible for the program to identify the outlines of the particles. These outlines correspond

the 2D projection of a particle and its characteristics such as size, the data were analyzed

in Origin software (Figure 2.1 inset).
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2.2.3 Reaction Kinetics Studies

Reactions were carried out at ambient pressure in a glass stirred tank reactor

(Chemglass Model CG-1949-X-303) configured to operate as a continuous reactor in a

Carberry configuration, with the feed stream being preheated to reaction temperature. The

reactor vessel was originally designed for liquid-phase reactions. To modify it for gas-phase

reactions, the impeller blades were replaced with four PEEK mesh baskets (mesh size =

50) affixed to the glass impeller shaft using a custom-machined Teflon bracket. These

baskets are designed to receive the powder catalyst and spin it through the bulk vapor

phase in a Carberry reactor configuration. The anchor stirrer at the bottom of the impeller

shaft was kept to facilitate additional mixing. All standard taper joints were greased with

H-grease (Apiezon). A pressure relief valve (Chemglass Part No. CG-999-02) was set to 3

psig and used to prevent over-pressurization of the glass vessel. A pressure gauge (Ashcroft

Part No.94575XLL) was affixed to a Teflon stopper and used to monitor the pressure in the

reactor vessel. Heating was provided in the jacketed portion of the vessel using a

circulating heating bath (Fisher Scientific, Isotemp Model 6200 H7) containing propylene

glycol antifreeze purchased from a local hardware store. Heating of the vessel head was

provided by a heating tape (HTS/Amptek), and the whole vessel was wrapped in ceramic

insulation. The reactor temperature was measured by a Hastelloy-sheathed K-type

thermocouple (Omega, Inc.). Temperature control was provided by a combination of the

circulating heating bath, which was set at the reaction temperature, and by the heating

tape on the reactor head, via a PID temperature controller (Automation Direct) using

input from the main reactor thermocouple. Measurement of the temperature at several

points in the reactor vessel (achieved by moving the main reactor thermocouple) showed

there to be no temperature gradients in the bulk vapor phase of the reactor.

For a typical reaction, 0.05 g of catalyst was diluted in 0.75 g of carbon black using an

agate mortar and pestle. This diluted catalyst was loaded into the four PEEK mesh

baskets on the reactor impellor shaft. The catalyst was reduced in flowing dihydrogen (60

33



sccm, 99.999%, Matheson) at 353 K for 1 hour, after which the reactor was set to the

desired temperature. Liquid PhCl (>99%, Acros Organics) was fed from a syringe pump

(NE-1000, New Era Pump Systems) through a 1/8 inch Teflon tube into a stream of

flowing dihydrogen mixed with helium (99.999%, Matheson). The dihydrogen and helium

flowrates were controlled by calibrated metering valves (SS-SS2-VH, Swagelok). The liquid

and gas flowrates were chosen to keep the partial pressure of PhCl in this gas stream below

its vapor pressure at 298 K. The vapor feed was introduced to the reactor through a glass

spiral tube condenser (Chemglass Part No. CG-1215-C-01) used to pre-heat the feed.

Periodically the reactor was checked for inertness by feeding a mixture of PhCl and

dihydrogen at reaction temperature to the reactor vessel in the absence of a catalyst; no

conversion of PhCl was observed during these runs. The effect of HCl on the reaction rate

was probed by co-feeding HCl gas (1000 ppm in He, Research Grade, Airgas), delivered

through a Teflon line to the reactor vessel.

The reaction products were quantified using a gas chromatograph equipped with a

flame ionization detector (GC-FID, MG-5, SRI Instruments) and a capillary column

(MXT-1, Restek). Reaction rates were measured at four different temperatures (323K,

333K, 343K and 353K) and a variety of partial pressures of PhCl, dihydrogen, and HCl,

controlled by varying the flowrates of each species and the flowrate of the He diluent.

Turnover frequencies (TOFs) were obtained by normalizing the reaction rates, r, to the CO

uptake, nCO , as shown in Equation 2.1.

TOF (s−1) = r(µmolg
−1s−1)

nCO(µmolg−1) (2.1)

Selectivities were calculated according to Equation 2.2, where Fi corresponds to the

molar flowrate of species i leaving the reactor.

Selectivityi =
Fprod,i

ΣiFprod.i
× 100% (2.2)
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2.3 Results and Discussion

2.3.1 Reaction Selectivity and Catalyst Stability

The Pd/C catalyst synthesized here (∼10 nm particle size and 10% dispersion based on

a CO:Pd stoichiometry of 1:2 with a CO uptake of 24 µmolg-1 (c.f. Figure 2.1))139 converts

chlorobenzene into benzene and cyclohexane, with a benzene selectivity greater than 95%

and no indication of catalyst deactivation over the time period studied here (see

Figure 2.2). This observation is justified for catalysts with large Pd nanoparticles as

explained by Aramendía et al. 65 . They suggest that some of the Cl surface species that are

formed during the reaction, which are responsible for catalyst deactivation, can migrate to

the interior of the Pd nanoparticles; consequently, smaller Pd nanoparticles with higher

surface-area-to-volume ratios are rapidly saturated with Cl while larger nanoparticles are

stable for longer time-on-stream.
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Figure 2.1: TEM micrograph of the reduced 5wt% Pd/C catalyst (inset: particle-size distribution of the corresponding samples).
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Figure 2.2: Production of benzene (▴) and cyclohexane (◾) from chlorobenzene(●)with respect to time-on-stream. Reaction

conditions: 5% Pd/C catalyst, 353 K, 97 kPa H2, 1.1 kPa PhCl, WHSV = 1.22 hr-1, PhCl ∼50%.

2.3.2 Reaction Order Measurements

We evaluated the effects of the partial pressures of PhCl, H2, and HCl on the TOF for

benzene production. All data were collected at ∼50% PhCl conversion while varying only

one pressure at a time. The reaction rates used to estimate the order with respect to HCl

includes large variations of hydrogen pressure and therefore were normalized by H2

pressure.

Representative reaction order plots depicting the response of the benzene TOF to

variations in the partial pressure of PhCl at 323K, 333K, 343K, and 353K are shown in

Figure 2.3a. The calculated reaction order with respect to PhCl increases with increasing

temperature from 0.5 to 0.8, suggesting the surface is highly covered by PhCl-related

species at low temperatures. Such an increase in reaction order with increasing temperature

has previously been observed for other hydrogenation reactions of aromatic species,69

which leads us to postulate that the Pd surface can become highly covered by PhCl at low

temperatures. Figure 2.3b shows a similar plot for the influence of H2 on the reaction,
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again at 323K, 333K, 343K, and 353K. Reaction order with respect to H2 does not follow a

particular trend with temperature and even at 323K it maintains 0.51 order dependency,

suggesting that it is unlikely to saturate the Pd surface with hydrogen and despite previous

report,141 dissociated hydrogen is not weakly adsorbed to the catalyst surface. The effect

of HCl partial pressure was studied to investigate product inhibition as it was suggested in

several reports.2,69,130 Because HCl is a byproduct of this reaction we cannot get to very low

partial pressures and the nature of the experimental apparatus does not allow maneuvering

with high partial pressures of HCl which lead us to measure in a limited pressure range

while maintaining constant PhCl and H2 partial pressures at 353K (Figure 2.3c). Reaction

order with respect to HCl is -0.99, which is in agreement with the literature.142
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Figure 2.3: Reaction order plots for a) PhCl (with 100 kPa H2), b) H2 (with 1 kPa PhCl), and c) reaction order plot for HCl

at 353K. Temperatures include 323K (◾), 333 K (◆), 343 K (▴), and 353 K (▴). Lines are predicted rates at experimental

conditions. Reaction conditions: 5% Pd/C catalyst, WHSV = 1-6 hr-1. PhCl conversion in all cases ∼50%.

2.3.3 Hydrogen-Deuterium Isotope Effect

To identify potential participation of H-related species in the rate-controlling step for

PhCl hydrogenolysis, we performed the reaction using both D2 and H2. The deuterium was

obtained from Cambridge Isotope Laboratories, Inc. Figure 2.4 shows the TOF for benzene

production as a function of time-on-stream in a D2 environment (from t=0-6 hr) followed
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by a switch to a H2 environment (from t=6-12 hr). The TOF remains constant throughout

this period, indicating that there is no significant hydrogen-deuterium isotope effect.
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Figure 2.4: TOF for benzene production using both D2 (◾) and H2 (▴) gasses. Reaction conditions: 5% Pd/C, 353 K, 0.7 kPa

PhCl, 99.6 kPa H2 or D2, WHSV = 2.44hr-1. PhCl conversion ∼50%.

2.3.4 Proposed Reaction Sequence

The HDC of PhCl mechanism involves a transition state that leads to C–Cl cleavage,

as well as several hydrogenation steps. There are several studies that focused the

mechanism of hydrodechlorination reaction.4,30,133,143 The chemisorption of simple alkyl

halides on metals is reported not to proceed by dehydrogenation of C-H bonds.137

Hydrogen adsorption is known to be quasi-equilibrated at these temperatures.144

Chlorobenzene adsorption occurs molecularly at ambient temperature on Pd(111)

surface.145 It is also reported that adsorbed chlorine undergoes predominant desorption

mechanism at temperatures above 320 K.146 Therefore, we assume, as is generally the case

for metal-catalyzed reactions, that adsorption and desorption steps are not kinetically

significant. The lack of an observed primary kinetic isotope effect when using D2 gas (c.f.,

Figure 2.4) excludes the potential for any of the hydrogenation steps to be kinetically
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significant. Accordingly, we consider the cases where C–Cl bond breaking is

rate-controlling.

The first potential mechanism to consider involves the direct cleavage of the C–Cl bond

following associative adsorption of PhCl on the Pd surface. Assuming C-Cl bond scission is

irreversible and rate-controlling and is preceded by quasi-equilibrated adsorption of PhCl

and H2 and followed by quasi-equilibrated associative desorption of HCl and

kinetically-insignificant desorption of benzene. If the surface is populated by a combination

of adsorbed PhCl, HCl, and H and Cl adatoms, then the rate equation for benzene

production is described by:

rdirect−2 =
kdirectPPhCl

(1 +KPhClPPhCl +KHP
1
2

H2
+KHClPHCl +KC lPHClP

−1
2

H2
)2

(2.3)

where kdirect is the effective rate constant for forming transition state for C–Cl cleavage

relative to gas-phase PhCl and a bare surface. KPhCl, KH , KHCl, and KCl are the

equilibrium constants for adsorption of each surface species, and the site balance is given

by [L] = [∗] + [PhCl∗] + [Cl∗] + [H∗] + [HCl∗]. Notably, the site-blocking term of this

rate expression is squared, implying that a surface species (e.g., PhCl*, Cl*, H*, or HCl*)

must desorb from the surface to make room for the Cl* species being cleaved from the

phenyl ring. It is possible, however, that this transition state occupies the same area as

adsorbed PhCl*, which would lead to a site-blocking term that is not squared as given by

the usual Langmuirian depiction. The area of activation will be the same for both

pathways,147 suggesting that the effective rate constant remains kdirect. The resulting rate

equation is given by:

rdirect−1

[L] = kdirectPPhCl

1 +KPhClPPhCl +KHP
1/2
H2

+KHClPHCl +KClPHClP
−1/2
H2

(2.4)

where the rate constants and site balance are the same as for Equation 2.3. Notably,

this form of the rate expression is consistent with that proposed by Ribiero and
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coworkers69,130 for Pd-catalyzed C–Cl scission in chlorofluorocarbons, described as

substitution of a surface Pd atom into the C–Cl bond.

A third potential mechanism would involve hydrogen-assisted removal of Cl from

adsorbed PhCl. This mechanism is analogous to those described by2,50,148 for a variety of

hydrogenolysis reactions. In this pathway, C–Cl bond scission remains irreversible and rate

controlling, but it is preceded not only by quasi-equilibrated adsorption of PhCl and H2

but also by quasi-equilibrated addition of H* to PhCl*, forming a Ph-ClH* species. HCl* is

formed upon cleavage of the C-Cl bond, implying that the surface would be populated only

by PhCl, HCl, and H adatoms. The resulting rate equation is given by:

rH
[L] =

kHPPhClP
1/2
H2

(1 +KPhClPPhCl +KHP
1/2
H2

+KHClPHCl)
2 (2.5)

where kH corresponds to the effective rate constant for formation of the H-assisted

transition state from gas-phase PhCl, H2, and a bare surface; the adsorption equilibrium

constants are as above; and the site balance corresponds to

[L] = [∗] + [PhCl∗] + [H∗] + [HCl∗].

The apparent reaction orders presented in Figure 2.4 allow us to discriminate among

these potential mechanisms. The two-site mechanisms given by Equations 2.3 and 2.5 each

would lead to negative reaction orders with respect to PhCl if the surface were covered by

PhCl at low temperature, while Figure 2.3a shows that the reaction order in PhCl

approaches zero but remains positive at low temperatures. Moreover, neither rate equation

can convincingly predict the observed inverse first-order dependence HCl pressure or the

half-order dependence on H2 pressure. However, the one-site mechanism given by Equation

2.4 is more promising: low-temperature coverage of the surface by PhCl* would lead to the

zero-order dependence on PhCl pressure at 323 K, and a surface covered by HCl* would

lead to inverse-first-order behavior with respect to HCl pressure and half-order behavior

with respect to H2 pressure.
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Letting PhCl* and Cl* to be most abundant surface intermediates (MASI), with

elementary steps delineated in Table 2.1, Equation 2.4 reduces to:

rdirect−1

[L] = kdirectPPhCl

1 +KPhClPPhCl +KClPHClP
−1/2
H2

(2.6)

where kdirect is kPh−Cl ×KH2 ×KHCl.

Table 2.1: Sequence of elementary steps for HDC of PhCl.

Step Reaction

1 H2 + 2 *
KH2 2H*

2 C6H5Cl + *
KPhCl C6H5Cl*

3 C6H5Cl*
kPh-Cl C6H5 –Pd* –Cl

4 C6H5 –Pd* –Cl +H* C6H6 +Cl*

5 Cl* +H*
KHCl HCl+ 2 *

Overal H2 +C6H5Cl C6H6 +HCl

The rate constants involved in the expression above are evaluated from a combination

of enthalpy and entropy values. Dissociative adsorption of hydrogen is a well-documented

reaction step and binding energy of H-Pd is -2.65 (eV);149 assuming H* loses one

directional freedom perpendicular to Pd(111) surface and acts a 2D gas one can calculate

entropy of adsorbed hydrogen using statistical mechanic and therefore the change in

entropy can be calculated:

S○trans,2D = R(ln(2πkBT

h2
) + ln

SA

Nsat

) (2.7)

Where R is gas constant, kB is the Boltzmann’s constant and SA/Nsat is the area

occupied per adsorbed molecule in standard condition. Natal-Santiago et al. 150 performed

microcalorimetric experiments and reported an enthalpy value of -104 (kJ/mol) for

hydrogen adsorption on Pd. Campbell and Sellers 151 have shown a linear relationship

between the entropy of the molecularly adsorbed organic species and their gaseous

counterparts. This relation is valid for molecules with less than 35 atoms; therefore,
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entropy value for molecular adsorption of chlorobenzene can be calculated:

S○ads(T ) = 0.7S○gas(T ) − 3.3R (2.8)

Surface science experiments have also been performed for desorption of HCl in step 5.

Hunka et al. 146 used a combination of auger electron spectroscopy (AES) and thermal

desorption spectroscopy (TDS) and reported a value of 70 (kJ/mol) for enthalpy change of

this step consistent with previous work.130 To be able to test the proposed rate expression

(Equation 2.6) enthalpy of chlorobenzene adsorption (Step 2) and entropy of HCl

desorption (Step 5) along with activation energy of the rate controlling step (C-Cl

scission). These values were calculated using a microkinetic model which uses nlinfit

function in MATLAB® over the entire range of experimental results (88 data points).

Table 2.2 includes all the thermodynamic values required for determining rate constants.

Table 2.2: Thermodynamic values for rate constants calculation. Fitted parameters are in gray cells.

Parameter ∆S/∆S‡ (kJ/mol) ∆H/∆H‡(kJ/mol)

kPh-Cl E‡
a = 86.77 ± 2.09

KH2 -39 -104

KPhCl -147 61.83 ± 3.35

KHCl 15.98 ± 8.04 70

Apparent activation energy reported in the literature is 18.8-18.9 kcal/mol (78.7-79.1

kJ/mol)152,153 for C-Cl bond dissociation which is in agreement with the calculated value in

Table 2.2. Enthalpy of adsorption of chlorobenzene was fitted to a value of -61.83±3.35

(kJ/mol) which is in the reported range of -60<∆H<-80 (kJ/mol).154
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Figure 2.5: Experimental and predicted chlorobenzene HDC TOF associated with Pd/C: PH2=10-97 kPa; T=323-353K.

The level of agreement between the calculated with the experimental TOF is illustrated

in the parity plot in (c.f. Figure 2.5). Results from the model demonstrate that this model

captures the trends of the experimental data (c.f. Figure 2.3a-c) which means the proposed

mechanism in this work is consistent with the mechanism put forth by Sinfelt for

hydrogenolysis of C-X bond (X = C, N, Cl) in the molecules ethane, methylamine, and

methyl chloride, respectively.

2.4 Summary

Kinetics of hydrodechlorination reaction of chlorobenzene (PhCl) was studied in a glass

CSTR reactor at low temperatures. The results suggest a first order reaction in PhCl, half

order in H2 and an inverse first order in HCl. The kinetics coupled with isotope labeling

experiment suggest a reaction that is controlled by cleavage of C-Cl bond. Previous

studies69 along rate expression analysis suggest a one-site mechanism.

The microkinetic model successfully predicts thermodynamics of unknown elementary

steps and the predicted rates of the reaction are in good agreement with observed kinetics.
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This suggests that mechanism put forth by Sinfelt 137 which is also observed by Chen 143

may be one of the strong candidates to explain hydrodechlorination of chlorobenzene.
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CHAPTER 3

C-O HYDROGENOLYSIS1

3.1 Introduction

Utilization of biomass among other methods has been the focus of many groups in the

scientific community to steer away from fossil resources, initially for energy production and

continued in the production of engineering materials. While recent developments in shale

gas make it a harder argument to look for alternative energy and lighter petrochemical

resources,168 products such as thermoplastics require higher carbon number and aromatic

compounds as feedstocks.169 Bio-based feedstocks can potentially not only replace

petroleum-based materials that get their aromatic compounds from naphtha feedstocks

through catalytic reforming, but also due to their oxygen content can produce materials

that are not as easily available through petroleum-based feedstocks.170

Bio-based polymers have been the subject of many contributions; however, these

polymers still have a long way to go before replacing their petroleum-based counterparts

due to lower thermal or mechanical properties. For example, poly-lactic acid (PLA)

polymers are the second most-used bio-renewable thermoplastic with a glass transition

temperature (Tg=55-60 ○C) which is suitable for applications like plastic cups to

3D-printing, but market available for rigid materials like polymeric cement are more

attracted to polystyrene like structures.Production of polymeric compounds typically

require monomers with functional groups at their α,ω-positions namely diols, dicarboxylic

acids and hydroxyl groups and their lactones.118 Complex structures of bio-based

feedstocks make it difficult to directly produce these monomers; therefore, choosing a

1This chapter is from a paper: Jalal Tavana, Faysal Atik, William Gramlich and Thomas J.
Schwartz, “Functionalized δ-hexalactone (FDHL): Bio-based Monomers to Synthesize Renewable Polyester
Thermoplastics”, ACS Sustainable Chemistry and Engineering, 2020. (In preparation)
My contribution is creating the monomer from biomass and equally contribute in the preparation of the
manuscript.
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chemical back bone from available platform chemicals in a biomass refinery with close

structure to the target monomer is essential. For example, production of diols using

furfural as platform molecule is well studied.171–177 Biomass-derived platform chemical

5-hydroxymethylfurfural (HMF) with a hydroxyl and carboxyl group can be upgraded

selectively through heterogeneous catalysis. Therefore, HMF functionalization with

different pendant groups will allow the target polymer to have tunable characteristics and

have the potential to functionalize bio-based polymers like PLA to achieve the desired

thermal and mechanical properties.

Allen et al. 178 has recently developed etherification of HMF to introduce phenolic

functionality to the compound. To yield the corresponding carboxylic acid into polymer,

aldehyde group in HMF needs to be oxidized179 to form FFCA which is similar to

oxidation of furfural to furan-2-carboxylic acid (FCA).180–182 Reduction of FCA are not

attractive for researchers mainly because the products of these reactions including furfuryl

alcohol can be synthesized with easier methods through hydrogenation of intermediates like

furfural183–185 that are obtainable with high yield. Recently, Tomishige’s group116,118 have

focused on achieving products with retention of carboxyl group of FCA using a range of

bimetallic catalysts (e.g. Rh–WOx/SiO2, Pt–MoOx/TiO2). Based on their observations,

the catalyst can saturate the furan ring which leads to production of the hydrogenated

species (THFCA) and is a primary product (c.f. Scheme 3.1). However, C-O cleavage at

the α-position of adsorbed carboxylate before the saturation leads to other primary

products like valeric acid (VA) and 5-hydroxyvaleric acid (5-HVA) products. 5-HVA can

dehydrate to yield δ-valerolactone through an SN2 mechanism. In order to produce the

lactone monomer (FDHL) from FFCA, hydrogenation of the furan ring followed by

lactonization is required. While saturation of the furan ring is known to occur over

hydrogenation catalysts including Pd,186 Pt,187 Ru,188 the path to lactonization requires

more complicated catalytic active sites which had led to numerous publications suggesting

bimetallic catalysts.177,189–191
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Scheme 3.1: 2-Furancarboxylic acid (FCA) reduction to tehrahydro-2-furancarboxylic acid

(THFCA) and δ-valerolactone (DVL) proposed by Asano et al. 118 .

Here we report hydrogenation and lactonization of biomass-derived FCA to DVL and

use the knowledge to successfully synthesize functionalized hexalactone (FDHL) for further

polymerization. The effect of catalyst and support were examined to find the catalyst that

has a higher yield in DVL. Literature suggests that solvent impacts the stability of the

transition state; here we study the solvent effect on the product distribution. Finally, the

effect of reaction time on the product distribution was studied.
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3.2 Materials and Methods

3.2.1 Preparation of catalysts

In case of titania supported Ru catalysts, Aeroxide® (TiO2) P25 (Evonik Degussa Co.)

was used as support to prepare the catalyst. Ruthenium on P25 catalyst was prepared

using incipient wetness impregnation achieving 1.5-5 wt% Ru loadings(1.5Ru/TiO2 and

5Ru/TiO2, respectively). P25 was dried at 413 K for 6 h before impregnation to desorb

water and some other species potentially present on the TiO2 particles. A 31.3% Ru(III)

nitrosyl nitrate (Alfa Aesar) was dissolved in deionized water to produce the different

impregnating Ru concentrations. After measuring the wetness point of TiO2 with water, a

solution containing the precursor, with different concentrations as required by the desired

ruthenium loading, was measured for 5 g of TiO2. In the first step, this precursor solution

was drop-by-drop added to TiO2 and a spatula was used to mix them thoroughly and

ensure the solution filled all the pores in titania. Once the liquid addition was complete,

the wet catalyst was dried at 373 K overnight. This allowed water evaporation from the

TiO2 support leaving Ru(NO)(NO3)3 phase on the catalyst outer surface. The dried cake

was crushed in a mortar until the resulting particles were fine enough, and reached size

+50 of mesh filter. The catalyst was not calcined to ensure small particles and increased

metal surface interface.107 Pre-reduction was carried out in a quartz flow reactor unit

following a purge using Ar at 60 sccm or 15 min, the unit was filled with H2 gas, supplied

from in house hydrogen generator (Parker-Dominick Hunter), at 60 sccm for 15 min to be

reduced. Reduction steps involved the following: (a) a 1 ○C/min temperature increase and

(b) once 673 K was reached, this temperature was maintained for another 4 h (c) now the

reactor was back-filled with Ar and slowly passivated with Air. The preparation procedure

described in this section, ensures the formation of (Ru0) particles on the TiO2 surface. The

same method was followed for the synthesis of other catalysts (5Ru/C and 5Ru/Al2O3).

49



3.2.2 Catalyst Activity

Activity test for different catalysts were conducted in a 50 ml stainless steel autoclave

Parr instrument . In a typical run, the passivated catalyst was put inside the autoclave and

which was purged three times with N2 and filled with 4 MPa of H2 at room temperature.

The catalyst was reduced in situ to get to M0 state in the metal and remove remaining

oxygen left from passivation step in the catalyst synthesis explained before. This reduction

was carried out at 1○C/min from room temperature to 200 ○C which was maintained for

4h. Then the reactor was cooled to the target reaction temperature (typically 150 ○C) and

the 30 ml of solution with the substrate (e.g. 5% FCA in 1,4-dioxane) was injected into the

reactor using an HPLC pump (Chrom Tech, M1 Class). The solution was mixed using a

magnetic stirrer at 500 rpm. Reagents, include 2-furancarboxlic acid (98% FCA, Acros

Organics), tetrahydro-2-furancarboxylic acid (98+% THFCA, Acros Organics),

5-methyl-2-furancarboxylic acid (98% 5M2FCA, Combi-Blocks), δ-valerolactone (98%

DVL,Alfa Aesar), δ-hexalactone (>99% DHL, TCI), 5-phenoxy-2-furancarboxylic acid

(97% 5Ph2FCA, Maybridge) and isobutanol, as internal standard, were used as received.

After the reaction time which was up tp 25 h (typically 8h), the autoclave was cooled

down to room temperature, the gases were put into the vent and the solution was filtered

and put into a vial. The internal standard (isobutanol) was added into vial along with the

product solution. Products were analyzed by GC/MS (Agilent Technologies, 5977B MSD

and 7820A GC systems) equipped with HP-5 column, and after identification of products

their standard were acquired and quantification was carried out using a GC/FID unit

manufactured by Agilent equipped with a DBWAX column mesh (9.1 m × 2 mm × 2 µm

nominal) was used to separate 1,4-Dioxane, FCA, (THFCA), and Lactone product. The H2

gas produced in house and is highly pure(99.99%). Calibration of GC-FID detector was

made using several mixtures of known concentrations with the internal standard.
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conversion, yield ans selectivity were calculated by the following equations:

conversion[%] = (1 − amount of detected reactant [mM]
amount of loaded reactant [mM]

) × 100 (3.1)

yield[%] = products [mM]
loaded reactnat [mM]

× 100 (3.2)

selectivity[%] = amount of detected product molecule [mM]
amount of loaded reactatant [mM]

× 100 (3.3)

3.3 Results and Discussion

3.3.1 Hydrogenolysis of FCA Over Various Catalysts

Several reports116–118,191,192 that focused on FCA upgrading with retention of carboxyl

group suggest that hydrogenolysis of C-O bond at the α-position requires activation of the

substrate from the carboxylic acid on an active functionality on the catalyst and a

hydrogen attack from the metallic surface. Newman et al. 107 have reported selective HDO

activity of Ru/TiO2 without the hydrogenation of the aromatic ring. Different

groups,107,108 that investigated the catalytic C-O hydrogenolysis of different model

compounds including phenol and m-cresol, believe that Ru on titania involves a

bi-functional catalyst, where the metal-support interface is participating in the reaction

while Ru/Al2O3 and Ru/C perform a moderate direct deoxygenation and some ring

saturation product. Figure 3.1 compares the performance of different catalysts supports.

This result shows that at a similar conversion (∼60-80%), while hydrogenation seems a

primary route, the DVL yield increases with TiO2 as opposed to an inert and a Lewis acid

support, C and Al2O3, respectively. The lower Ru loading, 1.5% Ru/TiO2, should provide

more metal-support interface;107 therefore, it is possible that the Brønsted sites created

from hydrogen spillover could favor more selective C-O cleavage of FCA to DVL. However,

5Ru/TiO2 shows more selectivity to both lactone and THFCA which could be explained

by the fact that adsorption mode of FCA on larger Ru particles plays a role in the
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observed DVL yields. Moreover, 5Ru/C and 5Ru/Al2O3 show similar results in

hydrogenation and DVL selectivities to 1.5Ru/TiO2 which is another reason that Ru plays

more important role than the support. In order to investigate this hypothesis requires

mechanistic studies of the reaction beyond the scope of this contribution.

1.5Ru/TiO2 5Ru/TiO2 5Ru/Al2O3 5Ru/C
0

20

40

60

80

100

Catalyst

 DVL Sel.
 THFCA Sel.
 Conv.

Figure 3.1: Hydrogenolysis of FCA using Ru over various supports. Reaction conditions: FCA=10

mmol, solvent=1,4-dioxane, T=423 K, PH2 = 4 MPa, t= 8h

3.3.2 Solvent Effect

Brønsted acid-catalyzed reactions are common in biomass upgrading and it is well

known that these reactions are affected by the solvent composition, thus this property has

been used to favor reaction rates, selectivities, stability of desired products and even the

economics of downstream separations.193 One of the reasons for the solvent effect in these

reactions is stability of the acidic proton, in that a polar solvent like water stabilizes the

proton to a greater extent than an aprotic solvent like tetrahydrofuran (THF) or

1,4-dioxane.194,195 Schwartz and Bond 196 state that solvation can affect the selectivity

either by stabilizing a reactant or a kinetically relevant transition state. Asano et al. 116

52



have examined a range of solvents, from water to 1,4-dioxane, acetic acid to alcohols, for

the reduction of FCA. They observed more THFCA in less polar solvents like 1,4-dioxane

and t-butyl alcohol; however, when they used alcohols as solvent, they reported a decrease

in DVL yield as they moved toward more polar solvents. The choice of solvent should

include avoiding structures that contain similar reacting bonds, e.g. both THF and FCA

have a furan ring and solvent can also participate in the reaction, or avoid competitive

adsorption on the active site, e.g. methanol and t-butyl alcohol are known for adsorption

on metal oxides.

In this study, we examined a polar solvent (water), and a polar aprotic solvent

(1,4-dioxane). Figure 3.2 shows the selectivity of 5Ru/TiO2 in 1,4-dioxane, water and a

mixture of 50% water and 1,4-dioxane at ∼70% conversion. The results show that the

choice of polar aprotic solvent leads to highest THFCA (∼64%) and DVL (∼32%) while

water opens new routes for the reaction and degrades the products. Contrary to Asano

et al. 116 the mixture of 1,4-dioxane and water did not lead to an average performance of

the neat solvents, 1,4-dioxane prevents side reactions and we only observe two main

products, THFCA(∼80%) and DVL.
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Figure 3.2: Effect of Solvent in Hydrodeoxygenation of FCA over 5%Ru/TiO2 catalyst. Reaction

conditions: FCA= 10 mmol, 50 (mg), 4 MPa H2, 423 K, 8h.

3.4 Lactone Yield Improvement

Tomishige’s group116–118 specifically focused on catalytic reduction of FCA propose that

in order for the C-O cleavage at 2 position to be carried out, furan ring saturation is not

necessary. They tested this theory with different substrates including THFCA and found

very low activity (∼18%) and extremely low yield for DVL (∼1%). Figure 3.3 shows the

concentration profile for the reduction of FCA using 5Ru/TiO2. This figure shows that

after ∼6h there is not much change in the concentrations and there is no significant sign of

converting THFCA to DVL. When we used THFCA as the substrate, we got a similar

conversion of ∼20% and ∼3% yield in DVL. Tetrahydrofuran-2-carboxylic acid’s lack of

desire to convert to anything useful in good yield is also confirmed in the literature.192

From a process stand point it seems we cannot get to a high yield in DVL when THFCA is
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a primary product. However, simple molecules have shown different reactivity trend when

substituted by other functionalities.
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Figure 3.3: Concentration profile for the reduction of FCA. Reaction conditions: FCA= 10 mmol, ,

solvent=1,4-dioxane, catalyst= 250 (mg) 5Ru/TiO2, T= 423K, PH2=4 MPa

Experimenting on phenol substituted FCA (our target monomer) is expensive and it is

common practice to work on a similar, cheaper ingredients and apply the best knowledge

we can gain to a minimized number of experiments on the more expensive substrate.

Therefore, 5-methly-2-furancarboxylic acid (5MFCA) could be a good candidate since it

has a similar structure to FFCA but is not as expensive. Based on FCA hydrogenolysis

reactions, we anticipated a better performance for 5Ru/TiO2 as opposed to 1.5Ru/TiO2 in

similar reaction conditions; however, this catalyst exhibited a poor performance (Table 3.1

entry 1). Thermogravimetric (TGA) data on the spent catalyst confirms that there is no

coking resulted from deactivation. On the other hand, 5MFCA was reported to react at

high conversions it seems unlikely that we are at an equilibrium. Therefore, we tried to

optimize the process parameters to tune the performance of the catalyst towards maximum
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DHL product. The results show that running the reaction at higher temperature is will

convert more of the substrate but it will also overcome some energy barriers that leads to

degradation of the products (entry 4). Changing the space time by increasing the amount

of catalyst and/or reaction time will improve the performance of the catalyst (entries 1 and

2 of Table 3.1). However, the most interesting fact is that when the same conditions were

tried for 1.5Ru/TiO2 catalyst, it performed better than 5Ru/TiO2 which indicates that

unlike our observation in FCA reaction, 5MFCA needs the catalyst-support interface to

undergo a selective C-O hydrogenolysis. This indicates that

5-methyltetrahydro-2-furancarboxylic acid (5MTHFCA) might not be a primary product

(c.f. Scheme 3.2) like THFCA was in FCA reduction as depicted in Scheme 3.1. In a final

adjustment by doubling the catalyst used, the best performance was observed (entry 5)

with almost all of the hydrogenated product consumed.

O

OH

O

O

OH

O O O

5MFCA 5MTHFCA DHL

Scheme 3.2: 5-methyl-2-Furancarboxylic acid (5MFCA) reduction to

5-methyltehrahydro-2-furancarboxylic acid (5MTHFCA) and δ-hexalactone (DHL).

Table 3.1: Optimizing reaction conditions to maximize DHL

Entry Catalyst Weight [mg] Time [h] Temp. [K] Conv. [%] DHL selectivity [%]

1 5Ru/TiO2 250 8 423 14.19 16.02

2 5Ru/TiO2 500 25 423 51.57 40.94

3 1.5Ru/TiO2 500 25 423 90.98 47.28

4 1.5Ru/TiO2 500 25 473 100 15.73

5 1.5Ru/TiO2 1000 25 423 100 52.69

In an effort to elucidate the mechanism of FCA reduction over Pt–MoOx/TiO2

catalyst, Asano et al. 117 have reported one entry for hydrogenolysis of 5MFCA with 91%
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conversion and 17% yield in δ-hexalactone (DHL). Table 3.2 compares results reported for

similar reactions with our observations. The reduction of FCA with Ru/TiO2 (entry 15)

shows promising performance compared to other catalysts that are reported. However,

5MFCA reaction to DHL (entry 16) over 1.5Ru/TiO2 shows better performance than other

report (entry 10) and we feel convinced to repeat this reaction conditions for the target

molecule (5-phenoxy-2-furancarboxylic acid, 5PhFCA).

Table 3.2: Recent reports on reduction of FCA and similar structures to their prospective
lactone compounds.

Entry Substrate Solvent Catalyst Conv.[%] Selectivitya [%] Yielda [%] Ref.

1 FCA Methanol Pt/Al2O3 99 7 6.93

118

2 FCA Methanol Pt/CeO2 91 7 6.37

3 FCA Methanol Ru/C 99 1 0.99

4 FCA Acetic Acid Pt/Al2O3 55 66 36.3

5 FCA 1,4-dioxane Pt/Al2O3 88 34 29.92

6 FCA 2-propanol Pt/Al2O3 97 42 40.74

7 THFCA Water Rh–WOx/SiO2 61.8 Nan 8.8 192

8 FCA Water Pt–MoOx/TiO2 82 Nan 9 116

9 FCA Water Pt–MoOx/TiO2 97 Nan 5
117

10 5MFCA Water Pt–MoOx/TiO2 91 Nan 17

11 Succinic acid 1,4-dioxane Re–Pd/SiO2 26 96 24.96
105

12 Adipic acid 1,4-dioxane Re–Pd/SiO2 100 1.1 1.1

13 Glutaric acid 1,4-dioxane Re–Pd 22 93 20.46 197

14 1,5-PDO Gas phase Nan 99 94 93.06 198

15 FCA 1,4-dioxane 5Ru/TiO2 83 37 30.71

This work
16 5MFCA 1,4-dioxane 1.5Ru/TiO2 100 53 53

17 THFCA 1,4-dioxane 5Ru/TiO2 20 15 10.2

18 FCA 1,4-dioxane 5Pt/Al2O3 6 53 3.18

aReported for the lactone product.

After repeating the optimum reaction conditions for 5PhFCA, considering that the

commercial standard of hydrogenated molecule is not available, we used the sensitivities of

57



phenol and 5MFCA derivatives and used a linear approximation to find the GC/FID

sensitivity of the target molecule. The results show that after 25 h of reaction at 423 K

over 1.5Ru/TiO2 we can get to a surprising conversion of 99%. The selectivity of

phenoxy-δ-hexalactone (FDHL) requires meticulous GC/MS analysis of the products

peaks; however, preliminary observations suggest ∼60% selectivity to FDHL.

3.5 Conclusion

Hydrogenolysis of FCA to DVL lactone was studied and the results show that THFCA

and DVL are both primary products which is in agreement with the literature116,118 and

while using different supports leads to similar selectivities Ru/TiO2 with higher loading

performs better in terms of producing more DVL. The 5Ru/TiO2 catalyst for FCA

reaction was used for methyl substituted FCA and the results show increased activity and

selectivity to the lactone with increasing the metal-support interface (1.5Ru/TiO2) which

indicates a different reaction mechanism than what is hypothesized for FCA reaction.

Moreover, just by adjusting the reaction parameters we were able to successfully improve

DHL yield to ∼53% which is almost three times better than previous reports. These

observations resulted in the production yield of 59.56% for FDHL at 99% conversion which

could be used as monomer for polymerization by our colleagues.
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CHAPTER 4

REACTION KINETICS ANALYSIS OF ACROLEIN

HYDRODEOXYGENATION OVER A TUNGSTEN OXIDE CATALYST:

MICROKINETIC MODELING1

4.1 Introduction

Bio-oils, with a potential to reduce dependence on petroleum-based fuel,88,199–201

produced by formate assisted fast pyrolysis (FAsP) are composed of a complicated mixture

of oxygenated compounds including carboxylic acids, aldehydes, ketones, alcohols, and

phenols.202,203 Catalytic upgrading is necessary to remove oxygen in order to increase the

energy density, make it less acidic, and lower the viscosity.92,204,205

Hydrodesulfurization (HDS) catalysts, such as sulfided, Mo-promoted cobalt or

nickel,Elliott 204 suffer from short catalyst lifetimes and downstream contamination of

bio-oils with sulfur. Supported noble metal catalysts have been investigated for upgrading

whole bio-oils,206 show good activity for HDO reactions and usually take place via

hydrogenation pathways. Catalyst lifetime and cost, and higher consumption of hydrogen

are factors that must be justified on the basis of product value.

Transition metal oxides have displayed some activity for deoxygenation. Doornkamp

and Ponec 207 have reviewed the evidence for a Mars-van Krevelen mechanism in the

deoxygenation of nitrobenzene to nitrosobenzene, and carboxylic acids to aldehydes. The

deoxygenation rate depend on the metal oxygen bond strength208 and the relative strength

of CO bond with respect to the metal oxygen bonds.209–211

Metal oxides used as selective oxidation catalysts212–215 are reported to follow the

Mars-van Krevelen (MvK) mechanism.7 A previous report215 used a bismuth molybdate

1This chapter will be part of a paper titled “Mechanism of Hydrodeoxygenation of Acrolein on a Cluster
Model of WO3” and authors include Timothy J. Thibodeau, Christopher M. Goodwin, Jalal Tavana, François
G. Amar, Thomas J. Schwartz and Brian G. Fredrick and the manuscript is in preparation.
My role in the paper is on developing a microkinetic modeling of the proposed reaction sequences.
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catalyst to selectively oxidize propene to acrolein. Propene first adsorbs on the bismuth

oxide phase and forms surface π-allyl species which then migrates to the molybdenum

oxide phase and becomes oxygenated to form C––O bond. In the final step, acrolein desorbs

from the catalyst, which contains oxygen vacancies and surface hydroxyls, the surface is

regenerated with O2 to form a fully oxidized bismuth molybdate.

This contribution focuses on the reverse MvK mechanism displayed in Figure 4.1.

Oxygen vacancies and hydroxyls are produced by pre-treating WO3 in H2 at 623 K for 10

hours216 which leads to the production of a tungsten oxide bronze. This catalyst should

selectively reduce the C––O bond while leaving the C––C bond in place, to minimize H2

consumption, when feeding acrolein.

Figure 4.1: Proposed catalytic cycle for the reduction of acrolein to propene, allyl alcohol, and 1-propanol on a model W3O9

cluster.216

Thibodeau et al. 216 has reported quantitative production of allyl alcohol with reducing

the C––O bond to a C–O bond by formation of the active catalyst by heating WO3 in H2

for ten hours at 623 K producing a bronze: H1.29WO2.77. The HDO of allyl alcohol was

performed at higher temperatures (600 K) to show conversion of allyl alcohol to propene.
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The underlying surface mechanism of the hydrogenation (HYD) and HDO of allyl alcohol

on a model W3O9 cluster will be discussed here.

Moberg et al. 217 investigated the HYD and HDO of acrolein on a Mo3O9 cluster and

estimated that the reaction thermodynamics should be within 10 kJ/mol of the

experimental values. Calculations of the electronic structure of the tungsten analogue

(W3O9) have been done and Huang et al. 218 suggest that this is a good model for bulk

WO3. These calculations were carried out at a similar level of theory to the work reported

in this paper. Therefore, calculations investigating the mechanism of the formation of the

active site is presented which most likely occurs by hydrogen adsorption and surface

hydroxyl formation at terminal sites, followed by desorption of water on the W3O9 cluster

model. These calculation will be discussed in details when the paper is published and I will

only present the result in Figure 4.3. My contribution to this project comes at developing a

microkinetic model based on the DFT calculations performed by our collaborators, Dr.

Brian G. Fredrick’s group, to first calculate thermodynamics of each reacting species

including the proposed transition states. These data will be used to calculate the reaction

rate constants in each proposed step. Finally, the reaction product distribution at each

temperature can be calculated which can be used to investigate the underlying mechanism

by finding the degree of rate control of each step.

4.2 Theoretical Methods

Density functional theory calculations were done using Gaussian 03219 and 09.220 Initial

geometry optimizations were performed with B3LYP functional and LANL2DZ effective

core potential (ECP) and basis set for W and the 6-31G(d,p) basis set was used for all

other atoms. This level of theory is consistent with our previous calculations,217 and the

work of Pudar et al. 221 for Mo3O9 clusters. Using optimized structures from calculations at

the LANL2DZ/6-31G(d,p) level, we performed single point calculations with the

LANL2DZ basis set and ECP for tungsten and the 6-311+G(d,p) basis set for all other
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atoms. SCF energy convergence utilized Gaussian’s219,220 quadratic convergence

algorithm222 and tight convergence criteria223. Gibbs free energies at 1 atm and either 325

K or 600 K were calculated using frequency calculations performed at the

LANL2DZ/6-31G(d,p) level with the appropriate thermodynamic scaling factor.224,225

These temperatures and pressures correspond to typical experimental conditions for

hydrogenation216,226 and hydrodeoxygenation,216 respectively. Transition state searching

was performed with the TS, QST2 or QST3227,228 algorithms followed by frequency

calculations to verify first-order saddle points and intrinsic reaction coordinate (IRC)

calculations to confirm that the transition states led toward the correct reactant and

product conformations. Rate constants229 were calculated from classical energy barriers

determined at the LANL2DZ/6-311+G(d,p) level of theory. Zero-point energy correction

and partition functions were also calculated from frequency calculations at the

LANL2DZ/6-31G(d,p) level of theory.

Figure 4.2: (a) The fully oxidized W3O9 cluster used in the calculations, consisting of terminal and bridging oxygens. The red

spheres are oxygen atoms, the blue spheres are tungsten atoms, and the white spheres are hydrogen atoms. (b) The W3O9H

cluster with a terminal surface hydroxyl, Ht. (c) The W3O9H cluster with a bridging surface hydroxyl, Hb.
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4.3 Results

4.3.1 Hydroxyl Formation and Surface Oxygen Vacancy Creation

The proposed active site of a tungsten oxide bronze HDO catalyst is a surface oxygen

vacancy site at which acrolein can adsorb. Catalytic experiments216 suggest that surface

vacancies are produced during heating in hydrogen at 625 K. Based on our previous

work,217 we expect formation of vacancies to occur in two steps. First, hydrogen from the

gas phase adsorbs dissociatively to form surface hydroxyls. Then, dehydroxylation leads to

formation of surface oxygen vacancies and desorption of water. In the W3O9 cluster there

are two surface oxygen sites, terminal and bridging, as shown in Figure 4.2a, which can

form terminal (Figure 4.2b) and bridging (Figure 4.2c) hydroxyls. Adsorption of hydrogen

can occur at combinations of terminal and bridging sites. Results reported only for the

unterminated cluster, because when accounting for bulk like oxygens, strong distortions of

the cluster occurred during geometry optimization occurs.

4.3.2 Microkinetic Modeling

Moberg et al. 217 have shown that this reaction is more favorable towards less desirable

HYD products when performed at low temperatures while at higher temperatures HDO

products become thermodynamically more favorable. Therefore, the more desirable

product, propene, production at 600 K will be discussed. Figure 4.3 contains the results of

potential energy calculations, directly from DFT values, from which we can understand the

mechanism for hydrogenation of acrolein into allyl alcohol and 1-propanol, as well as the

further hydrodeoxygenation of allyl alcohol to propene, which will form the basis of a

microkinetic model described in the 4.4. The same numbering was followed as previous

publication217 and in the work of.Pudar et al. 221
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Figure 4.3: Energy and free energy of species in PES relative to structure of 12 + Acrolein + 2H2. Blue numbers represent

∆G600 K (kJ/mol) and red numbers represent energy of activation (or ∆G‡; kJ/mol). All energies refer to B3LYP/6-311+G(d,p)

single point calculations for structures optimized at the B3LYP/6-31G(d,p) level for light atoms and LANL2DZ ECP and basis

set for tungsten. Free energies refer to frequency calculations at the B3LYP/6-31G(d,p) level for light atoms and the LANL2DZ

ECP and basis set for tungsten and energy calculations at the B3LYP/6-311+G(d,p) level .

One step is missing from these calculations and that is the activation energy for bronze

formation which can be obtained through TGA data if the reactor is modeled as a batch

reactor. By measuring the mass loss from the TGA data,216 we can calculate the amount

of oxygen on the surface of WO3 as a function of time at different temperatures. Moreover,

integrated design equation for batch reactor gives plots for oxygen vacancy concentration

as a function of time which in turn can be used to extract rate constants at different

temperatures (c.f. Figure 4.4); by plotting the natural log of calculated rate constants as

an inverse function of temperature we can calculate the activation energy and

preexponential factor. The calculated activation barrier for bronze formation is

EA = 134 ± 13 kJ/mol with a preexponential factor, A = 227 ± 97 torr-1sec-1.
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Figure 4.4: Extracting kinetics of oxygen vacancy creation from TGA data between 300○C - 475○C.

Table 4.1 summarized the sequence of elementary steps based on the reaction scheme

described for the reaction, when transition states were calculated in the DFT

measurements activation energies exist and rate constants were calculated using Eyring

equation229 and where no transition states where calculated that step was assumed to be

quasi equilibrated. In order to complete the microkinetic model we needed the initial

oxygen coverage. Assuming the reactor modeled as a transient CSTR and run the model

we can achieve an initial oxygen coverage of 6.5 × 10−7 (c.f. Figure 4.5).

Figure 4.5: Initial oxygen coverage calculated from microkinetic model assuming the reactor is a transient CSTR.
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Table 4.1: Sequence of elementary steps on the bronze surface

Step Reaction

Acrolein adsorption and allyl alcohol production

1 C3H4O+W3O8Ht C3H4O–W3O8Ht

2 C3H4O–W3O8Ht C3H5O–W3O8

3 C3H5O–W3O8 + 1
2 H2 C3H5O–W3O8Hb

4 C3H5O–W3O8H C3H5OH–W3O8

5 C3H5OH–W3O8 C3H5OH+W3O8

Propylene production

6 C3H5O–W3O8 + 1
2 H2 C3H5O–W3O8Ht

7 C3H5O–W3O8Ht C3H6 –W3O9

8 C3H6 –W3O9 C3H6 +W3O9

Propanol production

9 C3H6 +W3O9 + 1
2 H2 C3H6 –W3O9Ht

10 C3H6 –W3O9Ht C3H7 –W3O9

11 C3H7 –W3O9 C3H7O–W3O8

12 C3H7O–W3O8 + 1
2 H2 C3H7O–W3O8Hb

13 C3H7O–W3O8Hb C3H7OH–W3O8

14 C3H7OH–W3O8 C3H7Oh+W3O8

Active site regeneration

15 W3O8 + 1
2 H2 W3O8Ht

16 W3O9 +H2 W3O8 +H2O

4.4 Discussion

According to the DFT calculations provided to us production of desired HDO product

at 350○C is thermodynamically favorable enough that it is expected to have a ∼100%

selectivity to propene in which case, microkinetic model (MKM) should successfully predict

a product distribution that is in line with the experimental data. This data could not

capture the experimental trend of product distribution. The MKM could be used to

troubleshoot and find the source of this disagreement; therefore, a sensitivity analysis was

performed and we found out that control the rates that govern this product distribution
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are steps 2 and 8. Considering that DFT models usually predict the experimental data

within ±30 kJ the calculated values. Therefore, activation energies of these two steps and

binding energies of species involved in them, acrolein, hydrogen and propene, were

corrected within the confidence interval of the reported DFT values Table 4.2 to get to a

surface coverage regime where catalysis for the products would take place.

Figure 4.6: Microkinetic (MKM) model prediction of the product distribution based on raw DFT data compared with the

experimental data (Exp). Orange is propanol, Blue represent acrolein and gray is propene. T = 350○C, Ptot = 760 torr, PAcr

= 88 torr, WHSV = 1800-3400 h-1

Table 4.2: Modification to parameters adopted from DFT.

Parameter BE (EA)/ kJ/mol

BEAcrolein +50

BEH -30

BEPropene -30

TS2 -30

TS8 -20

Plugging these values into the model resulted in Figure 4.7. This figure shows how

MKM can successfully predict the product distribution that was experimentally observed

for this reaction at high temperature (350○C).
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Figure 4.7: Microkinetic model successfully captures the trend of product distribution. Orange is propanol, Blue represent

acrolein and gray is propene. T = 350○C, Ptot = 760 torr, PAcr = 88 torr, WHSV = 1800-3400 h-1

Now that the MKM can successfully follow the distribution trend reported in the

experimental data, the model can be used to investigate the mechanism by calculating the

degree of rate control at the reaction conditions for the target products. Table 4.3 reports

the results from the degree of rate control analysis230 for the overall TOF (XRCTOF),

production of acrolein (XRCAcr), propene(XRCEne) and propanol (XRCPol). This data

suggests that the reaction (propene) is mainly controlled by regenerating the active site

rather than breaking the alkoxide bond from tungsten oxide which means that maybe this

metal is bonding to the intermediates stronger than expected. Therefore, most abundant

surface species present on the surface at the experimental conditions are expected to be

these alkoxide species.

4.5 Summary

I have developed a microkinetic model, that can be run at different temperatures to

study the more favored HYD reactions observed in the experiments at low temperatures as

well as HDO product that is more favorable at higher temperatures. The results suggest

that oxygen vacancy creation is controlling the rate of the reaction and each of the
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Table 4.3: Degree of rate control analysis for routes leading to acrolein, propene an propanol
and the overall turn over frequency.

Step (XRCTOF ) (XRCAcr ) (XRCEne ) (XRCPol )

2 0 0 0 0

3 0.19 0.19 0.03 0.28

5 0.10 0.72 0.1 0.38

8 0 0 0 0

9 0 0 0 0

11 0.01 0.01 0 0.02

12 0.62 0.63 1 0.44

observed products are limited by how strong the intermediate alkoxide is bonded to the

tungsten surface. The result of this collaboration is in progress for publication and is under

review by all collaborating parties.
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APPENDIX

REACTOR CONFIGURATION FOR FTIR STUDIES

Heterogeneous catalysis accelerates the reaction by adsorption of and reaction of chemical

species involved in the reaction though active sites at the fluid-solid interface. These active

sites provide access to new reaction pathways that may otherwise be inaccessible via

thermal or homogeneous routes. Several parameters including the number and types of

active sites available to different molecules and intermediates as well as the structure of the

adsorbed species.155 Different mechanistic studies on the HDC of PhCl have only

speculated the structure of adsorbed chloroaromatics;62 however, to our knowledge there

are no conclusive studies on the nature of PhCl binding to the active site. We propose the

use of Fourier Transform Infrared (FTIR) spectroscopy to study how these species bind to

the surface, through aromatic ring or through C–Cl bond or a combination of both.

Several designs have been proposed for transmission IR gas cells with various capabilities

used to study surface chemistries that occur on heterogeneous catalysts. These custom

designs include features like operation under vacuum, operation at elevated temperatures,

temperature control, and the ability to perform in situ gas treatments. However, these

designs often suffer from tedious experimental considerations such as sample preparation or

the use of flanges or other measures to secure the IR windows onto the cell. The

transmission IR gas cell described here was originally adopted from Gounder’s group156

and modified for our system, incorporates these experimental capabilities along with

improved design features to simplify cell operation over a wide experimental range. A key

design feature is the modified, hand-tightened Ultra-Torr fittings to provide leak-tight

operation and enable rapid removal and loading of catalyst samples with minimal IR cell

disassembly. Additionally, catalyst powder samples are utilized as pressed, self-supporting

wafers. Figure A.1 shows the experimental set up devised for the FTIR studies.
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Figure A.1: FTIR experimental set-up equipped with vacuum and a dosing section. In situ

transmission cell design was adopted from Cybulskis et al. 156 .

Before starting IR experiments, the system should be leak tested under dynamic

vacuum (∼ 10−2). First, we close the outlet and evacuate the cell so that our pressure

transducer reads 0.0 Torr. Next isolate the system from the vacuum manifold by closing

the connecting valve. Now we can monitor the MKS pressure transducer if the pressure did

not increase for the period of our reaction then we consider the system leak free.

A.1 FTIR Dosing Experiment

Two MKS baratron pressure transducers (10 and 1000 Torr) could also be used to

initial and final amount of PhCl present in the IR cell manifold. Total volume of the IR

cell, transfer line and the dosing manifold is proposed to be measured using a calibration

vial of known volume. We will first fill the dosing manifold and the calibration vial with He

to a known Pi, then isolate the calibration vial from the dosing manifold and evacuate.

Now by opening the vial’s valve the system goes to a final pressure of Pf. Using the ideal
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gas equation of state, we can calculate the total volume Vt of the system, including the IR

cell, the dosing manifold and the transfer lines. Now that we know Vt and measuring Pi

and Pf for each dose, assuming there is no adsorption on the lines and the quartz cell, we

can calculate the moles of the PhCl adsorbed on the catalysts wafer. For cases where we

have the final pressure of 0.0 Torr we can assume total adsorption.

FTIR spectra collected can show us whether the chloroaromatic is adsorbed through a

π bond or a σ bond.64 There are three adsorption configurations of flat, vertical and

bridge, for chlorobenzene on different catalysts.34,157 One possible orientation that we think

might be the governing average orientation of the title component on the surface of Pd is

the catalyst insertion in the C-Cl bond. Figure A.2 shows the evolution of PhCl on Pd to

insertion, the numbers on the bands show bond length in Å.

Figure A.2: Pd insertion stages into C-Cl bond in chlorobenzene.1

Free chlorobenzene has a planar geometry158 whose spectrum contains both in-plane

and out-of-plane contributions to the IR spectra. In-plane vibrations are responsible for

vibrations at 1588 cm-1 ν(C––C). The low-frequency bands at 690 and 774 cm-1 correspond

to out- of-plane C-H deformations. An IR spectrum after equilibrium adsorption with an

increase in out-of-plane vibrations and subsequent decrease in in-plane vibrations could

mean vertical orientation while if it is the opposite we expect a parallel orientation.

However, as several researchers62,159,160 have reported, the adsorption orientation of

aromatics are often coverage dependent. Therefore, by monitoring the characteristic IR

bands for the titled molecules or products after each dose, i.e. varying the coverage, we can
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see if the coverage affects the orientation. The effect of Cl coverage will also be investigated

by pretreating the surface with HCl before introducing PhCl after which the IR spectra

will be collected. Typically chlorobenzene and its derivatives are visible in the range of 400

– 4000 (cm-1).158 It is expected to see C–Cl stretching vibrations in symmetric and

asymmetric modes of 713-762 (cm-1) and 858-982 (cm-1).161 Through characteristic IR

absorption bands, we will be able to calculate the molar extinction coefficient and

integrated molar extinction coefficients, which are important for quantitative and

qualitative determination our products. Determination of molar absorptivity of our

products, in Lcm-1mol-1, at a given wavenumber, ελ can be achieved according to Lambert

and Beer law, using the absorbance Aλ read at a given wavenumber, b, the path length and

c, the analyte concentration:

ελ = Aλ × (bc)−1 (A.1)

However, the peak height measurements are reported to be very sensitive to the

resolution at which the spectra is collected; therefore, the integrated molar extinction

coefficients, cm.mol-1 which is much less sensitive to the instrumental resolution than the

peak height measurement could be used:162

Ψ = ∫ ελdλ (A.2)

In this equation λ is the wavelength and ελ is the molar absorptivity integrated over the

whole band. Subsequently IR spectra could be collected relative to an empty cell

background reference under vacuum. Dosing cycles can be repeated until the saturation

coverage is observed in the spectra.

A.2 Steady-State FTIR analysis

Continuous exposure of the chlorine containing material to the catalysts wafer along

with dosing exposure were reported before.163 This is a good tool that will give us insight

on the adsorbed species along with kinetics measurement. The IR transmission cell
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described before (Figure A.1) would be able to identify species formed in a steady state

reaction. However, due to the long effective gas hold up time of 6 s we cannot rely on the

kinetics measurements using the same design. In order to investigate the adsorbed species

in a steady state (MASIs), we can use the mass flow controller branch in our system. Four

MKS mass flow controller will allow us to use hydrogen gas along with helium to adjust the

partial pressure of hydrogen. The injection pump will allow us to adjust the flow rate of

chlorobenzene. All the lines would be heat traced to prevent condensation of

chlorobenzene. Pressure will be monitored using two MKS Barratron pressure transducers.

Monitoring for characteristic absorption peaks of Cl-sensitive (416-706 cm-1) and Pd-H at

∼1952.8 cm-1 and parallel configuration of benzene ring at ∼1614 cm-1 164 will enable us to

not only identify the most abundant surface intermediates but also help us to identify their

orientation on the surface.

A.3 Time Resolved FTIR Analysis

Another approach that is taken for in situ studies is to collect time resolved data

(kinetics data) which would be a good feature in investigating elementary steps and

characterizing the active sites. Ribeiro’s group165 showed that kinetics results from in situ

IR spectroscopy were comparable with the kinetics results measure in a regular reactor;

however, others believe that excessive pelletizing will result in destruction of the pore

structure which in turn affects the pore size distribution, leading to the observation of

lower activity values.166 Therefore, the prepared catalyst wafer should also be characterized

using CO chemisorption to normalize the rates for the new site density. Moreover, time

resolved in situ FTIR analyses requires fast response when changing the flow to be able to

monitor the transient state of the reaction. This requires a minimal dead volume and a

homogeneous gas velocity in the vicinity of the catalyst surface.167 Considering the design

of the current IR transmission cell is expected to have a large dead volume we need another

design for the time resolved studies. There are several designs that focused on decreasing
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the dead volume, We propose using the design proposed by Wang et al. 165 that was used to

Au active sites and surface active species (Figure A.3).

Figure A.3: 3D CAD assembly of the operando transmission IR reactor with heater block ((1) IR cell body; (2) sample holder A;
(20) sample holder B; (3) sample holder retainer ring, (4) CaF2 window; (5) graphite ferrule; (6) window retainer; (7) graphite
washer; (8) window retainer; (9) screw set; (10) heater block.).165

After construction of the cell, which will be a future work, we can simply switch to the

new cell and use the mass flow controller branch of our designed system (c.f. Figure A.1)

for the kinetics measurements. In a typical experiment, the cell will be isolated with beam

covers which will retain the continuously fed purged gas though the entire IR beam path

length. All lines would be heat trace to prevent condensation of chlorobenzene during the

transfer to the cell. The low dead volume of the cell along with fast IR scanning technique

will give us unprecedented level us detail the kinetically active surface species and active

sites.
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A.4 Extended Catalytic Systems and Polychlorinated Aromatics

The results of experiments described before will provide a clear picture of the

mechanism and kinetics of this reaction. When using different catalysts for this system,

e.g. Ni,Coq et al. 136 observed similar rates for both catalysts while Shin and Keane 62

observer a difference in their rates which suggests a different mechanism. Based on the

observations in the literature, we hypothesize that there might differences in the

mechanism of hydrodechlorination reactions of chloroaromatics when using Pd and Ni

catalysts. We propose the use of kinetics studies coupled with in situ FTIR spectroscopy

and isotope labeling to study any differences between the two systems. Finally, as it was

suggested by Fabio Ribeiro,69,130 the rate of hydrodechlorination strongly relies on

theC–Cl bond strength. We hypothesize that by increasing the Cl substituents on the

benzene rings, caused by change in the molecular electrostatic potential,158 the rate of the

reaction linearly changes with the number of C–Cl bonds on the benzene ring. We propose

using chlorobenzene, dichlorobenzene and trichlorobenzene for detailed kinetics

measurements to test this hypothesis.
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