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 Fermentation is the process by which primarily lactic acid bacteria (LAB), an 

environmentally ubiquitous group of organisms, convert carbohydrates into several 

byproducts, including acid, ethanol and/or gas. Often these resulting byproducts create 

desirable foods with unique flavor attributes and an increased inherent safety due to 

acidification. Vegetables such as red beetroot are suitable commodities for fermentation, due 

to abundant nutrient sources to sustain the LAB population. However, sufficient growth of 

LAB may lead to the production of harmful biogenic amines, specifically histamine and 

tyramine which can cause an allergic reaction and poisoning at high levels. Additionally, red 

beetroot is grown in direct contact with soil, a known fomite for foodborne pathogens. Thus, 

the objectives of this study are to determine the effects of three different salt (0.5%, 1.5%, and 

2.5% NaCl (w/w)) and garlic (0%, 0.5%, and 1.0%(w/w)) concentrations on bacterial 

pathogen (STEC, Salmonella, and L. monocytogenes) survival and biochemical properties 

(biogenic amines, organic acids, sugars, and alcohol), during both spontaneous fermentation 

and storage of beet kvass. The sensory perception of fermented beet kvass at two different salt 



 
 

(1.5% and 2.5% NaCl (w/w)) and garlic (0% and 0.5% (w/w)) concentrations and the impact 

of health-related messaging on product consumer acceptability were also assessed. 

 Results indicate that neither the salt or garlic concentrations tested had a significant 

effect on pathogen survival. Although there was a decrease in Salmonella and L. 

monocytogenes survival after storage, neither pathogen was completely eradicated in all 

samples. Therefore, to better ensure consumer safety, it is important for fermenters to 

maintain cleanliness and avoid cross-contamination during production. Salt and garlic 

concentration, however had a significant effect on organic acid and fructose content. 

Specifically, beet kvass produced with garlic had significantly reduced lactic and acetic acid, 

glucose, and fructose content, but significantly increased ethanol levels, when compared with 

samples without garlic. This biochemical profile suggests that garlic favors the growth of 

yeast in beet kvass. These observations suggest that formula development has considerable 

impacts on microbial diversity in this product. Biogenic amine analysis determined that low 

accumulation of these compounds in the production and storage of kvass are insufficient to 

pose obvious safety risks to consumers. Sensory evaluation revealed that salt concentration is 

a significant deciding factor on overall product acceptance, with consumers generally 

preferring lower salt levels. Inclusion of information on the potential health benefits of the 

product increased panelists’ interest in consuming the product, indicating that participants 

may be willing to compromise sensory characteristics for health benefits. Therefore, 

producers may formulate beet kvass with lower salt and with or without garlic, without 

adversely effecting product acceptability.  
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CHAPTER 1 

LITERATURE REVIEW 

1.1.  History of Fermentation 

Fermentation is one of the oldest forms of food preservation, with first evidence of the 

process dating back to 6,000 B.C. in the Fertile Crescent in the Middle East (Fox, 1993). The 

process was then investigated by French microbiologist Louis Pasteur (1822-1895) in 1870, 

when he termed fermentation “La vie sans l’air” (life without air). Lactic acid fermentation is an 

anaerobic metabolic process by lactic acid bacteria (LAB) that converts carbohydrates to acids, 

gases, and/or alcohols. Besides preservation of food, food fermentation was found to produce 

desirable food products for consumers, as it improves sensory properties, extends shelf life, and 

increases the bioavailability of nutrients (Tamang et al., 2016; Septembre-Malaterre et al., 2018). 

1.2.  Lactic Acid Bacteria 

Lactic acid bacteria (LAB) refers to a broad group of bacteria that produce lactic acid. 

They are Gram positive, non-respiring, non-spore forming cocci or rods. They are obligate 

fermentative organisms known to mediate the fermentation of vegetables. LAB are highly 

diverse and able to withstand extreme conditions. For example, they are capable of growing at 

temperatures as low as 4℃ or as high as 45℃ (Hamasaki et al., 2003; Marceau et al., 2004; 

Chen et al., 2013). While the majority of strains grow at pH 4.0 - 4.5, some are active at pH 

levels as low as 3.2 or as high as 9.6 (Caplice & Fitzgerald, 1999). LAB are considered to be 

aerotolerant organisms. They lack cytochromes and heme-containing proteins, and do not 

possess a complete citric acid cycle (TCA) due to the absence of catalase. Therefore, these 

organisms are unable to undergo energy-linked oxygen metabolism (Higuchi et al., 2000). 

Although LAB do not require oxygen, oxygen can serve as an electron acceptor due to the 
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byproducts of lactic acid fermentation, including ethanol, CO2, and acetic acid (Endo & Dicks, 

2014). LAB are desirable microorganisms in many food products. 

 The success of a lactic acid vegetable fermentation involving liquid brine, such as 

fermented beet kvass, is dependent on the solute movement from the plant material into the 

surrounding liquid (Daeschel et al., 1987). Plant materials, such as red beetroot and cabbage, 

contain high levels of glucose, fructose, and sucrose. The availability of these carbon sources is a 

factor in sequential microbial growth. 

1.2.1.  Metabolism of Carbohydrates  

The genera of LAB can be grouped by the type of fermentation they perform (Table 1.1). 

Table 1.1. Common LAB and their fermentation type 

Genus  Species  Fermentation type  

Enterococcus faecalis  Homo 

Lactobacillus  acidophilus 
salivarius 
plantarum a 
casei b 

Homo 

brevis 
fermentum 
reuteri 
plantarum a 
casei b 

Hetero 

Lactococcus lactis Homo 

Leuconostoc mesenteroides Hetero 

Pediococcus  pentocaceus Homo 

Streptococcus  thermophilus 
salivarius 

Homo 

ab Lb. plantarum and Lb. casei can be both homo- and heterofermentative (facultatively 
heterofermentative), depending on carbon source availability  
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The conversion of carbohydrates to lactic acid by LAB is a critical component of food 

fermentation. The distinction between the fermentation types is dependent on the presence or 

absence of aldolase or phosphoketolase, which are the key enzymes in glycolysis and the 

phosphoketolase pathway, respectively. LAB are considered obligately homofermentative when 

only aldolase is present. However, in the presence of only phosphoketolase, LAB are considered 

obligately heterofermentative (Kandler, 1983). Facultatively heterofermentative LAB, on the 

other hand, have enzymes from both metabolic pathways. The two major metabolic pathways of 

glucose fermentation are the Emden-Meyerhof-Parnas (EMP) pathway (glycolysis) and the 

phosphoketolase pathway, as shown in Figure 1.1.  

B A 

Figure 1.1: The metabolic pathway of glucose. A) Homofermentation; EMP, key enzyme is aldolase B) 
Heterofermentation; phosphoketolase pathway, key enzyme is phosphoketolase (Adapted and drawn from 
Gänzle (2015)) 
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The homofermentation of glucose utilizes the EMP pathway and yields 2 molecules of 

lactate and 2 ATP, while the heterofermentation of glucose utilizes the phosphoketolase pathway 

yielding 1 molecule of each lactate, ethanol, CO2, and ATP (Gänzle, 2015). 

However, glucose is not the only carbon source for LAB. Sucrose and fructose are also 

used for energy and are abundant in many fruits and vegetables. Sucrose is a disaccharide and is 

hydrolyzed by sucrose 6-phosphate hydrolase, yielding glucose 6-phosphate and fructose for 

metabolism. The heterofermentation of fructose yields different end products. For every three 

molecules of fructose that are consumed, one lactate and acetate, two mannitol, one CO2, and 

two ATP molecules are formed (Endo & Dicks, 2014). Apart from being a substrate, certain 

strains of LAB utilize fructose as an electron acceptor, specifically when present as the sole 

carbon source. 

As the pH of the environment decreases, and as carbohydrate levels are reduced, LAB 

fermentation favors the utilization of amino acids. The change in metabolism is a survival 

mechanism to maintain the pH of the cell, which is discussed in detail in Section 1.4.2. 

Glutamine, glutamate, and arginine play a major role in pH homeostasis and stationary phase 

survival of LAB by increasing acid-resistance (Teixeira et al., 2014). 

1.2.2.  Metabolism of Amino Acids 

Amino acid metabolism by lactic acid bacteria has received much attention, as this 

process gives rise to toxic biogenic amines formed during the fermentation of various foods. 

Biogenic amines (BA) are the byproducts formed from the breakdown of proteins by 

microorganisms that possess decarboxylases. They are often found in fish, fish products, 

alcoholic beverages, and fermented foods. Biogenic amine content has been used as an indicator 
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of microbial spoilage in non-fermented foods (Lázaro et al., 2015). Besides affecting food 

quality, BA are also linked to food safety risks.  

Safety concerns associated with BA consumption are often linked to fish and fishery 

products, due to the high levels of BA precursors, decomposition of product, and unhygienic 

handling of ingredients (Prester, 2011). The most relevant BA in food are histamine, tyramine, 

putrescine, cadaverine, and phenylethylamine, which are products formed from the 

decarboxylation of histidine, tyrosine, ornithine, lysine, and phenylalanine, respectively (EFSA, 

2011). Putrescine can also be formed through deimination of agmatine. Histamine and tyramine 

are the most toxic and relevant to food safety due to histamine or scombroid fish poisoning 

(HFP), as well as histamine and tyramine poisoning (Morrow et al., 1991; Finberg & Gillman, 

2011). 

LAB are capable of metabolizing all amino acids, however, the ability to degrade amino 

acids varies greatly among species. Generally, preformed amino acids are required for growth 

but specific requirements vary within species and across strains (Williams et al., 2001; Liu et al., 

2003). Biogenic amines are formed by the decarboxylation of amino acids, and this is a safety 

concern due to the possible health implications, specifically with histamine and tyramine. 

Histamine is associated with histamine poisoning, also known as scombroid fish poisoning, 

which includes symptoms similar to an allergic reaction such as skin rash, diarrhea, flushing, 

sweating, and headache (Bartholomew et al., 1987; ten Brink et al., 1990).Whereas tyramine is 

associated with the interaction of monoamine oxidase inhibitors (MAOIs), which are drugs that 

are often used for treatment of clinical depression (McCabe-Sellers et al., 2006). Histamine and 

tyramine both have been found in fermented vegetables due to the high microbial activity (Kalač 

et al., 1999; Tsai et al., 2005).  
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Histidine decarboxylation (HDC) activity is regulated by the internal pH of the organism 

(Schelp et al., 2001). The decarboxylation of histidine is a protective mechanism against low pH, 

and the HDC pathway only becomes activated in a highly acidic environments. Therefore, 

histamine formation by LAB is often associated with fermented food products due to the highly 

acidic environment. HDC activity has been found in LAB such as Lactobacillus parabuchneri, 

Lactobacillus vaginalis, and Lactobacillus reuter which have been isolated from cheese (del 

Valle et al., 2018; Diaz, del Rio, et al., 2015; Diaz, Ladero, et al., 2016).  

Similar to HDC, tyrosine decarboxylase (TDC) is an enzyme that catalyzes the 

decarboxylation of tyrosine to tyramine. This activity has been associated with Enterococcus 

faecalis and Lactobacillus brevis, LAB that have been isolated in fermented foods (Pessione et 

al, 2009; Moreno-Arribas & Lonvaud-Funel, 2001). Although these strains are more often 

associated with fermentation of wine and cheese, there is still a potential risk for fermented 

vegetable products including beet kvass due to the uncharacterized nature of spontaneous 

fermentations. 

1.2.3.  Role in Fermentation 

The LAB dynamics in a fermented food system affect the final physicochemical 

properties of the finished product. Several fermented vegetables, such as sauerkraut, kimchi, and 

table olives, have been intensely studied to identify the predominant LAB which result in a high 

quality product. The fermentation pattern and the sequence of LAB growth is highly dependent 

on environmental factors such as pH level and salt concentration. Heterofermentative LAB such 

as Leuconostoc mesenteroides often serve as essential microbial precursors for the induction of a 

proper growth sequence (Stamer et al., 1971). Specifically, the production of lactic and acetic 

acid is required for a rapid decrease in pH levels (Adams & Hall, 1988). As organic acids 
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accumulate and the pH of the substrate decreases, L. mesenteroides is inhibited while more acid-

tolerant, homofermentative LAB, such as Lactobacillus plantarum, will continue fermenting the 

remaining carbohydrates throughout the fermentation period (Paramithiotis et al., 2010). 

1.3.  Fermented Vegetables 

Cultures around the world regard fermented vegetables as an important part of their diet. 

Vegetable fermentation initially was used as a means to preserve food. However, with increased 

interest in disease treatment and prevention, they are growing in consumer popularity as 

functional food products (Stanton et al., 2005). The Institute of Medicine's Food and Nutrition 

Board of the US defined functional foods as “one or more food constituents manipulated to 

enhance [their] contributions to a healthful diet” (IOM/NAS, 1994). With respect to fermented 

vegetables, the major health benefits associated with functional food products are due to the 

probiotic and biogenic effects associated with consumption. Probiotic benefits are attributed to 

the ingestion of live microorganisms, as well as the biogenic effects due to the presence of 

microbial metabolites synthesized during fermentation (Gobbetti et al., 2010). 

Spontaneous lactic acid fermentation is a process accomplished by naturally occurring or 

native lactic acid bacteria found in vegetables. The list of LAB found in common spontaneously 

fermented vegetable products is listed in Table 1.2.  
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Table 1.2. Overview of LAB found in spontaneously fermented vegetables  

Product  Vegetables  LAB  Reference  

Sauerkraut  Cabbage  Strep. faecalis  
Leuc. mesenteroides 
Lb. brevis 
Ped. pentocaceus 
Lb. plantarum 

Pederson & Albury 
1969 

Kimchi  Napa cabbage 
Daikon radish  
Garlic 
Ginger  
Green onions 

Leuc. citreum 

Leuc. gasicomitatum 

W. koreensis 

J. Cho et al. 2006 

Pickles  Cucumber 
Lb. plantarum 

Leuc. mesenteroides 
Egbe et al. 2017 

Fermented Olives  Olives  
Lb. pentosus  

Lb. plantarum 

Lb. casei 

Ent. durans  

Tofalo et al. 2014 

Fermented  Radish  Radish  
Lb. plantarum 

Ped. pentosaceus 

Pardali et al. 2017 

Fermented Curly 
Kale  

Curly Kale  Lb. plantarum 

Lb. paraplantarum 

Lb. brevis 

Lb. curvatus 

W. hellenica 

W. cibaria 

Ped. pentosaceus 

Michalak et al. 2018 
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In addition to the suitability of these food matrices to sustain live cultures, health 

mediated effects have also been studied. Lb. plantarum and Lactobacillus sakei, for example, 

were isolated from store-bought white kimchi, and found to reduce the body weight and total 

weight gain of diet-induced obese mice (Park et al., 2016). The potential for probiotic-containing 

fermented vegetable products has also previously been investigated in tables olives, kimchi, and 

beet juice. With consideration of live culture viability, potential probiotic bacterium 

Lactobacillus pentosus was able to survive the processing and packing of table olives 

(Rodríguez-Gómez et al., 2014). Red beetroot were similarly discovered to be a suitable 

substrate to sustain lactic cultures (including Lactobacillus acidophilus, Lactobacillus casei, 

Lactobacillus delbrueckii, and Lb. plantarum) which were capable of rapidly utilizing beet juice 

for cell synthesis and lactic acid production (Yoon et al., 2005). 

While there are many health benefits linked to fermented vegetables, there are also 

concerning side effects. Sauerkraut was found to possess anti-carcinogenic effects, but side 

effects such as diarrhea and interaction with monoamine oxidase inhibitors (MAOIs), a class of 

drug often used to treat depression, were found in the habitual intake of sauerkraut (Raak et al., 

2014). Therefore, considerations of metabolite changes should also be studied in the context of 

fermented vegetable safety. 

1.3.1. Salt 

Salt is an essential ingredient in fermenting vegetables as it provides a competitive 

environment for LAB growth. Besides the acidic flavor that results from fermentation, salt level 

also contributes to the desired taste. Viander et al. (2003) observed that sauerkraut fermented 

with 0.5% mineral salt (wt/wt), resulting with a final concentration of 0.3% NaCl (wt/wt), had 

the highest quality rating, from a trained sensory panel, due to the less acidic flavored sauerkraut 
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juice. Taste is not the only important sensory factor in fermented vegetables. In a different study, 

reduced salt fermented sauerkraut (0.9% wt/wt) was found to be the least desirable sample by 

trained sensory panelists due to the softening of cabbage that produced an unappealing texture, 

even though the product had lower acidity levels compared to samples treated with 1.5% NaCl 

(wt/wt) (Wolkers-Rooijackers et al., 2013). Similarly, fermented paocai (10% NaCl) had higher 

texture ratings over mid-salt (4-5% NaCl) and lower-salt (1-3% NaCl) products. However, 

lower-salt formulations (1-3% NaCl) had overall higher preference ratings based on other 

sensory attributes such as acidity, taste, flavor, and color (Zhang et al., 2016). Hence, the effect 

of salt concentration on sensory acceptability of fermented vegetables is dependent on many 

factors. 

In addition to sensory appeal, salt concentration in fermented vegetables also has safety 

implications. Salt recommendations vary from Sandor Katz’s (2012) recommendations of using a 

pinch per quart to using ~2.0% salt from the National Center for Home Food Preservation’s 

(2016) recommendations. However, salt recommendations are important and can affect 

consumer health because fermented foods are typically preserved without additional preservation 

strategies, such as thermal processing. Red beetroot is identified as “rarely consumed raw” by the 

FDA and is not subjected to the FSMA produce safety rule (FDA, 2015). Therefore, growers 

may follow less stringent safety-related protocols for maintaining the cleanliness and safety of 

these crops. 

To ensure appropriate fermentation, NaCl levels in fermented vegetables must be well 

balanced. Prior research has shown that high salt levels can actually delay fermentation. Stamer 

and team (1971), for example, observed the inhibition of LAB in cabbage sauerkraut produced 

with 3.5% NaCl. Therefore, it is critical to determine the ideal salt concentration to decrease 
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potential pathogen safety risks, without compromising the sensory attributes of fermented 

vegetables. 

1.3.2. Garlic 

Garlic (Allium sativum) is a plant belonging to the allium family. The bulb is often used 

as a popular spice in many foods. Aside from contributing taste, flavor, and aroma, garlic is 

known for having many potential health benefits including antimicrobial, anticancer, antioxidant, 

immune boosting, antidiabetic, hepatoprotective, antifibrinolytic, antiplatelet aggregatory 

activity, and cardiovascular disease prevention (Santhosha et al., 2013). A wide spectrum of 

antibacterial activity against Gram-negative and Gram-positive bacteria in various garlic 

preparations have been reviewed in Ankri and Mirelman’s paper (1999). 

Garlic holds many different roles in fermented foods. Despite the antimicrobial effect of 

allicin, fermentation of raw garlic is feasible when inoculated with Lb. plantarum as a starter 

culture (Tocmo et al., 2017). Garlic was found to be a major contributor of native lactic acid 

bacteria, such as Leuconostoc sp. and Weissella sp., in the spontaneous fermentation of cabbage 

kimchi (Lim et al., 2015). In a Thai low-salt fermented fish product, garlic served as a 

carbohydrate for LAB, while also inhibiting Gram-negative bacteria and yeasts from 

predominating (Paludan-Müller et al., 1999).  

1.3.3. Biogenic Amines 

While BA production is most often linked to protein rich foods such as seafood products, 

fermented food products, including vegetables, fulfill all criteria required for BA production. The 

production and accumulation of BA in foods is influenced by the availability and concentration 

of the substrate amino acids, the presence of microorganisms with the appropriate 
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decarboxylases, and the favorable environmental conditions to support growth and 

decarboxylation activity (Pinho et al., 2004; Alvarez & Moreno-Arribas, 2014). Sauerkraut has a 

considerably higher tyramine concentration (4.9 mg/100 g) in comparison to fresh cabbage (0.3 

mg/100 g). This increase in biogenic amines in fermented cabbage suggests a potential health 

risk (Moret et al., 2005). Although it is unlikely that the amount of accumulated tyramine and 

histamine in fermented vegetables alone will cause adverse health effects, such as histamine and 

tyramine poisoning, the combination of tyramine with dietary histamine has demonstrated 

synergistic toxicity (del Rio et al., 2017). Lactic acid bacteria, yeast, and possibly other Gram-

positive bacteria are believed to be responsible for the majority of BA formation in fermented 

products due to the suppression of Gram-negative microorganisms. The formation of biogenic 

amines by LAB has mainly been associated with fermented foods such as wine and dairy 

products (Landete et al., 2007; Novella‐Rodríguez et al., 2002). Lb. plantarum, commonly found 

in spontaneously fermented vegetables, has also been noted to potentially decarboxylate 

ornithine into putrescine, a biogenic amine (Arena & Nadra, 2001). Therefore, due to the 

presence of BA precursors in red beetroot, fermented beet kvass may present a health risk to 

sensitive individuals, particularly when eaten in large quantities or consumed with other foods 

that may contain high levels of BA.  

1.3.4. Microbial Dynamics in Fermented Vegetables 

The ubiquity of LAB in nature offers an advantage in the inoculation of raw materials. 

The outcome of spontaneous vegetable fermentation is dependent on naturally occurring 

microbial populations in the raw material as well as environmental conditions such as pH, 

temperature, and salt concentration. The natural microflora of fresh vegetables consists of mostly 

Gram-negative aerobic bacteria and yeast, with LAB comprising a small portion of the initial 
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population (Mundt, 1970). When plant materials are subjected to an anaerobic environment, the 

small population of lactic acid bacteria becomes the predominate microflora, and vegetables will 

undergo lactic acid fermentation. The physiochemical properties of the fermented food product 

will change dependent on the influences of this predominate microbial community. 

A successful lactic acid fermentation process is comprised of the succession of two 

fermentation stages (Paramithiotis et al., 2010; Lavefve et al., 2019). The first stage, also known 

as the heterofermentative stage, occurs during the first 3-7 days and it is dependent on the 

substrate. During this stage, native LAB ferment the available glucose into several products such 

as organic acids, alcohol, and CO2.  The subsequent homofermentative stage results exclusively 

in lactic acid production. The bacterial composition varies greatly between the two stages due to 

the chemical composition changes within the substrate.  

Besides LAB, yeast also plays an important role in fermentation. Depending on the food 

system, yeast and LAB can have either synergistic or antagonistic effects. As an example, the 

combined metabolic activity of both LAB and yeast populations in fermented olives resulted in a 

synergistic effect, creating unfavorable conditions for the survival of pathogens (Grounta et al., 

2013). However, an antagonistic relationship was observed between LAB and yeast in the 

fermentation of watery kimchi. The growth of Saccharomyces around 30 days of fermentation 

was reflected by free sugar consumption which resulted in the production of glycerol and 

ethanol. But, after 40 days of fermentation, the Saccharomyces population decreased which 

allowed for bacterial counts to increase (Jeong et al., 2013).  

While the increasing population of yeast, such as Saccharomyces, Zygotorulaspora, and 

Pichia, can create unfavorable environment for pathogens, they are often associated with off-

flavors and spoilage in fermented vegetables such as olives, kimchi, and cucumber (Alves et al., 
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2012; Franco & Pérez-Díaz, 2012; Moon et al., 2014). Therefore, the presence and growth of 

yeast should be monitored to maintain the quality of fermented vegetables.  

The spontaneous fermentation of vegetables can also be unpredictable at times due to the 

diversity of naturally occurring microbial populations and environmental conditions. Therefore, 

the microflora of fermented vegetable products, including beet kvass, should be further 

investigated to characterize the microbial diversity during the fermentation process. 

1.4. Beet Kvass 

Beetroot, Beta vulgaris L., is the taproot portion of the beet plant. It can be consumed in 

both raw and cooked forms. It contains many healthful components such as vitamins, minerals, 

phenolics, carotenoids, nitrate, ascorbic acids, and betalains (Chhikara et al., 2019). Depending 

on the variety, beetroot comes in red-purple, golden yellow, or red-white color. Red beetroot is a 

root vegetable rich in carbohydrates, protein, micronutrients, and several functional constituents 

that have substantial health-promoting properties. It also contains a considerable amount of both 

essential and non-essential amino acids, as seen in Table 1.3.  
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 Red beetroots are an abundant source of nitrates and are utilized in exercise enhancement 

supplements (Wruss et al., 2015). Beetroot has also been associated with health benefits such as 

lowering hypertension, enhancing exercise performances, and benefiting cardiovascular health, 

due its rich nitrate source (Jones, 2014; Kapil et al., 2014; Kapil et al., 2015). 

Beet kvass, a fermented beverage made by infusing red beetroot in salt and water, is 

gaining popularity among home fermenters (Sarnacki, 2018). Red beetroot contains naturally 

occurring LAB such as Lb. plantarum and Lactobacillus fermentum, making this tuber a suitable 

substrate for spontaneous fermentation (Di Cagno et al., 2013). There is currently limited 

literature available regarding this product. However, studies on similar food products, such as red 

beetroot juice suggest that beet kvass has potential as a functional food supplement based on its 

polyphenols content (Wootton-Beard & Ryan, 2011). The microbial activity and matrix 

softening during fermentation of red beetroot have been found to release betalains, compounds 

responsible for strong antioxidant capacity (Sawicki & Wiczkowski, 2018). Given the nutritional 

Table 1.3: Amino acids found raw red beetroot (Nemzer et al., 2011) 

Amino Acid   g per 100 g of 
edible portion Amino Acid   g per 100 g of 

edible portion 
Tryptophan 0.019 Valine 0.056 
Isoleucine 0.048 Cystine 0.019 
Leucine 0.068 Arginine 0.042 
Lysine 0.058 Histidine 0.021 

Threonine 0.047 Alanine 0.060 
Methionine 0.018 Glutamic Acid 0.428 

Phenylalanine 0.046 Glycine 0.031 
Tyrosine 0.038 Proline 0.042 

Aspartic Acid 0.116 Serine 0.059 
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value of red beetroot and the probiotic benefits of lactic acid fermentation, beet kvass should be 

studied for both the microbial ecosystem diversity and commercial standardization. There are 

also currently no studies to date assessing the consumer acceptability of this product. 

1.5. Factors Affecting Growth and Survival of Pathogens 

1.5.1. Acids 

The acidity of a solution is expressed by its pH value, which represents the negative 

logarithm of the hydrogen ion concentration. When the pH of a food is reduced to below the 

growth threshold, bacterial cells stop growing and viability is also lost, depending on the extent 

of pH reduction. More specifically, acids are known to have adverse effects on bacterial cells by 

disrupting the proton motive force within the bacterial cell which causes cell damage. However, 

this effect is not universal to all acids. Organic acids, such as acetic acid, lactic acid, and citric 

acid, are more effective at deactivating cells than inorganic acids such as hydrochloric, sulfuric, 

and nitric acids. While inorganic acids dissociate in aqueous solution, organic acids remain in 

equilibrium, in both dissociated and undissociated forms. The undissociated compounds enter 

bacterial cells and dissociate in the cell interior due to its higher pH level (when compared to the 

exterior of the cell).  

Acidification of the cell interior can cause changes to the cell structural proteins, 

enzymes, nucleic acids, and phospholipids, which may lead to cell death (Davidson & Taylor, 

2007). The inhibitory effect of organic acids however, is acid dependent. Acetic acid, for 

example, has been found to be the most effective at deactivating cells due to its low molecular 

weight and high liposolubility, compared to lactic and citric acids, which makes it more 

penetrable in bacterial membranes. Acetic acid also has a higher dissociation constant (pK) 

compared to lactic acid (with pK values of 4.8 and 3.8, respectively). At the same pH, acetic acid 
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has more undissociated molecules than lactic acid, which increases its antimicrobial effects (Ray 

& Bhunia, 2014). 

1.5.2. Acid Adaptation 

Some bacterial strains can become more acid resistant after exposure to a mildly acidic 

environment (Foster & Hall, 1990; Davis et al., 1996; Cheng et al., 2003). When cells are 

exposed to a mild acidic environment (pH 5.0 - 5.8) for a short period of time, acid tolerance 

response (ATR) is initiated, which allows cells to survive subsequent exposure to more acidic 

environments (pH 2.4 - 4.0). In contrast, when cells are exposed to mild acidic environments (pH 

5.0 - 5.8) for an extended period of time, acid adaptation of cell will be amplified, facilitating 

survival in subsequent exposure to even more acidic environments (pH < 2.5). This acidity 

resistance among some bacterial strains has created concerns surrounding the perceived safety, 

preservation, and processing of certain low pH foods such as fermented vegetable products.  

1.5.3. Salt 

Common table salt, also known as sodium chloride (NaCl), is regularly used in food 

preparation for taste and preservative purposes. As a preservation strategy, NaCl can lower the 

water activity (aw) of a food matrix, reduce oxygen solubility in water, and causes bacteria to 

accumulate certain amino acids (Hua et al. 1982; Lück and Jager, 1997). These effects result in 

less favorable microbial growth conditions (Bae & Lee, 2010). When there is an imbalance in the 

concentration of water on the interior and exterior of the microbial cell, water will diffuse 

through the gradient. Low aw causes the loss of turgor and cell shrinkage, which results in 

bacterial growth inhibition (Dodd et al., 1997).  

Besides lowering watering activity (aw), NaCl is capable of interfering with substrate 

utilization, which ceases normal microbial cell functions (Csonka, 1989). The effects of NaCl are 



18 
 

concentration dependent. Although salt by itself may not be sufficient to totally eliminate the 

growth of all microorganisms, previous studies have shown the synergic effect of salt when 

combined with other environmental stresses such as acid, are more effective in controlling 

pathogenic bacterial growth, and will be discussed in later sections. 

1.5.4. Antimicrobial Effect of Garlic and Other Herbs 

In addition to organic acids, salt, and bacteriocins, plant derived compounds such as 

thymol, carvacrol, and allicin have been found to possess antimicrobial effects. Allicin (C3H5 -S-

S(O)-C3H5) or diallyl thiosulphinate, is the principal bioactive compound released from crushed 

garlic. After garlic is crushed, the allinase enzyme is released, which acts on alliin (present in 

intact garlic) to produce allicin (Banerjee et al., 2003). The antimicrobial properties of allicin are 

variable but include inhibition of -SH group enzymes, acetyl-CoA synthetase in fatty acid 

biosynthesis in yeasts, bacterial acetate kinase, and phosphotransacetylase enzyme systems. 

Additionally, the compound also affects fatty acids, lipid biosynthesis, and RNA synthesis in 

microorganisms. Allicin is reversibly bonded to enzymes forming non-covalent bonds, and its 

antimicrobial activity is dose dependent (Ceylan & Fung, 2014). Han et al. (1995) reported that 

the antibiotic activity of 1 mg of allicin is equivalent to15 IU of penicillin. Beyond allicin, other 

compounds in garlic also possess antimicrobial activities. It was suggested that these other 

compounds, 3-vinyl-1,2-dithiacyclohex-5-ene and 3-vinyl-1,2-dithiacyclohex-4-ene, in garlic 

extracts have been associated with bacterial cell death through the destruction of structural 

integrity of their cell membranes (Chen et al., 2018).  

In a low-salt, fermented fish product, the addition of garlic extract (1.5%) was found to 

prevent the growth of Vibrio strains, while having only a slight effect on Salmonella when 

treated with 2% garlic extract (Bernbom et al., 2009). The antimicrobial activity of garlic may be 
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pathogen-specific and limited to extracts. However, Bernbom and others (2009) hypothesized 

that the garlic effect was attributed to the increase of acid production in fermented foods, not the 

antimicrobial effects of allicin. Hence, there is may be untapped potential for the use of garlic in 

fermented vegetables to control pathogen growth and ensure the safety of fermented vegetables.  

1.6. Foodborne Pathogens 

1.6.1. Escherichia coli 

Escherichia coli is a non-spore forming, Gram-negative, and rod-shaped bacteria. It is a 

facultative anaerobe commonly associated with fecal matter due to its omnipresence in the lower 

intestines of warm-blooded organisms (Schaechter, 2009). Although not all strains of E.coli are 

pathogenic, Shiga toxin-producing strains of E. coli (STEC) are a major human health concern. 

Shiga toxins are often associated with hemorrhagic colitis, hemolytic uremic syndrome, and 

thrombotic thrombocytopenia purpura (TTP). These compounds were found to inactivate 

ribosomes in target cells, which inhibits protein synthesis in hosts and leads to apoptosis by 

inducing cell signaling (Bergan et al., 2012). The seven E. coli serotypes that are most often 

associated with foodborne illness are O26:H11, O45:H2, O103:H2, O111:H8, O121: H19, 

O145:H28, and O157:H7 (Delannoy et al., 2013).  

In 2013, the Economic Research Service (ERS) of the U.S. Department of Agriculture 

(USDA) estimated the total annual cost of foodborne illnesses related to E.coli O157 

contamination was $271 million dollars, while non-O157 Shiga toxin-producing incidents cost 

$27 million dollars. Even though no foodborne illnesses have yet been reported from the 

consumption of fermented vegetables in the U.S., there have been incidents where E.coli in fruit 

juices (which have similar pH levels) have caused foodborne illnesses (Besser et al., 1993; 

Centers for Disease Control and Prevention, 1996; 1999). Fresh vegetables and other types of 
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produce have also been implicated in outbreaks attributed to enterohemorrhagic E. coli (EHEC) 

(Lynch et al., 2009). There have been several outbreaks of enterotoxigenic E. coli associated 

with kimchi reported in Korea (S. Cho et al., 2014; Shin et al., 2016). However, the kimchi that 

caused the reported illnesses was either unfermented or at the early stages of fermentation. 

Therefore, this pathogen poses a potential threat to the safety of fermented vegetable products, 

especially when the products are not adequately prepared or properly acidified through the 

natural fermentation process. 

1.6.1.1. Acid 

E.coli is able to grow at pH levels as low as 4.4 (Ray & Bhunia, 2014). Exposure to a 

lower pH level can stop growth and even eliminate some cells. However, as previously 

mentioned, studies have shown E. coli is capable of adapting to acidic environments and possibly 

increasing its acid resistance to low pH levels over time (Foster, 2004; Leyer et al., 1995; Lin et 

al. 1996). This adaptation can occur when E. coli is exposed to moderately acidic environments 

for an extended period of time (Spyropoulou et al., 2001; Cheng et al., 2003). Hence, there is a 

possibility for an increased survival rate of this pathogen after being habituated in fermented 

vegetables or in the human stomach, despite the low pH levels, which may lead to infection. 

Therefore, it is imperative to prevent the contamination of fermented foods with pathogens, such 

as E. coli. 

Among non-habituated cultures, E. coli O157:H7 was found to be the most acid resistant 

foodborne pathogen, followed by Listeria monocytogenes, and then Salmonella enterica ser. 

Typhimurium when tested in laboratory media (Koutsoumanis & Sofos, 2004). Enhanced 

survival of E. coli O157:H7 due to acid adaptation has also been observed in acidic food 

matrices, such as fruit juices, as previously mentioned. However, Cheng and Chou (2001) found 
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that despite the enhanced acid adaptation, E. coli O157:H7 survival was reduced in fermented 

milk products, but not in commercial fruit juices. The researchers hypothesized that while acid 

adaptation of E. coli O157:H7 increased resistance to subsequent acid stress, it might have also 

increased the susceptibility to antimicrobial substances produced by LAB in these fermented 

milk products. Similarly, E. coli did not survive in fermented cabbage kimchi and radish kimchi 

products with added raw pork meat (G. Cho et al., 2011). Even though the gradual decrease in 

pH and high titratable acidity produced by LAB during fermentation could induce acid 

adaptation, it was not observed in this study. The authors hypothesized that the bacteriocins 

produced by the LAB population, and the presence of spices, may have decreased the E.coli 

population in the fermented cabbage kimchi, although this specific deactivation mechanism was 

not explored in this study. 

1.6.1.2. Salt 

As previously mentioned, acid and salt are commonly used in the food industry as food 

preservation methods to control bacterial pathogen growth. The combination of two or more of 

these inhibitory agents is known as hurdle technology, in which the effect of the combined 

treatments are more effective in pathogen eradication than application of an individual stressor. 

However, prior experiments conducted on both laboratory media and food systems have 

challenged this strategy. Acid tolerance can be initiated by salt presence. Casey & Codon (2002), 

for example, found E. coli treated with salt (4%) in a enriched medium broth exhibited an 

increased acid tolerance. Although this was not reported in a specific food medium, these 

findings suggest that E. coli might be able to survive in acidic product formulations that contain 

salt, such as fermented vegetables. However, certain studies have found that E. coli survival can 

be negatively affected by salt. For example, E. coli exposed to 0.3 M and 0.8 M NaCl 



22 
 

experienced altered gene expression, enzyme activity, and cofactor levels. The increase in NaCl 

resulted in higher energy requirements needed to maintain cellular homeostasis (Arense et al., 

2010). In addition to delaying and slowing the metabolism of E. coli, pre-exposure to NaCl at a 

10% concentration was also found to decrease E. coli O157:H7’s resistance to acetic acid. 

However, when E. coli was exposed to 1% NaCl prior to the acid treatment, there were no 

significant affects to this pathogen’s survival in laboratory media (Bae & Lee, 2010). Therefore, 

the concentration of salt was found to play a role in moderating the survival of this pathogen in 

an acidic environment. 

Moreover, Lee and Kang (2016) also found the addition of salt in fact increased acid 

resistance in E. coli O157:H7 grown in laboratory media. E. coli O157:H7 showed an 

antagonistic effect in a combined treatment of salt and acetic acid. The cytoplasmic pH of E. coli 

O157:H7 was increased after the addition of salt to help balance the cytoplasm pH following 

exposure to organic acids. E. coli O157:H7 displayed the same antagonistic effect of acetic acid 

and salt in pickled cucumber puree (Lee et al., 2010). However, in cabbage sauerkraut, no 

associations were found between salt concentration and E. coli O157:H7 survival. Instead, there 

was an association between salt concentration and the isolation of acid tolerant E. coli O157:H7 

in whole head cabbage sauerkraut, with more isolates found in the 2.25% salt concentration 

treated samples, rather than 1.8% or 3%. The researchers suggested that the lower salt 

concentration allowed competitive bacteria to inhibit E. coli, while the higher salt concentration 

inhibited E. coli after 19 days of fermentation (Niksic et al., 2005). The differences in the two 

food systems could be attributed to the type of acid, as lactic acid was more abundant in cabbage 

sauerkraut than pickled cucumber puree. Hence, it is a possible that the antagonistic effect of 

acid and salt is acid dependent. The combined treatment of lactic acid (pH 4.2) and salt (4%) on 
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E. coli O157:H45 was observed to have a higher decimal reduction time (136 mins) than the 

treatment of lactic acid alone (24.94 mins) (Casey & Codon, 2002). Therefore, based on these 

studies, organic acid treatment alone appeared to have a higher bactericidal effect on E. coli, than 

the combination of organic acid and salt, with lactic acid being more effective than acetic acid 

when combined with salt (Cheng et al, 2003; Casey & Codon, 2002; Bae & Lee, 2015).  

Besides salt and acid, the attachment of pathogens plays a role in survival. Complete 

elimination of E. coli O157:H7 was observed in naturally fermented black olives (pH 3.95; NaCl 

6.05%). Grounta et al. (2013) concluded that the elimination of pathogens was caused by the 

physiochemical characteristics of fermented black olives, such as its slippery surface, that may 

have prevented the attachment of pathogens. 

1.6.2. Salmonella 

Salmonella is a non-spore forming, Gram-negative rod-shaped bacteria (Cox & Pavic, 

2014). It is a facultative anaerobe and enteric bacterium commonly associated with poultry and 

reptiles. There are only two species of Salmonella; Salmonella enterica and Salmonella bongori. 

S. enterica is mainly found in warm-blooded animals, while S. bongori is commonly associated 

with cold-blooded animals. Salmonellosis is one of the main causes of bacterial foodborne 

illnesses worldwide. In 2013, the USDA ERS estimated a total annual cost of $3.7 billion dollars 

from Salmonella-related illnesses in the U.S. More specifically, Salmonella enterica serovar 

Enteritidis (S. Enteritidis) and Salmonella enterica serovar Typhimurium (S. Typhimurium) are 

the most frequently associated with human disease (K. Lee et al., 2015; Löfström et al., 2016; 

Thung et al., 2016). 

Similar to E. coli, no reported cases of salmonellosis have been associated with 

fermented vegetable consumption yet in the U.S.  However, there have been incidents in which 
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Salmonella caused foodborne illnesses in fruit and fruit juices (CDC, 1999; 2012), as well as 

fresh vegetables (CDC, 2006; 2016). 

1.6.2.1. Acid  

The minimum pH at which Salmonella commonly grows at is a pH level of 4.5 (Ray & 

Bhunia, 2014). However, ATR was also found in S. Typhimurium, protecting the cells from 

severe acidic conditions (pH 3.0 - 4.0) (Foster & Hall, 1990). S. Typhimurium was able to induce 

cross-protection against heat, salt, and other environmental stresses, as ways to adapt to the 

presence of acids (Leyer & Johnson, 1993). As an example, S. Enteritidis acquired additional 

heat (50 °C) and salt (8% NaCl) tolerance after acid adaptation, by growing cells in acidified 

media (pH 4.5 - 6.0) (Ye et al., 2019). Acid-adapted cultures of Salmonella spp. were also found 

to have an increase in virulence and human cell invasion (Humphrey et al., 1996; Wilmes-

Riesenberg et al., 1996; Gahan & Hill, 1999). 

While acid adaptation induces cross-protection, not all acids have the same effect. One 

study showed that S. Typhimurium’s ability to grow under acidic conditions was affected by the 

type of acid used to acidify the growth medium (Álvarez-Ordóñez et al., 2010). The researchers 

found that acetic acid was most effective in inhibiting or delaying the growth of S. Typhimurium, 

followed by lactic acid, citric acid, and hydrochloric acid. Similarly, acid-adapted S. 

Typhimurium was completely inactivated at a pH level of 3.5 with acetic acid within 60 - 120 

minutes of treatment. Acetic acid was also able to induce ATR that increased resistance to 

osmotic stress in the form of either NaCl or KCl, in comparison to exposure to lactic acid 

(Greenacre & Brocklehurst, 2006).  

In a study on fermented green table olives in brine, S. Enteritidis was able to  survive in 

an environment of pH 4.2 and a high salt concentration (6.0%) for up to 21 days of storage 
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(Argyri et al., 2013). Similarly, S. Typhimurium was capable of surviving under low pH levels 

(pH 3.8 - 3.9) in spontaneously fermented cauliflower. This survival was thought to be triggered 

by the gradual decrease of pH, which could have activated the adaptive response. The high 

osmolarity of the product could have also triggered the development of cross-protection against 

low pH levels (Paramithiotis et al., 2012).  

1.6.2.2. Salt 

The addition of salt has been used to prevent the growth of Salmonella spp. Unlike E. 

coli, literature has indicated that a combined salt and acid treatment is fairly effective in 

eradicating this pathogen. Bae and Lee (2010) found that when S. Typhimurium was pre-exposed 

to NaCl (5%), the resistance to acetic acid (1%) was decreased. The physicochemical 

characteristics of naturally-fermented black olives at 6.0% NaCl (pH 3.95) were found to be 

inhospitable for S. Enteritidis, and S. Typhimurium, and these microorganisms were observed to 

be completely eliminated after 2 days of fermentation (Grounta et al., 2013). 

1.6.3. Listeria monocytogenes 

Listeria monocytogenes is a Gram-positive pathogen with the ability to adapt to a wide 

range of conditions such as refrigerated temperatures (2–4 °C), high acidity, and high salt (Doyle 

et al., 1997). The organism is ubiquitous in nature with the ability to form biofilms. For this 

reason, food producers are required to be diligent in maintaining facility and equipment 

cleanliness, as the FDA and USDA have implemented zero tolerance regulations in the food 

industry. L. monocytogenes causes listeriosis, which can lead to serious health implications such 

as meningitis, septicemia, spontaneous abortion, stillbirth or fetal death (Rocourt & Cossart, 

1997). Infections in humans have been related to high mortality (15 - 20%), especially in young, 

elderly, and immunocompromised individuals. The total annual cost of foodborne illnesses in 
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2013 associated with L. monocytogenes contamination was estimated at $2.8 billion dollars in 

the U.S. (ERS USDA).  

L. monocytogenes infection is often associated with high-sodium, refrigerated, ready-to-

eat foods, such as deli meats and cheeses. While there are no reported outbreaks of L. 

monocytogenes associated with fermented vegetables, there have been prior foodborne illness 

reports related to fresh produce such as celery, tomatoes, lettuce, sprouts, and cabbage (Ho et al., 

1986; CDC, 2015). Listeria spp. strains had been found to colonize plant roots, especially root-

tuber vegetables, due to direct contact of plant tissue with Listeria-contaminated soil. Laboratory 

experiments, for example, confirmed successful colonization of carrot roots by L. monocytogenes 

(Kljujev et al., 2018). Therefore, the risk of L. monocytogenes contamination of other root 

vegetables, such as red beetroot, is possible. 

1.6.3.1. Acid 

The minimum pH allowing the growth of L. monocytogenes is at a pH level of 4.6 (Ray 

& Bhunia, 2014). L. monocytogenes is more sensitive to acidic environments compared to E.coli. 

In strawberry juice (pH 3.6) stored at 4℃ over 3 days, L. monocytogenes population decreased, 

whereas E.coli O157:H7 population remained constant (Han & Linton, 2004). L. monocytogenes 

pH tolerance is highly dependent on the bacterial strain, the kind of acid used, and growth phase 

(Phan-Thanh et al., 2000). Despite the comparable pH and titratable acidity values in 

spontaneously fermented cauliflower, fermented cabbage and radish kimchi, survival of L. 

monocytogenes was documented in spontaneously fermented cauliflower, but not cabbage and 

radish kimchis (Paramithiotis et al., 2012; G. Cho et al., 2011). Differences in the production 

process and the raw materials used to make each product may have caused these contradicting 

results (Paramithiotis et al., 2012). Therefore, it is possible that the inactivation of L. 
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monocytogenes in fermented foods may not be just due to the decrease in pH levels, but a 

combination of other factors such as bacteriocins and/or antimicrobial activity from spices.  

Similar to E.coli and Salmonella, L. monocytogenes was also found to exhibit acid 

tolerance response (ATR), which would prevent cell death at normally lethal acid dosages (pH 

3.5) (Gahan et al., 1996). When L. monocytogenes was subjected to pH 5.5 media for 2 hours, 

researchers observed an increased resistance against heat shock (52°C), osmotic shock (25-30% 

NaCl), and alcohol stress (15%) (Phan-Thanh et al., 2000). 

1.6.3.2. Salt 

As previously mentioned, salt has been used in foods as a form of preservation by 

limiting available water and also disrupting the osmoregularity of cells, including L. 

monocytogenes. Although salt concentrations can limit bacterial growth, some bacteria have 

previously demonstrated osmoadaptation, when exposed to sublethal NaCl concentrations. 

Typically, NaCl concentration in foods are insufficient in limiting L. monocytogenes growth. 

However, this exposure may lead to greater osmo- and acid tolerance, although this conclusion is 

not universally consistent (Faleiro et al., 2003). Bae & Lee (2010) for example, found that L. 

monocytogenes pre-exposed to NaCl (5%), became less resistant to 1% acetic acid over time. 

Similarly, Lee and Kang (2016) observed a synergistic effect of acetic acid and NaCl against L. 

monocytogenes. The addition of NaCl caused a decrease in cytoplasmic pH of L. monocytogenes, 

which led to decreased survival. However, in fermented cabbage sauerkraut, no obvious 

association was found between salt concentration and the isolation of acid tolerant L. 

monocytogenes (Niksic et al., 2005). Therefore, it was suspected that the effects of acid and 

NaCl on the survival of L. monocytogenes may depend on the sequence of treatment. While the 

application of two treatments simultaneously may be more convenient for producers, it has the 
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lowest inactivation rates compared to treatments that were applied one after another (Shabala et 

al., 2008). Contrary to E.coli and Salmonella, L. monocytogenes has also been found to survive 

after selective enrichment in naturally-fermented black olives (pH 3.95; NaCl 6.05%) (Grounta 

et al., 2013). Therefore, the effects of osmoadaptation are highly dependent on the salt 

concentration, type, and treatment application. 

1.7. Safety Concerns of Low Salt Brines in Fermented Vegetables 

The preference for salt reduction in fermented vegetable products is emerging due to the 

health implications of high sodium intake. A recent assessment has found that 20% (59/295) of 

home fermenters in Maine felt that making low-sodium fermented foods was very or extremely 

important to them (Camire et al., 2019). Fermented vegetables have been regarded as a low-risk 

food product due to the naturally present competitive microorganisms (LAB), high acid/low pH 

environments, and sodium chloride (NaCl) as a processing ingredient. As previously mentioned, 

the reduction of salt in fermented vegetables may be a food safety concern because it could 

potentially affect pathogen survival (STEC, Salmonella, and L. monocytogenes).  

Paocai, a fermented Chinese cabbage product with a 3% salt level, was found to inhibit 

the survival and growth of E. coli O6, Staphylococcus aureus, S. enterica, and L. monocytogenes 

within 4.5 days. However, it is notable to mention the pH level of the product was well below pH 

4.0 during the enumeration of these pathogens. Although this study showed promising results, 

there was a lack of  information on the product pH level when tested for microbial safety, along 

with the information for low-salt paocai (1 - 2%), while claiming complete eradication of the 

pathogens (Zhang et al., 2016). Contrary, a study on low-salt fermented sauerkraut (1 - 2.5%) 

showed the survival of STEC and S. aureus, while L. monocytogenes was absent at pH levels of 

3.70 (Khanna, 2019). Therefore, more studies need to be performed to further confirm the safety 
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of low-salt fermented vegetables. Currently, there are limited studies on the storage microbial 

safety, biogenic amine contents, along with the consumer acceptability of low-salt fermented 

vegetables.  

Besides the risk of foodborne diseases caused by pathogens, the presence of LAB 

metabolites, such as biogenic amines, could contribute to possible chemical food safety concerns 

related to fermented vegetables. Although some studies have suggested that the levels of BA 

found in fermented vegetables were not high enough to cause acute poisoning, the accumulation 

during fermentation and storage time could potentially be a threat, especially to those who are on 

MAOI drugs and/or are sensitive or allergic to histamine.  

Non-O157 STEC, enterotoxigenic E. coli, enteropathogenic E. coli, and Salmonella were 

isolated from fresh raw red beetroot juice (Gómez-Aldapa et al., 2014). Due to the growth 

conditions of red beetroot, and the inclusion of skin during the fermentation of beet kvass, there 

is a risk of contamination with pathogens. Therefore, fermented beet kvass is a suitable food 

system to study the efficacy of fermentation at eradicating common foodborne pathogens. 

1.8. Research Justification 

In conclusion, the desire for low-salt fermented vegetable products creates the 

need for the investigation of the survival of bacterial pathogens (STEC, Salmonella, and 

L. monocytogenes) in naturally fermented vegetables, especially at lower salt 

concentrations. Although studies on low-salt fermented vegetables such as sauerkraut, 

table olives, and kimchi have been accomplished, the study of fermented beet kvass is not 

evident in literature. This is a fairly new product in the consumer marketplace that has not 

been standardized nor studied, making this research even more critical. The study of the 

microbial and chemical safety, along with consumer acceptability of lower salt 
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concentration fermented beet kvass is much needed. Better understanding of this product 

may generate additional opportunities to market value-added, naturally fermented foods 

at lower salt concentrations to an expanding market of health-conscious consumers.  

1.9. Objectives 

The overall goals of these research studies are to assess the safety, biochemical, and 

sensory perception of naturally-fermented vegetables at salt concentrations below 2.5%. The 

results from these studies will provide guidance to small, agricultural-based businesses, and 

home-fermenters alike, in producing safe yet appealing fermented foods with a lower sodium 

content. Therefore, this research may improve the economy of states with micro food businesses, 

including Maine.  

Therefore, the objective of these research studies are as follows: 

1) to determine the effects of three different salt (0.5%, 1.5%, and 2.5% NaCl (w/w)) and 

garlic (0%, 0.5%, and 1.0% (w/w)) concentrations on bacterial pathogen (STEC, Salmonella, and 

L. monocytogenes) survival during production and after storage of spontaneously fermented beet 

kvass,  

2) to analyze the effects of salt (0.5%, 1.5%, and 2.5% NaCl (w/w)) and garlic (0%, 

0.5%, and 1.0% (w/w)) concentrations on the biochemical properties such as fermentable sugars 

(glucose, fructose and sucrose), organic acids (lactic and acetic acids), and biogenic amines 

(agmatine, putrescine, tyramine, cadaverine, and histamine) during the production and after 

storage of spontaneously fermented beet kvass, and 

3) to evaluate the effects of salt (1.5% and 2.5% NaCl (w/w)) and garlic (0% and 0.5% 

(w/w)) concentrations on the sensory perception of spontaneously fermented beet kvass and the 

possible impacts of health-related messaging on product consumer acceptability.  
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CHAPTER 2 

EFFECTS OF SALT AND GARLIC CONCENTRATION ON THE MICROBIAL 
SAFETY OF SPONTANEOUSLY FERMENTED BEET KVASS 

2.1. Abstract 

 Beet kvass is a value-added beverage gaining popularity among home fermenters and 

small-scale, commercial food processors. While salt is an essential ingredient for fermenting 

vegetables, high sodium intake is associated with increased blood pressure and kidney disease. 

However, despite the apparent nutritional benefits of reducing sodium content, the reduction of 

salt within a fermented vegetable formulation presents potential food safety concerns, as salt may 

increase pathogen survival during fermentation. In addition to salt, garlic also has known 

antimicrobial properties which could potentially mitigate the safety risks associated with a low-

sodium, fermented vegetable product. Therefore, the objective of this research was to determine 

the effects of salt and garlic concentration on the microbial safety of beet kvass. Samples of beet 

kvass formulated with varying salt (0.5, 1.5, and 2.5% w/w ) and garlic (0, 0.5, and 1% w/w) 

levels were inoculated with Shiga toxin-producing Escherichia coli (STEC), Salmonella, and 

Listeria monocytogenes cocktails. The survival of these pathogens was then analyzed at the end 

of fermentation (pH ≤ 4.0). Samples were enriched in selective media and tested using qPCR. 

There were no significant differences in the survival rates of Salmonella or L. monocytogenes in 

beet kvass among the different treatments. However, a significantly higher STEC survival rate 

was observed compared to the other pathogens, and at the highest salt concentration treatment 

during storage. A decrease in survival rate of Salmonella and L. monocytogenes was observed 

after 30 days of storage at 4°C. No significant interactions between salt and garlic treatments 

were found. These data suggest that the pathogens tested can readily survive the fermentation of 
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beet kvass, and that a higher concentration of salt (within the tested range), and the addition of 

garlic would not increase the safety of the product against potential foodborne pathogen 

presence. 

2.2. Introduction  

Fermented vegetables have long been considered a fairly safe food commodity, due to 

acidification by primary fermentative microorganisms (lactic acid bacteria), which creates an 

adverse environment for competing microflora. However, despite this perceived safety, 

foodborne illness has recently been associated with some fermented vegetable-based products. 

For example, in South Korea, enterotoxigenic E. coli has been implicated in foodborne illnesses 

resulting from the consumption of improperly prepared kimchi, a cabbage-based fermented 

vegetable product (Cho et al., 2014; Shin et al., 2016). As a result of the changing inherent safety 

perceptions of fermented vegetable products, a reanalysis of critical preparation parameters is 

necessary. Practices of making fermented vegetables, such as salt concentration, cleanliness of 

raw material, and fermentation time are essential in assuring product safety. 

Salt is an essential ingredient in fermented vegetables, as it provides a favorable flavor 

and environment for the growth of lactic acid bacteria, while inhibiting the growth of many other 

spoilage bacteria (Caplice & Fitzgerald, 1999; Doyle & Glass, 2010). However, salt has been 

associated with several adverse health effects, including kidney disease and increased blood 

pressure (Malta et al., 2018). The reduction of salt levels in a fermented vegetable formulation 

may affect the survival of foodborne pathogens. More specifically, the reduction of salt may 

increase competition from non-LAB microflora, delaying the acidification of fermented 

vegetables, and potentially producing a product that is unsafe. This theory is supported by 

previous studies which assessed the survival capabilities of pathogenic bacteria in fermented 
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vegetable products (Paramithiotis et al., 2012; Choi et al., 2018). Additionally, pathogen 

adaptability toward the stresses conferred in a fermented product, including low pH levels, has 

become an area of focus within the food safety community due to acquisition of acid resistance 

among microorganisms (Koutsoumanis & Sofos 2004; Bae et al., 2018). 

Garlic is also a well-known ingredient used in many food products. Besides flavor, garlic 

is also known for possessing antimicrobial activity against both Gram-negative and Gram-

positive bacteria (Ankri & Mirelman, 1999). Although there are no studies to date assessing the 

antimicrobial activity of crushed garlic during fermentation, there are proposed benefits of 

including this ingredient in formulations, such as decreasing levels of toxic biogenic amines, 

improving acidification, and increasing sensory quality of the finished product (Zhou et al., 

2016; Mah et al., 2009; Bernbom et al., 2009). Therefore, the explicit functions of garlic in 

fermented vegetable formulations, including potential antimicrobial activity benefits during 

fermentation and storage, require further exploration. 

Beet kvass, a fermented beverage made by infusing chopped red beetroot in salt and 

water, is gaining popularity among home fermenters due to its simple recipe, short preparation 

time, and proposed health benefits. These purported health benefits include lowering 

hypertension, enhancing exercise performance, and benefiting cardiovascular health (Kapil et. 

al., 2015; Jones, 2014; Kapil et al., 2014). Raw vegetables are a commodity with a high natural 

microbial load (Beuchat, 2002). Therefore, safety measures implemented by the Food and Safety 

Modernization Act (FSMA) are practiced when growing and producing these crops. Red beetroot 

is a root vegetable that is in direct contact with soil, a known fomite for foodborne pathogens 

(Mritunjay& Kumar, 2017). However, red beetroot does not fall under this regulation due to it 

being a “rarely consumed as raw” commodity (FDA, 2015). This may affect the safety of 
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fermented beetroot products, such as beet kvass, as it is cannot be thermally processed without 

compromising product quality, specifically the live active cultures in the product that consumers 

desire (Buck et al., 2003). Current peer reviewed literature is lacking in regards to the microbial 

safety this product. Therefore, given the increasing interest in fermented vegetables among 

small, agricultural-based businesses and home preservers, it is important to standardize the 

product formulation to better ensure its safety (Sloan, 2019). 

Thus, the objectives of this study are to determine the effects of three different salt (0.5%, 

1.5%, and 2.5% NaCl (w/w)) and garlic (0%, 0.5%, and 1.0% (w/w)) concentrations on bacterial 

pathogen (STEC, Salmonella, and L. monocytogenes) survival during both spontaneous 

fermentation and storage of beet kvass. 

2.3. Materials and Methods 

2.3.1. Experimental Design 

Fermented beet kvass samples were produced at three different NaCl (0.5%, 1.5%, and 

2.5% (w/w)) and garlic (0.0%, 0.5%, and 1.0% (w/w)) concentrations in a full factorial design. 

Figure 2.1. represents the various salt and garlic ratios used in each treatment formulation. Each 

treatment was independently replicated four times. The pH levels of the samples were tested 

every 24-48 hours until the targeted pH of ≤ 4.0 was reached. A set of uninoculated controls 

were also prepared to perform simultaneous analysis to quantify organic acids, sugars, alcohol, 

and biogenic amines. 
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2.3.2. Bacterial Strains 

The bacterial pathogen strains used in this study were obtained from American Type 

Culture Collection (Manassas, VA), including E. coli O111:H8 (CDC 2000-3025), E. coli 

O26:H11 (EHEC 1534),  Salmonella Enteriditis (BAA-1045), Salmonella Typhimurium LT2 

(BAA-2722), as well as L. monocytogenes Serotype 1/2a (19111) and 4b (19115). All strains 

were maintained and kept frozen at -80℃ in 40% glycerol. They were sub-cultured twice in 10 

mL tryptic soy broth (TSB) (Alpha Biosciences, Inc., Baltimore, MD) at 37℃ (E. coli and 

Salmonella) or 32℃ (L.monocytogenes), for 24 hours prior to use.  

2.3.3. Preparation of Inocula 

The population of the inocula was confirmed by plating serial dilutions of the cultured 

pathogens in 0.1% peptone (Difco, Sparks, MD). After sub-culturing, the three previously 

mentioned foodborne pathogen strains were plated and grown overnight on tryptic soy agar 

Figure 2.1. Salt and garlic treatments prepared with a final mass of 850 g (n = 4) 
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(TSA) (Alpha Biosciences, Inc., Baltimore, MD) at 37℃, 37℃, and 32℃, respectively, for 

enumeration. 

2.3.4. Sample Preparation 

Fresh red beetroot and garlic were purchased from a local retailer, (Hannaford, Old 

Town, ME) prior to processing. Only medium-sized, undamaged, and mold-free beetroots were 

selected for this project. Prior to cubing, the beetroots were submerged in a tub of tap water and 

hand scrubbed to remove any visible soil. The tops and bottoms of the beetroots were removed 

manually before cutting into halves with a clean knife. The beetroots were cubed using a Robot-

coupe (CL 50 series E, Robot-coupe USA. Inc., Ridgeland, MS) and placed in a clean stainless-

steel container. Garlic cloves were peeled and blended with a Supreme Juicer model 6001 

(Acme, Leymone, PA) immediately before addition to beet kvass samples to minimize loss of 

volatile compounds.  

For each sample, 300 g of red beetroot were weighed into each of nine separate sterile 

quart-sized mason jars along with non-iodized pickling salt (Morton Salt Inc., Chicago, IL) and 

blended garlic according to the formulae in Figure 2.1. After placing all the ingredients into the 

jars, deionized water was added to create a total mass of 850 g. The beet kvass samples were 

mixed manually by stirring with a sterile spoon until the pickling salt was completely dissolved.  

After stirring, the samples were inoculated (Section 2.3.5) with target of 10-100 CFU/g of 

each pathogen. The jars were then covered with a silicon airlock lid (Siliware, China), and 

secured with a metal lid ring. The jars were placed in an incubator shaker (Innova 4000, New 

Brunswick Scientific Co., NJ) for 10 minutes at a speed of 100 rpm, at 22°C to ensure uniform 

mixing of inocula. The jars were then incubated in a bacteriological incubator at an average 

temperature of 22°C to maintain a uniform fermentation temperature. 
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When samples achieve the targeted pH, a sterile wire gauze was used to separate the 

solids from the liquid kvass. The liquid kvass was stored in another sterile jar and placed in the 

refrigerator at 4°C for 30 days before subsequent testing. 

2.3.5. Inoculation  

After enumeration, a single colony of each bacterial pathogen was cultured in 10 mL of 

TSB in 15 mL conical centrifuge tubes (Fisher Scientific, Waltham, MA) and incubated at 37℃ 

(E. coli and Salmonella) and 32℃ (L.monocytogenes) for 24 hours. The tubes were centrifuged 

(Eppendorf 5810R, Hauppauge, NY) for 10 minutes at 15.550 x g and washed twice with 0.1% 

peptone. The similar, dual pathogen strains were then combined and diluted to 105 CFU in 1mL 

Figure 2.2. Preparation of beet kvass. Inoculation step was skipped for control samples (n=4)  
a Incubator shaker (Innova 4000, New Brunswick Scientific Co., NJ)  
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of 0.1% peptone, and 0.1mL of the inocula was added into the jars of beet kvass to yield an 

inoculation of approximately 100 CFU/mL. The three bacterial genera were added separately. 

2.3.6. Sample Collection and pH Analysis 

Five mL of beet kvass were collected for pH analysis every 24 - 48 hours, as appropriate. 

First, jars of beet kvass were placed into the incubator shaker set at 100 rpm, for 5 mins before 

sampling to ensure homogeneity of microbiota. Sterile 10 mL Luer-Lok tip syringes (BD, 

Franklin Lakes, NJ) with 3-inch, 12-gauge hypodermic needles (Jorvet, Loveland, CO) were 

used to extract samples through the opening of the silicon top (Figure 2.3). Three milliliters were 

extracted and transferred into 15 mL conical centrifuge tubes for pH measurement. An additional 

1.8 mL were extracted and transferred into 2 mL sterile centrifuge tubes for subsequent DNA 

extraction. 

Figure 2.3. The opening on the silicon fermentation lid used for sample extraction to reduce 
the introduction of oxygen and contamination  
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An Edge Multiparameter pH meter with digital PEI body pH electrode (Hanna 

Instrument, Woonsocket, RI) was used for pH testing and was calibrated with pH 4 and 7 buffer 

solution prior to use on test days. The pH probe was cleaned with deionized water and 70% 

ethanol between samples. 

2.3.7. Pathogen Detection 

2.3.7.1. Enrichment 

When the beet kvass samples achieved the target pH of ≤ 4.0, the presence of both 

healthy and injured bacterial cells were assessed for all inoculated pathogens. Kvass samples 

were strained to remove cubed beetroot. Twenty-five milliliters of the beet kvass were 

transferred into a stomacher bag along with 225 mL of multipathogen selective enrichment broth 

(SEL, a synthetic medium) for simultaneous detection of injured Salmonella, STEC, and Listeria 

cells (Suo & Wang, 2013). The composition of SEL was replicated from Kim and Bhunia (2008) 

as seen in Table 2.1. All antibiotics were diluted and filter sterilized with 0.25µm syringe filters 

(Midwest Scientific, MO). Antibiotics (Table 2.1) were added after 4 h of incubation at 37°C, 

and samples were left to incubate for another 16 h at 37°C. Separate enrichments were used after 

the first negative PCR test to validate the results. Enrichment with Enterobactericeae enrichment 

broth (EEB; Himedia Laboratories, Mumbai, India) at 37°C for the recovery of STEC and 

Salmonella, and buffered listeria enrichment broth (BLEB) were used at 32°C for the recovery of 

L. monocytogenes. The enrichment procedure is repeated with samples after 30 days of storage. 

Table 2.1. Composition of SEL (Salmonella, Escherichia, Listeria) broth  

Ingredients  Amount (g/L)  Comment  

BLEB a 48.0  

Acriflavine b 0.01 Newly added; 0.5% (w/v) stock solutions in distilled water 
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Table 2.1. Continued 

Cycloheximide c 0.05 Newly added; 1.0% (w/v) stock solution in 40% (v/v) 
solution of ethanol in water 

Fosfomycin d 0.05 Newly added; 1.0% (w/v) stock solution in distilled water 

Nalidixic Acid e 0.04 Newly added; 0.5% (w/v) stock solutions in distilled water 

a  Buffered listeria enrichment broth, BD Difco, Sparks, MD 

b Acriflavine HCl, Sigma-Aldrich, St Louis, MO 

c Cycloheximide, Millipore, Burlington, MA 

d Fosfomycin disodium, Alfa Aesar, Haverhill, MA 
e Nalidixic Acid (sodium salt), Sigma-Aldrich, St Louis, MO 
Adapted from Kim and Bhunia (2008) 

2.3.7.2. DNA Extraction  

 The extraction of genomic DNA was achieved using the Qiagen DNeasy PowerFood 

Microbial Kit (Hilden, Germany). After extraction, DNA samples were kept frozen (-20°C) prior 

to performing singleplex real-time PCR.   

2.3.7.3. Real-time Polymerase Chain Reaction 

The method of detection used in this experiment is based on a method developed by 

Bundidamorn et al. (2018) with the following modifications. Singleplex real-time PCR and 

melting temperature curve analysis were performed on a QuantStudio 3 Real-Time PCR System 

(Thermo Fisher Scientific, USA). The reaction mixture for each real-time PCR tube is listed in 

Table 2.2.  

Table 2.2. Reaction setup  

Component Volume (μL) 

1X Precision Melt Supermix 5 

Forward primer a 1 

Reverse primer a 1 
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Table 2.2 Continued 

Nuclease-Free water  2 

Sample DNA  1 

Final Volume 10 

a Final concentration of 0.1μM, 0.2μM, 0.4μM for invA, stx1,2, and hlyA, respectively  

Precision Melt Supermix with EvaGreen (BIO-RAD, Hercules, CA, USA), one set of 

specific forward and reverse primers, and nuclease-free water (Thermo Fisher Scientific, 

Waltham, MA) were combined and transferred into a thin walled PCR tube. Then 1 μL of DNA 

samples were added. The specific primers used for pathogen detection are listed in Table 2.3. 

Negative control samples were included in each run to minimize the likelihood of false-negative 

results. The following PCR cycle program was used: 95 °C for 2 min, followed by 30 cycles of 

95 °C for 10 s, 57 °C for 30 s, and 72 °C for 30 s. Fluorescence melting temperature curve 

analysis was performed from 60 to 95 °C with gradual temperature increments (the slowest 

possible ramp rate) of 0.1 °C/s to determine peak fluorescence change over time. 
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 For the optimization and specificity of singleplex real-time PCR, each bacterial 

pathogen (100 CFU) was enriched in SEL for 24 hours then extracted for the testing of 

target pathogens. To determine the survival of bacterial pathogens, singleplex real-time 

PCR and melt curve analysis were performed for each replicate after fermentation and 

after storage. 

2.3.8. Statistical Analyses 

Data were analyzed using R studio (Version 1.1.456, Boston, MA). Logistic regression 

test for binomial data was used to assess the significant (p < 0.05) differences among treatments 

for the presence and absence of target pathogens. One-way ANOVA was used to determine 

significant differences (p < 0.05) among treatments for pH levels. 

  

Table 2.3: Target genes and primers used for the singleplex real-time PCR detection of 
Salmonella spp., STEC, and L. monocytogenes  

Pathogen Target gene  Primer 
a 

Sequence (5’→3’) 

STEC stx1, stx2 b F TTGARCGAAATAATTTATATGTG  

R ACGAAATCCCCTCTGTATCTGCC  

Salmonella  invA F TTGARCGAAATAATTTATATGTG  

R ACGAAATCCCCTCTGTATCTGCC  

L. monocytogenes  hlyA F GGGAAATCTGTCTCAGGTGATGT  

R CGATGATTTGAACTTCATCTTTTGC  

a F, forward; R, reverse 
b Stx1, 2- F is degenerate primer, R = A or G  
Adapted from Bundidamorn et al. (2018) 
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2.4.  Results 

2.4.1. pH 

The average time for all beet kvass treatments to achieve the target pH of 4.0 or lower 

was 2.83 days (Table 2.4.). Salt concentration did not significantly contribute to the acidification 

of the beet kvass samples. However, the presence of garlic, regardless of the level, significantly 

(p < 0.05) decreased the fermentation time to an average of 2.13 days. The average starting pH 

was 5.54 ± 0.13. The average pH after 30 days of refrigerated storage was 3.74 ± 0.08. Samples 

with the addition of garlic, regardless of the level, had a significantly (p < 0.05) lower pH post-

storage (pH 3.70 ± 0.08). No significant interactions were found between salt and garlic. 

  

Table 2.4. The average pH levels of beet kvass samples (n=36) 

Salt 
concentration % 

Garlic 
concentration % 

pH 

End of Production End of Storage 

0.5 0 4.01 ± 0.02 3.83 ± 0.07 

0.5 3.95 ± 0.05 3.73 ± 0.08 

1.0 3.97 ± 0.05 3.76 ± 0.03 

1.5 0 3.96  ± 0.06 3.82 ± 0.08 

0.5 3.91 ± 0.09 3.68 ± 0.01 

1.0 3.87 ± 0.07 3.70 ± 0.05 

2.5 0 3.97 ± 0.07 3.82 ± 0.07 

0.5 3.84 ± 0.03 3.69 ± 0.04 

1.0 3.87 ± 0.05 3.66 ± 0.06 
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2.4.2. Pathogen Detection 

2.4.2.1. Primer Specificity and Optimization 

To validate the specificity of the primers and selective enrichment media chosen, low 

levels of inoculum (100 CFU) were enriched in SEL, then, singleplex and multiplex real-time 

PCR assays were performed. The genes targeted by the species-specific primers can be 

distinguished by their melting curves. The melting curve was obtained during PCR by 

monitoring the fluorescence of dsDNA-binding dyes as the temperature increased through the 

denaturation temperature. The melting curve temperature, Tm, is the peak of the negative 

derivative of fluorescence with respect to temperature (-dF/dT vs T) as seen in Figure 2.4. Due to 

the close melting temperature of the target genes invA and stx1,2, the melting curve analysis was 

unable to discriminate between those peaks in multiplex real-time PCR. Therefore singleplex 

real-time PCR was used for subsequent testings. The presence of the target pathogens were 

determined by Tm of target genes along with the exponential amplification before 25 annealing 

cycles. 
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Figure 2.4. Melting temperature curve analysis for the detection of E. coli O26:H11 and E. 
coli O111:H8 (STEC), Salmonella Enteritidis and Salmonella Typhimurium (S), and L. 
monocytogenes 4b and L. monocytogenes 1/2a (L). Peaks obtained from target genes: STEC 
(stx1 and stx2; Tm = 83.11 ± 0.15℃), Salmonella (InvA; Tm = 85.35 ± 0.16℃), and L. 
monocytogenes (hlyA; Tm = 77.74 ± 0.21℃) 
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2.4.2.2. Survival of Shiga Toxin-Producing Escherichia coli (STEC) 

The number of samples with STEC recovery is recorded in Table 2.5. During beet kvass 

production, salt and garlic concentrations were observed to have no significant (p ≥ 0.05) effect 

on the survival of STEC. However, salt concentration had a significant (p < 0.05) effect on the 

survival of STEC during storage, as a higher salt concentration was associated with a higher 

survival rate after 30 days of storage. 

Overall, salt concentration had a significant effect during storage. There was a decrease 

in survival during production (81%) and after storage (64%), but the difference in survival 

between those two days was not statistically significantly different from each other. No 

significant interactions were found between salt and garlic. 

 

Table 2.5. Beet kvass samples with STEC bacteria that were 
recovered by enrichment and qPCR (n = 36) 

Salt 
Concentration 

% 

Garlic 
concentration 

% 

No. of isolates recovereda  

Production Storage 

0.5 0 2/4 3/4 

0.5 4/4 1/4 

1.0 3/4 1/4 

1.5 0 3/4 2/4 

0.5 4/4 2/4 

1.0 3/4 3/4 

2.5 0 4/4 3/4 

0.5 4/4 4/4 

1.0 2/4 4/4 
a Values are number of positive samples/number of replications 
Detection limit 1 CFU/g 
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2.4.2.3. Survival of Salmonella 

The number of samples with Salmonella recovery is shown in Table 2.6. Like STEC, salt 

and garlic treatments had no significant (p ≥ 0.05) effect on the survival of Salmonella during 

beet kvass production and after storage. However, no Salmonella was recovered from the 1.5% 

salt treatment after storage, though this trend was not observed in other salt concentrations. A 

significant (p < 0.05) decrease of 77% in survival rate was observed after storage. There was a 

recovery rate of 72% (26 of 36 samples) post-fermentation and only 17% (6 of 36 samples) 

following storage. Overall, the higher the beet kvass pH level, regardless of treatment, resulted in 

a higher likelihood of survival. No significant interactions were found between salt and garlic. 

 

  

Table 2.6. Beet kvass samples with Salmonella bacteria that were 
recovered by enrichment and qPCR (n = 36) 

Salt 
Concentration 

% 

Garlic 
concentration 

% 

No. of isolates recovereda  

Production Storage 

0.5 0 1/4 1/4 

0.5 3/4 1/4 

1.0 4/4 1/4 

1.5 0 2/3 0/4 

0.5 3/4 0/4 

1.0 2/4 0/4 

2.5 0 4/4 0/4 

0.5 3/4 2/4 

1.0 4/4 1/4 
a Values are number of positive samples/number of replications 
Detection limit 1 CFU/g 
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2.4.2.4. Survival of Listeria monocytogenes 

The number of samples with L. monocytogenes recovery is shown in Table 2.7. Similar to 

STEC and Salmonella, salt and garlic treatments had no significant (p ≥ 0.05) effect in the 

survival of L. monocytogenes during beet kvass production and after storage. L. monocytogenes 

had a survival rate of 78% (28 of 36 samples) after fermentation, and a decreased survival rate of 

31% (11 of 36 samples) after storage. A significant (p < 0.05) decrease of 61% in survival rate 

was observed from production to storage. Like the other bacteria used in this analysis, overall, a 

higher product pH level was associated with higher survival rate. No significant interactions 

were found between salt and garlic. 

Table 2.7. Beet kvass samples with L. monocytogenes bacteria that 
were recovered by enrichment and qPCR (n = 36) 

Salt 
Concentration 

% 

Garlic 
concentration 

% 

No. of isolates recovereda  

Production Storage 

0.5 0 3/4 1/4 

0.5 4/4 1/4 

1.0 3/4 1/4 

1.5 0 3/4 1/4 

0.5 3/4 1/4 

1.0 3/4 2/4 

2.5 0 3/4 0/4 

0.5 3/4 2/4 

1.0 3/4 2/4 
a Values are number of positive samples/number of replications 
Detection limit 1 CFU/g 
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2.5. Discussions 

2.5.1. pH  

Salt concentration did not affect the acidification of the beet kvass in this study. This 

trend was previously reported in a study which assessed the impact of salt reduction in fermented 

sauerkraut (Khanna, 2019). The addition of garlic slightly reduced the fermentation time, and 

resulted in lower pH products after storage. Although it was not examined in this study, garlic 

was observed to contribute to higher populations of lactic acid bacteria in fermented cabbage 

kimchi, and served as a carbohydrate source for LAB in a fermented fish product (Lim et al., 

2015; Paludan-Müller et al., 1999). Hence, it is possible the addition of crushed garlic served the 

same role in this study, or that its antimicrobial activity contributed to the suppression of 

competing microflora.  

2.5.2. Pathogen Detection 

2.5.2.1. Shiga Toxin-Producing Escherichia coli (STEC) 

The determination of the survival of bacterial pathogens is based on the presence or 

absence of both injured and healthy cells. Due to the potential recovery and possibility of 

becoming viable in a favorable environment, it is important to analyze both injured cells and 

healthy counterparts (Wu, 2008). Therefore, samples were first treated with an enrichment before 

DNA extraction and PCR. This challenge study was conducted with low levels of inoculum (10 - 

100 CFU/g) due to the expected low level of pathogens on commercial vegetables, as well as the 

low infectious dose of bacterial pathogens STEC (< 10 CFU/g), Salmonella (10 - 100 CFU/g), 

and L. monocytogenes (unknown) (Kapperud et al., 1990; NACMCF, 1991; Hara-Kudo & 

Takatori, 2011). Therefore, the presence of the target bacterial pathogens, regardless of quantity, 

was considered sufficient to be considered a safety risk to consumers.  
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In this study, garlic did not have any effects on the survival of pathogens despite 

possessing antibacterial activity. This could be a result of the highly volatile nature of allicin, the 

antibacterial chemical found in garlic (Fujisawa et al., 2008). Besides its instability, allicin is 

often used in the form of a garlic extract, rather than crushed garlic. Therefore, the concentration 

of allicin present in crushed garlic may not be as effective in fermented beet kvass. 

Acid stress during fermentation allows H+ ions to cross bacterial cell membranes, 

creating a more acidic intracellular pH level (Booth, 1985). This low intracellular pH 

environment leads to an altered cell membrane structure with decreased activity of pH-sensitive 

enzymes (Davidson & Taylor, 2007). Likewise, undissociated organic acids can diffuse across 

the bacterial cell membranes and lower the internal pH upon dissociation in the cytoplasm. The 

pH equilibrium shift, which is common in fermented vegetables such as beet kvass, ultimately 

results in acid injury (Wesche et al., 2009). 

A higher survival rate of STEC at higher salt concentration was observed, despite the 

acidic conditions. Studies have investigated the cross-protection that NaCl may provide to E. coli  

against acid stress. Chapman et al. (2006) reported that the coupling of Na+ import to H+ export 

permits STEC to maintain its internal pH, and allows for a longer survival period in acetic acid-

based sauces. The researchers also found that water loss from the cytoplasm induced by salt 

resulted in a reduced cytoplasmic cell volume. This decrease in volume is believed to effectively 

concentrate the cytoplasmic constituents, and thereby raise the internal pH of the cell, allowing 

STEC to survive in an acidic environment, such as fermented beet kvass. This observation is 

further supported by Lee and Kang (2016) who observed an increase in the cytoplasmic pH of 

E.coli O157:H7 after the addition of salt in laboratory media, due to a perceived enhanced 
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balance of cytoplasm pH following exposure to organic acids. E. coli can use NaCl to counteract 

acidification of the cytoplasm by organic acids (Casey & Condon, 2002). 

These studies offer potential explanations for why the survival rate of STEC at 2.5% 

NaCl beet kvass treatments did not significantly decrease after 30 days of storage, despite the 

low pH (3.72 ± 0.09) and low temperature (4℃). The ability of STEC to tolerate acidic 

environments has led to previous E. coli O157:H7 outbreaks, which include the consumption of 

contaminated apple cider (pH 3.7 - 3.9) and fermented dry salami (pH 5.0) (Besser et al., 1993; 

CDC, 1995). Therefore, the potential survival of STEC in fermented vegetable products, such as 

beet kvass, may present health risks to consumers if it present. Moreover, this pathogen is known 

to be transmitted by contaminated soil, having caused several high profile outbreaks associated 

with consumption of uncooked produce such as bagged salad, romaine lettuce, and spinach 

(CDC, 2006; Marder et al., 2014; Bottichio et al., 2019). 

2.5.2.2. Salmonella 

Our results show that Salmonella was the pathogen most adversely affected by the 

increase in acidity during storage compared to the other two pathogens we studied. This was also 

observed in a previous study that evaluated the effect of different pH conditions on the acid 

resistance of L. monocytogenes, E.coli O157:H7, and S. Typhimurium. When subjected to 

acidified laboratory media (pH 3.5), S. Typhimurium was significantly more sensitive to the acid 

treatment than the other two foodborne pathogens (Koutsoumanis & Sofos, 2004). Similarly, S. 

Enteritidis had the shortest survival (21 days) period in fermented green table olives brine (pH 

4.2; 6% NaCl), compared to E.coli O157:H7 (27 days) and L. monocytogenes (31 days) (Argyri 

et al., 2013).  



52 
 

However, Salmonella was still recovered from several beet kvass samples despite the low 

acid and cold storage. This finding was also observed in other fermented vegetable products. For 

example, S. Enteritidis was able to survive in an environment of pH 4.2 and high salt 

concentration (6.0%) for up to 21 days of storage in fermented green table olives in brine (Argyri 

et al., 2013). Salmonella Typhimurium was also capable of surviving low pH levels (pH 3.8 - 

3.9) in spontaneously fermented cauliflower (8% w/v NaCl). Although this study did not explore 

the effect of storage at low temperatures, the authors thought that survival was facilitated by the 

gradual decrease of pH, from pH 6.05 to pH 3.8 over 12 days, which could have activated an 

acid adaptive response (Paramithiotis et al., 2012). 

Although Salmonella was proven to have higher sensitivity to acid, salt, and low 

temperature storage in this study, compared to the other two pathogens we studied, Salmonella 

still persisted and survived in our beet kvass samples. Hence, it is crucial that proper hygiene and 

sanitation practices are followed during processing. After 30 days of refrigerated storage, the 

survival of Salmonella was reduced significantly, with no detection in the 1.5% salt treatments, 

but viable cells were detected in other treatments. This could imply the higher salt concentration 

(2.5%) may have induced cross protective responses in Salmonella, while lower salt 

concentrations did not. However, Salmonella still survived in the 0.5% salt samples. The 

possible explanation for this observation is that 0.5% NaCl is too low to reduce the survival of 

Salmonella despite the low pH levels. Therefore, it is important to conduct further studies which 

are aimed to observe the protective response of Salmonella.  

2.5.2.3.  Listeria monocytogenes  

Listeria monocytogenes presents many challenges to the food industry due to its wide 

distribution in the environment and resistance to diverse environmental conditions, including 
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being capable of growth at temperatures as low as ‐0.4°C (Walker et al., 1990; Ferreira et al., 

2014). Listeria monocytogenes has been shown to survive at pH values as low as 3.8 (Sorrells et 

al., 1989). However, in a fermented food application, lactic acid produced by lactic acid bacteria 

(LAB) during fermentation may inhibit the growth or survival of L. monocytogenes. Conner et 

al. (1986) observed no viable cells of L. monocytogenes in salted cabbage juice (1.5 - 4.0% 

NaCl) after 15 days of incubation at 30 ℃, and cabbage juice supplemented with lactic acid (pH 

< 4.2) had a complete inactivation of L. monocytogenes after 8 days of incubation at 5℃. 

Although the study did not explore the combined effects of salt, pH, and temperature, it showed 

the potential for inactivation of L. monocytogenes under conditions such as low salt, and high 

acid with low temperature. Moreover, in a study of low salt sauerkraut (1.0 - 2.5% NaCl; pH < 

3.70), L. monocytogenes population decreased over time and was absent after 6 days of 

fermentation and after 1 week of refrigerated storage (Khanna, 2019).  

Nonetheless, this pathogen has demonstrated survival in naturally-fermented black olives 

(pH 3.95; NaCl 6.05%) (Grounta et al., 2013). In this study, survival in beet kvass samples 

occurred in the lowest salt treatment (0.5% NaCl), and at a pH level of ≤ 4.0, despite 30 days of 

refrigerated storage. This could be the result of a slightly higher pH level (pH 3.74), compared to 

other studies on fermented vegetables (pH 3.5 - 3.7), along with this organism’s natural tolerance 

for low temperature (as a psychrotroph), which was also observed in the study by Conner et al. 

(1986). The survival of this pathogen is a safety risk specifically due to the unknown infectious 

dose of L. monocytogenes and the severity of the resulting illness. Listeriosis in animal models 

has occurred with doses as high as 109 and as low as 10 cells (NACMCF, 1991). Therefore, the 

complete inactivation of this pathogen is necessary, and it is required by to be absent in all ready-

to-eat foods (USDA-FSIS, 2014).  
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Raw vegetables used for the production of fermented vegetable products could be 

contaminated at the farm and may serve as vehicles for transmission of pathogenic bacteria to 

consumers (Berger et al., 2010). Moreover, there is potential for foodborne pathogens, such as L. 

monocytogenes and STEC, to persist and proliferate on vegetable leaves and roots, such as red 

beetroot used to prepare beet kvass (Feng et al., 2014; Kljujev et al., 2018). Therefore, it is 

important to consider proper hygiene and sanitation practices for commercial processors and 

home fermenters, which include adequate cleaning of utensils and food contact surfaces, and 

proper washing of produce when producing fermented products. Good manufacturing and 

sanitation practices help to prevent or reduce the risk of pathogenic bacteria from contaminating 

fermented food products and reducing the risk of foodborne illness. 

A possible approach to decreasing the safety risk of bacterial pathogens is by applying a 

sanitizer wash on raw red beetroots before production. The usage of sodium hypochlorite at 50 - 

200 ppm concentration with a contact time of 1 - 2 mins have been used to sanitize produce 

surfaces (Parish et al., 2003). Although this method would decrease the load of native LAB on 

the surface of raw beetroot and increase fermentation time, spontaneous fermentation would 

occur due to the favorable environment provided by the formulation of beet kvass. 

2.6.  Conclusions 

In this study, neither salt concentration (0.5%, 1.5%, and 2.5% NaCl) nor presence or 

concentration of garlic (0.0%, 0.5%, and 1.0 %) significantly affected the survival of STEC, 

Salmonella, or L. monocytogenes during the fermentation of spontaneously fermented beet kvass. 

Additionally, our study also analyzed the survival of these pathogens after 30 days of 

refrigerated (4℃) storage. Among the three pathogenic bacteria, STEC was the most acid 

resistant, with an increased resistance with the highest salt concentration during storage. 
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Refrigerated storage did not have a significant effect on the STEC, although there was a 21% 

decrease in survival from day 0 (81%) to storage day 30 (64%). These results indicate a potential 

risk of foodborne illness, irrespective of salt level, primarily because of the low infectious dose 

of STEC.  

In contrast, Salmonella was the least acid resistant, with a 72% (26 of 36 samples) 

survival rate during production, and 17% (6 of 36 samples) following storage. Complete 

eradication of Salmonella after refrigerated storage was observed in beet kvass prepared with 

1.5% NaCl. L. monocytogenes had a survival rate of 78% (28 of 36 samples) after fermentation, 

and a decreased survival rate of 31% (11 of 36 samples) following storage.  

Overall, these results indicate that although fermented foods are typically considered 

safe, it is crucial to weigh the health benefits against the risks of foodborne illness as a result of 

their consumption. Based on this study, there is a potential risk for STEC, Salmonella, and L. 

monocytogenes survival during fermentation of beet kvass, regardless of low salt concentrations 

or garlic concentrations. These findings reinforce how important proper hygiene and sanitation 

practices must be followed to avoid contamination of beet kvass with pathogenic bacteria that 

may be present in raw materials or result from cross-contamination from the environment. 

Though survival of all pathogens decreased after 30 days of refrigerated storage, the survival 

rates were still considerably high, and it is not advised that fermentation be considered a sole 

method to ensure product safety. Therefore, to decrease the bacterial pathogen safety risk, it is 

recommended to apply a sanitization step before production. 
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CHAPTER 3 

EFFECTS OF SALT AND GARLIC CONCENTRATION ON THE BIOCHEMICAL 
PROPERTIES OF SPONTANEOUSLY FERMENTED BEET KVASS DURING 

PRODUCTION AND STORAGE 

3.1.  Abstract 

 Fermentation is the process by which carbohydrates are converted into several 

byproducts, including acid, ethanol and/or gas by microorganisms. Often these byproducts result 

in the production of desirable food with unique flavor attributes. This is primarily achieved by 

lactic acid bacteria (LAB), which are organisms that are ubiquitous in the environment. 

Vegetables such as red beetroot are suitable commodities for fermentation, due to availability of 

sugar and nutrient sources to sustain LAB growth. However, this growth may also lead to the 

production of harmful biogenic amines, specifically histamine and tyramine. The present study 

was designed to determine the effects of salt and garlic levels on the production of organic acids, 

sugar, ethanol, and biogenic amines in fermented beet kvass during fermentation and storage. 

Our results indicate that both the salt and garlic concentration have significant effects on organic 

acids and fructose content. The addition of garlic in beet kvass produced samples with lower 

lactic acid, acetic acid, glucose, and fructose content, but higher ethanol levels. This biochemical 

profile suggests that garlic favors the growth of yeast in kvass. Although not explicitly analyzed 

in our study, these observations demonstrate the likely effects of formulation variability on 

microbial diversity among the treatments. Agmatine (< 0.015 mg/mL), putrescine (< 0.018 

mg/mL), tyramine (< 0.018 mg/mL), cadaverine (< 0.011 mg/mL), and histamine (< 0.018 

mg/mL), the targeted biogenic amines analyzed in beet kvass, were all below detection limits, 

regardless of formulation. Therefore, an accumulation of these compounds in a fermented beet 
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kvass beverage during production and after storage is not expected to pose obvious safety risks 

to consumers. 

3.2.  Introduction 

Red beetroot is a root vegetable rich in carbohydrates, protein, micronutrients, and 

several functional constituents that have substantial health-promoting properties. Nutritionally, it 

is known as an important source of natural antioxidants and contains a considerable amount of 

both essential and non-essential amino acids (Nemzer et al., 2011). The vegetable has also been 

associated with a range of health benefits such as lowering hypertension, enhancing exercise 

performance, and benefiting cardiovascular health (Kapil et al., 2015; Jones, 2014; Kapil et al., 

2014). As a result, beetroot-based products are currently under development and have been used 

as health supplements (Morgado et al., 2016; Panghal et al., 2017; Domínguez et al., 2018).  

Lactic acid fermentation of vegetables has been found to improve sensory properties, 

extend shelf life, and increase the bioavailability of nutrients (Tamang et al., 2016; Septembre-

Malaterre et al., 2018). Beet kvass is a fermented vegetable beverage made by infusing red beets 

in water and salt. Given the health implications associated with high salt intake, a recent 

assessment found that 20% (59/295) of surveyed Maine home fermentors feel that making low-

sodium fermented food formulations is very or extremely important to them (Camire et al., 

2019). Salt concentration, fermentation time, and manufacturing process are critical factors 

which affect the bacterial community composition in fermented kimchi (Lee et al., 2017). There 

are currently no previous works which assess the biochemical properties of fermented beet kvass. 

Concentrations of byproducts of fermentation such as organic acids, sugars, and alcohol may 

reveal the microbial dynamics in a fermented product. Therefore, it is important to determine the 
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effects of formulation on the biochemical properties of beet kvass, which may provide initial 

information on the microbial dynamics of this product.  

Biogenic amines (BA) are the byproducts of the metabolism of proteins by LAB and 

other microorganisms that possess the appropriate decarboxylase enzymes. BA are often found 

in fish, fish products, fermented foods, and alcoholic beverages (Doeun et al., 2017). Histamine 

and tyramine specifically have been related to safety risks such as histamine poisoning and 

adverse interaction with monoamine oxidase inhibitors (MAOIs), drugs used for treatment of 

depression (ten Brink et al., 1990; McCabe-Sellers et al., 2006). LAB activity during 

fermentation may lead to accumulation of these compounds, which presents a safety concern for 

consumers of fermented vegetables. Fermented cabbage, for example, was found to have a 

higher tyramine concentration (4.9 mg/100 g) when compared to fresh cabbage (0.3 mg/100 g) 

(Moret et al., 2005). Therefore, it is important to assess the biogenic amines in fermented beet 

kvass.  

Thus, the objective of this study was to analyze the effects of salt concentration and 

inclusion of garlic on the biochemical properties, including fermentable sugars (glucose, fructose 

and sucrose), organic acids (lactic acid and acetic acid), and biogenic amines (agmatine, 

putrescine, tyramine, cadaverine, and histamine), during the production and after storage of 

spontaneously fermented beet kvass. 

3.3. Materials and Methods 

3.3.1. Experimental Design 

Fermented beet kvass was produced at three different NaCl concentrations (0.5%, 1.5%, 

and 2.5% (w/w)) along with three different garlic concentrations (0.0%, 0.5%, and 1.0% (w/w)), 
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in a full factorial design, to determine the effects of  these formulation variables on the organic 

acids, sugars, alcohol, and biogenic amine presence in the finished product. The experiment was 

independently replicated in triplicate. The pH of the samples was tested every 24 - 48 h until 

samples reached the target pH of ≤ 4.0. Aliquots of beet kvass treatments were syringe-filtered 

(see below) and used for subsequent HPLC analyses as described in section 3.3.3.  

3.3.2. Sample Preparation 

Beet kvass samples were prepared as described previously (Section 2.3.4), but without 

inoculation. A summary of the preparation procedures is presented in Figure 3.1.  

 

3.3.3. Sample Collection 

 A total of 7 mL of beet kvass was collected from each sample for pH and biochemical 

analyses. Three milliliters of the extracted sample was transferred into 15 mL sterile conical 

Figure 3.1. Beet kvass preparation steps (n= 3)  
a Incubator shaker (Innova 4000, New Brunswick Scientific Co., NJ)  
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centrifuge tubes for pH measurement. The remaining 4 mL were filtered with a 0.45µm nylon 

syringe filter (MDI Membrane, Harrisburg, PA), evenly divided into two separate 2 mL sterile 

centrifuge tubes and stored at -80℃ for subsequent biochemical analyses. 

3.3.4. pH Analysis 

 pH analysis was repeated in accordance with section 2.3.7. Once the samples achieved 

the targeted pH of 4.0 or lower, samples were strained. The kvass was transferred into a clean 1-

quart mason jar and stored under refrigeration (4℃) for 30 days. After 30 days of storage the 

testing was repeated. 

3.3.5. High Performance Liquid Chromatography (HPLC) Analyses 

3.3.5.1. Chemicals 

The chemicals used for preparation of the standard stock solutions are listed as follows: 

D- Fructose (Specturm, Gardena, CA), glucose, sucrose, putrescine, agmatine, tyramine, 

cadaverine, DL-histamine (all purchased from Sigma, St Louis, MO), acetic acid and lactic acid 

(Fisher Scientific, PA), and ethyl alcohol 200-proof (Pharmco, Brookfield, CT). 

3.3.5.2. Equipment 

An Agilent Technologies (Santa Clara, CA) model 1100/1200 HPLC system with a 

Agilent Technologies degasser (1100 series), thermostatted column compartment (1200 series), 

refractive index detector (RID) (1200 series), and fluorescence detector (FLD) (1100 series) 

were used for this study. The HPLC system also included a 1100 series pump and autosampler. 

To obtain data readings, a Dell Optiflexx 755 formatted with Windows XP Professional, version 

5.1.2600 was used with this system. The system was controlled byt and data collected using 

ChemStation Software for LC by 3D Systems, version 8.0401(481) (Agilent Technologies). 
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3.3.5.3. Standard Preparation 

For HPLC calibration and performance evaluation, sugar standard solutions (fructose, 

glucose, and sucrose) and organic acids (acetic and lactic acid) were prepared by diluting the 

appropriate weight of each standard in 0.005N H2SO4 (mobile phase). Biogenic amine 

(agmatine, putrescine, tyramine, cadaverine, and histamine) standards were prepared by diluting 

as appropriate in HPLC grade water, then applying the Waters AccQ ultra derivatization kit 

(Waters, MA, USA). A 3-point standard curve was produced for each of the targeted analytes. 

3.3.5.4. Sample Preparation 

All kvass samples were thawed at 4°C overnight prior to analyses. Using a Pasteur 

pipette, ~ 1 mL of thawed sample was transferred into a small sample vial for HPLC analysis of 

sugars, organic acid, and alcohols. A separate set of samples were derivatized for biogenic 

amines analysis with amino acid derivatization kit. Each peak was integrated to determine peak 

area, and analyte concentrations were calculated by comparing sample/standard area ratios. 

3.3.5.5. Chromatography Conditions 

 A refractive index detector (RID; Agilent Technologies 1200 Series) was used in this 

study for the analysis of organic acids, sugars, and alcohol. A flow rate of 0.6 mL/min with a run 

time of 25 minutes was used and 20 μL of sample or standards were injected into the system. The 

mobile phase was 0.005N H2SO4 dissolved in HPLC-grade water. The column used was a Hi-

Plex, 300 x 6.5 mm with a 5 x 3 Hi-Plex H guard column (Agilent Technologies) operated at 

35°C. Triplicate readings were averaged, and the concentration of targeted chemicals were 

reported in mg/mL.  

 A FLD (Fluorescence Detector, Agilent Technologies 1100/1200) was used to analyze 

the biogenic amine composition of the samples. A flow rate of 1.5 mL/min with a run time of 45 
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min was used and 10 μL of both sample and standards were injected into the system. The mobile 

phase was AccQ-Tag Eluent A (Waters, Milford, MA) diluted with HPLC-grade water according 

to manufacturer instructions. An AccQ-Tag Column (Waters, Milford, MA) operated at 37°C 

was also used. Triplicate readings were averaged, and the concentration of targeted chemicals 

were reported in mg/mL.  

3.3.6. Statistical Analyses 

 Data were analyzed using R studio (Version 1.1.456, Boston, MA). The normality of the 

variables was assessed with Shapiro-Wilk normality test. When the variables were not found to 

be normal, Q-Q plot was used to determine the outliers. Two outliers were removed from 

variables (glucose, sucrose, fructose, ethanol) before any further statistical testing. One-way 

analysis of variance (ANOVA) was conducted to determine significant differences among salt 

and garlic interaction, at the start of fermentation (sucrose only), post-production, and after 30 

days of storage, on observations and increases in metabolites. Tukey’s Honest Significant 

Difference (HSD) test was selected for post-hoc analyses to determine significant differences 

among means. A significance level of p < 0.05 was chosen for all statistical analyses.  

3.4.  Results 

3.4.1. pH  

The average pH of all samples at the start of production was 5.61 ± 0.18. The pH of the 

samples decreased as they fermented yielding an average pH of 3.93 ± 0.07 at the end of 

fermentation. The post-storage samples had a significantly (p < 0.001) lower pH of 3.76 ± 0.05, 

compared to the samples post-fermentation. Salt concentration did not have a significant effect 

on the acidification of beet kvass.  
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Garlic concentration had a significant effect (p < 0.05) on the lactic acid to acetic acid 

ratio in the beet kvass samples. Samples with no garlic, in all salt levels, had a significantly 

lower lactic:acetic acid ratio compared to the samples with garlic, regardless of levels. Garlic 

concentration also had a significant effect (p < 0.05) on the days needed to complete the 

fermentation (defined as reaching pH ≤ 4.0). The addition of garlic, regardless of level, 

decreased the total time, from an average of 4.11 ± 0.78 days to 2.67 ± 0.97 days, as seen in 

Table 3.1. No significant interactions were found between salt and garlic concentrations. 

Table 3.1. The average fermentation time and acid ratio for beet kvass 
samples at the end of fermentation  
Garlic (%) Salt (%) Time (Days)  Acid ratio 

(Lactic:Acetic acid) 

0 0.5 4.0 ± 1.0a 5.4 ± 1.0a 

1.5 4.0 ± 1.0a 5.6 ± 1.3a 

2.5 4.3 ± 0.6a 5.2 ± 0.9a 

0.5 0.5 2.7 ± 1.2b 6.8 ± 1.4b 

1.5 2.7 ± 1.2b 6.9 ± 1.0b 

2.5 2.7 ± 1.2b 7.7 ± 1.3b 

1.0 0.5 2.7 ± 1.2b 7.1 ± 1.3b 

1.5 2.7 ± 1.2b 7.6 ± 0.1b 

2.5 2.7 ± 1.2b 8.7 ± 0.9b 

n =3, end of fermentation defined as achievement of pH ≤  4.0. 
Superscripts indicate significant differences across treatments within 
column 

 

3.4.2. Biochemical Analysis 

3.4.2.1. Standards 

Three-point standard curves were prepared for each targeted compound. The retention 

time along with the line equation for each target compound are shown in Tables 3.2 and 3.3. 
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Table 3.2. Retention times and response curves of organic acid, sugar, and alcohol standards  

Target compound Retention time (mins) Response curve  

Lactic Acid 10.26 𝑦 = 142151𝑥 + 977.27 

Acetic Acid  12.12 𝑦 = 293362𝑥 − 1593.4 

Glucose 7.43 𝑦 = 315086𝑥 − 22967 

Fructose  8.02 𝑦 = 310488𝑥 − 21972 

Sucrose  6.49 𝑦 = 312012𝑥 − 10930 

Ethanol 15.9 𝑦 = 126986𝑥 + 2480.6 

Based on three point standard curve 

 
Table 3.3. Retention times and response curves of selected biogenic amines  

Target compound Retention time (mins) Response curve  

Agmatine 22.90 𝑦 = 30605𝑥 − 392.13 

Putrescine  31.87 𝑦 = 67123𝑥 − 769.28 

Tyramine 30.41 𝑦 = 23406𝑥 − 731.04 

Cadaverine 32.53 𝑦 = 23470𝑥 − 1713.9 

Histamine 20.97 𝑦 = 30849𝑥 − 246.81 

Based on three point standard curve 

 

3.4.2.2. Organic Acids 

The organic acids quantified in this study includes lactic and acetic acids. Time, salt, and 

garlic concentration all had significant (p < 0.05) effects on the lactic acid concentration of beet 

kvass. At the end of beet kvass fermentation, the lactic acid concentration for all samples ranged 

from 0.78 - 3.45 mg/mL, with the 0.5% NaCl (no garlic added) treatment having the highest 

average lactic acid concentration of 2.88 ± 0.28 mg/mL. By the end of refrigerated storage, the 

lactic acid concentration for all samples were higher and ranged from 1.42 - 4.19 mg/mL, with 
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the 0.5% NaCl (1.0% garlic) treatment having the highest average lactic acid level of 3.94 ± 0.28 

mg/mL. Overall, lactic acid concentration was significantly (p < 0.05) lower in the highest salt 

concentration treatment (2.5%), compared to samples with the lowest salt concentration sample 

(0.5%). This trend had a significantly greater effect (p < 0.001) when controlling for garlic (0.5% 

and 1%), indicating a possible interaction between salt and garlic (Figure 3.2). 

 

The lactic acid concentration in samples post-storage was significantly higher (p < 0.001) 

than samples post-fermentation, regardless of treatment. When comparing the increase in the 

lactic acid concentration between treatments over time (Table 3.4), garlic concentration, but not 

salt concentration, had a significant effect. The increase in lactic acid between post-fermentation 

and post-storage samplings was significantly higher (p < 0.05) in samples formulated with 1.5% 

salt and 0.5% garlic, when compared to 1.5% salt and 1% garlic (Table 3.4). 

Figure 3.2. Mean lactic acid concentration (mg/mL) in beet kvass samples at the end of 
fermentation (Day 0; 22℃) and post-refrigerated storage (Day 30; 4℃).  
Error bars denote standard deviation, n = 9, letters above bars indicate significant differences 
across treatments within time  
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Table 3.4. Average increase in organic acids in beet kvass samples 
after 30 days of refrigerated storage 

Salt (%) Garlic (%) Lactic Acid 
(mg/mL ± SD) 

Acetic Acid 
(mg/mL ± SD) 

0.5 0 0.72 ± 0.26 bc 0.14 ± 0.06 de 

0.5 1.39 ± 0.38 ab 0.33 ± 0.09 ab 

1.0 1.12 ± 0.40 ab 0.29 ± 0.11 abc 

1.5 0 0.59 ± 0.19 bc 0.11 ± 0.04 e 

0.5 1.80 ± 0.24 a 0.35 ± 0.10 a 

1.0 1.03 ± 0.48 b 0.24 ± 0.15 abcd 

2.5 0 0.84 ± 0.72 bc 0.22 ± 0.07 e 

0.5 0.86 ± 0.35 bc 0.18 ± 0.09 bcde 

1.0 0.83 ± 0.21 bc 0.18 ± 0.08 bcde 

n = 3, superscripts indicate the significant differences between 
treatments within acid type  

 

Similar to the observed lactic acid trends, time (post-fermentation versus post-storage), 

salt and garlic concentration also had significant effects on the acetic acid concentration in 

samples. At the end of fermentation, the acetic acid concentration in beet kvass ranged from 0.10 

- 0.59 mg/mL, with 0.5% NaCl (no added garlic) beet kvass again having the highest average 

acetic acid level of 0.54 ± 0.05 mg/mL. By the end of refrigerated storage, the acetic acid 

concentration for all samples ranged from 0.18 - 0.81 mg/mL, with the 0.5% NaCl (1.0% garlic) 

treatment having the highest average acetic acid level of 0.70 ± 0.16 mg/mL. Although the 

interaction between salt and garlic was not significant for this beet kvass model, acetic acid 

concentration after storage was significantly (p < 0.05) lower in samples with the higher salt 

concentrations (1.5 and 2.5%), compared to the 0.5% NaCl when treated with 1% garlic, as seen 
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in Figure 3.3. 

 

All beet kvass samples, post-storage, had a significantly (p < 0.05) higher acetic acid 

concentration compared to post-fermentation. This increase in acetic acid concentration over 

time was significantly greater (p < 0.05) in samples treated with garlic (0.5% and 1.0%) than 

samples with no garlic, when controlled for salt concentration (0.5% and 1.5%) (Table 3.4). 

3.4.2.3. Sugars 

The sugars quantified in this study includes sucrose, glucose, and fructose. Sucrose was 

present in all beet kvass samples after production with an average concentration of 2.99 ± 0.59 

mg/mL. By the end of beet kvass fermentation, the sucrose concentration for all samples ranged 

from 0.90 - 18.98 mg/mL, with the 2.5% NaCl (no garlic) treatment having the highest average 

sucrose concentration of 10.08 ± 7.94 mg/mL. By the end of refrigerated storage, the sucrose 

Figure 3.3. Mean acetic acid concentration (mg/mL) in beet kvass samples at the end of 
fermentation (Day 0; 22℃) and post-refrigerated storage (Day 30; 4℃). 
Error bars denote standard deviation, n = 9, letters above bars indicate significant differences 
across treatments within time. 
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concentration for all samples ranged between 0.95 - 16.03 mg/mL, with the 1.5% NaCl (no 

garlic) treatment having the highest average sucrose level of 8.62 ± 6.56 mg/mL. However, two 

outliers were removed from further statistical analyses. The sucrose concentration in all samples 

post-fermentation and post-storage were higher than samples after production. However, no 

significant trends or differences in regards to time (post-fermentation versus post-storage), 

salt, or garlic concentration were observed. 

In contrast, glucose was not detectable (detection limit of 0.07 mg/mL) on production 

day. By the end of beet kvass fermentation, the glucose concentration for all samples ranged 

from 0.07 - 1.66 mg/mL, with the 0.5% NaCl (no garlic) treatment having the highest average 

glucose concentration of 0.92 ± 0.71 mg/mL. By the end of refrigerated storage, the glucose 

concentration for all samples ranged from 0.07 - 1.44 mg/mL, with the 1.5% NaCl (no garlic) 

treatment having the highest average glucose concentration of 0.93 ± 0.30 mg/mL. Glucose 

concentration increased from production day to post-fermentation in the majority of samples, 

however, time did not have a significant effect on glucose levels in beet kvass samples. 

Differences in glucose concentration between day 0 (post-fermentation) and 30 (post-storage) 

were not significantly different within any individual treatment. Garlic concentration did have a 

significant effect (p < 0.001) on the glucose concentration. When samples were controlled for 

salt, those formulated with garlic (0.5% and 1.0%) had significantly lower glucose 

concentrations (Figure 3.4). No significant interaction was found between salt and garlic 

concentration. The change in glucose concentration over time did not differ significantly across 

treatments. The different salt and garlic concentrations did not have an effect on the change of 
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glucose concentration in beet kvass samples. 

  

Contrary to the sucrose results, time (post-fermentation versus post-storage), salt and 

garlic concentration did have a significant effect on sample fructose levels. Fructose was not 

detectable on production day, but by the end of beet kvass fermentation, the fructose 

concentration for all samples ranged from 1.17 - 10.89 mg/mL, with the 0.5% NaCl (no garlic) 

treatment, having the highest average fructose concentration of 7.55 ± 2.90 mg/mL (Figure 3.5). 

By the end of refrigerated storage, the fructose concentration for all samples ranged from 2.05 - 

10.42 mg/mL, with the 0.5% NaCl (1% garlic) treatment, having the highest average fructose 

level of 8.15 ± 2.05 mg/mL. The samples treated with 2.5% salt (0.5% and 1.0% garlic added) 

had a significantly lower fructose concentration, compared to the samples treated with 0.5% salt 

Figure 3.4. Mean glucose concentration (mg/mL) in beet kvass samples. Error bars denote 
standard deviation, n=18, letters above bars indicate significant differences across  garlic 
treatments 
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(no garlic). There was no significant interaction found between salt and garlic. 

 

As the samples fermented, fructose concentration increased in most samples. When 

comparing this increase in fructose levels over time, garlic had a significant effect (Table 3.5). 

Beet kvass samples formulated with garlic (regardless of level), at the lowest salt concentration 

(0.5%), had a significantly higher increase in fructose from post-fermentation to post-storage, 

than samples with no garlic added. 

  

Figure 3.5. Mean fructose concentration (mg/mL) in beet kvass samples at the end of 
fermentation (Day 0; 22℃). Error bars denote standard deviation, n = 9, letters above bars 
indicate significant differences across treatment 
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Table 3.5. Average fructose increase in beet kvass samples 
after 30 days of refrigerated storage  

Salt (%) Garlic (%) Fructose (mg/mL ± SD) 
0.5 0 1.53 ± 0.60* de 

0.5 3.71 ± 1.66 ab 
1.0 3.63 ± 1.95 abc 

1.5 0 1.11 ± 0.52* e 
0.5 3.82 ± 1.10 a 
1.0 2.91 ± 1.47 abcde 

2.5 0 0.99 ± 0.16 e 
0.5 1.81 ± 0.80 bcde 
1.0 1.74± 0.49 bcde 

*n= 2, an outlier was omitted.  
n = 3, superscripts indicate significant differences between 
treatments  

 

3.4.2.4. Alcohol 

Time (post-fermentation versus post-storage) and garlic concentration both had 

significant (p < 0.001) effects on beet kvass ethanol levels, while salt concentration did not have 

a significant effect. By the end of beet kvass fermentation, the ethanol concentration for all 

samples ranged between 0.10 - 0.48%, with the 0.5% NaCl (1% garlic) treatment having the 

highest average ethanol concentration of 0.42 ± 0.04%. By the end of refrigerated storage, the 

ethanol concentration for all samples ranged between 0.16 - 0.66%, with the 0.5% NaCl (1% 

garlic) treatment having the highest average ethanol concentration of 0.63 ± 0.02%. At the end of 

fermentation, when controlling for salt, samples treated with higher garlic concentration (1.0%) 

had significantly higher ethanol concentration, compared to lower (0.5%) and no garlic 

treatments. Over time, the ethanol appeared to accumulate in beet kvass samples, however, the 
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increase in ethanol over time was not significantly different among treatments. 

 

 

3.4.2.5. Biogenic Amines 

The biogenic amines quantified in this study included agmatine, putrescine, tyramine, 

cadaverine, and histamine. All biogenic amines analyzed in the beet kvass samples were below 

the detection limit (Table 3.6) across all treatments. However, a suspected peak of 𝛼-

aminobutyric acid (GABA) was found. Due to the absence of a mixed standard, the 

concentration of GABA was unable to be determined. 

  

Figure 3.6. Mean ethanol concentration (% wt) in beet kvass samples at the end of fermentation 
(Day 0) and post-refrigerated storage (Day 30); n = 9 
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Table 3.6. The detection limit of biogenic amines with HPLC 

Biogenic Amine Concentration (mg/mL) 

Agmatine 1.48E-02 

Putrescine 1.79E-02 

Tyramine 1.75E-02 

Cadaverine 1.11E-02 

Histamine 1.77E-02 

 

3.5. Discussions 

3.5.1. pH 

 Previously published literature has suggested that garlic may either contribute additional 

lactic acid bacteria to the fermented product, and/or act as an additional carbon source for their 

growth (Paludan-Müller et al., 1999; Lim et al., 2015). Garlic decreased the time needed to 

conclude the fermentation period (defined as a pH level ≤ 4.0) of beet kvass. However, due to the 

absence of lactic acid bacteria quantification in the present study, the explicit role of garlic on 

LAB levels is unknown. The acidity of fermented vegetables is mainly the result of lactic (and to 

a lesser extent acetic) acid accumulation, which is produced by the major LAB fermenters 

(Pardali et al., 2017). The average lactic:acetic acid ratio of beet kvass for all treatment after the 

end of fermentation was 7:1, higher than the ratio found in sauerkraut. Several authors have 

reported a target lactic:acetic acid ratio of 4:1 for sauerkraut, indicating the end of fermentation 

of high-quality sauerkraut (Pederson & Albury, 1969; Khanna, 2019). Due to the lack of 

information on fermented beet kvass, more research needs to be completed to determine the ideal 

lactic:acetic acid ratio for a high quality product. 

Despite low storage temperatures, the accumulation of lactic and acetic acid during 

refrigeration (4℃) is indicative of this LAB activity, although it is lower than activity at room 
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temperature. As sugars in beet kvass are being fermented, these LAB continue producing 

metabolites, such as lactic and acetic acids. Therefore, it is unsurprising that our samples after 

storage had a significantly lower pH than the samples prior to refrigerated storage. 

3.5.2.  Biochemical Analysis 

3.5.2.1. Organic Acids 

The soluble sugars in raw red beetroot are mostly comprised of sucrose (91.6%) (Dolores 

Rodrıǵuez-Sevilla et al., 1999). These beetroot sugar results are similar to what Wruss et al. 

(2015) found, with the average total sugar content being 7.75 g/100 g and the vast majority being 

sucrose (94.8%). These sugars act as carbon sources for autochthonous LAB to utilize during 

fermentation. As mentioned from the pH analysis of our samples, the accumulation of lactic and 

acetic acid in fermented vegetables is indicative of the LAB activity in the beet kvass samples. 

When garlic concentration is controlled, the increasing concentration of salt was found to be 

correlated with a decreasing amount of lactic and acetic acid. This observation is similar to work 

conducted by Xiong et al. (2016), which found that higher salinity (2%, 5%, 8%) had a negative 

effect on the lactic acid and acetic acid content of Chinese sauerkraut. They determined that salt 

concentration significantly affected the early stages of fermentation, with 2% salt yielding more 

LAB and its metabolites (lactic and acetic acid) in samples. This negative effect could be a result 

of osmotic stress on lactic acid bacteria at higher salt concentrations. In another study, Guan and 

team (2020) observed this trend when investigating the physicochemical differences between 

two different fermented vegetables, fermented bamboo shoot (Suansun) and Chinese sauerkraut 

(Suancai). The researchers observed the lactic acid and acetic acid content was significantly 

higher in fermented vegetables with lower salinity (0.47% NaCl) compared to fermented 

vegetables with higher salinity (2.12% NaCl). It should be noted that the preparation of these 
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vegetables is a stark contrast from beet kvass preparation due to the ingredient and formulation 

differences. Therefore, salt concentration may be only one of many factors contributing to the 

increased organic acid production.  

Besides salt concentration being a factor affecting organic acid production, garlic played 

an important role in the acidification of beet kvass. Samples treated with garlic, at all salt levels, 

fermented in a shorter time period, in comparison to samples without garlic. However, these 

garlic-treated samples lower amounts of lactic and acetic acid concentrations at similar pH 

levels. This observation suggests there may other organic acids produced that lowered the pH 

levels of the samples such as succinic, propionic, malic acids, that have been found in fermented 

kimchi and soybean products (Shim et al., 2012; Shukla et al., 2010). This further reaffirmed the 

hypothesis that garlic may be a possible factor in modulating the diverse community of 

fermenters.  

3.5.2.2. Sugars 

The sucrose content increased as the beverage fermented, illustrating the release of these 

compounds as the red beetroot was immersed in water over time. The diffusion of sucrose 

through the pores of red beetroot into water is affected by different factors such as time, particle 

size, and temperature. Fick’s second law of diffusion: !"
!#
= 𝐷 !!"

!$!
 , where C is concentration, t is 

time, D is diffusion coefficient, and x is the particle diameter, states the driving force for 

diffusion is the concentration gradient between the particles and solvent. The rate of diffusion 

increases with a larger concentration gradient. This rate can be altered by increasing diffusion 

coefficient D, that is dependent on temperature and material, or reducing the particle diameter, x. 

In a prior study, sugar beets were found to have a diffusion coefficient at room temperature and 1 
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mm particle size of 1.6m%/ sec	× 10&'. This value increases as temperature increases, and so 

would be expected to slow during refrigeration (Gertenbach, 2002).  

When cubed red beetroot is submerged into brine, the major sugar, sucrose, diffuses into 

the solvent. Assuming all the other factors in the system are controlled, the sucrose concentration 

in the red beetroot and brine should achieve equilibrium and eventually be the same. However, 

the data suggest this is not the case. Assuming the total sucrose content in red beetroot is 6.69 

g/100 g (value determined by Dolores Rodrıǵuez-Sevilla et al., 1999), each jar of beet kvass 

should have 20.07 g of sucrose, producing a theoretical value of 23.6 mg/mL of sucrose in each 

sample. However, the sucrose concentration (2.99 ± 0.59 mg/mL) measured in this study is 

significantly lower than the theoretical value. The particle size and surface area of the red 

beetroot are much larger than the 1 mm sized particle Gertenbach (2002) discussed in his book 

chapter. In order to achieve equilibrium, the cubed red beetroot would have to be submerged in 

water for a longer period of time or be cut into smaller sizes. However, due to the removal of 

cubed red beetroot after completing fermentation, sucrose concentration did not achieve 

equilibrium. In addition, sucrose concentration post-fermentation and post-storage were highly 

variable indicating the inconsistent nature of spontaneous fermentation due to the presence of 

lactic acid bacteria, salt, and garlic. 

Salt concentration had a significant effect on glucose and fructose levels. Higher salt 

concentration was associated with higher glucose and fructose levels in samples. However, these 

effects were not as significant as those exerted by garlic. Samples with the addition of garlic had 

lower fructose and glucose levels. This is based on an increase in the breakdown of sucrose into 

glucose and fructose, along with the rapid utilization of the simple sugars, which in turn rapidly 

increases ethanol levels. Although not tested in this study, this observation may indicate the 
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presence of Saccharomyces or other yeasts. One study, which assessed the metabolite changes in 

kimchi, observed a rapid decrease in glucose and fructose concentrations after 30 days of 

fermentation. However, there was no increase in lactate, acetate, or mannitol levels. Glycerol and 

ethanol levels on the other hand were increased throughout fermentation, while the growth of 

Saccharomyces was observed (Jeong et al., 2013), as these metabolite changes are typically 

caused by the growth and metabolism of Saccharomyces (Barnett, 1976; Jeong et al., 2013). 

Although glycerol was not monitored in this experiment, the increase in garlic was associated 

with an increase in ethanol levels, while glucose and fructose levels was simultaneously 

decreased. Similar to the study by Jeong et al. (2013), the results in this experiment indicated the 

possible presence and growth of Saccharomyces. 

3.5.2.3. Alcohol 

The increase in ethanol accumulation in all samples indicated the possible activity of both 

heterofermenters and yeast. Some samples exceeded the regulatory threshold for non-alcoholic 

beverages which is set at less than 0.5% alcohol by volume (FDA, 2005a). Hence, it is important 

for small businesses to monitor the fermentation of beet kvass in order to be compliant with the 

regulations.  It was initially hypothesized that the addition of garlic would decrease microbial 

activity, specifically bacteria and fungi, due to the presence of antimicrobial compounds, 3-

vinyl-1,2-dithiacyclohex-5-ene and 3-vinyl-1,2-dithiacyclohex-4-ene (Chen et al., 2018). 

However, this was not observed in our study. Instead, samples with the addition of garlic had a 

higher ethanol content, lower lactic and acetic acid content, and lower glucose and fructose 

content, when compared to samples prepared without garlic. These observations indicate a 

potentially higher yeast population in garlic treated samples, which may have resulted in the 
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decrease in LAB activity due to competition, as seen in the lower lactic and acetic acid levels of 

those samples. 

3.5.2.4. Biogenic Amines 

The accumulation of biogenic amines is directly proportional to microbial activity due to 

the decarboxylation of amino acids (Halász et al., 1994). Salt, garlic, and storage time were 

thought to have an effect on the LAB activity, which would directly impact the biogenic amine 

formation and accumulation.  However, based on this study, we could not conclude any of the 

effects due to the low amounts of biogenic amines. 

Low levels of biogenic amines have been previously found in fermented vegetables, such 

as sauerkraut and table olives (Tofalo et al., 2012; Majcherczyk & Surówka, 2019). The safety 

limit of histamine (500 mg/kg) was established by the FDA for fish and fishery products based 

on its toxicity (FDA, 2005b). However, there are currently no regulations on biogenic amines in 

fermented vegetables. In this study, biogenic amines were below the detection limit in any of the 

fermented beet kvass samples. Therefore, biogenic amines in fermented beet kvass are not 

expected to pose a safety risk to consumer health. 

The results of this study have demonstrated the potential for the presence of 𝛾-

aminobutyric acid (GABA) in the samples. GABA is a non-protein amino acid that is produced 

by the decarboxylation of glutamic acid. Contrary to the other biogenic amines, GABA is 

considered safe and has the possibility of providing health benefits when ingested, such as blood 

pressure regulation and neurotransmitter inhibition (Diana et al., 2014). In fermented kimchi, 

GABA was produced by naturally present LAB (Jeong et al., 2013). Although not explicitly 

determined in our analysis, the amount of glutamic acid (0.428 g/100 g of edible portion), which 

is the precursor of GABA found in red beetroot, suggests fermented beet kvass may contain 
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levels of GABA and confirmation and quantification of GABA should be the focus in future 

studies (Nemzer et al., 2011).  

3.6. Limitations and Pitfalls 

The values represented in this study may not be exact due to a few things, including the 

improper storage of samples and the 3-point standard curve that did not encompass all the values 

of compounds examined. It is possible due to the extended storage in the refrigerator of certain 

samples, some of the targeted chemicals deteriorated while other continued to accumulate over 

time, creating a system that may not be representative. Specifically, lactic acid fermentation 

could have occurred despite filtration and low temperature storage. Therefore, all samples should 

be filter sterilized with 0.25 µm syringe filters, before frozen storage to improve accuracy. 

However, the results still reflect the biochemical system in each samples due to the 

relative peaks and area identified through HPLC. Therefore, this study should be repeated with a 

5-point standard curve for HPLC analysis using expected concentrations of each compounds to 

obtain more accurate values.  

3.7.  Conclusions 

The results from this study indicate that spontaneously fermented beet kvass can be 

produced successfully at low sodium levels (0.5% - 2.5%). During the fermentation process, a 

sharp decline in pH and an increase in organic acids occurred in all samples, regardless of salt 

and garlic treatments, suggesting adequate growth of lactic acid bacteria. Changes in metabolites 

occurred at different salt and garlic concentrations, as well as at different time points. 

Specifically, the addition of garlic in beet kvass formulations produced samples that reached a 

target pH level more quickly, and were suspected to have a higher yeast population, based on 

these metabolite changes. It is necessary to analyze the microbial succession overtime, to better 
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understand the fermentation kinetics of a fermented beet kvass, and if faster fermentation can 

influence kvass quality characteristics. Lastly, we determined that biogenic amines are not a 

safety risk in fermented beet kvass, based on the formulation used in this study and chemical 

analyses have suggested the possible presence of GABA, a biogenic amine with potential health 

benefits. 

Sensory acceptability is an important component in the formulation of new food 

products. Therefore, the sensory acceptability of beet kvass was assessed in the next chapter to 

determine the ideal salt and garlic concentrations that will produce a product that has the highest 

sensory quality to provide a more complete investigation on beet kvass since the literature is 

lacking on this fermented food product. 
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CHAPTER 4 

EFFECTS OF SALT AND GARLIC CONCENTRATION ON THE SENSORY 

PERCEPTION OF BEET KVASS 

4.1.  Abstract  

The consumer acceptability of a food product is dependent on both customer needs and 

satisfaction (Heldman, 2004). Salt is an important ingredient to successfully produce a fermented 

vegetable product, because it provides flavor and contributes to the creation of an ideal 

environment for fermentation. However, due to the health implications of high salt consumption, 

such as high blood pressure and kidney disease, consumers are urged to decrease dietary salt 

intake (Malta et al., 2018; Nerbass et al., 2015). A recent assessment found that 20% (59/295) of 

Maine home fermentors, value the concept of a low sodium diet, and reported feeling that  

production of low-sodium fermented foods were very or extremely important (Camire et al., 

2019). Beet kvass, a value-added beverage made by infusing red beetroot in salt and water is a 

fermented vegetable product gaining popularity among home fermenters and commercial 

processors (Sarnacki, 2018). Therefore, the present work compared the consumer sensory 

perception, overall liking, and health related claim acceptance of beet kvass formulations 

prepared with varying concentrations of salt and garlic. Specifically, panelists assessed samples 

for color and flavor, intensity of tartness, acidity (vinegar), garlic, salt, and overall product 

acceptability. The results indicated that beet kvass prepared with 1.5% salt and 0.5% garlic had 

the highest overall liking score of 6.12 on a 9-point hedonic scale. Salt concentration was a 

significant deciding factor for the overall acceptance of the beet kvass product. The study 

showed sensory preference for lower salt beet kvass formulations. Inclusion of information on 

the potential health benefits of the product increased panelists’ interest in consuming the product, 



82 
 

indicating that participants may be willing to compromise sensory characteristics for health 

benefits. Therefore, additional work assessing the health mediated effects of this modified beet 

kvass formulation is necessary to maximize product marketability. 

4.2.  Introduction 

Probiotic foods, a sector of the functional food products market, have increased in both 

consumer demand and scientific research interest due to potential health benefits including 

gastroenterology effects associated with their consumption (Cremon et al., 2018; Ljungh & 

Wadström, 2006; Yeung et al., 2008). Beet kvass is a fermented beverage made by infusing 

chopped red beetroot in salt water. Red beetroot consumption has been associated with several 

health benefits such as lowering hypertension, enhancing exercise performance, and improving 

cardiovascular health (Jones, 2014; Kapil et al., 2014; Kapil et al., 2015). Consumer interest in 

beet-containing products as a result of these possible health mediated effects is reflected in the 

growing research initiatives surrounding beetroot-based functional foods and supplements 

(Morgado et al., 2016; Panghal et al., 2017; Wootton-Beard & Ryan, 2011). However, there is 

relatively limited research on the sensory acceptability of beet kvass. 

Salt is a crucial ingredient in the formulation of fermented vegetables. However, high 

sodium intake has been associated with increased blood pressure and kidney disease risk (Malta 

et al., 2018). In 2010, the U.S. Institute of Medicine (IOM) recommended the reduction of 

sodium in processed foods (McGuire, 2010). The 2015-2020 “Dietary Guidelines for 

Americans” suggested 2300 mg as the maximum sodium intake per day (USHHS, 2015). 

Beyond food industry applications, the desire for sodium reduction in the form of salt has also 

been expressed by home cooks as well. A recent assessment found that 20% (59/295) of Maine 

based, home fermenters feel that preparation of low-sodium fermented food products is are very 
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or extremely important (Camire et al., 2019). Therefore, with growing consumer interest in beet 

kvass, it is necessary to evaluate the sensory acceptance of different formulations due to the 

current lack of information and standardization of safe formulations. 

The objectives of this study were to evaluate the sensory characteristics of beet kvass 

prepared with varying salt and garlic concentrations in terms of (i) overall acceptance and (ii) the 

impact of health-related messaging on product acceptability. There is currently no information or 

any previous research to date assessing the consumer acceptability of beet kvass. 

4.3.  Materials and Methods 

4.3.1. Experimental Design 

This study was completed in two parts. First, a survey was conducted to determine the 

demographics of individuals who were interested in fermented products, specifically vegetables, 

in order to gain insights for future educational programming. These results were also leveraged 

in designing the sensory test. Then, a sensory test was carried out to evaluate the acceptability of 

the product prepared with varying salt and garlic concentrations. 

4.3.2.  Survey 

A survey (Appendix A) was conducted to assess consumer habits with regard to the 

making or purchasing fermented products, familiarity with beet kvass, and whether information 

regarding health benefits of fermented foods would affect the perception of the product concept. 

Approval for testing was provided by the University of Maine Institutional Review Board for the 

Protection of Human Subjects (2019-09-15). The survey, which was administered through 

Qualtrics Survey Software (Provo, UT), was active for two weeks to provide sufficient time for 

responses. An informed consent form was displayed on the front page of the survey (Appendix 

B). Survey participants (n = 258) were recruited through postings on social media, mass-emails 
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through University of Maine School of Food and Agriculture, and physical posters displayed on 

the University of Maine campus (Appendices C and D). Individuals with interest in fermented 

foods or who identified as physically active were encouraged to complete the survey to gain 

information on their interests in a sports nutrition fermented product. Participants were 

incentivized to complete the survey by eligibility to enter in a raffle for two gift cards. 

4.3.3. Sample Preparation 

Beet kvass samples were prepared as indicated in section 2.3.4., with the following 

modifications. Four beet kvass formulas (Table 4.1) were prepared and fermented in 1-gallon 

glass jars with air lock jar lids (Figure 4.1) in the University of Maine Commercial Kitchen at 

ambient temperature (between 20°C and 22°C). 

Table 4.1. Beet kvass formulation used for the sensory evaluation  

Treatment  Salt (%) Garlic (%) 

1 1.5 0 

2 1.5 0.5 

3 2.5 0 

4 2.5 0.5 
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All utensils were washed in soapy water and rinsed prior to preparation. Samples were 

prepared 9 days before the testing date to ensure complete fermentation. The conclusion of 

fermentation was defined by achievement of a pH level of 4.0 or less. Kvass pH levels were 

monitored throughout the fermentation period. Following the fermentation period, samples were 

strained into clean 1-gallon jars and held under refrigerated (4°C) storage until testing day. Prior 

to the sensory test, all samples were tested for the presence of foodborne-pathogens (STEC, 

Listeria monocytogenes, and Salmonella) using the procedure previously described in section 

2.3.7. No targeted foodborne pathogens were detected in any of the samples. 

  

Figure 4.1. Samples of fermenting beet kvass in 1-gallon glass jars with airlock lids 
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4.3.4. Sensory Evaluation  

Sensory evaluation was conducted to determine consumer acceptability of beet kvass 

formulations prepared with varying salt and garlic concentrations (Appendix E). SIMS 2000 

Sensory Software (Version 6, Berkeley Heights, NJ) was used to design the questionnaire, 

establish testing, design, and execution. To provide a balanced testing design and avoid potential 

panelist biases, samples were coded with randomized three digit codes which were generated 

using the SIMS Software. Approval for testing was provided by the University of Maine 

Institutional Review Board for the Protection of Human Subjects (2019-11-15). Panelists 

received no training prior to participating in the study. 

Sensory panelists (n = 66) were recruited from both the University of Maine Sensory 

Evaluation Center mailing list and from a pool of willing participants who had previously 

completed the survey (Appendices F & G). Individuals recruited from the mailing list were 

required complete a pre-screening questionnaire to assure eligibility for the sensory test 

(Appendix E&H). The targeted panelists were any individual aged 18 or above, with interest in 

fermented foods, and not allergic to product ingredients. Panelists who completed the sensory 

test were monetarily compensated for their participation in the study.  

Each panelist evaluated samples in private booth (Figure 4.2) at The University of Maine 

Sensory Evaluation Center with positive air flow to prevent any aroma bias from the kitchen. 

Samples were served at 4.0 ± 0.4°C. To confirm panelist consent, participants were asked to read 

an informed consent statement before entering the testing center (Appendix I). The panelists 

answered sensory ballot questions on Hewlett Packard Windows-based Elite Pro tablets 
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(California, US) installed with SIMS 2000 sensory software. 

 

Panelists were first required to answer a series of demographic based questions, 

familiarity with fermented beet kvass, and habits concerning the consumption of fermented 

foods, and were then provided with four approximately 1-oz samples served in 2-oz clear plastic 

cups. Samples were assigned randomly-generated 3-digit codes and presented in a randomized 

order determined by the SIMS software. The samples were delivered simultaneously to panelists 

on beige colored trays with a napkin and plastic cup of spring water (Poland Springs, Poland 

Spring, ME) (Figure 4.3). 

Figure 4.2. Panelists in designated booths at the sensory evaluation center  
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Each of the four samples was evaluated for garlic flavor, saltiness, tartness and vinegar 

flavor on a five point just-about-right (JAR) scale, while color and overall liking attributes were 

evaluated based on the 9-point hedonic scale. The 5-point JAR scale used was (1) “Much Too” 

and (5) “Not” and (3) “Just about right” in the middle (Li et al., 2014). This scale is a method to 

determine if the attribute’s intensity is at an optimal level based on consumer perception. The 9-

point hedonic scale, developed by Peryam and Giradot (1952), used was as follows (1) “dislike 

extremely”, (2) “dislike very much” (3) “dislike moderately” (4) “dislike slightly” (5) “neither 

like or dislike” (6) “like slightly” (7) “like moderately” (8) “like very much” and (9) “like 

extremely”. Panelists were then given an opportunity to type open ended comments about the 

sample using a comment box. After answering the first set of questions, panelists were instructed 

to take a sip of water between samples to prevent flavor carryover. 

Figure 4.3. Samples were presented in a randomized order and clearly labeled with 
three digit codes for identification. Water was provided to panelists to cleanse their 
palates between samples  
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After completing the series of questions associated with sensory evaluation of the 

samples, panelists were asked if they would purchase the products after tasting them. Then, 

information regarding potential health benefits related to the consumption of beet kvass was 

displayed, and panelists were asked if knowing the potential health benefits and the presence of 

live cultures would increase their intent of purchasing or producing the product. 

4.3.5. Statistical Analyses 

Analysis of the survey data was completed using R studio. Pearson’s product moment 

correlation was used to determine the correlations between factors. Sensory evaluation data were 

analyzed on SIMS software with SPSS (Chicago, IL). One-way analysis of variance (ANOVA) 

was conducted to determine significant differences among garlic flavor, saltiness, tartness and 

vinegar flavor, liking of color, and overall liking of beet kvass and the garlic and salt 

concentration treatments. Tukey’s Honest Significant Difference (HSD) test was selected for 

post-hoc analyses to determine significant differences among means. A significance level of p < 

0.05 was chosen for all statistical analyses. 

4.4.  Results 

4.4.1. Survey 

The majority of survey participants were between the ages of 18 and 25 (34%), and 

mostly female (83%). Out of the 258 participants, 81% of participants (209) indicated that 

they currently purchase and/or consume fermented foods (Table 4.2.). There were no 

significant correlations however, between the demographics of the participants and their 

choice of consumption of fermented foods (p ≥ 0.05). 
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Table 4.2. Survey panelist demographics and fermented food production/consumption habits 

Questions  Response  Panelists (n = 209)  

Gender  Male  41 (16%) 

Female 213 (83%) 

Other  3 (1%) 

Prefer not to answer  1 (> 1%) 

Age  18 -25 87 (34%) 

26-35 49 (19%) 

36-45 40 (16%) 

46-55 26 (10%) 

> 56 47 (18%) 

Prefer not to answer  9 (3%) 

Do you currently purchase and/ or 
consumer fermented foods? 

Yes  209 (81%) 

No 49 (19%) 

Do you ferment foods at home? Yes 97 (38%) 

No 161 (62%) 
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When prompted to select which fermented foods were currently purchased or 

consumed, yogurt and cheese were most frequently reported (Figure 4.4.). Garlic (3), miso 

(2), olives (1), and mushrooms (1), were some of the other fermented vegetables provided by 

the panelists as open ended responses. 

 

 

Among participants who currently purchase or consume fermented foods, 192 

participants (91%) indicated that taste was the most important reason for the consumption of 

fermented foods. Following sensory appeal gut health benefits (66%) was the second most 

important factor. Of the panelists who consume, but do not prepare fermented foods (45% of 

consumers), inconvenience and lack of knowledge were the most common reasons for 
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Figure 4.4. Fermented foods currently purchased or consumed by participants (n = 209) 
Number of Responses  
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avoiding fermentation at home (Table 4.3). Additionally, participants also indicated their 

preference for store-bought products and unsuccessful attempts at home fermentation. Among 

participants who reported fermenting at home, the most popular fermented products were 

vegetable-based including beans, beets, carrots, and sauerkraut. 

Table 4.3. Responses to why survey respondents do not ferment foods at home  

Why do you not ferment foods at home? (n=161) Number of responses (% total responses)  

Inconvenient (e.g. time and supplies) 62 (39) 

Do not know how to ferment foods 55 (34) 

Do not like fermented foods 18 (11) 

Unsure about the safety of fermented foods  14 (9) 

Others  12 (7) 

 

Less than half of all participants (45%, 117/258) were aware of the potential health 

benefits associated with red beetroot consumption (Table 4.4). Such knowledge would likely 

increase consumer interest, with one hundred and fifty-four participants (60%), responding 

that they would be more likely to purchase and/or consume beet kvass if they understood the 

positive health effects. However, it is important to note that among those who currently do not 

consume or purchase fermented foods, 64% (32/50) were either unsure or unlikely to purchase 

and/or consume beet kvass despite understanding the health benefits. 

  



93 
 

Table 4.4. Awareness of health benefits of red beetroot on consumption/purchase intent  
Questions  Responses  Number of responses 

Are you aware of the benefits of consuming red beets? Yes 117 (45%) 

No 107 (42%) 

Unsure 34 (13%) 

Would understanding the health benefits of red beets 
make you more likely to consume and/or make beet 
kvass?  

Yes  154 (60%) 

No  56 (22%) 

Unsure 48 (18%) 

 

Because some commonly cited benefits of beet consumption are related to 

enhancement of exercise performance, participants were asked if they consider themselves to 

be physically active (Jones, 2014; Wruss et al., 2015). Two hundred and thirteen (83%) 

participants answered that they were moderately to very active. Among those participants, 

23% (48) indicated that they were currently purchasing and/or consuming sports nutrition 

supplements and/or beverages. Self-reporting of “moderately active” or “very active” lifestyle 

was correlated (p < 0.05 ) higher likelihood to purchase and/or consume sports nutrition 

supplements and/or beverages. 

4.4.2. Sensory Evaluation 

The majority of sensory panelists were between the ages of 26 and 35 (39%), 

approximately 58% were female and 42% were male. Out of the 66 panelists, only 37 (56%) 

were familiar with beet kvass (Table 4.5). 
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Table 4.5. Sensory panelist demographics and product concept familiarity 

Questions  Response  Panelist (n = 66)  

Gender  Male  28 (42%) 

Female 38 (58%) 

Other  0 

Prefer not to answer  0 

Age  18 -25 17 (26%) 

26-35 26 (39%) 

36-45 6 (9%) 

46-55 6 (9%) 

> 56 11 (17%) 

Prefer not to answer  0 

How familiar are you with beet 
kvass? 

Very familiar  1 (1%) 

Moderately familiar 36 (55%) 

Have never heard of it 29 (44%) 

 

Panelists were instructed to take a sip of each sample, and rate the intensity of garlic 

flavor, saltiness, tartness and vinegar flavor on a five point just-about-right (JAR) scale. Panelists 

rated the color and overall liking of the samples using a 9-point hedonic scale (Table 4.6). 
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 There were significant differences in panelists’ liking of the saltiness and garlic flavor 

between treatments, but no differences in liking the tartness and vinegar flavor. Results indicated 

that participants clearly identified the different salt and garlic concentrations. Specifically, JAR 

score distribution results revealed that the higher salt samples were associated with “too much 

salt”, and samples prepared without garlic were designated as containing “not enough garlic” 

(Figure 4.5 and 4.6). 

  

 

Table 4.6. JAR scores of flavor perception of beet kvass samples (mean ± sd) treated 
with different salt and garlic concentrations (n = 66) 
Sample Garlic Salt Tart Vinegar 

1w 2.18 ± 1.04a 3.14 ± 1.01a 2.36 ± 1.08 2.48 ± 1.01 

2x 3.29 ± 0.97b 3.15 ± 0.86a 2.42 ± 0.99 2.65 ± 0.90 
3y 2.26 ± 1.00a 3.80 ± 1.14b 2.42 ± 1.15 2.59 ± 1.19 

4z 3.58 ± 1.01b 3.83 ± 1.14b 2.29 ± 1.15 2.47 ± 1.10 

Subscripts following the means represent the significant difference, within the same 
column, between treatments 

w1.5% Salt and 0% Garlic 
x 1.5% Salt and 0.5% Garlic 
y 2.5% Salt and 0% Garlic 
z 2.5% Salt and 0.5% Garlic 
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The color of the product consistently received a score of 7 (like slightly) or above (Table 

4.7). Although there were significant differences in the liking of the color of beet kvass between 

the different treatments, these differences were not related to the salt or garlic concentrations. 

Overall, lowest salt (1.5%) beet kvass received significantly higher overall liking scores than the 
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Figure 4.5. JAR score distribution of garlic flavor in beet kvass samples (n = 66). Sample 
formulation: 1) 1.5% salt and 0% garlic, 2) 1.5% salt and 0.5% garlic 3) 2.5% salt and 0% garlic 
4) 2.5% salt and 0.5% garlic  

Figure 4.6. JAR score distribution of saltiness in beet kvass samples (n = 66) Sample 
formulation: 1) 1.5% salt and 0% garlic, 2) 1.5% salt and 0.5% garlic 3) 2.5% salt and 0% garlic 
4) 2.5% salt and 0.5% garlic 
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highest salt (2.5%) beet kvass, as seen in Table 4.7. Within the lower salt formulations, the 

overall liking of the samples with and without the addition of garlic were not significantly 

different. Therefore, beet kvass prepared with 1.5% salt was considered more acceptable 

compared to the 2.5% salt treatment.

 The most common descriptors in the panelist comments for each sample are listed in 

Table 4.8. Similar to the overall liking scores, Sample 4 (2.5% salt and 0.5% garlic) was most 

frequently described as “too salty” and “garlicky”, while Sample 2 (1.5% salt and 0.5% garlic) 

was most frequently described as the preferred sample with balanced flavors. Samples prepared 

with 1.5% salt, with or without garlic, were found to have a significantly higher number of 

intended consumer purchases (39%), compared to the samples prepared with 2.5% salt, with or 

without garlic (0.5%).  

  

Table 4.7. The hedonic scores for color and overall liking of beet kvass samples (mean ± sd) 
prepared with different salt and garlic concentrations (n = 66)  

Sample Color Overall 
1w 7.52 ± 1.34ab 6.06 ± 1.88b 

2x 7.70 ± 1.38b 6.12 ± 1.85b 
3y 7.21 ± 1.52a 5.00 ± 1.78a 

4z 7.23 ± 1.58a 4.98 ± 2.07a 
w 1.5% Salt and 0% Garlic  

x 1.5% Salt and 0.5% Garlic 
y 2.5% Salt and 0% Garlic 
z 2.5% Salt and 0.5% Garlic 
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Table 4.8. Main descriptors mentioned in the comments written by sensory participants (n = 66)  

Sample  Descriptors  

1w Salty (4); Beet (3)  

2x Preferred (5); Balanced (2) 

3y Salty (11); Dirt flavor (2) 

4z Salty (9); Too much garlic (7) 

Values in brackets are the numbers of mentions by the participants in each samples.  
w 1.5% Salt and 0% Garlic  

x 1.5% Salt and 0.5% Garlic 
y 2.5% Salt and 0% Garlic 
z 2.5% Salt and 0.5% Garlic  

There were no significant correlations between the demographics of the participants and 

their overall liking of samples. However, as expected, there was a significant correlation between 

increased overall liking score and increased purchase intent. Upon completion of the taste test, 

participants were asked to answer a few questions regarding their intention of producing and 

purchasing the product (Table 4.9). Fifty-two participants (79%) were either moderately likely or 

very likely to produce or purchase beet kvass after learning of the health benefits associated with 

product consumption. Whereas only 36 participants (55%) were either moderately likely or very 

likely to produce and purchase beet kvass after learning of the presence of “live, active bacterial 

cultures” in the product. 
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4.5. Discussions 

4.5.1. Survey 

The majority of survey participants were college-aged females. This may indicate that 

the survey did not fully represent the targeted population of home fermenters or physically 

active individuals. Most of the participants (91%) reported that they consume fermented foods 

due primarily to product taste. This finding offers a potential explanation of why participants 

who do not currently purchase fermented foods would not eat them despite the potential 

health benefits. Therefore, recruiting sensory panelists who were interested in fermented food 

Table 4.9. Sensory panelist purchase of intent after taste test and reading the potential health 
benefits associated with beet kvass (n= 66) 

Questions  Responses  Panelist (n = 66)  

Would knowing the health benefits of this 
sample make you more likely to make or 
purchase this product? a 

Very likely 17 (26%) 

Moderately likely 35 (53%) 

Neither likely nor 
unlikely 

6 (9%) 

Moderately unlikely 4 (6%) 

Very unlikely 4 (6%) 

Would knowing this (beet kvass contains live 
active bacterial cultures) make you more likely 
to make or purchase this product? b 

Very likely 12 (18%) 

Moderately likely 24 (36%) 

Neither likely nor 
unlikely 

18 (27%) 

Moderately unlikely 7 (11%) 

Very unlikely 5 (8%) 

Statements displayed before the questions above were asked: 
a “Red beets have been associated with health benefits such as lowering hypertension, 
enhancing exercise performances, and benefitting cardiovascular health.” 
b “Beet kvass is a fermented beverage that contains live, active bacterial cultures.”  
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products was necessary for this study in order to eliminate potentially biased product 

opinions. 

Slightly more than half of survey participants (55%) who reported consuming 

fermented foods indicated that they purchased the products rather than made them at home. 

This finding highlights the market potential for product formula standardization among small 

businesses as well as home fermenters and hobbyists, because vegetable-based fermented 

products were reported as popular products among this sector of participants (n=96). 

The low number of people who reported currently purchasing and/or consuming sports 

nutrition supplements and/or beverages suggests that the commercial potential of a beet kvass 

product marketed as a sports enhancement product is limited based on these panelists 

surveyed. Despite previous research which has associated sports enhancement with red 

beetroot consumption, future studies on beet kvass should focus on general health and 

probiotic benefits (Ferguson et al., 2013; Pinna et al., 2014). This is because fermented 

vegetable is more commonly associated with gut health and probiotic benefits, instead of a 

nutrition supplement. 

4.5.2.  Sensory Evaluation 

The overall acceptance of a food product is dependent on both its sensory and non-

sensory based attributes. While previous studies have indicated that consumers consider sensory 

characteristics including flavor, taste, color, and texture to be the most important factor in 

selecting a food product, non-sensory attributes are becoming increasingly important. In fact, 

non-sensory attributes such as “feeling good and safety” and “health and nutrient content”, have 

been associated with consumer’s choice of consumption of functional foods in Uruguay (Ares et 

al., 2007). Other factors, including price, production methods, nutritional information, and 



101 
 

branding, also influence consumers’ food product expectations (Iop et al., 2006; Jaeger, 2006). 

Therefore, combining both sensory and non-sensory factors is essential to fully understanding 

the consumer response in our study. 

Results have shown that different salt (1.5% or 2.5%) and garlic (0% or 0.5%) treatments 

were easily identifiable by panelists, specifically by perceived salt and garlic intensity ratings. 

However, appropriateness of tart and vinegar taste were statistically undistinguishable among 

treatments. This finding suggests that neither salt nor garlic levels affected the perception of 

tartness or vinegar taste in the product, or that consumers have a wider range of acceptability for 

these attributes. Based on our previous product biochemical analyses in Chapter 3, the amounts 

of lactic and acetic acid were variable among treatments. Specifically, samples with garlic had 

lower lactic and acetic acid contents compared to samples without garlic. Hartwig and McDaniel 

(1995) reported that final product pH level, and more specifically the dissociated form of present 

acids, significantly affected the flavor profile of organic acids. This suggests that the different 

levels of organic acid within beet kvass samples may contribute to its unique flavor profile.  

Salt is an important ingredient in food due to both its sensory and safety implications. It 

offers a favorable environment for the rapid growth of lactic acid bacteria (LAB) (Caplice & 

Fitzgerald, 1999). Besides, the reduction of salt in many foods may lead to the change in flavor 

and decreased acceptability (Lucas et al., 2011; Nguyen & Wismer, 2019). However, this study 

showed that panelists preferred both beet kvass samples with less salt. Although not significantly 

different compared to Sample 1 (1.5% salt without garlic), Sample 2 (1.5% salt with 0.5% garlic) 

had the highest overall acceptance score, compared to the other samples we tested. This suggests 

that garlic may have a slight positive impact on consumer acceptability of beet kvass, but that 

salt is the primary driver of acceptability. Additionally the perceived samples saltiness was 
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determined to be a deciding factor for the purchase intent among consumers. Samples prepared 

with 1.5% salt, with or without garlic, were found to have a significantly higher number (39%) 

of intended consumer purchases, compared to the samples prepared with 2.5% salt, with or 

without garlic (25%). Overall low purchase intent may be attributed to a lack of product 

familiarity among consumers. In addition, this product is unique compared to other fermented 

vegetable products due to the fact that it is consumed as a beverage. Popular fermented 

vegetables, such as sauerkraut and kimchi for example, are often consumed whole, while the 

beetroot is strained and removed from the product to produce kvass. Therefore, saltiness is more 

prominent in a beverage-based product compared to the other previously mentioned fermented 

vegetable based options. Likewise, the majority of beverages in the consumer market have sweet 

or tart flavor profiles. Savory beverages are relatively limited in terms of market share and 

consumption. 

Beetroot has a unique sensory profile with distinct earthy aroma and flavor attributes. 

This earthiness, often associated with soil and dirt, is caused by geosmin (trans-1,10-dimethyl-

trans-(9)-decalol), a volatile bicyclic alcohol. This compound also provides an earthy off-odor in 

some water, fish, dry beans, and wine products (Acree et al., 1976; Lu et al., 2003). In a previous 

study which evaluated the sensory perception of vegetable and berry juice products, beetroot 

juice was commonly associated with the taste of soil (Waehrens et al., 2018). Studies on beetroot 

processing to decrease geosmin and overall product bitterness suggest consumers prefer less 

these earthy flavors in beetroot-based products (Tyler et al, 1979; Bach et al., 2014). While a 

negative effect on sensory acceptance is associated with samples that taste too earthy, the 

absence of this taste also had a negative product perception. Absence of this flavor in cooked 

beetroot juice had previously been described as lacking in both character and flavor (Tyler et al., 
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1979). Similar to the sensory evaluation of beetroot juice with different geosmin contents, some 

panelists in the present beet kvass study commented on the earthy beetroot flavor as a desirable 

product attribute, while other panelists prefer it to be masked. For example, in the comments 

section for Sample 3, a panelist stated that “This literally tasted like the ground. There was no 

balance of flavor.” while another panelist said “This sample did also have a bit more of a beet 

flavor than (another sample), which I liked.” The presence of garlic in this study was employed 

to enhance product flavor, while also masking the often undesirable earthy flavor compounds of 

beets. While the taste of garlic was prominent, it was not a deciding factor on the overall 

acceptance of the beet kvass samples.  Therefore, the garlic flavor in beet kvass did not 

significantly affect the overall sensory acceptance of this product.  

The overall appearance of this product was somewhat variable when being served. It is 

unclear if it affected the scoring of the product because this variability was not monitored, and 

was brought to attention after reading the comments by several participants (3). Specifically, this 

inconsistency is attributed to the appearance of bubbles within some of the samples. Two 

participants mentioned that bubble presence was a positive product attribute and generally rated 

these samples with a higher score. However this finding was not universal as another participant 

indicated in the comments that the bubble presence had a negative effect on the color and overall 

acceptability of the product. To have an unbiased evaluation, all samples should have been 

tapped after dispensing to eliminate the presence of bubbles and to ensure all samples looked the 

same. 

In addition to these sensory attributes, non-sensory factors among beet kvass samples 

were also assessed. Specifically following sample tasting, panelists were instructed to consider 

potential health benefits associated with the product.  The majority of respondents (79%) 
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expressed interest in beet kvass if it possessed health benefits. The intent of purchase increased 

from an average of 32% after tasting to 79% after knowing that beet kvass may possess health 

benefits. This finding is similar to previous research which compared consumer acceptability of 

juice-based products. Vidigal et al. (2011) determined a higher consumer acceptance score for 

exotic Brazilian fruit juices when information on health benefits was provided, compared to the 

fruit juices without this information. However, this finding was not true for all products, as an 

increase in acceptance was not observed for camu-camu juice. Camu-camu juice, reported to 

have a very intense bitter and acidic taste, was scored unacceptable in both cases. Therefore, the 

inclusion of health benefit claims is only effective when the product has overall acceptable 

sensory attributes. Similarly, Carrillo et al. (2012) also determined that panelists were unwilling 

to compromise sensory characteristics in enriched digestive biscuits for the perceived health 

benefits, specifically high fiber biscuit with no added sugar. Therefore, the increase in intent of 

purchase may indicate the sensory acceptance of beet kvass. 

Additionally, the type of health claim is also an important consideration to consumer 

purchase intent. In our study, while 79% of panelists expressed interest in beet kvass if it 

possessed health benefits, only 55% of participants were interested in the product specifically for 

the presence of live cultures. The taste of beetroot has been associated with health promotion by 

sensory panelists (Waehrens et al., 2018). Hence, the differences in the number of respondents in 

those two health claims could be attributed to the more well-known health benefits of beetroots, 

the main ingredient, than the presence of probiotics that fermented products often claim.  

4.6.  Conclusions 

This study was designed to standardize beet kvass formulations based on sensory 

acceptance with varying salt and garlic concentrations and to determine what other factors may 
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contribute to consumer purchase intent of a commercial beet kvass. Based on the sensory 

perception results, beet kvass formulated with lower salt concentration (1.5%), with or without 

garlic, was preferred. The lack of peer-reviewed information on this product indicates the 

apparent need for future work to focus on the health benefits and processing recommendations 

for small-scale agricultural businesses and home fermenters to successfully product beet kvass. 

Overall, there is a potential for beet kvass to be a marketable value-added product. 

Despite the general lack of consumer familiarity, survey participants who reported to be 

currently consuming fermented foods were more likely to have a positive attitude toward beet 

kvass. Health claims increased sensory panelists’ interest in consuming the product, despite the 

low overall acceptance score of  4.98 - 6.12 (a rating of 7.0 on the 9-point scale is considered the 

benchmark for acceptable products). Although our survey respondents were generally willing to 

compromise on sensory components in order to achieve these potential health-mediated effects, 

sensory considerations are still necessary in future research initiatives to increase sensory 

acceptance among consumers.  
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CHAPTER 5 

OVERALL CONCLUSIONS AND RECOMMENDATIONS 

 The results from the first two studies indicate the successful spontaneous fermentation of 

beet kvass at low salt concentrations (0.5%, 1.5%, and 2.5% NaCl) along with the addition of 

garlic (0%, 0.5%, and 1.0%). The achievement of pH level 4.0 or lower for all treatments within 

5 days of fermentation indicates the success of fermentation. However, low salt concentrations 

used in this study along with the addition of garlic appeared to have no significant effect on the 

survival of foodborne pathogens STEC, Salmonella, and L. monocytogenes during fermentation. 

The survival of these pathogens persisted despite 30 days storage at refrigeration temperature 

(4℃). These pathogens showed potential adaptability to low-pH environments in the presence of 

salt and the addition of garlic, and low temperature storage. This suggests a potential risk of 

foodborne illness to consumers even at low levels (~100 CFU/g). The United States has a zero-

tolerance policy for L. monocytogenes in processed foods. Hence, home fermenters and industry 

members should adapt alternative sanitation practices such as soaking and washing red beetroot 

in a sanitation solution to reduce the safety risk. 

 The biochemical analyses showed no safety risk from biogenic amines, often 

accumulated in foods with high microbial activity. However, alcohol accumulation of more than 

0.5% ABV was detected in some samples after 30 day storage. Hence, industry members should 

closely monitor the fermentation and storage of these products to be in compliance with the 

alcohol threshold (< 0.5% ABV) of non-alcoholic beverages.  

 Lastly, the consumer perception tests have revealed a potential market opportunity of 

these products, specifically when accompanied with health-related messages. Based on the 
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results, the ideal formulation of beet kvass should contain lower salt (< 1.5% NaCl), with or 

without garlic. Unlike other popular fermented vegetable such as sauerkraut and kimchi that are 

often consumed as a condiment, beet kvass is intended to be consumed as a beverage rather than 

a condiment. Hence, the saltiness of this product is more prominent. To further increase the 

acceptability and marketability of this product, more studies on the health benefits, probiotic 

potential, and healthful biogenic amines in this product should be conducted. 
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Dolores Rodrıǵuez-Sevilla, M., Villanueva-Suárez, M. J., & Redondo-Cuenca, A. (1999). Effects 
of processing conditions on soluble sugars content of carrot, beetroot and turnip. Food 
Chemistry, 66(1), 81–85. https://doi.org/10.1016/S0308-8146(98)00243-X 

 



115 
 

Domínguez, R., Maté-Muñoz, J. L., Cuenca, E., García-Fernández, P., Mata-Ordoñez, F., 
Lozano-Estevan, M. C., Veiga-Herreros, P., da Silva, S. F., & Garnacho-Castaño, M. V. 
(2018). Effects of beetroot juice supplementation on intermittent high-intensity exercise 
efforts. Journal of the International Society of Sports Nutrition, 15. 
https://doi.org/10.1186/s12970-017-0204-9 

Doyle, M. E., & Glass, K. A. (2010). Sodium reduction and its effect on food safety, food 
quality, and human health. Comprehensive Reviews in Food Science and Food Safety, 9(1), 
44–56. https://doi.org/10.1111/j.1541-4337.2009.00096.x 

Doyle, M. P., Beuchat, L. R., & Montville, T. J. (1997). Food microbiology: Fundamentals and 
frontiers. Washington, DC : ASM Press. https://trove.nla.gov.au/version/45637246 

Economic Research Service (ERS), U.S. Department of Agriculture (USDA). (2014). Cost 
estimates of foodborne illnesses. http://ers.usda.gov/data-products/cost-estimates-of-
foodborne-illnesses.aspx. 

Egbe, J. G., Lennox, J. A., Rao, P., Anitha & Umoafia, G. E. (2017). Lactic acid bacteria profile 
of fermenting cucumber in 7% brine solution. Journal of Advances in Microbiology, 3(1), 
1–8. 

Endo, A. & Dicks, L. M. T. (2014). Physiology of the LAB. In Holzapfel, W. H. & Wood, B. J. 
(Eds), Lactic acid bacteria : Biodiversity and taxonomy, First Edition. Retrieved from 
http://ebookcentral.proquest.com.  

Faleiro, M. L., Andrew, P. W., & Power, D. (2003). Stress response of Listeria monocytogenes 
isolated from cheese and other foods. International Journal of Food Microbiology, 84(2), 
207–216. https://doi.org/10.1016/S0168-1605(02)00422-1 

FDA (Department Of Health And Human Services: U.S. Food And Drug Administration). 
(2015).  Rules and Regulations: Standards for the Growing, Harvesting, Packing, and 
Holding of Produce for Human Consumption:  [FR DOC # 2015-28159] Final rule. 80, 
74353–74568. https://heinonline.org/HOL/P?h=hein.fedreg/080228&i=419 

FDA (Office of Regulatory Affairs of the U.S. Food and Drug Administration). (2005a). 
Compliance policy guide (CPG) Sec 510.400 Dealcoholized wine and malt beverages –
labeling. Retrieved from https://www.fda.gov/regulatory-information/search-fda-guidance-
documents/cpg-sec-510400-dealcoholized-wine-and-malt-beverages-
labeling#:~:text=Beverages%20such%20as%20soft%20drinks,extracts%20or%20from%2
0natural%20fermentation. 



116 
 

FDA (Office of Regulatory Affairs of the U.S. Food and Drug Administration). (2005b). 
Compliance policy guide (CPG) Sec 540.525 Decomposition and histamine raw, frozen 
tuna and mahi-mahi; canned tuna; and related species. Retrieved from 
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cpg-sec-
540525-decomposition-and-histamine-raw-frozen-tuna-and-mahi-mahi-canned-tuna-and-
related 

Feng, P. (2014). Shiga toxin-producing Escherichia coli (STEC) in fresh produce—A food 
safety dilemma. Microbiology Spectrum, 2(4). 
https://doi.org/10.1128/microbiolspec.EHEC-0010-2013 

Ferguson, S. K., Hirai, D. M., Copp, S. W., Holdsworth, C. T., Allen, J. D., Jones, A. M., Musch, 
T. I., & Poole, D. C. (2013). Impact of dietary nitrate supplementation via beetroot juice on 
exercising muscle vascular control in rats. The Journal of Physiology, 591(Pt 2), 547–557. 
https://doi.org/10.1113/jphysiol.2012.243121 

Ferreira, V., Wiedmann, M., Teixeira, P., & Stasiewicz, M. J. (2014). Listeria monocytogenes 
persistence in food-associated environments: Epidemiology, strain characteristics, and 
implications for public health. Journal of Food Protection; Des Moines, 77(1), 150–170. 
http://search.proquest.com/docview/1471922049/abstract/BA1A10CDEEB14314PQ/1 

Finberg, J. P. M. & Gillman, K. (2011). Selective inhibitors of monoamine oxidase type B and 
the “cheese effect”. International Review of Neurobiology, 100, 169-190. 

Foster, J. W. (2004). Escherichia coli acid resistance: Tales of an amateur acidophile. Nature 
Reviews Microbiology, 2(11), 898–907. https://doi.org/10.1038/nrmicro1021 

Foster, J. W., & Hall, H. K. (1990). Adaptive acidification tolerance response of Salmonella 
typhimurium. Journal of Bacteriology, 172(2), 771–778. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC208505/ 

Fox, P. F. (1993). Cheese: An overview. In: Fox, P.F. (Ed.), Cheese : Chemistry, Physics and  
 Microbiology - Volume 1, Second Edition, Chapman and Hall, London, 1–36. 

Franco, W., & Pérez-Díaz, I. M. (2012). Role of selected oxidative yeasts and bacteria in 
cucumber secondary fermentation associated with spoilage of the fermented fruit. Food 
Microbiology, 32(2), 338–344. https://doi.org/10.1016/j.fm.2012.07.013 



117 
 

Fujisawa, H., Suma, K., Origuchi, K., Kumagai, H., Seki, T., & Ariga, T. (2008). Biological and 
chemical stability of garlic-derived allicin. Journal of Agricultural and Food Chemistry, 
56(11), 4229–4235. https://doi.org/10.1021/jf8000907 

Gahan, C. G. M. & Hill, C. (1999). The relationship between acid stress responses and virulence 
in Salmonella typhimurium and Listeria monocytogenes. International Journal of Food 
Microbiology, 50(1-2),  93-100. 

Gahan, C. G., O’Driscoll, B., & Hill, C. (1996). Acid adaptation of Listeria monocytogenes can 
enhance survival in acidic foods and during milk fermentation. Applied and Environmental 
Microbiology, 62(9), 3128–3132. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168105/ 

Gänzle, M. G. (2015). Lactic metabolism revisited: Metabolism of lactic acid bacteria in food 
fermentations and food spoilage. Current Opinion in Food Science, 2, 106–117. 
https://doi.org/10.1016/j.cofs.2015.03.001 

Gertenbach D. D. (2002). Chapter 11: Solid-liquid extraction technologies for manufacturing 
nutraceuticals. In Shi, J., Mazza, G., Maguer, M. L.(Eds.), Functional foods: Biochemical 
and Processing Aspects, Volume 2. CRC Press.   

Gobbetti, M., Cagno, R. D., & Angelis, M. D. (2010). Functional microorganisms for functional 
food quality. Critical Reviews in Food Science and Nutrition, 50(8), 716–727. 
https://doi.org/10.1080/10408398.2010.499770 

Gómez‐Aldapa, C. A., Rangel‐Vargas, E., León, H. B.-D., & Castro‐Rosas, J. (2014). Presence 
of non-O157 Shiga toxin-producing Escherichia coli, enterotoxigenic E. coli, 
enteropathogenic E. coli and Salmonella in fresh beetroot (Beta vulgaris L.) juice from 
public markets in Mexico. Journal of the Science of Food and Agriculture, 94(13), 2705–
2711. https://doi.org/10.1002/jsfa.6614 

Greenacre, E. J., & Brocklehurst, T. F. (2006). The acetic acid tolerance response induces cross-
protection to salt stress in Salmonella Typhimurium. International Journal of Food 
Microbiology, 112(1), 62–65. https://doi.org/10.1016/j.ijfoodmicro.2006.05.012 

Grounta, A., Nychas, G.-J. E., & Panagou, E. Z. (2013). Survival of food-borne pathogens on 
natural black table olives after post-processing contamination. International Journal of 
Food Microbiology, 161(3), 197–202. https://doi.org/10.1016/j.ijfoodmicro.2012.12.017 

 



118 
 

Guan, Q., Zheng, W., Huang, T., Xiao, Y., Liu, Z., Peng, Z., Gong, D., Xie, M., & Xiong, T. 
(2020). Comparison of microbial communities and physiochemical characteristics of two 
traditionally fermented vegetables. Food Research International, 128, 108755. 
https://doi.org/10.1016/j.foodres.2019.108755 

Halász, A., Baráth, Á., Simon-Sarkadi, L., & Holzapfel, W. (1994). Biogenic amines and their 
production by microorganisms in food. Trends in Food Science & Technology, 5(2), 42–
49. https://doi.org/10.1016/0924-2244(94)90070-1 

Hamasaki, Y., Ayaki, M., Fuchu, H., Sugiyama, M., & Morita, H. (2003). Behavior of 
psychrotrophic lactic acid bacteria isolated from spoiling cooked meat products. Applied 
and Environmental Microbiology, 69(6), 3668–3671. 
https://doi.org/10.1128/AEM.69.6.3668-3671.2003 

Han, J., Lawson, L., Han, G., & Han, P. (1995). Spectrophotometric method for quantitative 
determination of allicin and total garlic thiosulfinates. Analytical Biochemistry, 225(1), 
157–160. https://doi.org/10.1006/abio.1995.1124 

Han, Y., & Linton, R. H. (2004). Fate of Escherichia coli O157:H7 and Listeria monocytogenes 
in strawberry juice and acidified media at different pH values and temperatures. Journal of 
Food Protection, 67(11), 2443–2449. https://doi.org/10.4315/0362-028X-67.11.2443 

Hara-Kudo, Y., & Takatori, K. (2011). Contamination level and ingestion dose of foodborne 
pathogens associated with infections. Epidemiology & Infection, 139(10), 1505–1510. 
https://doi.org/10.1017/S095026881000292X 

Hartwig, P., & McDaniel, M. R. (1995). Flavor characteristics of lactic, malic, citric, and acetic 
acids at various pH levels. Journal of Food Science, 60(2), 384–388. 
https://doi.org/10.1111/j.1365-2621.1995.tb05678.x 

Heldman, D. (2004, December). Identifying food science & technology research needs. Food 
Technology Magazine, 58(12). https://www.ift.org/news-and-publications/food-
technology-magazine/issues/2004/december/features/identifying-food-science-and-
technology-research-needs 

Higuchi, M., Yamamoto, Y., & Kamio, Y. (2000). Molecular biology of oxygen tolerance in 
lactic acid bacteria: Functions of NADH oxidases and Dpr in oxidative stress. Journal of 
Bioscience and Bioengineering, 90(5), 484–493. https://doi.org/10.1016/S1389-
1723(01)80028-1 



119 
 

Ho, J. L., Shands, K. N., Friedland, G., Eckind, P., & D. W. Fraser. (1986). An outbreak of type 
4b Listeria monocytogenes infection involving patients from eight Boston hospitals. 
Archives of Internal Medicine, 146, 520–524. 

Hua, S.-S. T., Tsai, V. Y., Lichens, G. M., & Noma, A. T. (1982). Accumulation of amino acids 
in Rhizobium sp. Strain WR1001 in response to sodium chloride salinity. Applied and 
Environmental Microbiology, 44(1), 135–140. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC241980/ 

Humphrey, T. J., Williams, A., McAlpine, K., Lever, M. S., Guard-Petter, J., & Cox, J. M. 
(1996). Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid 
tolerance are more virulent in mice and more invasive in chickens. Epidemiology and 
Infection, 117(1), 79–88. 

Iop, S. C. F., Teixeira, E., & Deliza, R. (2006). Consumer research: Extrinsic variables in food 
studies. British Food Journal, 108(11), 894–903. 
https://doi.org/10.1108/00070700610709940 

Jaeger, S. R. (2006). Non-sensory factors in sensory science research. Food Quality and 
Preference, 17(1), 132–144. https://doi.org/10.1016/j.foodqual.2005.03.004 

Jeong, S. H., Jung, J. Y., Lee, S. H., Jin, H. M., & Jeon, C. O. (2013). Microbial succession and 
metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi. 
International Journal of Food Microbiology, 164(1), 46–53. 
https://doi.org/10.1016/j.ijfoodmicro.2013.03.016 

Jones, A. M. (2014). Dietary nitrate supplementation and exercise performance. Sports Medicine, 
44(1), 35–45. https://doi.org/10.1007/s40279-014-0149-y 

Kalač, P., Špička, J., Křıž́ek, M., Steidlová, Š., & Pelikánová, T. (1999). Concentrations of seven 
biogenic amines in sauerkraut. Food Chemistry, 67(3), 275–280. 
https://doi.org/10.1016/S0308-8146(99)00131-4 

Kandler, O. (1983). Carbohydrate metabolism in lactic acid bacteria. Antonie va Leeuwenhoek. 
49, 209–224. 

Kapil, V., Khambata, R. S., Robertson, A., Caulfield, M. J., & Ahluwalia, A. (2015). Dietary 
nitrate provides sustained blood pressure lowering in hypertensive patients. Hypertension, 
65(2), 320–327. https://doi.org/10.1161/HYPERTENSIONAHA.114.04675 



120 
 

Kapil, V., Weitzberg, E., Lundberg, J. O., & Ahluwalia, A. (2014). Clinical evidence demonstrating the 
utility of inorganic nitrate in cardiovascular health. Nitric Oxide, 38, 45–57. 
https://doi.org/10.1016/j.niox.2014.03.162 

Kapperud, G., Gustavsen, S., Hellesnes, I., Hansen, A. H., Lassen, J., Hirn, J., Jahkola, M., 
Montenegro, M. A., & Helmuth, R. (1990). Outbreak of Salmonella typhimurium infection 
traced to contaminated chocolate and caused by a strain lacking the 60-megadalton 
virulence plasmid. Journal of Clinical Microbiology, 28(12), 2597–2601. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC268240/ 

Katz, S.E. (2012). The art of fermentation: An in-depth exploration of essential concepts and 
processes from around the world. Chelsea Green Publishing, Vermont. 

Khanna, S. (2019). Effects of salt concentration on the physicochemical properties and microbial 
safety of spontaneously fermented cabbage [Master’s Thesis, The University of Maine]. 
Electronic Theses and Dissertations. https://digitalcommons.library.umaine.edu/etd/3013 

Kim, H., & Bhunia, A. K. (2008). SEL, a selective enrichment broth for simultaneous growth of 
Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes. Applied and 
Environmental Microbiology, 74(15), 4853–4866. https://doi.org/10.1128/AEM.02756-07 

Kljujev, I., Raicevic, V., Jovicic-Petrovic, J., Vujovic, B., Mirkovic, M., & Rothballer, M. 
(2018). Listeria monocytogenes – Danger for health safety vegetable production. Microbial 
Pathogenesis, 120, 23–31. https://doi.org/10.1016/j.micpath.2018.04.034 

Koutsoumanis, K. P., & Sofos, J. N. (2004). Comparative acid stress response of Listeria 
monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium after habituation 
at different pH conditions. Letters in Applied Microbiology, 38(4), 321–326. 
https://doi.org/10.1111/j.1472-765X.2004.01491.x 

Landete, J. M., Ferrer, S., & Pardo, I. (2007). Biogenic amine production by lactic acid bacteria, 
acetic bacteria and yeast isolated from wine. Food Control, 18(12), 1569–1574. 
https://doi.org/10.1016/j.foodcont.2006.12.008 

Lavefve, L., Marasini, D., & Carbonero, F. (2019). Chapter three—Microbial ecology of 
fermented vegetables and non-Alcoholic drinks and current knowledge on their impact on 
human health. In F. Toldrá (Ed.), Advances in Food and Nutrition Research (Vol. 87, pp. 
147–185). Academic Press. https://doi.org/10.1016/bs.afnr.2018.09.001 



121 
 

Lázaro, C. A., Conte-Júnior, C. A., Canto, A. C., Monteiro, M. L. G., Costa-Lima, B., Cruz, A. 
G. da, Mársico, E. T., & Franco, R. M. (2015). Biogenic amines as bacterial quality 
indicators in different poultry meat species. LWT - Food Science and Technology, 60(1), 
15–21. https://doi.org/10.1016/j.lwt.2014.09.025 

Lee, K.-M., Runyon, M., Herrman, T. J., Phillips, R., & Hsieh, J. (2015). Review of Salmonella 
detection and identification methods: Aspects of rapid emergency response and food 
safety. Food Control, 47, 264–276. https://doi.org/10.1016/j.foodcont.2014.07.011 

Lee, M., Song, J. H., Jung, M. Y., Lee, S. H., & Chang, J. Y. (2017). Large-scale targeted 
metagenomics analysis of bacterial ecological changes in 88 kimchi samples during 
fermentation. Food Microbiology, 66, 173–183. https://doi.org/10.1016/j.fm.2017.05.002 

Lee, S. Y., Rhee, M. S., Dougherty, R. H., & Kang, D. H. (2010). Antagonistic effect of acetic 
acid and salt for inactivating Escherichia coli O157:H7 in cucumber puree. Journal of 
Applied Microbiology, 108(4), 1361–1368. https://doi.org/10.1111/j.1365-
2672.2009.04543.x 

Lee, S.-Y., & Kang, D.-H. (2016). Survival mechanism of Escherichia coli O157:H7 against 
combined treatment with acetic acid and sodium chloride. Food Microbiology, 55, 95–104. 
https://doi.org/10.1016/j.fm.2015.10.021 

Leyer, G. J., & Johnson, E. A. (1993). Acid adaptation induces cross-protection against 
environmental stresses in Salmonella typhimurium. Applied and Environmental 
Microbiology, 59(6), 1842–1847. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC182170/ 

Leyer, G. J., Wang, L. L., & Johnson, E. A. (1995). Acid adaptation of Escherichia coli 
O157:H7 increases survival in acidic foods. Applied and Environmental Microbiology, 
61(10), 3752–3755. https://aem.asm.org/content/61/10/3752 

Li, B., Hayes, J. E., & Ziegler, G. R. (2014). Just-About-Right and ideal scaling provide similar 
insights into the influence of sensory attributes on liking. Food Quality and Preference, 37, 
71–78. https://doi.org/10.1016/j.foodqual.2014.04.019 

Lim, S. B., Shin, S.-Y., Moon, J. S., Otgonbayar, G.-E., Joo, W., Lee, S. J., Jeon, C. O., & Han, 
N. S. (2015). Garlic is a source of major lactic acid bacteria for early-stage fermentation of 
cabbage-kimchi. Food Science and Biotechnology, 24(4), 1437–1441. 
https://doi.org/10.1007/s10068-015-0184-y 



122 
 

Lin, J., Smith, M. P., Chapin, K. C., Baik, H. S., Bennett, G. N., & Foster, J. W. (1996). 
Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Applied and 
Environmental Microbiology, 62(9), 3094–3100. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC168100/ 

Liu, S.-Q., Holland, R., & Crow, V. L. (2003). The potential of dairy lactic acid bacteria to 
metabolise amino acids via non-transaminating reactions and endogenous transamination. 
International Journal of Food Microbiology, 86(3), 257–269. 
https://doi.org/10.1016/S0168-1605(03)00040-0 

Ljungh, Å., & Wadström, T. (2006). Lactic acid bacteria as probiotics. Current Issues of 
Intestinal Microbiology, 7, 73-90. 

Löfström, C., Hansen, T., Maurischat, S., & Malorny, B. (2016). Salmonella: Salmonellosis. In 
Caballero, B., Finglas, P. M., & Toldrá, F. (Eds.), Encyclopedia of Food and Health, 701–
705. Academic Press. https://doi.org/10.1016/B978-0-12-384947-2.00607-3 

Lu, G., Edwards, C. G., Fellman, J. K., Mattinson, D. S., & Navazio, J. (2003). Biosynthetic 
origin of Geosmin in red beets (Beta vulgaris L.). Journal of Agricultural and Food 
Chemistry, 51(4), 1026–1029. https://doi.org/10.1021/jf020905r 

Lucas, L., Riddell, L., Liem, G., Whitelock, S., & Keast, R. (2011). The influence of sodium on 
liking and consumption of salty food. Journal of Food Science, 76(1), S72–S76. 
https://doi.org/10.1111/j.1750-3841.2010.01939.x 

Lück, E. & Jager, M. 1997. Antimicrobial Food Additives: Characteristics, Uses, and Effects, pp. 
62–71, Springer, New York, NY. 

Lynch, M. F., Tauxe, R. V., & Hedberg, C. W. (2009). The growing burden of foodborne 
outbreaks due to contaminated fresh produce: Risks and opportunities. Epidemiology & 
Infection, 137(3), 307–315. https://doi.org/10.1017/S0950268808001969 

Mah, J.-H., Kim, Y. J., & Hwang, H.-J. (2009). Inhibitory effects of garlic and other spices on 
biogenic amine production in Myeolchi-jeot, Korean salted and fermented anchovy 
product. Food Control, 20(5), 449–454. https://doi.org/10.1016/j.foodcont.2008.07.006 

Majcherczyk, J., & Surówka, K. (2019). Effects of onion or caraway on the formation of 
biogenic amines during sauerkraut fermentation and refrigerated storage. Food Chemistry, 
298, 125083. https://doi.org/10.1016/j.foodchem.2019.125083 



123 
 

Malta, D., Petersen, K. S., Johnson, C., Trieu, K., Rae, S., Jefferson, K., Santos, J. A., Wong, M. 
M. Y., Raj, T. S., Webster, J., Campbell, N. R. C., & Arcand, J. (2018). High sodium 
intake increases blood pressure and risk of kidney disease. From the Science of Salt: A 
regularly updated systematic review of salt and health outcomes (August 2016 to March 
2017). The Journal of Clinical Hypertension, 20(12), 1654–1665. 
https://doi.org/10.1111/jch.13408 

Marceau, A., Zagorec, M., Chaillou, S., Méra, T., & Champomier-Vergès, M.-C. (2004). 
Evidence for involvement of at least six proteins in adaptation of Lactobacillus sakei to 
cold temperatures and addition of NaCl. Applied and Environmental Microbiology, 70(12), 
7260–7268. https://doi.org/10.1128/AEM.70.12.7260-7268.2004 

Marder, E. P., Garman, K. N., Ingram, L. A., & Dunn, J. R. (2014). Multistate outbreak of 
Escherichia coli O157:H7 associated with bagged salad. Foodborne pathogens and 
disease, 11(8), 593–595. https://doi-org.wv-o-ursus-
proxy02.ursus.maine.edu/10.1089/fpd.2013.1726 

McCabe-Sellers, B. J., Staggs, C. G., & Bogle, M. L. (2006). Tyramine in foods and monoamine 
oxidase inhibitor drugs: A crossroad where medicine, nutrition, pharmacy, and food 
industry converge. Journal of Food Composition and Analysis, 19, 58–65. 
https://doi.org/10.1016/j.jfca.2005.12.008 

McGuire, S., Institute of Medicine (IOM). (2010). Strategies to reduce sodium intake in the 
United States. Washington, DC: The National Academies Press, Advances in Nutrition, 
1(1), 49–50, https://doi.org/10.3945/an.110.1002 

Michalak, M., Gustaw, K., Waśko, A., & Polak-Berecka, M. (2018). Composition of lactic acid 
bacteria during spontaneous curly kale (Brassica oleracea var. Sabellica) fermentation. 
Microbiological Research, 206, 121–130. https://doi.org/10.1016/j.micres.2017.09.011 

Moon, S. H., Chang, M., Kim, H. Y., & Chang, H. C. (2014). Pichia kudriavzevii is the major 
yeast involved in film-formation, off-odor production, and texture-softening in over-
ripened Kimchi. Food Science and Biotechnology, 23(2), 489–497. 
https://doi.org/10.1007/s10068-014-0067-7 

Moreno-Arribas, V., & Lonvaud-Funel, A. (2001). Purification and characterization of tyrosine 
decarboxylase of Lactobacillus brevis IOEB 9809 isolated from wine. FEMS Microbiology 
Letters, 195(1), 103–107. https://doi.org/10.1111/j.1574-6968.2001.tb10505.x 



124 
 

Moret, S., Smela, D., Populin, T., & Conte, L. S. (2005). A survey on free biogenic amine 
content of fresh and preserved vegetables. Food Chemistry, 89(3), 355–361. 
https://doi.org/10.1016/j.foodchem.2004.02.050 

Morgado, M., Oliveira, G. V. de, Vasconcellos, J., Monteiro, M. L., Conte-Junior, C., Pierucci, 
A. P. T. R., & Alvares, T. S. (2016). Development of a beetroot-based nutritional gel 
containing high content of bioaccessible dietary nitrate and antioxidants. International 
Journal of Food Sciences and Nutrition, 67(2), 153–160. 
https://doi.org/10.3109/09637486.2016.1147531 

Morrow, J. D., Margolies, G. R., Rowland, J., & Roberts, L. J. (1991). Evidence that histamine is 
the causative toxin of scombroid-fish poisoning. The New England Journal of Medicine, 
324, 716-720. 

Mritunjay, S. K., & Kumar, V. (2017). Microbial quality, safety, and pathogen detection by 
using quantitative PCR of raw salad vegetables sold in Dhanbad City, India. Journal of 
Food Protection, 80(1), 121-126. https://doi.org/10.4315/0362-028X.JFP-16-223 

Mundt, J. O. (1970). Lactic acid bacteria associated with raw plant materials. Lactic Acid 
Bacteria, 550-553. Retrieved from: http://meridian.allenpress.com/doi/pdf/10.4315/0022-
2747-33.12.550 

National Advisory Committee on Microbiological Criteria for Foods (NACMCF). (1991). The 
human infectious dose of Listeria monocytogenes. (1991). International Journal of Food 
Microbiology, 14(3), 216-219. https://doi.org/10.1016/0168-1605(91)90112-3 

National Center for Home Food Preservation. (2016). Preparing and canning fermented foods. 
https://nchfp.uga.edu/how/can_06/sauerkraut.html#:~:text=Put%20cabbage%20in%20a%2
0suitable,cabbage%20is%20in%20the%20container. 

Nemzer, B., Pietrzkowski, Z., Spórna, A., Stalica, P., Thresher, W., Michałowski, T., & 
Wybraniec, S. (2011). Betalainic and nutritional profiles of pigment-enriched red beet root 
(Beta vulgaris L.) dried extracts. Food Chemistry, 127(1), 42–53. 
https://doi.org/10.1016/j.foodchem.2010.12.081 

Nguyen, H., & Wismer, W. V. (2019). A comparison of sensory attribute profiles and liking 
between regular and sodium-reduced food products. Food Research International, 123, 
631–641. https://doi.org/10.1016/j.foodres.2019.05.037 



125 
 

Niksic, M., Niebuhr, S. E., Dickson, J. S., Mendonca, A. F., Koziczkowski, J. J., & Ellingson, J. 
L. E. (2005). Survival of Listeria monocytogenes and Escherichia coli O157:H7 during 
sauerkraut fermentation. Journal of Food Protection, 68(7), 1367–1374. 
https://doi.org/10.4315/0362-028X-68.7.1367 

Novella‐Rodríguez, S., Veciana‐Nogués, M. T., Trujillo‐Mesa, A. J., & Vidal‐Carou, M. C. 
(2002). Profile of biogenic amines in goat cheese made from pasteurized and pressurized 
milks. Journal of Food Science, 67(8), 2940–2944. https://doi.org/10.1111/j.1365-
2621.2002.tb08842.x 

Paludan-Müller, C., Henrik Huss, H., & Gram, L. (1999). Characterization of lactic acid bacteria 
isolated from a Thai low-salt fermented fish product and the role of garlic as substrate for 
fermentation. International Journal of Food Microbiology, 46(3), 219–229. 
https://doi.org/10.1016/S0168-1605(98)00204-9 

Panghal, A., Virkar, K., Kumar, V., Dhull, S. B., Gat, Y., & Chhikara, N. (2017). Development 
of probiotic beetroot drink. Current Research in Nutrition and Food Science Journal, 5(3). 
http://www.foodandnutritionjournal.org/volume5number3/development-of-probiotic-
beetroot-drink/ 

Paramithiotis, S., Doulgeraki, A. I., Tsilikidis, I., Nychas, G.-J. E., & Drosinos, E. H. (2012). 
Fate of Listeria monocytogenes and Salmonella Typhimurium during spontaneous 
cauliflower fermentation. Food Control, 27(1), 178–183. 
https://doi.org/10.1016/j.foodcont.2012.03.022 

Paramithiotis, S., Hondrodimou, O. L., & Drosinos, E. H. (2010). Development of the microbial 
community during spontaneous cauliflower fermentation. Food Research International, 
43(4), 1098–1103. https://doi.org/10.1016/j.foodres.2010.01.023 

Pardali, E., Paramithiotis, S., Papadelli, M., Mataragas, M., & Drosinos, E. H. (2017). Lactic 
acid bacteria population dynamics during spontaneous fermentation of radish (Raphanus 
sativus L.) roots in brine. World Journal of Microbiology and Biotechnology; Oxford, 
33(6), 1–9. http://dx.doi.org.prxy4.ursus.maine.edu/10.1007/s11274-017-2276-8 

Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, 
F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. 
Comprehensive Reviews in Food Science and Food Safety, 2(Supplement), 161–173. 
https://doi.org/10.1111/j.1541-4337.2003.tb00033.x 



126 
 

Park, S., Ji, Y., Park, H., Lee, K., Park, H., Beck, B. R., Shin, H., & Holzapfel, W. H. (2016). 
Evaluation of functional properties of lactobacilli isolated from Korean white kimchi. Food 
Control, 69, 5–12. https://doi.org/10.1016/j.foodcont.2016.04.037 

Pederson, C. S., & Albury, M. N. (1969). Bulletin: Number 824: The Sauerkraut Fermentation. 
https://ecommons.cornell.edu/handle/1813/4794 

Peryam, D.R. & Girardot, N.F. (1952). Advanced taste test method. Food Engineering. 24, 58-
61. 

Pessione, E., Pessione, A., Lamberti, C., Coïsson, D. J., Riedel, K., Mazzoli, R., Bonetta, S., 
Eberl, L., & Giunta, C. (2009). First evidence of a membrane-bound, tyramine and β-
phenylethylamine producing, tyrosine decarboxylase in Enterococcus faecalis: A two-
dimensional electrophoresis proteomic study. PROTEOMICS, 9(10), 2695–2710. 
https://doi.org/10.1002/pmic.200800780 

Phan-Thanh, L., Mahouin, F., & Aligé, S. (2000). Acid responses of Listeria monocytogenes. 
International Journal of Food Microbiology, 55(1), 121–126. 
https://doi.org/10.1016/S0168-1605(00)00167-7 

Pinho, O., Pintado, A. I. E., Gomes, A. M. P., Pintado, M. M. E., Malcata, F. X., & Ferreira, I. 
M. P. L. V. O. (2004). Interrelationships among microbiological, physicochemical, and 
biochemical properties of Terrincho Cheese, with emphasis on biogenic amines. Journal of 
Food Protection, 67(12), 2779–2785. https://doi.org/10.4315/0362-028X-67.12.2779 

Pinna, M., Roberto, S., Milia, R., Marongiu, E., Olla, S., Loi, A., Migliaccio, G. M., Padulo, J., 
Orlandi, C., Tocco, F., Concu, A., & Crisafulli, A. (2014). Effect of beetroot juice 
supplementation on aerobic response during swimming. Nutrients, 6(2), 605–615. 
https://doi.org/10.3390/nu6020605 

Prester, L. (2011). Biogenic amines in fish, fish products and shellfish: a review, Food Additives 
& Contaminants: Part A, 28(11), 1547-1560. 

Raak, C., Ostermann, T., Boehm, K., & Molsberger, F. (2014). Regular consumption of 
sauerkraut and its effect on human health: A bibliometric analysis. Global Advances in 
Health and Medicine, 3(6), 12–18. https://doi.org/10.7453/gahmj.2014.038 

Ray, B., & Bhunia, A. K. (2014). Fundamental food microbiology (Fifth ed.). CRC Press. 



127 
 

Rocourt, J., & Cossart, P., (1997). Listeria monocytogenes. In: Doyle, M.P., Buechat, L.R., 
Montville, T.J. (Eds.), Food Microbiology — Fundamentals and Frontiers. American 
Society for Microbiology (ASM) press, Washington DC, 337–352. 

Rodríguez-Gómez, F., Romero-Gil, V., García-García, P., Garrido-Fernández, A., & Arroyo-
López, F. N. (2014). Fortification of table olive packing with the potential probiotic 
bacteria Lactobacillus pentosus TOMC-LAB2. Frontiers in Microbiology, 5. 
https://doi.org/10.3389/fmicb.2014.00467 

Santhosha, S. G., Jamuna, P., & Prabhavathi, S. N. (2013). Bioactive components of garlic and 
their physiological role in health maintenance: A review. Food Bioscience, 3, 59–74. 
https://doi.org/10.1016/j.fbio.2013.07.001 

Sarnacki, A. (2018). How to make beet kvass, a traditional tonic. In: Piscataquis Observer. 
https://observer-me.com/2018/11/14/how-to-make-beet-kvass-a-traditional-tonic/. 

Sawicki, T., & Wiczkowski, W. (2018). The effects of boiling and fermentation on betalain 
profiles and antioxidant capacities of red beetroot products. Food Chemistry, 259, 292–
303. https://doi.org/10.1016/j.foodchem.2018.03.143 

Schaechter, M. (2009). Escherichia coli. In Schaechter. M. (Ed.), Encyclopedia of Microbiology 
(Third Edition), 125–132. Academic Press. https://doi.org/10.1016/B978-012373944-
5.00059-6 

Schelp, E., Worley, S., Monzingo, A. F., Ernst, S., & Robertus, J. D. (2001). pH-induced 
structural changes regulate histidine decarboxylase activity in Lactobacillus 30a. Journal 
of Molecular Biology, 306(4), 727–732. https://doi.org/10.1006/jmbi.2000.4430 

Septembre-Malaterre, A., Remize, F., & Poucheret, P. (2018). Fruits and vegetables, as a source 
of nutritional compounds and phytochemicals: Changes in bioactive compounds during 
lactic fermentation. Food Research International, 104, 86–99. 
https://doi.org/10.1016/j.foodres.2017.09.031 

Shabala, L., Lee, S. H., Cannesson, P., & Ross, T. (2008). Acid and NaCl limits to growth of 
Listeria monocytogenes and influence of sequence of inimical acid and NaCl levels on 
inactivation kinetics. Journal of Food Protection, 71(6), 1169–1177. 
https://doi.org/10.4315/0362-028X-71.6.1169 

 



128 
 

Shim, S.-M., Kim, J. Y., Lee, S. M., Park, J.-B., Oh, S.-K., & Kim, Y.-S. (2012). Profiling of 
fermentative metabolites in kimchi: Volatile and non-volatile organic acids. Han’guk 
Ungyong Saengmyong Hwahakhoe Chi - Journal of the Korean Society for Applied 
Biological Chemistry, 55(4), 463–469. Agricultural & Environmental Science Collection. 
https://doi.org/10.1007/s13765-012-2014-8 

Shin, J., Yoon, K.-B., Jeon, D.-Y., Oh, S.-S., Oh, K.-H., Chung, G. T., Kim, S. W., & Cho, S.-H. 
(2016). Consecutive outbreaks of enterotoxigenic Escherichia coli O6 in schools in South 
Korea caused by contamination of fermented vegetable Kimchi. Foodborne Pathogens and 
Disease, 13(10), 535–543. https://doi.org/10.1089/fpd.2016.2147 

Shukla, S., Choi, T. B., Park, H.-K., Kim, M., Lee, I. K., & Kim, J.-K. (2010). Determination of 
non-volatile and volatile organic acids in Korean traditional fermented soybean paste 
(Doenjang). Food and Chemical Toxicology, 48(8), 2005–2010. 
https://doi.org/10.1016/j.fct.2010.04.034 

Sloan, A. E. (2019, November). Favoring Fermented. Food Technology Magazine, 73(11). 
https://www.ift.org/news-and-publications/food-technology-
magazine/issues/2019/november/columns/favoring-fermented 

Sorrells, K. M., Enigl, D. C., & Hatfield, J. R. (1989). Effect of pH, acidulant, time, and 
temperature on the growth and survival of Listeria monocytogenes. Journal of Food 
Protection, 52(8), 571–573. https://doi.org/10.4315/0362-028X-52.8.571 

Spyropoulou, K. E., Chorianopoulos, N. G., Skandamis, P. N., & Nychas, G-J. E. (2001). 
Survival of Escherichia coli O157:H7 during the fermentation of Spanish-style green table 
olives (conservolea variety) supplemented with different carbon sources. International 
Journal of Food Microbiology, 66(1), 3–11.https://doi.org/10.1016/S0168-1605(00)00510-
9 

Stamer, J. R., Stoyla, B. O., & Dunckel, B. A. (1971). Growth rates and fermentation patterns of 
lactic acid bacteria associated with the sauerkraut fermentation. Journal of Milk and Food 
Technology, 34(11), 521–525. https://doi.org/10.4315/0022-2747-34.11.521 

Stamer, J. R., Stoyla, B. O., & Dunckel, B. A. (1971). Growth rates and fermentation patterns of 
lactic acid bacteria associated with the sauerkraut fermentation. Journal of Milk and Food 
Technology, 34(11), 521–525. https://doi.org/10.4315/0022-2747-34.11.521 

Stanton, C., Ross, R. P., Fitzgerald, G. F., & Sinderen, D. V. (2005). Fermented functional foods 
based on probiotics and their biogenic metabolites. Current Opinion in Biotechnology, 
16(2), 198–203. https://doi.org/10.1016/j.copbio.2005.02.008 



129 
 

Tamang, J. P., Shin, D.-H., Jung, S.-J., & Chae, S.-W. (2016). Functional properties of 
microorganisms in fermented foods. Frontiers in Microbiology, 7, 578. 
https://doi.org/10.3389/fmicb.2016.00578 

Teixeira, J. S., Seeras, A., Sanchez-Maldonado, A. F., Zhang, C., Su, M. S.-W., & Gänzle, M. G. 
(2014). Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. 
Food Microbiology, 42, 172–180. https://doi.org/10.1016/j.fm.2014.03.015 

ten Brink, B., Damink, C., Joosten, H. M. L. J., & Huis in ’t Veld, J. H. J. (1990). Occurrence 
and formation of biologically active amines in foods. International Journal of Food 
Microbiology, 11(1), 73–84. https://doi.org/10.1016/0168-1605(90)90040-C 

The Institute of Medicine, National Academy of Sciences (IOM/NAS). (1994). Opportunities in 
the nutrition and food sciences: research challenges and the next generation of 
investigators. The Journal of Nutrition, 124(6), 763–769. 

Thung, T. Y., Mahyudin, N. A., Basri, D. F., Wan Mohamed Radzi, C. W. J., Nakaguchi, Y., 
Nishibuchi, M., & Radu, S. (2016). Prevalence and antibiotic resistance 
of Salmonella Enteritidis and Salmonella typhimurium in raw chicken meat at retail 
markets in Malaysia. Poultry Science, 95(8), 1888–1893.  

Tocmo, R., Lai, A. N., Wu, Y., Liang, D., Fogliano, V., & Huang, D. (2017). Organosulphide 
profile and hydrogen sulphide-releasing activity of garlic fermented by Lactobacillus 
plantarum. Journal of Functional Foods, 30, 254–259. 
https://doi.org/10.1016/j.jff.2017.01.001 

Tofalo, R., Perpetuini, G., Schirone, M., Ciarrocchi, A., Fasoli, G., Suzzi, G., & Corsetti, A. 
(2014). Lactobacillus pentosus dominates spontaneous fermentation of Italian table olives. 
LWT - Food Science and Technology, 57(2), 710–717. 
https://doi.org/10.1016/j.lwt.2014.01.035 

Tofalo, R., Schirone, M., Perpetuini, G., Angelozzi, G., Suzzi, G., & Corsetti, A. (2012). 
Microbiological and chemical profiles of naturally fermented table olives and brines from 
different Italian cultivars. Antonie van Leeuwenhoek, 102(1), 121–131. 
https://doi.org/10.1007/s10482-012-9719-x 

Tsai, Y.-H., Kung, H.-F., Lin, Q.-L., Hwang, J.-H., Cheng, S.-H., Wei, C.-I., & Hwang, D.-F. 
(2005). Occurrence of histamine and histamine-forming bacteria in kimchi products in 
Taiwan. Food Chemistry, 90(4), 635–641. https://doi.org/10.1016/j.foodchem.2004.04.024 



130 
 

Tyler, L. D., Acree, T. E., & Smith, N. L. (1979). Sensory evaluation of Geosmin in juice made 
from cooked beets. Journal of Food Science, 44(1), 79–81. https://doi.org/10.1111/j.1365-
2621.1979.tb10009.x 

USDA-FSIS (US Department of Agriculture, Food Safety and Inspection Service) (2014). 
Compliance Guidelines to Control Listeria monocytogenes in Post-Lethality Exposed 
Ready-To-Eat Meat and Poultry Products. Washington, DC: US Department of 
Agriculture. Retrieved from: https://www.fsis.usda.gov/wps/wcm/connect/d3373299-50e6-
47d6-a577- e74a1e549fde/Controlling-Lm-RTE-Guideline.pdf?MOD=AJPERES 

USHHS (U.S. Department of Health and Human Services and U.S. Department of Agriculture). 
(2015).  2015–2020 Dietary Guidelines for Americans. 8th Edition. Retrieved from: 
http://health.gov/dietaryguidelines/2015/guidelines/ 

Viander, B., Mäki, M., & Palva, A. (2003). Impact of low salt concentration, salt quality on 
natural large-scale sauerkraut fermentation. Food Microbiology, 20(4), 391–395. 
https://doi.org/10.1016/S0740-0020(02)00150-8 

Vidigal, M. C. T. R., Minim, V. P. R., Carvalho, N. B., Milagres, M. P., & Gonçalves, A. C. A. 
(2011). Effect of a health claim on consumer acceptance of exotic Brazilian fruit juices: 
Açaí (Euterpe oleracea Mart.), Camu-camu (Myrciaria dubia), Cajá (Spondias lutea L.) and 
Umbu (Spondias tuberosa Arruda). Food Research International, 44(7), 1988–1996. 
https://doi.org/10.1016/j.foodres.2010.11.028 

Waehrens, S. S., Grønbeck, M. S., Olsen, K., & Byrne, D. V. (2018). Impact of consumer 
associations, emotions, and appropriateness for use on food acceptability: A CATA and 
liking evaluation of vegetable and berry beverages. Journal of Sensory Studies, 33(4), 
e12328. https://doi.org/10.1111/joss.12328 

Walker, S. J., Archer, P., & Banks, J. G. (1990). Growth of Listeria monocytogenes at 
refrigeration temperatures. Journal of Applied Bacteriology, 68(2), 157–162. 
https://doi.org/10.1111/j.1365-2672.1990.tb02561.x 

Wesche, A. M., Gurtler, J. B., Marks, B. P., & Ryser, E. T. (2009). Stress, sublethal Injury, 
resuscitation, and virulence of bacterial foodborne pathogens. Journal of Food Protection, 
72(5), 1121–1138. 
http://search.proquest.com/docview/231344561/abstract/5B9E780CC710450EPQ/1 

Williams, A. G., Noble, J., & Banks, J. M. (2001). Catabolism of amino acids by lactic acid 
bacteria isolated from Cheddar cheese. International Dairy Journal, 11(4), 203–215. 
https://doi.org/10.1016/S0958-6946(01)00050-4 



131 
 

Wilmes-Riesenberg, M. R., Bearson, B., Foster, J. W., & Curtis, R. (1996). Role of the acid 
tolerance response in virulence of Salmonella typhimurium. Infection and Immunity, 64(4), 
1085–1092. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC173888/ 

Wolkers-Rooijackers, J. C. M., Thomas, S. M., & Nout, M. J. R. (2013). Effects of sodium 
reduction scenarios on fermentation and quality of sauerkraut. LWT - Food Science and 
Technology, 54(2), 383–388. https://doi.org/10.1016/j.lwt.2013.07.002 

Wootton-Beard, P. C., & Ryan, L. (2011). A beetroot juice shot is a significant and convenient 
source of bioaccessible antioxidants. Journal of Functional Foods, 3(4), 329–334. 
https://doi.org/10.1016/j.jff.2011.05.007 

Wruss, J., Waldenberger, G., Huemer, S., Uygun, P., Lanzerstorfer, P., Müller, U., Höglinger, 
O., & Weghuber, J. (2015). Compositional characteristics of commercial beetroot products 
and beetroot juice prepared from seven beetroot varieties grown in Upper Austria. Journal 
of Food Composition and Analysis, 42, 46–55. https://doi.org/10.1016/j.jfca.2015.03.005 

Wu, V. C. H. (2008). A review of microbial injury and recovery methods in food. Food 
Microbiology, 25(6), 735–744. https://doi.org/10.1016/j.fm.2008.04.011 

Xiong, T., Li, J., Liang, F., Wang, Y., Guan, Q., & Xie, M. (2016). Effects of salt concentration 
on Chinese sauerkraut fermentation. LWT - Food Science and Technology, 69, 169–174. 
https://doi.org/10.1016/j.lwt.2015.12.057 

Ye, B., He, S., Zhou, X., Cui, Y., Zhou, M., & Shi, X. (2019). Response to acid adaptation in 
Salmonella enterica Serovar Enteritidis. Journal of Food Science, 84(3), 599–605. 
https://doi.org/10.1111/1750-3841.14465 

Yoon, K. Y., Woodams, E. E., & Hang, Y. D. (2005). Fermentation of beet juice by beneficial 
lactic acid bacteria. LWT - Food Science and Technology, 38(1), 73–75. 
https://doi.org/10.1016/j.lwt.2004.04.008 

Zhang, Q., Chen, G., Shen, W., Wang, Y., Zhang, W., & Chi, Y. (2016). Microbial safety and 
sensory quality of instant low-salt Chinese paocai. Food Control, 59, 575–580. 
https://doi.org/10.1016/j.foodcont.2015.06.041 

Zhou, X., Qiu, M., Zhao, D., Lu, F., & Ding, Y. (2016). Inhibitory effects of spices on biogenic 
amine accumulation during fish sauce fermentation. Journal of Food Science, 81(4), 913–
920. https://doi.org/10.1111/1750-3841.13255 



132 
 

APPENDIX A: FERMENTED FOODS ONLINE SURVEY QUESTIONNAIRE 

1. Please indicate your gender. (Choose one answer)  

• Male 

•  Female 

•  Other 

• Prefer to not answer  

2. Please indicate your age bracket based on your last birthday. (Choose one answer)  

• Under 18 [Directs user to the end of the survey] 

• 18-25 

• 26-35 

• 36-45 

• 46-55 

• 56 years or older 

• Prefer not to answer  

3. Do you currently purchase or consume fermented foods?  

• Yes 

• No 

(If no, skip to Question 6)  

4. If yes, which type of fermented product do you currently purchase and/or consume?  

• Sauerkraut 

• Kimchi 

• Fermented pickles 
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• Sourdough 

• Kombucha 

• Alcoholic beverages (e.g., beer, wine, cider, mead) o Yogurt 

• Kefir 

• Cheese 

• Other vegetables (e.g, beans, beets, carrots)  

5. Why do you consume fermented products? (Mark all that apply)  

• Gut health (probiotics) 

• Like the taste 

• As a food supplement  

• Others : (Specify)  

6. Do you ferment foods at home?  

• Yes 

• No 

(If no, skip to Question 8)  

7. If yes, which type of foods do you ferment at home? (Mark all that apply)  

• Sauerkraut 

• Kimchi 

• Fermented pickles  

• Sourdough 

• Kombucha 

• Alcoholic beverages (e.g., beer, wine, cider, mead) o Yogurt 

• Kefir 
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• Cheese 

• Other vegetables (e.g, beans, beets, carrots) (continue to Question 9)  

8. If no, why do you not ferment foods at home? 

• Do not like fermented foods 

• Do not know how to ferment foods 

• Unsure about the safety of fermented foods  

• Inconvenient (e.g time and supplies) o Other: (specify)  

9. How physically active do you consider yourself? 

• Very Active (More than 30 minutes of moderate-intense activity, 5 days a week) 

• Active (At least 30 minutes of moderate-intense activity, 5 days a week) 

• Moderately Active (At least 30 minutes of moderate-intense activity, 3 days a 

week) 

• Sedentary (Less than 30 minutes of moderate-intense activity, 3 days a week) 

• Unsure/prefer not to answer  

10. Do you currently purchase and/or consume sports nutrition supplements and/or 

beverages?  

• Yes 

• No 

• Unsure  

11. Are you aware of the benefits consuming of red beets?  

• Yes 

•  No 

• Unsure  
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Read the statements below: 

1: “Beet kvass is a fermented beverage made by infusing red beets in water along with salt and 

spices like garlic.” 

2: “Red beets have been associated with health benefits such as lowering hypertension, enhanc- 

ing exercise performances, and benefiting cardiovascular health.”  

12. Would understanding the health benefits of red beets make you more likely to consume 

and/or make beet kvass? 

• Yes 

• No  

• Unsure 

(If no or unsure, skip to Question 14)  

13. If yes, do you think you would be more likely to make or purchase? 

• Make 

• Purchase  

• Both 

• Unsure  

(Next page) 

As part of this research, we may ask consumers to participate in a taste test at the University of 

Maine Sensory Evaluation Center. Would you be interested in an invitation to participate in this 

type of study? If yes, please provide an email address for notifications. Your personal 

information is confidential and is linked to your responses to confirm eligibility for future 

sensory evaluation, but will not be used in publication.  
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o Yes : (enter email) 

o No  

(Next Block) 

If you would like to be entered in a raffle to win one of two $25 Amazon gift cards, please enter 

your email below. Your responses are confidential. Gift cards will be awarded via email.  

Email:  

Thank you for your time and answers.  
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APPENDIX B: ONLINE SURVEY INFORMED CONSENT FORM 

You are invited to take part in online survey for a research project. The goal is to learn how 

people perceive of fermented foods. This project will be done by graduate student Abigail Hing 

and faculty sponsor Dr. Jennifer Perry from the School of Food and Agriculture. You must be at 

least 18 years old to participate.  

What Will You Be Asked to Do?  

If you choose to take part in this study, you will be asked to answer a survey about yourself, your 

perception and interest towards the safety and health benefits of fermented foods. You may not 

skip any questions. All responses are confidential and will take approximately 15 mins to 

complete.  

Risks  

Time and inconvenience are the risks to you from participating in this study.  

Benefits  

While this survey will have no direct benefits to you, the results from this study will allow re- 

searchers to help Maine home fermenters and processors develop safer fermented products.  

Compensation  

All participants who complete the survey and provide their contact information for the raffle will 

be eligible to enter a raffle for one of two $25 Amazon gift cards. No compensation will be pro- 
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vided if you decide not to complete the survey, or if you do not provide contact information for 

the raffle. All responses are confidential.  

Confidentiality  

This study is confidential. You will be given the option to provide contact information so that 

you can participate in future studies and to enter a raffle. Personal information will be linked to 

your responses to confirm eligibility for future sensory evaluation, but will not be used in 

publication and stored separately from publicized data. All data will be kept on a password-

protected computer indefinitely.  

Voluntary  

Taking part in this study is voluntary. If you choose to take part in this study, you may stop at 

any time, but you must complete the survey to enter the raffle. You may not skip any questions. 

Submission of the survey implies consent to participate.  

Contact Information  

If you have any questions about this study, please contact:  

• Abigail Hing, email: abigail.hing@maine.edu 

• Dr. Jennifer Perry (Faculty sponsor), email: jennifer.perry@maine.edu  

If you have any questions about your rights as a research participant, please contact the Office of 

Research Compliance, University of Maine, 207-581- 2657 (or e-mail umric@maine.edu).  
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APPENDIX C: ONLINE SURVEY RECRUITMENT NOTICE 

Participation needed for a brief online survey on perceptions and interests towards fermented 

foods. 

Hello- 

You are receiving this email because you are in the emailing list of (School of Food and 

Agriculture, Cooperative Extension’s Constant Contact, or the School of Kinesiology, Physical 

Education and Athletic Training).  

You are invited to participate in a research project being conducted by graduate student Abigail 

Hing and faculty sponsor Dr. Jennifer Perry of the University of Maine School of Food and Agri- 

culture. If you are least 18 years old, and have access to the internet, please help researchers 

learn about the perception of consumers towards fermented foods and the health benefits they 

may provide.  

This study should take no more than 15 minutes to complete and participants who complete this 

survey may enter in a raffle to win one of two $25 Amazon gift cards. You may not skip any 

questions. All responses are confidential. If participants agree to participate in future sensory 

evaluation, personal information will be linked to your responses to confirm eligibility, but will 

not be used in publication .The data files will be archived in Digital Commons and kept 

indefinitely so that other researchers may access the anonymous, federally- funded data.  

If you have any questions, please contact Abigail Hing at abigail.hing@maine.edu or Dr. 

Jennifer Perry (Faculty sponsor) at jennifer.perry@maine.edu.   
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APPENDIX D: ONLINE SURVEY RECRUITMENT POSTER 

 

Participation needed for a brief online survey on perceptions and interests towards fermented 
foods.  

Hello-  

You are receiving this email because you are in the emailing list of Cooperative Extension’s 
Constant Contact. 

You are invited to participate in a research project being conducted by graduate student Abigail 
Hing and faculty sponsor Dr. Jennifer Perry of the University of Maine School of Food and Agri-
culture. If you are least 18 years old, and have access to the internet, please help researchers 
learn about the perception of consumers towards fermented foods and the health benefits they 
may provide.  This survey is available until October 30, 2019.  

Link to the survey : https://umaine.qualtrics.com/jfe/form/SV_emND1p9VuVWjye1 

This study should take no more than 10 minutes to complete and participants who complete this 
survey may enter in a raffle to win one of two $25 Amazon gift cards. You may not skip any 
questions. All responses are confidential. If participants agree to participate in future sensory 
evaluation, personal information will be linked to your responses to confirm eligibility, but will 
not be used in publication. The data files will be archived in Digital Commons and kept indefi-
nitely so that other researchers may access the anonymous, federally- funded data. 

If you have any questions, please contact Abigail Hing at abigail.hing@maine.edu or Dr. Jennifer 
Perry (Faculty sponsor) at jennifer.perry@maine.edu.  

 

SCHOOL OF FOOD AND AGRICULTURE 



141 
 

APPENDIX E: SENSORY EVALUATION BALLOT 

Welcome to the Sensory Evaluation Center at the University of Maine! Thank you for taking the 

time to participate in our research. Please evaluate the samples in the order they are displayed to 

you on the computer screen. Please make sure the 3-digit code on your sample matches the code 

on your computer screen. For each samples, please take at least two sips. Please take a sip of 

water before tasting and evaluating each sample.  

1. Please indicate your gender. (Choose one answer) 

• Male 

• Female 

• Other 

• Prefer to not answer  

2. Please indicate your age bracket based on your last birthday. (Choose one answer) 

Under 18 [Directs user to the end of the survey] 

• 18-25 

• 26-35 

• 36-45 

• 46-55 

• 56 years or older 

• Prefer not to answer  

3. How familiar are you with beet kvass? 

• Very familiar  

• Moderately familiar 
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• Have never heard of it 

[The following questions will be displayed for all samples] 

Please evaluate this sample and rate the intensity of each flavor listed:  

Garlic  

• Much too garlicky 

• Little too garlicky 

• Just about right 

• A little garlicky  

• Not garlicky 

Salt 

• Much too salty 

• Little too salty 

• Just about right 

• A little salty 

• Not salty 

 

Tartness 

• Much too tart 

• Little too tart 
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• Just about right 

• A little tart 

• Not tart 

Vinegary 

• Much too vinegary 

• Little too vinegary 

• Just about right 

• A little vinegary 

• Not vinegary 

How much do you like the color of this sample?  

• Dislike Extremely 

• Dislike very much 

• Dislike moderately 

• Dislike Slightly 

• Neither like nor dislike  

• Like slightly 

• Like moderately 

• Like very much 

• Like extremely 
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How much do you like this product overall? 

• Dislike Extremely 

• Dislike very much 

• Dislike moderately 

• Dislike Slightly 

• Neither like nor dislike  

• Like slightly 

• Like moderately 

• Like very much 

• Like extremely 

How likely would you be to purchase/make this product?  

• Very likely 

• Moderately likely 

• Neither likely nor unlikely 

• Moderately unlikely 

• Very unlikely 

Is there anything else that you would like to say about this sample? Please type the 

sample’s three-digit code in your comments.  

[Appears after the evaluation of samples]  
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“Red beets have been associated with health benefits such as lowering hypertension, enhancing 

exercise performances, and benefitting cardiovascular health.” 

Would knowing the health benefits of this sample make you more likely to make or 

purchase this product?  

• Very likely 

• Moderately likely 

• Neither likely nor unlikely 

• Moderately unlikely 

• Very unlikely 

“Beet kvass is a fermented beverage that contains live, active bacterial cultures.” 

Would knowing this make you more likely to make or purchase this product? 

• Very likely 

• Moderately likely 

• Neither likely nor unlikely 

• Moderately unlikely 

• Very unlikely 

Thank you for your time and opinions. Please raise the window slightly to let the kitchen staff 

know that you are done. 
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APPENDIX F: SENSORY EVALUATION INVITATION NOTICE 

Participation needed for sensory evaluation of beet kvass. 

Hello-  

You are receiving this invitation because you completed the survey on beet kvass that was held 
from October 16, 2019 to October 31, 2019, and have agreed 
to participate in future testing.  

 

 

 

 

You are invited to participate in a research project being 
conducted by graduate student Abigail Hing and faculty 
members Dr. Jennifer Perry and Dr. Mary Ellen Camire of the 
University of Maine School of Food and Agriculture. If you 
are least 18 years old, please help researchers learn about the 
consumer acceptability of beet kvass. If you are allergic to red 
beetroots, garlic, or salt, please refrain from participating.  

 

 

This study should take no more than 15 minutes to complete and participants who complete this 
sensory evaluation may receive a compensation of $5. All responses will be anonymous.  

When? (Enter times)  

Where? The Sensory Evaluation Center located in Rooms 158A and 158B in Hitchner Hall at the 
University of Maine, Orono, Maine.  

If you have any questions, please contact Abigail Hing at abigail.hing@maine.edu, Dr. 
Jennifer Perry (Faculty sponsor) at jennifer.perry@maine.edu or Dr. Mary Ellen Camire at 
camire@maine.edu 
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APPENDIX G: SENSORY EVALUATION RECRUITMENT NOTICE 

Participation needed for a sensory evaluation on beet kvass. You are receiving this email because 
you are in the sensory evaluation center email list. 

Hello-  

You invited to participate in a research project being conducted by graduate student Abigail Hing 
and faculty members Dr. Jennifer Perry and Dr. Mary Ellen Camire of the University of Maine 
School of Food and Agriculture. If you are least 18 years old, please help researchers learn about 
the consumers acceptance towards beet kvass.  

Please complete a pre-survey questionnaire that would determine your eligibility for this sensory 
evaluation. (Enter link and QR code)   

This questionnaire should take no more than 5 minutes, while the sensory evaluation study 
should not take no more than 15 minutes to complete. Participants who have successfully 
completed the sensory evaluation would be compensated with $5.  

If you have any questions, please contact Abigail Hing at abigail.hing@maine.edu, Dr. Jennifer 
Perry (Faculty sponsor) at jennifer.perry@maine.edu or Dr. Mary Ellen Camire at 
camire@maine.edu 
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APPENDIX H: SENSORY EVALUATION PRE-SCREENING QUESTIONNAIRE 

Thank you for showing interest in participating in our sensory evaluation. Please complete this 

pre-screening questionnaire to determine your eligibility to participate in our sensory evaluation.  

1. Please indicate your age bracket based on your last birthday (Choose one answer)  

• Under 18   

• 18-25 

• 26-35  

• 36-45  

• 46-55  

• 56-65  

• 66 years or older   

Skip To: End of Survey If Q1 = Under 18 

2. Do you currently purchase and/or consume fermented foods?  

• Yes 

• No  

Skip To: End of Survey If Q2 = No 

3. Are you allergic to red beetroot, garlic, and/or salt?  

• Yes  

• No  

Skip To: End of Survey If Q3 = Yes  
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4. Please click on the link below for the sensory evaluation time and location. 

(link) 

 

End of survey: Thank you for your interest in this research. You are currently not eligible to 

participate in this sensory evaluation 
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APPENDIX I: SENSORY EVALUATION INFORMED CONSENT FORM 

 
You are invited to take part in a sensory evaluation for a research project. The goal is to learn the  
acceptance and taste preference of consumers towards beet kvass. This project will be done by 
graduate student Abigail Hing and faculty members Dr. Jennifer Perry and Dr. Mary Ellen 
Camire from the School of Food and Agriculture. You must be at least 18 years old to 
participate. If you are allergic to red beetroots, garlic, or salt, please refrain from participating.  

 

What Will You Be Asked to Do? 
If you choose to take part in this study, you will be asked to try four different beet kvass. Please 
take at least two sips of each sample. For each sample, you answer a few questions about the 
taste of the sample. Please click on the boxes you identify the flavor of the samples with. You 
may not skip any questions. It may take up to 15 minutes of your time.  

Risks 
Time and inconvenience are the risks to you from participating in this study.  

Benefits 
While this sensory evaluation will have no direct benefits to you, the results from this study will 
allow researchers to better understand the acceptance and preference of beet kvass.  

Compensation 
All participants who complete the evaluation will be compensated with $5. No compensation 
will be provided if you decide not to complete the evaluation. 

Confidentiality 
All data will be collected anonymously and store indefinitely on a secure password protected 
computer. All data will be archived to Digital Commons for other researchers to access. 

Voluntary 
Taking part in this study is voluntary. If you choose to take part in this study, you may stop at 
any time, but you must complete the evaluation to be compensated. You may not skip any 
questions. 

Contact Information 
If you have any questions about this study, please contact: 
• Abigail Hing, email: abigail.hing@maine.edu  
• Dr. Jennifer Perry (Faculty sponsor), email: jennifer.perry@maine.edu 
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• Dr. Mary Ellen Camire: camire@maine.edu 

 

If you have any questions about your rights as a research participant, please contact the Office of 
Research Compliance, University of Maine, 207-581- 2657 (or e-mail umric@maine.edu).  
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