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Skeletal muscle plasticity is imperative for functional adaptation to changing demands in activity. 

Although a great deal is known about the structural and functional plasticity of healthy skeletal 

muscle, far less is known about plasticity in diseased muscle. Here, we combined the power of 

the zebrafish model with the adaptability of neuromuscular electrical stimulation (NMES) to 

study the basic mechanisms of plasticity in the zebrafish model of Duchenne Muscular 

Dystrophy (DMD). Four NMES paradigms, defined by their frequency, delay, and voltage, were 

designed to emulate the repetition and load schemes of human resistance training programs. 

Additionally, two inactivity paradigms were designed to emulate activity patterns in individuals 

with DMD. Three sessions of endurance NMES improve muscle structure, increase swim 

velocity and distance traveled, and extend survival. Endurance NMES significantly increased 

the number and length of branching for neuromuscular junctions. Nuclear surface area and 

volume also significantly increased following endurance NMES. Time-lapse imaging suggests 

less degeneration and improved regeneration of the fast-twitch muscle fibers. Conversely, three 

days of inactivity worsen muscle structure and decreases survival. Strikingly, inactivity followed 

by a single session of endurance or power NMES obliterates muscle resilience. Therefore, our 

data clearly indicate that, at least in the zebrafish model, some resistance training is beneficial 



    

whereas inactivity is deleterious for dystrophic muscle. More importantly, though, our data 

provide a new methodology with which to study muscle plasticity in healthy and diseased 

muscle.  
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CHAPTER 1 

REVIEW OF THE LITERATURE 

 

1.1 Introduction 

My research examines the impact of inactivity versus neuromuscular electrical 

stimulation (NMES) on disease progression in the zebrafish model of Duchenne muscular 

dystrophy (DMD). Before diving into the significance of this research, it is worthy to discuss 

skeletal muscle and the components that allow it to perform functions that are critical to 

organismal health. A special emphasis is placed on the dystrophin protein and the role it plays 

in maintaining the structural integrity of the muscle fiber. More importantly, though, dystrophin is 

discussed in the disease context, from both clinical and molecular perspectives, since DMD is 

the direct result of its absence. Lastly, an in-depth review of studies examining the role that 

inactivity and activity play in DMD disease progression is provided to demonstrate the need for 

more research as well as a new approach to this research question.  

1.2 Skeletal Muscle Function 

Unlike many organs in the body, most individuals are confident in defining what skeletal 

muscle is, identifying where it is located, and describing the roles it plays in the human body. 

However, the complexity of skeletal muscle’s function in human health continues to grow as 

new proteins are identified, and new roles for previously identified proteins are uncovered. 

Throughout the hundreds of thousands of research papers investigating skeletal muscle, it is 

well-established that skeletal muscle is a highly dynamic tissue whose structural and molecular 

networks actively respond to changes in the demands imposed on it. The skeletal muscle’s 

ability to adapt to these demands is critical to maintaining not only muscle health but the overall 

health of an individual.  
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Skeletal muscle’s primary role in the human body is to generate movement. It allows us 

to navigate throughout our world and to interact with our surroundings. Additionally, skeletal 

muscle maintains our posture and allows us to breath. Functional independence in our daily 

lives is determined by how successfully our skeletal muscle functions. However, skeletal muscle 

contributes to human health beyond generating the force and power required for movement, 

and these contributions are often overlooked. Over the past decade, an upsurge in ‘omic’ 

technologies, including proteomics and metabolomics, painted a more detailed molecular 

picture of skeletal muscle. This picture now encompasses a myriad of interactions with other 

body systems through numerous players [1]. Most notably, skeletal muscle is now classified as 

an endocrine organ. Recently, it was established that skeletal muscle secretes cytokines and 

other peptides, consequently termed myokines, that play important roles in maintaining 

metabolic homeostasis [2,3] and inflammation [4,5]. Interestingly, these myokines are regulated 

by skeletal muscle contractions and activity levels [2,6–8]. Skeletal muscle is also a highly 

metabolic tissue. It is essential for basal energy metabolism by serving as a storage site for 

carbohydrates and glucose homeostasis [9]. Additionally, skeletal muscle is a reservoir for 

amino acids, housing 50-75% of proteins required by other tissues, including the skin, brain, and 

heart [9]. Lastly, a major role skeletal muscle plays in energy metabolism is the production of 

heat to maintain core temperature [9].   

Since skeletal muscle plays an important role in human movement and a vast amount of 

other key aspects of human health, it is not surprising that research continues to demonstrate 

that it is one of the primary predictors of longevity and recovery from illness and injury. 

Specifically, reduced skeletal muscle mass impairs the body’s ability to respond to and recover 

from stress and chronic illness [9]. This is best exemplified in aging, where the loss in skeletal 

muscle mass contributes to an overall decline in physical functioning, increased disability, and 

mortality [10]. Therefore, robust skeletal muscle mass is essential for whole-body homeostasis 
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[11], and it is important that research focuses on preserving this tissue in healthy and diseased 

states. 

1.3 Skeletal Muscle Structure 

There are over 650 named skeletal muscles within the human body, and each of them 

share the same underlying structure. Skeletal muscle structure is highly intricate but can be 

broken down into four main components: the nerves that signal muscle contraction, the 

individual muscle fibers that contract, the vasculature that delivers oxygen, and the metabolic 

machinery that supplies energy to power movement [1]. Each of these four components contain 

many subcomponents with intricate structures that play a critical role in maintaining the overall 

structure of the muscle and allow it to perform its many functions. Understanding the underlying 

structure of skeletal muscle brings to light how a small perturbation, such as the presence of a 

partially formed protein, can spiral into a vicious cycle of degeneration and weakness. 

Skeletal muscle is best described as a cylindrical bundle of cylindrical bundles that are 

separated from one another by connective tissue sheaths. For example, if we build a biceps 

muscle, the muscle responsible for flexion of the elbow, we begin first with the myofilaments, 

which are actin and myosin. Actin and myosin are long cylindrical proteins that are found in 

series along the length of the muscle fiber. Together, they are surrounded by a plasma 

membrane, known as the sarcolemma. Individual muscle fibers are wrapped by a second 

connective tissue sheath, called the endomysium, and are arranged into bundles, called 

fascicles. Each individual fascicle is surrounded by a connective sheath, called the perimysium. 

Finally, these fascicles are bundled together to form the biceps muscle, which is surrounded by 

another layer of connective tissue known as the epimysium.  

Skeletal muscle is not only highly organized but is highly vascularized and highly 

innervated. An elaborate network of arteries and veins create a rich lattice of vasculature that 

enmeshes the bundles of muscle fibers [1]. These networks ensure that muscle fibers are 

supplied with ample amounts of oxygen for energy production. Notably, the density of the 
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vasculature varies within and between muscles, and adapts to changes in energy demand [1]. 

Motor neurons innervate the muscle, carrying signals from the brain to the muscle. Unlike the 

vasculature, there is a one-to-one relationship between a muscle and the motor neurons 

innervating it [12]. That is, a motor neuron can only innervate one muscle. However, a single 

motor neuron can innervate multiple muscle fibers within that muscle, but a muscle fiber cannot 

be innervated by more than one motor neuron [12]. The muscle fibers innervated by a single 

motor neuron is collectively called a motor unit [12]. The size of the motor unit, or the number of 

muscle fibers innervated by the motor neuron, is dependent upon the movements performed by 

the muscle. For example, motor units are small for muscles of the hands and fingers in order to 

carry out their highly coordinated, more delicate movements. Conversely, motor units are 

extremely large for the muscles of the thigh since highly coordinated movements are not 

required [12].  

1.3.1 The Muscle Fiber 

Individual muscle fibers themselves are highly organized and contain a plethora of 

intricate structural and regulatory components. Unlike other cells in the body, muscle fibers are 

multi-nucleated and post-mitotic [9], meaning multiple nuclei are found along the length of an 

individual muscle fiber and the muscle fiber is unable to divide to form a sister cell. Muscle fibers 

exhibit a range of diameters and lengths, but are, on average, 100 micrometers in diameter and 

1 cm in length [9]. Therefore, having nuclei spread along the length of the muscle fiber ensures 

that specific proteins are synthesized and readily available to meet the demands of the muscle 

fiber within each region [13]. Similar to the nuclei, mitochondria are located strategically 

throughout the entire muscle fiber to allow for maximum oxygen delivery to the mitochondria, 

which in turn, allows for maximum energy production by the mitochondria [14]. Specifically, 

individual mitochondria are positioned close to the sarcolemma to reduce oxygen’s diffusion 

distance from the vasculature as well as in the intermyofibrillar space to enhance the delivery of 
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ATP to the contractile machinery. Notably, changes in the demands imposed on skeletal muscle 

result in significant changes to these three structural components [9]. 

Individual muscle fibers drive skeletal muscle contraction and force generation required 

for locomotion, breathing, and postural stability. Muscle contraction is carried out and supported 

by five basic units: the neuromuscular junction (NMJ), the excitation-contraction coupling 

machinery, the sarcomere, the extracellular matrix (ECM), and the cytoskeleton [1]. The NMJ 

serves as the junction between the innervating motor neuron carrying the signal for contraction, 

the excitation-contraction coupling machinery then transforms the electrical impulse from this 

neuron into a mechanical contraction, the sarcomere is the contractile apparatus responsible for 

force generation while the ECM and cytoskeleton protect the muscle by providing mechanical 

support and force transmission. Together, this units allow the muscle to sustain rapid cycles of 

contraction and relaxation. The following sections below provide more detail on the these 

structural components.  

1.3.2 The Neuromuscular Junction 

The NMJ is the chemical synapse that transmits the electrical impulse from the 

innervating motor neuron to the muscle fiber. It is comprised of three major regions: the 

presynaptic region, the synaptic space, and the postsynaptic region. Within the presynaptic 

region is the nerve terminal that houses synaptic vesicles containing the neurotransmitter, 

acetylcholine [15,16]. Synaptic vesicles fuse to the presynaptic membrane and release 

acetylcholine into the synaptic space [17]. The synaptic space is the space between the pre- 

and post-synaptic membranes through which acetylcholine diffuses. Within the postsynaptic 

region are the junctional folds, which serve to amplify both the space occupied by and the 

volume of the postsynaptic membrane area [1]. The crests of these junctional folds are packed 

with nicotinic acetylcholine receptors [18], which become activated by the diffusing 

acetylcholine. Muscle contraction is discussed in more detail in 1.4. 
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1.3.3 The Excitation-Contraction Coupling Machinery 

The excitation-contraction coupling machinery is composed of the transverse tubular (T 

tubule) system and the sarcoplasmic reticulum [9]. The T tubule system conducts the electrical 

signal received from the motor neuron to the interior of the muscle fiber [19]. T tubules are 

invaginations of the sarcolemma that ensure information from the innervating neuron is spread 

uniformly throughout the fiber [19] and that contractions are coordinated events. The 

sarcoplasmic reticulum is responsible for the storage, release and reuptake of calcium during 

muscle contractions [9]. The ends of the sarcoplasmic reticulum, termed terminal cisternae, are 

responsible for storing calcium and form triads with the T tubule system [9].  

1.3.4 The Sarcomere 

The sarcomere is the basic unit of the muscle fiber and it is the site of rapid force 

generation that brings above movement. Sarcomeres are intricate structures composed of two 

main alternating sets of protein filaments: thin filaments and thick filaments. Thin and thick 

filaments run parallel to the muscle fiber axis and are made up of actin and myosin, 

respectively, as well as their associated proteins [1]. Using transmission electron microscopy, 

the hallmark features of the sarcomere are easily visualized and distinguished by their light and 

dark appearance. At each end of the sarcomere is a dark narrow line called the Z disk, which is 

shared between adjacent sarcomeres and bisects the lighter I band [1]. The Z disk is 

responsible for holding together the thin filaments. Conversely, at the center of the sarcomere is 

a dark narrow line called the M line, which bisects the darker A band [1]. The M line is 

responsible for holding together the thick filaments [1].    

The sarcomere is home to a diverse array of proteins whose roles include structural 

stability, excitation-contraction coupling, energy release, and the generation of force and power 

[20]. For example the troponin complex (including troponins C, I and T, which are the calcium, 

inhibitory, and tropomyosin binding subunits, respectively) and tropomyosin are associated with 

the actin filament and play a major regulatory role in the activation of excitation-contraction 
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coupling and force generation [9]. Two major structural proteins are titin and nebulin [20]. Titin is 

a large elastic protein anchored to the Z disk and the myosin filaments while nebulin is 

integrated within the actin filaments [21]. Both titin and nebulin serve as molecular templates, 

ensuring the precise length and organization of the myosin and actin filaments, respectively 

[22]. Additionally, titin and nebulin stabilize the sarcomere and maintain its integrity [20] through 

their contribution to the ever evolving passive tension and stiffness required by individual 

muscle fibers [9]. Myomesin is present at the M-line to serve as an additional strain sensor [23], 

while creatine kinase serves as a spatial ATP buffer and maintains energy homeostasis [24,25].  

1.3.5 The Extracellular Matrix 

As mentioned in the discussion of skeletal muscle structure, there are three discrete but 

interconnected connective tissue sheaths that surround and protein the muscle fibers, fascicles, 

and whole muscle: the endomysium, the perimysium, and the epimysium, respectively. These 

sheaths represent the extracellular matrices within skeletal muscle. The focus of this section, 

though, is on the endomysium and its interface with the sarcolemma. At the heart of this 

interface, is a specialized basement membrane [1], which is becoming more appreciated as 

research continues to demonstrate its multi-functional roles in protecting the integrity of the 

muscle fiber. For the remainder of this section and dissertation, ECM will be used to refer to this 

interface.  

The ECM is highly involved in the modulation of mechanical homeostasis and cell-matrix 

interactions [26,27]. It provides the necessary uniform distribution and transmission of force 

across muscle fibers, which is mostly achieved through its cytoskeleton-ECM linkage via the 

dystrophin glycoprotein complex [26]. Additionally, the ECM serves as a scaffold for focal 

adhesions that are necessary for initiating biological responses to changes in the cellular 

environment [27]. Most importantly, though, several proteins residing in the ECM serve as 

important signaling mediators during recovery from injury and regeneration [28–30].  
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The multitude of proteins that construct the ECM primarily fall within one of three main 

classes: collagens, non-collagenous glycoproteins, and proteoglycans [1]. Collagens are the 

largest fraction of ECM proteins within skeletal muscle [31,32], and play major roles in structural 

stability. Specifically, collagen I exhibits a range of biomechanical properties, including tensile 

strength and load bearing [1], while collagen VI and IV create a network of fine filaments and 

integrate laminins, nidogens and other proteins into a stable structure [33,34]. Lastly, collagens 

I, III, V, and XI form fibrils to further enhance the structural stability of the ECM [1]. Working 

alongside the collagens, is fibronectin. Fibronectin is described as a master organizer, playing a 

major role in aiding fibril organization and serving as a bridge for proteins such as integrins, 

collagen IV, and other focal adhesion molecules [35]. Matrix assembly and modulation of cell-

matrix interactions are regulated by several ECM proteins, including nidogens, periostin, and 

osteopontin [1]. Additionally, matrix metalloproteinases (MMPs) and their inhibitors (TIMP1 and 

TIMP2) are ECM-associated enzymes that maintain the integrity of the ECM by regulating ECM 

protein degradation [36,37]. The ECM is a dynamic structure in the sense that it responds to 

changes to the intra- and extracellular environments via a host of growth factors that signal the 

production or maintenance of ECM proteins [38]. The dynamic nature of the ECM is especially 

important for monitoring and responding to changes in muscle activity. 

1.3.6 The Cytoskeleton and the Dystrophin Glycoprotein Complex 

Sarcomeres are supported structurally by the muscle cytoskeleton [1]. This cytoskeleton 

is composed of various protein networks that form a lattice called the costamere [39]. The 

costamere functions to transmit force produced by the sarcomere both laterally and 

longitudinally [40–42]. Ultimately, this allows contractions to be unified from one tendon to the 

other while maintaining the integrity of the muscle fiber. It is estimated that as much as 70% of 

the force produced by the sarcomere is transmitted laterally through the costamere [42–44]. 

One of the most important components of the costamere, and arguably one of the most 

important structural complexes within the entirety of the skeletal muscle, is a multi-protein 
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complex known as the dystrophin glycoprotein complex (DGC) or the dystrophin-associated 

protein complex (DAPC). The DGC is physically connected to the internal myofilament structure 

through filamentous actin as well as the external extracellular matrix through laminin [45,46]. 

Proteins that make up the DGC are divided into three groups based on their cellular localization 

[47,48]. Cytoplasmic proteins include dystrophin, a-dystrobrevin, syntrophins, and nNOS. 

Transmembrane proteins include b-dystroglycan, sarcoglycans, sarcospan, and caveolin-3. 

Finally, the extracellular proteins include a-dystroglycan and laminin. The DGC is extremely 

important for maintaining the structural integrity of the muscle fiber, which is clearly 

demonstrated by how the partial or complete absence of a single protein within the complex 

results in muscular dystrophy [49,50]. Additionally, through the multiple binding sites and 

domains present within the individual proteins that construct it, the DGC serves as a scaffold for 

various signaling and channel proteins as well as an anchoring point for signaling molecules 

near their sites of action [47]. A more detailed discussion about the roles of these individual 

proteins is provided below. 

Dystrophin is an extremely large (427 kDa) sub-sarcolemmal cytoskeletal protein 

organized into four distinct domains: (1) the actin-binding amino-terminal domain; (2) the central 

rod domain; (3) the cysteine-rich domain; and (4) the carboxy-terminal domain [48]. The actin-

binding amino terminal domain houses binding sites for filamentous actin [51], connecting 

dystrophin to the sub-sarcolemmal actin network [52]. Additionally, this domain supports 

dystrophin’s interaction with cytokeratin-19, a costamere-enriched intermediate filament [53,54], 

connecting dystrophin to the sarcomere. The central rod domain is made up of 24 spectrin 

repeats consisting of homologous triple helical repeats and four hinge domains [55]. A second 

actin-binding motif [56] and interaction sites for microtubules [57,58] are located within this 

domain, creating a strong lateral association with actin filaments [59] and providing an 

organizational framework for the microtubules [57,58]. The hinge domains provide elasticity to 
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the overall structure of the protein [55]. The cysteine-rich domain resides between the central 

rod and the carboxy terminus domains. This domain houses binding sites for beta-dystroglycan 

and calmodulin [60–63] as well as ankyrin-B [64] and synemin [65]. Ankyrin-B is an adaptor 

protein that helps retain dystrophin at the sarcolemma [64], while synemin is an intermediate 

filament protein, whose interaction with dystrophin helps strengthen the link between the 

costameres and myofibrils [65]. Lastly, the carboxy-terminus domain harbors binding sites for a-

dystrobrevin and the syntrophins [66,67], which assists in their localization to the sarcolemma 

[68]. Ultimately, these intra- and extracellular linkages allow dystrophin to play a crucial role in 

stabilizing the sarcolemma against mechanical forces endured during muscle contraction 

[39,69–77] and in serving as a molecular shock absorber duration muscle contractions [78].  

a-Dystroglycan is an extensively glycosylated extracellular protein [79,80] with a 

dumbbell-like shape from its two globular domains that are connected by an extensible portion 

[81,82]. One of these globular domains houses binding sites for multiple extracellular matrix 

components including laminins, agrin, perlecan, and biglycan [83], while the other houses a 

binding domain for b-dystroglycan [84,85]. b-dystroglycan is a single transmembrane protein 

with an extracellular amino-terminal domain that binds with a-dystroglycan and a carboxy-

terminal domain that binds with dystrophin [86,87] and caveolin-3 [88]. The dystroglycan 

complex is responsible for transducing extracellular-mediated signals that direct cell polarity, 

matrix organization, and mechanical stability of tissues to the cytoskeleton [89–91]. Additionally, 

b-dystroglycan binds agrin at the NMJ, suggesting a role for b-dystroglycan in acetylcholine 

receptor clustering [92]. 

Syntrophins are intracellular membrane-associated adaptor proteins believed to recruit 

and regulate signal-transduction complexes [93]. Specifically, the syntrophins harbor numerous 

binding sites for dystrophin, a-dystrobrevin [94], calmodulin [95,96], heterotrimeric G-proteins 

[97], nNOS [98–100], voltage-gated sodium channels [101], non-voltage gated calcium channels 
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(specifically TRPC) [102], and aquaporin-4 [93]. Therefore, it is suggested that syntrophins play 

an important role in recruiting, organizing and anchoring a signaling complex to the dystrophin 

scaffold [93].  

The sarcoglycan complex is composed of four sarcoglycan isoforms [103–106] and 

sarcospan [107]. Each of the sarcoglycan proteins are single transmembrane glycoproteins 

whose amino-terminal domains are housed either extracellularly (a-sarcoglycan) or 

intracellularly (b-, g-, d-sarcoglycan) [103–106]. While the purpose of the sarcoglycan complex is 

not fully understood, early studies predict that it has both mechanical and non-mechanical roles. 

Specifically, this complex may strengthen the interaction between b- and a-dystroglycan as well 

as b-dystroglycan and dystrophin [108]. Further, the sarcolgycan complex may regulate cell-cell 

adhesion through its interactions with the integrin complex and focal adhesion proteins 

[109,110]. Tightly associated with the sarcoglycan complex is sarcospan, which houses four 

transmembrane spanning helices [111]. Studies suggest an important role for sarcospan in 

upregulating the cell surface expression of the major laminin-binding complexes in the muscle, 

including the DGC, the utrophin-glycoprotein complex and integrin-a7b1 complexes [112]. 

Utrophin is a dystrophin-related protein with significant sequence homology to dystrophin and 

shares structural similarities with dystrophin that allow it to provide mechanical protection to 

skeletal muscle [66,113,114]. Integrin-a7b1 and its associated proteins, including talin, viniculin, 

and paxillin [1], are critical components of the costamere.  

a-Dystrobrevin is a cytoplasmic dystrophin-related protein that binds directly to 

dystrophin, utrophin, and the syntrophins [115,116]. Unlike other members of the DGC whose 

roles are critical to sarcolemmal integrity and signaling, a-dystrobrevin may be critical to the 

distribution and stability of acetylcholine receptors at the NMJ [117,118]. Specifically, a-

dystrobrevin may serve as a hub for assembling signaling complexes that are critical to the 

organization of the postsynaptic machinery, specifically the acetylcholine receptors [119].  
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Caveolin-3 is a critical structural protein located within flask-shaped invaginations of the plasma 

membrane, or caveolae [120]. Caveolin-3 interacts with a number of signaling molecules, 

including heterotrimeric G-proteins, c-SRC and SRC-like kinases [121], and may play a role in 

the formation of the T tubule system during muscle development [122] as well as in the 

regulation of energy metabolism [123]. Additionally, caveolin-3 interacts with nNOS and may 

negatively regulate its enzymatic activity [124,125]. nNOS is associated with the DGC through 

dystrophin and controls local blood flow [126].  

1.3.7 Skeletal Muscle Fiber Types 

Skeletal muscle fibers exhibit a high degree of heterogeneity, harboring unique 

biochemical, mechanical and metabolic phenotypes that allow them to meet the demands 

imposed on them [9]. Ultimately, this allows muscles within the human body to participate in 

activities that require different metabolic and mechanical demands, such as running a marathon 

or holding a plank, due to the unique distributions of various fiber types [9]. 

For the past few decades the classification of muscle fibers has evolved to incorporate 

new research that defines multiple subtypes or isoforms of specific proteins. Traditionally, 

muscle fibers are classified based on color (red vs white), which correlates to myoglobin 

content, or contraction speed during a single muscle twitch (fast vs slow) [127]. Muscle fibers 

are further classified based on their degree of fatigability during sustained activation (fatigable 

vs fatigue-resistant), their dominating metabolic pathway (oxidative vs glycolytic), as well as 

their histochemical stain reactions (ATPase or succinate dehydrogenase) [127]. More recently, 

muscle fibers are classified based on their calcium handling properties by the sarcoplasmic 

reticulum (slow vs fast) [128] and protein isoform expression, such as troponin T isoforms [129] 

and myosin isoforms. Regardless, human skeletal muscle is most frequently described as 

having three muscle fiber types: type I (slow, oxidative, fatigue-resistant), type IIa, (fast, 

oxidative, intermediate metabolic properties), and type IIb (fast, glycolytic, fatigable). Here, the 
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speed of contraction (fast vs slow) correlates with the sarcoplasmic reticulum and calcium 

handling, while the metabolic properties (oxidative vs glycolytic) and tolerability of fatigue 

(fatigue-resistant vs fatigable) correlate with the mitochondrial content [9]. Phenotypically, type I 

muscle fibers are highly vascularized and saturated with mitochondria, which allow them to 

remain active for longer periods of time but with low force output [1]. Muscles from elite 

endurance athletes, such as marathon runners, have a higher type I muscle fiber composition. 

Alternatively, type II fibers contract faster and fatigue much easier than type I fibers as a result 

of their higher glycolytic capacity and accelerated ATP hydrolysis [1]. Muscles from elite 

sprinters and power lifters have a higher proportion of type II fibers.  

1.4 Skeletal Muscle Contraction  

The stability and integrity of the skeletal muscle structure is critical to the survivability of 

the muscle fiber during muscle contraction. The absence or partial functioning of the above 

mentioned proteins in the ECM or DGC negatively affects the fiber’s ability to withstand the 

movement and force generated during contraction. Muscle contraction occurs via a series of 

coordinated events that are repeated until movement ceases or until the muscle can no longer 

supply energy to support contraction. This series of events is properly named excitation-

contraction coupling (ECC) and consists of three main events: the transmission of the nerve 

impulse to the muscle, the release of calcium from the sarcoplasmic reticulum, and the 

formation of a cross-bridge between myosin and actin [9]. Visually, we see the whole muscle 

contract, such as the biceps contracting to lift a cup of coffee to the mouth. However, the whole 

muscle contracts as a result of what occurs at the molecular level between the myosin heads 

and the actin filaments. 

First, an action potential from the innervating motor neuron arrives at the presynaptic 

membrane, or nerve terminal. The arrival of the action potential stimulates the fusion of synaptic 

vesicles housing acetylcholine to the presynaptic membrane at the active zones, or visually 

dense zones at the presynaptic membrane that contain specialized proteins associated with 
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vesicle docking and fusion, exocytosis and vesicle recovery [130]. Exocytosis of acetylcholine 

into the synaptic space is tightly orchestrated by Ca+2 and its respective voltage-gated calcium 

channels [1]. This entire process is suggested to depend on both the muscle type and the 

stimulus [131,132]. Acetylcholine then readily diffuses across the synaptic space and binds with 

nicotinic acetylcholine receptors on the sarcolemma, creating a local depolarization event [1]. 

Following exocytosis, the synaptic vesicles and the associated vesicular membrane proteins are 

rapidly recycled via endocytosis to sustain further exocytosis [1]. Additionally, 

acetylcholinesterase immediately begins to hydrolyze the diffusing acetylcholine, promoting the 

cessation of this signal [133]. 

The local depolarization event at the sarcolemma activates the voltage-gated sodium 

channels that are concentrated within the junctional folds, which drives an action potential along 

the length of the muscle fiber and through its interior via the T tubule system [134]. When this 

action potential arrives at the triad, a voltage sensor subunit of the dihydropyridine receptor on 

the T tubule opens, allowing a flood of calcium to enter [135], which consequently triggers the 

ryanodine receptors within the terminal cisternae of the sarcoplasmic reticulum to open and 

large amounts of Ca+2 to enter the sarcoplasm. Ca+2 then binds to troponin C, a regulatory 

protein located on the actin filaments, which initiates a series of conformational changes that 

moves tropomyosin away from the myosin active sites on the actin filament [136]. With the 

active site now exposed, the head of the myosin molecule binds to actin at a 45 degree angle 

relative to actin [137]. This position is called the rigor state [137]. ATP molecules located near 

the myosin head bind to myosin, briefly dissociating myosin from actin [137]. These ATP 

molecules immediately become hydrolyzed by ATPase to ADP and inorganic phosphate, which 

facilitates the re-binding of the myosin head to actin but at a 90 degree angle relative to actin, 

forming a cross-bridge [137]. Upon release of inorganic phosphate, the power stroke is initiated, 

and the myosin head rotates on its hinge, pushing the actin filament towards the M-band. This 

sliding of actin and myosin generates muscle force [138,139]. Once the power stroke is 
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completed, ADP is released from the myosin head and the myosin head is repositioned into its 

rigor state at a new position along the actin filament [137]. This cycle continues until ATP is no 

longer available.   

Since cross-bridges are formed along the entire length of the muscle fiber, forces are 

transmitted longitudinally and laterally throughout the fiber via the costameres [9]. However, 

movement is not produced until these forces reach the myotendinous junction, where the 

muscle and tendon interact, and then transmitted through the tendon to the bone [9]. The force 

that a muscle generates is dependent on several factors including the extent of activation of the 

innervating motor neuron, the size of the muscle fibers, the number of cross-bridges formed, the 

force generated by each cross-bridge, and most importantly, the space between the 

myofilaments [9]. The space between actin and myosin is extremely important, as highlighted by 

the force-length relationship, which states that at lengths longer and shorter than the optimal 

length of the sarcomere, there is sub-optimal overlap between actin and myosin during cross-

bridge formation, which limits force generation.  

Even though muscles generate force using the same mechanisms detailed above, 

muscles are capable of producing three types of contractions: isometric, concentric and 

eccentric [9]. During an isometric contraction, force is generated but there is no movement of 

the joint or limb. An example of an isometric contraction is pushing against a wall, where the 

resistance of the wall is greater than the force generated. Concentric and eccentric contractions 

occur to complete a full range of motion. Specifically, concentric contractions result in the 

shortening of the muscle and the movement brings the muscle’s origin and insertion points 

closer together. An example of a concentric contraction is the biceps muscle contracting to flex 

the elbow. In contrast, eccentric contractions result in lengthening of the muscle as its origin and 

insertion points move away from each other. An example of an eccentric contraction is the 

biceps muscle lengthening to extend the elbow and return it to resting position. The lengthening 

of the muscle during an eccentric contraction can be associated with muscle damage [140].  
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As demonstrated above, muscle contraction requires ATP for cross-bridge formation. A 

contracting muscle fiber receives energy through three basic pathways: ATP and creatine 

phosphate (CP) stored in the muscle, anaerobic glycolysis, and oxidative phosphorylation [9]. 

The energy pathway used is dependent on the intensity and duration of the activity. It should be 

noted, though, that these pathways are not an all-or-none phenomenon but actively overlap at 

different time points throughout the activity. ATP and CP stored in the muscle provide energy for 

the first few seconds of activity since these reserves are extremely limited. Once ATP and CP 

stores are depleted, anaerobic glycolysis produces ATP quickly to sustain muscle contractions. 

The primary fuel source that supports this pathway is plasma glucose [141]. However, 

anaerobic glycolysis can only provide energy for a couple of minutes since glycolysis also 

produces H+ and lactate, both of which impair muscle function and are associated with muscle 

fatigue [9]. The final energy pathway that produces ATP is oxidative phosphorylation. Oxidative 

phosphorylation occurs within the mitochondrial network and ATP is shuttled throughout the 

muscle fiber to sustain muscle contractions for minutes to hours. The primary fuel sources that 

support this pathway free fatty acids within the plasma as well as glycogen and triglycerides 

stored within the muscle [141].  

1.5 Skeletal Muscle Repair and Regeneration  

Skeletal muscle undergoes multiple bouts of damage throughout its lifetime from daily 

use and injury. For example, the physical movement of actin sliding past myosin may result in 

microlesions within the sarcolemma of a single muscle fiber while acute ischemia may result in 

widespread damage throughout the entire muscle. The muscle fiber’s ability to reseal its 

sarcolemma to prevent cell death as well as the entire muscle’s ability to regenerate following 

extensive damage are hallmarks of skeletal muscle tissue [1]. Below are brief overviews of the 

repair and regenerative processes following injury to the sarcolemma and to the whole muscle, 

respectively.  
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A highly-orchestrated membrane repair machinery patches microlesions endured by the 

sarcolemma during contraction-relaxation cycles, and allow the muscle fiber to continue meeting 

the functional demands of the muscle. This membrane-repair machinery is constructed by 

various proteins, including dysferlin [142–145], caveolin-3 [146], calpain-3 [147], AHNAK 

[148,149], and annexin A1 and A2 [148,150]. Immediately after a tear in the sarcolemma 

occurs, calcium rapidly enters the muscle fiber, activating and strengthening the binding 

properties of these repair proteins [151] such that the annexins bind with dysferlin and 

phospholipids while dysferlin binds additional phospholipids [152]. These binding events 

encourage the recruitment of intracellular vesicles, such as lysosomes and enlargeosomes, to 

the sarcolemma [153,154]. An additional protein, mitsgumin 53, also plays a role in translocating 

these vesicles [155–159]. These intracellular vesicles accumulate beneath the damaged 

sarcolemma, and then undergo exocytosis to fuse with the sarcolemma, creating a patch of new 

membrane and sealing the damaged area [152]. Intracellular vesicle fusion is made possible by 

the SNARE proteins [160] and synaptotagmins [161]. Finally, the membrane repair complex is 

deactivated through calpain-dependent cleavage of the annexins and AHNAK [151]. This rapid 

membrane repair mechanism occurs within seconds of activation [162].  

In the event that the membrane damage is too extensive and cannot be repaired via the 

patch repair mechanism, sarcolemmal injuries may trigger an inflammatory response [163–165] 

and activate the satellite cells. Satellite cells are located along the length of the muscle fiber 

tucked between the sarcolemma and the basal lamina [166,167]. These cells represent the 

adult stem cell niche in skeletal muscle and are responsible for muscle growth and regeneration 

[166,167]. Upon unresolved injury, fiber necrosis occurs, which activates the complement 

cascade, stimulating the infiltration of leukocytes, neutrophils, and eventually macrophages [1]. 

These macrophages clear the damaged muscle fibers and send the initial signals for satellite 

cell migration and proliferation [168]. The ability to regenerate is governed not only by the 
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satellite cells [169] but by the microenvironment [170]. This microenvironment, or niche, is home 

to growth factors, extracellular matrix proteins, fibro-adipogenic progenitors (FAPs), 

chemokines, and MMPs [1]. Additional components within and around this niche include the 

local interstitial cells, motor neurons, the vasculature [171,172], and chemo-attractants and 

cytokines from local and infiltrating inflammatory cells [173–179]. These components provide 

scaffolding for cell migration and cues for the regenerative processes. There are many shared 

components between embryonic myogenesis and muscle regeneration [180], including the 

transcription factors and signaling molecules that orchestrate the activation and migration of 

satellite cells to the site of injury as well as their proliferation and differentiation into muscle 

fibers [1]. Within days of the initial injury, damaged muscle is completely regenerated [151]. 

Most importantly, though, skeletal muscle’s regenerative capacity is governed by its ability to 

reactivate the satellite cell pool when necessary [151]. 

1.6 Skeletal Muscle Plasticity 

Alongside the muscle’s ability to repair and regenerate is its profound ability to respond 

to changes in its physiological environment. In fact, skeletal muscle is one of the most dynamic 

and plastic tissues within the human body [9]. Skeletal muscle fibers are capable of changing 

their size and type, metabolic profiles, calcium handling properties, and more. Skeletal muscle is 

constantly sensing, transducing, and integrating neuronal, mechanical, metabolic and hormonal 

signals in order to produce a systemic physiological adaptation that would allow it to perform 

more optimally, whether it is to maintain new postures, to run longer distances or to perform 

finer movements with the fingers. These adaptations occur at the level of gene activation, 

mRNA processing, as well as protein synthesis and assembly (reviewed in [181]).  

Skeletal muscle plasticity is best understood in the context of skeletal muscle size in 

response to completing a resistance training program versus enduring bedrest or limb 

immobilization. The maintenance of skeletal muscle size is the direct result of the synergy of the 

signaling pathways for anabolic and catabolic processes such that myofibrillar proteins are 
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continuously being synthesized and degraded. However, when the functional demands change, 

one pathway dominates over the other. For example, during periods of increased contractile 

activity, such as during an exercise program, muscle growth, or hypertrophy, is initiated by 

enhancing protein synthesis. Conversely, during periods of decreased contractile activity, such 

as during bed rest, muscle wasting, or atrophy, is initiated by enhancing protein degradation. 

Interestingly, studying these two mechanisms on a cellular and molecular level has proven 

difficult because there is not one specific signaling pathway that initiates a hypertrophic versus 

atrophic program, but rather an overlap between inhibition and activation of various molecular 

players [181]. For example, growth hormone, IGF-1 and insulin are recognized most in the 

initiation of muscle growth, while myostatin is the primary initiator of muscle wasting, but these 

proteins act via the same molecular mediators [181]. In lieu of discussing these pathways, a 

discussion on the phenotypic changes observed in response to exercise training and inactivity 

will be provided below.  

1.6.1 Benefits of Exercise 

There are more than 100,000 studies showing positive associations between the terms 

‘exercise’ and ‘health’ [182]. In fact, health-related physical fitness is among the most powerful 

predictors of morbidity and mortality [183–185], and lifelong exercise is associated with a longer 

health span by targeting the four components of physical fitness: (1) cardiovascular fitness, (2) 

musculoskeletal fitness, (3) body composition and (4) metabolism. Exercise training leads to 

extensively documented improvements in a myriad of systems with the most profound being in 

cardiorespiratory function, muscle oxidative capacity, metabolic health, glucose and lipid 

homeostasis, adiposity, inflammatory burden, muscle mass and strength, joint pain, bone 

density, mobility function, depression, anxiety, and cognition [186,187]. These clear and 

profound benefits of exercise allow it to be prescribed as the primary prevention and secondary 

intervention strategies for over 40 conditions and chronic diseases, including cardiovascular 

disease, chronic obstructive pulmonary disease, obesity, diabetes, cancer, and sarcopenia 
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[182]. Many individuals assume that all exercise is created equal. However, the body’s response 

to exercise is highly specific to the type of exercise that it is performed. This is especially true for 

skeletal muscle, which will be the focus of the discussion below.  

1.6.2 Aerobic Exercise 

Aerobic exercise training targets cardiorespiratory fitness by activating large muscle 

groups to perform continuous, rhythmical movements for a prolonged period of time [9,186]. It is 

designed to improve the capacity and efficiency of the aerobic energy-producing systems, 

specifically oxidative phosphorylation [186]. Examples of aerobic exercises include running, 

biking, or swimming.  

Disruptions in cellular homeostasis occur during aerobic exercise and these disruptions 

are responsible for driving the positive adaptations [188,189] that ultimately lead to enhanced 

metabolic capacity [9]. Specifically, there is an increase in the capillary supply to the active 

muscles to facilitate oxygen delivery [190]. The number and size of the mitochondria are also 

increased to enhance the production of ATP [190]. Additionally, fat and glycogen storage as well 

as the availability of oxidative enzymes are increased to further enhance ATP production 

[191,192]. It should be noted that aerobic exercise most often does not result in changes in 

muscle size or force generating capacity [9].  

1.6.3 Resistance Training 

In contrast to aerobic training, resistance training is a series of exercises that require 

individual muscles or targeted muscle groups to exert or resist force using free weights, weight 

machines, or elastic bands [186]. Resistance training is broken down into four types that are 

defined by their targeted goals for muscular fitness: local muscular endurance training, 

hypertrophy training, strength training, and power training. Local muscular endurance training 

utilizes high repetitions and submaximal loads with short rest intervals to improve the muscle’s 

resistance to fatigue. Hypertrophy training utilizes moderate repetitions and moderate to heavy 

loads to increase the size of the muscle. Strength and power training are very similar, utilizing a 
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very low number of repetitions and maximal loads to increase the amount of resistance that the 

muscle can effectively move and to improve the speed at which this load is moved, respectively.  

Within the four training programs, there are acute variables that influence training 

adaptations further [193,194]. These physiological adaptations are specific to the muscle 

actions involved [195], the speed of movement [196], the range of motion [197], the muscle 

groups trained [198], the energy systems involved [199,200], and the intensity and volume of 

training [201–203]. Regardless, though, these adaptations occur as a result of the cross talk 

between the nervous and muscular systems. Specifically, the early increases in strength are 

brought about by improvements in motor unit recruitment, firing rate, and synchronization [204]. 

Then, within about 4 to 8 weeks of training, muscle hypertrophy becomes evident [205–207] as 

a result of changes in the quality of proteins [207], transitioning between fiber types [205,207], 

and the rate of protein synthesis [206]. As training progresses, there is further interplay between 

neural adaptations and muscular hypertrophy that drive acute changes in muscular strength 

[204].  

1.6.4 Inactivity 

Physical inactivity is arguably one of the most important concerns to human health in the 

21st century [208]. Even more so, it was a great concern for early Greek philosophers. Plato 

once said that the "lack of activity destroys the good condition of every human being, while 

movement and methodical physical exercise save it and preserve it." Similarly, Socrates once 

stated that “and is not the bodily habit spoiled by rest and idleness, but preserved for a long time 

by motion and exercise?” These negative impacts of physical inactivity on overall health are 

now well-established. Specifically, it is one of the main risk factors of a number of diseases 

including obesity, cardiovascular diseases, stroke, diabetes, and colon cancer [209,210], and is 

the largest preventable risk factors for Alzheimer’s disease in the United States [211,212]. 

Unfortunately, skeletal muscle is one of the major body systems that is influenced immediately 

by inactivity.  
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Physical inactivity is modeled in humans using strict bed rest, 24 hours a day, in a head-

down position at -6 degrees [213]. Short-term bed rest for 2, 8 or 12 days does not result in 

significant effects on muscle mass or strength [214], but long-term bed rest for 35 or 90 days 

results in a large decrease in muscle force and power generation of the lower limb muscles 

[215,216]. These decreases are caused by muscle atrophy of both type I and type II muscle 

fibers [217]. Additionally, inactivity leads to lower work capacity (peak oxygen consumption) 

[218], hypovolemia and negative water balance [219–221], decreased orthostatic tolerance 

[222], changes in resting metabolic rate, poor body composition, including decreased lean body 

mass, increased fat mass, and reduced bone mineral density [223–229], limited muscular 

strength and endurance [222,224,225], changes in thermoregulation [230,231], impaired 

immune response [226], and altered mood and neuropsychological performance [232]. Further, 

proteolysis pathways are significantly upregulated, especially the ubiquitin-proteasome pathway 

and autophagy [233,234], which negatively affects the quality of the muscle proteins [235]. 

Similarly, in rodent models, inactivity is achieved through hindlimb suspension, where the 

hindlimbs are elevated to produce a 30-degree head-down tilt [236]. This position restricts 

animals to using only their forelimbs [236]. Regardless, hindlimb suspension for 1 to 2 weeks 

negatively affects body and muscle mass [237], myosin heavy chain expression and fiber type 

switching [238,239], functional muscle strength [240], protein synthesis and degradation 

pathways [241], and bone mechanical strength [242]. Most importantly, though, these negative 

consequences may be reversed upon resuming normal activity [243].  

1.7 Muscular Dystrophy  

Knowing the complexity of muscle structure and function as well as its response to 

exercise and inactivity, what happens when a protein is not present or functioning properly and 

how does the muscle now respond to changing demands imposed on it? A slight perturbation in 

muscle structure due to the absence of a protein, or even the presence of a partially formed 
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protein, can wreak havoc on the entire muscular system. This is often visualized as the loss in 

muscle fibers and reduced motor output [1]. One of the most common groups of diseases 

affecting skeletal muscle is muscular dystrophy. Muscular dystrophy is caused by the absence 

or dysfunction of a muscle protein involved in maintaining the integrity of the sarcolemma, 

repairing the sarcolemma after damage, or constructing the extracellular matrix or nuclear 

envelope. Muscular dystrophies are inheritable (or occasionally spontaneous) diseases that 

vary in their severity and age of onset, but share the same two features: progressive loss of 

muscle mass and function. There are over 50 genetically distinct muscular dystrophies [244] 

that can affect both males and/or females. Unfortunately, though, many individuals are 

diagnosed as having an unknown variant, meaning the missing or non-functional protein 

wreaking havoc on their muscular system has not been identified. Regardless, because 

muscular dystrophy leads to skeletal muscle degeneration, walking, breathing, and swallowing 

become extremely difficult and functional independence is lost.  

1.7.1 Duchenne Muscular Dystrophy 

In the realm of muscular dystrophy research, DMD is the most common type of muscular 

dystrophy and most frequent genetic disease of childhood, affecting 1 in 5000 male births [245]. 

Sadly, it is also the most lethal genetic disease of childhood [246]. Individuals with DMD harbor 

mutations in the gene encoding the protein dystrophin, which is located on the X chromosome, 

hence why females carry the mutation and are asymptomatic while males are symptomatic. The 

dystrophin gene is the largest known gene in the human genome spanning at least 2,300 

kilobases [247–249]. Remarkably, though, 99.4% of this gene is comprised of introns while only 

a tiny percentage, representing 14 kilobases make up the 79 exons that encode the protein 

[61,247,250]. Most notably, it takes approximately 12 hours to transcribe 1,770 kilobases via 

RT-PCR, estimating at least 16 hours to complete the entire gene [251]. Further, the high 

molecular weight protein that is formed spans 3685 amino acids [61]. Mutations in the 

dystrophin gene lead to a truncated, non-functional dystrophin protein. Exon deletions and 



 24 

duplications account for about 65% and between 6 to 11%, respectively, of all mutations while 

deep intronic mutations account for less than 7% of mutations [245].  

1.7.2 Clinical Presentation of DMD 

DMD is first diagnosed between the ages of 2 and 5 years. Symptoms are typically 

manifested as delayed milestones, including delayed onset of ambulation, difficulty standing 

unaided [252], and gait abnormalities [245]. When parents alert clinicians of these motor delays, 

the next step is testing for serum creatine kinase levels [245]. Elevated levels of serum creatine 

kinase is a major indicator of muscular dystrophy, and begins the genetic testing process. As 

the disease progresses, muscle wasting overpowers the regenerative capacity of the muscle, 

and performing activities of daily living become difficult [252]. As the paravertebral muscles 

weaken, individuals will exhibit a progressive lumbar curvature of the spine [246]. This curvature 

results in postural compensations as well as a change in the distribution of weight bearing from 

the heels to the toes [246]. Additionally, the calf muscles experience extensive fibrosis, leading 

to the development of contractures that limit plantar flexion [246]. Fibrosis and fatty tissue 

overwhelm the calf muscles, creating a pseudohypertrophy [246]. As a consequence of these 

changes, most individuals with DMD become wheelchair bound between the ages of 11 and 13 

years old [252]. The progressive loss in muscle mass and strength is not only present in the 

limb muscles but also in respiratory and bulbar muscles, increasing the risk for respiratory 

failure [245]. Cardiac muscle is also affected by the absence of dystrophin, and exhibits 

progressive fibrosis, leading to subclinical and eventually dilated cardiomyopathy and heart 

failure [245]. These complications and the extremely progressive nature of this disease result in 

premature death before the age of 30 [253].  

DMD muscle experiences increased fatigability, fibrosis, and fat deposition as well as 

defects in regeneration, vasoregulation, metabolism and synaptic structure and function 

[126,254–264]. Magnetic resonance spectroscopy of multiple muscles from individuals with 

DMD highlight the extensive reductions in muscle mass, and the infiltration of fatty tissue [265]. 
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Further, muscle biopsies stained with hematoxylin and eosin reveal large accumulations of 

connective tissue separating the individual muscle fibers as well as the infiltration of immune 

cells within the interstitial tissue and near the blood vessels [266]. Individual muscle fibers also 

show a significant variability in their cross-sectional areas [266]. Electron microscopy shows an 

extensive number of lesions in the sarcolemma, some large enough to permit unrestricted 

movement of molecules into the muscle fiber [267].  

1.7.3 Molecular Mechanisms of DMD 

Dystrophin provides a link between the actin cytoskeleton and the extracellular matrix 

and serves as a scaffold for the assembly of the DGC within the sarcolemma. The mechanical 

defect hypothesis states that the progressive muscle weakness and wasting in DMD is caused 

by the lack of this link and the disruption of the DGC, which mechanically weakens the 

sarcolemma [268,269]. Stress placed on a mechanically weakened sarcolemma can cause 

microlesions to develop along the sarcolemma [270]. These microlesion allow excessive 

calcium entry, altering calcium homeostasis [271,272]. An increase in calcium permeability 

impairs different cellular processes, such as excitation-contraction coupling [272], and ultimately 

activates proteases to breakdown different cellular components. Therefore, the end result is an 

increase in muscle protein degradation, muscle fiber necrosis, and significant decreases in 

muscle strength and tolerance for physical activity [272,273].  

However, some features of disease pathology in individuals with DMD cannot be 

explained by the mechanical defect hypothesis [246]. The immune system also plays a major 

role in amplifying the pathology of DMD as well as in determining disease severity [246]. Upon 

damage to healthy muscle, an inflammatory response is initiated to clear the damaged muscle 

fibers and begin regeneration. This response subsides within several hours or days, depending 

on the extent of damage. However, in DMD muscle, the inflammatory response is prolonged, 

and the microenvironment is more conducive to further promoting an inflammatory response. By 

manipulating specific inflammatory cell populations, studies suggest that these cells are 
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responsible for an extensive amount of damage to DMD muscle [274]. Specifically, pro-

inflammatory macrophages accumulate, and there is an increase in pro-inflammatory cytokines, 

including TNF-a and TGF-b, as well as free radicals that lead to further muscle damage and 

fibrosis [275]. Therefore, the initial invasion of macrophages in response to acute muscle 

damage may actually amplify such damage and promote a chronic immune response [246]. 

Additional immune cells, including cytotoxic T lymphocytes, eosinophils, mast cells, and 

neutrophils, further exacerbate this immune response (reviewed in [246]). Ultimately, these 

ongoing cycles of degeneration and limited regeneration lead to premature senescence of 

muscle stem cells and the inability for muscle to repair itself when further damaged [272,276].  

More recent studies suggest a critical role of nNOS in the progression of DMD. Nitric 

oxide (NO) is a potent vasodilator during exercise and is involved in the metabolism of free 

radicals. Its function is highly dependent on the dynamic regulation of its enzyme, nitric oxide 

synthase. In individuals with DMD, NO levels are decreased. It is suggested that, in the absence 

of dystrophin, nNOS is not recruited to the sub-sarcolemmal space, leading to aberrant nNOS 

signaling [274]. This aberrant signaling negatively impacts the maintenance of muscle mass as 

well as force generation and fatigability [277], which may be the result of the increased oxidative 

stress in dystrophic muscle [260,278]. Notably, overexpression of nNOS ameliorates the 

dystrophic phenotype [274].  

1.7.4 Current Treatment Options for DMD  

The first clinical description of DMD was recorded in the 1860s. In 1986, the DMD gene 

was identified, and in 1987, the protein product was identified [279–281]. Unfortunately, 

scientific advances are not paralleled by discoveries of effective therapeutic tools thus far as 

there is still no cure for DMD. One of the major obstacles in designing gene therapies for DMD 

is the size of the dystrophin gene itself as well as the protein product. Much attention is given to 

the development of gene delivery, gene editing, exon skipping, and stem cell-based approaches 

that restore the full-length or truncated, but functional, dystrophin protein constructs [282]. 
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However, a number of hurdles have been reached, including tissue delivery, low efficiency, and 

an inability to target all DMD mutations [282]. Currently, there are three different micro-

dystrophin gene therapies (sponsored by Solid Biosciences, Sarepta Therapeutics, and Pfizer) 

undergoing clinical testing [283]. Each of these therapies use a viral cDNA construct that code 

for a truncated micro-dystrophin protein. This micro-dystrophin lacks the internal repeating 

motifs but retain the critical binding domains for filamentous actin and b-dystroglycan [283,284]. 

This theoretically allows the micro-dystrophin protein to anchor the actin cytoskeleton to the 

sarcolemma and ECM, providing a greater level of stability to the muscle fibers. Additionally, 

antisense phosphorodiamidate morpholino oligomers (PMOs), such as eteplirsen, are 

promising. Eteplirsen is designed to alter the splicing of the dystrophin mRNA such that exon 51 

is excluded, making it applicable to multiple mutations [245]. Current research demonstrates 

that eteplirsen restores a relatively small amount of dystrophin, but improves ambulation and 

respiratory effects [285,286].  

It should be highlighted that dystrophic muscle maintains a limited ability to adapt to 

muscle contractions and this is through the compensatory upregulation of various proteins such 

as integrin-a7b1, utrophin, talin, vinculin, and g-actin [287–289]. The upregulation of these 

proteins suggests a compensatory mechanism to reinforce the compromised costamere and 

preserve muscle structure [290]. Therefore, these proteins are emerging as targets for potential 

therapies [290]. Additionally, surrogate genes that may serve as a substitute for dystrophin 

function are being developed as an alternate mechanism for viral gene therapy. For example, 

GALGT2 is a protein responsible for the terminal glycosylation of dystroglycan [291]. As 

described previously, dystroglycan is a member of the DGC, and is critical to the maintenance 

of the NMJ and myotendinous junctions. The exogenous delivery of GALGT2 via a viral vector 

in mdx mouse models increased utrophin’s expression throughout the muscle fiber and 

improved overall muscle health [292,293]. Pilot studies in humans are now underway [245]. 
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More recently, genetic modifiers have been identified in human data and subsequent follow up 

studies using the mdx mouse model suggest they may also serve as potential therapeutic 

targets to modulate disease [294]. Genetic modifiers alter the clinical severity of DMD, including 

muscle strength and ambulation [294]. These modifiers include myostatin, osteopontin, latent 

transforming growth factor b binding protein 4, and annexin A6 [294]. Ultimately, these 

pathways represent additional mechanisms to improve sarcolemmal stability and repair as well 

as to reduce fibrosis in DMD [294].  

Currently, individuals with DMD must rely on symptomatic treatments that aim to 

preserve functional abilities for as long as possible [295]. Specifically, the main goals for 

symptomatic treatment are to maintain ambulation, prevent scoliosis, delay the development of 

respiratory problems, and prolong survival [296]. The first international guidelines for the care 

and management of DMD were published in 2010 [252,297]. One popular treatment is chronic 

corticosteroid use, such as prednisone and deflazacort [298–300]. Corticosteroids act as 

immunosuppressors, and multiple studies confirmed that their use increases muscle strength 

and delays the progression of muscle weakness, allowing individuals with DMD to remain 

ambulatory for 2 to 5 years longer compared to non-treated individuals [252,297,301–304]. This 

supports the above hypothesis that inflammation promotes DMD pathology [246]. However, 

corticosteroids, especially chronic use of corticosteroids, are accompanied by a variety of side-

effects that may be detrimental to disease progression, including weight gain, 

immunosuppression, hypertension, bone loss, and behavior changes [299,305]. These side-

effects may ultimately lead to an increased energy demand to maintain muscle function. More 

importantly, though, the optimal dosing regimen that maximizes the beneficial effects while 

minimizing the negative side effects has not been established and research continues to 

address the importance of this [306–308].  
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As a component of the symptomatic treatment plan, physical activity has been under 

intense consideration since DMD was first characterized. In healthy children, muscle strength 

increases with age but in individuals with DMD, this relationship is not sustained [309]. The 

progressive decrease in muscle strength and endurance in individuals with DMD results in the 

partial and then complete loss of functional abilities [310]. Interestingly, lower-limb strength is 

one of the most important predictors of functional ambulation and independence in individuals 

with DMD [311,312]. Few studies have looked at activity levels, but all of them demonstrate that 

these individuals have lower physical activity levels compared to healthy counterparts beginning 

at a very young age [313,314]. Specifically, boys aged 5 to 13 years old wore a step activity 

monitor on the right ankle to track right steps or complete gait cycles. Those with DMD spent 

40% fewer minutes performing high levels of activity (>30 steps/minute) compared to age-

matched controls and spent a greater proportion of their days inactive or performing low levels 

of activity (<15 steps/minute). Further, these individuals spend fewer minutes at a moderate and 

high step rate compared to their healthy counterparts [313,314]. Gait velocity is a strong 

predictor of the amount of time before an individual becomes wheelchair dependent [312]. 

Specifically, in 51 individuals with DMD, 89% of boys who walked 10 meters in less than 6 

seconds did not become wheelchair dependent for 2 or more years while 100% of those who 

walked 10 meters in greater than 12 seconds were wheelchair dependent in less than 1 year 

[312]. These reduced levels of activity are often the consequence of loss of functional muscle 

tissue, muscle disuse, overuse injury, cardiopulmonary involvement, increased fat mass, 

contractures, reduced efficiency of locomotion, reduced motivation, less social reinforcement for 

activity, increased depression, and increased societal barriers [315]. Ultimately, this progressive 

disuse of both the musculoskeletal and cardiorespiratory systems may lead to secondary 

deterioration of the muscle [315,316], similar to what is observed in healthy individuals.  
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1.8 Current Understanding of Exercise and Inactivity in DMD  

While skeletal muscle plasticity is well-studied in healthy muscle, very little research is 

available on the adaptability of dystrophic muscle to exercise or inactivity. Currently, there are 

five proposed mechanisms described in the literature that render dystrophic muscle vulnerable 

to exercise [317]. These include weakening of the sarcolemma, increased calcium influx and 

oxidative stress, recurrent muscle ischemia, and aberrant signaling to both the nerves and 

immune cells (reviewed in more detail in [317]). Further, it is postulated that weaker muscles are 

more susceptible to exercise-induced damage because their maximal limits may be reduced 

[318]. The experiments performed in this dissertation were designed to investigate the role that 

exercise and inactivity play in the progression of DMD. Before discussing these experiments, a 

detailed review of studies addressing this same question is provided to shed light on the 

limitations of these studies and the need for more research. 

1.8.1 Exercise in Human DMD  

Current international care guidelines recommend that individuals with DMD participate in 

regular submaximal activities [297]. However, no randomized control trials are available that 

discuss what these activities entail or the timeframe for performing these activities. The first 

study that explores the effect of exercise on DMD was conducted by Vignos and Watkins in 

1966 [319]. Twenty-eight boys with DMD, ages 5 to 10 years old, participated in a 12-month at 

home exercise program (n = 14 in exercise group; n = 14 in non-exercise control group) that 

included active-assistive or active-resistive movements. Individuals underwent monthly 

assessments that included a manual muscle test, a series of functional tests, and serum 

adolase and urinary creatine-creatinine excretion measurements. In the year leading up to the 

study, muscle strength was also measured, declining with time in both the exercise and non-

exercised groups. Within the first four months of exercise, muscle strength improved each 

month, but functional tests did not parallel these improvements. However, at the conclusion of 

one year, the exercise group significantly improved overall strength, while the non-exercised 
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group continued to lose muscle strength. Ultimately, the authors conclude that a resistance 

exercise program is most effective if instituted early in the disease and the degree of 

improvement is dependent on the initial strength of the exercised muscle. In 1979, de Lateur 

and Giaconi [320] measured changes in maximal isokinetic strength across a 24-month period. 

Participants used a Cybex isokinetic exerciser to perform controlled extension of a single knee 

from 90 degrees to full extension. The contralateral leg served as the control. A greater maximal 

torque in the exercised leg was recorded both during and after training, and the authors 

conclude that submaximal exercise does not negatively affect strength in DMD muscle but may 

be of limited value for increasing strength. In 1981, Scott and colleagues [321] investigated the 

impact of two exercise programs on multiple outcome measures for muscle strength and 

function in 18 boys with DMD. For 6 months, Group 1 performed a series of exercises against 

manually applied resistance for 15 minutes each day while Group 2 performed a series of 

exercises in response to oral commands for 15 minutes each day. Total muscle strength, torque 

output, locomotor ability and walking times were negatively affected by both exercise programs, 

with Group 1 exhibiting greater difficulty in performing movements and taking longer to walk the 

predetermined distance. Here, the authors conclude that a pre-treatment phase is necessary to 

establish the rate of physical deterioration and that the study should be extended to determine 

the long-term impact of exercise. Regardless of the outcomes of these studies, exercise 

continued to be frowned upon and further studies using human subjects were not conducted.   

However, in 2013, Jansen et al. [310] studied the impact of assisted bicycle training on 

various functional measures, range-of-motion, and strength. In this study, 30 boys with DMD 

were divided into either the intervention (n = 17) or control group (n = 13). The intervention 

group included 8 weeks of baseline measurements followed by 24 weeks of training, and 28 

weeks of post-training measurements. Conversely, the control group included 8 weeks of 

baseline measurements, followed by 24 weeks of control (normal activity), and then 24 weeks of 

intervention and 4 weeks of post-training measurements. During the intervention period, 
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participants completed a 15-minute session on an assisted bicycle ergometer using both arms 

and legs. Sessions were completed 5 days per week. The authors confidently conclude that 

their results contradict the longstanding consensus that exercise accelerates disease 

progression but support the notion that dystrophic muscle obeys the adage “use it or lose it.” 

Lastly, in 2015, Alemdaroglu and colleagues [296] examined the effects of upper extremity 

exercise training on disease progression. Twenty-four boys, ages 8 to 15 years, were separated 

into the study group (n = 12) or control group (n = 12). The study group exercised with an 

electronic arm ergometer for 45 minutes each day, 3 days per week, while the control group 

performed strengthening range-of-motion exercises. Function performance, strength and 

endurance of the upper extremity were assessed as well as ambulatory status. Muscle strength 

was significantly improved for the right wrist flexor muscle as well as for the total forearm 

muscles of the right side in the control group. Grip strength also improved in the right hand of 

the control group. However, functional tests and timed performance tests were significantly 

different, in favor of the study group. The authors conclude that arm ergometer training had 

positive effects on muscular endurance, performance of daily activities, arm function, and 

ambulation status and should be included in rehabilitation programs early in the disease course.  

While these studies suggest a positive effect of exercise, they are extremely limited not 

only in number but the overall design of the studies. First, these studies have extremely small 

sample sizes, and participants exhibited a range of severities and ages at the time of 

intervention. Studies also lacked valid experimental controls. For example, in one study, 

participants performed a movement using their limbs on one side of their body while their 

contralateral limbs served as a control. However, voluntary strength on the contralateral side 

can increase due to a phenomenon known as cross-education [322]. Secondly, the exercise 

regimes across the studies are different, including the type of exercise and the duration of the 

intervention, making it hard to compare these studies. Lastly, the outcome measures used to 

assess the impact of exercise varied across studies as well as the timeframe in which 
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measurements were taken. All of these variables markedly influence changes in muscle 

strength and function, and may not uphold to a population effect.  

1.8.2 Exercise in mdx Mouse Model   

To overcome the limitations of human studies, some researchers turned to the mdx 

mouse model. Pre-clinical animal models are critical for understanding a disease and unraveling 

mechanistic pathways. The mdx mouse model is the most researched DMD model. It arose 

from a spontaneous mutation in the premature stop codon which terminated exon 23 in the 

C57BL/10ScSnJ mouse over 30 years ago [323,324]. The mdx mouse displays the hallmark 

symptoms of DMD, including muscle weakness, respiratory insufficiency, cardiomyopathy, and 

changes in skeletal muscle histology [325,326]. Therefore, it is used to understand the 

pathophysiology of DMD and test therapeutic strategies, including the impact of exercise on 

dystrophic muscle. However, it should be noted that the mdx mouse model does not completely 

recapitulate the human disease, and the severity of its pathology is much less compared to 

humans [325].  

Due to the large number of studies examining the effects of exercise on mdx muscle, 

detailed descriptions of each study will not be provided here but are highlighted in Tables 1 

through 4. Instead, the major conclusions from these studies will be discussed. Notably, the 

purpose of these studies were in and of the same, with authors describing their goal or goals to 

determine the impact of exercise on muscle force and fatigue, oxidative stress, and evaluate the 

extent of trauma endured by the muscle. Based on these studies, exercise in mdx mice is 

beneficial or detrimental depending on the mode, duration, age at intervention, and intensity of 

the exercise protocol. Studies used either treadmill running, voluntary wheel running, or 

swimming as the mode of exercise. The duration of a single session, independent of the mode 

of exercise, ranged from 10 minutes to 2 hours, while the duration of experiments ranged from 1 

week to 52 weeks. The age at which exercise began ranged from 3 weeks to 96 weeks old. This 

is important to highlight because mdx mice exhibit very little muscle weakness during the first 
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year of life, yet this is the time frame in which most studies are conducted, making it difficult to 

extrapolate these results to humans [327]. The intensity of exercise ranged from at will for 

voluntary wheel running to between 4 and 23 meters per minute for treadmill running at a 

decline between 0 and 18 degrees. Collectively, studies demonstrate either improvements in 

twitch tension and decreased necrosis [328], or reduced muscle strength and increased edema 

and inflammation [329]. Similarly, studies either demonstrate improvements in anti-oxidant 

capacities and oxidative enzyme activities [330–332] or detrimental increases in reactive oxygen 

species [333] and lipid peroxidation [334]. Further, most studies measured specific outcomes on 

individual muscles of the hindlimb, the diaphragm, or the heart. Unfortunately, these muscles 

are not equally affected by the absence of dystrophin [335], and therefore, likely respond 

differently to exercise.  
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Table 1: Studies examining treadmill exercise in mdx mice. 
Study Age Duration 

of Study 
Exercise Program Results Study’s Conclusions 

[328] 3 weeks 3 weeks 7 days/week  
 
Time = 25 min 
Incline = 18 degrees  
Speed = 4 m/min 

Compared to WT, MDX-ex 
exhibited: 
↓ BW  
↓ muscle size 
↓ twitch tension in EDL and 
SOL 
↓ rate of relaxation 
↑ mean fiber size, degree of 
hypertrophy, fiber variability in 
SOL type I fibers 
↔ mean fiber size in SOL 
type II fibers 
↓ internal nuclei in EDL and 
SOL 
↓ inflammation in EDL 
↓ fibrosis in SOL 
↓ split fibers in SOL 
 
MDX exhibited less dragging 
of hind limbs and appeared 
less cachectic and atrophied. 

Exercise is beneficial based 
on clinical performance, 
contractile properties of the 
SOL, and histochemical 
analysis in both SOL and 
EDL muscles. 

[336] 2 
months 
 
 
 
 

3 days 3 days 
 
Time = 10 min 
Incline = -15 degrees 
Speed = 10 m/min 

MDX-sed: 
14.9 ± 0.62% TB damage 
5.54 ± 0.27% BB damage 
>13% EDL and GASTROC 
damage 
<3% SOL and TA damage 
 
Compared to MDX-sed, 
MDX-ex exhibited: 
↑muscle fiber damage in SOL 
(+10.04%), GASTROC 
(+9.92%), BB (+24.37%), TB 
(+8.02%) 
↑ 27% DIA damage 
distribution of damaged fibers 
was similar 
limited hindlimb injuries 
(↑<11%) 

Sarcolemma damage 
correlated with magnitude 
of mechanical stress during 
contraction rather than the 
number of activations 
 
Exercise could cause 
muscle wasting, weakness, 
dystrophy, fibrosis, and 
degeneration 

[334] 4 weeks 
or 16 
weeks 

6 weeks 7 days/week 
 
Time = 2 x 30 min 
Incline = 0 degrees 
Speed = 8.3 m/min 
 
(8 day adaptation 
period prior to 
training): 
Time = 2 x 5 min 
Speed = 4 m/min 
then 8 m/min 
 

4 weeks 
Compared to MDX-sed, 
MDX-ex exhibited: 
↑ plasma CK (+85%) 
↑ lipofuscin accumulation 
(+29%) 
↑ TBARS (+48%) 
↔ P/O ratios 
↔ SOD activity 
↓ O2 uptake state 3+4 (-52% 
and -23% respectively) 
↓ RCI ratio (-27%) 
↓ alpha-tocopherol 
↓ GSH-Px activity (-12%; but 
↑ in WT-ex (+60%)) 
↓ alpha-tocopherol 
 

Exercise affects mdx 
mitochondria differently 
based on age. 
 
Low intensity treadmill 
exercise is detrimental to 
muscle mitochondria of 4 
week mdx mice. 
 
Adult mdx mice exhibited a 
higher mitochondrial 
adaptive capacity to low-
intensity exercise and this 
could be due to increase in 
regenerating fibers. 
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16 weeks 
Compared to MDX-sed, 
MDX-ex exhibited: 
 ↔ plasma CK activity 
 ↔ RCI and P/O ratios 
 
No differences in other 
measures. 

[337] 6 weeks 10 weeks 2x/week 
 
Exercised 
First 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 15 m/min 
 
Last 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 23 m/min 
  
Non-exercised 
Time = 60 min 
Incline = 0 degrees 
Speed = 2 m/min 
  

Compared to MDX non-
exercise, MDX-ex exhibited: 
↑ heart weight (not significant) 
↑ ratio heart:body weight  
↑interstitial fibrosis and 
adipose tissue in cardiac 
muscle (fiber disorganization 
observed) 
↑ infiltration of inflammatory 
cells 
↑% dystrophic lesion in 
myocardium 
↑basal level of [p-ERK1/2 and 
calcineurin]  
↔ body weight 
↓p-JNK1 in cardiac muscle 
↑p-38 MAPK in heart 
 
MDX-ex + non-exercise: 
↑immunoreactivity with 
antibodies against p-p38 
MAPK, p-ERK1/2, calcineurin 
in degenerative fibers around 
the fibrotic change, infiltration 
of inflammatory cells 

Physical exercise induces 
dystrophic features in mdx 
cardiac muscle. 
 
Future studies should look 
at the effects of inhibitors of 
p38 MAPK, ERK or 
calcineurin on exercised 
mdx mice in order to 
elucidate mechanism of 
progression of the 
dystrophic change in heart 
muscle 

Nakamur
a et al. 
2005 
[338] 

6 weeks 10 weeks 2x/week 
 
Exercised 
First 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 15 m/min 
 
Last 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 23 m/min 
  
  
  

↔ overt necrosis, fibrosis, 
inflammatory cell invasion in 
skeletal muscle in MDX-ex. 
 
MDX-ex compared to MDX-
sed: 
↑ratio protein level of p-
ERK1/2 to pan ERK1/2 (4 
fold) 
↑ratio of p-p38 MAPK to pan 
p38 MAPK (1.8 fold) 
↑ratio of protein level of p-
JNK2 to pan JNK2 (2.3 fold)  
↑ MMP-9 (1.3 fold) 
↔ ratio of protein level of p-
JNK1 to pan JNK1 among 
any group  
  

Treadmill exercise training ↑ 
phosphorylation of ERK1/2, 
p38 MAPK, and JNK2 in 
mdx GASTROC muscle. 
This may play a role in the 
degeneration and 
regeneration process of 
dystrophic features. 
 
No pathological change 
compared to previous 
results in cardiac muscle. 
Difference may be 
explained by the 
degeneration-regeneration 
cycle after exercise or by 
factors which modify muscle 
degeneration in mdx 
skeletal muscle but not 
cardiac muscle. 
  
JNK2 and p38 MAPK may 
be associated with the 
degeneration mechanism of 
dystrophin-deficient skeletal 
muscle. 
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MMP-9- possible role in 
disruption of the integrity of 
muscle fibers or in the 
inflammatory response and 
the activation of satellite 
cells associated with 
regeneration. Not known if 
upregulation after exercise 
is associated with 
degeneration or 
regeneration in mdx skeletal 
muscle. 
  

[339] 6 weeks 
 
 
N = 10 
mdx 
male 
mice 
  

10 weeks 2x/week 
 
First 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 15 m/min 
 
Last 5 weeks 
Time = 60 min 
Incline = 7 degrees 
Speed = 23 m/min 

MDX had difficulty completing 
protocol (fatigued, need for 
gentle stimulation or rest) 
 
MDX-Ex compared to MDX-
sed: 
↔ fiber size distribution 
↔ intramuscular collagen 
(suggesting ↔ perimysial and 
endomysial fibrosis) 
↑ population of smaller sized 
fibers (<20 um) 
↓ # of large-sized DRG in 
sol/gas/quadriceps 
↓ level of Igf-1 expression 
↓ level of myod1 expression 
 
Type III collagen mainly 
localized in perimysium 
 
IGF-1 localized to early 
regenerating fibers with large 
round nuclei (moderately or 
fully regenerated, centrally 
nucleated fibers were not 
positively stained) 
 
IGF-1 absent in small 
regenerated fibers with 
compacted, centrally located 
nuclei 

MDX skeletal muscles 
temporarily cope with work-
induced injury by enhancing 
muscle regeneration and 
repair. Chronic exercise 
may accelerate active cycle 
of degeneration-
regeneration, which may be 
an advantage for coping 
with exercise. 
 
Early ↓ of IGF-1 will 
accelerate age-dependent 
muscle wasting and 
weakness in the later stage 
of life. 
 
Mdx mice vulnerable to 
exercise, which may result 
in fiber necrosis 
earlier/more drastically; 
however, data show that 
necrosis can be repaired in 
exercise mice. 
 
Exercise may shorten the 
active degeneration-
regeneration period in mdx 
mice and mdx muscle fibers 
more resistant to necrosis 
after undergoing one cycle 
of regeneration. 
 
Chronic exercise in the 
active degenerative-
regenerative period will 
accelerate age-dependent 
dystrophic processes in 
mdx mice, leading to a 
shortening of the natural 
course of mdx skeletal 
muscles.  

[273] 28 days 
 
 

8 weeks  2x/week 
 
Time = 30 min 
Incline = 0 degrees 
Speed = 9 m/min 

Oxidative Damage 
↔ MDA, protein carbonyls in 
MDX-ex 
↓MDA (38%) in MDX-ex 
↓protein carbonyl (44%) in 
white muscle of MDX-ex 

Low intensity exercise 
training decreases oxidative 
stress markers (protein 
carbonyls and MDA) in 
white GASTROC of mdx 
mice and does not 

Table 1 continued 



 38 

  
Antioxidant Enzymes 
No effects of exercise on 
SOD, MnSOD, or CAT in 
MDX-ex 
 
Mitochondrial Enzymes 
↔COX between MDX-ex and 
MDX-sed 
  
Muscle Damage 
↔ internalized muscle nuclei 
per total muscle fiber area 
between MDX-ex and MDX-
SED  

detrimentally affect mdx 
mice. 
 
Oxidative stress may 
contribute to muscle 
degeneration in mdx mice 
but low intensity exercise 
training decreases ROS 
generation in skeletal 
muscle of trained mdx mice.  
  
Propose that when calcium 
homeostasis is improved, 
ROS generation is 
decreased which causes a 
decline in markers of 
oxidative stress in skeletal 
muscle MDX-ex. 
  
Lower protein carbonyls 
and MDA levels following 
exercise in MDX suggest 
that several pathways are 
involved in alleviating the 
effect: 

1. Activation of nNOS 
and up-regulation of 
NO formation that 
results in lower 
generation of 
peroxynitrite 

2. Improved calcium 
homeostasis that 
results in decreased 
ROS generation 

3. Acceleration of the 
regeneration phase 
and transformation 
from fast to slow 
twitch fibers 

4. Other unknown 
factors 

[340] 8 weeks 
for 4 
week 
study 
 
12 
weeks 
for 
single 
session  
 
  

1 session 
vs 4 
weeks 

Protocol A 
single 30 minute 
session  
 
Protocol B 
2x/week for 4 weeks 
 
Treadmill Settings 
Warm Up: 
Time = 2 min 
Incline = 0 degrees 
Speed = 4 m/min 
Followed by: 
Time = 8 min 
Incline = 0 degrees 
Speed = 8 m/min 
 
Main Exercise: 
Time = 30 min 

Protocol A 
~45% of 12-week old 
untrained mdx mice could not 
complete main exercise 
despite 5 rest times.  
 
MDX-ex and MDX-sed had 
high variation in the amount 
of myofiber necrosis but 
exercise significantly 
increased amount in both 24h 
and 48h samples 
 
↑ mRNA levels of IL-1beta in 
MDX-ex after at 2h and IL-6 
at 0h + 2h but ↔ at 24h 
 
↓mRNA levels of TNF in 
MDX-ex 

Protocol A is a suitable 
screening protocol for 
assessing therapeutic 
interventions in adult mdx 
mice. 
 
To visualize the increase in 
myofiber necrosis following 
treadmill exercise, the 
muscles must be sampled 
between 24 and 48 h.  
  
Large n is needed due to 
variation, and muscle 
choice is critical to 
assessing impact of 
exercise induced damage. 
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Incline = 0 degrees 
Speed = 12 m/min 
  
If one mouse 
fatigued, all four 
mice on treadmill 
were allowed to rest 
for 2 min then 
gradually increased 
speed  
  
 

 
↑protein thiol oxidation in 
MDX-ex at 0h + 2h but ↔ at 
24h 
 
↔ MDA in MDX-ex 
  
Protocol B 
↓ avg # of rests needed to 
complete exercise throughout 
4week period 
↑rests for in Protocol A 
compared to Protocol B 
 
↓ absolute and normalized 
change in forelimb grip 
strength in MDX-ex 
 
↑myofiber necrosis in QUAD, 
TB, DIA, and TA in MDX-ex 
at 24h and ↑necrosis in MDX-
ex at 0h 
 
↔ myofiber necrosis in MDX-
ex 96h post exercise 
 
↑blood serum CK levels in 
MDX-ex at 24h but ↔ at 96h  
↔ mRNA for IL-1beta or IL-6 
in MDX-ex at 0h and ↓ at 96h  
 
↓TNF mRNA in MDX-ex at 0h 
but ↔ for at 24h 
  
↑protein thiol oxidation in 
MDX-ex at 0h but ↔ at 24h 

Protocol A was damaging 
enough to render myofibers 
leaky, but not damaging 
enough to cause 
widespread myofiber 
necrosis in muscles except 
for the quadriceps. 
 
The mdx mice may have 
adapted to the treadmill 
exercise overtime, as 
shown by relatively stable 
IL-6 mRNA. 
 
Increased IL-6 following 
exercise may inhibit TNF, 
which is involved with the 
pathology of mdx mice and 
blockade of TNF can 
reduce necrosis. 
 
Potential therapeutic drugs 
for DMD should be 
chronically tested in order to 
examine efficiency and 
possible negative effects 

[341] 4-5 
weeks 
 

4 weeks 
(T4) or 
12 weeks 
(T12) 
 
 

2x/week 
 
Time = 30 min 
Incline = 0 degrees 
Speed = 12 m/min 
 
48 or 72 hr break 
between each 
exercise session 
  
Exercised for either 
4 or 12 weeks 

↔ BM in MDX-ex 
 
↓absolute and normalized 
strength in T4 in MDX-ex and 
maintained up to T12 
 
↓ distance (30-40%) in MDX-
ex at T4 + T12 compared to 
WT-ex 
 
↑ fatigue in MDX-ex at T4 and 
T12 
 
Exercise-Related Genes 
↔ Pgc-1alpha gene in MDX-
ex at T4  
↓Pgc-1alpha gene in MDX-ex 
at T12  
↔Sirt1 in MDX-ex at T4, but 
↓in MDX-ex at T12 
↓Ppar-gamma in MDX-ex at 
T12  
 
Pgc-1alpha Target Genes 

GASTROC muscle was 
studied due to the 
resemblances in 
composition with human 
muscle.  
  
Exercise protocol does not 
produce metabolic 
adaptation in healthy 
muscle 
  
Genes primarily involved in 
harmful signaling in 
dystrophic skeletal muscles 
are kept deregulated in 
MDX-ex, while the 
expression of genes 
involved in protective 
programs and upregulated 
in basal conditions is 
markedly impaired. 
   
Exercise that is able to 
produce a myofiber 
adaptation in WT muscle 
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↔ in Cox4 and Cs for MDX-
ex at T4  
↔ in utrophin in MDX-ex at 
T4 or T12 exercise 
 
Myofiber Phenotype Genes 
↔ Mhc isoforms in MDX-ex at 
T4  
↓Mhc1 in MDX-ex at T12  
↑Mhc2b in MDX-ex at T12  
↔ Serca1 in MDX-ex at T4 or 
T12  
↔ Serca2 in MDX-ex T4 but 
↓Serca2 in MDX-ex at T12  
↑Mef2c (not significant) in 
MDX-ex at T12  
↓Hdac5 in MDX-ex at T4 and 
T12  
  
Regeneration-Related 
Genes 
↓Myog and Fst in MDX-ex at 
T12  
↔ Igf-1 in MDX-ex at T12 
  
Muscle Damage Related 
Genes 
↓Mstn in mdx mus at both 
ages (no effects of exercise) 
↔ Atrogin1 in any 
experimental condition 
↓adiponectin in MDX-ex at 
T12  
  
Autophagy Genes 
↓Bnip3 in MDX-ex at T12 
 
↓Pgc-1alpha, Sirt1, Fst, and 
Mhc1 in EDL of MDX-ex 

may cause more damage in 
mdx muscle. 
 

[342] 4 weeks 4 weeks 2x/week 
 
Time = 30 min 
Incline = 0 degrees 
Speed = 12 m/min 
 
No more than 48-72 
h between each 
session 
 
Excluded mice that 
did not complete all 
sessions 

MDX-ex compared to mdx 
SED: 
↓TTEs and basal O2 
consumption 
↔max O2 consumption 
↑oxidative stress in QUAD 
and AB 
↑hydroxyproline deposition in 
QUAD and heart tissues 
↔hydroxyproline in AB 
↑collagen scarring in heart  
↑collagen-I scar amounts 
↑levels of dying myocytes 
(not significant) (indicated by 
intracellular IgG 
accumulation) 
↔IgG staining in QUAD 
  
  
 

Exercise is deleterious to 
mdx mice, and exacerbates 
disease pathology and 
alters exercise capacity. 
Forced treadmill exercise 
increases dystrophic 
severity. 
 
Intensity and modality of 
exercise affect how 
dystrophic muscle responds 
to exercise. This protocol 
exacerbated the pathology 
of mdx mice. 
 
Decrease in basal oxygen 
consumption could indicate 
that exercise produced 
disruptive changes in O2 
consumption. 
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Unlike the anti-fibrotic 
effects observed in healthy 
muscle following exercise, 
exercise increases fibrotic 
scar damage in quadriceps 
muscles, abdominal 
muscles, and heart in 
dystrophic muscle. 
 
No control conditions were 
used to assess the 
possibility that mdx mice 
incurred muscle damage 
during the maximal exercise 
test, which might further 
confound indices of muscle 
damage.  
 
Dystrophic muscle does not 
favorably adapt to exercise 
in regard to oxidant 
buffering and redox 
homeostasis. 

[343] 8 weeks 60 days 3x/week 
 
Low intensity 
training  
 
Time = 30 min 
Incline = 0 degrees 
Speed = 9  m/min 
 
 

MDX-ex compared to MDX-
sed: 
↑intramuscular area of 
collagen III (and ↑ than WT) 
↔ BM 
↔ % of centrally-located 
nuclei 
↔ minimal Feret’s diameter 
↔ intramuscular area of 
collagen I 
↓ collagen fibers mean values 
(but similar to WT) 

Exercise did not influence 
muscle injuries resulting 
from membrane fragility in 
MDX mice.  
  
Exercise provoked 
adaptations on extracellular 
matrix bringing higher 
elastic features to mdx 
muscle tissue. 
  
Exercise delayed the 
aberrant muscle repair at 
the studied age. 
At 16 weeks old, 
regeneration was more 
present than fibrosis in both 
MDX-sed and MDX-ex but 
exercise decreased the 
progression of muscular 
fibrosis. 

[344] 4-5 
months 
 
 
 
 
 

6 months 3x/week 
 
Time = 30 min 
Incline = 0 degrees 
Speed = 4 m/min 
(low intensity) vs 8 
m/min (moderate 
intensity). Speed 
gradually increased 
over the first 7.5 min 
to reach training 
speeds. 
  

MDX-low and MDX-mod 
compared to MDX-sed: 
↑grip strength  
↑max force generated by TA  
↔ TA cross sectional 
analysis among groups 
dose-dependent ↑ in 
proportion of type IIa fibers 
↑Pgc1a gene expression 
GASTROC 
↑minute volume with aerobic 
exercise  
↔ HR between groups 
↔QRS duration throughout 
the study 
↓rate of decline in fractional 
shortening and stroke volume 

Progression of 
cardiomyopathy was 
delayed with aerobic 
exercise with no adverse 
effects on electrical function 
of dystrophic heart. 
 
Function of dystrophic heart 
and muscle was improved 
with exercise without a 
significant increase in 
fibrosis, centrally nucleated 
fibers, or serum CK 
 
Translate into human 
setting by defining 
biomarkers for skeletal and 
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in an exercise dependent 
manner 
↓heart mass with ↑ exercise 
intensity 
↑Pgc1a in the hearts 
↔picrosirius red staining (# 
and size of fibrotic regions in 
heart, DIA, GASTROC) 
↔% of centrally located 
nuclei 
↔serum CK during exercise 
program 
↑serum and adipocyte 
concentrations of adiponectin  
↓cross sectional area of 
adipocytes  
 
↓in left ventricle internal 
diameter thickness during 
diastole and the left ventricle 
posterior wall thickness at 
month 6 
 
 Inspiratory time (Ti): 
↑7% in MDX-sed 
↑1% in MDX-mod 
↓6% in MDX-low 
Expiratory time (Te): 
↑43% in MDX-sed 
↑13% in MDX-mod and MDX-
low 
Ti and Te inversely related to 
disease progression 
 
↑avg activity level (months 
4+5) in MDX-mod compared 
to MDX-sed and MDX-low  

cardiac dystrophic muscle 
to help define low and 
moderate exercises. 

[345]  4-5 
weeks 
16 
weeks 
for 
single 
session 
 

~4 weeks 
vs >12 
weeks vs 
30 min 
 
 
  
 
 
 
 
 
 
 
 
 
 

2x/week 
 
Time = 30 min 
Incline = 0 degrees 
Speed = 12  m/min 
 
Long (>12 weeks), 
short (~4 weeks) and 
acute (1 session) 
protocols 
 
 

MDX-short and MDX-long 
compared to MDX-sed: 
↓absolute and normalized 
strength after 4 week and 
impairment maintained up to 
12 weeks 
  
↓twitch and tetanic force of 
mdx DIA but no DIA fatigue  
 
↓contractile force (to 10%) of 
EDL in MDX-short and 
becomes significant in MDX-
long 
 
↔ effects of eccentric 
contractions of EDL  
 
↓PCG-1alpha, ↓MYH1, and ↓ 
basal upregulation of SIRT1  
 
↑AChR1 (twofold) in MDX-
long protocol  
 

There is a complex 
equilibrium between 
adaptation and 
maladaptation in MDX mice. 
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↑NOX2 and Tuba-1b and ↓ in 
Fst  
 
↑total damage (40%) in MDX-
long protocol (sum of 
necrosis, infiltration and non-
muscle area)  
 
↔% of centrally located 
nuclei  
 
↔mmp9  
 
In response to single bout of 
exercise: 
↓normalized twitch and 
tetanic tension in MDX-acute 
↔contraction kinetics or 
fatigue 
↓twitch and tetanic 
contractions of EDL in MDX-
acute 
↓time to peak tension and 
half-relaxation time for MDX-
acute 
↔ fatigue 
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Table 2: Studies examining ad libitum wheel running in mdx mice.  
Study Age  Duration 

of Study 
Results Study’s Conclusions 

[346] Young 
group 
~4 
weeks 
 
Adult 
group 
~6 
months 

4 weeks 
 

Adult Mice 
↓running in MDX-ex compared to WT-
ex  
 
CK ↓65% in MDX-ex  
 
↑BW for MDX-ex ↓BW for WT-ex 
  
↑SOL weight for MDX-ex and WT-ex 
but ↔EDL weight 
 
↑CSA in SOL and EDL for MDX-ex 
and WT-ex 
 
↓tetanic tension in SOL and EDL of 
MDX-ex and WT-ex  
 
↔fatigue response in SOL of MDX-ex  
 
Young Mice 
↔ running in MDX-ex and WT-ex due 
to high inter-mouse variability 
 
↔CK levels in MDX-ex  
 
↔ in BW between MDX-ex and WT-
ex 
 
↑SOL weight for MDX-ex and WT-ex 
but ↔EDL weight 
 
↑CSA in SOL of MDX-ex but ↔EDL  
 
↓tetanic tension in SOL and EDL in 
MDX-ex  
 
↔fatigue response in SOL of MDX-ex  
 
↔ on histology of MDX-ex 

Force does not ↑ at same rate as 
the CSA. Could be because 
strangely branched and/or split 
fibers in MDX and/or ↑ in % of non-
contractile elements such as 
connective tissue 
 
EDL and SOL from young and adult 
MDX showed slight injury b/c of 
exercise. 

[347] 4 weeks 16 weeks  
 
 

↔ avg week distance + daily speed 
for 2 weeks. Then ↓ avg distance and 
daily speed for MDX-ex compared to 
WT-ex in all weeks after 3 weeks 
except week 8 
 
↔ avg run hours per week in MDX-ex 
vs WT-ex 
 
running ↑ abs. mass of SOL in MDX-
ex but  
↔ in EDL + PL 
 
↔ in EDL + PL contractile properties 
in MDX-ex 
 

↓ in distance run MDX-ex vs WT-ex 
due to ↓ speed in MDX 
 
After exercise, ↑ fatigue resistance, 
proportion of oxidative fibers + 
improvement in muscle force 
production 
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↑ abs. twitch + tetanic tensions of 
SOL in MDX-ex 
  
↑ resistance to fatigue in EDL + SOL 
of MDX-ex but ↔ fatigue resistance 
in PL of MDX-ex 
 
↑ type I + ↓ type IIa fibers in SOL but 
↑ type IIa + ↓ type IIb in EDL of MDX-
ex 

[348] 6 
months 
 
 

1 year MDX-ex ran 55% of daily distance of 
WT-ex 
 
↔ EDL weight but ↑ SOL weight in 
MDX-ex 
 
↔ tetanic tension for EDL or SOL in 
MDX-ex  
 
↑ fatigue resistance in EDL of MDX-
ex 

Hypothesis that long-term ad libitum 
exercise having beneficial effects on 
WT and deleterious effects on MDX 
was not supported by data 
 
MDX-sed show high muscle 
damage but MDX-ex respond 
beneficially to low levels of voluntary 
running 
 
Reason for atrophy in MDX mice is 
unknown but ould be due to ↓ 
physical activity, ↓ satellite cell 
proliferation., and/or ↑ catabolism 
 
Long-term exercise does not have 
deleterious effects on MDX EDL, 
and slightly improves SOL   

[330] 21 days 
male 

3 weeks Run distance dependent on diet: 
MDX-ex-GTE ran total distance 128% 
↑ than MDX-ex over course of study. 
Interestingly, MDX-ex-GTE total 
distance was equal to WT-ex 
 
↑ tetanic stress in MDX-ex and MDX-
ex-GTE and ↑active stiffness in MDX-
ex and MDX-ex-GTE 
 
↑abs. myosin content, total muscle 
protein to muscle mass, total 
contractile protein to total muscle 
protein in EDL of MDX-ex and MDX-
ex-GTE 
 
↑ type I and IIa fibers and ↓ type IIb 
fibers of EDL in MDX-ex but ↔ in 
MDX-ex-GTE 
 
↑ antioxidant capacity in MDX-ex and 
MDX-ex-GTE 
 
↓ Lipid peroxidation in GASTROC 
and heart of MDX-ex and MDX-ex-
GTE 
 
↓CK levels in MDX-ex and MDX-ex-
GTE 
 
↑CS activity in QUAD and heart of 
MDX-ex and MDX-ex-GTE 
 

GTE, MDX-ex and MDX-ex-GTE 
was beneficial and no obvious 
deleterious outcomes 
 
EX + GTE diet ↑ muscle function in 
MDX  
 
↑ EDL tetanic stress output could be 
due to ↑ stability of contractile 
proteins, shift in fiber type, and ↑ 
membrane integrity 
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↑ B-oxidation activity in QUAD and 
heart of MDX-ex and MDX-ex-GTE  
 
 

[349] 4 weeks 8 weeks ↓ distance + time on wheel in MDX-ex 
than WT-ex 
 
↔ BM in MDX-ex 
 
↑percentage of type IIa fibers and ↓ 
percentage of type type IIb in EDL of 
MDX-ex 
 
Leftward shift in CSA distribution of 
EDL and SOL in MDX-ex 
 
↔ in central nuclei in MDX-ex 
 

MDX can remodel in response to 
exercise.  
 
MDX mice engage in physical 
activity when given the opportunity. 
 
Exercise may prevent secondary 
unwanted consequences. 
 
Appears to be an intensity threshold 
for inducing beneficial vs deleterious 
adaptations. 
 

[290] 4-5 
weeks 

12 weeks ↓ BM in MDX-ex (no resistance) and 
MDX-resist (resistance increased by 
1 g per week) 
 
↓ mean daily distance  in MDX-resist 
vs MDX-ex 
 
↑ external work per week in MDX-
resist vs MDX-ex during weeks 2-12 
 
↔ max. dorsiflexion torque in MDX-
resist vs MDX-ex but ↑ during 
duration of study 
 
↑ grip strength in MDX-ex + MDX-
resist  
 
↔ whole body tension in MDX-ex + 
MDX-resist 
 
↔ abs. twitch, tetanic, or eccentric 
forces by SOL in MDX-ex + MDX-
resist 
 
↔ passive + active stiffness in in 
MDX-ex + MDX-resist 
 
↔ in force loss during + following 
eccentric injury in in MDX-ex + MDX-
resist 
 
↔ in muscle masses in MDX-ex + 
MDX-resist 
 
↔ CK in MDX-ex + MDX-resist 
 
↑ beta-dystroglycan content in 
GASTROC of MDX-ex 
 
↑ vinculin content in SOL of MDX-ex 
 

↔ in functional measurements by 
wheel running 
 
12 weeks of voluntary wheel running 
↑ muscle strength in SOL and ↑ grip 
strength 
 
2 modes of exercise differing in 
intensity are capable of inducing 
comparable adaptations in skeletal 
muscle of MDX mice. 
 
Dystrophic muscle can adapt to a 
resistance-type exercise 
 
Hypertrophy was not the underlying 
cause of improvement.  
 
Minimal changes in cytoskeletal 
proteins with wheel running. 
 
Did not observe a benefit with 
regard to susceptibility to injury. 
  
Data collected indicates that a 
threshold must be surpassed 
regarding cytoskeletal protein 
expression to observe functional 
benefits, and wheel running did not 
overtly elicit this adaptation in mice. 
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[332] 4 weeks 12 weeks Voluntary wheel running does not 
induce physical inactivity in MDX-ex 
but mice ↓ voluntary activity during 30 
min after forced running on wheel.  
 
↔ CK in MDX-ex 
 
↔ BM in MDX-ex  
 
↑heart mass but ↔ GASTROC and 
TA in MDX-ex  
 
↑ maximal isometric torque in MDX-
ex 
 
Plantarflexor muscles beneficially 
adapted to daily running with ↑ sub-
maximal torque MDX-ex but ↔ in 
concentric torques  
 
↑% of peak torque in MDX-ex 
 
↑ PCG-1alpha protein in GASTROC 
of MDX-ex 
 
↑ COX IV protein in GASTROC of 
MDX-ex 
 
↔ percent of central nuclei in TA or 
diaphragm but ↓ in central nuclei in 
GASTROC of MDX-ex  

in vivo muscle strength + fatigue 
resistance ↑ in MDX-ex.  
 
Mitochondrial adaptations contribute 
to the beneficial exercise-induced 
skeletal muscle remodeling. 
 
Strength gains occurred at 
functionally-relevant, sub-maximal 
frequencies. 
 
Duration is an important exercise 
design parameter. Mode + intensity 
are also important.  

[350] 10-12 
weeks 

2 weeks Daily distances run by individual mice 
diverged over time.  
Mouse 1 
Pattern: intermittent running + resting 
throughout most of the dark hours 
Mouse 2 
Pattern:  intermittent running + resting 
throughout most of the dark hours 
Mouse 3 
Pattern:  intermittent running + resting 
throughout most of the dark hours 
Mouse 4 
Pattern:  intermittent running + resting 
throughout most of the dark hours 
Mouse 5 
Pattern:  intermittent running + resting 
throughout most of the dark hours. 
More breaks in last 4-6 hours of night 
Mouse 6 
Pattern: ran intermediate-high 
overnight distances, although these 
were variable by up to 3 km per night  
Ran mostly in first 6 hours per night, 
with almost no running activity in 
second 6 hours  
Mouse 7 
Pattern:  intermittent running + resting 
throughout most of the dark hours 
Total Distance: 0.04 km 
Mouse 8 

Extensive variation in voluntary 
wheel running in MDX adults.  
 
↓# of bouts + ↑ bout distance 
promoted muscle damage.   
 
Data strongly indicates that a 
detailed analysis of individual mouse 
running behavior is essential when 
utilizing voluntary wheel running. 

Table 2 continued 
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Pattern:  intermittent running + resting 
throughout most of the dark hours 
Total Distance: 7.65 km 
Mouse 9 
Pattern: ran intermediate-high 
overnight distances, although these 
were variable by up to 3 km per night  
Ran mostly in first 6 hours per night, 
with almost no running activity in 
second 6 hours  
Mouse 10 
Pattern: intermittent running + resting 
throughout most of the dark hours. 
More breaks in last 4-6 hours of night 
Total Distance: 67.24 km 
Mouse 11 
Pattern: ran intermediate-high 
overnight distances, although these 
were variable by up to 3 km per night  
Ran mostly in first 6 hours per night, 
with almost no running activity in 
second 6 hours  
Total Distance: 62.68 km 
 
Avg time spent running on running 
wheel per bout ranged from 1.04 min 
(mouse 7) to 10.52 min (mouse 11)   
 
Running bouts ↓ for mouse 4, 7, and 
8, and ↑ for mouse 11 in comparison 
with group avg 
 
Mouse 7 + 11 had rest times ↑ than 
all other mice 
 
From slowest to fastest average 
running rate: mouse 7 + 8, mouse 1 + 
4, mouse 2 +3, mouse 5 + 6, and 
mice 9-11. 
 
Mouse 8 ran ↑ # of bouts but ↓ avg 
rate. Mice 6 + 9-11 ran ↓ # of bouts 
but ↑ avg rate. 
 
↑ in tissue necrosis in QUAD of mdx-
ex. 
 
Shift towards larger fiber CSA in 
QUAD and GASTROC in MDX-ex. 
 
Mean distance covered in individual 
running bouts showed a positive 
correlation with percent of tissue 
necrosis in QUAD. 
 
Total # of running bouts showed an 
inverse correlation with tissue 
necrosis. 
Mean nightly + total # of running 
bouts also showed an inverse 
correlation with necrosis in 
GASTROC.  

Table 2 continued 
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Mean running bout distance 
correlated with percent of centrally 
nucleated myofibers. 
 
Total + mean rest times showed 
positive correlation with necrosis in 
GASTROC. 
 
Total run time had negative 
correlation with necrosis in 
GASTROC. 
 
Only running parameter that was a 
significant positive indicator for 
myofiber CSA was total cumulative 
rest time.  

[351] Sed 
MDX: 5 
months 
 
Run 
MDX: 4-
5 weeks  
 
Run CT: 
4 weeks   

Sed 
MDX: 2 
weeks 
 
Run 
MDX: 4-
4.5 
months 
 
Run CT: 
3 months 

Inactivity  
↓ specific maximal force in 
MDX+staple  
 
↓ absolute maximal force in CT + 
MDX.  
 
↓ force after 3rd, 6th, and 9th 
lengthening contraction in MDX-
staple, indicating increased 
susceptibility to contraction-induced 
injury with inactivity  
 
↑ expression of MHC-2b protein and 
GDF8, Stim1 and Jph1 gene 
expression in MDX+staple 
↔ in Bnip3, LC3, and astrogin-1 
expression in MDX-staple  
 
Activity  
↑ specific maximal force, abs. 
maximal force, and muscle weight in 
MDX-ex 
 
lower force ↓ after 3rd, 6th, and 9th 
lengthening contraction in MDX-ex, 
indicating a decreased susceptibility 
to contraction-induced injury  
 
↔ in gene expression except for ↑ in 
MHC-2a protein + ↓ in Actg1 
 
↔ fibrosis in MDX-ex 
 

inactivity aggravates muscle 
weakness + susceptibility to 
contraction-induced injury.  
 
Possible that GDF8 decreases 
contractile protein contents because 
it is known to inhibit protein 
synthesis.  
 
Fast fibers have ↑ fragile than slow 
fibers 
 
Inactivity can worsen dystrophic 
features and be more harmful to 
DMD vs healthy muscle. 
 
Activity ↓ muscle weakness + 
susceptibility to contraction-induced 
injury. 
  
Data suggests that muscle 
weakness +  susceptibility to 
contraction-induced injury in 
dystrophic muscle could be partly 
attributable to inactivity. 

[352] 4 weeks 52 weeks  ↑ BM in MDX-ex 
 
Running distance peaked at weeks 
3+4 of study, and steeply declined 
after. 
 
↑abs. plantarflexor, GASTROC and 
SOL, and heart masses in MDX-ex 
↑CSA and tetanic force in SOL of 
MDX-ex 

1 year of wheel running caused 
heart remodeling but diaphragm 
function was severely impaired in 
MDX-ex. Likely that ↑ rate of 
respiration + workload required to 
support exercise accelerated 
disease progression in diaphragm. 
  
Mice tend to perform intermittent 
sprints  instead of maintaining a 

Table 2 continued 
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↑heart  
 
↑ Left ventricular end diastolic and 
systolic dimensions, and systolic 
volume in MDX-ex 
 
↑stroke volume + cardiac output in 
MDX-ex 

steady pace which could ↑ 
diaphragm injury +↓ function 

[353]   Note: mice are from Baltgalvis et al. 
2012 
 
↑ total utrophin protein in QUAD of 
MDX-ex but ↔ in SOL 
 
↔CSA or muscle fiber CSA variability  
↑percentage of small central nuclei %  
in MDX-ex 

Previous reports show utrophin 
protein translation is regulated by 
signaling pathways activated by 
aerobic exercise. 

[354] 7 
months 

3 months ↔ in running between male + female 
MDX-ex 
 
↔ force drop after 9 lengthening 
contractions 
 
↔ in specific maximal force 
 
↑ abs. maximal force in female MDX-
ex but ↔ in males 
 
↔ left ventricular function + structural 
heart dimensions 
 
↔ in expression in cardiac gene 
markers of inflammation/fibrosis 
(Col1a1, Col3a1, Ctgf, and TgfB1) 
and cardiac remodeling (Bnp and 
Myh7) 

Voluntary activity initiated at 7 
months was not detrimental for 
hindlimb skeletal muscle in MDX 
mice and does not improve 
susceptibility contraction-induced 
injury in female MDX mice.  
 

 
  

Table 2 continued 
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Table 3: Studies examining swimming in mdx mice.  
Study Age Duration 

of Study 
Exercise Program Results Study’s Conclusions 

[355] 5 weeks 15 weeks  Time was ↑ daily until 
total swim time was 2 
hours continuously.  
 
Program continues by 
attaching weights (5% 
of body weight) to tail 
during 2 hour swim-
period. Resisted swim 
continued for 5 more 
weeks until 20 weeks 
of age was reached 

MDX-ex compared to MDX-
sed: 
↓ mass of SOL + EDL  
↓ SOL CSA  
↓ EDL CSA  
↑ normalized twitch tension  
↑ fatigue resistance in SOL 
and EDL  
↑ type I fibers in EDL  

Improvement in fatigue 
resistance of skeletal 
muscles  in MDX-ex, 
improvements in muscle 
oxidative capacity, and 
transformation towards less-
fatigable fibers renders 
muscle less vulnerable to 
damage. 
 
Combining exercise and an 
anabolic agent may improve 
muscle mass and offer 
greater benefits. 

[356] same 
mice 
from 
Hayes et 
al. 1993 

15 weeks same mice + protocol 
from Hayes et al. 
1993 

MDX-ex compared to MDX-
sed: 
↓ # of type IIa fibers and ↑ # of 
intermediate fibers 
 
EDL 
Type IIa fibers displayed 
steeper force-pCa and force-
pSr  
 
Type IIb fibers showed ↓ 
threshold for contraction by 
Ca2+ and a ↓ Ca2+ sensitivity 
 
SOL 
↔ differences existed for 
Ca2+, sensitivity of type I 
fibers to Ca2+, or force-pCa 
curve steepness 
 
Type IIa fibers had force-pCa 
curves that were significantly 
right shifted and displayed 
higher values for contraction 
threshold and sensitivity.  
↓ force-pCa curve steepness 
values  

Swimming affected some 
contractile properties of MDX 
skeletal muscle fibers.  
 
Fast-twitch fibers isolated 
from MDX-ex had ↓ sensitivity 
to Ca2+ and Sr2+. This ↓in 
sensitivity to activating ions 
may be a protective 
mechanism that prevents the 
↑ resting Ca2+ in these fibers 
from exceeding contraction 
threshold. 

[327] 8-10 
months 
or 24 
months 

10 weeks Free swimming for as 
long as possible once 
daily. Rest day after 2 
consecutive days of 
swimming.   

24-month mice were unable to 
swim continuously for > 25 
min. 
 
For swimming, 
↔BM or muscle mass in 24-
month mdx mice 
 
↔ absolute forces produced 
but ↑ in peak tension 
normalized to muscle mass 
and tetanic tension normalized 
to muscle mass in 8-10 month 
mdx mice vs 24-month mdx 
mice  

Contractile properties of old 
MDX mice can still be altered 
by very low-intensity 
swimming.  
 
Low levels of controlled, non- 
weight-bearing activity can be 
beneficial for dystrophic 
muscle. 
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↑ force-generating capacity in 
24-month mdx mice 
 
↔ fatigue properties of 24-
month mdx mice 

[357] 4 weeks  4 weeks exercised 4 days per 
week (M, T, Th, F) for 
30 min/day. Mice 
were not forced to 
swim and were free to 
stand. 

MDX-ex compared to MDX-
sed: 
↑ grip strength  
 
↔ total protein carbonylation 
level but ↓ carbonylation of 
voltage-dependent anion-
selective channel protein 1, 
fast isoforms of troponin T + 
MyBP-C, and 
phosphoglucomutase-1  
 
↑ expression of respiratory 
chain proteins, fast isoforms of 
troponin T and MyBP-C, UTP-
glucose-1-phosphate 
uridylytransferase and 
carbonic anhydrase 3 
 
↓carbonylation of ATP 
synthase subunit alpha, fast 
isoform of troponin T and GP  
 
↑expression of tubulin, 
vimentin, and associated 
proteins, and stress response 
proteins.  
 
Two ATP synthase complexes 
absent in MDX-sed muscle 
were restored in MDX-ex.  
 
↑ expression of slow isoforms  
 

Proteins involved in muscle 
contraction and glycogen 
metabolism were both over 
carbonylated and 
downregulated in MDX Sed.  
 
Swimming rescued, at least 
in part, MDX muscle at 
protein level. Specifically, 
proteins from mitochondria, 
muscle contraction, and 
glycogen metabolism that 
were highly carbonylated and 
downregulated in MDX-sed 
muscle were less 
carbonylated and highly 
expressed in MDX-ex.  
 
This suggests that protein 
carbonylation could cause a 
functional impairment in mdx 
muscle.  
 

 
  

Table 3 continued 
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Table 4: Studies examining Rota-Rod training in mdx mice.  
Study Age  Duration 

of Study 
Exercise Program Results Study’s Conclusions 

[358] 8 weeks 6 weeks  5 days/week at 
progressively 
increase number of 
rotations (16 to 24 
rotations/minute) and 
duration (15 to 60 
minutes).  

MDX-ex compared to MDX-
sed:  
between 1 and 3 weeks of 
training, ↓forelimb strength 
and insignificant ↓ of forelimb 
fatigue at weeks 3 and 4 of 
training. 
 
↔ fatigue resistance  
↓ inflammatory-necrotic areas 
in GASTRO and QUAD (not 
significant for mice that 
exercised for 15 days but 
significant for mice that 
exercised for 30 and 45 days) 
 
↓ Cx39 protein in GASTRO 
and QUAD (not significant for 
mice that exercised for 15 
days but significant for mice 
that exercised for 30 + 45 
days) 

Exercise did not improve 
muscle function in MDX-ex 
but there is improvements 
in muscle morphology 
 
Exercise intensity could 
have been too low to induce 
significant physiological 
adaptation in MDX-ex. 

[359]   Same mice as first 
study.  

4 spots showed modulation in 
protein levels in MDX-ex, 
including 3 CA3 isoforms and 
SODC. Levels appeared to 
return to WT levels. 
 
↓ CA3 in MDX-ex 
↑ SODC in MDX-ex 

Reduced expression of CA3 
and parallel increase in 
expression of SODC protein 
suggest improved oxidative 
stress and restored anti-
oxidative response, 
indicating a possible 
mechanism by which 
exercise may reduce 
muscle degeneration in 
MDX 
 
Exercise may in part 
contribute to lower muscle 
degeneration in MDX 
muscles. 
 

[360]  
 

 Same mice as first 
study.  
 

↔ in total area of necrosis-
regeneration in DIA in MDX-
ex but ↑ area of active 
regeneration and ↓ area of 
necrosis when evaluated 
separately at both 30 and 45 
days 
 
↔ difference in Cx39, Hsp60, 
Hsp70 at 30 and 45 days 
 
↓ NF-kB levels at 45 days in 
MDX-ex 
 

Trend for regeneration 
areas to be larger than 
necrosis areas in 
diaphragm of MDX-ex. 
 
Similar Cx39 protein levels 
in diaphragm of MDX-sed 
and MDX-ex cannot be 
explained by inflammation 
in regenerating areas but 
stable levels of Cx39 and 
NF-kB may indicate that 
training was not detrimental 
to the diaphragm of MDX 
mice. 
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Early investigations on exercise and dystrophic muscle centered on determining the 

susceptibility of dystrophic muscle to eccentric contraction-induced injury. These studies 

subjected mice to a single or multiple sessions of eccentric exercise, either via electrically 

stimulated lengthening contractions or downhill treadmill running. In healthy muscle, it is well 

established that eccentric contractions produce greater exercise-induced damage and promote 

negative functional consequences [361]. Damage arises from the higher force required by the 

reduced number of activated muscle fibers, leading to high mechanical stresses and 

microlesions within the sarcolemma [362] as well as disruptions in the components of the 

extracellular matrix and connective tissue [363,364]. This is important to highlight because these 

studies clearly demonstrate that dystrophic muscles endure more damage from eccentric 

contraction compared to their wild-type counterparts [69,70,74,76,365–367]. Specifically, there 

is an increase in membrane breakdown in the rectus femoris and EDL muscles [365,366], and 

serum creatine kinase [74,368]. Thus, authors urged researchers and clinicians that because a 

single bout of eccentric contractions negatively affects dystrophic muscle, exercise should be 

completely avoided by those with DMD [76].  

These studies led researchers to propose that eccentric exercise regimens could be 

used to make the mdx mouse model a better clinical model for DMD and become a more 

reliable model for testing novel therapies [74]. Specifically, because of the lesser severity in mdx 

muscle, many studies have used exercise to exacerbate the phenotype prior to administering 

the therapy. Since these studies further supported the above hypothesis that exercise 

exacerbates disease progression, researchers and clinicians air on the side of caution and 

advise their patients to not participate in exercise. It should be noted, though, the only 

conclusion that can be drawn from these experiments is that inappropriate exercise and forceful 

muscle contractions are, in fact, detrimental to mdx muscle [317].  
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Lastly, due to the biomechanical differences between mouse and humans, there is only 

one study that evaluated the impact of “resistance training” on mdx muscle. To emulate 

resistance training, Call and colleagues (2010) [290] progressively increased the resistance of 

the running wheel by adding weights to the running wheel. For 12 weeks, mdx mice where given 

access to a running wheel ad libitum. Resistance increased each week from 1 gram (which is 

6% of body mass) to 7 grams. Additionally, a second group of mdx mice had ad libitum access 

to a running wheel whose resistance remained set at 1 gram and a third group that did not have 

access to a running wheel but maintained normal cage activities. Mice running on the resistance 

wheel did not display increased skeletal muscle damage nor higher creatine kinase levels when 

compared with mice that ran on the normal running wheel. From these results, the authors 

conclude that dystrophic skeletal muscle can positively adapt to resistance training. 

The major shortcomings of studies on exercise and individuals with DMD are also 

evident in the mdx research. The lack of uniformity among the protocols of these studies 

severely hinders the ability to draw conclusions and translate results to humans [369]. In 2008, 

TREAT-NMD published standard operating procedures for experiments evaluating dystrophic 

muscle’s response to activity in order to improve comparability between studies 

(http://www.treat-nmd.eu/research/preclinical/dmd-sops/). These documents provide detailed 

protocols for both the mode, intensity, and duration of exercise. For example, to worsen the mdx 

phenotype and/or to evaluate the efficacy of therapeutic interventions, mdx mice should run at a 

speed of 12 meters per minute for 30 minutes twice a week (SOP DMD_M.2.1.001). 

Additionally, this SOP states that mdx mice can barely tolerate downhill running and this should 

only be used for proof-of-concept approaches. However, there is no published SOP for studying 

the impact of aerobic exercise on disease progression. Lastly, while similar studies use the 

same outcome measures, such as maximum twitch or tetanic tension and fatigue resistance, 

the protocols used to collect these data were extremely different. Differences in these 

parameters make it difficult to compare results across studies, leading to contradicting results 
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and further delay in understanding how exercise impacts the progression of DMD. SOPs are 

now available in order to limit these differences across all preclinical studies.  

Voluntary wheel running as the primary mode of exercise for mdx mice should be 

addressed as a study limitation, especially because it leads to inconsistent results in the 

literature. For studies that used voluntary wheel running with various lengths of ad libitum 

access (4 weeks vs 16 weeks vs 1 year), force-generating capacity and fatigue resistance of the 

soleus and EDL muscles differed across studies [346–348,370]. For example, following 16 

weeks and 1 year of voluntary running, the soleus muscles demonstrated greater force-

generating capacities while the EDL muscle exhibited a greater fatigue resistance compared to 

sedentary mdx mice [347,348]. Conversely, no effect was observed on these same properties 

following 4 weeks and 1 year of voluntary wheel running in another set of studies [346,370]. 

These differences most likely arise from differences in the running activity of individual mice 

across the four studies. Specifically, in the two studies reporting positive benefits from wheel 

running, mdx mice ran an average weekly distance of 29.8 ± 2.6 km [347] and about 25.2 km 

based on the reported average daily distance [348]. For the two studies reporting no effects of 

wheel running, the average weekly distance ran by mdx mice was estimated to be 33 km based 

on data presented in the graphs [370] and an estimated 4.5 km based on data presented in the 

graphs [346]. Recently, Smythe and White (2012) [350], demonstrated that voluntary wheel 

running differentially affects the muscles depending on the time interval between and the 

duration of each individual bout of running, rather than on the total daily or weekly distance. 

Ultimately, when using wheel running as the mode of exercise, a large number of animals is 

required to tease apart these inter-individual differences.  

1.8.3 Inactivity in DMD 

Even with extremely low activity levels in boys with DMD and a limited understanding of 

the potential role that exercise plays in disease progression, very few studies have been done to 

understand the role that inactivity plays in disease progression. While there are no human data, 
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studies using the mdx mouse model are available [73,75,351] and their conclusions are 

contradicting. Following an injection of tetanus toxin into the right gastrocnemius muscle, 3-

week-old mdx mice were subjected to sustained dorsiflexion of the right ankle joint for 2 to 56 

days [73]. Compared with un-injected control mdx mice, the soleus and EDL muscles exhibited 

a significantly reduced number of muscle fibers with centrally located nuclei, leading the authors 

to suggest that muscle necrosis is facilitated by muscle movement and can be prevented 

through immobilization. Similarly, in 3-week-old mdx mice, when a metal splint was applied to 

the right hindlimb to prevent contractions for 14 days, evidence of early stage necrosis in the 

soleus and EDL muscle was absent [75]. Additionally, the cross sectional areas of muscle fibers 

were noticeably reduced [75]. Here, the authors conclude that, while muscle necrosis may occur 

from muscle contractions, early atrophy from immobilization and the requirement of the 

respiratory muscles to be permanently active eliminates any therapeutic potential of these 

results to slow the progression of disease in individuals with DMD [75]. Lastly, following 2 weeks 

of leg immobilization, inactivity was found to aggravate muscle weakness and increase its 

susceptibility to contraction-induced injury in 5-month-old mdx mice [351]. These deficits could 

not be explained by changes in the expression of genes involved in autophagy, proteolysis or 

fibrosis [351]. Here, the authors conclude that inactivity may be more harmful for dystrophic 

muscle than for healthy muscle [351]. Unfortunately, none of these studies examined the long-

term impact of inactive periods on disease progression.  

1.9 Recommendations for Future Research  

Many authors who conduct reviews on the potential impact of exercise on DMD muscle 

draw the same conclusions: more research is necessary and study design must be improved 

[317,369,371–373]. To improve study design, authors suggests that studies include not only 

participants of similar age but with similar disease severity, be of longitudinal design rather than 

cross-sectional design, be of sufficient duration to capture all potential effects, implement 

outcome measures that are standardized, reliable and systematic across studies [371,372], and 
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assess respiratory, cardiac, and limb muscles simultaneously [369,372]. This is of utmost 

concern because there are several major questions that still need to be addressed, including: 

does exercise lessen or exacerbate muscle loss and contractures in DMD patients, when is 

exercise more likely to beneficial or injurious during the disease, how does exercise interact with 

other treatment modalities, what are the short (initial days or weeks), the intermediate (several 

weeks to months) and the long term (many months to years) effects of exercise on disease 

progression, and to what extent does exercise influence tissue reorganization [372]? More 

importantly, though, there is a need for establishing a model that not only allows the 

assessment of various exercise interventions both safely and effectively but permits longitudinal 

assessment of dynamic variables [372].  

1.10 Purpose of our Research 

Skeletal muscle plasticity in diseased muscle, specifically in muscle lacking dystrophin, 

is incredibly understudied. While healthy individuals are capable of adapting and overcoming 

changes in muscle activity, how exercise or the phenomenon “use it or lose it” applies to 

dystrophic muscle are not clear. Therefore, it is critical that research goes back to step one, and 

fundamentally assesses the short- and long-term impact of muscle contractions on the 

structure, function and survivability of dystrophic muscle. 

The purpose of our research is to evaluate the impact of inactivity and NMES on muscle 

structure, function and survival using the zebrafish model of DMD in order to gain insight into 

the delicate equilibrium between adaptation and maladaptation in DMD muscle. Zebrafish are a 

well-established model for studying muscle diseases and offer several advantages to 

understanding disease progression, which are highlighted throughout our experiments. More 

importantly, though, studying the impact of activity on DMD muscle must go beyond measures 

of muscle strength and function and delve deeper into the molecular and cellular changes 

occurring across multiple systems that interact and support muscle health. As demonstrated 

above, most studies on humans and mouse models are limited in these assessments. 
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Leveraging the zebrafish model of DMD allows us to address many of these limitations both in 

vivo and across time. We hypothesize that inactivity lowers the threshold for contraction-induced 

injury in dystrophic muscle and accelerates disease progression. Conversely, we hypothesize 

that there is an intensity threshold for NMES, where it crosses from a therapeutic intervention to 

one of accelerated pathology. As novel treatment strategies become available and allow 

individuals with DMD to become more active, it is critical that we understand the basic 

mechanisms of skeletal muscle plasticity and define these thresholds.   
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CHAPTER 2 

VARIATION IN DISEASE PROGRESSION IN A ZEBRAFISH MODEL OF DMD 

 

2.1 Relevant Background 

2.1.1 Zebrafish as a Model to Understand the Pathological Mechanisms of Muscular Dystrophy 

Zebrafish harbor orthologous genes with more than 70% of all human genes and more 

than 80% of human disease-causing genes [374]. Included in these genes are those 

responsible for various types of muscular dystrophy (reviewed by [375,376]). Interestingly, 

multiple zebrafish models for these muscular dystrophies more closely resemble the severity of 

the pathology observed in humans than the corresponding mouse models [376–378]. Zebrafish 

are an attractive model for studying skeletal muscle and muscle diseases, especially because 

they generate a large number of offspring, develop rapidly ex utero, have optically transparent 

embryos and larvae, and can be genetically manipulated more easily [379,380]. Additionally, 

skeletal muscle is the largest and most prominent system in zebrafish larvae, allowing it to be 

easily visualized and accessible [375]. Further, many molecular, ultrastructural and histological 

features are shared between zebrafish and human muscle, including components of the DGC, 

the excitation-contraction coupling machinery, and the contractile apparatus [381–385]. 

However, one fundamental difference between zebrafish and human muscle is the anatomical 

separation of the fast- and slow-twitch muscle fibers. Specifically, the bulk of the fast muscle 

fibers are located close to the axis while the slow muscle fibers reside just under the skin. A 

second fundamental difference is that zebrafish harbor short muscle fibers attached serially to 

the myotendinous junctions. This structural difference increases the relative number of possible 

failure points per unit muscle length compared to mammalian limb muscles [386]. Lastly, 

zebrafish exhibit reproducible, quantitative motor behaviors beginning at 1 dpf [387], providing 

simple and non-invasive measures of muscle function. Therefore, numerous studies have 

leveraged the zebrafish model to perform large drug screening assays to identify potential 
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therapies for muscular dystrophies as well as to investigate potential mechanisms of disease 

progression.   

2.1.2 The Zebrafish Model of DMD 

Dystrophin-deficient zebrafish, known as sapjeta222a/ta222a, and referred to as dmd mutants 

throughout this dissertation, are the smallest vertebrate model of DMD. These zebrafish were 

isolated in a forward genetic screen [388] and subsequently identified as carrying a non-sense 

mutation in exon 4 of the dystrophin gene. This mutation is autosomal recessive, affecting about 

25% of the offspring from a heterozygous cross. Zebrafish dmd mutants are an excellent 

example of how the zebrafish model better captures the severity of the human disease than the 

mouse model [324,389]. For example, zebrafish larvae exhibit severe structural and functional 

deficits by 4 days post fertilization (dpf), and die prematurely by their second week [377,390]. 

Conversely, mdx mice have very mild structural and motor deficits with little impact on survival 

[324,389]. Upon histological characterization of dmd mutants, there is extensive muscle fiber 

degeneration and fibrosis, as well as infiltration of inflammatory cells and activation of muscle 

satellite cells [377]. Additionally, muscle fiber cross-sectional areas exhibit significant variation, 

with the proportion of small muscle fibers being significantly higher compared to wild-type 

siblings. However, at 7, 14, and 21 dpf, the area covered by muscle fibers with large cross-

sectional areas is significantly greater in dmd mutants compared to wild-type siblings, and the 

percentage of muscle fibers with centrally-located nuclei is significantly reduced [377]. BrdU and 

Pax7 labeling also reveal significantly higher levels of proliferation throughout development in 

dmd mutants, especially for the satellite cell population [377]. Lastly, twitch and tetanic forces 

are significantly decreased in dmd mutants compared to wild-type siblings, with a 50% deficit in 

normalized twitch force and a 40% deficit in normalized tetanic force [386]. Therefore, while 

dmd mutants are well-characterized as a whole, longitudinal studies to elucidate variation in the 

severity of muscle degeneration as well as the dynamics of degeneration-regeneration cycles in 
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individual zebrafish have not been conducted. The goal for this chapter is to test a longitudinal 

approach for studying variation in the zebrafish model of DMD.  

2.2 Experiment Overview 

Unlike most zebrafish studies in which embryos are treated as a collective whole, we 

followed embryos individually throughout each experiment so that disease progression could be 

monitored throughout time. Experiments began at disease onset, which is 2 dpf. At disease 

onset, zebrafish were identified via birefringence as a dmd mutant or healthy wild-type sibling. 

Wild-type siblings had myotomes with organized, parallel muscle fibers that appear bright white 

while dmd mutants had myotomes with disorganized and detached muscle fibers that appear 

gray to black [389]. After separating dmd mutants from wild-type siblings, zebrafish were 

prepared for birefringence imaging (protocol in Appendix B.2). Zebrafish were imaged one by 

one, and housed one fish per well in 12-well plates with 3 mL of 1X ERM per well. Upon 

imaging, each individual zebrafish was assigned a number that was used to track the zebrafish 

and its corresponding birefringence images throughout the entire study. Birefringence images 

were taken at the same time every day beginning at 2 dpf. In addition to birefringence, 

DanioVision was used to analyze swimming activity as a metric of muscle function (protocol in 

Appendix B.3). Following birefringence imaging at 3, 5 and 8 dpf, swimming was analyzed. 

DanioVision was not performed at 2 dpf since zebrafish exhibit extremely low activity levels. At 

the conclusion of the experiment, birefringence images and DanioVision data were analyzed for 

each individual zebrafish. An overview of the experimental workflow is shown in Figure 1A.  

2.3 Results  

2.3.1 Longitudinal Studies Indicate that Muscle Structure, Degeneration, and Regeneration in 

dmd Mutant Zebrafish are Variable  

All birefringence data were also normalized to the average WT birefringence in each 

imaging session (Fig. 1A). Birefringence clearly visualizes healthy muscle in WT larvae (Figure 

1B, white arrowhead in B3 denotes a healthy muscle segment). While the average mean gray 
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value for a group of wild-type embryos is always 100% (see Figure 1E1), mean gray value of 

individual wild-type embryos varies day-by-day but hovers around 100% (see Figure 1E2). At 

the onset of muscle degeneration in dmd mutants, there was drastic variation in muscle 

structure: ranging from 35% to 135% of the average wild-type values (in Figure 1E1, note the 

large standard deviation; see Figure 14 for individual values). Mutants were categorized as 

either mild or severe at the onset of muscle degeneration (2 dpf) with mild dmd mutants having 

a mean gray value of ≥ 86% of wild-type birefringence and severe dmd mutants having a mean 

gray value of ≤ 85.99%. Although mild and severe mutants had indistinguishable muscle 

degeneration at 8 dpf (Figure 1E1), they took different paths to get there. Mild dmd mutants had 

better muscle structure at 2 and 3dpf than severe mutants (compare Figure 1C2, red 

arrowheads point to a couple muscle segments with degeneration versus the near complete 

degeneration in severe mutants in Figure 1D1). This improved muscle structure was reflected in 

significantly higher mean gray values at 2 and 3 dpf compared to severe dmd mutants, but at 5 

and 6 dpf, severe dmd mutants had significantly higher mean gray values. These data indicate 

that dmd mild mutants undergo extensive degeneration for the first three days after 

disease onset followed by a period of slight regeneration. In contrast, muscle in severe dmd 

mutants regenerated throughout the study. These data clearly indicate that there is phenotypic 

variation in the zebrafish dmd mutants and that this variation can be quantified with 

birefringence.   

2.3.2 Longitudinal Studies Indicate that Muscle Function in dmd Mutants is Variable 

The above birefringence data indicate that general muscle structure at 8 dpf was not 

significantly different in mild versus severe dmd mutants. However, the path to muscle structure 

at 8 dpf differed between mild and severe mutants with mild mutants undergoing 

degeneration/slight regeneration and severe mutants regenerating. We thus asked whether 

muscle function, as assayed by swimming activity, was different in mild versus severe mutants. 

We analyzed motility with DanioVision and found that mild mutants swam a significantly greater 
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distance with significantly faster velocity than severe mutants at 3 and 5 dpf (Figure 15). 

Surprisingly, even though birefringence was similar between mild and severe mutants at 8 dpf, 

swimming activity remained significantly higher in mild dmd mutants at this time (Figure 1F). 

These results suggest that muscle structure early in development (2 dpf) correlates with function 

throughout development (8 dpf). Additionally, these data suggest that improving muscle 

structure may not coincide with improving function. 

 

Figure 1: Variation in the dmd mutant phenotype determines disease progression.  

(A) We created an experiment workflow to assess disease progression from 2 to 8 dpf. At 2 dpf, 

birefringence is used to separate dmd mutants from WT siblings. Zebrafish are placed in 
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individual wells of a 12-well plate and assigned a number, which is used to track individual 

zebrafish for the duration of the experiment. Each day, from 2 dpf to 8 dpf, birefringence images 

are taken. Birefringence (white) reflects normally organized muscle tissue. Loss of birefringence 

(grey to black) reflects areas of degeneration and myotomes with detached muscle fibers. Mean 

gray value is used to quantify birefringence and is presented as a percentage of WT sibling 

controls. Following birefringence imaging at 8 dpf, swimming activity is recorded using 

DanioVision. Total distance and mean velocity is calculated during the active (dark) periods. (B - 

D) Anterior left, dorsal top, side mounted. (B) Birefringence and bright field images of a WT 

sibling from 2 to 7 dpf. (C - D) At disease onset, zebrafish exhibit two levels of severity. (C) 

Birefringence and bright field images for a mild dmd mutant. Mild dmd mutants have mean gray 

values greater than 86% of WT siblings at 2 dpf. (D) Birefringence and bright field images for a 

severe dmd mutant. Severe dmd mutants have mean gray values less than 85.99% of WT 

siblings at 2 dpf. (E) Mild and severe dmd mutants exhibit variation in disease progression. (E1) 

Average mean gray values for WT siblings (black circles) do not change across time, remaining 

at 100%. However, mild dmd mutants (blue upward facing triangles) undergo extensive 

degeneration for the first three days followed by a period of slight regeneration. Conversely, 

severe dmd mutants (red downward facing triangles) regenerate throughout the study. (E2) 

Individual mean gray values for zebrafish presented in B - D highlight the vast degeneration that 

mild dmd mutants experience compared to the regeneration that occurs in severe dmd mutants. 

(F) Swimming activity is significantly different in mild versus severe dmd mutants. Total distance 

(F1) and mean velocity (F2) are significantly lower in severe dmd mutants compared to mild 

dmd mutants and WT siblings at 8 dpf. Each data point represents a single time point for an 

individual zebrafish. Each zebrafish has a total of 15 points. DanioVision data were analyzed 

using an ordinary one-way ANOVA with Tukey’s multiple comparisons test. *** p < 0.001, **** p 

< 0.0001.  
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2.4 Perspective 

The clinical presentation of muscular dystrophies is frequently variable: ranging from 

severe, congenital muscle weakness to mild, adult-onset limb girdle muscular dystrophies. 

Similarly, variability across individuals with the same disease-causing allele is common. This 

variability likely keeps clinicians from accurately informing patients as to how their disease will 

progress and/or respond to therapies. One roadblock to understanding the phenotypic spectrum 

of muscular dystrophies is that the basic biological mechanisms of variability in musculoskeletal 

development and disease are not well understood. This is especially true for DMD, which is one 

of the most studied types of muscular dystrophies, but still has no cure. The development of 

effective disease-modifying therapies that withstand the critical evaluation and exhaustive 

testing at the pre-clinical and clinical levels proves difficult. These difficulties likely arise from 

variation in disease severity, which is often not addressed in preliminary drug-screening studies 

due to the failure of identifying variation in these animal models. Additionally, due to the 

variation in both severity and disease progression in dmd mutants, it is possible that gene 

expression profiles may be different at these different stages, which could impact response to 

treatment. A preliminary study to unveil potential mechanisms for variation is addressed in 

Chapter 6.  

Recognizing that there are differences in muscle homeostasis between mild and severe 

dmd mutants, we chose to conduct future studies identically so that variables such as treatment 

duration, disease stage at time of treatment, and disease stage at time of evaluation do not 

change. We also chose to examine mild and severe dmd mutants separately to identify that 

observed changes are occurring simultaneously in both phenotypes. Further, the above study 

demonstrates that changes in muscle structure, whether beneficial or detrimental, are not 

always reflected in muscle function. That is, muscle regeneration may be evident but these 

regenerating fibers may not improve muscle function, which was observed in severe dmd 

mutants. Conversely, muscle degeneration may be evident but these degenerating fibers may 
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not worsen muscle function, which is evident in mild dmd mutants. Therefore, it is critical that 

our future studies addressed muscle health using a combinatorial approach rather than focusing 

on demonstrating improvements/detriments in structure versus function.   
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CHAPTER 3 

IMPACT OF INACTIVITY IN DMD MUTANT ZEBRAFISH 

 

3.1 Relevant Background 

In healthy individuals, prolonged inactivity stimulates muscle atrophy and hinders 

multiple components of overall health, especially muscular strength and endurance. Limitations 

in muscular strength and endurance lead to further inactivity, which leads to heightened muscle 

wasting and larger reductions in muscle strength and endurance. Ultimately, diminished muscle 

strength and endurance lead to persistent inactivity. However, even though muscle wasting and 

weakness are hallmarks of DMD, the impacts of inactivity on DMD disease progression are not 

entirely known. Of the three studies looking at the immediate effects of inactivity in mdx mice, 

meaning that the limb was immobilized until analyses began, two studies suggest that inactivity 

may prevent muscle damage that occurs as result of the absence of dystrophin [73,75], while 

the third study suggests that inactivity may increase susceptibility to this same damage [351]. 

No study to our knowledge examines how a prolonged period of inactivity, however this may be 

defined, followed by the resumption of normal activity affects disease progression in dystrophin-

deficient muscle. As individuals with DMD are being advised to refrain from activities beyond 

that of their daily living, it is possible that they may be entering the vicious cycle of muscle 

wasting and weakness seen in inactive, healthy individuals. The goal of this chapter is to 

evaluate the longitudinal effects of two inactivity paradigms on neuromuscular plasticity in dmd 

mutants.  

3.2 Experiment Overview 

For intermittent inactivity, zebrafish were placed in a low dose of tricaine (MS-222; 306 

µM in 1X ERM) overnight for 12 hours each day for three days beginning at disease onset (2, 3, 

and 4 dpf) (Figure 2A1). The total time that zebrafish were inactive was 36 hours. For extended 

inactivity, zebrafish were placed in the same dose of tricaine for 72 hours beginning at disease 
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onset (2, 3, and 4 dpf), and were removed from tricaine at the start of 5 dpf (Figure 2B1). 

Birefringence images were taken at disease onset, immediately prior to removal from tricaine at 

5 dpf, and three days following removal at 8 dpf. DanioVision was used to evaluate swim 

function in response to intermittent or extended inactivity, and was performed 4 hours and 3 

days following removal from tricaine (5 and 8 dpf, respectively). Following DanioVision, 

zebrafish were either fixed for further analyses of muscle health via immunostaining or followed 

daily for survival. Throughout the experiment, zebrafish were single-housed in individual wells of 

a 12-well plate with 3 mL of 1X ERM (or 3 mL of tricaine solution). A more detailed description 

of these methods is found in Appendix B.2 and B.3. 

3.3 Results 

3.3.1 Intermittent Inactivity Negatively Impacts Swimming Activity but no Effect on Structure or 

Survival 

Birefringence was used as a metric to assess changes in muscle structure across time. 

Inactive dmd mutants exhibit lower mean gray values beginning at 4 dpf compared to control 

dmd mutants but follow similar trend of regeneration from 5 to 8 dpf (Figure 2A4). We chose to 

look specifically at the change in mean gray value from 5 to 8 dpf as a measure of recovery 

from inactivity. These data indicate that three intermittent periods of inactivity did not affect 

muscle structure (Figure 2A6). We fixed and stained dmd mutants with phalloidin at the end of 

the experiment (8 dpf) to determine whether there were any dramatic changes in muscle fiber 

structure, specifically the percent of muscle segments with detachments. These analyses also 

indicated that intermittent inactivity did not have major effects on muscle fiber organization (data 

not shown). Interestingly, however, dmd mutants subjected to intermittent inactivity swam more 

slowly and covered less distance at 8 dpf (Figure 2A8 and A9). These data indicate that early 

intermittent inactivity can have negative impacts on swimming activity later in development. 

However, survival was not negatively impacted (Figure 2A10). 
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3.3.2 Extended Inactivity Improves Swimming but Decreases Muscle Structure and Lifespan 

In contrast to intermittent inactivity, extended inactivity from 2 dpf through the morning of 

5 dpf had deleterious impacts later in development. Immobilized larvae initially show improved 

muscle structure at 5dpf (compare Fig. 2B3a to Fig. 2B2a, and Fig. 2B3b to Fig. 2B2b, 

quantification in Fig. 2B4). However, this improvement was short lived. Specifically, there was a 

significant decline in birefringence of inactive dmd mutants 3 days after removal from tricaine 

(compare Figure 2B3 5 dpf to 8 dpf, quantified in Figure 2B4). These data indicate that while 

muscle structure was preserved during the inactive period, it became more susceptible to 

damage upon reinstatement of normal activity, which is indicated by the significant decrease in 

mean gray value from 5 to 8 dpf (Figure 2B6) and poor muscle fiber organization (Fig. 2B7d, red 

arrowheads denote short disorganized muscle segments, red arrow points to a degenerating 

fiber). Surprisingly, even though muscle structure was improved upon removal from tricaine, 

inactive dmd mutants swam a significantly lower total distance and at a significantly slower 

mean velocity compared to control dmd mutants 4 hours after removal from tricaine (Figure 15). 

However, after three days of recovery in ERM, swim function in inactive dmd mutants was 

significantly improved, and dmd mutants that were inactive for three days swam a significantly 

higher total distance and at a significantly faster mean velocity compared to dmd mutant 

controls (Figure 2B8 and B9). Strikingly, this improved swim function did not correlate with 

survival: although extended inactivity increased swimming at 8 dpf, survival was negatively 

impacted in inactive dmd mutants (Figure 2B10). Thus, despite overall neutral effects on muscle 

structure at 8 dpf and improved swimming at 8 dpf, extended inactivity decreases lifespan. 
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Figure 2: Inactivity in dmd mutants differentially affects muscle structure, function, and 

survival.  

(A1) Experiment overview for intermittent inactivity. Zebrafish are housed in a low dose of 

tricaine for 12 hours overnight (orange boxes) at 2, 3, and 4 dpf. Upon removal from tricaine at 5 

dpf, zebrafish are allowed to recover in ERM (white box) for the remainder of the experiment. 

(A2 - A3) Anterior left, dorsal top, side mounted. (A2) Birefringence images at 2, 5, and 8 dpf for 
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mild (A2a) and severe (A2b) dmd mutant controls housed in ERM. (A3) Birefringence images at 

2, 5, and 8 dpf for mild (A3a) and severe (A3b) dmd mutants housed in tricaine for 12 hours 

overnight for 3 nights. (A4) Average mean gray values for WT sibling controls (black circles) 

remain consistent across time. However, WT siblings that were inactive (orange circles) 

experience a decrease in mean gray values at 4, 5 and 6 dpf, but recover to WT sibling control 

values by 8 dpf. Conversely, dmd mutants that were inactive (orange squares) experience a 

decrease in mean gray values compared to dmd mutant controls (gray squares) beginning at 4 

dpf but do not recover to dmd control values at 8 dpf. (A5) Mild (blue upward facing triangles) 

and severe (red downward facing triangles) dmd mutants that were inactive (dashed lines) have 

lower mean gray values compared to their respective controls (solid lines) beginning at 4 dpf. 

Inactive mild dmd mutants experience a more dramatic decrease in mean gray values 

compared to mild control and inactive severe dmd mutants. (A6) Change in mean gray value 

from 5 to 8 dpf is not different in control versus inactive dmd mutants. (A7) Anterior left, dorsal 

top, side mounted. Scale bar is 50 micrometers. Phalloidin staining at 8 dpf suggests no change 

in muscle fiber structure following inactivity in dmd mutants (A7d) compared to dmd mutant 

controls (A7c). Total distance (A8) and mean velocity (A9) at 8 dpf are significantly lower in 

inactive dmd mutants compared to dmd mutant controls. Each data point represents a single 

time point for an individual zebrafish. Each zebrafish has a total of 15 points. (A10) Survival is 

not affected by intermittent inactivity. (B1) Experiment overview for extended inactivity. 

Zebrafish are housed in a low dose of tricaine (dark red box) for 72 hours beginning at 2 dpf. 

Upon removal from tricaine at 5 dpf, zebrafish recover in ERM (white box) for the remainder of 

the experiment. (B2) Birefringence images at 2, 5, and 8 dpf for mild (B2a) and severe (B2b) 

dmd mutant controls housed in ERM. (B3) Birefringence images at 2, 5, and 8 dpf for mild (B3a) 

and severe (B3b) dmd mutants housed in tricaine for 72 hours. (B4) Average mean gray values 

for WT sibling controls (black circles) remain consistent across time at 100%. However, WT 

siblings that were inactive (dark red circles) experience a dramatic decrease in mean gray value 
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beginning at 4 dpf and continuing through 7 dpf, but return to control values by 8 dpf. 

Conversely, dmd mutants that were inactive (dark red squares) have higher mean gray values 

at 4 and 5 dpf compared to dmd mutant controls (gray squares). However, upon return to ERM, 

inactive dmd mutants experience a decrease in mean gray values but regenerate to dmd mutant 

control values. (B5) Mild (blue upward facing triangles) and severe (red downward facing 

triangles) dmd mutants that were inactive (dashed lines) have higher mean gray values 

compared to control dmd mutants (solid lines) at 4 and 5 dpf. Inactive mild dmd mutants 

experience a more dramatic decrease in mean gray values compared to inactive severe dmd 

mutants at 6 dpf. (B6) Change in mean gray value from 5 to 8 dpf is significantly lower in 

inactive versus control dmd mutants. (B7) Anterior left, dorsal top, side mounted. Scale bar is 50 

micrometers. Phalloidin staining at 8 dpf suggests that inactivity negatively affects muscle 

structure in dmd mutants (B7d) compared to dmd mutant controls (B7c). Total distance (B8) and 

mean velocity (B9) at 8 dpf are significantly higher in inactive dmd mutants compared to dmd 

mutant controls. Each data point represents a single time point for an individual zebrafish. Each 

zebrafish has a total of 15 points. (B10) Survival is negatively affected by extended inactivity. 

Birefringence and DanioVision data were analyzed using two-sided t tests. Survival data were 

analyzed using a Mantel-Cox test. *** p < 0.001, **** p < 0.0001. 

 

3.3.3 Extended Inactivity Diminishes dmd Muscle Resilience to Neuromuscular Electrical 

Stimulation 

The above data confirm previous data that inactivity improves muscle structure in dmd 

mutants while they remain inactive [377]. However, our data show that this beneficial effect 

does not perdure. These results raise the question of why the seemingly improved muscle 

structure is not stable and immediately affects muscle function upon reinstatement of normal 

activity at 5 dpf. To answer this question we turned to NMES, which was previously adapted for 

use in zebrafish larvae [391]. NMES uses trains of electrical pulses to evoke muscle 
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contractions and thus allows comparison of muscle structure in multiple larvae subjected to the 

same stimulus. Specifically, NMES would allow us to determine whether extended inactivity (1) 

obscured latent defects in muscle resilience because the muscle was not being used and thus 

did not degenerate, or (2) improved muscle fiber resilience but the resilience was not 

maintained for the next few days. In order to distinguish between these possibilities, we asked 

whether inactive larvae were uniquely susceptible to activity (NMES) immediately upon removal 

from tricaine. 

For this experiment, dmd mutants were placed in tricaine for three days. In the morning 

of 5 dpf, a birefringence image was taken as a baseline measure of muscle structure (see 

Figure 3A). Next, larvae were subjected to a session of NMES using one of two stimulation 

paradigms. These stimulation paradigms were defined as high frequency, low voltage (NMES 

Paradigm 1), which requires the muscle to contract continuously but very subtly, or low 

frequency, high voltage (NMES Paradigm 2), which requires the muscle to contract more 

forcefully but less frequently. Birefringence images were taken immediately following this NMES 

session. A detailed description of how NMES was performed is provided in Appendix B.5. 

Finally, larvae resumed normal activity in 1X ERM for three days similar to the above 

experiment. At the end of this recovery period (8 dpf), birefringence images were taken and 

zebrafish were fixed for further structural analyses (see Figure 3A for experiment overview). 

Control dmd mutants, which were removed from tricaine and allowed to swim while 

experimental larvae were receiving NMES, sometimes showed increased degeneration just 

after swimming (Fig. 3B2b after) compared to immediately prior to removal from tricaine (Fig. 

3B2a before). However, at a population level although there was a slight trend that inactive 

larvae showed more damage, there was not a significant increase in degeneration (Fig. 3B3). In 

contrast, both NMES paradigms significantly worsened mean gray values immediately after 

stimulation (Fig. 3C2, D2, yellow arrows denote new areas of degeneration after NMES, Fig. C3 
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and D3). Larvae that underwent three days of inactivity were unable to recover from this single 

session of NMES (Figure), and exhibited more fiber detachments, especially following NMES 

Paradigm 2 (Figure 3H2). More importantly, though, dmd mutants that underwent three days of 

inactivity were unable to recover from this single session of NMES. Specifically, dmd mutants 

exhibited a negative change in mean gray value from the birefringence measurement after 

NMES to three days following NMES, indicating extensive muscle deterioration (data not 

shown). Further, these larvae exhibited more fiber detachments especially following NMES 

Paradigm 2 (Figure 3H2). Therefore, these data suggest that inactivity for an extended period of 

time may cause dmd muscle to become more susceptible to contraction-induced injury.  

 

Figure 3: Extended inactivity increases susceptibility to injury in dmd mutants.  

(A) Experiment overview. Zebrafish are housed in a low dose of tricaine for 72 hours (dark red 

box) beginning at 2 dpf. At 5 dpf, zebrafish receive a single session of NMES (either Paradigm 1 
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or Paradigm 2) and are then allowed to recover in ERM (white box) for the remainder of the 

experiment. (B, C, D) Anterior left, dorsal top, side mounted birefringence images. (B1) 

Birefringence for the first (a) and second (b) imaging session, and at 6 (c) and 8 (d) dpf for a 

dmd mutant control that did not receive NMES. (B1e) Individual mean gray values for dmd 

mutant controls for the first and second imaging session. (B2) Birefringence for the first (a) and 

second (b) imaging session, and at 6 (c) and 8 (d) dpf for an inactive dmd mutant that did not 

receive NMES. (B2e) Individual mean gray values for inactive dmd mutants for the first and 

second imaging sessions. (B3) Change in mean gray values between the first and second 

imaging session are lower in the inactive dmd mutants, indicating that upon removal from 

tricaine, muscle immediately begins degenerating. (C1) Birefringence before (a) and after (b) 

NMES Paradigm 1, and at 6 (c) and 8 (d) dpf for a dmd mutant control. (C1e) Individual mean 

gray values for dmd mutant controls before and after NMES Paradigm 1. (C2) Birefringence 

before (a) and after (b) NMES Paradigm 1, and at 6 (c) and 8 (d) dpf for an inactive dmd mutant. 

(C2e) Individual mean gray values for inactive dmd mutants before and after NMES Paradigm 1. 

(C3) Change in mean gray values before versus after NMES Paradigm 1 are significantly lower 

in inactive dmd mutants, indicating dmd muscle fibers are less resilient following extended 

inactivity. (D1) Birefringence before (a) and after (b) NMES Paradigm 2, and at 6 (c) and 8 (d) 

dpf for a dmd mutant control. (D1e) Individual mean gray values for dmd mutant controls before 

and after stimulation. (D2) Birefringence before (a) and after (b) NMES Paradigm 2, and at 6 (c) 

and 8 (d) dpf for an inactive dmd mutant. (D2e) Individual mean gray values for inactive dmd 

mutants before and after NMES Paradigm 2. (D3) Change in mean gray values before versus 

after NMES Paradigm 2 are significantly lower in inactive dmd mutants, further indicating that 

muscle fibers are less resilient after inactivity. (E-G) Anterior left, dorsal top, side mounted 

phalloidin staining. Scale bar is 50 micrometers. A single session of NMES Paradigm 1 

negatively affects muscle structure in inactive dmd mutants (F) compared to inactive dmd 

mutants that did not receive stimulation (E). Similarly, a single session of NMES Paradigm 2 
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negatively affects muscle structure in inactive dmd mutants by increasing the number of visibly 

detached fibers (G) compared to inactive dmd mutant controls. Each data point represents a 

single zebrafish. Birefringence data were analyzed using two-sided t tests. * p < 0.05, ** p < 

0.01. 

3.4 Perspective 

Step activity patterns from individuals with DMD indicate that activity levels are 

extremely low and infrequent in the years leading up to wheelchair dependency. This loss in 

activity is addressed as a clear consequence of muscle wasting in the absence of dystrophin. 

Based on the above data, it is critical that the consequences of prolonged reductions in activity 

are evaluated in human patients, especially in the realm of muscle resilience. This is especially 

a major concern for those individuals who participate in physical therapy or aquatic therapy 

programs on non-consecutive days throughout the week or sporadically throughout the month, 

where there may be large periods of reduced activity followed by a short, more intense session 

of activity. 

In terms of neuromuscular plasticity in diseased muscle, these studies suggest that dmd 

muscle exhibits a more delicate, intricate equilibrium with more factors at play compared to 

healthy muscle. In healthy muscle we see improvements in structure correspond with 

improvements in function and these functional improvements prolong survival. Similarly, the 

consequences of muscle structure breakdown are decreases in function and reduced survival. 

Therefore, neuromuscular plasticity is linear and the consequences of change are easily 

predicted. However, based on the above data, neuromuscular plasticity in dmd muscle is not 

linear. That is, muscle structure does not predict function and function does not predict survival. 

There are more factors at play, and we need to identify these factors in order to better 

understand disease progression and elucidate mechanistic pathways that target improvements 

in structure, function, and survival. To begin to elucidate these mechanisms, it is important to 

ask what are the underlying mechanisms protecting (or preserving) muscle structure in dmd 
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muscle during extended inactivity but simultaneously breaking down muscle in healthy wild-type 

siblings? What mechanisms occur immediately upon return to ERM and normal activity, and 

how do these influence improvements in structure but reduced function? A more in-depth 

discussion of these questions is provided in Chapter 6 as inactivity and activity are discussed 

together.  
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CHAPTER 4 

NMES AS A MODEL OF NEUROMUSCULAR PLASTICITY IN DMD MUTANT ZEBRAFISH 

 

4.1 Relevant Background 

Knowing that extended inactivity negatively impacts muscle health and survival in dmd 

mutants, we next asked whether there is there a better recommendation for care as researchers 

continue searching for a cure. Resistance training is an excellent approach to combatting 

muscle wasting and weakness in healthy individuals. Using zebrafish larvae as a model for 

lifting weights is not feasible, so we asked whether we could use NMES as an alternate means 

to stimulate muscle activity and combat muscle wasting and weakness in dmd mutants.  

Numerous studies have demonstrated that skeletal muscle fibers are highly influenced 

by the activity pattern imposed upon them, whether via the innervating neuron or electrical 

stimulation [392]. Neuronal activity plays a vital role in determining both the biochemical and 

physiological characteristics of individual skeletal muscles and their muscle fibers [393]. NMES 

was introduced in the clinical setting to maintain and preserve neuromuscular function during 

disuse or the aging process, to restore neuromuscular function after disuse, or to enhance 

neuromuscular function in able-bodied individuals, especially athletes [394–409]. NMES delivers 

a series of waveforms of electrical current that is characterized by frequency, amplitude, and 

pulse width (or pulse duration) [410]. Frequency defines the rate at which the pulses are 

delivered and determines the pattern of temporal summation [410]. Both amplitude and pulse 

width describe how much voltage (or current) and for how long the pulse is being delivered and 

determines the number of muscle fibers that are activated [410]. These three parameters dictate 

the strength of the muscle contraction and the amount of force that is generated. Specifically, by 

increasing the pulse duration or the amplitude, the amount of muscle force generated will be 

greater [410]. The main advantage of NMES is its ability to activate muscle fibers, regardless of 

their type, without requiring high-effort voluntary force generation [403,411].  
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4.1.1 NMES in DMD 

Guilluame Benjamin Amand Duchenne, the French neurologist who first described DMD, 

suggested NMES as a potential therapy for dystrophic muscle [412]. Immature muscle [413] and 

prolonged contraction and relaxation times [413–416] are characteristic features observed in 

individuals with DMD. Therefore, it was proposed that super-imposing slow frequency electrical 

stimulation on the muscles would initiate maturation of existing muscle fibers and support newly 

regenerated muscle fibers [417,418], and ultimately delay disease severity and progression. 

However, only a few studies have examined the impact of NMES on muscle strength and 

function in both humans and the mouse model of DMD. 

In 14 boys with DMD, ages 5 to 12 years old, the TA muscle was stimulated 

(contralateral leg served as control) at 5 to 8 Hz continuously or intermittently (1.5 seconds on, 

1.5 seconds off) for 1 hour each session with 3 sessions per day for 7 to 11 weeks [309]. 

Following the stimulation period, older boys exhibited no significant change in maximum 

voluntary contraction, but younger boys showed a mean increase of 47%. Notably, the 

stimulated muscles in the younger children were significantly stronger one month after 

stimulation was stopped. However, during a 6 month follow up, significant declines in physical 

characteristics and functional ability were evident. The authors conclude that DMD muscles 

respond positively to electrical stimulation if it is applied early in the disease. In a follow up 

study, Scott and colleagues (1990) [393] investigated the long-term effects of electrical 

stimulation on the quadriceps femoris muscle. Fifteen boys with DMD, ages 2 to 13 years old, 

received 3 hours of electrical stimulation 6 days per week for 7 to 11 weeks. After 10 weeks of 

stimulation, stimulated muscles exhibited a small but significant increase in overall strength but 

no functional improvements were observed. When stimulation was applied to the TA muscles 

intermittently (6 seconds on, 6 seconds off) for 1 hour twice a day with a frequency of 8 Hz in 7 

boys with DMD and 2 boys with BMD between the ages of 6 and 10 years old, 4 participants 

exhibited no significant changes after 3 months and stopped the program while 5 participants 
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exhibited favorable changes and continued the program for 9 months [419]. These favorable 

changes included greater torque measurements of the stimulated muscles. The author 

concludes that electrical stimulation cannot prevent muscle degeneration but may slow its 

progression. In a follow-up study, similar results were found, including an average increase in 

torque of 17.1% on the stimulated leg and a decrease of 3.4% on the non-stimulated leg. 

Interestingly, the largest benefits were observed in the youngest participants [420].  

Similarly, in the mdx model, NMES may exert beneficial effects on stimulated muscles. 

In mdx mice, ages 3 to 5 months, electrical stimulation was applied through implanted 

electrodes on either side of the lateral popliteal nerve of the hindlimb at 10 Hz for 30 minutes, 6 

times per day for 9 and 28 days. Stimulation visibly improved ankle dorsiflexion and gait [421]. 

These improvements were accompanied by higher maximum tension development in the 

stimulated TA and EDL muscles, an increase in the number of muscle fibers in the stimulated 

EDL muscles, and an increase in the intensity of SDH staining in the stimulated muscles [421]. 

Vrbova & Ward (1981) [422] applied the same methods and found similar improvements in 

tension development of the TA muscles and increased fatigue resistance in the EDL muscles. 

However, the authors noticed that these functional improvements were only observed in 

severely affected muscles [422], contradicting what was observed in humans. More importantly, 

in a study examining the short- and long-term effects of electrical stimulation, these positive 

benefits disappeared once the NMES program ended. Specifically, four weeks after the 

completion of electrical stimulation, the maximum force generated by TA muscles was similar to 

the initial forces generated by the muscles of the contralateral side, indicating that any force 

output that was gained during the program was no longer present [423]. However, this was not 

observed in the EDL muscles for these muscles displayed significantly greater force compared 

to the unstimulated, contralateral side [423], suggesting that muscles may respond differently to 

stimulation. Ultimately, the mechanisms by which electrical stimulation may benefit dystrophic 

muscle are unknown, but authors suggest that it may slow degeneration of the existing muscle 
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fibers, support the growth of regenerating fibers, and develop and maintain characteristics of the 

slow fiber phenotype.  

Given these beneficial effects observed in humans and mdx mice, we asked whether 

NMES could benefit muscle in dmd mutants, especially in comparison to inactivity. There are 

four types of strength training - endurance, hypertrophy, strength and power - and each are 

designed to elicit specific responses in the muscle by altering the number of repetitions 

performed and the load, or resistance, used. We designed four unique NMES paradigms 

ranging from high frequency/low voltage pulse trains to lower frequency/higher voltage pulse 

trains (Figure 4C and D). To easily differentiate these paradigms from each other, and because 

they were conceptually based on strength training paradigms, we named these paradigms 

endurance-NMES (eNMES), hypertrophy-NMES (hNMES), strength-NMES (sNMES), and 

power-NMES (pNMES). The goal for this chapter is to understand how dystrophic muscle 

responds to these four NMES paradigms at the structural and functional levels.  

4.2 Experiment Overview 

To assess the impact of each NMES program without introducing confounding variables, 

we created a training program, similar to the experimental workflow used to study the impact of 

inactivity on dmd muscle. Specifically, this training program was divided into two periods: the 

training period and the recovery period (Figure 5A). During the training period zebrafish 

completed three sessions of NMES, each session lasting one minute, on three consecutive 

days (2, 3, and 4 dpf). Following these three training days, zebrafish entered the recovery 

period (5, 6, 7 and 8 dpf). A complete protocol for how NMES was performed is provided in 

Appendix B.5. Throughout the training program, birefringence was used to assess muscle 

structure while DanioVision was used to measure swim function. Terminal outcome measures 

were performed at the conclusion of the recovery period, including various immunostaining to 

look at components of muscle health. The recovery period was also extended to track survival. 

Therefore, only the NMES paradigms changed during these studies. 
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4.3 Results    

4.3.1 NMES Does Not Result in Immediate Damage to the Sarcolemma 

Our first question was whether these four NMES paradigms elicit unique tail bend 

patterns that vary in how many times the tail bends as well as how hard it bends. As would be 

expected, eNMES with high frequency/low voltage pulse trains elicited a fast but subtle tail beat. 

Conversely, with pNMES, the tail beat infrequently but bent to a much greater degree. Next, we 

next asked if our NMES paradigms result in dramatic damage to the sarcolemma. As mentioned 

previously, one of the major reasons why strength training is not recommended for individuals 

with DMD is due to the fragility of the sarcolemma and its susceptibility to contraction-induced 

damage. We did this by asking whether increased Evans Blue Dye (EBD) was observed in 

muscle after one session of NMES. EBD is a membrane impermeable dye commonly used for 

examining sarcolemmal damage in skeletal muscle fibers. If the sarcolemma is damaged during 

NMES, it will become permeable to EBD and its accumulation can be easily quantified. At 2 dpf, 

EBD was injected into the peri-cardial space at disease onset and allowed to circulate for 4 

hours (protocol in Appendix B.4). Then, images of EBD in the zebrafish musculature were taken 

immediately prior to and after one session of NMES (Figure 4A). Birefringence and EBD images 

of the same embryos before and after NMES are shown in Figure 4. The yellow stars denote the 

same position in the embryo before and after stimulation. Mean gray values were calculated to 

determine the amount of EBD entry into the muscle fibers. Both wild-type and dmd mutant 

control larvae are similar when imaged prior to and after the experimental larvae received 

NMES (Figure 4E, F, K1, and K2). None of the NMES paradigms consistently caused a 

dramatic change in either birefringence (data not shown) or EBD infiltration after one session 

(Figure 4G-K). These results indicate that the four NMES paradigms do not cause immediate 

dramatic damage to the sarcolemma.  
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Figure 4: Four NMES paradigms do not result in immediate damage to the sarcolemma. 

(A) Experiment overview. At 2 dpf, WT siblings and dmd mutants were injected with EBD. Four 

hours later, zebrafish were imaged for birefringence and EBD before and after a single session 

of NMES. (B) For NMES, zebrafish are placed in a 3D printed gym with their heads towards the 

positive electrode and tails towards the negative electrode. (C - D) NMES delivers a series of 

square wave pulses that vary in frequency and voltage. We named these paradigms after 

weightlifting regimes. (E-J) Anterior left, dorsal top, side mounted birefringence and EBD 

fluorescent images. Yellow asterisks denote the same position in embryos before and after 

NMES. (E) WT sibling control exhibits healthy muscle segments (E1, E2) and no dye entry in 

the muscle (E1’, E2’) during the first and second imaging session. (F) dmd mutant control has 
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significant areas of degenerated muscle (F1) and dye entry (F1’) but no new areas of 

degeneration or dye entry during the second imaging session (F2, F2’). (G-J) Similar to the dmd 

mutant control, dmd mutants that receive NMES have significant areas of degenerated muscle 

and dye entry prior to NMES but no new areas of degeneration or dye entry during following 

NMES. (K) Quantification of EBD during the first and second imaging session. 

 

4.3.2 Different NMES Differentially Impacts dmd Muscle Structure, Function, and Survival  

During our initial assessment of each NMES paradigm, we took birefringence images of 

each zebrafish prior to the first NMES session at 2 dpf, 24 hours after the third NMES session at 

5 dpf, and four days after this third session at 8 dpf, and calculated mean gray value to assess 

the extent of degeneration/regeneration. As was done for inactivity, we focused on the change 

in mean gray value from 5 to 8 dpf because that change represents how the muscle responds to 

and recovers from 3 sessions of NMES. Wild-type larvae with all 4 NMES paradigms were 

unaffected (Figure 5B1, C1, D1, E1 and data not shown). Control dmd larvae for each NMES 

paradigm were similar to larvae shown in Figure 1, with mild larvae degenerating between 2 and 

5 dpf (Fig. 5B2,C2,D2,E2, red arrowheads denote degeneration from the previous time point, 

green arrowheads denote regeneration from the previous time point) and severe larvae 

regenerating between 2 and 5 dpf (Fig. 5 B3,C3,D3,E3). Between 5 and 8 dpf, as shown in 

Figure 1, birefringence levels for both mild and severe larvae trend towards slight improvement 

(Fig. 5B6, C6, D6, E6). The eNMES and pNMES paradigms improved muscle structure in dmd 

mutants. pNMES resulted in a slight but significant increase in birefringence compared to 

controls (Fig. 5B6, note also green arrows in Fig. 5B4 and 5B5). eNMES also increased 

regeneration between 5 and 8 dpf (Fig. 5E6, note green arrows in Fig. 5E4, E5). In contrast, 

dmd mutants that underwent sNMES exhibited significantly lower changes in mean gray values 

compared to control dmd mutants (Figure 5C6) while hNMES trended towards lowering 

birefringence (Figure 5D6). These data indicate that, at least at a gross level, different NMES 
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paradigms do have different effects on muscle structure in zebrafish larvae. To further look at 

the extent of deterioration in our NMES groups, we calculated the percentage of fish that de-

proved, meaning the fish exhibited a negative change in birefringence from 5 to 8 dpf (Figure 

16). These data further indicate that the percent of dmd mutants in the endurance and power 

NMES groups deteriorating between 5 and 8 dpf is much lower than that of control dmd 

mutants. Conversely, sNMES and inactivity have higher percentages of dmd mutants that de-

prove and undergo muscle deterioration during this 5 to 8 dpf period.  

 

Figure 5: Birefringence is used as an initial measure of muscle structure following NMES.  

(A) Experiment overview and calculation of change in mean gray value from 5 to 8 dpf. At 2 dpf, 

birefringence images are taken followed by the first session of NMES. At 3 and 4 dpf, zebrafish 
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undergo the second and third sessions of NMES, respectively. Birefringence images are taken 

at 5 and 8 dpf. The training program is divided into the training period (2 to 4 dpf) and the 

recovery period (5 to 8 dpf). (B - E) Anterior left, dorsal top, side mounted birefringence images 

for WT sibling controls (B1 - E1), mild (B2 - E2) and severe (B3 - E3) dmd mutant controls, and 

mild and severe dmd mutants that received pNMES (B4 and B5), sNMES (C4 and C5), hNMES 

(D4 and D5), or eNMES (E4 and E5). (B6, C6, D6, and E6) Change in mean gray values from 5 

dpf to 8 dpf represent how the muscle responds to and recovers from 3 sessions of NMES. 

Positive changes indicate improvements in muscle structure while negative changes indicate 

deterioration in muscle structure. Red arrowheads denote degeneration from the previous point, 

green arrowheads denote regeneration from the previous time point. Power (B6, maroon 

squares) and endurance (E6, blue squares) NMES significantly improve muscle structure in 

dmd mutants compared to dmd mutant controls (gray circles). Strength (C6, purple squares) 

NMES significantly worsens muscle structure in dmd mutants while hypertrophy NMES (D6, 

green squares) trends to decrease muscle structure compared to dmd mutant controls. Each 

data point represents a single zebrafish. Birefringence data were analyzed using two-sided t 

tests. * < 0.05, ** p < 0.01. 

 

To gain a better understanding of the impacts of NMES on muscle structure, we stained 

zebrafish for phalloidin, which binds to f actin, allowing individual muscle fibers to be visualized. 

Muscle fibers in WT zebrafish are highly organized and linear (Figure 6A). In contrast, many 

fibers in dmd mutants are disorganized while others are compressed and/or detached from their 

extracellular matrix (Figure 6B). We quantified the percentage of muscle segments with fiber 

detachments and found that, similar to the results observed with birefringence, eNMES and 

pNMES resulted in fewer fiber detachments compared to control dmd mutants (Figure 6C2 and 

F2). Taken together, the above data indicate that eNMES and pNMES improve muscle structure 

in dmd larvae. 
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Figure 6: Phalloidin staining provides more details on how dmd muscle responds to 

NMES at the structural level.  

Phalloidin staining for F-actin at 8 dpf allows for visualization of individual muscle fibers and the 

ability to count detached fibers in dmd mutants. Anterior left, dorsal top, side mounted. Scale 

bar is 50 micrometers. (A) Representative image of WT sibling demonstrates organized muscle 

fibers with well-defined myotome boundaries. (B) Representative image of dmd mutants 

demonstrates disorganized, wavy muscle fibers with poorly defined myotome boundaries and 

empty space between individual muscle fibers. (C1) Representative image of dmd mutant that 

received pNMES demonstrates less muscle fiber waviness, lack of empty space between 

muscle fibers but visible detached fibers. (D1) Representative image of dmd mutant that 

received sNMES demonstrates massive deterioration of muscle fiber structure, disorganized 

myotomes with poorly defined boundaries. (E1) Representative image of dmd mutant that 

received hNMES demonstrates improved muscle fiber organization with more defined myotome 

boundaries but visibly detached muscle fibers and empty space between fibers. (F1) 

Representative image of dmd mutant that received eNMES demonstrates healthy myotomes 

with clearly defined boundaries, organized muscle fibers with very few wavy fibers, and lack of 
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empty space between fibers. Quantification of the percentage of muscle segments with 

detachments indicates that pNMES (C2) and eNMES (F2) significantly reduce fiber 

detachments in dmd mutants. Strength NMES (D2) and hNMES (E2) do not impact the percent 

of muscle segments with detachments. Each data point represents a single fish. A muscle 

segment is defined as half of a myotome. Muscle detachment data were analyzed using two-

sided t tests.* p < 0.05, ** p < 0.01. 

 

We hypothesized that improved muscle structure would correlate with improved function. 

We tested this hypothesis by assessing swim activity as a gross readout of muscle function. 

Swim activity was tested using DanioVision at 8 dpf. As predicted, eNMES resulted in increased 

distance and mean velocity compared to control dmd larvae (Figure 7A4 and B4). Surprisingly, 

though, pNMES negatively affected swimming activity (Figure 7A1 and B1). Similarly, sNMES 

significantly reduced total distance and mean velocity (Figure 7A2 and B2) while hNMES did not 

affect these two measures (Figure 7A3 and B3).  

Because improvements in muscle structure in response to different NMES paradigms 

did not strictly correlate to changes in swimming, we asked whether neuromuscular junction 

(NMJ) morphology changed with NMES. We analyzed NMJ morphology by using the SV2 

antibody to label presynaptic structures and alpha-bungarotoxin to stain postsynaptic AChR. We 

focused on analyzing fast-twitch muscle fiber innervation, which is called distributed innervation 

(the rich network of NMJs in between the chevron shaped slow-twitch muscle innervation at the 

myotendinous junctions (MTJs), Figure 7C1).  
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Figure 7: NMJ abundance does not correlate with swim function.  

DanioVision was used to assess the impact of NMES on total distance (A) and (B) mean 

velocity. Measurements were made at 8 dpf. (A1, B1) dmd mutants that completed pNMES 

exhibited significant reductions in total distance and mean velocity compared to dmd mutants in 

the control group. (A2, B2) Strength NMES also negatively affected swimming activity in dmd 



 91 

mutants compared to control dmd mutants. (A3, B3) No change in total distance or mean 

velocity is observed following hNMES. (A4, B4) dmd mutants that completed eNMES swam a 

significantly greater total distance and at a significantly faster mean velocity compared to dmd 

mutants in the control group. Each data point represents a single time point for an individual 

zebrafish. Each zebrafish has a total of 15 points. (C) anti-SV2 (cyan) and a-Bungarotoxin 

(AChR; magenta) antibodies are used to visualize the pre- and post-synaptic components of the 

NMJ. (C1) Representative image of WT sibling has muscle segments that are vastly innervated 

by both SV2 and AChR. (C2) Representative image of dmd mutant demonstrates a visible 

reduction in innervation, with relatively large portions of the muscle segments lacking 

innervation, especially by SV2. (C3, C4, C5, and C6) Representative images of dmd mutants 

that completed three sessions of pNMES, sNMES, hNMES, or eNMES demonstrate visible 

increases in innervation by both SV2 and AChR. The number of NMJs (skeleton number) within 

the muscle segments is significantly increased in dmd mutants compared to both WT siblings 

and dmd mutant controls following sNMES (C4’), hNMES (C5’’), and eNMES (C6’). Skeleton 

length is also increased in dmd mutants that completed three sessions of hNMES (C5’’) and 

eNMES (C6’’) compared to both WT siblings and dmd mutant controls. (C3’, C3’’) Power NMES 

did not change the number or length of skeletons compared to dmd mutant controls. 

DanioVision data were analyzed using two-sided t tests. NMJ data were analyzed using either 

an ordinary one-way ANOVA with Tukey’s multiple comparisons test or a Kruskal-Wallis test 

with Dunn’s multiple-comparison test.** p < 0.01, *** p < 0.001, **** p < 0.0001. 

 

Lastly, survival was tracked in dmd mutants treated with NMES. Survival checks were 

performed twice daily. Three sessions of eNMES, sNMES, and pNMES slightly but significantly 

extended the median age of survival for dmd mutants compared to unstimulated dmd mutants 

(Figure 8A, B, D); with eNMES having the largest beneficial effect. Three sessions of hNMES, 

however, did not affect median survival age (Figure 8C). Taken together, these data indicate 
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that different NMES paradigms elicit different neuromuscular responses. Furthermore, out of the 

four NMES paradigms we tested, only eNMES improves neuromuscular structure, swimming, 

and lifespan. Ultimately, these data further support the need to examine multiple components of 

muscle health in order to understand how an intervention affects disease severity and 

progression. More importantly, though, these data suggest that there are additional mechanisms 

underlying neuromuscular plasticity in dmd mutants that are not captured by changes in muscle 

structure and function.  

 

 
Figure 8: Changes in muscle health and swim activity do not predict survival. 

Survival was tracked following completion of the three NMES sessions. Survival was 

significantly improved in dmd mutants that completed power (C1), strength (C2), and endurance 

(C4) NMES. (C3) Hypertrophy NMES had no effect on survival in dmd mutants. DanioVision 

data were analyzed using two-sided t tests. Survival data were analyzed using a Mantel-Cox 

test. * p < 0.05, *** p < 0.001, **** p < 0.0001. 

 

4.4 Perspective 

Currently, individuals with DMD are advised to refrain from resistance training since the 

loss of dystrophin causes the DGC to become unstable and the integrity of the sarcolemma to 

be weakened. This long-standing consensus stems from the hypothesis that muscle fiber 

degeneration would be initiated sooner and greatly accelerated since the magnitude of tensile 

forces experienced by the sarcolemma would be increased. From the data presented in the 
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Chapter 2, dmd mutants exposed to extended periods of inactivity experience negative 

consequences on disease progression, especially regarding muscle structure and survival. 

Therefore, this limited understanding of how resistance training affects the structural integrity of 

dystrophic muscle may actually be accelerating disease progression. Using NMES as a 

mechanism to emulate the four types of resistance training, we found that these four NMES 

paradigms do not result in immediate damage the sarcolemma nor negatively affect survival, 

suggesting that NMES may be a better recommendation for care. However, these four NMES 

paradigms differentially affect muscle structure and function, supporting our idea that 

neuromuscular plasticity is a delicate balance between numerous components that may not be 

reflected in muscle fiber structure.    

Our understanding of neuromuscular plasticity in healthy muscle encompasses this idea 

that improvements in structure are likely to lead to improvements in muscle function. Thus, if 

muscle structure becomes compromised, it will likely lead to compromised muscle function. 

However, in dmd mutants, the above data suggest that neuromuscular plasticity may not share 

this same relationship. Previous studies often expect improvements in structural components to 

translate into improvements in functional components but, based on our initial investigations 

with inactivity and NMES, this is not the case. Collectively, our experiments suggest that dmd 

muscle exhibits a delicate, intricate equilibrium with several factors influencing muscle structure, 

swimming activity and survival. Therefore, we next asked what are these additional factors? 

What additional components of muscle and organism health are at play in defining 

improvements in function and survival? To begin to answer these questions, we examined the 

effects of eNMES in more detail since this paradigm positively improved all three outcome 

measures.  
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CHAPTER 5 

MECHANISMS MEDIATING IMPROVEMENT FOLLOWING ENDURANCE NMES IN DMD 

MUTANT ZEBRAFISH 

 

5.1 Relevant Background 

While previous studies have found positive benefits of NMES on dystrophic muscle in 

humans and in mdx mice, the cellular and molecular mechanisms underlying these 

improvements are poorly understood. In muscle atrophy studies, NMES is capable of preventing 

decreases in muscle mass and muscle fiber cross-sectional area, and it is suggested that these 

improvements are due to the absence of the typical slow to fast heavy chain isoform 

transitioning observed with muscle atrophy as well as the decrease in expression of atrophy-

related genes [424]. In aging studies, NMES significantly improved functional tests and 

increased the diameter of fast muscle fibers, which may be driven by an upregulation in markers 

for satellite cell activation (myogenin, miR-206 and miR-1), muscle growth (IGF-1), and cell 

adhesion (collagen I, III, and VI), but, more importantly, the down-regulation of markers for 

atrophy-related ubiquitin ligases (MuRF-1) [425]. Lastly, in active versus sedentary males, 8 

weeks of NMES training (3 sessions per week) significantly increased maximum voluntary 

contraction force, neural activation, and muscle fiber cross-sectional area for both slow and fast 

muscle fibers, which was likely achieved through enhanced gene and protein expression 

patterns indicative of both resistance and endurance training, including oxidative and glycolytic 

metabolism, antioxidant defense systems, and myofibrillar proteins [403,426]. Further, NMES 

demonstrated profound effects on elements of the contractile apparatus, excitation-contraction 

coupling machinery, ion homeostasis, metabolism, and the NMJ [427,428]. The goal for this 

chapter is to dive deeper into understanding the mechanisms that underly the improvements in 

muscle structure, function and survival following eNMES. 
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5.2 Experiment Overview 

We used a multi-discipline approach to understand the basic biology of neuromuscular 

plasticity observed in dmd mutants following eNMES. We leveraged the unparalleled imaging 

capabilities of the zebrafish larval model to shed light on the structural mechanisms that may 

lead to the increased birefringence and decreased muscle detachments following eNMES. In 

most zebrafish studies, muscle detachments are counted as a method to quantify changes in 

muscle health. When we quantified the percentage of muscle segments with detachments, we 

observed that eNMES significantly reduced this percentage in dmd mutants (Figure 6F2). While 

these data suggest that muscle fiber health is improved, we elected to capture a more detailed 

assessment of muscle fiber organization after noticing that while some muscle segments did not 

have visibly detached fibers, these segments contained disorganized muscle fibers with a 

characteristic ‘waviness’. Therefore, we elected to use machine learning and trained the 

computer to identify, pixel-by-pixel, ‘healthy’ versus ‘sick’ with 97% accuracy. Next, we asked 

the computer to identify the percentage of healthy muscle in the same phalloidin images in 

which fiber detachments were counted on. A detailed description of the methodology used for 

machine learning is provided in Appendix B.9.  

We used second harmonic generation (SHG) imaging as a label-free mechanism to 

visualize sarcomeres at 8 dpf. SHG is a nonlinear optical microscopy technique that captures 

highly polarizable matter in a non-centrosymmetric molecular organization (Plotnikov et al. 

2005). One such structure is the rod domain of myosin that constructs the sarcomere. A detailed 

description on how zebrafish were prepared for SHG imaging is provided in Appendix B.8.  

We also utilized two types of time-lapse analyses, the taco time-lapse and the 

longitudinal time-lapse, to follow the extent of degeneration/regeneration occurring in each dmd 

mutant as well as the health of their muscle nuclei during the training and recovery periods. For 

these experiments we used transgenic 3MuscleGlow dmd mutants (sapjeta222a; myog:H2B-

mRFP; mylpfa:lyn-Cyan; smyhc1:EGFP) to visualize fast and slow muscle fibers and muscle 
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nuclei (Hromowyk et al. 2020). For this zebrafish line, disease onset is at 3 dpf rather than 2 dpf 

even though both lines harbor the same point-mutation. Therefore, NMES was performed at 3, 4 

and 5 dpf, and the recovery period ensued from 6 to 9 dpf. A detailed description on how 

zebrafish were prepared for live imaging is provided in Appendix B.7 and how muscle nuclei 

were quantified is provided in Appendix B.9. For the taco time-lapse experiments, imaging 

began at the same time each day and each zebrafish was imaged at least three times. During 

the training period, imaging began immediately following the NMES session. Once all zebrafish 

were imaged, the second round of imaging began followed by the third and/or fourth round. 

Zebrafish were imaged each day from 3 to 7 dpf. For the longitudinal time-lapse experiments, 

imaging began immediately after the NMES session and zebrafish were imaged continuously for 

12 hours.  

Alongside these imaging experiments, we performed RNAseq to uncover potential 

molecular mechanisms that may be eliciting the improvements observed in dmd muscle 

following eNMES. At 7 dpf, RNA was extracted from two zebrafish per tube. In each tube, 

zebrafish were paired according to their initial mean gray value (severe versus mild) as well as 

their change in mean gray value from 5 to 7 dpf. The protocol for RNA extraction and data 

analysis are presented in Appendix B.11. 

5.3 Results  

5.3.1 eNMES Improves Muscle Structure and Sarcomere Length 

As demonstrated previously, eNMES significantly reduced the percentage of muscle 

segments with muscle fiber detachments, suggesting that muscle fiber health is improved. 

However, after noticing that while some muscle segments did not have visibly detached fibers, 

these segments contained disorganized muscle fibers with a characteristic ‘waviness’, we 

elected to use machine learning to better capture muscle health. We observed that dmd 

mutants completing three sessions of eNMES trend towards having higher percentages of 

health muscle compared to control dmd mutants (Figure 9A4). The contribution of these 
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disorganized, wavy muscle fibers to overall muscle structure and function in dmd mutants is 

currently unknown.  

Using SHG microscopy, we analyzed muscle fibers at the level of the sarcomeres. The 

length of a sarcomere is extremely important to muscle function [429]. As described previously, 

a sarcomere produces force through the cross-bridges formed between actin and myosin, and 

the amount of force generated is dependent upon the amount of overlap between these thick 

and thin filaments. More specifically, force production can be predicted using the force-length 

relationship, which states that there is an optimal sarcomere length required for maximal force 

and power production [430]. At 8 dpf, wild-type siblings exhibited a mean sarcomere length of 

1.853 ± 0.1071 micrometers (Figure 9B4), matching lengths previously published in 3 dpf wild-

type zebrafish (1.86 ± 0.15 micrometers; [431]). Compared to wild-type siblings, dmd mutants 

have significantly shorter sarcomeres with a mean length of 1.575 ± 0.1567 micrometers (Figure 

9B4). While no study has directly measured sarcomere lengths using SHG imaging in dmd 

mutants, other studies have reported shorter sarcomere lengths in mutants versus wild-type 

siblings [386]. Notably, three sessions of eNMES significantly increased mean sarcomere 

lengths (1.707 ±  0.1710) compared to dmd mutant controls, and these values are nearing wild-

type lengths, but still significantly shorter (Figure 9B4). These data suggest that eNMES may 

improve muscle structure and function by restoring sarcomere lengths to more optimal lengths, 

which may allow stronger cross-bridges to form and more success in generating force and 

power.  

5.3.2 Muscle Nuclei Return to a More Ellipsoidal Shape With eNMES 

The above improvements in sarcomere lengths prompted us to next ask whether muscle 

nuclei are also changing in response to eNMES. The role of myonuclear size and shape on 

muscle health is becoming more prevalent especially since changes in these parameters as well 

as their positioning are becoming more evident in skeletal muscle diseases [13,432,433]. We 
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measured three components of nuclear size and shape: volume, surface area, and filament 

index. Filament index is a measure that quantifies the departure of an object from a circle. 

Specifically, a circle has a filament index of 1 and a higher filament index indicates a departure 

to a more ellipsoidal shape. Therefore, in terms of muscle nuclei, a higher filament index 

suggests that the nuclei are more elongated, which is suggested to be healthier [434]. Muscle 

nuclei in dmd mutants have significantly lower volumes, surface areas, and filament indices 

compared to wild-type siblings (Figure 9C4-C6). Interestingly, eNMES significantly increased 

these measures, especially for filament index, which is  restored to wild-type values (Figure 

9C6). Additionally, these nuclei appear more organized along the length of individual muscle 

fibers, similar to the pattern observed in wild-type siblings (Figure 9C3). These data suggest that 

dmd mutants have smaller, spheroidal nuclei compared to wild-type siblings, and eNMES is 

capable of elongating the nuclei, and increasing their volumes and surface areas. Since nuclear 

size affects DNA organization, transcriptional and translational processes, and nuclear import 

and export activities [435], minor changes in size correlate with reduced muscle function and 

fiber performance [436]. Therefore, these improvements in muscle nuclei following eNMES may 

direct improvements in the muscle structure and function that we observed.  

5.3.3 Time-Lapse Analyses Suggest Less Muscle Degeneration and Improved Regeneration 

Capabilities With eNMES 

From the changes in sarcomere lengths and muscle nuclei at 8 dpf, we next asked what 

is happening daily in the muscle structure that lead up to these improvements. We performed 

confocal time-lapse analyses using transgenic zebrafish to track individual fast-twitch muscle 

fibers immediately following each session of eNMES as well as the days following completion of 

eNMES training. Again, disease onset in these transgenic zebrafish is at 3 dpf; thus, NMES 

sessions are at 3, 4 and 5 dpf while the recovery period extends from 6 through 9 dpf.  At 3 dpf, 

there was not a clear difference in muscle degeneration between treated and control mutants. 

However, by 4 dpf, control mutants exhibited initial signs of muscle degeneration (Figure 9D1c 
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and D1d). eNMES mutants showed less degeneration, suggesting that eNMES delays 

degeneration (Figure 9D2c and D2d). Whereas degenerated fibers persist in control mutants for 

days (Figure 9D1f - g), degenerated segments are cleared more quickly in eNMES-treated 

mutants (Figure 9D2f - g). Finally, more robust regeneration was observed in eNMES-treated 

mutants (Figure 9D2h). Taken together, these data suggest that eNMES improves muscle 

homeostasis. To elucidate potential molecular mechanisms that may underly these 

improvements in muscle health and function, as well as determine whether eNMES is 

enhancing regeneration, we performed RNAseq at 7 dpf. 

 

Figure 9: eNMES improves multiple components of muscle health in dmd mutants. 

(A) Machine learning was used to quantify muscle health pixel-by-pixel. Green indicates healthy 

pixels while red indicates unhealthy pixels. (A4) The percent of healthy muscle following eNMES 
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trends to be higher in dmd mutants compared to dmd mutant controls. Scale bar is 50 

micrometers. (B) Second harmonic generation microscopy was used to quantify sarcomere 

length at 8 dpf. Representative SHG images of WT sibling control (B1), dmd mutant controls 

(B2), and dmd mutants that completed eNMES training. Anterior left, dorsal top, side mounted. 

Scale bars are 10 micrometers. (B4) Sarcomere length is significantly shorter in dmd mutant 

controls compared to WT sibling controls. However, eNMES significantly improves sarcomere 

length, bringing it closer to WT lengths. Each point represents a single sarcomere along a 

predetermined length of a muscle fiber. Multiple muscle fibers were measured per zebrafish. (C) 

Muscle nuclei were imaged at 8 dpf as a potential mechanism for improved muscle health. 

Anterior left, dorsal top, side mounted. Scale bar is 50 micrometers. (C1) Representative image 

of WT sibling control demonstrates healthy ellipsoidal nuclei organized along the length of the 

muscle fibers. (C2) Representative image of dmd mutant control demonstrates fragmented 

punctae as well as more spherical nuclei that clustering within the muscle segments. (C3) 

Representative image of dmd mutant that completed eNMES training demonstrates healthier, 

ellipsoidal nuclei that appear more organized within the muscle segments. Quantification of 

nuclear size indicates that eNMES significantly increases the volume (C4) and surface area 

(C5) of muscle nuclei compared to dmd mutant controls. However, nuclei are still significantly 

smaller compared to WT sibling controls. visually appear to have an increased number of 

myonuclei compared to unstimulated dmd mutants. (C6) Filament index was used to assess 

circularity, specifically the departure from a circle. Filament index is significantly higher in dmd 

mutants that completed eNMES training, indicating that nuclei are more elongated compared to 

dmd mutant controls. Each point represents a single nuclei within a z-stack. (D) Transgenic dmd 

mutants (mylpfa:lyn-cyan, smych1:GFP) were used to visualize changes in structural integrity of 

fast- and slow-twitch muscle fibers across three days. Anterior left, dorsal top, side mounted. 

Scale bar is 50 micrometers. Images were taken around the 12th myotome. (D1) 

Representative dmd mutant control. (D1a – D1b) At 3 dpf, there is no dystrophy in the imaged 
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myotomes. (D1c – D1e) At 4 dpf and the beginning of 5 dpf, dystrophy is minimal with relatively 

few detaching muscle fibers. (D1f) However, massive muscle degeneration occurs between the 

first found of imaging and the third round of imaging at 5 dpf. (D1g – D1h) Fiber degeneration is 

present, suggesting that the damaged muscle fibers have not been cleared and regeneration is 

unlikely. (D2) Representative dmd mutant that is undergoing eNMES training. (D2a – D2b) The 

first session of eNMES at 3 dpf does not result in immediate damage to the muscle. (D2c – 

D2d) Similarly, following the second session of eNMES at 4 dpf, there is no immediate muscle 

damage occurring in the imaged myotomes. (D2e) At 5 dpf, following the third session of 

eNMES, muscle fiber degeneration is evident but by the third round of imaging (D2f), these 

damaged areas are being cleared and there is evidence of regeneration. (D2g – D2h) At 6 dpf, 

previously damaged muscle segments have new muscle fibers present. All data were analyzed 

using either an ordinary one-way ANOVA with Tukey’s multiple comparisons test or a Kruskal-

Wallis test with Dunn’s multiple-comparison test.* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 

0.0001. 

 

5.3.4 eNMES Elicits a Molecular Response in Wild-Type Siblings Indicative of Exercise  

In our RNAseq analysis, we first asked whether eNMES initiates a molecular response 

that emulates exercise in wild-type siblings. PCA analysis revealed that wild-type siblings that 

underwent three sessions of eNMES cluster completely separate from those in the control group 

(Figure 17), suggesting that wild-type siblings that complete three sessions of eNMES have an 

unique expression profile compared to controls. Of the total 25,863 genes identified across the 

RNAseq analysis, 932 genes were differentially expressed between wild-type siblings in the 

eNMES and control groups (Figure 10A1). Of these 932 genes, 306 genes were upregulated 

and 626 genes were downregulated (Figure 10A3). Using Gene Ontology (GO) enrichment 

analysis, 24 enriched categories were identified, including regulation of metabolic processes, 

regulation of MAP kinase activity, regulation of transcription, and circadian rhythms. Future 
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studies will compare these differentially expressed genes to those identified in human NMES 

studies to better understand these eNMES-induced molecular patterns.  

5.3.5 DMD Zebrafish Do Not Respond to eNMES in the Same Manner as Wild-Type Siblings 

Interestingly, the differentially expressed genes suggest that eNMES may be eliciting 

changes in WT versus dmd mutants through different mechanisms. Based on the number of 

genes differentially expressed, dmd mutants do not respond to eNMES in the same manner as 

wild-type siblings (Figure 10A2). Specifically, 123 genes were differentially expressed (FDR < 

0.1 and abs(log2(Fold Change)) > 0.6) between dmd mutants that completed three eNMES 

sessions versus dmd mutant controls (Figure 10A4). This is much lower than the 932 

differentially expressed genes in wild-type siblings. Additionally, dmd mutants have more genes 

that are increased (n = 84) than decreased (n = 39), which is the opposite of wild-type siblings, 

further suggesting that dmd mutants do not respond through the same signaling pathways as 

their healthy counterparts. Unfortunately, GO analyses did not reveal specific cellular processes 

in which these genes may participate in to positively impact muscle health. Therefore, we chose 

to examine genes individually, looking specifically at how their increase or decrease could 

influence dmd muscle.  

Only 4 genes of the 1,048 differentially expressed genes elicited by eNMES in both dmd 

mutants and wild-type siblings shared the same expression pattern (Figure 10B). Three genes, 

including heme oxygenase 1a (hmox1a), calcium release activated channel regulator 2Ab 

(cracr2ab), and retinaldehyde binding protein 1b (rlbp1b) were increased and 1 gene, 

melanotransferrin (meltf), was decreased with eNMES. This lack of overlap between 

differentially expressed genes further indicates that dmd mutants do not respond similarly to 

eNMES as wild-type siblings.  

Interestingly, we found 3 genes that exhibited opposite expression between genotypes 

(dmd mutants vs wild-type) and eNMES (dmd mutants vs wild-type siblings after eNMES) 

(Figure 10C). That is, a gene may be decreased in dmd mutants compared to wild-type siblings, 
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but eNMES increased its expression in dmd mutants while decreasing its expression in wild-

type siblings. These genes included interferon induced transmembrane protein 1 (ifitm1), 

gamma-glutamyltransferase 1a (ggt1a), and Cabz01046949.1. Additionally, 3 genes were 

decreased in dmd mutants compared to wild-type siblings but eNMES decreased its expression 

in dmd mutants and had no effect in wild-type siblings. These genes included serpin peptidase 

inhibitor, clade B (ovalbumin), member 1, like 4 (serpinb1l4), kazal-type serine peptidase 

inhibitor domain 3 (kazald3), and cystathionase (cystathionine gamma-lyase), like (cthl). Lastly, 

1 gene, si:ch1073-13h15.3, was increased in dmd mutants compared to wild-type siblings and 

was decreased in both wild-type siblings and dmd mutants following eNMES (Figure 10C7. 

Altogether, these data suggest the possibility that eNMES may partially improve dmd muscle 

structure and function by returning dmd mutants to more wild-type-like expression profiles.  
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Figure 10: dmd mutants do not respond to eNMES in the same manner as WT siblings. 

RNAseq analysis was performed at 7 dpf in wild-type siblings and dmd mutants that completed 

eNMES training and their expression patterns were compared with their respective controls. 

(A1) Volcano plot showing significantly and biologically increased (blue dots) and decreased 

(red dots) genes in WT siblings that completed eNMES versus those that did not. (A2) Volcano 

plot showing significantly and biologically increased (blue dots) and decreased (red dots) genes 

in dmd mutants that completed eNMES versus those that did not. (A3 – A4) Summary of 

differentially expressed genes in WT siblings (A3) and dmd mutants (A4). WT siblings had 932 

differentially expressed genes compared to 123 differentially expressed genes in dmd mutants, 
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suggesting that dmd muscle responds differently to eNMES and the genes responsible for 

eliciting beneficial effects on muscle structure and function are different. (B) Differentially 

expressed genes in WT siblings versus dmd mutants following eNMES that increased in 

expression (B1), decreased in expression (B2). Values are presented as Fold Change (FDR). 

The relatively few genes that were significantly differentially expressed in both data sets further 

suggests that dmd mutants respond differently to eNMES than WT siblings. (C) Selected 

differentially expressed genes in dmd mutants following eNMES to show how expression levels 

return to those of wild-type controls.    

5.3.6 eNMES May Alter the ECM in dmd Mutants 

The ECM surrounding muscle fibers is a critical component of muscle fiber health. 

Protein complexes spanning the sarcolemma and ECM serve as mechanical linkages and allow 

the muscle fiber to attach to the skeleton via the MTJ and to each other via the costamere [42]. 

Additionally, ECM proteins play a prominent role in muscle regeneration by promoting satellite 

cell division, differentiation and fusion into mature muscle fibers [437]. More importantly, though, 

many ECM proteins play dual roles in improving cell adhesion and promoting fibrosis. Since 

changes to the ECM, especially its mechanical stiffness, are well documented during disease 

and following exercise, we next asked whether ECM proteins are differentially expressed in our 

dmd mutants following eNMES and what consequences these expression patterns may have on 

muscle health. It should be noted that our RNAseq data represent a snapshot in time, and since 

the ECM is a highly dynamic tissue, mRNA expression is not the best way to capture physical 

changes to the ECM. Further, since zebrafish larvae are a developmental model, it is possible 

that we are capturing developmental changes rather than responses to eNMES. However, for 

the genes being discussed below, we see similar changes in wild-type siblings and dmd 

mutants, suggesting that expression changes may be more in response to eNMES than 

development. 



 106 

Transforming growth factor beta induced (TGFBI) is an extracellular matrix protein that 

accumulates at the MTJ in high levels as well as in the ECM where it is associated with micro-

fibrillar structures, and responsible for collagen deposition. In our RNAseq data, transforming 

growth factor beta induced (tgfbi) is significantly higher in dmd mutants compared to wild-type 

controls. However, eNMES reduces the levels of tgfbi in both dmd mutants and wild-type 

siblings (Figure 11A1). In studies looking at molecular signatures characterizing DMD muscle, 

tgfbi is highly upregulated compared to healthy muscle [438,439]. This is also true when 

comparing tgfbi expression in mdx muscle versus muscle from fiona mice (mdx mice 

overexpressing utrophin) [440]. TGFBI binds to type I, II and IV collagens as well as several 

integrins. In vitro, TGFBI mediates integrin a7-dependent adhesion of myoblasts and myotubes 

[441]. In zebrafish, morpholino-mediated knockdown of tgfbi resulted in normal MTJ formation 

and myofibril assembly in the sarcolemmal space but these myofibrils did not remain attached to 

the sarcolemma, leading to a significant reduction in myofibril content [442]. Therefore, TGFBI 

plays an intricate role in balancing fibrosis and cell adhesion. In our dmd mutants, the 

downregulation of tgfbi following eNMES may reflect a decrease in excessive ECM deposition 

and fibrosis rather than a loss in cell adhesion.  

Periostin (postnb) is a TGFBI-related protein that is highly involved in modeling the ECM 

and connective tissue architecture during development and regeneration, serving specifically as 

a mediator of fibrosis in injury and disease [443]. Notably, RNAseq data indicate that postnb 

shares a similar expression pattern to tgfbi with increased expression in dmd mutants compared 

to wild-type siblings and a reduction in this expression following eNMES in both groups (Figure 

11A2). Morpholino-mediated knockdown in zebrafish results in disrupted myoseptum formation 

and muscle fiber attachment [444]. Periostin directly interacts with other ECM proteins, including 

fibronectin, tenascin-C, collagen I and V, and heparin, to alter the ECM by changing the 

properties and/or assembly of these proteins [445]. In adult muscle, periostin is maintained at 

very low levels but becomes strongly expressed in fibroblasts and secreted into the ECM upon 
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acute injury [446,447]. Interestingly, periostin is linked to fibrosis induced by eccentric exercise 

[448]. Similarly, in individuals with DMD, periostin mRNA is significantly upregulated, especially 

in young children [439], and muscle biopsies confirm that periostin is upregulated and 

accumulates in the ECM, especially in areas of muscle fiber degeneration and dropout [449]. In 

periostin-deficient mice, however, the strength of the collagen network is significantly reduced 

as a result of disorganized and dysfunctional collagen fibrils [450,451]. Further, in d-

sarcoglycan-null mice, deletion of Postn resulted in significant reductions in muscle pathology of 

the diaphragm, gastrocnemius and quadriceps muscles at 6 weeks and 6 months of age [449]. 

Also, the pseudohypertrophy observed in the muscles of d-sarcoglycan-null mice, which is often 

the result of extensive fibrosis, was no longer present in the absence of periostin [449]. These 

data suggest that while periostin negatively impacts disease pathogenesis, its absence 

significantly enhances muscle fiber health in dystrophic muscle [449]. Therefore, in combination 

with the downregulation of tgfbi, it is likely that eNMES decreases ECM deposition and fibrosis 

in dmd mutants without altering cell adhesion.   

Integrin-b1 (itgb1b.2) is also significantly upregulated in dmd mutants compared to wild-

type siblings, but is reduced with eNMES (Figure 11A3). In skeletal muscle, integrins represent 

the family of cell surface adhesion molecules that mediate cell-matrix interactions. Integrins are 

heterodimeric, transmembrane glycoproteins that are made up of an a and b subunit. Notably, 

the integrin-b1 family constitutes the largest group of receptors in the ECM, including at the 

costameres, NMJ, and MTJ, during development and in mature muscle [452]. Integrin-a5b1 is 

the classical fibronectin receptor while a6b1 and a7b1 are laminin receptors [452]. During 

development, a5b1, a6b1, and a7b1 mediate aspects of myoblast fusion and myotube 

formation [453–457]. In adult muscle, however, a7b1 is the major integrin receptor located 

peripherally around muscle fibers and is highly enriched at the MTJs [458] and NMJ [459]. 

Notably, integrin-a7b1 participates in both outside-in and inside-out signal transduction 
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processes and is involved in several muscle diseases [460]. In individuals with DMD and in mdx 

mice, integrin-a7b1 is increased compared to healthy muscle, and it is suggested that this 

increase may compensate for the absence of dystrophin [460]. In mdx muscles, activating 

integrin-b1 ameliorates the dystrophic pathology, restores muscle strength, and improves 

regeneration [461]. Similarly, in mdx-utrophin double knockout mice, overexpression of integrin-

a7b1 ameliorates the development of muscular dystrophy and increases lifespan [462]. These 

improvements are likely the consequences of enhanced fiber integrity, especially at the MTJ 

and NMJ, which is suggested by the restoration of the highly folded sarcolemmal structure 

unique to these locations [462]. Additionally, the enhanced laminin organization in the ECM may 

support satellite cell proliferation and regenerative capacity [462]. In healthy muscle, integrin-

a7b1 is increased at the MTJ following injury-producing exercise [463]. Interestingly, 

overexpression of integrin-a7b1 prior to exercise protected the muscle from this exercise-

induced damage [463]. These data suggest that integrin may serve as a mechano-sensor and 

likely plays an important role in muscle regeneration [462,464]. The downregulation of itgb1b.2 

in dmd mutants as a consequence of eNMES is puzzling since we would expect that it would 

play a protective role in dmd muscle. Further studies should unravel the role that integrin-b1 

may play in improving muscle health in dmd mutants following eNMES. Altogether, though, 

these data suggest that cell-ECM interactions and the composition of the ECM are changed with 

eNMES. 



 109 

 

Figure 11: Modulation of ECM genes involved in regeneration and fibrosis following 

eNMES may lead to observed improvements in muscle resilience in dmd mutants.  

We identified three ECM genes, tgfbi (A1), postnb (A2), itgb1b.2 (A3) that are significantly 

upregulated in dmd mutants compared to WT siblings and trend to be downregulated with 

eNMES in dmd mutants. (B) Experiment overview. At 3 dpf (disease onset), birefringence 

images are taken followed by the first session of eNMES. At 4 and 5 dpf, zebrafish undergo the 

second and third NMES sessions, respectively. At 7 dpf, muscle resilience was tested using an 

electrical stimulation paradigm intended to cause fiber detachments. (C) Birefringence images 

were taken at 3 dpf, before the first session and after the first and second sessions. (C1) No 

visible changes in birefringence are observed in WT siblings after the two stimulation sessions. 
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(C2) For dmd mutant controls, the first round of stimulation did not result in visible changes to 

birefringence (C2c) but, after the second round, areas of muscle degeneration are visible (C2d). 

Conversely, in dmd mutants that completed three sessions of eNMES, the first (C3c) and 

second (C3d) rounds of stimulation did not result in visible changes to birefringence. (C4, C5) 

Change in birefringence from before to after the first round (C4) and second (C5) of stimulation 

suggests that eNMES training may improve muscle resilience. (D) Phalloidin was used to 

visualize individual muscle fibers. (D1a) Representative image of a WT sibling control 

demonstrates healthy, organized muscle fibers and myotomes. (D2a) Representative image of a 

dmd mutant control highlights disorganized and wavy muscle fibers and fiber detachments. 

(D3a) Representative image of a dmd mutant that completed eNMES demonstrates some wavy 

muscle fibers and detached fibers intermixed with relatively healthy myotomes. (D4) The 

percent of muscle segments with detached fibers following the hard stimulation is reduced in 

dmd mutants that complete eNMES training compared to dmd mutant controls. A muscle 

segment is defined as half of a myotome. (D1b, D2b, D3b) Machine learning was used to 

quantify muscle health pixel-by-pixel. Green indicates healthy pixels while red indicates 

unhealthy pixels. (D5) The percent of healthy muscle following the hard stimulation is 

significantly higher in dmd mutants that completed eNMES compared to dmd mutant controls. 

All data were analyzed using two-sided t tests. * p < 0.05. 

 
5.3.7 eNMES May Reduce Susceptibility to Contraction-Induced Injury in dmd Mutants 

As mentioned above, analysis of expression levels of cell-matrix adhesion proteins does 

not always indicate the physiological impact of these changes because the ECM supports 

muscle homeostasis but can also result in fibrosis. Cell-matrix adhesion is often negatively 

affected in various models of muscular dystrophy and restoration of adhesion improves muscle 

structure and function [465,466]. Therefore, the downregulation of key cell adhesion proteins 

following eNMES was puzzling and led us to ask whether muscle cell-matrix adhesion was 
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altered by eNMES. We did this by subjecting zebrafish to a hard stimulation paradigm designed 

to make muscle fibers detach from the MTJ [467] for two back-to-back sessions (Fig. 11B). 

For this experiment, zebrafish completed three sessions of eNMES. Two days after 

completing the third session, zebrafish were subjected to a relatively hard stimulation paradigm 

designed to make muscle fibers detach from the MTJ for two back-to-back sessions (Figure 

12A). This stimulation paradigm was defined by a frequency of 4 pulses per second, a delay of 

60 ms, a duration of 2 ms, and a voltage of 30 volts, which is similar to that known to initiate 

muscle fiber detachment from the MTJ [467]. Dmd mutants were stimulated for 1 minute. 

Birefringence images were taken before and after each session. To ensure consistency in 

imaging, zebrafish were mounted laterally with the head on the left and dorsal up, and the same 

imaging parameters were used for each zebrafish across all imaging sessions. We then 

analyzed the change in mean gray values before stimulation compared to after the first or 

second session. Nearly half of control mutants (10/22) had decreased mean gray values after 

the first session (Figure 11C4), and slightly over half (13/22) had decreased mean gray values 

after the second session (Figure 11C5). In contrast, just under 25% of eNMES treated mutants 

(5/22) had a decreased mean gray value after the first session (Figure 11C4) and slightly under 

a third had a decreased mean gray value after the second session (7/22; Figure 11C5). While 

there are no differences in absolute mean gray values between control and eNMES mutants 

before and after the first round of stimulation (Fig. 11C4), the change in mean gray values for 

eNMES-treated dmd mutants is higher following the second round of stimulation (Fig. 11C5). 

These data suggest that eNMES may improve cell-adhesion.  

In order to examine the impact of eNMES on muscle homeostasis in response to a hard 

stimulation more thoroughly, zebrafish were immediately fixed and stained with phalloidin after 

the last round of birefringence imaging. Similar to the birefringence data, the percent of muscle 

segments with detachments is lower in dmd mutants that completed eNMES compared to 

control dmd mutants (Figure 11D4). Notably, when we used machine learning to assess overall 
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muscle health, dmd mutants that completed eNMES had a significantly higher percentage of 

healthy muscle compared to control dmd mutants (Figure 11D5). These data suggest that dmd 

mutants that complete eNMES can withstand contraction-induced injury better than dmd mutant 

controls.  

5.3.8 Paxillin Overexpression Does Not Improve the Benefits of Endurance NMES in dmd 

Mutants 

With the improved cell adhesion following eNMES, we next asked if paxillin 

overexpression would further improve muscle resilience. Paxillin is an important mediator of 

cell-matrix adhesion and costamere formation [468,469]. For this experiment, we used 

transgenic dmd mutants that overexpress paxillin (actb2:pxn-EGFP) [470]. Zebrafish completed 

three sessions of eNMES at 2, 3 and 4 dpf. Three days after completing the third session, 

zebrafish were subjected to the cell adhesion stimulation paradigm for two back-to-back 

sessions with birefringence images taken before and after each session (Figure 12A). 

Surprisingly, paxillin overexpression negatively affected dmd muscle resilience in both groups, 

as indicated by the negative changes in mean gray values before versus after the second round 

of stimulation (Figure 12B4 and B5). Further, dmd mutants that completed eNMES have a 

higher percentage of muscle segments with detachments (Figure 12C4), suggesting that paxillin 

overexpression resulted in significant deterioration of muscle health and cell adhesion. These 

data also suggest that eNMES finely tunes the ECM, and any interference, such as 

overexpression of a cell adhesion protein, may negatively disrupt muscle’s response to 

stimulation.  
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Figure 12: Paxillin overexpression decreases muscle resilience in dmd mutants.  

(A) Experiment overview. Transgenic dmd mutants that overexpression paxillin completed 3 

sessions of NMES at 2, 3, and 4 dpf. On 7 dpf, dmd mutants completed two back-to-back 

sessions of the cell adhesion stimulation paradigm. (B) Birefringence images were taken at 2 

dpf, before the first session and after the first and second sessions of the hard stimulation. (B1) 

No visible changes in birefringence are observed in WT siblings after the two stimulation 

sessions. (B2) For dmd mutant controls, the first round of stimulation did not result in visible 

changes to birefringence (B2c) but, after the second round, new areas of muscle degeneration 

are visible (B2d). Similarly, in dmd mutants that completed three sessions of eNMES, the first 

(B3c) round of stimulation did not result in visible changes to birefringence but the second round 

(B3d) resulted in significant fiber damage. (B4, B5) Change in birefringence from before to after 

the first round (B4) and second (B5) of stimulation suggests that overexpression of paxillin does 

not protect the muscle from damage and may negatively affect its resilience. (C) Phalloidin was 

used to visualize individual muscle fibers. (C1a) Representative image of a WT sibling control 

demonstrates healthy, organized muscle fibers and myotomes. (C2a) Representative image of a 

dmd mutant control highlights some wavy muscle fibers with few fiber detachments. (C3a) 

Representative image of a dmd mutant that completed eNMES demonstrates vast muscle 



 114 

disorganization and detached fibers. (C4) The percent of muscle segments with detached fibers 

following the hard stimulation is increased, but not significantly, in dmd mutants that complete 

eNMES training compared to dmd mutant controls. A muscle segment is defined as half of a 

myotome. All data were analyzed using two-sided t tests.  

5.3.9 Genes in Our RNAseq Data Correspond With Those Identified in Pathway-Based 

Approaches for Developing Therapies for DMD 

We next asked whether differentially expressed genes in our RNAseq datasets coincide 

with those being investigated as potential therapeutic targets in pre-clinical models. 

Immediately, we found three genes of interest: heme oxygenase 1a (hmox1a), inducible nitric 

oxide synthase 2a (nos2a), and beta-1,3-N-acetylglucosaminyltransferase 3 (b3gnt3) (Figure 

13). These three genes are either being targeted directly or share unique features with those 

under investigation. A discussion of their current roles in DMD and how eNMES may initiate 

these same roles is provided below.  

 
Figure 13: Potential genes that may be initiating the beneficial effects in muscle structure 

and function coincide with those identified in DMD drug studies.  

Genes targeted in DMD drug studies. We identified two genes, hmox1a (A1) and nos2a (A2), 

that were significantly upregulated in dmd mutants following eNMES, and have been identified 
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as potential drug targets in pre-clinical trials to ameliorate disease progression in DMD. (A3 – 

A4) We also identified two genes, b3gnt3.1 (A3) and b3gnt3.3 (A4), with glycosyltransferase 

activity that is share to those responsible for the glycosylation of alpha-dystroglycan, which is 

another therapeutic target for DMD. 

 

5.3.9.1 Sildenafil Citrate Targets NOS and HMOX1 and Improves DMD Phenotype 

Sildenafil citrate is a phosphodiesterase-5 inhibitor that catalyzes the breakdown of 

cGMP, which is the primary player in smooth muscle relaxation [471]. Sildenafil citrate was 

initially introduced as a potential therapy for DMD due to its role as a potent vasodilator and its 

ability to enhance nitric oxide (NO) signaling. In dystrophic muscle, NO production is 

significantly reduced as a consequence of the mis-localization of neuronal nitric oxide synthase 

(nNOS) at the sarcolemma. Specifically, the absence of dystrophin disrupts the recruitment of 

nNOS to the sarcolemma, and therefore, negatively affects NO production [472]. Ultimately, the 

reduction in NO leads to functional ischemia [473–477] due to persistent vasoconstriction. 

Additionally, the lack of nNOS results in hyper-nitrosylation of ryanodine receptors, which 

causes a persistent Ca+2 leak [478]. Both of these events result in muscle damage, reduced 

force production and contraction-induced injury [475,476]. Numerous studies have 

demonstrated positive effects of the administration of sildenafil citrate on respiratory [479] and 

cardiac dysfunction [480–482], as well as sarcolemmal integrity and muscle fibrosis in the 

diaphragm muscles of mdx mice [479]. Further, sildenafil citrate was shown to reduce muscle 

damage following a single bout of downhill running and improve exercise performance in these 

mice, possibly through enhanced microvascular function [483]. Similarly, studies have shown 

that sildenafil citrate ameliorates the dmd phenotype in zebrafish and enhances survival 

[484,485]. These positive results have led to clinical trials in humans [486]. Notably, two genes 

targeted by sildenafil citrate, nos2a and hmox1a, are significantly upregulated following eNMES 

in dmd mutants (Figure 13A1 and A2).  
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5.3.9.2 HMOX1 is a Strong Therapeutic Target for DMD 

HMOX1 is an anti-inflammatory and cytoprotective enzyme that attenuates both 

oxidative stress and inflammatory reaction, and increases cell survival [487]. Kawahara and 

colleagues (2014) [485] identified HMOX1 as a target of sildenafil citrate in zebrafish, 

demonstrating a second mechanism in which sildenafil citrate elicits beneficial effects on 

dystrophic muscle. Specifically, overexpression of HMOX1 significantly reduced the ability to 

distinguish dmd mutants from wild-type siblings using birefringence, indicating improved muscle 

structure and fewer muscle detachments. More importantly, though, overexpression of HMOX1 

significantly extended survival in these zebrafish. Conversely, by administrating a morpholino 

targeting the hmox1 transcript, these improvements were no longer observed. Similarly, in mdx 

mice, pharmacological inhibition or genetic ablation of hmox1 aggravated muscle damage and 

inflammation, and severely impaired exercise capacity compared to control mdx mice [488]. 

HMOX1 has been shown to play numerous roles in the body, including the regulation of blood 

vessel formation and angiogenesis as well as muscle regeneration [489,490]. In regards to 

muscle regeneration, the timing of hmox1 expression is critical. Specifically, short-term 

expression of hmox1 promotes myoblast proliferation and subsequent muscle regeneration 

[489], but long-term expression inhibits myoblast differentiation and negatively affects 

regeneration [491]. Further, in hmox1-deficient satellite cells, higher activation and proliferation 

rates are observed following injury, suggesting that hmox1 may prevent exhaustion of the 

satellite cell niche [490]. Similarly, enhanced activation and differentiation is observed in satellite 

cells isolated from mdx-hmox1 double knockout mice, but satellite cell activity was normalized 

by supplementing cells with carbon monoxide, which is the product of HMOX1 activity [488]. 

Lastly, HMOX1 may play a protective role from oxidative stress by regulating mitochondrial 

quality and influencing the processes of biogenesis, dynamics, and mitophagy, especially in the 

cardiac muscle [492,493]. In our dmd mutants and wild-type siblings, eNMES significantly 

increased hmox1a expression compared to their respective controls (Figure 13A1), suggesting 
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a potential role for heme oxygenase signaling in eliciting the beneficial effects of eNMES on 

muscle structure, function, and survival. Preliminary data suggest that dmd mutants have 

impaired mitochondrial activity prior to disease onset (data not shown). Additionally, eNMES 

increases mitochondrial copy number at 8 dpf (data not shown). From these data, combined 

with our time-lapse analyses suggesting improved regeneration, we hypothesize that eNMES 

reduces oxidative stress by improving mitochondrial function and this could improve 

regeneration and muscle function. Future experiments should test whether eNMES and HMOX1 

improve angiogenesis, mitochondrial activity, and/or regenerative capacities in dmd mutants. 

5.3.9.3 Role of iNOS in DMD Pathology is Not Well Understood 

nNOS is the principle isoform, or isozyme, expressed in skeletal muscle and has been 

extensively studied in DMD research. Transgenic expression of nNOS in the mdx mouse 

normalized NO production and reduced the occurrence of disease pathology, including the 

number of centrally located nuclei, inflammation, variability in muscle fiber size and the amount 

of sarcolemmal damage [274]. Similar results, including reduced fibrosis and increased life-

span, were obtained in the mdx-utrophin double knockout mice [494]. Conversely, nNOS 

deficiency in mdx muscle exacerbated disease pathology, and it was hypothesized that 

disrupted blood flow and/or angiogenesis were the underlying mechanisms leading to this 

phenotype [126,495]. The role of iNOS, however, as a potential target for improving the 

dystrophic phenotype is less studied [496–498]. Inducible NOS is upregulated in DMD muscle 

fibers [496,498], suggesting a potential compensatory mechanism for maintaining homeostatic 

levels of NO [496]. Inducible NOS is also upregulated in infiltrating macrophages responsible for 

NO-dependent lysis of muscle fibers [497,499]. These studies suggest that iNOS-expressing 

macrophages may accelerate inflammation and disease pathology in dystrophic muscle. 

Conversely, it was recently shown that iNOS is required for effective muscle regeneration 

following acute injury in healthy muscle and that iNOS-derived NO plays a non-redundant role in 

skeletal muscle repair by regulating myogenic precursor cell function and shaping the 
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inflammatory infiltrate [500]. Surprisingly, healthy fast-twitch muscles subjected to electrical 

stimulation exhibit enhanced vasodilation via the NO-cGMP cascade [501,502], but whether 

nNOS or iNOS is responsible for the production of NO has yet to be determined. Therefore, the 

increased expression of nos2a transcript in dmd mutants following eNMES (Figure 13A2) 

should be investigated further to unravel its potential role in eliciting the positive benefits 

observed in muscle structure, function and survival. Specifically, is the upregulation in iNOS 

after eNMES supporting regeneration by regulating satellite cell activation or is iNOS 

maintaining homeostatic NO levels that support improved muscle function?  

5.3.9.4 Glycosylation Events are Emerging as Major Players in Muscular Dystrophy Research 

Mutations in proteins responsible for glycosylation and the production of glycosidic 

linkages are responsible for multiple types of muscular dystrophy [503,504]. Additionally, these 

proteins are also emerging as potential therapeutic targets for various muscular dystrophies, 

including DMD, since many of these proteins target a-dystroglycan and enhance its ability to 

bind to ECM ligands [503,504]. In our RNAseq data, two isoforms of b-1,3-N-

acetylglucosaminyltransferase 3 (B3GNT3) are downregulated following eNMES in dmd 

mutants, including b3gnt3.1 and b3gnt3.3 (Figure 13A3 and A4). Currently, there are no studies 

linking these proteins to skeletal muscle health or neuromuscular diseases. However, their 

similarity with two well-established proteins in muscular dystrophy research warrants further 

discussion and future experiments to unravel their potential roles.  

5.3.9.5 B3GNT3 and B3GNT1 Synthesize the Same Disaccharide 

The B3GNT1 gene encodes a type II transmembrane protein essential for the synthesis 

of poly-N-acetyllactosamine residues. Interestingly, mutations in b3gnt1 gene result in Walker-

Warburg Syndrome, which is the most severe clinical form of secondary dystroglycanopathies 

[505]. Secondary dystroglycanopathies are a group of muscular dystrophies caused by 

abnormal glycosylation of a-dystroglycan. Knockdown of b3gnt1 in zebrafish results in skeletal 



 119 

muscle defects, including disrupted MTJs, compromised structural integrity, as well as reduced 

a-dystroglycan expression [505]. Studies have proposed that B3GNT1 forms a complex with 

LARGE and this interaction is required for LARGE’s glycosyltransferase activity, especially the 

laminin-binding glycans on a-dystroglycan [506–508]. Interestingly, mutations in the Large gene 

also result in secondary dystroglycanopathy. Therefore, the significance of downregulating 

b3gnt3.1 and b3gnt3.3 following eNMES should be evaluated, especially to determine whether 

this protein plays an important role in glycosylation or cell-ECM interactions. Additionally, since 

glycosidic linkages are important for cell-adhesion, we further question how downregulating key 

ECM proteins following eNMES improves cell adhesion and allows for improvements in muscle 

function and survival.  

5.3.9.6 B4GALNT2 is a Targeted Therapy for DMD 

Similar to B3GNT1, the B4GALNT2 gene encodes a type II transmembrane protein 

essential for the synthesis of N-acetylgalactosamine residue, which is responsible for 

glycosylating a small number of glycoproteins, including a-dystroglycan [291,509]. More 

importantly, though, B4GALNT2 is confined to the neuromuscular junction in adult animals 

[509]. The B4GALNT2 (formerly GALGT2) protein plays an important role in improving DMD 

muscle phenotype [291,293,510,511] and is now undergoing clinical trials. B4GALNT2 is a great 

example for highlighting the fine balance in protein expression in muscle health. Specifically, in 

healthy muscle fibers, transgenic overexpression of B4GALNT2 in extra-synaptic regions 

dramatically reduced muscle fiber diameter and increased satellite cell activation [509]. 

Additionally, these muscle fibers exhibited significantly reduced numbers of secondary folds at 

the NMJ that were often misaligned with active zones as well as mis-localization of critical 

synaptic proteins, including laminin a4 and a5, utrophin and NCAM [509]. However, 

overexpression of B4GALNT2 in mdx muscle from embryonic time points onward is extremely 

effective at delaying the onset of dystrophy [291]. These same effects are also observed with 
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postnatal overexpression, delaying muscle pathology up to 18 months of age [510]. Early 

embryonic expression of B4GALNT2 increased the expression of utrophin and many dystrophin-

associated proteins, including dystroglycan, sarcoglycans, and dystrobrevins along the length of 

the muscle fibers in mdx mice [291]. These improvements translated to protection from 

eccentric contraction-induced injury in mdx mice [293]. Interestingly, postnatal overexpression of 

B4GALNT2 may or may not require utrophin or a-dystroglycan to initiate the positive benefits on 

muscle health [510,511]. These data further support the idea that diseased muscle responds 

differently to treatments, whether it is a pharmacological or non-pharmacological intervention. 

Again, while there is no direct evidence establishing an interaction between or overlapping role 

of B3GNT3 and B4GALNT2, further investigations should be conducted to evaluate the 

significance of its downregulation following eNMES, especially since glycosylation proteins 

demonstrate a significant impact on skeletal muscle health and disease progression, and may 

require precise dosing to elicit beneficial versus detrimental effects. 

5.4 Perspective 

Basic fundamental studies are necessary to elucidate both the positive and negative 

physiological adaptations at the molecular, cellular, and tissue levels to resistance training and 

inactivity in dystrophic muscle. Our results demonstrate that dmd mutants play an integral role in 

understanding neuromuscular plasticity in dystrophic muscle. Specifically, by employing the 

zebrafish model to understand how eNMES impacts dystrophic muscle we have identified 

numerous potential mechanisms for improving muscle structure and function in dystrophic 

muscle. The data presented above demonstrate that eNMES positively benefits disease 

progression by increasing sarcomere lengths, improving muscle nuclei health, and creating an 

environment that supports regeneration. RNAseq data identify potential molecular mechanisms 

that may allow us to see these improvements, and often these mechanisms are simply restoring 

gene expression levels back to wild-type levels.     
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Re-evaluating the impact of NMES on the progression of DMD is critical for three 

reasons: (1) there are still extremely limited gene therapies, (2) inactivity negatively impacts 

disease progression, and (3) when an effective gene therapy is available, the next step will be to 

strengthen these muscles. Therefore, having an established NMES training program that 

improves muscle health is highly beneficial as it creates a starting point for when these gene 

therapies become available. The results from this study demonstrate that eNMES improves 

muscle health and is better for disease progression in dmd mutants, and that the zebrafish 

model is an extremely valuable tool in elucidating the mechanisms of skeletal muscle plasticity 

in healthy and diseased muscle.  
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CHAPTER 6 

ANSWERING THE UNKNOWNS: HOW CAN WE LEVERAGE ZEBRAFISH TO 

UNDERSTAND NEUROMUSCULAR PLASTICITY? 

 

6.1 Summary 

The experiments conducted within this dissertation demonstrate that  

• The zebrafish model for DMD exhibits phenotypic variation in disease progression. 

• Periods of inactivity are extremely detrimental to dmd muscle health and survival. 

• NMES initiates changes in gene expression in wild-type siblings, indicating that the 

zebrafish model is a valuable model to study skeletal muscle plasticity.  

• Endurance NMES positively benefits muscle health, function, and survival in dmd 

mutants, and these changes are accompanied by improvements in NMJ abundance, 

nuclear shape and size, and sarcomere lengths. 

• Dmd mutants respond to NMES differently than wild-type siblings, indicating that healthy 

and diseased muscle use different mechanisms to maintain homeostasis.  

 

We created an experimental design that leverages the power of the zebrafish model’s ability 

to perform in-vivo analyses of numerous components of organismal health across time in 

individual zebrafish. Ultimately, this design should be applied to pre-clinical drug studies for 

various zebrafish models of muscular dystrophy as it provides a more comprehensive 

understanding of the impacts an intervention may have immediately and across time. Further, 

no studies to our knowledge have established zebrafish as a model for studying NMES. By 

establishing zebrafish as a model for studying NMES, we can conduct comprehensive analyses 

at the functional, structural, and molecular levels using a well-controlled experimental set-up 

with high power analyses. These analyses will provide a more in depth understanding of the 
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effects of NMES on skeletal muscle with the potential of unveiling new mechanisms and key 

components in muscle growth. Most importantly, though, these findings indicate that the 

zebrafish model is a valuable tool for studying skeletal muscle plasticity. 

6.2 How Can We Leverage Zebrafish to Understand Neuromuscular Plasticity? 

6.2.1 Elucidate Mechanisms for Disease Variation and Response to Interventions 

No two individuals are alike. This statement is easily accepted when discussing the 

human population but it is most often refuted when discussing animal models, such as the 

mouse and zebrafish. While humans, mice and zebrafish are all very different from each other in 

their size and biomechanics, it is possible that clinical trials, especially for muscular dystrophies, 

are less successful because researchers tend to not address the possibility of variation in inbred 

organisms.  

The implications of variation in disease progression are not fully understood but make it 

difficult to predict response to potential treatments. As demonstrated in Chapter 2, we see two 

visibly and quantitatively distinct phenotypes at disease onset in our dmd mutants. We see a 

mild phenotype, where very few muscle segments have visible signs of dystrophy, and a severe 

phenotype, where multiple muscle segments have muscle fiber detachments and disorganized 

fibers. Additionally, we see that in our transgenic zebrafish, which harbor the same point-

mutation, disease onset is delayed from 2 dpf to 3 dpf but the same mild and severe 

phenotypes are still present. This variation at disease onset is extremely important to be aware 

of since disease progression, especially in the first three days after disease onset, is different. 

Specifically, mild dmd mutants are degenerating while severe dmd mutants are regenerating. 

Even though mild and severe mutants arrive at the same muscle structure at 8 dpf, their initial 

severity level continues to affect their muscle function. Further studies will determine whether 

initial disease severity also affects survival.  

Studies have identified disease modifiers in the human population, and these genes 

correlate with severity and muscle function, suggesting that our dmd mutants may also harbor 
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disease modifiers. We performed a preliminary investigation using RNAseq data from the 

eNMES experiment. Since we paired the zebrafish based on their birefringence at disease 

onset, we were able to compare differentially expressed genes in mild versus severe dmd 

mutants. To perform this analysis, we combined all of the mild replicates, regardless if they were 

in the control or eNMES group, into an analysis group (n = 9 replicates), and combined all of the 

severe replicates, regardless if they were in the control or eNMES group, into another analysis 

group (n = 7 replicates), and compare these two groups directly. Overall 76 genes were 

statistically and biologically significant in their increase or decrease between mild and severe 

mutants. These genes were associated with multiple GO terms, most notably are those 

associated with memory and learning (or more broadly neurological) and the regulation of 

transcription by RNA polymerase II. Two genes that immediately piqued our interest were 

npas4, which regulates gene transcription for genes controlling inhibitory synapse development 

and plasticity as well as cdkn1a, which stimulates protein breakdown and inhibits anabolic 

signaling, protein synthesis, and PGC1-alpha expression. Both were decreased in severe dmd 

mutants. Further, klf2a was decreased in severe mutants compared to mild mutants while il1b 

and cd83 were upregulated. Interestingly, klf2a is involved in NO biosynthesis process while il1b 

and cd83 are involved in the immune response. While these data are preliminary and represent 

only a snapshot in disease progression, they suggest that the zebrafish model may be a great 

model for studying variation and the underlying mechanisms of variation in disease.  

To better understand neuromuscular plasticity in dmd muscle, future studies should look 

at gene expression changes at 2, 5, and 8 dpf, since these time points are found to be most 

critical in disease progression for mild versus severe dmd mutants. Differentially expressed 

genes could unveil potential biomarkers for neuromuscular plasticity and their potential roles in 

muscle structure, function and survival. Most importantly, though, these data could be valuable 

when evaluating pharmacological interventions as some may have differential effects based on 

the current expression levels of the targeted proteins in mild versus severe dmd mutants. 
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Combined with the potential biomarker data, it may be possible to predict responders from non-

responders or create a drug program that targets specific genes at certain times depending on 

the disease stage.  

6.2.2 Model Inactivity and Exercise to Unravel the Delicate Equilibrium in Diseased Muscle 

Zebrafish have been used to study various components of the exercise response [512–

515] as well as the impact of mechanical loading on development and tissue architecture 

[514,516,517]. In adult zebrafish, swimming at an optimal speed for 6 hours per day for 20 days 

significantly increased muscle fiber cross-sectional area, perimeter, and density, and promoted 

capillarization within the muscle [512]. These adaptations to swim training were also observed 

at the gene expression level. Specifically, swim training modulated the expression of genes 

involved in the activation of neuromuscular communication, excitation-contraction coupling, 

sarcomere contraction, cytoskeletal transmission of contractile force to the sarcolemma, and 

ECM remodeling [512]. Genes involved in muscle growth and development, angiogenesis, 

metabolism, inflammation, and protein synthesis and degradation were also altered by swim 

training [512]. Lastly, adult swim training increased the expression of genes involved in 

generating the slow muscle fiber phenotype [516]. Similarly, zebrafish larvae demonstrate these 

same adaptations to swim training [513]. Beginning at 5 dpf, zebrafish completed three 3-hour 

training sessions each day for up to 10 days. Following swim training, qPCR, in situ 

hybridization and whole genome microarray analyses were performed, and data suggest that 

molecular adaptations occurred in the brain, kidneys, pancreas, intestines and skeletal muscle. 

Molecular changes in the gastrointestinal system suggest that larvae were able to 

physiologically adapt to the increasing energy demands of the active muscles. Most importantly, 

though, zebrafish larvae exhibited molecular changes that support muscle growth and shift in 

muscle fiber types to support aerobic training. Most importantly, growth and survival were not 

affected by swim training. Collectively, these data support the idea that zebrafish are a valuable 

model for assessing the immediate and long-term physiological effects of aerobic exercise. In 
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addition to being a valuable model for aerobic exercise, we believe zebrafish are exceptional 

animals for elucidating mechanisms of neuromuscular plasticity in response to inactivity and 

NMES, especially in healthy and diseased muscle.  

NMES allows us to employ a concrete definition of exercise that can easily translate 

across studies and across animal models. In Chapter 4, we explored how four NMES paradigms 

influence components of muscle structure, function and survival and in Chapter 5, we explored 

potential mechanisms that could lead to improvements in all three of these components in 

response to only one NMES paradigm. There are numerous questions that remain unanswered, 

such as how NMES improves structure but not function, or how NMES negatively affects 

function but enhances survival. Performing additional analyses from Chapter 5 in dmd mutants 

that underwent hypertrophy, strength and power NMES could help define the delicate 

equilibrium we observe for neuromuscular plasticity in dmd mutants.  

6.2.3 Understand the Importance of Time in Neuromuscular Plasticity 

We created a high-throughput system to test the effects of electrical stimulation on 

numerous components of muscle health but focused solely on a single time point, which is 8 

dpf. We know that critical changes occur in dmd muscle from disease onset to this point. Thus, 

it is important to look at additional time points in order to paint a better picture of how dmd 

mutants arrive at this 8 dpf stage. Specifically, we have the ability to perform live SHG imaging 

to elucidate changes in sarcomeres during and after NMES and utilize transgenic zebrafish 

harboring fluorescent markers for pre- and post-synaptic proteins to monitor changes in NMJ 

distributions. Additional confocal time-lapse analyses using our transgenic fish will also help 

capture critical periods in which the muscle’s response to NMES is decided.   

The ECM is highly dynamic and is constantly responding to signals from outside the cell 

as well as to signals from inside the cell. In muscle, the ECM incorporates these signals to 

provide a scaffold that supports regeneration or fibrosis to prevent further damage. Our RNAseq 

data suggest that ECM remodeling is critical to dmd mutant phenotype and response to 
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eNMES. Unfortunately, though, a single measure of gene expression at 8 dpf, does not allow us 

to elucidate how the ECM responds to eNMES and if this response is the same immediately 

following NMES versus three days post-NMES. In most exercise studies, gene expression is 

evaluated at multiple time points after exercise to capture the evolving ECM dynamics. Based 

on our taco time-lapse analysis, there is a critical period between 5 and 6 dpf where dmd mutant 

controls are slow to respond to damaged muscle segments while dmd mutants that underwent 

eNMES respond to and repair the damage. Evaluating gene expression during these time points 

could shed light on what determines the fate of the ECM. Ultimately, these could identify 

therapeutic targets that may support improvements in structure, function, and survival.  

6.2.4 Target Newly Identified Genes to Understand Their Roles in Improving Muscle Structure, 

Function, and Survival in dmd Mutants 

Our RNAseq data provide us with a foundation to begin testing how certain genes 

influence neuromuscular plasticity, especially in response to eNMES. First, we must confirm that 

these genes and their respective proteins are differentially expressed using qPCR and Western 

blot. Additionally, we need to identify where these genes are being expressed using in-situ 

hybridization. Once these data are confirmed, the next step is to perform studies that examine 

how manipulating their expression impacts eNMES-induced benefits in dmd muscle. For 

example, 1400W dihydrochloride is a potent, highly selective iNOS inhibitor. Our data 

demonstrate that nos2a is significantly upregulated in dmd mutants following eNMES. By 

administering this drug during the training period, we would be able to determine whether iNOS 

plays a fundamental role in eliciting the benefits observed with eNMES. Specifically, if eNMES is 

no longer beneficial, we know that nos2a expression is important and additional experiments 

can then be performed to determine the underlying mechanisms in which iNOS is driving these 

improvements. Also, if nos2a is responsible, we can perform overexpression studies with our 

inactivity paradigm to determine whether iNOS preserves muscle resilience. Similar studies can 

be performed for HMOX1.  



 128 

6.3 Moving Forward 

The purpose of this project stemmed from questions concerning the limitations of 

previous studies addressing the effects of exercise in dystrophic muscle and the difficulties of 

accepting inactivity as the best recommendation for care. Disease-modifying therapies are 

within the drug development pipeline for DMD. However, we are still unsure what the underlying 

mechanisms for neuromuscular plasticity in dystrophic muscle are and how these muscles may 

respond to changes in the demands imposed upon it, especially after the restoration of 

dystrophin. We believe that identifying these basic mechanisms is a crucial first step for 

evaluating potential therapies and driving research forward. The long-term impact of this project 

is the establishment of a model system that provides a sustained and powerful influence within 

the field of neuromuscular plasticity in healthy versus diseased muscle. It is likely that the 

mechanisms in which our NMES programs benefit muscle health in dmd muscle may have 

therapeutic potential in non-dystrophic muscle wasting conditions, including cardiovascular 

disease, chronic obstructive pulmonary disease, diabetes, cancer, and long-term inactivity due 

to trauma. Therefore, we believe that our study will help guide future efforts in the more time- 

and resource-intensive mouse model studies and human patient trials.   
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APPENDIX A: MATERIALS 

This section provides detailed protocols for making the solutions used throughout the 

experiments performed in the above chapters.  

 

A.1 1X ERM 

To prepare a 20X stock solution the following was added to 800 mL of ddH2O: 17.5 g 

NaCl, 0.75 g KCl, 2.9 g CaCl-2H2O, 0.41 g KH2PO4, 0.142 g Na2HPO4 anhydrous, and 4.9 g 

MgSO4-7H2O. Once in solution, ddH2O was used to fill up to 1 L.  This solution was then filter 

sterilized into an autoclaved 1-L flask and stored at +4C. 1X ERM was prepared by adding 50 

mL of the 20X stock solution, 0.3 g of NaHCO3, and one drop of methylene blue to 950 mL of 

autoclaved ddH2O. 1X ERM was stored at room temperature. 

 

A.2 Tricaine  

A stock solution of triciane (MS-222) was prepared by adding 400 mg of powered 

tricaine and 800 mg of Na2HP04 (Anhydrous) to 100 mL ddH20. The pH was adjusted to 7.0 if 

necessary with 1M HCl or 1M NaOH. The stock solution was aliquoted and stored at -20C. 

Working solutions were prepared daily for live imaging and/or NMES by adding 400 µL of the 

stock solution to 10 mL of 1X ERM (612 µM). For the inactivity studies, working solutions were 

prepared daily by adding 200 µL of the stock solution to 10 mL of 1X ERM (306 µM).  

 

A.3 Agarose 

For long-term live imaging on the confocal, we found the best concentration for agarose 

to be 0.05%. In a 50-mL conical, 50 mg of low-melt agarose (Boston Bioproducts) was added to 

10 mL of 1X ERM. The solution was then warmed in the microwave until the agarose was 

completely dissolved. After the agarose cooled, but before it solidified, 400 µL of tricaine was 



 172 

added. For confocal imaging of fixed zebrafish, 50 mg of low-melt agarose was added to 10 mL 

of 1X PBS and warmed in the microwave until it was dissolved. 

 

A.4 Evan’s Blue Dye 

Evan’s Blue Dye (EBD) was prepared in 0.9% saline solution. To make the 0.9% saline 

solution, 9 g NaCl was dissolved in 700 mL dd H2O, and the final volume was brought to 1 L 

using ddH2O and filter sterilized into an autoclaved 1 L flask. To make 1% EBD stock solution, 

100 mg of EBD powder was added to 10 mL of 0.9% saline solution. This stock solution was 

diluted to a final working solution of 0.1% by adding 1 mL of stock solution to 9 mL of 0.9% 

saline solution. EBD remained wrapped in tin foil to avoid exposure to light. 

 

A.5 Buffers 

A 10X PBS stock solution was made by adding 74.0 g NaCl, 19.4 g Na2HPO4•7H2O, and 

4.37 g NaH2PO4•H2O to 800 mL ddH2O. Once dissolved, ddH2O was used to fill up to 1 L and 

the pH is adjusted to 7.4. This solution is then autoclaved. A 1X PBS solution was made by 

adding 100 mL of 10X PBS to 900 mL of ddH2O. Similarly, a 2X PBS solution was made by 

adding 200 mL of 10X PBS to 800 mL of ddH2O. 

The 1X PBS-0.01% tween (PBS-tw) solution was prepared by adding 10 mL of 

Tween20 to 990 mL of 1X PBS. Similarly, the 1X PBS-2% triton (PBS-tx) solution was prepared 

by adding 20 mL of Triton X-100 to 980 mL of 1X PBS.  

 

A.6 Paraformaldehyde  

To prepare a 4% solution, 15 mL of ddH2O and 10 drops of 1M NaOH was added to 2 g 

of powdered PFA in a 50-mL conical. The conical was placed in a hot bath with a stir bar until 

the PFA was dissolved. Once dissolved, ddH2O was added up to 25-mL line, and the solution 
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was filtered into a clean 50-mL conical. Next, 25 mL of 2X PBS was added followed by 12 drops 

of 1M HCl. The pH was further adjusted until it was between 7.2 and 7.4.  

 

A.7 Antibody Block 

In a 50-mL conical, 2.5 g of Bovine Serum Albumin was dissolved in 30 mL of 1X PBS. 

Once BSA was in solution, 500 µL of DMSO, 500 µL of Triton and 100 mg of saponin was 

added. The final volume was brought up to 50-mL mark on the conical with 1X PBS.  
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APPENDIX B: METHODS 

This section provides detailed descriptions for the assays and analyses performed throughout 

the experiments described in the above chapters. For every experiment, the same protocol was 

followed unless explicitly stated.  

 

B.1 Zebrafish Husbandry and Handling 

Zebrafish embryos were retrieved from natural spawns of adult zebrafish maintained on 

a 14-h light/10-h dark cycle. We used sapjeta222a zebrafish [390] for most experiments. For live 

imaging studies, we used a transgenic sapjeta222a zebrafish expressing mylpfa:lyn-cyan, 

smych1:GFP, myog:H2B:RFP (gift from Drs. Sharon Amacher and Jared Talbot). For the cell 

adhesion study, we used sapjeta222a zebrafish overexpressing paxillin (actb2:pxn-EGFP) [470]. 

Embryos were grown in embryo rearing media (ERM) with methylene blue at 28.5 degrees 

Celsius. Embryos were manually dechorionated at 1 day post fertilization (dpf). Zebrafish were 

fed once daily beginning at 5 dpf. For survival studies, zebrafish were housed in 20 mm petri 

dishes with 10 mL of system water per dish beginning at 8 dpf. Survival checks were performed 

in the morning and at night. All protocols conform to the University of Maine Institutional Animal 

Care and Use Committee’s Guidelines. 

 

B.2 Birefringence Analysis 

Birefringence is unique, physical property of highly organized matter, such as 

sarcomeres, in which light is rotated as it passes through it [518]. The optical transparency of 

zebrafish larvae allows birefringence to be used as a quick, rudimentary assessment of muscle 

defects [518,519], and we use it in our experiments to quantitatively assess the daily 

progression of dystrophy. Zebrafish were placed in tricaine (612 µM in 1X ERM) immediately 

prior to imaging and then transferred to a 35-mm glass bottom dish. Birefringence images were 

taken on a Leica MZ10 F Stereomicroscope with a Zeiss AxioCam MRm or Leica DMC5400 
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camera attached. An analyzer in a rotatable mount (Leica) was attached to the objective and the 

glass-bottom petri dish was placed on the polarized glass stage. Larvae showing consistently 

bright (white in color), well organized myotomes are classified as unaffected, wild-type siblings. 

Those displaying patchy areas (gray to black in color) of disrupted and disorganized myotomes 

are classified as affected dmd mutants. These gaps or lesions are the result of muscle fiber 

detachments from the myotendinous junction or disorganized and wavy muscle fibers [389]. 

Images were taken at the same time every day within an experiment. Imaging parameters were 

consistent for all zebrafish and across all days. 

Mean gray values were calculated using FIJI software as described previously [519]. All 

images were blinded prior to measurements. Briefly, the body of the zebrafish was outlined from 

the 6th to the 25th myotome using the “Polygon selections” tool and then the mean gray value 

was measured. Three separate outlines were drawn to obtain three separate measures, and the 

average was used for calculations. All birefringence data were normalized to the average wild-

type birefringence in each imaging session. Mean gray values are presented as a percentage of 

the average mean gray value of wild-type siblings in the control group (equation in Figure 1A). 

Birefringence was used as the metric to assess changes in overall muscle structure from 5 dpf 

to 8 dpf. A positive change in birefringence (increase in mean gray value) meant that there was 

increased birefringence at 8 dpf compared to 5 dpf and thus muscle structure improved. A 

negative change (decrease in mean gray value) meant that there was decreased birefringence 

and that muscle structure was worse. 

 

B.3 DanioVision Analysis 

The DanioVision system and EthoVision XT 13.0 software (Noldus Information, Inc) was 

used to conduct high-throughput locomotion tracking studies to better characterize the impact of 

NMES on zebrafish swimming activity. DanioVision uses a high-speed, infrared-sensitive 

camera to track individual zebrafish movement. For experiments, we kept zebrafish in their 
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respective wells of a 12-well plate and placed the 12-well plate into the DanioVision observation 

chamber. The temperature control unit was set to 28 degrees Celsius, ensuring that the 

temperature of the ERM in the well plate was maintained throughout the recording period. All 

zebrafish had five minutes to acclimate to the chamber. Using the EthoVision software, we 

created a white-light routine that included a 5 minute period in the dark followed by two light-

on/off cycles, where the white light turned on at 100% intensity for 5 minutes and then turned off 

for 5 minutes. The total recording time was 25 minutes. Recordings were made at the same 

time each day.  

At the end of the recording period, the raw data for each well was exported as an Excel 

file. This raw data file includes the distance moved and mean velocity across 0.033-second 

periods. For each fish, the average total distance and mean velocity across 1 minute intervals 

were calculated. Total distance and mean velocity during the dark periods (when fish are most 

active) was then calculated for each experimental group using the average total distance and 

mean velocity for each fish across the three 5-minute intervals.  

 

B.4 Evan’s Blue Dye Analysis 

Evan’s blue dye is a membrane impermeable dye used to assess membrane damage. In 

dmd mutants, EBD is used to assess muscle fiber integrity [520]. We used EBD to assess fiber 

integrity pre- and post-NMES using the methods described by [520]. Zebrafish were placed in 

tricaine (612 µM) for 4 minutes. At the end of the 4 minutes, zebrafish were aligned on a 1% 

agarose-lined Petri dish in a minimal volume of ERM. EBD was loaded into an injection needle 

pulled from glass capillary tubes on a Sutter Flaming/Brown Micropipette Puller. The needle was 

gently inserted into the peri-cardial space and EBD was ejected using a MPPI-3 pressure 

injector (ASI). Zebrafish were allowed to recover for 3 hours, providing ample time for the dye to 

circulate the body and enter damaged muscle fibers. Zebrafish were prepared for live imaging 

as described above for birefringence. An ET DSR fluorescent filter (Leica) was used to visualize 
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EBD. After imaging the initial dye amount in each zebrafish, zebrafish underwent 1 session of 

NMES as described above. Immediately after the NMES session, zebrafish were again 

prepared for live imaging. This allowed us to observe whether NMES caused additional dye 

entry into the muscle. The next day, zebrafish were imaged pre- and post-NMES using the 

same methods. Imaging parameters remained the same for all zebrafish and imaging sessions. 

Zebrafish were mounted laterally with the head on the left and dorsal up. To quantify EBD entry, 

mean gray values were calculated using the same methods described for birefringence except 

the outline was drawn from the first visible somite to the last visible somite. All images were 

blinded prior to analysis using a Perl script. Data is presented as the average mean gray value 

of the three separate measurements. 

 

B.5 NMES  

Zebrafish were subjected to NMES in groups of four using our 3D printed ‘gym’ (Figure 

4B). The rectangular gym is divided into 6 rectangular wells that measure 4.7625 mm (length), 

1.5875 mm (width), and 1.5875 mm (depth). Two tunnels run parallel to the smaller sides of the 

rectangular wells and the positive and negative electrodes slide through these tunnels such that 

they are exposed only in the wells. This allows the delivery of electrical pulses to each zebrafish 

simultaneously. Prior to the NMES session, zebrafish were transferred to tricaine solution (612 

µM in 1X ERM) for 4 minutes. At the end of the 4 minutes, each zebrafish was placed into a well 

with its head facing the positive electrode and its tail facing the negative electrode. The positive 

and negative electrodes are attached to a Grass SD9 Stimulator, which is used to generate the 

electrical pulses. Each NMES session lasts 1 minute. Following each NMES session, zebrafish 

are removed from the gym and placed back into their respective well plates. 

 

B.6 Immunostaining 
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Zebrafish were fixed in 4% Paraformaldehyde (PFA) for 4 h at room temperature. After 

fixation, embryos were rinsed in PBS-0.1% Tween 20 (PBS-tw). For visualizing muscle 

structure, phalloidin was used. Zebrafish were first permeabilized in PBS-2% Triton-X-100 for 

1.5 h and then placed in 1:20 phalloidin (Invitrogen) in PBS-tw for 4 hours on the rocker at room 

temperature. Zebrafish were rinsed out of phalloidin using PBS-tw and stored in PBS-tw until 

imaged. For visualizing neuromuscular junctions, zebrafish were stained with alpha-

bungarotoxin and SV2. Zebrafish were first permeabilized in 1 mg/ml collagenase in 1X PBS for 

1.5 h, and then stained with 1:500 alpha-bungarotoxin-647 (Molecular Probes) and 1:20 

phalloidin in antibody block for 2 h at room temperature. Zebrafish were rinsed using PBS-tw, 

and placed in antibody block overnight at 4°C. Zebrafish were then stained with 1:50 SV2 

(DSHB) in antibody block for 3 days at 4°C. Upon removal from SV2, zebrafish were rinsed 

using PBS-tw and then placed in antibody block for 8 h at room temperature. This was followed 

by an overnight incubation in 1:200 GAM (Invitrogen) in antibody block. Zebrafish were then 

rinsed out of secondary antibody using PBS-tw and stored in PBS-tw until imaged. Phalloidin-

488 or -546 and GAM-488 or -546 were used interchangeably with no differences in staining 

observed. 

 

B.7 Confocal Imaging 

Confocal imaging was used to visualize phalloidin and NMJ staining. Fixed and stained 

zebrafish were deyolked and then mounted in 0.5% low-melt agarose in 1X PBS in a 24-well 

glass bottom plate. Fluorescent images were captured using a 25x water objective on a Leica 

SP8 confocal microscope.  

For live imaging, zebrafish were anesthetized in tricaine solution (612 µM in 1X ERM) for 

4 minutes and then mounted 24-well glass bottom plate using 0.5% low-melt agarose in 1X 

ERM (with 612 µM tricaine). Two or three zebrafish were placed in each well. Zebrafish were 

mounted anterior left and dorsal up to ensure the same side of the fish was imaged each day. 
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Finally, a small amount of tricaine solution (612 µM in 1X ERM) was added to prevent the 

agarose from evaporating and to ensure the zebrafish remained anesthetized throughout the 

imaging session. Upon completion of imaging, zebrafish were gently removed from the agarose 

using fine fishing line and returned to their respective wells.  

 

B.8 Second Harmonic Generation 

Fixed zebrafish were deyolked and then mounted in 1.0% low-melt agarose in 1XPBS 

glass bottom 30-mm petri dish. The petri dish was then filled with PBS. Images were acquired 

using a custom-built two-photon microscope. This system uses a modified Olympus FV300 

system with an upright BX50WI microscope stand and a mode-locked Ti:Sapphire laser. Laser 

power was modulated via an electro-optic modulator.  

The SHG signals were collected in a non-descanned geometry using a single PMT. 

Emission wavelengths were separated from excitation wavelengths using a 665 nm dichroic 

beam splitter followed by a 448/20 nm bandpass filters for SHG signals. Images were acquired 

using circular polarization with excitation power ranging from 1 to 50 mW and a 40x 0.8 NA 

water immersion objective with 3x optical zoom and scanning speeds of 2.71s/frame. All images 

were 512 x 512 pixels with a field of view of 85 micrometers.   

To calculate sarcomere distance, SHG images were first imported into ImageJ, and 

then, using the Freehand selection tool, two lines were drawn to indicate the outer boundaries 

(top and bottom) of the muscle fiber being analyzed. The Freehand selections were converted 

into .txt files and imported into LabVIEW VI. Using LabVIEW, the midline of the two selections 

(top and bottom) was determined. The midline was then imported back into ImageJ over the 

original photo, and positioned in the center of the sarcomeres. Next, the Plot Profile tool and 

Peak Finder tool were then used to determine the peaks, which correspond to sarcomere 

length. Since the Peak Finder tool gives distance in pixels, a conversion factor was used to 
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convert pixels to micrometers based on the objective and optical zoom used. Multiple muscle 

fibers are analyzed for each zebrafish.  

 

B.9 Image Analysis 

All images were blinded using a Perl script prior to analysis. Phalloidin images were 

used to assess muscle fiber degeneration. The percent of myotomes with muscle fiber 

detachments was calculated manually by counting the number of muscle segments with visibly 

detached fiber(s). Muscle segments are defined as half myotomes. Additionally, we used 

machine learning to identify healthy versus unhealthy muscle fibers. For these analyses, we 

used MATLAB to implement a deep learning approach to segment images of phalloidin stained 

fish into healthy muscle, sick muscle, and background. We used the DeepLab v3+ system with 

an underlying Resnet18 network [521,522]. We defined the ground truth dataset manually using 

LabelBox (labelbox.com). Training images and ground truth images were broken down into 256 

x 256 pixel images for training. The training dataset was divided into 60% training, 20% 

validation and 20% test data. Median frequency weighting was used to balance the classes. 

Each fish was oriented such that the head of the fish would be at the left of the image. Data was 

augmented to translate the images by 10 pixels vertically and horizontally. Rotation was found 

to make the network less accurate as orientation angle of the muscle fibers relative to the body 

orientation is important to assessing their health. The stochastic gradient descent with 

momentum (SGDM) optimizer was selected with 0.9 momentum. The maximum number of 

epochs was 100, and the mini-batch size was 8. In every epoch, the training dataset was 

shuffled. The number of iterations between evaluations of validation metrics was 315. The 

patience of validation stopping of network training is set up to 4. The initial learning rate used for 

training was 0.001. The learning rate was dropped 0.3 fold piecewise during training every10 

epochs. The Factor for L2 regularization (weight decay) was 0.005. The training set reached an 

accuracy of 97%. Images were then segmented by the MATLAB semanticseg command, which 
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produced 8-bit unsigned integer segmentations. The fraction of each fish that was determined to 

be healthy was reported as a fraction of the total muscle. Pixels determined to be background 

(i.e. not muscle) were excluded from this calculation.  

For NMJ analyses, we used the method that was recently published by our laboratory 

[523]. To prepare images for analysis, a custom Fiji macro was written in order to keep image 

processing consistent throughout all experiments. First, the raw .lif file is opened in FIJI and the 

image is split into its respective channels (phalloidin, AChR, and SV2). The phalloidin channel is 

immediately saved as a .tif file and closed. For the AChR and SV2 channels, duplicate z stacks 

are created and a 10 pixel radius Gaussian blur is applied. These blurred images are then 

subtracted from their original images, respectively. The resulting images are then merged to a 

single image and a maximum intensity projection is generated. This maximum intensity 

projection is saved as a .tif file and closed. For each experiment, the maximum intensity 

projections are combined into a single .tif file using a custom MATLAB script. This file is then 

opened in FIJI and three separate masks, marking the fish body, horizontal myoseptum and 

myoseptal innervation, are drawn on the projected images using the Pencil tool. These masks 

were used to define muscle segments, where a muscle segment represents half of a single 

myotome. Using a custom MatLab script, skeleton number and skeleton length were then 

calculated for each muscle segment across all zebrafish analyzed. To do this, masks were 

imported back into MATLAB for segmentation of the AChR and SV2 channels. Images were 

further processed using the adaptive histogram equalization (“adapthisteq” function) to enhance 

the images followed by a 1 pixel radius Gaussian blur (‘imguassfilt’ function) to denoise the 

images. The now defined muscle segments were then skeletonized, cleaned, and despurred 

(“bwmorph” function). Finally, skeleton number and length were calculated within each muscle 

segment of a single fish and averaged across all fish within each experimental group.  

Muscle nuclei were analyzed using FIJI’s 3D Object Counter as well as the basic 

Measure tool. To prepare images for analysis we first reduced background noise by duplicating 
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the image (z stack), performing a 10 pixel Gaussian blur on the duplicated image, and 

subtracting the blurred image from the original image. We then performed a 1 pixel Gaussian 

blur on this image and set a threshold using ‘max entropy’ setting. With this image, we used the 

“Analyze Particles” tool to generate masks to use with “3D Object Counter” tool as well as the 

“Measure” tool. The 3D Objects Counter tool provided surface area and volume measurements 

while the Measure tool provided perimeter, area, and major axis measurements. These latter 

measurements were used to calculate filament index.  

 

B.10 Statistical Analysis 

All statistical analyses were performed in Graphpad Prism. Normality was first assessed 

for all data using the Shapiro-Wilk test. If data passed this normality test, an unpaired two-tailed 

t test was performed between two data sets (i.e., dmd mutant control vs dmd mutant eNMES) 

while an ordinary one-way ANOVA was performed followed by a Tukey’s multiple comparison 

test between three data sets (i.e., WT sibling control vs dmd mutant control vs dmd mutant 

eNMES). Conversely, if data failed the normality test, a Mann-Whitney U test was performed for 

comparing two data sets while a Kruskal-Wallis test was performed for comparing three data 

sets. Significance for all tests was set to p < 0.05.  

 

B.11 RNA Extraction and Analysis 

Total RNA was extracted from whole zebrafish at 7 dpf from replicate samples using the 

Zymo Direct-zol RNA microprep kit. Each biological replicate consisted of two zebrafish. For 

wild-type siblings, there were 4 replicates for the control group and 3 replicates for the eNMES 

group, and for dmd mutants, there were 8 replicates for the control group and 10 replicates for 

the eNMES group. Prior to performing RNA extractions, zebrafish within the eNMES and control 

groups were paired based on their severity at disease onset and the calculated change in their 

birefringence from 5 dpf to 7 dpf. RNA was kept at -80°C until it was shipped to Quick Biology 
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(Pasadena, CA) for sequencing. Following RNA quality control using an Agilent BioAnalyzer 

2100 (), polyA+ RNA-seq libraries were prepared for each sample using the KAPA Stranded 

RNA-Seq Kit (KAPA Biosystems, Wilmington, MA). Final library quality and quantity were 

analyzed by Agilent Bioanalyzer 2100 and Life Technologies Qubit3.0 Fluorometer. 150 bp 

reads were sequenced on Illumina HighSeq 4000 (Illumnia Inc., San Diego, CA). Each library 

was sequenced using 150bp paired-end reads using an Illumina HiSeq4000. 

Analyses of RNA-Seq reads were completed on the Advanced Computing Group Linux 

cluster at the University of Maine. To determine the quality of the RNA sequencing reads before 

further processing, FastQC version 0.11.8 was utilized [524]. Following this quality assessment, 

reads were concatenated tail-to-head to produce one forward FASTQ file and one reverse 

FASTQ file for each replicate sample. These FASTQ files were then trimmed of adapter 

sequences, and low quality leading and trailing ends were removed using Trimmomatic version 

0.36.0 [525]. Trimmed paired-end reads mapped to the Ensembl-annotated zebrafish 

transcriptome [526] (Ensembl version 95) to generate read counts per gene using RSEM 

version 1.2.31 [527] with bowtie version 1.1.2 [528]. Read counts were analyzed using the 

DESeq2 version 1.22.2 [529] to analyze gene expression, p-value, and false discovery rate 

(FDR). Genes with fewer than ten mapped reads across all samples were excluded. For each 

pairwise comparison of treatment groups, differentially expressed genes were determined using 

FDR p-value cutoff of 0.1 and requiring at least a 0.6 log2 fold-change (in either direction). 

Resulting lists were used for Gene Ontology enrichment analysis and set analysis for each pair-

wise comparison.  

Sets of differentially expressed genes (both up and down regulated) were analyzed to 

test for enriched GO Biological Process terms (FDR < 0.1) using GOrilla [530,531] (http://cbl-

gorilla.cs.technion.ac.il/) for enrichment in Biological Processes. For this analysis, the entire set 

of expressed genes were used a background. In cases where Gorilla found no enriched terms, 

PantherDB’s overrepresentation test on Biological Processes [532] (http://pantherdb.org/) was 
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used. Again, the entire set of expressed genes list was used as the backround, and results were 

evaluated using Panther’s Fisher’s Exact Test and p-values were adjusted for multiple testing 

using FDR.  

Ensembl gene IDs were mapped to gene symbols and names using zebrafishMine’s 

Analyse feature [533] (http://www.zebrafishmine.org/). In some cases, manual mapping was 

used by comparing Zfin.org gene search and Ensembl gene search results. Summarized gene 

expression data are available at the Gene Expression Omnibus (accession number 

GSE155465), and FASTQ files are available at the Short Read Archive (accession number 

SRP274405). 
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APPENDIX C: SUPPLEMENTAL FIGURES 
 
Figure 14: Variation at disease onset in dmd mutants affects swimming activity 
throughout disease progression. 
 

 
 
Figure 15: Swimming activity is negatively affected by extended inactivity at 5 dpf.  
 

 
 
Figure 16: Percentage of dmd mutants that exhibited a negative change in mean gray 
value from 5 to 8 dpf following NMES or extended inactivity. 

 
 
Figure 17: Principal component analysis highlights clustering of replicates for WT 
siblings and dmd mutants with and without eNMES.  
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