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Gray (Halichoerus grypus) and harbor (Phoca vitulina) seals are sympatric species that 

inhabit the North Atlantic and have been subject to mortality events from disease outbreaks, 

particularly phocine distemper and avian influenza virus. Across mortality events, gray seals tend 

to exhibit a higher survival rate, which could be explained by various ecological factors 

impacting rates or direction of selection in parts of the genome related to the immune system. 

These factors could include haul-out site density, habitat, and degree of inter/intraspecies 

interaction. This research aims to compare genetic diversity within the Major Histocompatibility 

Complex (MHC) class I gene complex among gray and harbor seals sampled in the Northwest 

Atlantic to investigate how they have evolved in the face of shared natural stressors. MHC genes 

encode immune system receptors that recognize foreign pathogens, with class I responding to 

viral pathogens in particular. Possessing greater genetic diversity at MHC-I can be tied to greater 

immunocompetence. Due to high levels of gene duplication and polymorphism, MHC class I 

diversity has been traditionally challenging to evaluate at a population scale, but recent advances 

in sequencing technology enable high-throughput MHC genotyping. In this study, amplicon 

sequencing was used to characterize diversity in exons 2 and 3 of MHC-I, which encode



the peptide binding region. Analyses were performed on tissue biopsy samples from harbor seals 

by-caught in the Northeast US (n = 30), live harbor seal pups sampled in the Gulf of St. 

Lawrence (n = 30), and live gray seal pups sampled in Massachusetts (n = 30), Sable Island (n = 

30), and the Gulf of St. Lawrence (n = 30). I compared the total number of MHC alleles, average 

number of alleles per individual, and sequence diversity among populations within species, as 

well as between species. My findings highlight the extent of allelic diversity and gene 

duplication that is present in MHC-I across Northwest Atlantic pinniped populations despite 

historical population bottlenecks. The presence of shared alleles between species and the lack of 

significant differences found for comparisons intra- or inter-specific MHC-I diversity suggest a 

shared selection regime in the MHC-I region for harbor and gray seals in the Northwest Atlantic. 

Overall, this study emphasizes the value of next-generation sequencing approaches to 

characterize multiple MHC loci given its polymorphic and duplicated nature. As gray seal 

populations expand, and sympatric harbor seal populations decline, a better understanding of the 

role of immunogenetic diversity in gray seal disease resistance will provide important insights 

into their role as disease reservoirs in coastal ecosystems.  
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1. INTRODUCTION 
 

As a result of changing climates and species distributions the potential for interspecific 

disease transmission is increasing. Studies that characterize factors affecting differences in 

disease susceptibility between species are therefore increasingly relevant to disease ecologists, 

conservation biologists, evolutionary biologists and protected resources managers. Such studies 

are particularly salient in sentinel species, such as marine mammals. Due to their high trophic 

level and long lifespans, the health of wild marine mammal populations closely reflects, and can 

act as an early indicator, of coastal ocean ecosystem health (Bossart 2011).   

Harbor and gray seals in the Northwest Atlantic represent an ideal study system in which 

to investigate factors underlying interspecific differences in disease susceptibility. These two 

sympatric pinniped species share many aspects of their ecology, including common diseases, but 

differ significantly in their disease resistance. Historically, both seal populations in the 

Northwest Atlantic were drastically reduced by human-induced practices such as bounty hunting 

(Lelli & Harris 2006, Bowen & Ligard 2013). Since the passing of the United States Marine 

Mammal Protection Act of 1972, both pinniped populations have increased (Gilbert et al. 2005, 

Waring et al. 2010, Waring et al. 2015, Hayes et al. 2018). Yet, while celebrating this recovery, 

we must also acknowledge the potential for lasting effects of historical bottlenecks, like 

reductions in genetic diversity that can have significant consequences on species’ capacity to 

adapt to natural stressors in their environment.  

Examples of such stressors include the phocine distemper virus (PDV) and influenza A 

virus (IAV), which have both contributed to large-scale mortality events in gray and harbor seal 

populations across the North Atlantic. Disease transmission within seals are typically linked to 

seal haul-out sites, where the animals aggregate on land and both inter- and intraspecies 
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interactions occur. Therefore, seasonal, sex and age-related differences in haul-out patterns can 

affect viral transmission (Hall et al. 1992). Cross-species transmission of avian influenza is not 

widely studied, but could potentially come from sharing land-based haul-out sites and/or feeding 

on similar food sources as wild bird species (Fereidouni et al. 2016). It is suggested that Arctic 

phocid seals such as the harp seal (Phoca groenlandica) act as a primary host for these viruses 

while gray seals act as reservoirs, carrying both diseases to more susceptible harbor seal 

populations (Markussen & Have 1992, Hall et al. 2006, Puryear et al. 2016, Jo et al. 2018). 

Mortality events associated with these viral outbreaks can have large impacts on pinniped 

populations. In 1988, European populations of harbor seals experienced a death rate from PDV 

of 10-60% (that varied among regions) affecting approximately 18,000 individuals over a 16-

week span (Dietz et al. 1989, Thompson & Miller 1992, Heide-Jørgensen et al. 1992, Harding et 

al. 2002, Härkönen et al. 2006). A second European outbreak occurred in 2002, following similar 

patterns to that of 1988 (Harding et al. 2002, Jensen et al. 2002). Gray seals were also affected in 

the 1988 epidemic but to a much lesser extent totaling about 10% of total reported deaths, with 

most gray seals testing seropositive for the virus but remaining asymptomatic (Pomeroy et al. 

2005).  

Similar trends have been documented in the United States where PDV outbreaks have 

occurred on the coasts of Long Island, New York in 1988 (Duignan et al. 1993), and 

Massachusetts and Maine in 2006 (Earle et al. 2011). Several avian influenza outbreaks have 

occurred in the Northeast US and similarly in 2014 in the North Sea (Webster et al. 1981, Callan 

et al. 1995, Anthony et al. 2012, Zohari et al. 2014, Bodewes et al. 2015, Krog et al. 2015). Most 

recently, from July of 2018 through 2019, outbreaks of both PDV and avian influenza occurred 

in the Northeast US from the coast of Maine to Virginia. Although there were some instances of 
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co-infection, PDV was designated as the primary cause of a mass mortality event for gray, 

harbor and some species of ice seals. The total number of reported deaths during this period 

approximated over 3000 individuals, primarily harbor seals (NOAA 2019).  These observations 

across many outbreaks and geographic regions of the world led to the hypothesis that gray seals 

appear be more resistant to PDV and IAV than harbor seals (Harwood et al. 1989, Harwood 

1990, Hall et al. 1992). 

Immunogenetic diversity at the Major Histocompatibility Complex (MHC) is one well-

studied factor that affects disease resistance across diverse host and pathogen systems. The MHC 

is a polymorphic, multi-gene family that encodes cell-surface receptors integral in antigen 

presentation. Foreign bodies such as viruses become broken down into peptides upon entering 

the cell and are transported to the cell surface for MHC recognition. A series of biochemical 

reactions triggers an immune response to neighboring lymphocyte receptors upon antigen-

presentation (Piertney & Oliver 2006). Extensive polymorphism has been documented in MHC 

proteins, in particular within the peptide binding region (PBR) where antigens bind to the MHC 

receptor. This polymorphism creates variation in peptide binding grooves which, in turn, allows 

for a diverse array of immune responses to foreign bodies (Hughes & Nei 1989, Neefjes et al. 

2011). Numerous studies across vertebrate taxa have demonstrated the insights that can be 

gained in understanding disease resistance and susceptibility through investigating the 

polymorphic loci that encode the PBR. 

Across many systems, researchers have identified evidence for heterozygote advantage 

shaping MHC diversity (Doherty & Zinkerngel 1975, Osborne et al. 2015).  Heterozygote 

advantage, a form of balancing selection, can briefly be described as an increase in fitness that 

results from having two different alleles at a given locus. The degree of sequence variation 
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between alleles can also vary among individuals and is critical to immune performance, 

particularly sequence variation in the PBR. Natural selection for variation in this gene family has 

furthermore resulted in frequent gene duplications, that provide the potential benefit of 

expressing more than two variants of MHC receptors (e.g., DQ, DR and DO MHC-II loci in most 

mammals). Intraspecific variation in copy number variation, reflecting the extent of duplication 

within a given genomic region, has been identified and linked to disease resistance in some 

populations.  

The MHC gene family is divided into three classes: I, II and III. Class I molecules are 

involved in facilitating an immune response to intracellular pathogens such as viruses whereas 

class II molecules recognize extracellular pathogens with overlap to class I. Class III molecules 

are often associated with macroparasite recognition (Janeway et al. 2004). Studies in pinnipeds 

have primarily focused on MHC-II, and report variable levels of genetic diversity across species 

and populations. Factors that can affect MHC diversity among pinnipeds include population 

structure, demographic history of species (i.e. population bottlenecks), habitat substrate and 

pathogen presence. Species that have experienced historical bottlenecks, such as the New 

Zealand sea lion (Phocarctos hookeri), Northern elephant seal (Mirounga angustirostris) and 

Australian sea lion (Neophoca cinereal), show similar trends of low allelic diversity across some 

MHC-II loci suggesting low potential for diverse immune response in these populations (Hoelzel 

et al. 1999, Weber et al. 2004, Lau et al. 2015). Within species, breeding colony genetic structure 

and habitat substrate have been shown to influence MHC-II DQB diversity among populations 

(Cammen et al. 2011). Within species, levels of diversity can also vary across loci; for example, 

there is little variation in the DQB locus but high variation in the DRB locus of the New Zealand 

sea lion, which may be explained by compensatory effects (Osborne et al. 2013 & 2015).   
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Relatively fewer studies have focused on MHC-I in pinnipeds, and those that do have 

reported low genetic diversity in classes I and II compared to terrestrial mammals (Slade 1992). 

For example, the Hawaiian monk seal (Monachus schauinslandi), a species that has experienced 

severe population declines, exhibits low sequence variation and number of alleles for MHC-I 

(Aldridge et al. 2006). A preliminary study of gray and harbor seals suggests gray seals exhibit 

more MHC-I variation in terms of number of copies present, sequence diversity and allelic 

diversity than harbor seals, finding up to 6 copies in harbor and 12 in gray seals (Hammond et al. 

2012). This prior study characterized the full MHC-I gene sequence, but in a very small sample 

size of individuals, and therefore could only posit preliminary conclusions about this 

interspecific difference in MHC diversity.  

 In this study, we used high-throughput amplicon sequencing to compare levels of MHC-I 

diversity between gray and harbor seals on a population-scale in the Northwest Atlantic. Due to 

the high level of genetic variation and duplication, traditional sequencing methods such as 

Sanger sequencing are limited in their ability to resolve MHC-I genetic diversity. Cloning 

methods have been successful in multiple studies (Cammen et al. 2011, Hammond et al. 2012) 

but can be tedious and time-consuming. Next-generation high throughput sequencing methods 

provide a promising new approach to sequencing MHC loci and have become a widely-used 

method in genomic studies involving this region (Pearson et al. 2016, Palmer et al. 2016, 

Tarasyan et al. 2019). With this approach, we assessed multiple forms of genetic diversity within 

an individual’s MHC-I loci. We compared (a) the total number of alleles identified in multiple 

gray and harbor seal populations in the Northwest Atlantic; (b) the average number of alleles per 

individual as a proxy for copy number variation (i.e., the extent of duplication within MHC-I); 

and (c) sequence diversity and imputed evolutionary relationships among alleles. We interpret 
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our findings within the context of previously described historical demography, contemporary 

genetic population structure, and apparent differences in disease resistance between species.   
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2.  MATERIALS AND METHODS 

2.1. Study Site and Sample Collection  

 Tissue samples were provided by the National Marine Fisheries Service (NMFS) 

Northeast Fisheries Science Center (NEFSC), Tufts University, and Department of Fisheries and 

Oceans Canada (DFO). The collection of samples in US waters and import of seal samples from 

Canada were conducted under NOAA Permit No. 17670-03 issued to the NMFS NEFSC.  Gray 

seal samples were collected during the winter breeding seasons of 2013 to 2016 on Muskeget 

Island (N = 30) in Cape Cod, MA, USA, (41.334 N, 70.293685 W), Sable Island (N = 30) in 

Nova Scotia, Canada (43.9337° N, 59.9149° W) and the Gulf of St. Lawrence (N=30) in Canada 

(Table 2.1). Field sampling protocols followed Puryear et. al (2016) and all samples were tissue 

biopsies from weaned pups.  

Table 2.1. List of gray seal samples by collection site and year. All DNA samples were good 
to excellent quality. Asterisk denotes samples sequenced in duplicate for replicate analysis.) 
 

Sample ID Collection Site Year  
 Hg822* Muskeget Island 2016 
Hg824* Muskeget Island 2016 
Hg845* Muskeget Island 2016 
Hg808* Muskeget Island 2016 
Hg847* Muskeget Island 2016 
Hg802* Muskeget Island 2016 
Hg803* Muskeget Island 2016 
Hg805* Muskeget Island 2016 
Hg806 Muskeget Island 2016 
Hg812 Muskeget Island 2016 
Hg814 Muskeget Island 2016 
Hg846 Muskeget Island 2016 
Hg849 Muskeget Island 2016 
Hg848 Muskeget Island 2016 
Hg801 Muskeget Island 2016 
Hg809 Muskeget Island 2016 
Hg810 Muskeget Island 2016 
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Table 2.1. (continued) List of gray seal samples by collection site and year. 

Hg811 Muskeget Island 2016 
Hg813 Muskeget Island 2016 
Hg820 Muskeget Island 2016 
Hg355 Muskeget Island 2015 
Hg356 Muskeget Island 2015 
Hg358 Muskeget Island 2015 
Hg371 Muskeget Island 2015 
Hg372 Muskeget Island 2015 
Hg373 Muskeget Island 2015 
Hg377 Muskeget Island 2015 
Hg378 Muskeget Island 2015 
Hg379 Muskeget Island 2015 
Hg363 Muskeget Island 2015 
S04* Sable Island 2015 
S07* Sable Island 2015 
S28* Sable Island 2015 
S30* Sable Island 2015 
S31* Sable Island 2015 
S36* Sable Island 2015 
S38* Sable Island 2015 
S42* Sable Island 2015 
S97 Sable Island 2015 
S84 Sable Island 2015 
S82 Sable Island 2015 
S81 Sable Island 2015 
S77 Sable Island 2015 
S73 Sable Island 2015 
S71 Sable Island 2015 
S70 Sable Island 2015 
S79 Sable Island 2015 
S51 Sable Island 2015 
S46 Sable Island 2015 
S24 Sable Island 2015 
S19 Sable Island 2015 
S10 Sable Island 2015 
S91 Sable Island 2015 
S89 Sable Island 2015 
S88 Sable Island 2015 
S69 Sable Island 2015 
S75 Sable Island 2015 
S74 Sable Island 2015 
S43 Sable Island 2015 
S72 Sable Island 2015 

HgSg16-00* Gulf of St. Lawrence 2016 
HgSg16-01* Gulf of St. Lawrence 2016 
HgSg16-02* Gulf of St. Lawrence 2016 
HgSg16-03* Gulf of St. Lawrence 2016 
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Table 2.1. (continued) List of gray seal samples by collection site and year. 

HgSg16-04* Gulf of St. Lawrence 2016 
HgSg16-05* Gulf of St. Lawrence 2016 
HgSg16-06* Gulf of St. Lawrence 2016 
HgSg16-07* Gulf of St. Lawrence 2016 
HgSg16-10 Gulf of St. Lawrence 2016 
HgSg16-11 Gulf of St. Lawrence 2016 
HgSg16-12 Gulf of St. Lawrence 2016 
HgSg16-13 Gulf of St. Lawrence 2016 
HgSg16-14 Gulf of St. Lawrence 2016 
HgSg16-15 Gulf of St. Lawrence 2016 
HgSg16-16 Gulf of St. Lawrence 2016 
HgSg16-18 Gulf of St. Lawrence 2016 
HgSg16-19 Gulf of St. Lawrence 2016 
HgSg16-20 Gulf of St. Lawrence 2016 
HgSg16-21 Gulf of St. Lawrence 2016 
HgSg16-22 Gulf of St. Lawrence 2016 
HgSg16-23 Gulf of St. Lawrence 2016 
HgSg16-25 Gulf of St. Lawrence 2016 
HgSg16-26 Gulf of St. Lawrence 2016 
HgSg16-27 Gulf of St. Lawrence 2016 
HgSg16-28 Gulf of St. Lawrence 2016 
HgSg16-29 Gulf of St. Lawrence 2016 
HgSg16-30 Gulf of St. Lawrence 2016 
HgSg16-31 Gulf of St. Lawrence 2016 
HgSg16-32 Gulf of St. Lawrence 2016 
HgSg16-33 Gulf of St. Lawrence 2016 

 

Live harbor seal pups were similarly sampled in the Gulf of St. Lawrence (N = 30) in 2016.  

Harbor seal samples from the Northeast US (N = 30) were collected by the Northeast Fisheries 

Observer Program from individuals bycaught in commercial fisheries between 2013-2015 (Table 

2.2).  

Table 2.2. List of harbor seal samples by collection site and year. All DNA samples were 
good to excellent quality. Asterisk denotes samples sequenced in duplicate for replicate analysis.  
 

Sample ID Collection Site Year  
D09377* Northeast US 2015 
D00579* Northeast US 2015 
D00820* Northeast US 2015 
D00827* Northeast US 2015 
D05711* Northeast US 2015 
D09365* Northeast US 2015 
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Table 2.2. (continued) List of harbor seal samples by collection site and year. 

DOA0029* Northeast US 2015 
DOA0031* Northeast US 2015 
D05148* Northeast US 2015 
D06125* Northeast US 2015 
DO7866* Northeast US 2015 
D09893* Northeast US 2015 
D09894* Northeast US 2015 

DOA0001* Northeast US 2015 
D09719* Northeast US 2015 
D06114* Northeast US 2015 
D05144* Northeast US 2014 
D00673* Northeast US 2014 
D00672* Northeast US 2014 
D00601* Northeast US 2014 
D00429* Northeast US 2014 
D00279 Northeast US 2014 
D09500* Northeast US 2013 
D07091 Northeast US 2013 
D05712 Northeast US 2013 
D00298* Northeast US 2013 
D09500 Northeast US 2013 
D07091 Northeast US 2013 
D05712 Northeast US 2013 
D00298 Northeast US 2013 

MMF0338 Gulf of St. Lawrence 2016 
MMF0345 Gulf of St. Lawrence 2016 
MMF0344 Gulf of St. Lawrence 2016 
MMF0343 Gulf of St. Lawrence 2016 
MMF0340 Gulf of St. Lawrence 2016 
MMF0339 Gulf of St. Lawrence 2016 
MMF0336 Gulf of St. Lawrence 2016 
MMF0335 Gulf of St. Lawrence 2016 
MMF0330 Gulf of St. Lawrence 2016 
MMF0333 Gulf of St. Lawrence 2016 
MMF0331 Gulf of St. Lawrence 2016 
MMF0327 Gulf of St. Lawrence 2016 
MMF0328 Gulf of St. Lawrence 2016 
MMF0326 Gulf of St. Lawrence 2016 
MMF0325 Gulf of St. Lawrence 2016 
MMF0324 Gulf of St. Lawrence 2016 
MMF0323 Gulf of St. Lawrence 2016 
MMF0322 Gulf of St. Lawrence 2016 
MMF0320 Gulf of St. Lawrence 2016 
MMF0319 Gulf of St. Lawrence 2016 
MMF0318 Gulf of St. Lawrence 2016 
MMF0317 Gulf of St. Lawrence 2016 
MMF0316 Gulf of St. Lawrence 2016 
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Table 2.2. (continued) List of harbor seal samples by collection site and year. 

MMF0315 Gulf of St. Lawrence 2016 
MMF0314 Gulf of St. Lawrence 2016 
MMF0312 Gulf of St. Lawrence 2016 
MMF0311 Gulf of St. Lawrence 2016 
MMF0306 Gulf of St. Lawrence 2016 
MMF0305 Gulf of St. Lawrence 2016 
MMF0304 Gulf of St. Lawrence 2016 

 

2.2. Genomic DNA Extraction, PCR & Amplicon Sequencing  

Genomic DNA was extracted from ~10-20 mg of seal skin from each individual using the  

Qiagen DNeasy Blood & Tissue Extraction kit and the manufacturer’s spin column protocol for 

Purification of Total DNA from Animal Tissues, with minor modifications. 20 µl of 1M DTT 

was added during the digestion phase and tissues were incubated at 56 °C and 850 rpm overnight 

to fully digest. Following digestion, 4 uL of RNAse (100 mg/mL) was added to remove RNA 

from the targeted genomic DNA.  

Independent PCRs were performed to amplify exons 2 and 3 of MHC-I, which span the 

peptide binding region. PCR primers were designed from an alignment of gray and harbor seal 

MHC-I sequences (GenBank Accession No: JX218867-JX218936 from Hammond et al. (2012)) 

and evaluated using primer3web v4.1.0 (Untergasser et al. 2012; Koressar and Remm, 2007; 

Koressar et al. 2018). Our custom reverse primer PvLAex2Rb (5’-

GKCCTCGCTYTGGTTGTAG-3’) in combination with primer PvLAex2F (5’-

GGCTCCCACTCCMTGARGT-3’) from Hammond et al. (2012) amplified a 272 bp fragment of 

exon 2. Primers PvLAex3F (5’-GGCGGGGCCAGGGTCT-3’) and PvLAex3R (5’-

CCGCGGCCCCTGGTA-3’) amplified a 304 bp fragment of exon 3.  Illumina Nextera adapter 

sequences were added onto the 5’ end of the primers to facilitate downstream sequencing.  
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PCRs were conducted in a total volume of 20 µL that contained 2 µL of DNA, 0.2 mM 

dATP, 0.2 mM dTTP, 0.2 mM dCTP, 0.2 mM dGTP, 0.3 µM of each primer, 3% DMSO, 2 units 

of Phusion polymerase (New England Biolabs), and 1X Phusion HF Buffer (7.5 mM MgCl2 [1.5 

mM at 1X dilution]). At 1X concentration, Phusion Master Mix provides 1.5 mM MgCl2 and 

200 µM of each dNTP in the final reaction. Phusion cannot incorporate dUTP and is not 

recommended for use with uracil-containing primers or template (containing 1.5 mM MgCl2 and 

200 uM of each dNTP). The PCR profile for exon 2 consisted of an initial denaturation step at 98 

°C for 1 minute followed by 28 cycles of 98 °C for 10 s, 68 °C  for 25s, 72 °C  for 10s, and a 

final extension step of 72 °C for 10 min. The PCR profile for exon 3 consisted of an initial 

denaturation step of 100 °C for 2 min, followed by 28 cycles of 100 °C for 10s, 70 °C for 25s, 72 

°C for 10s, and a final extension step of 72 °C for 10 min.  

Following PCR, the KAPA Pure Beads (KR1245-v3.16) magnetic bead protocol was 

performed on all samples using Beckman Counter Agencourt AMPure XP beads to remove any 

PCR impurities such as small, unwanted fragments and primer-dimers. A 1.8X bead-to-sample 

volumetric ratio was used for size selection of our ~300 bp products. Agarose gel electrophoresis 

was performed on all samples to confirm size of final product and approximate concentration 

prior to sequencing. Dilutions were performed to products as necessary to achieve uniform 

concentration. Samples were sent to the Hubbard Center for Genome Studies in New Hampshire, 

USA for rapid, paired-end sequencing (2x250) on an Illumina HiSeq2500.  

2.3. Read Filtering Pipeline to Determine Alleles 

 Sequencing reads were processed using the program USEARCH (Edgar 2010) and a 

pipeline adopted from Sommer et al. (2013) and implemented in R to generate a list of alleles per 

individual. Within USEARCH, the UPARSE-OTU algorithm was used to identify clusters of 
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identical sequences (i.e., putative alleles) in order of least to most frequent, and UNOISE was 

used to denoise the filtered set of amplicon reads. Paired reads were first merged using the 

fastq_mergepairs command. Any reads that did not contain the target primer were identified 

using the search_oligodb command and removed from further analysis. Primers and flanking 

intronic regions were trimmed using the fastx_truncate command, and reads were then oriented 

using the orient command and a reference sequence of exon 2 and 3 from Hammond et al. 

(2012). A quality filter was applied using the fastq_filter command and an Emax threshold of 1 

to filter for a Phred score of 30 or higher. Remaining identical reads were clustered and sorted by 

frequency using the fastx_uniques command.  All clusters with fewer than 8 reads were removed 

from further analysis.  

The unoise command was then implemented to identify putative chimeras (unnatural fusion 

of two or more alleles in one sequence), shifted sequences (sequences being one base-pair mis-

aligned), and sequences with putative PCR or sequencing point errors. The latter were identified 

by considering both sequence abundance (i.e., number of identical reads) and sequence distance 

(d, the number of differences including both substitutions and gaps) from the most similar, more 

abundant sequence cluster. A sequence was identified as containing putative errors if the ratio of 

its abundance to the abundance of the most similar, more abundant sequence was less than or 

equal to 1/2 αd+1, a model of error abundance distributions generated by Edgar (2016). The unoise 

command was run with α= 2, the default parameter setting which was found to provide the best 

filtering approach for our dataset upon visual inspection of the unoise output at multiple α levels.   

Guided by the unoise output, reads were further processed in a custom R script to identify a 

list of putative alleles, putative artefacts, and unclassified variants for each exon using a protocol 

modified from Sommer et al. (2013) (Figure 2.1). The most frequent cluster of identical 
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sequences for each sample was assumed to be a putative allele. All shifted variants were 

removed. Thereafter, the sequences from each sample were evaluated by comparison to other 

samples. All sequences identified as having putative point errors were discarded as a putative 

artefact unless they were identified as a putative allele in other samples (because they were the 

most frequent cluster within a sample, or because they were more frequent than any putative 

artefact within a sample, as described in the final steps of the pipeline below). All sequences 

identified as putative chimeras in multiple samples were discarded as putative artefacts. 

Sequences identified as a putative chimera in only a single sample were considered unclassified 

variants, unless called a putative allele in another sample. The unclassified variant category was 

used when there was no additional information in the dataset to confirm or refute the chimera 

designation. Of the remaining sequences for a given sample, any sequence whose frequency was 

not lower than any putative artefact was added to the list of putative alleles. Sequences with a 

frequency lower than that of any putative artefact for that sample were considered an unclassified 

variant unless it was identified as a putative allele in other samples. Unclassified variants and 

putative artefacts were removed from the dataset. Finally, a 1% filter was implemented on the 

entire set of reads remaining from the pipeline so that only alleles present in at least 1% of the 

reads per individual were retained for subsequent analyses. 
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Figure 2.1. Flowchart illustrating the series of steps taken in allele filtering pipeline. 

2.4. Technical Replicate Analysis 

 Technical replicates were sequenced to evaluate the consistency of the read filtering and 

allele calling pipeline described above. A subset of individuals from both species (24 bycaught 

N.E. U.S. harbor seals; 8 Muskeget Island, 8 Sable Island, and 8 Gulf of St. Lawrence gray seals) 

were amplified and sequenced twice in independent reactions. A custom script in R was used to 

compare both sequence overlap among replicates and weighted sequence overlap following Wen 

et al. (2017). These metrics were calculated as: 

1. Sequence	Overlap	between	replicates = 4	5	(789:;<	=>	?@A<;B	?;C8;7D;?)	
(?;C8;7D;?	=>	<;FGHDAI;	J)K(?;C8;7D;?	=>	<;FGHDAI;	L)

 

2. Weighted	Sequence	Overlap	between	replicates =
(789:;<	=>	?;C8;7D;?	=>	?@A<;B	><=9	<;FGHDAI;	J)K(789:;<	=>	?;C8;7D;?	=>	?@A<;B	><=9	<;FGHDAI;	L)

I=IAG	789:;<	=>	?;C8;7D;?	QHI@H7	<;FGHDAI;	J	K	<;FGHDAI;	L
 

 

If necessary, we were prepared to test other read filters (5%, 10%) if the analysis showed low 

read overlap between each sample and its respective replicate. It was determined, however, that 

high overlap was observed with the 1% filter.  
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2.5. Allele Discovery Saturation Curves 

To test if the read depth was sufficient to reach saturation in allele discovery, saturation 

curves were generated using a custom R script. We calculated the average number of alleles 

detected in at least 1% of total reads for several subsamples of each individual, as well as a 

simulated individual with 240,000 reads and equal read proportions representing 24 alleles 

(greater than the maximum number of alleles observed per individual). We tested subsamples of 

2-x times the number of reads up to x = 11 for all locations except harbor seals at the Gulf of St. 

Lawrence, and up to x = 15 for this latter population, which had a significantly larger number of 

reads than all other locations.  One hundred subsamples of each size were randomly drawn with 

replacement from the total set of reads using a custom R script. The curve from simulated data 

was compared to the individual curves from each sample to determine the minimum read depth 

for saturation of allele discovery. An additional filter for read depth was applied to exon 3 based 

on this analysis; any sample with fewer than 400 reads was removed from the dataset.  

2.6. Analyses of Genetic Diversity  

 Following the filtering pipeline described above, the total number of alleles for every 

population and each species was calculated in R.  Shared alleles were identified through intra and 

interspecific comparisons. The average number of alleles per individual was calculated as a 

proxy for copy number variation. MHC-I allele sequences we identified in gray and harbor seals 

sampled in the Northwest Atlantic were compared to sequences from other regions and other 

species using MEGA. Phylogenetic trees were built using the Maximum Likelihood Method and 

Tamura-Nei model (Tamura and Nei, 1993).  
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3. RESULTS 

3.1. Assessing the Genotyping Pipeline 

In this study, technical replicates and simulations were used to test the efficacy of our 

genotyping pipeline and to determine if additional filtering thresholds were needed. 

3.1.1. Technical Replicate Analysis 

We found that all populations showed high overlap in both exon 2 and exon 3 genotypes 

between replicates in weighted and unweighted comparisons of alleles (Figures 3.1), supporting 

precision of the genotyping pipeline. There was no significant difference in the average weighted 

or unweighted allele overlap for exon 2 between populations of gray seals (weighted: F(2,21) = 

0.90,  p = 0.42; unweighted: F(2,21) = 0.53, p = 0.59) or between harbor and gray seals 

(weighted: t(46) = 0.89,  p = 0.38; unweighted: t(46) = 1.66, p = 0.10). For exon 3, there was no 

significant difference in either metric between harbor and gray seals (weighted: t(33) = 0.05, p = 

0.96; unweighted t(33) = -0.95, p = 0.35).  There was a significant difference in average 

unweighted exon 3 allele overlap between populations of gray seals (F(2,20) = 4.58, p < 0.05), 

but no significant difference in average weighted allele overlap (F(2,20) = 3.18, p = 0.06). 
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Figure 3.1. Proportion of sequence overlap and weighted sequence abundance between replicates. 

The exon 2 technical replicate analysis included 24 bycaught N.E. U.S. harbor seals; and 8 

Muskeget Island, 8 Sable Island, and 8 Gulf of St. Lawrence gray seals that were amplified twice 

in independent reactions and successfully sequenced. Due to low read depth resulting in exclusion 

of some samples, the exon 3 technical replicate analysis included 12 bycaught N.E. U.S. harbor 

seals; and 7 Muskeget Island, 8 Sable Island, and 8 Gulf of St. Lawrence gray seals. Boxplots show 

the median and 25th and 75th quartiles, and whiskers represent 1.5x the interquartile range beyond 

the bounds of the box. 
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3.1.2. Allele Discovery Saturation Curves 

The effect of read depth on allele discovery was evaluated through down sampling a 

simulated dataset with 24 alleles (greater than the maximum number of alleles observed per 

individual) and 240,000 reads, as well as the actual sequencing data generated for each 

individual that passed initial filtering steps. The simulated individual appeared to reach 

saturation in allele discovery by 400 reads (Figure 3.2).  

 

Figure 3.2. Simulated data saturation curve for allele discovery.  Average number of alleles 

detected in 100 random subsamples per read depth of a simulated individual with 240,000 reads 

and equal read proportions representing 24 alleles.  
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This saturation point was also observed in the actual sequencing data for most individuals 

for both exon 2 (Figure 3.3) and exon 3 (Figure 3.4). A read depth of 400 was therefore used as a 

minimum threshold for inclusion in subsequent analyses, and 15 exon 3 samples with a read 

depth below 400 reads were excluded.  

Figure 3.3.  Saturation curves for exon 2 allele discovery across gray and harbor seal populations. 

Average number of alleles detected in 100 random subsamples per read depth for all individuals, 

with each colored line representing an individual.   
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Figure 3.4. Saturation curves for exon 3 allele discovery across gray and harbor seal populations. 

Average number of alleles detected in 100 random subsamples per read depth for all individuals. 

3.1.3. Read Depth 

Sequencing resulted in variable read depth across seal sampling locations and between 

species. Harbor seals had a significantly greater average number of reads per individual than 

gray seals for both exon 2 (t(139) = -7.78, p = 1.47x10-12) and exon 3 (t(116) = -7.36, p = 2.80 x 

10-11). Harbor seals from the Gulf of St. Lawrence had significantly higher average read depth 

than harbor seals from the Northeast US (exon 2: t(54) = 11.34, p =. 6.61 x 10-16; exon 3: t(43) = 

5.07, p = 8.17x10-6). Gray seals also showed a significant difference in average read depth 

among populations for exon 2 (F(2,82) = 4.76, p < 0.05), but not exon 3 (F(2,70) = 0.66; p = 

0.52). Yet, the technical replicate analysis and assessment of saturation curves described above 

suggest that our pipeline is robust to differences in read depth, above a minimum read depth of 

400, and support our ability to compare allelic diversity among populations and between species.  
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3.2. Analysis of Allelic Diversity  

3.2.1. Total Number of Alleles  

We identified a total of 93 alleles in exon 2 and 100 alleles in exon 3 among gray and 

harbor seals (Figure 3.5). For exon 2, 53 alleles were unique to harbor seals (n=56), 47 alleles 

were unique to gray seals (n=86) and 7 alleles were observed in both species. For exon 3, 65 

alleles were unique to gray seals (n=73), 36 alleles were unique to harbor seals (n=45) and 1 

allele was observed in both species.  

The majority of alleles were shared among populations within species. Among harbor 

seals, for exon 2, we found 2 unique alleles in the Gulf of St. Lawrence population (n=29), 21 

unique alleles in the N.E. U.S. (n=27), and 37 alleles were shared between the two populations. 

For exon 3, 2 unique alleles were found in the Gulf of St. Lawrence harbor seal population 

(n=28), 7 unique alleles were found in the N.E. U.S. population (n=17) and 27 alleles were 

observed in both populations. Among gray seals, for exon 2, 4 alleles were unique to the Gulf of 

St. Lawrence population (n=29), 4 alleles unique to Sable Island (n=30) and 0 alleles unique to 

Muskeget Island (n=27). A total of 41 alleles were shared between all gray seal populations with 

fewer than 2 additional alleles shared between any two populations. For exon 3, we found 1 

unique allele in the Gulf of St. Lawrence gray seal population (n=25), 19 unique alleles in Sable 

Island (n=20), and 1 unique allele in Muskeget Island (n=28). A total of 37 alleles were shared 

amongst all three populations with fewer than 3 additional alleles shared between any two 

populations.  
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Figure 3.5. Venn diagram of total number of exon 2 alleles discovered in gray and harbor seals. 

3.2.2. Copy Number Variation  

We used the number of alleles per individual as a proxy of copy number variation. The 

number of alleles observed in a single individual ranged from 9 to 21 for exon 2 and 7 to 15 for 

exon 3 in harbor seals, and 7 to 16 for exon 2 and 7 to 21 for exon 3 in gray seals. These values 

suggest a minimum of 4 to 11 MHC-I copies in both harbor and gray seals.  

Harbor seals were observed to have a significantly greater average number of exon 2 

alleles per individual than gray seals (harbor: 13.93 ± 0.37 SE; gray 12.48 ± 0.28 SE; t(139) = -

3.40, p < 0.001) (Figure 3.6), though no interspecific difference was noted for exon 3 (harbor: 

11.07 ± 0.28 SE; gray: 11.64 ± 0.25 SE; t(116) = 1.48, p = 0.14) (Figure 3.7). There was no 

significant difference in the average number of alleles per individual observed among 

populations of harbor or gray seals for either exon 2 (harbor: t(54) = -0.19, p = 0.85; gray: 
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F(2,82) = 0.29, p = 0.75) (Figures 3.6) or exon 3 (harbor: t(43) = 0.66, p = 0.51; gray: F(2,70) = 

1.43, p = 0.25) (Figures 3.7).  

Figure 3.6. Inter- and intra-specific comparisons of average number of exon 2 alleles per 

individual in harbor and gray seals. Boxplots show the median and 25th and 75th quartiles, and 

whiskers represent 1.5x the interquartile range beyond the bounds of the box. Sample sizes as in 

Figure 3.5. 

 

Figure 3.7. Inter- and intra-specific comparisons of average number of exon 3 alleles per 

individual in harbor and gray seals. Boxplots show the median and 25th and 75th quartiles, and 

whiskers represent 1.5x the interquartile range beyond the bounds of the box. Sample sizes as in 

Figure 3.5. 
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3.2.3. Phylogenetic Analysis  

The phylogenetic analysis showed evidence of alleles that are strongly suggested by their 

relationships on the tree to be part of lineages previously described in MHC-I gray and harbor 

seal work (Hammond et al. 2012) (Figure 3.8).  

 
Figure 3.8 Phylogenetic tree showing allele relatedness for exon 2 using the maximum-

likelihood method and Tamura-Nei model. Sequences discovered in this study are referred to 

with their temporary identifiers, composed of “otu" followed by Pv indicating an allele only 
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observed in harbor seals, Hg indicating an allele only observed in gray seals, or shared indicating 

the allele was observed in both species. These sequences will be renamed following MHC naming 

conventions prior to publication and submission to NCBI GenBank. MHC I sequences 

characterized in this study are compared with gray (HagrN) and harbor (PhviN) MHC I sequences 

from Hammond et al. (2012), as well as MHC I sequences from other carnivores including 

Hawaiian monk seal (Monachus schauinslandi) translated from Aldridge et al. (2006), giant panda 

(Ailuropoda melanoleuca, Aime) (GenBank: EU162656-57, JX987023, EU162661), dog (Canis 

lupus, DLA) (GenBank: NM001014378, NM001014767), and European badger (Meles meles, Meme) 

(LC350080-81, JQ425446). 
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4. DISCUSSION 

The purpose of this study was to characterize immunogenetic diversity at MHC-I loci in 

gray and harbor seals in the Northwest Atlantic, two species in an environment with shared 

natural stressors. We present a high-throughput pipeline to detect alleles in a highly 

polymorphic, duplicated gene region on a population-scale despite varying read depths using 

amplicon sequencing. Overall, we found high MHC-I diversity in both of these historically 

bottlenecked species, and little evidence of a significant difference in diversity metrics between 

species, despite their observed difference in resistance to viral pathogens.  

We found that the total number of alleles unique to each species did differ in that harbor 

seals had more than gray seals at exon 2, but vice versa for exon 3 (Figure 3.5). Several exon 2 

and few exon 3 alleles were shared between species.  For exon 2, two of the alleles that were 

shared between the two species were closely related to alleles previously characterized as 

ancestral alleles (N*01 lineage, Figure 3.8), while the remaining shared alleles were distributed 

across the divergent lineages. Alleles shared between species, or trans-species polymorphism 

(TSP) are consistent with balancing selection (Klein et al. 1998) acting on MHC-I. The 

phylogenetic analysis pointed to new alleles discovered that were part of lineages previously 

described in gray and harbor seal MHC-I work (Hammond et al. 2012). It is important to note 

that we did not have a method of testing for functionality of alleles, so it may be that some alleles 

are pseudogenes. Important next steps for these data include calculating dN/dS ratios for PBR 

loci and assessing translated amino acid sequences to further characterize selection on this 

genomic region. If a premature stop codon is found in an allele, that could give insight into 

functionality. Although the dN/dS ratio was not calculated in this study, our data are consistent 

with other studies that show high levels of MHC-I diversity and balancing selection acting on 
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this region. Linking pairwise sequence divergence to our phylogeny in the future will allow 

characterization of MHC “supertypes” (or clusters of MHC alleles) that could allow for 

characterization of MHC diversity per individual, species and location on a difference scale.  

We found that most of the alleles were shared between populations, though the Northeast 

US harbor seal population and the Sable Island gray seal population had many unique alleles at 

exon 2 and exon 3, respectively (Figure 3.5). A prior study of MHC-II in Northeast Atlantic gray 

seals did report evidence of local adaptation, finding a significant difference in allele frequencies 

among colonies (Cammen et al. 2010). Further analysis of our MHC-I data should investigate 

allele frequencies among the sampled areas in the Northwest Atlantic. It could become possible 

to then link a specific allele having a stronger selection pressure than others from PDV and IAV, 

through directional selection. This could also help explain the lack of significant differences 

between gray and harbor seals that we see in diversity estimates found while considering the 

difference in disease resistance between the two species. 

Our results indicate that MHC-I loci are highly diverse compared to their class II 

counterparts, as multiple studies characterizing MHC-DQB in pinnipeds have found relatively 

few alleles (Hoelzel et al. 1999; Bowen et al. 2002; Lento et al. 2003; Weber et al. 2004; 

Cammen et al. 2010). In addition, our results show evidence of high number of gene copies in 

both species for MHC-I. In fact, the number of gene copies may exceed our estimates, as it is not 

possible to determine homozygosity from our data and so we assume that each allele that we see 

is only present once. We found that within each species populations are similarly diverse in the 

average number of alleles per individual. On an interspecific level, we found that harbor seals 

had a significantly greater average number of exon 2, but not exon 3, alleles per individual than 

harbor seals. This finding is in contrast to our expectations of higher diversity in gray seals, 
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which have a higher survival rate and remain mostly asymptomatic during outbreaks of phocine 

distemper virus and avian influenza.  

We should note that a greater number of samples were lost from the analysis for exon 3 

during the filtering process, due primarily to low individual read depth. It is unclear what 

contributed to these data being poorer quality, but noted issues in the first stages of PCR. 

Agarose gel photos showed exon 3 primer-dimers (and adapter-dimers once Illumina adapters 

were added in library prep) that were brighter than our target band. By magnetic bead size-

selection, we were able to successfully isolate our targeted region and remove dimers, but it 

seems something could be wrong in the biochemistry of Illumina adapters and our exon 3 

genomic composition. Nextera adapters gave the best results, but some data were still lost. This 

issue, in addition to the differences between exons in some of our comparisons of MHC-I 

diversity, highlight the importance of evaluating more than one exon for a given gene. 

Traditional MHC approaches have focused on a single exon, but next-generation high-

throughput sequencing enables efficient genotyping of multiple exons. Future studies such as this 

could also attempt to use long-read sequencing rather than amplicon sequencing. While amplicon 

sequencing is limited by read length to determine unphased alleles at individual exons, long-read 

sequencing could allow multiple exons to be phased into an MHC gene haplotype, as in 

Hammond et al. (2012) but on a population scale.   

This study provides a first step in investigating the role of immunogenetic diversity in 

variable disease resistance that is observed among pinnipeds. To further link the MHC-I diversity 

described here with disease resistance would require a direct comparison of cases and controls, 

or seals that died due to disease exposure and those that survived. Identifying such individuals in 

natural populations is challenging. However, samples collected during the recent PDV-associated 
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mortality event of primarily harbor, and some gray and harp seals, in the Northeast US provides 

an opportunity for future study. As gray seal populations expand, and sympatric harbor seal 

populations decline, a better understanding of the role of immunogenetic diversity in gray seal 

disease resistance could provide important insights into their role as disease reservoirs in coastal 

ecosystems.    
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