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In recent years the demand for packaging paper grades has increased while the demand 

for printing and writing grades has continue to decline. Packaging grades are increasing in 

importance and are sold based on a combination of thickness and area rather than basis 

weight. This issue has driven the industry to produce paper board sheets of low apparent 

density to save fiber costs. The use of extracted xylan to produce paper with higher strength 

at a given density has been suggested in the literature; however the direct relationship 

between hemicellulose addition and apparent sheet density has received little attention in 

the literature.   

Our work includes a literature review of the pulp fiber characteristics that affect 

apparent sheet density. Bleached pulp was treated with hemicellulose (beechwood xylan) in 

a 0.5M sodium chloride solution at 120°C for two hours. We observe a small decrease in 

apparent sheet density and a decrease in tensile strength index as the xylan loading 

increases. Analysis of the handsheets shows a lower hemicellulose uptake than the 

literature suggested. This discrepancy prompted an investigation into the mechanism by 

which hemicellulose, particularly xylan, attaches to cellulose surfaces. If the mechanism is 



 
 

understood then the adsorption process can be tuned to maximize xylan uptake on pulp 

fibers, thus maximizing the effect on apparent sheet density. 

The literature almost exclusively concludes that hydrogen bonding is the primary 

mechanism for xylan attachment onto cellulose surfaces, which we verify using a 

thermodynamics approach. We attempt to calculate an enthalpy of adsorption using the 

Van ’t Hoff relationship and equilibrium constants from adsorption isotherms. Isotherms 

were collected in a temperature range of 35-95°C in 0.5M sodium chloride solution using 

Whatman 42 filter paper as a pure cellulose source. Isotherms were also collected using 

SigmaCell pure cellulose instead of Whatman 42 filter. Additional experiments were 

conducted with SigmaCell cellulose using deionized water and 1.0M sodium hydroxide for 

solvents.  

The observed isotherms do not appear to be temperature-dependent, suggesting a very 

weak attraction between hemicellulose and cellulose. However, a decrease in uptake was 

observed in cases where sodium chloride was omitted from the system and increases in 

uptake when aqueous sodium hydroxide solution was used as a solvent. The ionic strength 

provided by the sodium chloride mitigates the negative charge repulsion between the xylan 

and cellulose. It is likely that the alkaline environment cleaves glucuronic acid substituents 

from the xylan backbone. This decreases the solubility of the xylan polymer causing it to 

aggregate, precipitate from solution, and finally adsorb onto cellulose surfaces. As 

suggested in the literature, hydrogen bonding and Van der Waal’s forces are likely the 

dominant mechanisms for xylan adsorption onto cellulose.
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CHAPTER 1 

THE EFFECT OF HEMICELLULOSE ON THE APPARENT SHEET DENSITY OF PAPER BOARD 
GRADES 

 

1.1. Motivation  

When quantifying the benefits of recycling paper one needs to consider many factors such as 

the diminished sheet properties that come with recycling fiber and the impact of recycling on 

the environment. As pulp is recycled some of its properties diminish such as the tensile and 

burst strength indexes and fiber flexibility [1, 2]. These losses can be regained by refining [3]; 

however, this is not easily accomplished given the suspected strong hydrogen bonds formed 

when fibers undergo hornification [4]. Other end-of-life processing strategies should be 

considered for paper, namely incineration and landfilling. While recycling is always considered 

more favorable than landfilling from an environmental prospective, in the life cycle assessment 

(LCA) studies reviewed by Villanueva and Wenzen [5] there are a few circumstances that may 

lead to incineration being the more environmentally friendly option. Another factor when 

considering the environmental impact of a process is the global warming potential (GWP). GWP 

is defined as the amount of energy 1 ton of gas emissions will absorb relative to the amount of 

energy 1 ton of carbon dioxide will absorb over a given amount of time [6]. On the basis of 

GWP, there is little difference between incinerating and recycling paper fiber, dependent on 

many factors including mill efficiencies, energy sources used during production, and paper 

grade produced. Bjӧrklund and Finnveden claim that the GWP is higher for recycling paper 

board when waste incineration is used to replace the burning of fossil fuels. Bjӧrklund and 

Finnveden state that recycling and incineration are both better than landfilling. The methane 
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captured from the landfill provides less energy than incineration would, making landfilling 

undesirable from a GWP and energy perspective [7]. However, a more recent study by Merrild 

et al. claims that paper recycling is always favorable when biomass normally used for paper 

production is used to produce energy [8]. Given this information, it would make sense to use 

virgin fiber as efficiently as possible. If less fiber can be used to produce a given sheet of paper, 

then a mill will observe material and energy savings. These savings can be carried further 

through the process as well. Papermaking with recycled fibers requires less energy than is 

required for paper production from virgin sources [8]. Presumably if less fiber is used for the 

initial sheet (thereby requiring less energy and material) there will be a decrease in the energy 

required to recycle that sheet of paper. To put it differently, less pulp fibers used in a given 

paper sheet means less energy used for production of virgin and recycle sheets.  Packaging 

grades are in a unique position to reduce pulp fiber usage. Unlike printing and writing grades 

that are traditionally sold by basis weight, packaging paper grades are often sold by area. If 

papermakers can produce a sheet of equal volume but with less fiber (i.e., a less dense sheet) 

while holding the physical and optical properties constant then they may reduce their material 

consumption. In 2005 Danielsson and Lindstrӧm claimed that material savings of 7.3 million 

euros could be achieved assuming 3.3% less pulp could be used and pulp costs were 440 euro 

ton-1. There is also an uncalculated additional energy savings from having to beat the fiber less 

[9].A significant body of work exists documenting various strategies to increase pulp yield [10], 

and the effects of hemicellulose on paper strength [9, 11, 12]; however limited attention has 

been given to factors that influence apparent sheet density. Some methods of reducing sheet 

density include the modification of pulp fibers and the optimization of paper fillers. Knox et al. 
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show that the addition of attritor-treated, bleached softwood pulp to a paperboard sheet 

reduces sheet density. They propose it is possible to reduce fiber usage by adding attritor-

treated softwood fibers to a paperboard sheet while refining the base softwood furnish to 

maintain the elastic modulus of the paperboard sheet [13]. Zhang et al. show that co-

flocculating fines and fly ash-based calcium silicate in a ratio of 0.3 (fines to fly ash-based 

calcium silicate) can significantly decrease sheet density while increasing the tensile index of a 

paper sheet [14]. This thesis aims to first review the literature on sheet density and pulp yield 

improvements to elucidate which fiber properties and pulping conditions can be linked to 

apparent sheet density. Then, knowing these factors we will investigate the effect of adsorbed 

hemicellulose on apparent sheet density. Once the effect hemicellulose has on sheet density is 

understood, we will investigate methods of increasing the hemicellulose content in pulp and 

their effect on sheet properties.  

 

1.2. Factors that Control the Apparent Density of Paperboard 

Dinwoodie discusses physical fiber characteristics that affect sheet density. Sheet density is 

related to three factors: the fiber length, diameter, and cell wall thickness. Dinwoodie claims 

that at a constant fiber length an increase in fiber diameter will reduce fiber rigidity and result 

in more fiber collapse, i.e., a denser sheet of paper. An increase in the length of fiber at a 

constant diameter will increase the number of fiber crossings and is expected to decrease sheet 

density [15]. Dinwoodie in his review of the literature also reports that there is a positive 

correlation between sheet density and the ratio of lumen size to total fiber diameter, that is as 

fiber wall thickness decreases fiber flexibility increases, resulting in fiber conformability and a 
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denser sheet of paper [16]. As the fiber diameter grows in relation to the lumen size the density 

of the paper sheet should decrease. The difference between the lumen size and overall fiber 

diameter is the cell wall thickness, and one can expect that as cell wall thickens sheet density 

decreases. We know this to be true. Gorres sees this in the measured sheet densities of 

different species of wood. Sheets made of Douglas Fir have the lowest sheet density of any 

sheets produced from the 10 chemical pulps measured in the study. This finding is unsurprising 

because Douglas Fir fibers are long, coarse, inflexible, and have a thick cell wall [17]. The 

important question then becomes how does hemicellulose influence fiber morphology and 

thereby contribute to sheet density?  Kӧhnke et al. investigated the preventative effect of 

hemicellulose on hornification and showed that hemicellulose adsorbed onto bleached 

softwood pulp improves the rewetted fiber flexibility when compared to the control. BET 

surface area measurements were made for treated and untreated pulps before and after 

drying. It was found that the pulps treated with xylan before drying retained a significant 

amount of their original surface area. This suggests that the adsorbed xylan prevents fiber wall 

collapse during drying. An increase in fiber saturation point of never-dried and rewetted fibers 

treated with hemicellulose also suggests an increase in fiber swelling [18]. Joutsimo and 

Asikainen note that fibers swell in the direction of the fiber lumen, increasing fiber wall 

thickness [19]. Increasing the cell wall thickness should decrease fiber flexibility and decrease 

sheet density. By filling the pores in the interrupted lamellae with hemicellulose [20], the fibers 

should be more resistant to collapse, which would lead to higher stiffness and lower apparent 

densities. Recent work from Tavast et al. [21] and Ban et al., [11] support this hypothesis. Each 

show that sheets with increased amounts of hemicellulose are stronger for a given sheet 
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density at constant basis weight.  Put differently, a sheet with added hemicellulose is less dense 

than an equivalently strong sheet containing no added hemicellulose.  Therefore, by increasing 

the hemicellulose content of pulp one should be able to produce sheets of a lower basis weight 

without any substantial loss in strength.  Danielsson and Lindstrӧm demonstrate this effect by 

replacing the black liquor in a softwood cook with xylan-rich black liquor (from a hardwood 

cook) after 3 hours of reaction time. The resulting pulp had an increased tensile stiffness index 

at a given sheet density and had an improved beating response, i.e., it takes less beating energy 

to get to a given tensile strength index. Molin and Teder pulp spruce chips 10 different ways to 

demonstrate the effect of hemicellulose content on paper properties. Similar to the previously 

mentioned literature, pulp with a higher hemicellulose content is shown to have a higher 

tensile strength index at a given sheet density [22]. This is of particular interest because when 

xylan is added a less dense sheet can be produced if less beating is used [9].  We hypothesize 

that the relationship between hemicellulose content and apparent density is similar to that 

associated with hornification and apparent density.  For chemical pulps, the fiber wall collapses 

and the pores in the surface of the fiber are closed during drying. It is often proposed that the 

inside surfaces of the fiber pores and walls hydrogen bond to each other during drying. Upon 

rewetting, the fibers become stiffer despite the fact that they are collapsed due to the 

irreversibility of the pore closures and fiber wall collapse [18]. Zhang et al. show that 

unbleached pine kraft pulp fibers lose flexibility after drying and rewetting [2] and Howard et al. 

have shown that sheets made from beaten, unbleached kraft pulp decrease in density and fiber 

saturation point the more the fiber is recycled [1]. 
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To demonstrate that stiff fibers lead to a sheet of low density, we induced hornification in a 

virgin pulp by drying the pulp to various solids content.  This should lead to sheets of various 

densities, based on the recycle paper literature discussed above. We next evaluated the 

influence of hemicellulose sheet density. The literature shows that increasing the xylan content 

on softwood pulp fibers should lead to an increase in the sheet strength at a given sheet 

density. The increase in sheet strength due to xylan addition could allow for a decrease in basis 

weight while maintaining the strength of the original sheet. The increase in sheet strength has 

not been observed for hardwood fibers [9,11]. Because the favorable sheet properties are 

observed when hardwood hemicellulose is applied to softwood fibers it stands to reason that 

there may be a benefit to cooking or pretreating mixes of hardwood and softwood chips 

together. That is, it may be possible to cook the chips and transfer excess xylan from the 

hardwood onto the softwood inside one digester. Thus, it is necessary to investigate the impact 

of adsorbed hemicellulose has on sheet properties for a consistent blend of softwood and 

hardwood fibers.   

 
1.3. Methods 

1.3.1. Initial Moisture experiments. Pulp, consisting of 85% hardwood and 15% softwood 

fibers, was obtained from Sappi’s Somerset mill.  Batches of 24g dry fiber were dried to solids 

content of 12.4%, 15.4%, 33.4%, 48.1% 65.6%, 78.1%, and 100.0%. The pulp dried to solids 

content of 65.6% and 78.1% were dried in 5 ODg (oven dried grams) batches to the desired 

solids content using a hot plate to prevent pulp burning. The rest of the pulp batches were 

broken up into bead sized pieces and dried to the desired solids content in an oven set at 
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100°C. These partially dried batches were independently re-pulped, and formed into 

handsheets following Tappi standard T-205.   

1.3.2. Adsorption Experiments. Following the procedure outlined by Kӧhnke [12], 24 ODg of 

pulp was placed in a 1 L autoclave-safe jar and water was added such that the fiber 

concentration was 50g L-1. The xylan (beechwood xylan >95.0%, Megazyme, Inc.) and sodium 

chloride (sodium chloride (Crystalline/Certified ACS ≥99.0%, Fisher Scientific) solution was 

prepared by bringing approximately 500g of water to 95°C, the xylan was added  and the 

solution was allowed to stir at 95°C for 15 minutes. After 15 minutes the heat was turned off 

and enough sodium chloride was added to produce a 1.0M solution. Initial xylan loadings of 80, 

160, and 320 mg ODg-1 were used. The xylan and sodium chloride solution were then added to 

the pulp slurry and shaken to produce a final pulp concentration of 25 ODg L-1 and sodium 

chloride concentration of 0.5M.  An autoclave was used as a heat source for the pulp, which 

was treated at 120°C for two hours.  The pH of the final pulp slurry was measured before and 

after treatment and was between 3 and 4.. After cooling down enough to be handled the pulp 

suspension was filtered with Whatman 42 filter paper. A sample of the filtrate was taken and 

frozen until hydrolysis could be done.  The pulp was washed until the conductivity of the 

suspension was less than 5μS/cm. Handsheets were made using Tappi T205 sp-02. Sulfuric acid 

was added to the filtrate to yield a concentration of 4wt%. The solution was hydrolyzed for one 

hour at 121°C. Fucose was used as an internal standard and added to the samples to achieve a 

concentration of 0.5g L-1.  The samples werefiltered through a 0.45µm syringe filter ((Syringe 

Filters with Polypropylene Housing, 25mm, Nylon, 0.45µm, Nonsterile, VWR) before being 
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analyzed by  High-Performance Anion-Exchange Chromatography (HPAEC) using a CarboPac 

PA1 column.  

Sheet density for both sets of experiments was calculated using the sheet basis weight and 

caliper after the sheets had been conditioned in a Tappi Room. 

1.4. Results & Discussion 

Figure 1 shows that as the solids content of the pulp increases the apparent density decreases. 

This is to be expected as Zhang et al. show that unrefined pulp fibers lose flexibility when dried. 

Sheets made from recycled fiber are also shown to be less dense than those made with virgin 

fiber [2].   Notably, the sheet density starts to decrease substantially at a solids content of 

approximately 48.1%. Maloney et al. propose that horrification for air dried unbeaten pulp 

starts at a solids content of 45.5% [4]. As more hornification happens the sheet density 

decreases. This suggests that as the amount of stiff fibers increase sheet density decreases. 
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Figure 1: Influence on apparent density of pulp solids content (obtained by partial drying of 

disintegrated pulp).  Error bars correspond to 95% confidence intervals obtained from at least 

10 measurements. 

As shown in Figure 2, there is a small decrease in the apparent density of the sheet when 

treating the pulp with beechwood xylan or guar galactomannan.  While this trend appears 

significant, it is not immediately clear how impactful such a small decrease in density will be.  

The data presented in Figure 3 indicates that the tensile index (as a metric for sheet strength) 

varies non-monotonically with respect to increasing hemicellulose loading, suggesting a 

complex effect. 
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Figure 2. Comparison of guar galactomannan (■) and beechwood xylan (◆) and their influence 

on apparent sheet density.  Error bars correspond to 95% confidence intervals obtained from at 

least 10 measurements. 

 

Based on the literature for xylan adsorption (vide supra), the moderate effects observed here 

are unsurprising given that the pulp used is mostly hardwood [11].  One possibility for the 

minimal observed effect is the structure of beechwood xylan. To identify whether xylan 

structure has a meaningful influence on density, we used guar galactomannan as a source of 

hemicellulose and followed the same procedure as above.  As shown in Figures 2 and 3, there is 

no substantial difference between the influence of guar galactomannan and that of beechwood 

xylan.  There were also minimal differences in the tensile index when comparing beechwood 

xylan and guar galactomannan (guar galactomannan medium viscosity >98%, Megazyme Inc.)  
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Figure 3.  Comparison of guar galactomannan (■) and beechwood xylan (◆) and their influence 

on tensile index.  Error bars correspond to 95% confidence intervals from 10 independent 

measurements. 

 
Another potential reason for the moderate effects observed in Figures 2 and 3 is the low uptake 
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control and treated sheets. Table 1 shows the amount of adsorbed xylan compared to Kӧhnke’s 
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adsorbed xylan was lost during these washing steps. The measurement of the filtrate may be an 

overestimation. There is a large difference between the amount of xylan adsorbed in the 

experiments with Co-pulp and Kӧhnke’s experiments. Notably, adsorbing less xylan is consistent 

with the minimal effect observed in Figures 2 and 3.  

 
Table 1: Xylan uptake calculated from acid hydrolysis of the handsheets. 
 

Hemicellulose 
Charged 

(mg/g OD Fiber) 

Adsorbed Xylan 
From Sheet 
Hydrolysis a 

(mg/g OD fiber) 

Adsorbed Guar 
From Sheet 
Hydrolysis a 

(mg/g OD fiber) 

Adsorbed Xylan 
From Literature 

(small scale 
experiments)12 

80 20.1 21.1 40 

160 41.4 32.9 60 

320 53.3 N/Ab 100 

a. Adsorbed xylan calculated using the difference between charged xylan and xylan 
remaining in the filtrate is not shown due to the inaccuracy of measurement. 

 
 
The difference in carbohydrate composition of each of the pulps could explain the difference in 

uptake. Table 2 below shows the carbohydrate composition for the TCF bleached softwood as 

well as an estimate of the carbohydrate composition for pulp used in our experiments. The 

hardwood pulp has a larger percentage of xylan than the softwood, which is possibly a cause of 

the low amount of adsorbed xylan observed in our experiments. The xylan on the hardwood 

fibers may inhibit more xylan from adsorbing onto the fiber surface. Kӧhnke used TCF bleached 

softwood for his experiments while Co-pulp is a mixture of softwood and hardwood pulps. The 

pulp received from the mill is also bleached using elemental chlorine free (ECF) methods. We 

do not believe at this time that the difference in bleaching method is the cause of the contrast 

in adsorption yields as the literature shows that tree species has a greater effect on 

carbohydrate composition than bleaching method [23].  
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Table 2: Carbohydrate compositions (% on carbohydrates) of pulps used for xylan adsorption.  

TCF bleached softwood pulp,12 ClO2 bleached hardwood pulp23, and the Pulp used in this work.  

 
TCF Bleached 
Softwood12  

ClO2 Bleached 
Hardood23 

Pulp Used in This 
Worka 

Arabinan 
(Arabinose) 

0.8 0.4-0.5 0.5 

Galactan 
(Galactose) 

0.2 0 0 

Glucan (Glucose) 84.7 72.8-77.8 74.6-78.8 

Xylan (Xylose) 8.3 19.9-25.1 18.2-22.6 

Mannan  
(Mannose) 

6.0 1.6-1.9 2.3-2.5 

a. Estimated as the weighted average of hardwood (85%) and softwood (15%) pulps. 

However further investigation of the literature shows that xylan uptake for unbleached 

softwood and hardwood pulps are similar [11]. This would suggest that the initial xylan in the 

pulp is not the root cause of the hindered adsorption. The literature has shown that pH has an 

effect on adsorption which will be discussed at length in the next chapter of this thesis. It is 

likely that the low pH of our experiments (between 3 and 4) adversely affected the adsorption 

(vide infro). Similar work involving the treatment of unbleached softwood pulp shows with 

galactomannan shows that almost complete adsorption is observed at low addition levels (1-4% 

on pulp). At higher addition levels, greater than 6%, the uptake starts to plateau [24]. While we 

are primarily concerned with xylan uptake, the plateau observed during galactomannan 

adsorption suggests there is a maximum uptake of hemicellulose that can be achieved 

regardless of hemicellulose charge. That is, we will approach a region where hemicellulose 

uptake will remain constant despite changes in initial hemicellulose charge.  
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1.5. Conclusions 

Inducing different levels of hornification in bleached Kraft pulp does decrease the apparent 

sheet density. This is in agreement with the literature as drying pulp fibers has been shown to 

reduce fiber flexibility and sheet density [1,2]. As the extent of hornification increases the 

number of stiffer fibers increases, reducing sheet density. This happens at a solids content of 

48.1% which is comparable to the proposal of Maloney et al. that hornification starts at 45.5% 

solids for pulp dried at room temperature [4].Using the procedure outline by Kӧhnke resulted in 

approximately half the amount of xylan uptake expected from the literature [12]. This likely is 

the cause of the minimal effect observed on sheet density. The cause of the decreased uptake 

is most likely the low pH of the adsorption experiments and not the initial carbohydrate 

composition of the pulp as previously thought. The literature shows only slight changes in sheet 

strength at a constant density for hardwood pulps treated with hardwood hemicelluloses at an 

adsorption yield of 9.23% [11]. We hypothesize that increasing the adsorption yield will 

increase the effect on sheet strength at a constant sheet density. 
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CHAPTER 2 

ADSORPTION OF XYLAN ONTO CELLULOSE FIBERS 

2.1. Adsorption of Xylan onto Cellulose Fibers: Literature Review 

To fully explain the results of the above experiments, it is necessary to understand the 

mechanism by which xylan attaches to cellulose fibers. The literature proposes that hydrogen 

bonding is the mechanism for adsorption in the wet state [25]. Activation energies for xylan 

adsorption onto cellulose of 4.4 kcal mol-1 [26] and 2.01 kcal mol-1 are reported [9]. These are 

consistent with the activation energy requirement for adsorption by hydrogen bonding, 3 to 5 

kcal mol-1  [26]. Paananen et al suggest that hydrogen bonding may not be the mechanism by 

which xylan attaches itself to cellulose. They claim that if hydrogen bonding is the mechanism 

then the hydrogen bonding between xylan and cellulose should be stronger than either of the 

polymer’s hydrogen bonding to water in an aqueous solution. They claim that if the bond is that 

strong then the xylan should lie flat on the cellulose surface.  The weak adhesion and swollen 

layers of xylan on the cellulose surface suggest that hydrogen bonding is not the primary 

mechanism of adsorption. The mechanism is suggested to be twofold; a combination of van der 

Waals’ forces and an entropy increase due to solvent release upon polymer adsorption [27]. 

Linder et al have shown that this is not the case in an alkaline environment, rather xylan 

aggregates adsorb onto the cellulose surface [28]. Paananen et al. also claim that due to the 

low solubility of xylan at a pH of 10 a weak attraction such as van der Waals’ forces would be 

enough to drive adsorption [27]. 

CP/MAS 13C NMR spectroscopy experiments conducted on kraft birch pulp support the idea 

that xylan is weakly bound to the cellulose surface as multilayers or aggregates. CP/MAS 13C 

NMR spectra of fully hydrated xylan displayed the C-4 signal at a resonance of 74.3 ppm. For 
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dry xylan the C-4 carbon is shown to resonate rather broadly at approximately 82ppm.  A broad 

resonance is an indication of a non-crystalline structure. Birch Kraft pulp was examined in the 

hydrated state and a decrease in the signal associated with xylan located at accessible fibril 

surfaces (81.7 ppm) after treating pulp with xylanase. The difference between the C-4 signal for 

the xylan in the birch pulp (81.7 ppm) and the C-4 signal in the lone hydrated xylan (74.3 ppm) 

suggests that the xylan structure is different depending on the environment it is in. The shift in 

resonance coupled with the easy removal of xylan with xylanase (demonstrated with a decrease 

in intensity at 81.7 ppm) suggests that xylan exists as multilayers or aggregates on the fiber 

surface [29].   

Kabel et al. conducted several adsorption experiments using various types of xylan and 

bacterial cellulose. The xylan types included wheat arabinoxylan, linear oat spelt xylan, 

acetylated xylan, and deacetylated xylan from eucalyptus. Their findings show that less 

substituted xylan adsorbs more favorably on a bacterial cellulose surface when compared to a 

more substituted xylan. The eucalyptus xylan without O-acetyl groups still contains a 20 4-O-

methylglucuronic acid groups per 100 xylosyl residues which is considered high [30]. However, 

previous work has shown that eucaluptus xylan was nearly completely degraded by 

endoxylanase I, which suggests a low number of substituents on the xylan backbone [31]. It has 

also been found that certain oligomeric fractions of eucalyptus xylan are substituted with two 

4-O-methylglucuronic acid residues. Similar fractions were found to contain an additional 

hexose unit thought to be glactose [32]. This information leads to the thought that the majority 

of the xylan backbone is left unsubstituted and available for adsorption onto a cellulose surface. 

This is in agreement with other literature claiming that less substituted xylan is better suited for 
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adsorption onto cellulose surfaces. There are several reasons for this including steric repulsions, 

xylan hydration, and an increase in xylan-xylan interactions. [33]   

The plot below shows that isotherms that Kabel et al. collected [30].  

 

Figure 4: Adsorption isotherms of four structurally different xylans adsorbed to bacterial 

cellulose [30]. 

 

Temperature has been shown to increase the amount of xylan adsorption under alkaline 

conditions [26,34]. This is somewhat unexpected because typical adsorption processes display a 

decrease in uptake when temperature is increased [35]. This may be explained by the reduction 

of substituents on the xylan back bone under these conditions. Autoclaving at high temperature 

and pH (170°C and 10 respectively) has been shown to reduce the number glucuronic acid 

groups on xylan. The absence of glucuronic acid groups decreases the solubility of xylan in 

solution and promotes the aggregation or xylan. The large and less soluble xylan aggregates 

then adsorb onto the cellulose surface [28]. 
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Ribe et al. have demonstrated the effects of pH and ionic strength quite well. A low pH in the 

alkaline domain is said to decrease the negative charge repulsion between the cellulose and the 

number of uronic acid substituents on the xylan, promoting adsorption. A high ionic strength is 

said to also mitigate the negative charge repulsion. They show this in their experiments at 

127°C and 167°C.Most of the uptake occurs in an aqueous solution of 0.001M sodium 

hydroxide and 2.0M ionic strength. This being the lowest loading of sodium hydroxide and the 

highest ionic strength (provided by sodium carbonate) [34]. Danielsson and Lindstrӧm also 

show that lower pH in the alkaline range increases xylan adsorption onto cellulose fibers with 

xylan uptake being higher in 0.2M hydroxide solution compared to a 0.6M hydroxide solution 

[9]. 

 

In our experiments we will take a more fundamental approach where isotherms are collected 

and the uptake is plotted against the equilibrium concentration. Equilibrium constants are 

calculated from these isotherms and plotted against temperature and the Van ’t Hoff 

relationship (equation 1) is used to calculate and enthalpy of adsorption. The enthalpy of 

adsorption can then be compared to literature values to determine the type of bonding.  

 
 

(1)  

 

2.2. Methods 

These isotherms will be generated using the method outlined by Kӧhnke [12] but instead of 

pulp, Whatman 42 (GE Healthcare Whatman Quantitative Filter Paper: Grade 42 Circles, Fisher 

ln(𝐾) = −
∆𝐻

𝑅𝑇
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Scientific) filter paper and Sigma Cellulose will be used as pure sources of cellulose. In a typical 

experiment, 0.225g of dry cellulose was loaded into a 10mL glass batch reactor (Thermo 

Scientific Reacti-Vial Small Glass Reaction Vials, Fisher Scientific) with approximately 9mL of 

0.5M sodium chloride.  Experiments without sodium chloride were loaded with approximately 

9mL of deionized water and those with sodium hydroxide were loaded with approximately 9mL 

of 1.0M sodium hydroxide solution. The sodium hydroxide solution was made using a 250mL 

volumetric flask and sodium hydroxide pellets. Xylan charges of 40-1250mg/g dry cellulose will 

be investigated as well as a temperature range of 35-95°C. The batch reactors were allowed to 

stir at room temperature to ensure they were well mixed before being brought to temperature 

in an oil bath (Silicone oil, Fisher Scientific). Experiments were run at 40mg/g dry cellulose and 

70°C to determine the time necessary to reach equilibrium.  Equilibrium was reached after 10 

hours. In practice experiments at 70°C and 95°C were allowed to equilibrate overnight. 

Experiments less than 70°C were assumed to reach equilibrium within 48 hours. Sodium 

chloride will also be omitted from some experiments with Sigma Cellulose to evaluate its effect 

on adsorption. Xylan adsorption was calculated by the difference between the charged and 

remaining xylan in the liquid phase of the reactor. A portion of the liquid phase in the reactor 

was extracted via syringe and filtered using a 0.45μm syringe filter. Sulfuric acid was charged to 

the filtrate such that the final concentration was 4wt% and solution was hydrolyzed at 121°C 

for two hours. Samples containing sodium hydroxide were brought to a pH of 5-6 with 10M 

acetic acid before the addition of sulfuric acid. The acetic acid (Acetic Acid, Glacial (Certified 

ACS), Fisher Scientific) was made down with a 100mL volumetric flask. The hydrolysates were 

filtered through a 0.2µm syringe filter (Syringe Filters with Polypropylene Housing, 13mm, PTFE, 
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0.2µm, Nonsterile, VWR) before being analyzed analyzed by HPLC using an Aminex HPX-87H 

column.  

2.3. Results & Discussion 

Figure 5 below shows the results of the equilibrium experiments at 70°C. For the rest of the 

experiments at 70°C and higher it was assumed after 10 hours the samples were at equilibrium. 

 

 

 

Figure 5: Xylan uptake as a function of equilibration time, with each point collected in duplicate 

(■,◆). After 10 hours the uptake of xylan is constant, therefore, it is assumed that samples 

after 10 hours are equilibrated.  

Isotherms at various temperatures were collected and are shown below in Figure 6. It is worth 

mentioning that only one experiment was conducted above 95°C (120°C) and no significant 

changes in coverage were observed so it is not shown here. Given that there was no significant 
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difference in surface coverage between 70°C and 95°C and that consistent sampling at 120°C 

was difficult it was decided to investigate lower temperatures. More time was allowed for these 

samples to reach equilibrium. Experiments conducted at lower temperatures also showed no 

significant changes in xylan uptake. This suggests that there is a low enthalpy of adsorption or 

that the filter paper may have some physical obstruction that prevents us from seeing a true 

equilibrium between xylan and cellulose.  

 
 

Figure 6: Isotherms collected at 95°C (●), 70°C (▲), 55°C (◆),45°C (■), and 35°C(▬).using 

beechwood xylan and Whatman 42 filter paper. There is no observable temperature 

dependence. This suggests a very small enthalpy of adsorption.   

 
To see if the type of cellulose used influenced the xylan adsorption we switched to Sigma 

Cellulose from Sigma Aldrich. Isotherms at 70°C and 35°C are shown below in Figure 7. Again, 
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we see that there is no significant difference in uptake between experiments conducted at 35°C 

and 70°C. 

 

 
 

Figure 7: Isotherms collected with Sigma Cellulose at 35°C (●) and 70°C (■).There is no 

observable temperature dependence. 

 
Upon observing no temperature dependence in the isotherms generated with Sigma Cellulose, 

we then became concerned as to the role sodium chloride played in the reaction. We decided 

to remove sodium chloride and collect more isotherms. In Figure 8 below the isotherm at 70°C 

generated with Sigma Cellulose in the absence of sodium chloride shows no significant 

decrease in xylan uptake when compared to the experiment conducted at 35°C.  
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Figure 8: Isotherms collected with Sigma Cellulose in the absence of Sodium Chloride at 35°C 

(●) and 70°C (■). These experiments also do not display any temperature dependence.  

 
Figure 9 below shows all of the isotherms collected on one plot. All experiments conducted 

with sodium chloride (including Whatman 42 filter paper and Sigma Cellulose) show similar 

uptake and a lack of temperature dependence. When sodium chloride is removed a small 

decrease in overall uptake is observed. According to the literature this is to be expected as 

xylan adsorption is favored at higher ionic strengths [34,36].  

 

The small differences in uptake between temperatures suggests a small enthalpy of adsorption 

which would be consistent with hydrogen bonding. This is to be expected as Mora et al. showed 

that xylan that had been adsorbed onto pure cellulose can be removed using hydrogen bond 

disrupting agents such as urea, sodium hydroxide, and dimethyl sulfoxide [25].  
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Figure 9: Isotherms collected using Whatman 42 filter paper (●), Sigma Cellulose(▲), and Sigma 

Cellulose in the absence of sodium chloride (■). While the experiments run without sodium 

chloride appear to have less uptake than the other experiments all sets of experiments display 

a lack of temperature dependence. 

 
Figure 10 below shows the isotherms collected using 1M Sodium Hydroxide. While there is a 

great deal of scatter in the data there is a greater uptake at lower equilibrium xylan 

concentrations at 70°C. These isotherms also exhibit significantly higher uptake than the 

experiments run in water. This is to be expected as the literature mentioned above suggests 

that xylan adsorption is favored at higher pH values and temperatures. It is likely that at these 

higher temperature (70°C) and pH more acid groups are being cleaved off of the xylan 

backbone resulting in a less soluble, more aggregated xylan that will readily adsorb onto the 
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cellulose surface. In order to confirm this more experiments at higher temperatures need to be 

conducted. 

 

Figure 10: Isotherms collected at 35°C (●) and 70°C (■) using 1M sodium hydroxide. The scatter 

in the data makes it difficult to draw conclusions but it appears that more uptake occurs at 70°C 

which is expected [31]. 

 

2.4. Conclusions 

The first three sets of experiments (Whatman 42 filter paper, Sigma Cellulose, and Sigma 

Cellulose without sodium chloride) display a lack of temperature dependence. When sodium 

chloride was removed from the system the xylan uptake decreased slightly. This is in agreement 

with the literature as more xylan uptake occurs at higher ionic strengths. When sodium 

hydroxide was introduced the xylan uptake increased when compared to the first experiments. 

Again, this agrees with the literature as xylan adsorption is favored in an alkaline environment. 
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It appears that more xylan uptake occurred at 70°C when compared to 35°C. Given the 

literature we hypothesize that more glucuronic acid is removed from the xylan backbone at the 

higher temperature resulting in a less soluable, more aggregated xylan which more readily 

adsorbs onto the cellulose surface. To confirm this more experiments, need to be conducted to 

first, reduce the amount of scatter in the data, and second, to confirm that relationship 

between xylan uptake and temperature by running experiments at higher temperatures.  
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CHAPTER 3 

METHODS FOR RETAINING HEMICELLULOSE DURING KRAFT PULPING AND SUGGESTIONS FOR 

FUTURE WORK 

3.1. Methods for Retaining Hemicellulose During Kraft Pulping: Literature Review 

Given that hemicellulose in pulp may influence its density and that hemicellulose retention 

increases pulp yield it becomes necessary to investigate how best to retain hemicellulose 

during Kraft pulping. In principle there are two ways to go about increasing the hemicellulose 

content of wood pulp. First, one can adjust cooking parameters to retain more hemicellulose 

during a Kraft cook. Second, one can pretreat the wood before cooking, extracting the 

hemicellulose from the wood, and then adsorb it back onto the pulp fibers after cooking.  

Genco et al. mention several guidelines that can be used to retain hemicellulose during Kraft 

cooking [10]. Decreasing the temperature at the beginning and end of a cook will mitigate the 

carbohydrate losses observed at high initial temperatures. Low levels of ionic strength minimize 

lignin condensation and carbohydrate reactions. A high concentration of bisulfide ions combats 

carbohydrate peeling and a consistent alkali concentration throughout a cook can minimize 

carbohydrate dissolution. More hemicellulose can also be retained by thinning the chips when 

cooking to a constant kappa number, however, this only works to a certain point as significant 

wood weight can be lost due to an increase in fines during chipping if the desired chip thickness 

is too thin.  When cooking to a constant H-factor more hemicellulose is retained by increasing 

chip thickness, but this also leads to an increase in kappa number and is not desirable [10]. 
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As previously mentioned Ban et al. demonstrates the pulp property benefits of green liquor 

extraction and hardwood hemicellulose adsorption for softwood pulp. This result is only part of 

the picture, because the wood has undergone extraction the actual pulping is less severe. Less 

cooking chemicals are needed (Effective alkali decrease from 15 to 12 for hardwood and 15.5 to 

13.5 for softwood) to reach the same kappa number which will result in material cost savings.  

A 3.0% green liquor charge on wood was used with a liquor to wood ratio of 4.0. The extraction 

took place in a M and K digester at 160°C for 110 minutes and the ramp time was 50 minutes 

[11]. This resulted in approximately 10% of the wood weight being extracted with 35.75% of 

that being reported as xylose [37]. The adsorption took place at 95°C for 60 minutes at a pulp 

consistency of 2.5%, extracts to pulp ratio of 4.0, and a pH of 5.5. The adsorption yield for 

hardwood and softwood pulp were 9.23% and 10.17% respectively. The kappa numbers of the 

final pulp increase from 17.11 to 22.24 for hardwood and 27.80 to 39.83 for softwood [11]. 

While the fiber consistency, extracts to fiber ratio, and temperature were optimized to give the 

maximum adsorption yield there may still be some optimization to be had, particularly with pH. 

As mentioned above xylan adsorption favors a lower pH in the alkaline range, this experiment 

could benefit from a pH increase to 8-10. The pH increase should increase the adsorption yield 

and mitigate the kappa number rise due to the adsorption. The kappa number rise may seem 

relatively small but may still result in an increased bleaching load which is undesirable. Alkali 

added to the adsorption step should increase the adsorption yield due to a decrease in xylan 

solubility and mitigate the kappa number increase.  

Further optimization of the extraction process may also be possible.  Presumably 3% green 

liquor on wood was chosen because the extraction yield and subsequent pulp yield were 
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acceptable. This appears to be the case when considering the Near Neutral Process 

development by van Heiningen et al. Using water with 0.55% anthraquinone achieves the 

highest extraction of anhydro sugars, 26.7 g/L, with xylan accounting for 22.0 g/L. Hot water 

extraction also leads to problems with sticky lignin and an unacceptably low pulp yield of 

38.8%., however, this pulp yield does not include a re-adsorption step that could increase the 

total yield on wood to an acceptable value, especially if the resulting pulp is of higher quality 

[38].  

We stated earlier that there may be a benefit to cooking or pretreating hardwood and 

softwood together, hypothesizing that the adsorption of hardwood hemicelluloses onto 

softwood fibers would occur during cooking. There is some documented benefit to cooking 

hardwood and softwood at the same time. Gulsoy and Tufek show that adding hardwood to a 

softwood cook increases total and screened yields of the cook. Other benefits include a shorter 

cook time or a lower kappa number for a given cook time and an improved beatability [39]. 

Given these potential benefits will investigate the effects of cooking softwood and hardwood 

chips mixed together. To quantify the difference in cooking between hardwood and softwood 

we will layer the chips in the digester by species.  

3.2. Methods 

For the control cooks 1000g of oven dried chips comprised of 85% hardwood and 15% softwood 

were mixed before being packed with a plastic rod into a recirculating batch digester (M/K 

Systems, Inc.). Sodium hydroxide (Sodium Hydroxide (Pellets/Certified ACS) 97.7%, Fisher 

Scientific) and sodium sulfide (Sodium Sulfide Hydrate, 60-64%, Extra Pure, Scales, Acros 

Organics) were mixed in a bucket containing enough water to achieve a liquor to wood ratio of 
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4.  The effective alkali was 13.5% and the sulfidity was 34%. The ramp to 165°C and cook time 

were approximately 55 minutes and 110 minutes respectively. The exact H-factor was 

calculated using time and temperature data collected during the cook. 

It was also of interest to quantify the differences in cooking between the hardwood and 

softwood. Cooks were conducted with a chip furnish of 85% hardwood and 15% softwood. 

Chips were screened and allowed to air dry for one week before cooking. The chip moisture 

was measured before each cook. Two layered cooks were conducted in the m and K digester 

with the same cooking conditions mentioned above. The softwood fraction was wrapped in 

cheese cloth to separate it from the hardwood. For the first cook the softwood was placed in 

the middle of the digester with equal amounts (by mass) of hardwood were placed above and 

below it. The softwood was placed above the hardwood for the second cook. This was done in 

case a significant amount of channeling occurred during cooking.   
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3.3. Cooking Data 

Table 3 below shows that with an H-factor of 1230 hours a screen yield of approximately 51% 

can be expected with a Kappa number of 19 for a blend of hardwood and softwood chips, 

85wt% and 15wt% respectively.  

Table 3: Control cooking data. 

Run Date H-

Factor 

Total 

Yield 

REA 

(g/L 

Na2O) 

Screened 

Yield 

Kappa 

Number 

1 2/4/20 1231 52.3% 1.88 50.3% 19.5 

2 2/11/20 1227 53.2% 1.36 51.6% 18.1 

 

 

As can be seen in Table 4 below the softwood is significantly less cooked than the hardwood 

with Kappa numbers in the mid 50’s compared to the Kappa number of the hardwood hovering 

around 14. The lower screened yield for the softwood also indicates an undercooked product. 

The difference in kappa number and screened yield is somewhat expected as softwood contains 

more lignin than hardwood [40]. Ultimately this data shows that there is optimization to be 

done when cooking hardwood and softwood together.  
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Table 4: Layered cooks at the following conditions: 85% Hardwood, 15% Softwood, 13.5% 

effective alkali, and 34% sulfidity. 

Run H-
Factor 

Total 
Wood 
Yield 

HWD 
Total 
Yield 

SWD 
Total 
Yield 

REA 
(g/L 

Na2O) 

Screened 
Yield 
HWD 

Screened 
Yield 
SWD 

Weighted 
AVG 

Screened 
Yield 

HWD 
Kappa 

Number 

SWD 
Kappa 

Number 

1 1238 52.4% 52.1% 54.0% 1.43 50.5% 44.8% 50.5% 13.7 55.8 

2 1221 52.2% 51.9% 54.0% 1.36 51.1% 45.0% 50.8% 13.6 52.3 

 

 

 

3.4. Suggestions for Future Work  

3.4.1. Factors that Control the Apparent Density of Paperboard. The literature [34] and our 

fundamental adsorption experiments (Figure 10) show that xylan uptake is increased in an 

alkaline environment, the previous experiments should be redone at a pH between 8 and 10 to 

facilitate higher xylan uptake by the pulp.  Presumably an increase in xylan update will have a 

more pronounced effect on apparent sheet density. Then the process can be optimized for 

maximum xylan uptake by adjusting the temperature, pH and ionic strength to achieve a 

maximum effect on apparent sheet density. The tensile strength index of the paper should be 

considered. Our previous exeriments (Figure 2, b) show that an increase in xylan uptake will 

negatively impact the sheet tensile strength index. There will likely be a compromise between 

an acceptable decrease in sheet density and an acceptable decrease in tensile strength index.  

Investigations into fiber morphology would also be insightful. Measurements of fiber flexibility 

and cell wall thickness of treated and untreated fiber would provide the framework for useful 
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correlations between hemicellulose uptake, cell wall thickness, fiber flexibility, and their 

influence on sheet density.  

3.4.2. Fundamental Adsorption Experiments. The experiments using 1M sodium hydroxide 

need to be repeated. First the scatter in the data needs to be reduced.  Provided the scatter in 

the data can be reduced we should observe that uptake is a function of temperature.  The 

removal of the glucuronic acid substituents increases the uptake of xylan. An increase in 

temperature will result in an increase in the cleavage of glucuronic acid groups from the xylan 

backbone, thus increasing the uptake of xylan by cellulose. We can then apply the Van ’t Hoff 

relationship and calculated an enthalpy of adsorption. In this instance the enthalpy of 

adsorption would include the hydrolysis of glucuronic acid groups.  This value gives insight into 

the interaction between xylan and cellulose in an alkaline environment, particularly during Kraft 

Pulping. 

Taking advantage of CP/MAS 13C NMR (Cross Polarization/Magnetic Angle Spinning Carbon-13 

Nuclear Magnetic Resonance) measurements described by Teleman et al. [29] may also give 

information on the interaction between xylan and cellulose. By observing the chemical shifts of 

untreaded, alkaline treated, and xylan adsorbed onto cellulose surfaces we will be able to 

comment on the xylan structure on the cellulose surface. C13 MAS DNP NMR measurements as 

demonstrated by Viger-Gravel et al. would also describe the surface interaction between 

cellulose and xylan. In their work Viger-Gravel et al. are able to determine the position 

(secondary cell wall and the inner middle lamellae) of lignin in the cell walls of poplar wood 

[41]. We hypothesize that by using C13 and deuterium enriched materials we will be able to 

distinguish between cellulose and xylan and determine the orientation of xylan on the cellulose 
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surface. CNC (cellulose nanocrystals) may serve as an acceptable cellulosic material for 

adsorption experiments with CP/MAS 13C NMR because the specific surface area can be 

reasonably approximated using NMR techniques [42]. 

3.4.3. Methods for Retaining Hemicelllulose During Kraft Pulping. Green liquor extraction and 

re-adsorption should be conducted following the procedure outlined by Ban et al. [11] using a 

layered style similar to the layered cooks we conducted. Extracting, cooking and re-adsorbing in 

a layered fashion would allow us to quantify the hemicellulose uptake for each pulp. Ban et al. 

[11] show the benefits of treating softwood fibers with hardwood hemicellulose, understanding 

the uptake of hardwood hemicellulose by hardwood and softwood fibers that are co-cooked 

would partially explain the pulp strength increases observed by Gulsoy and Tufek when pine is 

added to a aspen cook [39].  Once control data has been collected it is necessary to adjust the 

pH of the adsorption step to between 8 and 10. Increasing the pH during adsorption will 

increase the amount of hemicellulose uptake, thereby increasing the effect on sheet properties. 

The literature suggests that problems with bleaching may occur due to the hemicellulose acting 

as a physical barrier to the bleaching chemicals [43]. Treated pulp will also need to be bleached 

to investigate the hemicellulose retention across the bleaching process.  
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