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The main result of this thesis is that there exists a positive, self-adjoint Hopf (PSH)

algebra structure in the representation theory of a certain family of groups. This new

construction is inspired directly by Andrey Zelevinsky’s discovery of such a structure in the

representation theory of the symmetric groups. Zelevinsky’s work Representations of finite

classical groups: a Hopf algebra approach gives an account of this. We will walk through

Zelevinsky’s work in this field in detail, and then follow up with the construction on the

groups in question. We will develop the necessary theory along the way, with the reader

assumed to be familiar with the basic properties of groups and rings. The notion of

categories, functors, and Grothendieck groups will be useful, but knowledge of these

concepts is not necessary for the reading of this thesis.
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CHAPTER 1

INTRODUCTION

The representation theory of finite groups allows us to study the ways finite groups act as

linear symmetries. The representation theory of the symmetric groups Sn is well understood,

with the construction of the irreducibles coming from considering the entire family Sn

simultaneously (for an account of this, see [4, section 5.12]). This method of analyzing the

representations of symmetric groups suggests that insight about the representation theory of

other well-behaved combinatorial families of groups might be gained by considering the

whole family at once.

Andrey Zelevinsky introduced the structure of a positive, self-adjoint Hopf algebra (PSH

algebra) on the representation theory of the family of symmetric groups in [11]. In that same

work he also shows that the construction could be done with other groups; namely the

wreath products Sn n G{1,...,n} and the general linear groups GL(n,Fq) over the finite fields. In

what follows we will recreate the construction of a PSH algebra from the representation

theory of the family Sn, followed by proving the construction is possible for a new family of

groups Gn which contain the symmetric groups.

Along the way, we draw parallels between the behavior of our groups Gn and that of the

symmetric groups Sn. These parallels come in the form of Lemmas 4.2.5 and 4.2.6, which

give tools for calculating products and intersections of different groups Gn.

This begs the question of which characteristics of a family of groups are necessary in order

to exhibit a PSH algebra structure in their representation theory. This question is answered

for groups expressed as wreath products in [3], which provides sufficient conditions for the

construction of a PSH algebra in the representation theory of a family of wreath products.

The family of groups we study is expressed as a semidirect product Sn nMn(Z/pZ), and the

fact that Mn(Z/pZ) is isomorphic to (Z/pZ){1,...,n}2 , the abelian group of Z/pZ-valued
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functions on {1, . . . , n}2, allows us to think of this family of groups as a generalization of

Zelevinsky’s family Sn n G{1,...,n} with G = Z/pZ.

Although not purely combinatorial in origin, Hopf algebras appear in many combinatorial

fields of study. The feature distinguishing Hopf algebras from algebras is the unary

comultiplication operation. Multiplication gives us methods of understanding how objects

may be combined, whereas comultiplication allows us to study the various ways of

decomposing objects. Hopf algebras arise when the ways of "sticking objects together" and

"pulling objects apart" are compatible with one another. This will be made rigorous in chapter

3.
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CHAPTER 2

BACKGROUND

2.1 Representation Theory

We will be studying the representation theory of a family of combinatorial semidirect

products. This section gives basic background, and provides results of representation theory

that will be used later. Later, we will also discuss algebras, coalgebras, and Hopf algebras.

We’ll begin with representations of groups. All groups considered will be finite.

Definition 2.1.1. Given a group G, a representation of G on a finite-dimensional, complex

vector space V is a homomorphism ρ : G→ GL(V ), where GL(V ) denotes the group of

invertible linear maps V → V . In the future we will refer to either ρ, V , or (ρ, V ) as the

representation. For g ∈ G and v ∈ V , we will denote gv := ρ(g)v. All representations we’ll

consider will be finite-dimensional.

An equivalent definition of a representation of G which we will make frequent use of is

considering the space V as a left, unital CG-module, where

CG =

¨

∑

g∈G

ag g

�

�

�

�

�

ag ∈ C

«

.

This is known as the group ring or group algebra of G. The action of this algebra (i.e., ring) on

the vector space (i.e., additive abelian group) V is given by (
∑

g αg g)v :=
∑

g αg(gv).

Definition 2.1.2. Given two representations ρ and ϕ of G on V and W , respectively, a

morphism of representations from V to W is a linear map T : V →W satisfying T gv = gT v

for all g ∈ G, v ∈ V . Two representations are said to be isomorphic if there exists a morphism

between them which is an isomorphism of vector spaces. Given two representations V, W of

G, we denote by HomG(V, W ) the set (C-vector space) of all morphisms V →W .

This notion of morphism allows us to endow the collection of all representations of some

fixed group G with the structure of a category. Indeed, for every representation V , the
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identity map 1V is a morphism V → V ; furthermore, composition of linear maps is

associative. We will denote the category of finite dimensional complex representations of a

group G by Rep(G). For a more complete exposition of the theory of categories and functors

which we will be conforming to, see [9]

Definition 2.1.3. Let f : H → K be a homomorphism of groups. This induces a functor

f ∗ : Rep(K)→ Rep(H) given by ρ 7→ ρ ◦ f called the pullback of f . This functor sends a

morphism T : V →W of K representations to the same morphism T of H representations.

Example 2.1.4. Let H be a subgroup of a finite group G. Then for each fixed x ∈ G the map

Adx : H → xH x−1 defined by h 7→ xhx−1 is an isomorphism. This induces a functor

Ad∗x : Rep(xH x−1)→ Rep(H) given by sending the representation ρ : xH x−1→ GL(V ) to the

representation ρ ◦Adx : H → xH x−1→ GL(V ). That is, the element h ∈ H is defined to act on

V via the element xhx−1.

As is often the case, given some object, we’d like to find subobjects to make our study

more digestible. We do this with representations via the following.

Definition 2.1.5. Given a representation ρ : G→ GL(V ), we say a subspace W ⊆ V is

G-invariant if given any g ∈ G, w ∈W , we have gw ∈W . It follows that

ρ|W : g 7→ ρ(g)|W ∈ GL(W ) is a representation of G. We call W a subrepresentation of V .

Remarks 2.1.6. Given representations V and W of G, the direct sum of vector spaces V ⊕W

is given the structure of a representation of G by the formula g(v, w) := (gv, gw).

Additionally, if V ∈ Rep(G) and U ∈ Rep(H), then V ⊗ U ∈ Rep(G ×H), with the action on

elementary tensors given by (g, h)(v ⊗ u) := gv ⊗ hu.

Definition 2.1.7. A representation V of G is said to be irreducible if V 6= 0, and the only

G-invariant subspaces of V are 0 and V . Denote by Irr(G) the set of equivalence classes of

irreducible members of Rep(G).

Lemma 2.1.8 (Schur’s Lemma). If V is an irreducible representation of G, then

dim HomG(V, V ) = 1.

4



Proof. Suppose T ∈ HomG(V, V ). Then ker(T ) and image(T ) are G-invariant subspaces of V .

Hence T is either an isomorphism of representations, or T = 0. If T is an isomprohism, let

λ ∈ C be an eigenvalue of T (i.e., a root of the characteristic polynomial of T which exists

since we’re working over C). Then T −λ1V ∈ HomG(V, V ). But this operator has a nonzero

kernel U which is G-invariant. By irreducibility, U = V ; therefore T −λ1V = 0, and so

HomG(V, V ) = C1V .

Theorem 2.1.9 (Maschke). Every finite dimensional representation of a finite group G is a

direct sum of irreducible representations of G.

This is Theorem 4.1.1 of [4], which is accompanied by a proof.

Proposition 2.1.10. [4, Corollary 4.2.2] The number of irreducible representations of a finite

group G is equal to the number of conjugacy classes in G.

Corollary 2.1.11. Let V1, . . . , Vm be a complete set of irreducible representations of a group G.

Let W be a representation of G, and suppose W decomposes as

W ∼=
m
∑

i=1

niVi.

Then for each j = 1, . . . , m, dimHomG(Vj, W ) = ni.

Proof. First, rewrite

HomG(Vj, W )∼= HomG(Vj,
m
∑

i=1

niVi)∼=
m
∑

i=1

ni HomG(Vj, Vi).

Taking dimensions and applying Schur’s Lemma (2.1.8), the corollary is proved.

Proposition 2.1.12. [4, Theorem 5.6.1] Let G, H be two finite groups. Then there is a natural

bijection Irr(G)× Irr(H)
(V,W )7→V⊗CW
−−−−−−−−→ Irr(G ×H).

2.1.1 Examples of Representations

We now give some examples of representations.

5



Example 2.1.13. Given any finite group G, the group algebra is a representation of G with

h ∈ G acting by h ·
∑

g∈G ag g :=
∑

g∈G aghg. Another way to view this is that CG is itself a

CG-module. This is called the regular representation and is actually isomorphic to

⊕

V∈Irr(G)

dim(V )V

as representations of G (this is [4, Theorem 4.1.1]).

Example 2.1.14. Let C× denote the group of nonzero complex numbers under

multiplication. Any group homomorphism G→ C× is a representation via the identification

C× ∼= GL(C). By Cayley’s Theorem (see [7, Theorem II.4.5]), G embeds as a subgroup of SG,

the permutation group of G. The sign homomorphism sgn : SG → C× which takes the value 1

on even permutations and −1 on odd permutations may then be restricted to G to give a

one-dimensional representation of G. If G happens to be contained in the alternating group

AG consisting of even permutations of G, then the sign representation is the trivial

representation.

Example 2.1.15. Suppose G acts on a finite set X . The permutation representation of this

action is

CX =

¨

∑

x∈X

ax x

�

�

�

�

�

ax ∈ C

«

where g ∈ G acts by g ·
∑

x∈X ax x :=
∑

x∈X ax(g · x). When X = G this gives the regular

representation of G.

Example 2.1.16. The map ρ : S3→ GL(C2) given by

(12) 7→





0 1

1 0





and

(123) 7→





e2πi/3 0

0 e−2πi/3





6



is an irreducible representation. It’s also true (though we won’t have need to prove it here)

that if V1, . . . , Vm are the irreducible representations of a group G with dimensions d1, . . . dm,

then
∑

i d2
i = |G|. Hence this representation, along with the trivial representation and the

sign representation are an exhaustive list of the irreducible representations of S3.

2.1.2 Characters, class functions, and their connection with representations

Representations have equivalent notions which will be useful in computations. These are

called characters and class functions: complex-valued functions on the group in question

which encode all the pertinent information from the representation.

Definition 2.1.17. Given a representation ρ : G→ GL(V ) of a group, we define the character

of V to be the function χV : G→ C given by g 7→ TrV (g) (when V is clear from the context,

we will often write just χ).

A basic property of Tr is that Tr(ab) = Tr(ba) (see [6], § 56). From this we calculate that

for invertible a, that Tr(aba−1) = Tr(a−1ab) = Tr(b). This shows that a character χ of G is a

class function. That is, χ is constant on conjugacy classes of G. We denote the C-vector space

of all such class functions by Cl(G).

It follows immediately from Tr(aba−1) = Tr(b) that isomorphic representations have

equal characters. This allows us to define a function Rep(G)→ Cl(G) by V 7→ χV which is

constant on isomorphism classes. Define R(G) to be the free abelian group with a basis

consisting of the isomorphism classes of irreducible representations of G.

Theorem 2.1.18. The characters of the irreducible representations of G form an orthonormal

basis for C l(G), with the inner product on Cl(G) defined by

〈 f1, f2〉 :=
1
|G|

∑

g∈G

f1(g) f2(g).

For a proof of 2.1.18, see [10, Theorem 2.5.6]. We will utilize this fact as follows.

Corollary 2.1.19. 1. The map ψ : Irr(G)→ Cl(G) defined by sending V 7→ χV induces an

injective Z-linear map ψ̃ : R(G)→ Cl(G).

7



2. For any functor F : Rep(G)→ Rep(H) which commutes with direct sums, there is a unique

linear map F̃ : Cl(G)→ Cl(H) making the diagram

R(G)

F
��

V 7→χV // Cl(G)

F
��

R(H)
W 7→χW

// Cl(H)

commute.

Proof. 1. The equivalence classes of irreducible representations of G form a basis for R(G)

by definition. By 2.1.18, the characters of these representations are linearly

independent. For injectivity, suppose

∑

V∈Irr(G)

nV V ∈ ker(ψ̃),

so that
∑

V∈Irr(G)

nVχV = 0.

By the linear independence guaranteed by Theorem 2.1.18, it must be that nV = 0 for

all V . Hence ψ̃ is injective.

2. Define F̃ on the image of Irr(G) by χV 7→ χF(V ), and extend linearly to Cl(G) using

Theorem 2.1.18.

Corollary 2.1.20. Given two functors F1, F2 as in 2.1.19, we may consider

F1, F2 : R(G)→ R(H), and calculate F̃1 and F̃2. If F̃1 = F̃2, then F1 = F2 as maps R(G)→ R(H).

Proof. Indeed, [F1 − F2](V ) = 0 for all V if and only if χ[F1−F2](V ) = 0 for all V . By the

commutativity of the diagram in 2.1.19, this is equivalent to saying [F̃1 − F̃2](χV ) = 0 for all

V .

8



2.2 First Tensor Product Formulas and Consequences

In this section we will develop a viewpoint which will be useful in much of the remainder

of this paper. This relies on the definition of representations of G as CG-modules. Recall that

a representation ρ : G→ GL(V ) gives a CG-module structure on V given by gv := ρ(g)v, and

extended to all of CG by linearity. We will exhibit formulas for functors between categories of

representations which are given in terms of tensor products of modules. This allows us to

make the following mental identifications: functors correspond to taking tensor products

with bimodules, composition of functors corresponds to a tensor product of bimodules, a

direct sum of functors corresponds to a direct sum of bimodules, and natural transformations

of functors correspond to morphisms of bimodules. These correspondences can be made

rigorous by expressing them as an equivalence between categories of functors and bimodules,

but such things are outside the scope of this thesis.

For a definition and properties of tensor products, see [7, IV.5]. For A and B right and left

R-modules, respectively, we will write A⊗R B for the tensor product of A with B over R,

writing A⊗ B if R is understood. Recall some of the elementary properties of tensor products:

� A⊗ (B ⊗ C)∼= (A⊗ B)⊗ C

� A⊗ (B ⊕ C)∼= (A⊗ B)⊕ (A⊗ C)

� If A is a left S-module, then so is A⊗ B via s(a⊗ b) := sa⊗ b

Theorem 2.2.1. Let R, S, and T be rings with unit. Suppose M is a unital left (R, T )-bimodule,

N is a unital (S, R)-bimodule, and Q is a unital left S-module. Then

Ψ : HomS(N ⊗R M ,Q)→ HomR(M ,HomS(N ,Q))

given by Ψ(ϕ)(m)(n) := ϕ(n⊗m) is an isomorphism of T-modules.

Remarks 2.2.2. With the assumptions of Theorem 2.2.1, the T -module structure on

HomS(N ⊗R M ,Q) is given by (t f )(x) := f (x t); the T -module structure on

HomR(M , HomS(N ,Q)) is defined similarly.

9



For a proof of Theorem 2.2.1, see [8, Theorem X.10.23]. We will refer to this result as the

tensor-hom adjunction.

Given a subgroup H of G, we’d like to study how representations of H relate to

representations of G. We accomplish this by defining functors for inducing and restricting

representations between subgroups and supergroups. With the above viewpoint in mind, we

exhibit the bimodules and tensor products which correspond to these functors.

Until the next section, we will define an algebra over a commutative ring R to be an

R-module A with a linear map

A⊗R A
(a⊗b)7→ab
−−−−−→ A

satisfying (ab)c = a(bc), and containing an element 1 such that 1a = a1= a.

Definition 2.2.3. Let H ⊆ G be a subgroup, and let ρ : G→ V be a representation of G. We

define the functor ResG
H : Rep(G)→ Rep(H) by sending ρ to the representation ρ|H of H.

It follows, then, that a representation of a group is thus a representation of any of its

subgroups. This definition is somehow the most natural, and should therefore serve as the

basis for defining relations between Rep(G) and Rep(H) where H ⊆ G. Now we define a

functor Rep(H)→ Rep(G) and prove an adjunction known as Frobenius reciprocity.

Definition 2.2.4. Let H ⊆ G be a subgroup as above. Define the functor

IndG
H : Rep(H)→ Rep(G) by V 7→ { f : G→ V | f (hx) = hf (x) for all h ∈ H, x ∈ G}, with the

action of G given by right translation; i.e. for g ∈ G and f ∈ IndG
H V , set (g · f )(x) := f (x g)

for each x ∈ G.

Remarks 2.2.5. The set of functions IndG
H V is easily seen to be a representation of G. Indeed,

if f1, f2 ∈ IndG
H V , then ( f1 + f2)(hx) = f1(hx) + f2(hx) = hf1(x) + hf2(x) = h( f1 + f2)(x); so

IndG
H V is a vector space. To see that the given action of G satisfies the necessary associativity

property, let g, k ∈ G, and f ∈ IndG
H V . We have

[gk · f ](x) = f (x gk) = [k · f ](x g) = [g · (k · f )](x), as needed.
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Theorem 2.2.6 (Frobenius reciprocity). For V ∈ Rep(G) and W ∈ Rep(H), we have

HomG(V, IndG
H W )∼= HomH(ResG

H V, W ).

This theorem states that the functor IndG
H is right-adjoint to ResG

H . In order to prove it, we

will need some lemmas utilizing the more concrete view of representations as modules. In

what follows we will view CG as a (CG,CH)-bimodule, and a (CH,CG)-bimodule. These

structures are given by multiplication in CG.

Lemma 2.2.7. Let V be a representation of G, and H ⊆ G be a subgroup. Then, as CH-modules,

ResG
H V ∼= CG ⊗CG V .

Proof. Define ϕ : ResG
H V → CG ⊗CG V by v 7→ 1⊗ v. To see that this map is H-equivariant, let

h ∈ H and v ∈ V . Then ϕ(hv) = 1⊗ hv = h⊗ v = h(1⊗ v) = hϕ(v). Next define

ψ : CG ⊗CG V → ResG
H V by g ⊗ v 7→ gv for the elementary tensor g ⊗ v. This map is

well-defined since ψ(g ⊗ g ′v) = g g ′v =ψ(g g ′ ⊗ v) by associativity of multiplication in CG.

It’s also the case that ψ= ϕ−1. To prove this, observe first that

ϕ(ψ(g ⊗ v)) = ϕ(gv) = 1⊗ gv = g ⊗ v; additionally, ψ(ϕ(v)) =ψ(1⊗ v) = 1v = v, as

desired.

Lemma 2.2.8. Let W ∈ Rep(H). Then IndG
H W ∼= HomCH(CG, W ) as left CG-modules.

Proof. The function ϕ : IndG
H W → HomCG(CG, W ) given by extending a function f from its

domain G to the domain CG is an isomorphism.

The two preceding lemmas, when considered alongisde the tensor-Hom adjunction, prove

Theorem 2.2.6. That is, the functors Res and Ind are adjoints. Now one last formula for Ind

which will be useful in what comes.

Lemma 2.2.9. Let G and H be as above, and W ∈ Rep(H). Then IndG
H W ∼= CG ⊗CH W.

Proof. Define ϕ : HomCH(CG, W )→ CG ⊗CH W by

f 7→
∑

H g∈H\G

g−1 ⊗ f (g).

11



This map doesn’t depend on our choice of coset representatives. Indeed,

(hg)−1 ⊗ f (hg) = g−1h−1 ⊗ hf (g) = g−1 ⊗ f (g),

as desired.

To see that this map is G-equivariant, suppose g ∈ G and f ∈ HomCH(CG, W ). Then

ϕ(k · f ) =
∑

H g g−1 ⊗ [k · f ](g) =
∑

H g g−1 ⊗ f (gk). Make the change of variables x = gk, so

that g−1 = kx−1 and g = xk−1. Then we have

ϕ(k · f ) =
∑

H xk−1 kx−1 ⊗ f (x) = k
∑

H xk−1 x−1 ⊗ f (x), which sums over the same set. Hence

ϕ(k · f ) = kϕ( f ).

To see that ϕ is injective, suppose now that ϕ( f ) = ϕ( f ′), so that
∑

H g∈H\G g−1 ⊗ f (g) =
∑

H g∈H\G g−1 ⊗ f ′(g). If we consider one fixed g, we arrive at

f (g) = f ′(g). Since f and f ′ are determined by their values on representatives of the cosets

H g, we know f = f ′ on H g. Since g was chosen arbitrarily, f = f ′ everywhere.

Let δx=y : CG→ C be the indicator function with δx=y(x) = 1 when x = y and 0

otherwise. For an elementary tensor k⊗w ∈ CG ⊗CH W , define

ψ : CG ⊗CH W → HomCH(CG, W ) by

ψ(k⊗w)(g) :=
∑

h∈H

δkg=hhv.

Now we compute the composition ϕ ◦ψ to show that ϕ is surjective:

ϕ(ψ(k⊗w)) =
∑

H x∈H\G

x−1 ⊗ψ(k⊗w)(x) =
∑

H x∈H\G,
h∈H

x−1 ⊗δxk=hhw

= x−1 ⊗ hw= x−1 ⊗ xkw= x−1 xk⊗w= k⊗w.

This shows that the map ϕ is an isomorphism.

Next we’ll prove two technical lemmas which will be used later to help with an

associativity check: the transitive and multiplicative properties of Ind and Res. Recall that if

V ∈ Rep(G) and W ∈ Rep(H), V ⊗W ∈ Rep(G ×H), with action specified in 2.1.6.
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Lemma 2.2.10. Suppose H ′ ⊆ H and G′ ⊆ G are subgroups, and let π′ ∈ Rep(G′) and

ρ′ ∈ Rep(H ′). Then IndG×H
G′×H ′(π

′ ⊗ρ′)∼= IndG
G′ π

′ ⊗ IndH
H ′ ρ

′. Additionally, if π ∈ Rep(G) and

ρ ∈ Rep(H), then ResG×H
G′×H ′(π⊗ρ)

∼= ResG
G′ π⊗ResH

H ′ ρ.

Proof. The case with Res is clear. For Ind, let V and W be the spaces associated with π′ and

ρ′, respectively. Then

IndG×H
G′×H ′(V ⊗W )∼= C[G ×H] ⊗

C[G′×H ′]
(V ⊗W )

which is isomorphic to [CG ⊗CH] ⊗
CG′⊗CH ′

(V ⊗W ). Now define

ϕ : (CG ⊗CH) ⊗
CG′⊗CH ′

(V ⊗W )→ (CG ⊗
CG′

V )⊗ (CH ⊗
CH ′

W )

by g ⊗ h⊗ v ⊗w 7→ g ⊗ v ⊗ h⊗w, and

ψ : (CG ⊗
CG′

V )⊗ (CH ⊗
CH ′

W )→ (CG ⊗CH) ⊗
CG′⊗CH ′

(V ⊗W )

by g ⊗ v ⊗ h⊗w 7→ g ⊗ h⊗ v ⊗w.

It’s easy to see that if they’re well-defined, ϕ and ψ are mutually inverse. To show that ϕ

is well-defined, let g ′ ⊗ h′ be an elementary tensor and observe:

ϕ(g ⊗ h⊗ (g ′ ⊗ h′)(v ⊗w)) = ϕ(g ⊗ h⊗ g ′v ⊗ h′w) by the definition of how G′ ×H ′ acts on

V ⊗W . But applying ϕ yields g ⊗ g ′v ⊗ h⊗ h′w= g g ′ ⊗ v ⊗ hh′ ⊗w since the two factors of

the codomain of ϕ are balanced over CG′ and CH ′. Again looking at the definition of ϕ we

see that this quantity equals ϕ(g g ′ ⊗ hh′ ⊗ v ⊗w) = ϕ((g ⊗ h⊗)(g ′ ⊗ h′)⊗ v ⊗w), as desired.

A similar argument shows that ψ is a balanced map.

To see that ϕ is a morphism of CG ⊗CH-modules, let g1 ⊗ h1 ∈ CG ⊗ CH. Then

ϕ
�

(g1 ⊗ h1)(g ⊗ h⊗ v ⊗w)
�

= ϕ(g1 g ⊗ h1h⊗ v ⊗w)

= g1 g ⊗ v ⊗ h1h⊗w

= (g1 ⊗ h1)ϕ(g ⊗ h⊗ v ⊗w)

as needed.
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Lemma 2.2.11. Let K ⊆ H ⊆ G be a chain of subgroups, π ∈ Rep(K), and ρ ∈ Rep(G). Then

IndG
H IndH

K π
∼= IndG

K π, and ResH
K ResG

H ρ
∼= ResG

K ρ.

Proof. The case for Res is immediate. To prove the Ind case, recall that the adjoint of a

composition of functors is the composition of the adjoints in the opposite order [1,

Proposition 18.5]. We proved above that ResG
K is the adjoint functor to IndG

K . This proves our

desired result.

2.3 Mackey Theory

Our foray into Mackey theory will consist of studying the composition Res◦ Ind. The

formula we arrive at is often used to investigate the irreducibility of induced representations.

We will use it to verify the Hopf axiom in the (yet-to-be-defined) Hopf algebra R(S).

Let G be a finite group, and let M , N ⊆ G be two subgroups, with W ∈ Rep(N). Recall that

for X ∈ Rep(G), we have ResG
M X ∼= CG⊗CM X and IndG

N W ∼= CG⊗CN W . For x ∈ G, define the

notation x M := x M x−1, and recall the functor Ad∗x : Rep(x M)→ Rep(M) of example 2.1.4.

We will prove the following.

Theorem 2.3.1. With the above hypotheses, we have

ResG
M ◦ IndG

N W ∼=
⊕

M xN∈M\G/N
IndM

x N∩M ◦Ad∗x−1 ◦ResN
N∩x−1 M

W.

The proof of this theorem will rely heavily on the tensor product formulas for Ind and Res,

along with some facts about the structure of the bimodules those formulas use. An immediate

consequence of 2.2.7 and 2.2.9 is that

ResG
M IndG

N W ∼= CG ⊗
CG

IndG
N W ∼= CG ⊗

CG
CG ⊗
CN

W,

which tells us that

ResG
M IndG

N W ∼= CG ⊗
CN

W.

In order to study this module, we will prove some structure lemmas about its constituents.
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Lemma 2.3.2. As (CM ,CN)-bimodules, we have

CG =
⊕

M xN∈M\G/N
C[M xN],

where

C[M xN] =

(

∑

(m,n)∈M×N

αm,nmxn

�

�

�

�

�

αm,n ∈ C

)

is the C-subspace of CG with (CM ,CN)-bimodule structure given by multiplication in CG.

The (CM ,CN)-bimodule structure on C[M xN] is given by multiplication in CG.

Proof. The double cosets partition G.

Next, a tool for counting the dimension of an induced representation.

Lemma 2.3.3. For any finite group G, subgroup N thereof, and W a representation of N, we

have dimC(CG ⊗
CN

W ) = |G/N |dimCW.

Proof. First, we observe that for any g ∈ G, C[gN]∼= CN as right CN -modules. Next,

CG ∼=
⊕

gN∈G/N C[gN] as right CN -modules. Thus, as vector spaces,

CG ⊗
CN

V ∼=
⊕

gN∈G/N

�

C[gN]⊗CN V
�∼=

⊕

gN∈G/N

�

C[gN]⊗CN W
�

∼=
⊕

gN∈G/N

(CN ⊗CN W ) = |G/N |(CN ⊗CN W )∼=
|G|
|N |

W.

This proves our result.

Lemma 2.3.4. Let M , N ⊆ G be two subgroups, and x ∈ G. Then, as (CM ,CN)-bimodules, we

have C[M xN]∼= CM ⊗
C[M∩x N]

C[xN]

Proof. Define the map

ϕ : CM ⊗
C[M∩x N]

C[xN]→ C[M xN]

by the formula f ⊗ g 7→ f g (product in CG). Suppose now that l ∈ C[M ∩ x N]. Then

ϕ( f l ⊗ g) = f l g = ϕ( f ⊗ l g). So ϕ is a balanced map by associativity of multiplication in

CG. The same reasoning tells us that ϕ is a map of (CM ,CN)-bimodules.
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Let mxn ∈ C[M xN] be a basis element. Then m⊗ xn 7→ mxn, proving that ϕ is

surjective. Now we’ll prove that

dim(CM ⊗
C[M∩x N]

C[xN]) = |M xN |= dim(C[M xN]).

Using 2.3.3, we must only show that |M/(M ∩ x N)||N |= |M xN |. Consider M × N acting on

G via (m, n) · g := mgn−1. Then M xn is the orbit of x . By the Orbit Stabilizer Theorem (see

[8, Proposition IV.4.34]), M × N/ stab(x)∼= M xN as M × N -sets. We may deduce that

|M xN |= |(M × N)/ stab(x)|=
|M ||N |
| stab(x)|

.

Now note that (m, n) ∈ stab(x) if and only if m= xnx−1, and so the map M ∩ x N → stab(x)

given by m 7→ (m, x−1mx) is a bijection. The existence of such a bijection tells us that

|M xN |=
|M |

|M ∩ x N |
|N |,

and thus ϕ is an isomorphism.

Lemma 2.3.5. As representations of M ∩ x N, we have C[xN]⊗CN W ∼= Ad∗x−1 ◦ResN
x−1 M∩N

W.

Proof. Define the map ϕ : C[xN]⊗CN W → Ad∗x−1 ◦ResN
x−1 M∩N

W by xn⊗w 7→ nw. First note

that ϕ is balanced over CN since multiplication in CG is associative. Next, let

xnx−1 ∈ M ∩ x N . Then, for xn′ ∈ xN , we have

ϕ(xnx−1(xn′ ⊗w)) = ϕ(xnn′ ⊗w) = nn′w= nϕ(xn′ ⊗w) so ϕ is a morphism of

M ∩ x N -representations.

Suppose w ∈W . Then ϕ(x1⊗w) = w and thus ϕ is onto. To prove injectivity we will use

the following three facts:

� C[xN]∼= CN as right CN modules. The map ψ : C[xN]→ CN given by xn 7→ n is easily

seen to be an isomorphism.

� CN ⊗
CN

W ∼=W as left CN -modules (representations of N). By our tensor product formulas

for the functors Ind and Res, we know this is rephrasing the statement that IndN
N W ∼=W

which is clear.
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� dim(C[xN] ⊗
CN

W ) = dim(W ). This follows immediately from the above facts.

It follows that the domain and codomain of the survective map ϕ have equal dimension,

and so ϕ is injective and thus an isomorphism.

With these few lemmas in hand, we’re now in a position to prove Mackey’s Theorem.

Proof of Theorem 2.3.1. As stated before, ResG
M IndG

N W ∼= CG ⊗CN W . We may rewrite this as

⊕

M xN∈M\G/N
C[M xN] ⊗

CN
W.

Next, use 2.3.4 to express this module as

⊕

M xN∈M\G/N
CM ⊗

C[M∩x N]
C[xN]⊗CN W.

Finally, by 2.3.5, this is isomorphic to

⊕

M xN∈M\G/N
CM ⊗

C[M∩x N]
Ad∗x−1 ◦ResN

x−1 M∩N
W.

finally, 2.2.9 allows us to rewrite this as

⊕

M xN∈M\G/N
IndM

M∩x N ◦Ad∗x−1 ◦ResN
x−1 W.

2.4 Generalized Induction and Restriction

In this section we will see generalizations of the Ind and Res functors. Along with these

functors will come formulas and a Mackey theorem similar to those above. And, like before,

these formulas will be the cornerstone of the computations with these new functors. We will

define the multiplication and comultiplication structures of our Hopf algebra in section 3.3.

Here we follow closely the text [11, section 1.1], filling in gaps as we go.

Suppose G is a finite group, and let M , U ⊆ G be subgroups of G such that M normalizes

U , i.e., mum−1 ∈ U for all m ∈ M and u ∈ U . Suppose also that M ∩ U = 1. Under these

assumptions, P := MU = {mu|m ∈ M , u ∈ U} is a subgroup of G since

(m1u1)(m2u2) = m1m2(m−1
2 u1m2)u2.
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Definition 2.4.1. Let ρ : M → GL(V ) be a representation of M . Extend ρ to a representation

ρ′ of P := MU on V via ρ′(mu) := ρ(m). Define the functor iU : Rep(M)→ Rep(G) by

ρ 7→ IndG
P (ρ

′).

Lemma 2.4.2. Let ρ : G→ GL(V ) be a representation of G, and let

V U = {v ∈ V |uv = v for all u ∈ U}. Then V U is M-invariant.

Proof. Indeed, let v ∈ V U , m ∈ M , u ∈ U . Then we have umv = mm−1umv = mm−1umv.

Recall that M normalizes U and v is U-invariant; this last expression is thus equal to

muv = mv.

Definition 2.4.3. Let (ρ, V ) ∈ Rep(G). Define the functor rU : Rep(G)→ Rep(M) by

(ρ, V ) 7→ (ρ|M , V U).

Remark 2.4.4. When U = {1}, the functors rU and iU are the usual restriction and induction

functors ResG
M and IndG

M . In this case, P = M and V U = V .

Lemma 2.4.5. Let M, U, and G be as above. Suppose N, V ⊆ M are subgroups such that N

normalizes V , and N ∩ V = 1. Then the functors iV : Rep(N)→ Rep(M) and

rV : Rep(M)→ Rep(N) exist and are defined as before. The equalities iU ◦ iV = iUV and

rV ◦ rU = rUV hold.

Proof. Let (ρ, W ) ∈ Rep(N), and set Q := NV . Then we define (ρ′, W ) ∈ Rep(Q) via

ρ′(nv) := ϕ(n). We know that iV (ρ) = IndM
Q (ρ

′)∼= CM ⊗CQ W .

Call ρ = iV (ρ). Then ρ′ ∈ Rep(P) is given by a definition analogous to the above. So now

iU(ρ) = IndG
P (ρ

′)∼= CG ⊗CP IndM
Q (ρ

′) which we know is isomorphic to CG ⊗CP CM ⊗CQ W .

Now define (ρ̃, W ) ∈ Rep(NUV ) by the formula ρ̃(nuv) := ρ(n). Then we have

iUV (ρ) = IndG
NUV (ρ̃) which is isomorphic to CG ⊗CNUV W . Now define the map

ψ : CG ⊗CP CM ⊗CQ W → CG ⊗CNUV W by g ⊗m⊗w 7→ gm⊗w. This map is balanced over

CP since multiplication is associative in CG. It is balanced over CQ since its codomain is

balanced over CNUV ⊇ CQ.
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The map ψ is evidently surjective. Now observe that the dimension of CG ⊗CNUV W is

equal to |G|
|N ||U ||V | dim(W ). The dimension of CG ⊗CP CM ⊗CQ W is

|G|
|M ||U |

|M |
|N ||V |

dim(W ) =
|G|

|N ||U ||V |
dim(W ).

Thus ψ is an isomorphism, so iU ◦ iV = iUV .

It remains to show that rV ◦ rU = rUV . Observe that rV (rU(W )) = (W U)V =W UV .

Now the tensor product formulas for i and r. From now on M , U ⊆ G are as above unless

otherwise specified.

Proposition 2.4.6. Let

eU :=
1
|U |

∑

u∈U

u ∈ CG.

Then CGeU is a (CG,CM)-bimodule, and the functor iU is given by iU(V )∼= CGeU ⊗CM
V .

Lemma 2.4.7. 1. For any m ∈ M, meU = eU m.

2. For any representation V of G, the map eU : v→ V given by v 7→ eU v is the projection of V

onto V U .

Proof. For (1), we compute directly: meU = m 1
|U |

∑

u u= 1
|U |

∑

u mu= 1
|U |

∑

u mum−1m. Since

M normalizes U , this last expression equals 1
|U |

∑

u um= eU m.

(2) follows from the observation that the map eU is idempotent with image V U .

Proposition 2.4.8. If E ∈ Rep(G), then rU(E) = EU is isomorphic to HomG(CGeU , E) as

representations of M.

Proof. Define ϕ : HomG(CGeU , V )→ V U by T 7→ TeU . First we must show this map is

well-defined. That is, that TeU ∈ V U . Let u ∈ U . Then

uT (eU) = T (ueU) = T ( 1
|U |

∑

u0∈U uu0) = TeU , as desired. It is also easy to see that ϕ is linear.

Now we’ll show that ϕ is a morphism of M representations. Let m ∈ M . Then

ϕ(mT ) = (mT )(eU) = T (eU m) = T (meU) = m(TeU) = m(ϕ(T )), as needed.
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Now suppose that TeU = 0. Then for all k ∈ G, T (keU) = kTeU = k0= 0. Thus T = 0, so

ϕ is injective. To see that ϕ is surjective, suppose v ∈ V U . Define a G-equivariant map

S : CGeU → V by S( f eU) := f eU v. Then S is G-equivariant by the associativity of

multiplication in CG. Now note that ϕ(S) = S(eU) = eU v = v, since v is U-invariant. Thus ϕ

is an isomorphism of representations of M .

Proposition 2.4.9. Let ρ : G→ GL(V ) be a representation of G. Then V U is isomorphic to

[eUCG]⊗CG V as representations of M.

Proof. Define the map ϕ : [eUCG]⊗CG V → V U by ϕ : eU f ⊗ v 7→ eU f v. To see that ϕ is

balanced over CG, observe that ϕ((eU f g)⊗ v) = (eU f g)v = (eU f )(gv) which is equal to

ϕ(eU f ⊗ gv).

Now define ψ : V → [eUCG]⊗CG V by ψ(V ) := eU ⊗ v. Then

ϕ(ψ(v)) = ϕ(eU ⊗ v) = eU v = v,

and

ψ(ϕ(eU f ⊗ v)) =ψ(eU f v) = eU ⊗ eU f v = eU
2 f ⊗ v = eU f ⊗ v.

Thus ϕ and ψ are mutually inverse isomorphisms of vector spaces. The M -equivariance of

the map ϕ is clear.

Proposition 2.4.10. The functors iU is left-adjoint to rU ; that is,

HomG(iU(V ), W )∼= HomM(V, rU(W ))

Proof. By 2.4.6 and 2.4.8, this fact follows from the tensor-Hom adjunction (2.2.1).

Now consider the case where G = MU . In this case IndG
MU = id and ResG

MU = id. What

we’ve shown is that inflating a representation of M to one of MU by defining U to act trivially

is adjoint to taking unvariants under U . In symbols, let InflMU
M : Rep(M)→ Rep(MU) be given

by ρ 7→ ρ′ as above. Also define InvMU
M : Rep(MU)→ Rep(M) by V 7→ V U . By restricting the

above arguments to the G = MU case, we’ve shown that Infl is a one-sided adjoint to Inv.
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2.5 Another Mackey Theorem

In order to continue, we’ll need a Mackey-style formula for the composition for the i and

r functors defined in the previous section. This result is stated in [11, A.3.1] as a special case

of [2, § 5], with a note to the reader that it may also be verified via a character computation.

This character computation is what follows.

Recall that by 2.1.18 the irreducible characters of G form a basis for the complex vector

space of class functions on G; i.e., the irreducible characters are linearly independent and

span

Cl(G) = { f : G→ C| f (g x g−1) = f (x) for all x , g ∈ G}.

By the correspondence between irreducible characters of G and irreducible representations of

G, we may consider R(G) = Z Irr(G) as an additive subgroup of Cl(G). If

F : Rep(G)→ Rep(H) is a functor that commutes with direct sums, then F induces a linear

map Cl(G)→ Cl(H). We now compute the linear maps on class functions induced by the

functors iU and rU .

Let M , U , N , V ⊆ G be subgroups satisfying M ∩ U = {1} and N ∩ V = {1}, with M and N

normalizing U and V , respectively.

Proposition 2.5.1. The map rU : Cl(G)→ Cl(M) induced by the functor

rU : Rep(G)→ Rep(M) is given by

rU( f )(m) =
1
|U |

∑

u∈U

f (mu).

Proof. Let (ρ, V ) ∈ Rep(G). Then by part 2 of 2.4.7, eU is a projection onto V U . If χV is the

character of V and χV U is the character of V , then

χEU (m) = Tr(π(m)
�

�

EU ) = Tr(ρ(m)π(eU)) = Tr

�

π(m)
1
|U |

∑

u

π(u)

�

=
1
|U |

∑

u

Tr(π(mu)) =
1
|U |

∑

u

χE(mu).
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To prove the corresponding forumla for i, we’ll first need a result known as the Frobenius

character formula.

Theorem 2.5.2 (Frobenius character formula). Let χ be the character of IndG
H V , and χV the

character of V . Then

χ(g) =
∑

H x∈H\G
x g x−1∈H

χV (x g x−1).

Proof. For each coset H x , define Vx = { f ∈ IndG
H V | f (g) = 0 for each g /∈ H x}. To understand

these subspaces, let y ∈ H x , so that y = hx for some h ∈ H. Then for f ∈ IndG
H V , we have

f (y) = f (hx) = hf (x); so values of f on particular cosets are determined by values of f on a

single representative of the coset. Thus let {v1, . . . , vm} be a basis for V , and let X ⊆ G be a

complete set of representatives for the cosets H\G. Define for each coset H x the function

δx ,i ∈ IndG
H V by

δx ,i(y) =











hvi if y = hx for some h ∈ G

0 else.

The set {δx ,i|x ∈ X , i = 1, . . . , m} is a basis for IndG
H V . It follows that IndG

H V =
⊕

x∈X Vx .

Hence χ(g) =
∑

x∈X Tr |Vx
(g), where Tr |Vx

denotes taking the trace of g as an operator on the

space Vx . Now let g ∈ G, and observe that g ·δx ,i(x) = δx ,i(x g) = 0 if x g /∈ H x . Hence

Tr |Vx
(g) = 0 in this case.

In the case that x g ∈ H x , we have x g = hx for some h. Hence h= x g x−1 ∈ H. Now

define the function α : Vx → V given by α( f ) := f (x). Considering that the functions δx ,i

span Vx and are determined by their values on x , it follows that α is an isomorphism. Next,

observe that

α(g · f ) = g · f (x) = f (x g) = f (hx) = hf (x) = hα( f ).

Since α is invertible, this says that g · f = α−1hα( f ). Using these facts and the property

Tr(bab−1 = Tr(a), we see that Tr |Vx
(g) = Tr |Vx

(α−1hα) = Tr |V (h). Thus we have

χ(g) =
∑

H x∈H\G
x g x−1∈H

χV (x g x−1)
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as claimed.

Now recall that in the definition of the iU functor, we pull back a representation of M to a

representation of MU along the homomorphism given by projection µ : MU � M . Thus the

element mu acts as the element m. So if V is a representation of M with character χ1, and we

also consider V as a representation of MU with character χ2, we have

χ2(mu) = χ1(m) = χ1(µ(mu)).

Proposition 2.5.3. Let f ∈ Cl(M). We have

iU( f )(g) =
∑

MU x∈MU\G
x g x−1∈MU

f (µ(x g x−1))

for all g ∈ G.

Proof. The functor iU is defined as the pullpack along µ : MU � M followed by induction

from MU to G. This follows immediately from the Frobenius formula and the above

comments about pulling back along the projection µ.

Definition 2.5.4. Let M and U be subgroups of a group G, such that M normalizes U and

M ∩ U = {1}. We say a subgroup H of G is decomposable with respect to (M , U) if

H ∩ (MU) = (H ∩M)(H ∩ U).

Let M , N , U , and V be subgroups of a group G with M normalizing U and N normalizing

V , and satisfying N ∩ V = M ∩ U = {1}. Define also P := MU and Q := NV . Let W ⊆ G be a

complete set of double coset representatives for Q\G/P, and assume that for each w ∈W , the

groups wP, wM , and wU are decomposable with respect to (N , V ), and w−1
Q, w−1

N , and w−1
V are

decomposable with respect to (M , U).

With the above data, we may define functors iN∩wU : Rep(wM ∩ N)→ Rep(N),

Ad∗w−1 : Rep(M ∩ w−1
N)→ Rep(wM ∩ N), and rM∩w−1 V : Rep(M)→ Rep(M ∩ w−1

N).

Theorem 2.5.5. Let M , U , N , V , and G be as above. Then

rV ◦ iU =
⊕

NV wMU
∈NV\G/MU

iN∩wU ◦ Ad∗w−1 ◦ rM∩w−1 V
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as maps Cl(M)→ Cl(N).

We will again prove this theorem via a series of lemmas. This time, though, we will use

the lemmas to reindex and rewrite sums to achieve our goal.

Lemma 2.5.6. For each w ∈W, the map

ψ : Q/(Q ∩ wP)→QwP/P, q[Q ∩ wP] 7→ qwP

is a bijection.

The set QwP is not a group, but a subset of G on which P acts by right multiplication. So

QwP/P denotes the set of orbits of this action.

Proof. First we must show ψ is well-defined. Indeed, suppose

q1[Q ∩ wP] = q2[Q ∩ wP].

Then q1 = q2wpw−1 for some p ∈ P. Thus q1wP = q2wpw−1wP = q2wpP = q2wP.

In order to prove ψ is injective, suppose now that q1wP = q2wP. Then q1wp = q2w for

some p ∈ P; i.e. wpw−1 = q−1
1 q2. So, q−1

1 q2 ∈Q ∩ wP and therefore q1[Q ∩ wP] = q2[Q ∩ wP].

To see that ψ is surjective, let qwpP = qwP ∈QwP/P. Then q[Q ∩ wP] 7→ qwP, as

desired.

Lemma 2.5.7. The map ψ : N/(N ∩w P)× (V/(V ∩ wP)→Q/(Q ∩ wP) given by

(η[N ∩ wP], v[V ∩ wP]) 7→ ηv[Q ∩ wP] is a bijection.

Proof. We will prove that the map ψ is well-defined and injective in the same way. Suppose

η1v1[N ∩ wP] = η2v2[N ∩ wP]. This is equivalent to saying v−1
2 η2η1v1 ∈ N ∩ wP, which, again,

is equivalent to the statement that

(η−1
2 η

−1
1 )(η

−1
2 η

−1
1 )
−1v−1

2 (η2η1)v1 ∈Q ∩ wP.

This quantity η−1
2 η

−1
1 is obviously in N and, since N normalizes V, the product

(η−1
2 η

−1
1 )
−1v−1

2 (η2η1)v1 lies in V. By our decomposability hypothesis, we know

Q ∩ wP = (N ∩ wP)(V ∩w P).
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The above equation is thus equivalent to the statement that η−1
2 η1 ∈ N ∩ wP and

(η−1
2 η

−1
1 )
−1v−1

2 (η2η1)v1 ∈ V ∩ wP. This is true if and only if η1 = η2 and

v1[V ∩ wP] = v2[v ∩ wP].

The surjectivity of this map should be obvious: if q[Q ∩ wP] = nv[Q ∩ wP] ∈Q/(Q ∩ wP),

then (n[Q ∩ wP], v[V ∩ wP]) 7→ nv[Q ∩ wP], as desired.

Lemma 2.5.8. Fix w ∈W and let λ : N ∩ wP � N ∩ wM be the projection whose existence is

guaranteed by the equality N ∩ wP = (N ∩ wM)(N ∩ wU). Then µ(w−1 gw) = w−1λ(g)w for all

g ∈ N ∩ wP.

Proof. Suppose g = wmuw−1 = n. Then µ(w−1 gw) = µ(w−1(wmuw−1)w) = µ(mu) = m. On

the other hand, by definition, λ((wmw−1)(wuw−1)) = wmw−1. Hence

w−1λ(g)w= w−1wmw−1w= m, as desired.

We’re now in a position to prove Theorem 2.5.5.

Proof of 2.5.5. Let f ∈ Cl(M) and let n ∈ N . Then we may use 2.5.1 and 2.5.3 to compute

rV ◦ iU( f )(n) =
1
|V |

∑

v∈V

iU( f )(nv) =
1
|V |

∑

v∈V

∑

x P∈G/P:
x−1nvx∈P

f (µ(x−1nvx)).

Note that the double cosets of G by Q and P partition G; thus we may rewrite this sum as

∑

w∈W

∑

x P∈QwP/P

1
|V |

∑

v∈V :
x−1nvx∈P

f (µ(x−1nvx)).

Fixing a single w, let us consider the corresponding summand:

fw(n) =
∑

x P∈QwP/P

1
|V |

∑

v∈V :
x−1nvx∈P

f (µ(x−1nvx)).

By Lemma 2.5.6 we may rewrite fw(n) as

fw(n) =
∑

q[Q∩wP]
∈Q/(Q∩wP)

1
|V |

∑

v∈V :
w−1q−1nvqw∈P

f (µ(w−1q−1nvqw)).
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We may rewrite the condition w−1q−1nvqw ∈ P as q−1nvq ∈Q ∩ wP. Set q = ηy with

η[N ∩ wP] ∈ N/[N ∩ wP] and y[V ∩ wP] ∈ V/(V ∩ wP). We may now rewrite fw(n) using

Lemma 2.5.7 to replace the first sum with two sums:

fw(n) =
1
|V |

∑

η∈N/(N∩wP)

∑

y∈V/(V∩wP)

∑

v∈V :
y−1η−1nvηy∈Q∩wP

f (µ(w−1 y−1η−1nvηyw)).

We will now make the following change of variables:

vnew = [(η
−1nη)−1 y−1(η−1nη)] ·η−1voldη · y

(This is a valid change of variables: that is, the mapping vold 7→ vnew is a permutation of V .

Indeed, recall that N normalizes V , and observe that η−1nη ∈ N ; thus

(η−1nη)−1 y−1(η−1nη) ∈ V . Note also that η−1voldη ∈ V ). Now

η−1n−1ηvnew = y−1(η−1nη) ·η−1voldη · y

Therefore with this substitution the argument of µ becomes w−1η−1nηvw, which is constant

in y. This allows us to replace the
∑

y with |V/(V ∩ wP)|= |V |
|V∩wP| . Additionally, the condition

y−1η−1nvηy ∈Q ∩ wP becomes η−1nηv ∈ N ∩ wP. Our formula for fw(n) thus simplifies to

fw(n) =
1

|V ∩w P|

∑

η∈N/(N∩wP)

∑

v∈V :
η−1nηv∈Q∩wP

f (µ(w−1η−1nηvw)).

Recalling our decomposability assumption, we know that η−1nηv ∈Q ∩ wP if and only if

η−1nη ∈ N ∩ wP and v ∈ V ∩ wP. Thus we may write

fw(n) =
1

|V ∩ wP|

∑

η∈N/(N∩wP)

∑

v∈V∩wP
η−1nη∈N∩wP

f (µ(w−1η−1nηvw)).

Now, since µ is a homomorphism, we know that

µ(w−1η−1nηvw) = µ(w−1η−1nηw ·w−1vw) = µ(w−1η−1nηw)µ(w−1vw).

Again by the decomposition hypothesis we may write v ∈ V ∩ wP as x y with x ∈ V ∩ wM and

y ∈ V ∩ wU . Thus we have µ(w−1vw) = µ(w−1 xw ·w−1 yw) = w−1 xw, by the definition of µ.
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So the V ∩ wU part of our sum is constant. We may therefore write

fw(n) =
1

|V ∩ wM |

∑

η∈N/(N∩wP)
η−1nη∈N∩wP

∑

v∈V∩wM

f (µ(w−1η−1nηw) ·µ(w−1vw)).

Now recall that v ∈ V ∩ wM . Call x := w−1vw ∈ w−1
V ∩M . Let λ : N ∩ wP � N ∩ wM be the

projection as in Lemma 2.5.8. According to that lemma, we may rewrite fw(n) once again as

fw(n) =
∑

η∈N/(N∩wP)

1
|M ∩ w−1 V |

∑

x∈M∩w−1
V

η−1nη∈N∩wP

f (w−1λ(η−1nη)w · x)). (2.5.9)

We will now calculate the image of f under the composition

Cl(M)
r

M∩w−1 V−−−−→ Cl(M ∩ w−1
N)

Adw−→ Cl(N ∩w M)
iN∩wU−−−→ Cl(N).

Observe that 2.5.3 gives

iN∩wU ◦ Adw ◦ rM∩w−1 V ( f )(n) =
∑

η∈N/(N∩wP)
η−1nη∈N∩wP

Adw ◦ rM∩w−1 V ( f )(λ(η
−1nη)).

We may rewrite this sum first as

∑

η∈N/(N∩wP)
η−1nη∈N∩wP

rM∩w−1 V ( f )(w
−1λ(η−1nη)w),

and finally, using 2.5.1, as

∑

η∈N/(N∩wP)
η−1nη∈N∩wP

1
|M ∩ w−1 V |

∑

x∈M∩w−1 V

f (w−1λ(η−1nη)w · x).

Comparing this expression to 2.5.9 then proves our desired result; that is

rV ◦ iU =
⊕

w

iN∩wU ◦ Ad∗w−1 ◦ rM∩w−1 V .
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CHAPTER 3

THE HOPF ALGEBRA R(S)

3.1 Overview

In the present chapter we begin to explore the representation theory of the symmetric

groups, following the work of Zelevinsky in [11]. We will define the algebra and coalgebra

R(S) of virtual representations of the family Sn. The construction of the structures will use

the language of the functors r and i for convenience, but in this case what we’re really using

are the functors Res and Ind.

3.2 Algebras and Coalgebras

We will define (co)algebras in terms of diagrams, not elements. All rings will be assumed

to have a unit.

Definition 3.2.1. An algebra over a commutative ring R consists of an R-module A along with

maps u : R→ A and m : A⊗R A
a⊗b 7→ab
−−−−→ R such that the following diagrams commute:

A⊗ R

1⊗u
��

Aa⊗1← [aoo

1
��

a 7→1⊗a // R⊗ A

u⊗1
��

A⊗ A m // A A⊗ Amoo

A⊗ A⊗ A
1⊗m
uu

m⊗1
))

A⊗ A
m ))

A⊗ A
muuA

We call the element u(1) ∈ A the unit of A.

In terms of elements, these diagrams express the axioms 1a = a1= a and (ab)c = a(bc),

respectively. The reason for expressing these properties with diagrams instead of elements is

so that we may more easily define the dual structure by reversing arrows as follows.
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Definition 3.2.2. A coalgebra over a commutative ring R is an R-module C along with maps

u∗ : C → R and m∗ : C → C ⊗ C such that the following diagrams commute:

C ⊗ R c⊗r 7→rc // C R⊗ Crc← [r⊗coo

C ⊗ C

1⊗u∗

OO

Cm*oo

1

OO

m* // C ⊗ C

u∗⊗1

OO

C ⊗ C ⊗ C

C ⊗ C

m*⊗1 55

C ⊗ C

1⊗m*jj

Cm*

jj

m*

55

Remark 3.2.3. Based on the above diagrams, algebras and coalgebras deserve their names,

relative to one another. The diagrams are opposites of one another.

Remark 3.2.4. The lower diagram in the (co)algebra definition will be referred to as the

(co)associativity condition.

Example 3.2.5. Let A be an algebra. Then we may endow A⊗ A with the structure of an

algebra by defining multiplication componentwise. That is, define

mA⊗A : A⊗ A⊗ A⊗ A
a⊗b⊗c⊗d 7→a⊗c⊗b⊗d
−−−−−−−−−−−→ A⊗ A⊗ A⊗ A

m⊗m
−−→ A⊗ A.

Definition 3.2.6. In this new context, a morphism of algebras µ : A→ B is a function A→ B

making the following diagrams commute:

A
µ // B

A⊗ A

mA

OO

µ⊗µ // B ⊗ B

mB

OO

A
µ // B

R
uA

ee

uB

99

Remark 3.2.7. This definition of a morphism reduces to the usual definition when we

consider specific elements. That is, if µ : A→ B is a morphism of algebras, then
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µ(a1a2) = µ(a1)µ(a2), and µ preserves the unit. A morphism of coalgebras must make the

opposite diagrams commute.

Definition 3.2.8. A morphism of coalgebras is a map ν : C → D which makes the following

diagrams commute:

C
m*C
��

Dνoo

m*D
��

C ⊗ C D⊗ Dν⊗νoo

C

u∗A %%

Dνoo

u∗Byy
R

The algebras and coalgebra we will study are graded.

Definition 3.2.9. 1. An algebra A over R is graded if for each positive integer n there is an

R-submodule An, such that A= ⊕n≥0An; further, for a ∈ Ak and a′ ∈ Al , it must be that

aa′ ∈ Ak+l . For a particular n, elements of An are called homogeneous elements of

degree n. Another way to express this fact is to say m(Ak ⊗ Al) ⊆ Ak+l .

2. A coalgebra C is graded if for each positive integer n there is an R-submodule Cn, such

that C = ⊕n≥0Cn; additionally, for c ∈ Cn, c must satisfy m∗(c) ∈
⊕

n=k+l Ck ⊗ Cl .

3.3 Algebra and Coalgebra Structures on R(S)

For each positive integer n, denote by Sn the symmetric group on n letters; that is, the

group of permutations of {1, . . . , n}. Consider the free abelian group with a basis consisting of

isomorphism classes of irreducible representations of Sn; that is, define R(Sn) := Z Irr(Sn) (by

convention, say S0 is the trivial group). This is the Z-module of virtual representations of Sn.

We call nonnegative integral combinations of irreducibles positive elements of this module,

and identify the collection thereof with the set of isomorphism classes in the category
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Rep(Sn). An isomorphism class [ρ] ∈ Irr(Sn) is identified with the basis element ρ ∈ R(Sn).

Define the abelian group

R(S) :=
⊕

n≥0

R(Sn)

as at the outset of chapter 3. We will prove that the functors Ind and Res give graded algebra

and coalgebra structures for this group.

Suppose k+ l = n. The stabilizer of {1, . . . , k} ⊆ {1, . . . , n} is easily seen to be isomorphic

to Sk × Sl via the canonical isomorphism

(σ,τ) 7→






i 7→











σ(i) if i ≤ k

k+τ(i − k) if k < i






.

We may thus regard Sk × Sl as a subgroup of Sn. Recall the bijection

Irr(G)× Irr(H)→ Irr(G ×H)

given by (V, W ) 7→ V ⊗CW of Proposition 2.1.12. This allows us to make the identification

R(Sk × Sl)∼= R(Sk)⊗R(Sl) via the bijection of basis elements V ⊗CW 7→ V ⊗ZW which sends

tensor products of representations to elementary tensors in R(Sk)⊗R(Sl). The following

definitions generalize this idea.

Definition 3.3.1. Let n be a positive integer. A composition of n is a tuple β = (b1, . . . , bs)

satisfying b1, . . . , bs > 0 and
∑

i bi = n. Denote the set of compositions of n by Cn.

Next, let γ= (γi)i∈I be a set-theoretic partition of {1, . . . , n}. That is, γi ⊆ {1, . . . , n},

γi ∩γ j = ; for i 6= j, and tiγi = {1, . . . , n}; the subsets γi are called the blocks of γ. We call γ a

set partition of n. Say γ1 and γ2 are two set partitions of n such that each block of γ1 is

contained in some block of γ2. Then we say γ1 ≤ γ2. Denote by Pn the collection of all set

partitions of n.

Example 3.3.2. There is a canonical injection Θ :Cn ,→Pn given by sending a composition

(b1, . . . , bs) to the set partition with blocks

{1, . . . , b1}, {b1 + 1, . . . , b1 + b2}, . . . , {n− bs + 1, . . . , n}. This allows us to consider

compositions as set partitions.
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On the collection Pn define the operation ∧ by declaring α∧ β to be the set partition

whose blocks are the nonempty intersections αi ∩ β j. The group Sn acts on Pn in a natural

way: the permutation σ sends γ= (γi) to the set partition σγ= (σ(γi)).

Set partitions interact with the symmetric groups in a predictable way, as the next

proposition shows. For a set partition α of n, let Sα be the subgroup of Sn containing all

permutations which restrict to bijections of each block of α. So σ ∈ Sα if and only if σ|αi
is a

permutation of αi.

Proposition 3.3.3. 1. For any set partitions α and β of n, Sα ∩ Sβ = Sα∧β

2. For each w ∈ Sn, α≤ β if and only if wα≤ wβ

3. For w ∈ Sn, w(α∧ β) = wα∧wβ

4. For w ∈ Sn, wSα = Swα

5. For any set partition α of n, Sα ∼= S|α1| × · · ·S|αr |

6. For set partitions α,β ∈ Pn, if α≤ β , then Sα is a subgroup of Sβ .

Proof. For (1), suppose w ∈ Sn preserves all the αi and the β j. Then it preserves the αi ∩ β j.

Hence w ∈ Sα∧β . On the other hand, if w′ preserves each set αi ∩ β j, then it evidently

preserves each αi and β j individually, since αi = t j(αi ∩ β j) and β j = ti(αi ∩ β j.

For (2), suppose α≤ β and consider two blocks αi ⊆ β j. Then w(αi) ⊆ w(β j), so

wα≤ wβ . To prove the converse, use the same argument with w−1.

For (3), consider one block w(αi)∩w(β j) of wα∧wβ . We know that since w is a

permutation, we have w(αi)∩w(β j) = w(αi ∩ β j). So every block of wα∧wβ is the image of

some block of α∧ β . A similar argument using w−1 shows the converse.

To prove (4), let w ∈ Sα. Then for k ∈ w(αi), we have wσw−1(k) ∈ w(αi) as well. Hence

wSα ⊆ Swα. Now suppose ρ ∈ Swα and l ∈ α j. Then w−1ρw(l) ∈ α j, so w−1ρw ∈ Sα, as desired.
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To see why (5) is true, we begin by considering the set partition defined by the

composition (k, l) the map ϕ : Sk × Sl → S(k,l) given by

(σ,τ) 7→






i 7→











σ(i) if 1≤ i ≤ k

τ(i − k) + k if k+ 1≤ i ≤ k+ l







is easily seen to be an isomorphism. By induction this process is valid for all compositions.

The case for set partitions is similar.

Finally, for (6), suppose σ ∈ Sα. Then σ preserves the blocks of α, which are all subsets of

blocks of β . Hence σ preserves the blocks of β as well.

Definition 3.3.4. For any set partitions α≤ β of n, we define functors

iβ
α

: Rep(Sα)→ Rep(Sβ)

and

rβ
α

: Rep(Sβ)→ Rep(Sα)

by iβ
α
= Ind

Sβ
Sα

and rβ
α
= Res

Sβ
Sα

. These functors induce Z-linear maps

iβ
α

: R(Sα)→ R(Sβ)

defined on basis elements by ρ 7→ iβ
α
(ρ) and

rβ
α

: R(Sβ)→ R(Sα)

defined on basis elements by π 7→ rβ
α
(π).

Let π ∈ Rep(Sn) be some positive element of R(S). We define comultiplication on R(S) by

m∗(π) :=
∑

k+l=n

rn
k,l(π).

Note that

m∗(π) ∈
⊕

n=k+l

R(Sk)⊗R(Sl) ⊆ R(S)⊗R(S).
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To prove coassociativity, we need to show that (m*⊗ 1) ◦m*= (1⊗m*) ◦m* as maps

R(S)→ R(S)⊗R(S)⊗R(S). Indeed, let π be a representation of Sn (i.e., a positive element of

R(Sn). Then we may use the associativity of restriction (Lemma 2.2.11) and of tensor

products to deduce that

(m*⊗ 1) ◦m*(π) =
∑

k+l=n

rn
k,l(π) =

∑

k+l=n

∑

a+b=k

rn
a,b,l(π)

∼=
∑

k+l=n

∑

a+b=k

rn
l,a,b(π) = (1⊗m*) ◦m*(π).

The isomorphism is an equality when we move to the level of Grothendieck groups R(Sn).

Example 3.3.5. We will compute the comultiplication of the representation ρ : S3→ GL2(C)

of example 2.1.16. For each n, define trivn to be the trivial representation of Sn, and sgnn to

be the sign representation of Sn; write triv0 = 1. According to the definition,

m∗(ρ) =
∑

3=k+l

r3
k,l(ρ) = r3

0,3(ρ) + r3
1,2(ρ) + r3

2,1(ρ) + r3
3,0(ρ).

Now r3
1,2(ρ) =



(23) 7→ ρ((12)(123) =





0 e−2πi/3

e2πi/3 0







, which is a 2-dimensional

representation of S1,2
∼= S2. Then the subspace {(a, b)|b = e2πi/3a} is a subrepresentation

isomorphic to triv2, and the subspace {(a, b)|b = −e2πi/3a} is a subrepresentation isomorphic

to sgn2.

On the other hand, now consider r3
2,1(ρ). This representation is given by

(12) 7→





0 1

1 0



 .

This representation has C(e1 + e2) and {(a, b)|a = −b} as subrepresentations isomorphic to

triv2 and sgn2, respectively (e1 and e2 are the standard basis vectors for C2).

We may conclude that

m∗(ρ) = 1⊗ρ + triv1⊗[triv2+ sgn2] + [triv2+ sgn2]⊗ triv1+ρ ⊗ 1.
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Now we’ll define m : R(S)⊗Z R(S)→ R(S) in order to give R(S) an algebra structure. Let

π ∈ R(Sk),ρ ∈ R(Sl), and suppose k+ l = n. Then π⊗C ρ ∈ R(Sk × Sl). We define

multiplication in R(S) by πρ = m(π⊗Z ρ) := in
k,l . To check associativity, suppose

πl ∈ R(Sl),πm ∈ R(Sm), and πn ∈ R(Sn). We need to show that

m ◦ (1⊗m)(πl ⊗πm ⊗πn) = m ◦ (m⊗ 1)(πl ⊗πm ⊗πn). It will be sufficient to show that

i l+m+n
l,m+n (πl ⊗ im+n

m,n (πm ⊗πn))∼= i l+m+n
l+m,n (i

m+m
l,m (πl ⊗πm)⊗πn)

as representations of Sl+m+n. But we may rewrite the left hand side of this equivalence as

i l+m+n
l,m+n (i

l,m+n
l,m,n (πl ⊗πm ⊗πn)) by definition of the functors being used. This is equivalent to

i l+m+n
l,m,n (πl ⊗πm ⊗πn) by the transitivity of Ind (Lemma 2.2.11). Similarly, the right hand side

of equation (3.3) is equivalent to i l+m+n
l,m,n (πl ⊗πm ⊗πn). This proves the associativity of

multiplication in R(S).

Next we define the unit and counit. For a unit, define u : Z→ R(S) by sending 1 ∈ Z to the

trivial representation of S0; denote u(1) by I . What we need to do amounts to proving that if

ρ ∈ Rep(Sn), then m(I ⊗ρ)∼= ρ. We only need to show isomorphism because R(Sn) is defined

in terms of equivalence classes of representations. But it’s evident that m(I ⊗ρ) = in
0,n(ρ)

∼= ρ.

For a counit, define u∗ on basis elements. Say

u∗(ρ) :=











1 ρ ∈ Irr(S0)

0 else

The condition to be satisfied amounts to checking that if π ∈ Rep(Sn), then

(u∗ ⊗ 1)(m∗(π))∼= π as representations. Following definitions, we arrive at

(u∗ ⊗ 1)(m∗(π)) = (u∗ ⊗ 1)(
∑

n=k+l

rn
k,l(π)) = rn

0,n(π) = π.

The other calculation is carried out similarly.

Definition 3.3.6. Let A=
⊕

n≥0 An be a graded algebra over and coalgebra over Z. Then A is

connected if u : Z→ A and u∗|A0
: A0→ Z are mutually inverse isomorphisms. If A is
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connected, then A is a Hopf algebra if m* is a morphism of algebras; that is, if the following

diagram commutes:

A⊗ A

m

��

m*⊗m*

**
A⊗ A⊗ A⊗ A

f

��

R(Sn)

m*

��

A⊗ A⊗ A⊗ A

m⊗m
tt

A⊗ A

where all tensor products are over Z.

Remarks 3.3.7. The definition of a Hopf algebra usually doesn’t include the graded and

connected conditions, but instead includes another piece of data called the antipode of the

Hopf algebra (see [5, section 1.4] for details). However, every algebra and coalgebra A

satisfying the above definition admits a unique antipode; see [5, Theorem 1.4.14]. Since only

connected graded Hopf algebras are within the scope of this thesis, definition 3.3.6 will

suffice.

Example 3.3.8. Let G be a finite group. The group ring CG has the structure of an algebra

and a coalgebra. Multiplication is defined by g · h := gh on basis elements and extended by

linearity; comultiplication is defined by m∗(g) := g ⊗ g. With these definitions, one may

easily verify m∗(gh) = m∗(g)m∗(h). Let V and W be representations of G. Then we already

know that V ⊗W is a representation of G via g · (v ⊗w) := gv ⊗ gw. This definition tells us

that G acts on V ⊗W through m∗. That is, g · (v ⊗w) = m∗(g)(v ⊗w). Thus the fact that

comultiplication is a map of algebras gives us the necessary associativity that assures this is a

group action.
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Remarks 3.3.9. It’s immediate from the definitions of u and u∗ that R(S) is connected. We

give a grading on R(S) by declaring R(S)n := R(Sn). Thus our definitions of m and m∗

immediately imply that R(S) is a graded algebra and coalgebra.

The following theorem appears as [11, section 6.1].

Theorem 3.3.10. R(S) is a Hopf algebra.

Proving Theorem 3.3.10 will require a bit of setup.

Say π ∈ R(Sk′) and ρ ∈ R(Sl ′) with k′ + l ′ = n. Then we must compute the composition

R(Sk′)⊗R(Sl ′)
m
−→ R(Sn)

m*
−→ R(S)⊗R(S).

By the definition of m*, the image is in

⊕

k+l=n

R(Sk)⊗R(Sl).

Fixing one summand, we would like to calculate

R(Sk′)⊗R(Sl ′)
m
−→ R(Sn)

m*k,l
−−→ R(Sk)⊗R(Sl).

By the identifications made earlier, this amounts to the composition

R(Sk′,l ′)
Ind
−→ R(Sn)

Res
−→ R(Sk,l).

The Mackey Theorem (2.3.1) describes this composition. In order to utilize the theorem, we

must choose a suitable set of double coset representatives for

Sk,l\Sn/Sk′,l ′ .

3.3.1 Double Cosets Sβ\Sn/Sα

Let α and β be compositions of n. In this section we will give an explicit description of a

canonical set of representatives for the double cosets Sβ\Sn/Sα. This will be accomplished by

parameterizing such representatives by matrices with nonnegative integer entries that sum to
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n. To each such matrix we will associate a representative which will give us a twisting map as

in example 3.2.5.

We’ll separate the problem of paramterizing Sβ\Sn/Sα by first understanding Sn/Sα. Next,

we’ll use associativity of multiplication to realize Sβ\Sn/Sα as the set of orbits for the action

of Sβ on Sn/Sα by multiplication.

Suppose α= (α1,α2, ...,αr) and β = (β1,β2, ...,βs) are compositions of n. Define

Xα = { f : {1, . . . , n} → {1, . . . , r}| f −1(i)|= αi∀i = 1, . . . , r}.

We can think of Xα as the set of colorings of n numbered balls in at most r colors, with αi

balls having the color i. There is an action of Sn on Xα via the formula w · f (k) := f (w−1(k)).

In our colored ball analogy, this amounts to renumbering the already colored balls according

to the permutation w.

Now let I1, ..., Ir and J1, ..., Js be the blocks of α and β , respectively; define the function

X ∈ Xα by k 7→ i where k ∈ Ii. Let stab(X) denote the stabilizer of X in Sn. This subgroup

consists of all permutations which preserve I1, ..., Ir; i.e. stab(X) = Sα. Recall the Orbit

Stabilizer Theorem:

Lemma 3.3.11. Let A be a set with a transitive action of the group G, and let H := stab(x) for

x ∈ A. Then the map G/H → A given by gH 7→ g(x) is an isomorphism of G-sets.

Proof. To see that the map is G-equivariant, let k, g ∈ G. Then

k(gH) = kgH 7→ (kg)(x) = k(g(x)). The surjectivity of the map follows form the

transisitivity of the G-action. Finally, if g1(x) = g2(x), then x = g−1
2 g1(x), so g−1

2 g1 ∈ H.

Proposition 3.3.12. The group Sn acts transitively on Xα.

Proof. Let f , g ∈ Xα, and define w ∈ Sn as follows. Define

k1 :=min({m= 1, ..., n| f (m) = g(1)}),

and let w−1 send 1 7→ k1. Similarly, define

k2 :=min({m= 1, ..., n| f (m) = g(2)} − {k1}),
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and and let w−1 send 2 7→ k2. Continue inductively, defining

kl :=min({m= 1, ..., n| f (m) = g(l)} − {k1, k2, ..., kl−1})

and letting w−1 send l 7→ kl . Then w is a permutation by the pigeonhole principle, and

w · f (i) = f (w−1(i)). By the definition of w−1, f (w−1(i)) = g(i). Thus w · f = g, so Sn acts

transitively on Xα.

It follows, then, that the map Sn/Sα→ Xα given by wSα 7→ w ·X is an isomorphism of

Sn-sets. We’ll now study the orbits in Xα under Sβ to understand Sβ\Sn/Sα. To do this, we’ll

place s boxes around our n balls which are colored using r colors.

To do this, define for each f ∈ Xα the r × s matrix [ f ] over Z≥0 by [ f ]i j = | f −1(i)∩ J j|. So

the matrix [ f ] answers the question, "How many balls of color i are there in box j?" The

answer is [ f ]i j. With this interpretation in mind, it’s clear that
∑

i[ f ]i j = |J j|= β j (the total

number of balls in box j) and
∑

j[ f ]i j = | f −1(i)|= αi (the total number of balls of color i).

Definition 3.3.13. For each pair of compositions α and β of n, let Mβα be the collection of

matrices
¨

[m]i j ∈ Mr×s(Z≥0)

�

�

�

�

�

∑

i

mi j = β j and
∑

j

mi j = αi

«

Proposition 3.3.14. The map Θ : Sβ\Xα→ Mβα given by Sβ f 7→ [ f ] is a bijection.

Proof. To show that Θ is well-defined, let f ∈ Xα and let w ∈ Sβ . Since w · f := f ◦w−1, we

know that (w · f )−1(i) = ( f ◦w−1)−1(i) = w( f −1(i)). But w sends elements of J j to elements of

J j since w ∈ Sβ , so |w( f −1(i))∩ J j|= | f −1(i)∩ J j|. It follows that [w · f ] = [ f ], and thus the

map Θ is well-defined.

To show injectivity, first suppose that f and g are in Xα and are nondecreasing on each

block of β (that is, suppose f (i)≤ f ( j) whenever i ≤ j and both lie in the same block of β ,

and similarly for g). Furthermore, suppose [ f ] = [g]. We’ll show f = g. Fix j ∈ {1, ..., s}.

Then for each color i, there are [ f ]i j = [g]i j balls colored i in block J j. By the nondecreasing
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hypothesis, the first [ f ]1 j = [g]1 j of these balls are colored 1, the next [ f ]2 j = [g]2 j are

colored 2, and so on. So f = g on J j, which was chosen arbitrarily. Hence f = g everywhere.

Now by transitivity, for each f ∈ Xα there is some w ∈ Sβ such that · f is nondecreasing on

each block of β . So suppose now that [ f ] = [g] for some f , g ∈ Xα. Then there are w, v ∈ Sβ

such that w · f and v · g are nondecreasing on each block of β . But then

[w · f ] = [ f ] = [g] = [v · g]. But by the previous argument, it follows that w · f = v · g. Thus

Sβw · f = Sβ v · g so Sβ f = Sβ g.

To show Θ is surjective, let [m] ∈ Mβα. By the definition of these matrices, it’s obvious we

may define some element f ∈ Xα to be nondecreasing on each block of β satisfying

| f −1(i)∩ J j|= [m]i j. It follows readily that [ f ] = [m].

Corollary 3.3.15. For any two compositions α and β of n, the map

Sβ\Sn/Sα→ Mβα, SβwSα 7→ [wX]

is a bijection.

Proof. The bijections of 3.3.11 and 3.3.14 combine to give this bijection.

The case which will be useful to us is when r = s = 2. We give a more explicit description

of this case below.

3.4 The Hopf Axiom for R(S)

We now demonstrate that the canonical representatives constructed in ?? do indeed give

us the twisting map we need.

Lemma 3.4.1. Let k, l, k′, l ′ be nonnegative integers satisfying k+ l = k′ + l ′ = n. For each

nonnegative integer matrix

K =





a b

c d




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with a+ b = k′, c + d = l ′, a+ c = k, and b+ d = l, we define the permutation w= wK ∈ Sn

defined by

w(i) =







































i i ∈ {1, . . . , a}

i + c i ∈ {a+ 1, . . . , a+ b}

i − b i ∈ {a+ b+ 1, . . . , a+ b+ c}

i i ∈ {a+ b+ c + 1, . . . , a+ b+ c + d}

.

Then the bijection S(k,l)\Sn/S(k′,l ′)→ M(k,l)(k′,l ′) of 3.3.15 sends the double coset of wK to the

matrix K.

Proof. We may compute

w ·X(m) = X(w−1(m)) =











1 w−1(m) ∈ {1, . . . , k′}

2 w−1(m) ∈ {k′ + 1, . . . , n}

=











1 m ∈ {1, . . . , a} ∪ {a+ c + 1, . . . , a+ c + b}

2 m ∈ {a+ 1, . . . , a+ c} ∪ {a+ c + b, . . . , n}.

Therefore since [w ·X]i, j = |(w ·X)−1(i)∩ J j|, we conclude that

[w ·X] =





a b

c d



 .

Recall that we set G = Sn, M = Sk′,l ′ , and N = Sk,l . Fix K ∈ M(k,l)(k′,l ′) for now and let

w= wK . Then we have:

Proposition 3.4.2. M ′ = M ∩ w−1
N = Sa,b,c,d and N ′ = wM ∩ N = Sa,c,b,d .

Proof. Using 3.3.3, we may compute

M ′ = S(k′,l ′) ∩ Sw−1(k,l) = S(k′,l ′)∧w(k,l) = Sa,b,c,d .

The computation for N ′ is similar.
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Recall also that, following example 2.1.4, we denote by Ad∗w the functor

Rep(M ′)→ Rep(N ′) given by (ρ, Z) 7→ (ρ ◦w−1, Z), where the symbol w−1 denotes the

isomorphism given by conjugating by w−1. We must find a formula for the action of the

functor Ad∗w.

Lemma 3.4.3. Let w ∈ Sn be the canonical double coset representative associated to the matrx




a b

c d



, whose definition is given in 3.4.1. Then wSa,b,c,d = Sa,c,b,d .

Proof. Suppose σ ∈ Sa,b,c,d , and 1≤ i ≤ n. If 1≤ i ≤ a or n− d ≤ i ≤ n, it’s clear that

wσw−1(i) is where it should be. So suppose a+ 1≤ i ≤ a+ c. Then we have

a+ b+ 1≤ w−1(i)≤ a+ b+ c, a+ b+ 1≤ σ ◦w−1(i)≤ a+ b+ c, and finally

a+ 1≤ w ◦σ ◦w−1(i)≤ a+ c, as needed. The calculation for when a+ c+ 1≤ i ≤ a+ c+ b is

carried out similarly.

Next, define

f : Sa × Sb × Sc × Sd
(α,β ,γ,δ)7→(α,γ,β ,δ)
−−−−−−−−−−−→ Sa × Sc × Sb × Sd

to be the map that flips the two inner factors. Define

ϕ : Sa × Sb × Sc × Sd

∼=−→ Sa,b,c,d

and

ψ : Sa × Sc × Sb × Sd

∼=−→ Sa,c,b,d

to be the canonical isomorphisms defined in the proof of 3.3.3.

Proposition 3.4.4. Adw ◦ϕ =ψ ◦ f as maps Sa × Sb × Sc × Sd → Sa,c,b,d . In diagram form, we

have

Sa,b,c,d Sa,c,b,d
Adw−1oo

Sa × Sb × Sc × Sd

ϕ

OO

Sa × Sc × Sb × Sd

ψ

OO

foo

42



Proof. If g ∈ Sa or g ∈ Sd , then the two images of g are obviously equal. So let g ∈ Sc, and let

i ∈ {1, . . . , n}. Then ϕ ◦ f (1, g, 1, 1) = ϕ(1, 1, g, 1). Now

ϕ(1, 1, g, 1)(i) =











g(i − a− b) + a+ b a+ b+ 1≤ i ≤ a+ b+ c

i else
.

On the other hand, Adw−1 ◦ψ(1, g, 1, 1) = w−1 ◦ψ(1, g, 1, 1) ◦w, which gives

w−1 ◦ψ(1, g, 1, 1) ◦w(i) =











g(i − a− b) + a+ b a+ c + 1≤ i ≤ a+ c + b

i else
,

as needed. A similar argument holds for the Sb factor.

Remarks 3.4.5. Pulling back along all these isomorphisms, we arrive at the following

commutative diagram:

Rep(Sa × Sb × Sc × Sd)
f ∗ // Rep(Sa × Sc × Sb × Sd)

Rep(Sa,b,c,d)

ϕ∗

OO

Ad∗
w−1

// Rep(Sa,c,b,d)

ϕ∗

OO
(3.4.6)

The bijection in 2.1.12 tells us that f ∗ induces an isomorphism

R(Sa)⊗Z R(Sb)⊗Z R(Sc)⊗Z R(Sd)
α⊗β⊗γ⊗δ 7→α⊗γ⊗β⊗δ
−−−−−−−−−−−−→ R(Sa)⊗Z R(Sc)⊗Z R(Sb)⊗R(Sd).

We’re now in a position to verify the Hopf axiom for R(S).
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Proof of 3.3.10. Let π ∈ R(Sk′) and ρ ∈ R(S l ′) be positive elements, and set n= k′ + l ′. Our

goal is to prove that m∗(πρ) = m∗(π)m∗(ρ); that is, we would like to show that the diagram

R(Sk′)⊗R(Sl ′)

m

��

m*⊗m*

++
R(S)⊗R(S)⊗R(S)⊗R(S)

f

��

R(Sn)

m*

��

R(S)⊗R(S)⊗R(S)⊗R(S)

m⊗mss
R(S)⊗R(S)

(3.4.7)

commutes, where f is the twisting map of example 3.2.5. It was noted in remark 3.4.5 that

the action of the functor Ad∗ on representations of Sa,b,c,d is given by flipping the two inner

factors (by 3.3.3 and 2.1.12, representations of Sa,b,c,d are tensor products of representations

of Sa, Sb, Sc, and Sd).

We now compute:

m∗(πρ) =
∑

n=k+l

rn
k,l(πρ) =

∑

n=k+l

rn
k,l ◦ in

k′,l ′(π⊗ρ). (3.4.8)

By the Mackey Theorem (Theorem 2.3.1) and Proposition 3.4.2, the quantity in 3.4.8 may be

rewritten as
∑

n=k+l

∑

Sk,l wSk′ ,l′

∈Sk,l\Sn/Sk′ ,l′

ik,l
a,c,b,d ◦Ad∗w−1 ◦rk′,l ′

a,b,c,d(π⊗ρ). (3.4.9)

We now use 2.2.10 and 3.4.1 to express 3.4.9 as

∑

n=k+l

∑

a,b,c,d
a+b=k′,c+d=l ′
a+c=k,b+d=l

[ik
a,c ⊗ i l

b,d] ◦Ad∗w−1 ◦[rk′

a,b ⊗ r l ′

c,d](π⊗ρ). (3.4.10)

Now we notice that, for fixed a, b, c, d, the composition [ik
a,c ⊗ i l

b,d] ◦Ad∗w−1 is exactly the

definition of multiplication in the algebra R(S)⊗R(S)⊗R(S)⊗R(S). This, along with a
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reindexing of the sums to delete redundancies, allows us to write the quantity in 3.4.10 as

∑

a,b,c,d
a+b=k′,
c+d=l ′

rk′

a,b(π)r
l ′

c,d(ρ). (3.4.11)

On the other hand,

m∗(π)m∗(ρ) =
∑

k′=a+b

rk′

a,b(π)
∑

l ′=c+d

r l ′

c,d(ρ)

=
∑

a,b,c,d
k′=a+b,
l ′=c+d

rk′

a,b(π)r
l ′

c,d(ρ).
(3.4.12)

The quantities in 3.4.11 and 3.4.12 are equal, so m∗ is a morphism of algebras.

By remarks 3.3.9, we may now conclude that R(S) is a Hopf algebra.

3.5 Further Properties of R(S)

This section explores further properties of the Hopf algebra R(S). Namely, we will prove

that R(S) is actually a positive, self-adjoint Hopf algebra.

Definition 3.5.1. Let R be a Hopf algebra over Z. We say R is self-adjoint if there exists a

positive definite, bilinear form on R with values in Z, such that multiplication and

comultiplication are adjoint maps.

Suppose R has a distinguished basis Ω= Ω(R) consisting of homogeneous elements. If the

maps m and u are positive maps in the sense that they send nonnegative integral

combinations of elements of Ω to nonnegative integral combinations, then R is said to be

positive.

Theorem 3.5.2. The Hopf algebra R(S) is a PSH algebra.

In order to prove 3.5.2, we must first define a positive definite, bilinear form on R(S).

Definition 3.5.3. We define 〈·, ·〉 : R(S)×R(S)→ Z by declaring that the basis
⊔

n≥0 Irr(Gn)

for R(S) forms an orthonormal set.
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Remarks 3.5.4. Let π1,π2 be representations of Sn. Schur’s Lemma (2.1.8) implies that

〈π1,π2〉= dimHomSn
(π1,π2), according to 2.1.11. If π1 is a representation of Sm and π2 a

representation of Sn for m 6= n, then 〈π1,π2〉= 0. So the definition of the inner product on

R(S) is representation theoretic.

Lemma 3.5.5. The maps m and m∗ are adjoint maps.

Proof. Recall Frobenius reciprocity (2.2.6) tells us that if H is a subgroup of G, V ∈ Rep(G),

and W ∈ Rep(H), then HomG(V, IndG
H W )∼= HomH(ResG

H V, W ). We apply this directly to

conclude self-adjointness. Indeed, let π,ρ,ϕ be representations of Sl , Sm,, and Sn,

respectively. Then we have

〈π⊗ρ, m∗(ϕ)〉=

*

π⊗ρ,
∑

n=k1+k2

rn
k1,k2
ϕ

+

=
∑

n=k1+k2

〈π⊗ρ, rn
k1,k2
ϕ〉.

The only term of this final sum which is nonzero is the case when n= l +m. In this case we

arrive at 〈π⊗ρ, m∗(ϕ)〉= 〈π⊗ρ, rn
l,mϕ〉= 〈i

l+m
l,m (π⊗ρ),ϕ〉= 〈m(π⊗ρ),ϕ〉. This proves that

m and m* are adjoint maps.

Remarks 3.5.6. Our distinguished basis for R(S) is Ω= tn≥0 Irr(Sn). The positivity of m

comes from the fact that Ind takes representations to representations. Since u(1) is defined to

be the trivial representation of S0 (in particular, u(1) is positive), u is also a positive map.

Hence R(S) is positive.

Proof of 3.5.2. Theorem 3.3.10 tells us that R(S) is a Hopf algebra. Lemma 3.5.5 says that

R(S) is self-adjoint, and remarks 3.5.6 says that R(S) is positive. Hence R(S) is a PSH

algebra.

What we’ve shown is that R(S) is a positive, self-adjoint Hopf algebra, with the structure

given by the functors Ind and Res. Almost all of the properties except the Hopf axiom were

proven directly from definitions. The key to demonstrating that the Hopf axiom holds is the

Mackey formula (Theorem 2.3.1). In the next chapter we will use the generalized Mackey

formula (Theorem 2.5.5) to exhibit a PSH structure on another family of groups.
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CHAPTER 4

THE HOPF ALGEBRA R(G)

Throughout this chapter we will generalize all of the work from chapter 3. A new family

of combinatorial groups will be defined, and properties analogous to those of Sn will be

demonstrated.

4.1 Permutations Modulo p

In this section we define and characterize the groups on which our new PSH algebra will

be based. For convenience and ease of notation we will often use the language of wreath

products which will be defined below; however this isn’t strictly necessary. Wreath products

are special semidirect products, which we now define.

Definition 4.1.1. Given two finite groups W and N , and a homomorphism ϕ : W → Aut(N),

the semidirect product of W and N is the group W nϕ N , whose underlying set is W × N , and

whose operation is given by (w1, n1) · (w2, n2) := (w1w2,ϕ(w−1
1 )(n1)n2). We will denote this

group by W n N when ϕ is understood.

We make two immediate observations. First, note that w 7→ (w, 1) and n 7→ (1, n) embed

W and N naturally as subgroups of W n N . Second, we note also that

(w, 1)(1, n)(w−1, 1) = (1,ϕ(w)(n)) so N is a normal subgroup of W n N .

We now define wreath products, which are semidirect products coming from an action of

W on some set X . We will always take X to be finite. Given such an action, if H is any other

group we make HX = { f : X → H} into a group via the formula f1 f2(x) := f1(x) f2(x). If we

make the observation that HX ∼= Πx∈X H, we see that the group operation for HX which we

just defined corresponds to the usual multiplication in direct products. The group HX is also

given a W action by translation. That is, (w · f )(x) := f (w−1 x).

Definition 4.1.2. The wreath product of W with H over X is defined to be W nHX .
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We will now define the family of groups that the remainder of this thesis studies. Fix a

prime p, and define the group

Gn := {g ∈ Mn(Z/p2Z)|g is a permutation matrix mod p}.

Recall that a permutation matrix is a matrix whose rows and columns each contain a single 1,

and 0s otherwise. For m ∈ Mn(Z/p2Z) to be a permutation matrix mod p means that when

the homomorphism Z/p2Z
reduce mod p
−−−−−−−→ Z/pZ is applied to each entry of m, the result is a

permutation matrix.

We will realize this group as the semidirect product Sn nMn(Z/pZ), where Mn(Z/pZ)

denotes the additive group of n× n matrices over Z/pZ. We will often write Mn. To do so, we

must first define how Sn acts on Mn(Z/pZ). Consider a matrix (m) ∈ Mn; let σ ∈ Sn and define

(σ · (m))i, j := mσ−1 i,σ−1 j. (4.1.3)

This is an action since we can consider a square matrix as a function {1, . . . , n}2→ Z/pZ; in

this case, σ acts by translating the argument. It’s clear that Sn is isomorphic to the subgroup

of Gn consisting of actual permutation matrices of Mn(Z/p2Z).

Remarks 4.1.4. This last observation that we may view an n× n matrix over Z/pZ as a

function {1, . . . , n}2→ Z/pZ is where the wreath product perspective will often come in

handy. As we proceed we will readily switch between these two viewpoints. That is, we will

identify without specification the groups Sn nMn(Z/pZ) and Sn n (Z/pZ){1,...,n}2 .

Lemma 4.1.5. Let N ,Q, G be three groups with homomorphisms

N
i
−→ G

q
−→Q

such that image i = ker q, i is injective, and q is surjective. Suppose also that there exists a group

homomorphism s : Q→ G satisfying qs = idQ. Then G ∼=Qn N, where the action of Q on N is

given by x · n := s(x)i(n)s(x)−1.
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Proof. Since q is onto, s is injective; identify s(Q) =Q. Suppose g ∈ N ∩Q. Then q(g) = 1

and g = s(x) for some x ∈Q. But then 1= q(g) = q(s(x)) = x . So g = s(1) = 1, and

therefore N ∩Q = 1. Next, note that since N = ker q, N is a normal subgroup of G and hence

Q normalizes N .

Finally, let g ∈ G be arbitrary. Then g = sq(g)[sq(g)]−1 g. This implies that G =QN , since

sq(g) ∈ image s =Q. Also, q([sq(g)]−1 g) = q([sq(g)])−1q(g) = q(g)−1q(g) = 1, which tells us

that [sq(g)]−1 g ∈ N . This tells us that G ∼=QnN with Q acting on N by conjugation in G.

Proposition 4.1.6. The group Gn is characterized by Gn
∼= Sn nMn(Z/pZ).

Proof. Define i : Mn(Z/pZ)→ G by m 7→ 1+ pm (this means we first consider the entries of

m ∈ Mn(Z/pZ) as elements of Z/p2Z by choosing the smallest positive coset representatives,

then we multiply them by p ∈ Z/p2Z), and q : Gn→ Sn by m 7→ m(modp). Define also

s : Sn→ Gn to be the identity (identify a permutation with its permutation matrix). Then

i, q, s satisfy the conditions of 4.1.5, and therefore Gn
∼= Sn nMn(Z/pZ) for some action of Sn

on Mn(Z/pZ). Since conjugation by a permutation matrix has the effect of permuting rows

and columns, this action is that given by the definition in 4.1.3.

4.2 Properties, Subgroups, and Functors

Recall from definition 3.3.1 that a set partition of n is a set theoretic partition γ= (γi) of

the finite set {1, . . . , n}. We denote the collection of all such set partitions Pn.

For each α ∈ Pn, define Mα to be the subgroup of Mn = Mn(Z/pZ)∼= (Z/pZ){1,...,n}2

consisting of those functions whose support is contained in the set

r
⋃

i=1

α2
i .

Equivalently, Mα is the set of matrices m where mi, j = 0 whenever i and j are not in the same

block of α. Recall that the group Sn acts on Mn via the following formula: if m ∈ Mn and

w ∈ Sn, then (wm)i, j = mw−1(i),w−1( j).
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Definition 4.2.1. For a set partition α of n, we will denote by Xα the set of ordered pairs (i, j)

with i and j in the same block of α.

Proposition 4.2.2. 1. For all α,β ∈n, Xα ∩ Xβ = Xα∧β

2. For all α ∈ Pn and all w ∈ Sn, we have w(Xα) = Xwα.

Proof. By definition, (i, j) ∈ Xα ∩ Xβ if and only if i, j ∈ αk and i, j ∈ βl for some k and l. This

is equivalent to saying i, j ∈ αk ∩βl , which tells us i and j are in the same block of α∧β . This

proves (1).

Part (2) is an immediate consequence of the definition of the action of Sn on

{1, . . . , n}2.

The groups Mα are compatible with intersections and conjugation similarly to how the

groups Sα are:

Proposition 4.2.3. 1. For all α,β ∈ Pn, we have Mα ∩Mβ = Mα∧β

2. For any α ∈ Pn w ∈ Sn w(Mα) = Mwα.

Proof. For (1), recall that i and j are in the same block of α∧ β if and only if they are in the

same block of α and the same block of β . So X ∈ Mα ∩Mβ if and only if X i, j is only possibly

nonzero when i and j are in the same block of α and the same block of β . But this is true if

and only if i and j are in the same block of α∧ β , which is true if and only if X ∈ Mα∧β .

Now onto (2). By definition, m ∈ Mα if and only if (m)w−1(i),w−1( j) = 0 whenever w−1(i) and

w−1( j) are in different blocks of α. Applying w, we see that this is equivalent to saying that i

and j are in different blocks of wα. This proves our result, since (wm)i, j = (m)w−1(i),w−1( j).

Note that if α≤ β , then by part 2 of Proposition 4.2.3, Mβ is stable under Sα. Let α≤ β .

Let us make the following definitions:

� Gα := Sα nMα

� Pβ
α

:= Sα nMβ
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� Uβ
α

:= {m ∈ Mn|m is supported inside ∪i β
2
i −∪ jα

2
j }

Remarks 4.2.4. Define H := Z/pZ. Then Uβ
α
= HXβ−Xα (we abuse notation and declare that

for a subset Y ⊆ {1, . . . , n}2, HY denotes the subgroup of functions supported inside Y ).

These are all subgroups of Gn. The previous two propositions combine to give a useful

fact about our new groups.

Lemma 4.2.5. 1. For all α ∈ Pn and all w ∈ Sn, wGα = Gwα

2. For all α,β ∈ Pn with α≤ β , GαUβ
α
= Pβ

α

Proof. (1) follows from Propositions 3.3.3 and 4.2.3. For (2) we’ll show that the map

Gα × Uβ
α

(g,u)7→gu
−−−−−→ Pβ

α
is a bijection, and that Gα normalizes Uβ

α
. Let (σ, x) ∈ Gα, and

(1, y) ∈ Uβ
α

. Then

(σ, x)(1, y)(σ−1,−σ · x) = (σ, x + y)(σ−1,−σ · x) = (1,σ · x +σ · y −σ · x) = (1,σ · y).

Consider y as a function {1, . . . , n}2→ Z/pZ supported inside (β2
1 ∪ · · · ∪β

2
s )− (α

2
1 ∪ · · · ∪α

2
r).

Recall that both β2
1 ∪ · · · ∪ β

2
s and α2

1 ∪ · · · ∪α
2
r are Sα-invariant subsets of {1, . . . , n}2. Since σ

is an element of Sα, it follows that (i, j) ∈ (β2
1 ∪ · · · ∪ β

2
s )− (α

2
1 ∪ · · · ∪α

2
r) if and only if

σ(i, j) ∈ (β2
1 ∪ · · · ∪ β

2
s )− (α

2
1 ∪ · · · ∪α

2
r). Hence (1,σ · y) ∈ Uβ

α
, which tells us that Gα

normalizes Uβ
α

.

To prove that this multiplication map Gα × Uβ
α
→ Pβ

α
is bijective, first suppose that

(σ1, x1)(1, y1) = (σ2, x2)(1, y2). This tells us that σ1 = σ2 immediately; at the same time this

tells us that x1 + y1 = x2 + y2. Rearranging, we get that x1 − x2 = y2 − y1. Since

(y1)i, j = (y2)i, j = 0 when i and j are in the same α block, we conclude that x1 = x2. It thus

follows that y2 − y1 = 0, so y1 = y2. This implies injectivity of the multiplication map.

Lastly, suppose (τ, z) ∈ Pβ
α
= Sα nMβ . Set x i, j = zi, j when i and j are in the same block of

β but not the same block of α, and 0 otherwise. Also define (1, y) ∈ Uβ
α

to be such that

yi, j = zi, j when i and j are in the same block of α, and 0 otherwise. Then we have

(τ, x)(1, y) = (τ, x + y) = (τ, z), as desired.
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Proposition 4.2.6. Let k, l ≥ 0, and denote by (k, l) the set partition Θ((k, l)) associated with

the composition (k, l) of k+ l defined in example 3.3.2 (we will often write Gk,l for G(k,l)). Then

Gk × Gl
∼= G(k,l).

Proof. Recall that G(k,l) = S(k,l) nM(k,l), and that the map ϕ : Sk × Sl → S(k,l) given by

(σ,τ) 7→






i 7→











σ(i) if 1≤ i ≤ k

τ(i − k) + k if k+ 1≤ i ≤ k+ l







is an isomorphism. Now define ψ : Mk ×Ml → M(k,l) to be given by

(m, n) 7→















(i, j) 7→



























mi, j if i, j ≤ k

ni−k, j−k if k+ 1≤ i, j ≤ k+ l

0 else















.

We will also denote ψ(m, n) by m⊕ n.

We’ll now show that the map ϕ ×ψ : Gk × Gl → G(k,l) defined by

ϕ ×ψ
�

((σ, m), (σ′, m′))
�

:= (ϕ(σ,σ′),ψ(m, m′))

is an isomorphism. To show it’s a homomorphism, we’ll prove that for every (w1, w2) ∈ Sk ×Sl

and every (m1, m2) ∈ Mk ×Ml , ϕ(w1, w2)ψ(m1, m2) =ψ(w1 ·m1, w2 ·m2). To verify this, note

that

ϕ(w1, w2)ψ(m1, m2)i, j =



























(m1)W−1
1 (i),w

−1
1 ( j)

if i, j ≤ k

(m2)w−1
2 (i−k),w−1

2 ( j−k) if k+ 1≤ i, j ≤ k+ l

0 else

which is by definition equal to ψ(w1 ·m1, w2 ·m2). This proves that the map is a

homomorphism. Both ϕ and ψ are bijections, so ϕ ×ψ is as well.

The decomposability assumption 2.5.4 was crucial in the proof of the Mackey Theorem

(Theorem 2.5.5). Here we will prove that same condition holds with our new groups.
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Lemma 4.2.7. For all α,β ∈ Pn, we have

1. Pn
α
∩ Gβ = (Gα ∩ Gβ)(Un

α
∩ Gβ)

2. Pn
α
∩ Un

β
= (Gα ∩ Un

β
)(Un

α
∩ Un

β
)

3. Pn
α
∩ Pn

β
= (Gα ∩ Pn

β
)(Un

α
∩ Pn

β
)

Proof. Throughout this proof, we will view n× n matrices over Z/pZ as functions

{1, . . . , n}2→ Z/pZ. Set H := Z/pZ.

For (1) first note that by 3.3.3 and 4.2.3, we have Gα ∩ Gβ = Gα∧β . Next, observe that

Gβ ∩ Un
α
= Uβ

α∧β . Indeed,

Gβ ∩ Un
α
= (Sβ nMβ)∩HXn−Xα = (Sβ nHXβ )∩HXn−Xα

= HXβ ∩HXn−Xα = HXβ−(Xα∩Xβ )

= HXβ−Xα∧β = Uβ
α∧β .

So what remains to show is that Pn
α
∩ Gβ = Gα∧βUβ

α∧β . This second group is equal to Pβ
α∧β by

Lemma 4.2.5.

Now observe that Pn
α
∩ Gβ = (Sα nMn)∩ (Sβ nMβ) = Sα∧β nMβ = Pβ

α∧β , as desired.

For (2) first note that Un
α
∩ Un

β
= HXn−Xα ∩HXn−Xβ = HXn−(Xα∪Xβ ). Now since

Gα ∩ Un
β
= Uα

α∧β = HXα−(Xα∩Xβ ) and Pn
α
∩ Un

β
= (Sα nHXn)∩ (1nHXn−Xβ ) = Un

β
= HXn−Xβ , we’d

like to show that

HXn−Xβ = HXα−(Xα∩Xβ )HXn−(Xα∪Xβ ).

To do this it will suffice to note that as sets,

Xn − Xβ = [Xn − (Xα ∩ Xβ)]t [Xn − (Xα ∪ Xβ)].

To prove (3) we’ll use previous results to rewrite all three terms. First,

Pn
α
∩ Pn

β
= (Sα nHXn)∩ (Sβ nHXn) = Sα∧β nHXn = Pn

α∧β
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by 3.3.3. Next, we have

Gα ∩ Pn
β
= (Sα nHXα)∩ (Sβ nHXn) = Sα∧β nHXα = Pα

α∧β

by 3.3.3 and 4.2.2. Lastly,

Un
α
∩ Pn

β
= (1nHXn−Xα)∩ (Sβ nHXn) = 1nHXn−Xβ .

Thus what we’d like to show is that Pn
α∧β = Pα

α∧βUn
α
. We show this directly:

Pn
α∧β = Sα∧β nHXn = Sα∧β nHXαt(Xn−Xα)

= Sα∧β n [HXαHXn−Xα]

= (Sα∧β nHXα)(1nHXn−Xα)

= Pα
α∧βUn

α
,

as needed.

We now define induction and restriction functors between the groups Gα, and exhibit

them as special cases of the iU and rU functors of section 2.4. The decomposability condition

established in Lemma 4.2.7 allows us to apply the generalized Mackey formula (Theorem

2.5.5) to these functors.

Definition 4.2.8. Suppose α,β ∈ Pn are such that α≤ β . Define the functors

iβ
α

: Rep(Gα)→ Rep(Gβ) and rβ
α

: Rep(Gβ)→ Rep(Gα) as follows. Set

iβ
α
= iUβα

= Rep(Gα)
pullback
−−−−→ Rep(Pβ

α
)

induce
−−−→ Rep(Gβ).

For each W ∈ Rep(Gβ), define rβ
α
(W ) ∈ Rep(Gα) to be given by

rβ
α
(W ) = rUβα

(W ) =W Uβα ,

where W Uβα is the restriction to the representation of Gα on the set of Uβ
α

-fixed vectors.
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Now let (k′, l ′) and (k, l) be compositions of n. We will apply the generalized Mackey

formula (Theorem 2.5.5) to compute the composition

rn
k,l ◦ ik′,l ′ = rUn

k,l
◦ iUn

k′ ,l′
.

In order to proceed, we must understand the double cosets Gk,l\Gn/Gk′,l ′ as before. The

following proposition tells us that this presents no added challenge.

Proposition 4.2.9. Let α,β ∈ Pn. The map ϕ : Sβ\Sn/Sα→ Pn
β
\Gn/P

n
α

given by

SβwSα 7→ Pn
β
(w, 0)Pn

α
is a bijection.

Proof. First we must verify that this assignment doesn’t depend on some choice of double

coset representative. Suppose σ ∈ Sβ and σ′ ∈ Sα. Then observe that

ϕ(Sβσwσ′Sα) = Pn
β
(σwσ′, 0)Pn

α
= Pn

β
(σ, 0)(w, 0)(σ′, 0)Pn

α
= Pn

β
(w, 0)Pn

α
,

since Sα ⊆ Pn
α

and Sβ ⊆ Pn
β

. Hence this map is well-defined.

Next up, we will check that this function is one-to-one. Suppose that

ϕ(SβwSα) = ϕ(Sβw′Sα). As a consequence, we know that Pn
β
(w, 0)Pn

α
= Pn

β
(w′, 0)Pn

α
. It then

follows from the definition of double cosets, that (w′, 0) = (τ, m)(w, 0)(τ′, m′). But by

definition of multiplication in the semidirect product Sn nMn, this means

(w′, 0) = (τwτ′,τ′−1 ·w−1 ·m′ +m).

The immediate implication of the above equality is that w′ = τwτ′ and 0= τ′−1 ·w−1 ·m′+m.

We may therefore conclude that Sβw′Sα = Sβτwτ′Sα = SβwSα, and so ϕ is injective.

This map is also onto. Indeed, let Pn
β
(w, m)Pn

α
∈ Pn

β
\Gn/P

n
α

. Observe that

ϕ(SβwSα) = Pn
β
(w, 0)Pn

α
= Pn

β
(w, 0)(1, m)Pn

α
= Pn

(k,l)(w, m)Pn
α

, as desired. This map ϕ has thus

been shown to be a bijection.

Set α= (k′, l ′) and β = (k, l) with k+ l = k′ + l ′ = n. Recall from ?? that Mβ ,α is the set of

2× 2 matrices





a b

c d



 with a+ b = k′, c + d = l ′, a+ c = k, and b+ d = l, and to each such
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matrix K ∈ Mβ ,α we associate a permutation wK ∈ Sn defined by

wK(i) =







































i i ∈ {1, . . . , a}

i + c i ∈ {a+ 1, . . . , a+ b}

i − b i ∈ {a+ b+ 1, . . . , a+ b+ c}

i i ∈ {a+ b+ c + 1, . . . , a+ b+ c + d}

.

Corollary 4.2.10. The map Mβ ,α→ Pn
β
\Gn/P

n
α

given by K 7→ Pn
β
(wK , 0)Pn

α
is a bijection.

Proof. Lemmas 3.3.15 and 4.2.9 combine to yield the desired result.

Corollary 4.2.11. Letting α= (k′, l ′) and β = (k, l) with k+ l = k′ + l ′ = n as above, we have

rn
β
◦ in
α
=
⊕

K∈Mβ ,α

iwKα∧β ◦Adw−1
K
◦rα∧w−1

K β

Proof. This follows from the new Mackey Theorem, Theorem 2.5.5, when we make the

following definitions:

� G := Gn

� M := Gα

� U := Un
α

� P := Pn
α
= MU

� N := Gβ

� V := Un
β

� Q := Pn
β
= NV .

By corollary 4.2.10, the double cosets over which we’re summing is the set

{(wK , 0) ∈ Sn|K ∈ Mβ ,α}, and thanks to Lemma 4.2.7, the decomposability condition is

satisfied. For each wK , we have U ′ = N ∩ wK U = Gβ ∩ Un
wKα
= Uβ

β∧wKα
and

V ′ = M ∩ wK
−1

V = Uα
α∧wK

−1β
.
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4.3 Algebra and Coalgebra Structure

The construction of the PSH algebra structure on representation theory of the family of

groups Gn will be directly analogous to the construction for the family Sn which was

explained in chapter 3.

Definition 4.3.1. Define the graded algebra R(G) :=
⊕

n≥0 R(Gn) with the homogenous

components given by R(Gn) := Z Irr(Gn).

First we’ll put an algebra structure on the abelian group R(G). Let π ∈ Rep(Gk), and

ρ ∈ Rep(Gl). Then π⊗C ρ ∈ Rep(Gk × Gl). By the isomorphism Gk × Gl
∼= G(k,l) of 4.2.6, we

may identify π⊗C ρ ∈ Rep(G(k,l)). We are now in a position to define

m(π⊗Z ρ) := ik+l
(k,l)(π⊗ρ). We again take the trivial representation of the trivial group G0 as

our unit.

Proposition 4.3.2. With the aforementioned grading, multiplication, and unit, R(G) is an

associative graded algebra.

Proof. The checks that this defines an algebra structure are exactly the same as they were for

R(S), and follow from the transitivity of the i functor, which was proved in 2.4.5. The

multiplication is graded by definition.

Now for a coalgebra structure. Suppose π ∈ Rep(Gn). We define a coproduct m∗ as

follows:

m∗(π) :=
∑

k+l=n

rn
(k,l)(π).

Strictly speaking, as we defined it our coproduct takes values in

⊕

k+l=n

R(G(k,l)).

But by the isomorphism Gk × Gl
∼= G(k,l) of 4.2.6, this is isomorphic to

⊕

k+l=m

R(Gk × Gl)∼=
⊕

k+l=n

R(Gk)⊗R(Gl).
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Hence the above formula gives a well-defined map R(G)→ R(G)⊗R(G). For a counit, we

define u∗ : R(G)→ Z in the same way as in our earlier construction. That is, define u∗ on

basis elements by

u∗(π) :=











1 π ∈ Irr(G0)

0 else
.

Again, the verification that this gives a well-defined coalgebra structure is exactly similar to

that for R(S):

Proposition 4.3.3. The above definitions for comultiplication and counit make R(G) into a

coassociative graded coalgebra.

We define an inner product 〈·, ·〉 on R(G) by defining the basis
⊔

n≥0 Irr(Gn) to be

orthonormal.

Proposition 4.3.4. The maps m and m∗ are adjoint. Moreover, all of the structure maps m, u,

m∗, and u∗ are positive maps in the sense of Definition 3.5.1.

Proof. The maps u and u∗ are positive by definition; m and m∗ are positive since i and r both

take representations to representations.

To verify the self-adjointness, suppose π,ρ, and ϕ are representations of Gl , Gm, and Gn,

respectively. Now observe that

〈π⊗ρ, m∗(ϕ)〉= 〈π⊗ρ,
∑

a+b=n

rn
(a,b)(ϕ)〉= 〈π⊗ρ, rn

(l,m)(ϕ)〉.

By the adjunction of the i and r functors, this is equal to

〈in
(l,m)(π⊗ρ),ϕ〉= 〈m(π⊗ρ),ϕ〉

as desired.

We will now prove that multiplication and comultiplication in R(G) are compatible in the

sense of definition 3.3.6. We will prove that:

Theorem 4.3.5. The algebra and coalgebra R(G) is a PSH algebra.

58



4.4 The Hopf Axiom for R(G)

To complete the proof that R(G) is a PSH algebra, we’ll once again verify the Hopf axiom.

That is, m∗(πρ) = m∗(π)m∗(ρ). Let π ∈ R(Gk′) and ρ ∈ R(Gl ′) be positive elements (i.e.

representations) with k′ + l ′ = n. What we need to compute is the composition

R(Gk′)⊗R(Gl ′)
m
−→ R(Gn)

m∗
−→ R(G)⊗R(G).

In our case, this reduces to

R(Gk′)⊗R(Gl ′)
m
−→ R(Gn)

m∗
−→

⊕

k+l=n

R(Gk)⊗R(Gl).

Fix one summand and consider the composition

R(Gk′)⊗R(Gl ′)
m
−→ R(Gn)

m∗k,l
−−→ R(Gk)⊗R(Gl),

where we consider only one component of the coproduct. Using the identifications we’ve

proved, it will suffice to compute

Rep(Gk′ × Gl ′)
in
(k′ ,l′)
−−→ Rep(Gn)

rn
(k,l)
−−→ Rep(Gk × Gl).

Make the following definitions:

� G := Gn

� M := G(k′,l ′)

� U := Un
(k′,l ′)

� P := Pn
(k′,l ′) = MU

� N := G(k,l)

� V := Un
(k,l)

� Q := Pn
(k,l) = NV
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To each matrix K =





a b

c d



 of nonnegative integers, we associate the permutation

w= wK described earlier in 3.4.1. Using Lemma 4.2.5, we have the following:

� M ′ = M ∩ w−1
N = G(k′,l ′) ∩ Gw−1(k,l) = G(a,b,c,d)

� N ′ = wM ∩ N = Gw(k′,l ′) ∩ G(k,l) = G(a,c,b,d)

� U ′ = N ∩ wU = G(k,l) ∩ Un
w(k′,l ′) = U (k,l)

(a,c,b,d)

� V ′ = M ∩ w−1
V = G(k′,l ′) ∩ Un

w−1(k,l) = U (k
′,l ′)

(a,b,c,d)

Next, we’ll consider the action of w on representations. To do so, consider the following.

Proposition 4.4.1. The diagram

Ga,b,c,d
Adw // Ga,c,b,d

Ga × Gb × Gc × Gd

ϕ

OO

f=flip // Ga × Gc × Gb × Gd

ψ

OO

commutes, where ϕ and ψ are the canonical isomorphisms.

Proof. It’s immediate that ψ ◦ f = Adw ◦ϕ on Ga and Gd . So let (σ, X ) ∈ Gb. Then

(1, (σ, X ), 1, 1) 7→ (1, 1, (σ, X ), 1) 7→ ((id t id tσt id), (0⊕ 0⊕ X ⊕ 0))

under ψ ◦ f . On the other hand, we have

ϕ : (1, (σ, X ), 1, 1) 7→ ((id tσt id t id), (0⊕ X ⊕ 0⊕ 0))

which maps to ((id t id tσt id), w · (0⊕ X ⊕ 0⊕ 0)) under Adw. Now observe that

w · (0⊕ X ⊕ 0⊕ 0)i, j = (0⊕ X ⊕ 0⊕ 0)w−1(i),w−1( j)

which, by definition, is equal to











Xw−1(i)−a,w−1( j)−a if a+ 1≤ w−1(i), w−1( j)≤ a+ b

0 else
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=











Xw−1(i)−a,w−1( j)−a if a+ c + 1≤ i, j ≤ a+ c + b

0 else

=











X i−a−c, j−a−c if a+ c + 1≤ i, j ≤ a+ c + b

0 else

but this equals 0⊕ 0⊕ X ⊕ 0 as desired. A similar argument works for Gc.

Remarks 4.4.2. If we replace w with w−1 and pull back along the diagram in 4.4.1, we arrive

at the following commutative diagram:

Rep(Ga × Gb × Gc × Gd)
f ∗ // Rep(Ga × Gc × Gb × Gd)

Rep(Ga,b,c,d)

ϕ∗

OO

Ad∗
w−1 // Rep(Ga,c,b,d)

ϕ∗

OO

and so it follows that the functor Ad∗w−1 acts on representations via the formula

π1 ⊗π2 ⊗π3 ⊗π4 7→ π1 ⊗π3 ⊗π2 ⊗π4.

By Theorem 2.5.5, we know that

rV ◦ iU =
⊕

QwP∈Q\G/P
iU ′ ◦Adw−1 ◦rV ′ .

In this specific context, this formula amounts to the statement

rn
(k,l) ◦ in

(k′,l ′) =
⊕

wK
K∈M(k′ ,l′),(k,l)

i(k,l)
(a,c,b,d) ◦Adw−1 ◦r(k

′,l ′)
(a,b,c,d),

where K =





a b

c d



 ∈ M(k′,l ′),(k,l) is the matrix associated to the double coset representative

wK as in 3.4.1.

For now we’ll consider a single summand functor

Φw := i(k,l)
(a,c,b,d) ◦Adw−1 ◦r(k

′,l ′)
(a,b,c,d) : Rep(G(k′,l ′))→ Rep(G(k,l)).
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Lemma 4.4.3. If V ′ ∈ Rep(Gk′) and W ′ ∈ Rep(Gl ′), then

r(k
′,l ′)

(a,b,c,d)(V
′ ⊗W ′)∼= rk′

(a,b)(V
′)⊗ r l ′

(c,d)(W
′)

as representations of G(a,b,c,d).

Proof. By the tensor product formula for i (2.4.6), we have

� r(k
′,l ′)

(a,b,c,d)(V
′ ⊗W ′)∼= eU (k

′ ,l′)
(a,b,c,d)
CG(k′,l ′) ⊗

CG(a,b,c,d)

(V ′ ⊗W ′)

� rk′

(a,b)(V
′)∼= eUk′

(a,b)
CGk′ ⊗CG(a,b)

V ′

� r l ′

(c,d)(W
′)∼= eU l′

(c,d)
CGl ′ ⊗CG(c,d)

W ′.

Define a map

α : eU (k
′ ,l′)

(a,b,c,d)
CGk′,l ′ ⊗

CG(a,b,c,d)

(V ′ ⊗W ′)→ eUk′
(a,b)
CGk′ ⊗CG(a,b)

V ′ ⊗ eU l′
(c,d)
CGl ′ ⊗CG(c,d)

W ′

by

eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)⊗ v ⊗w 7→ ek′

(a,b)gk′ ⊗ v ⊗ el ′

(c,d)gl ′ ⊗w.

Define a map β in the opposite direction by

eUk′
(a,b)

gk′ ⊗ v ⊗ eU l′
(c,d)

gl ′ ⊗w 7→ eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)⊗ v ⊗w

(these formulas are using the canonical identification Gk × Gl
∼= Gk,l of 4.2.6).

We will show that α and β are mutually inverse isomorphisms. First we’ll show that α is

balanced over CG(a,b,c,d). Let (σa,σb,σc,σd) ∈ CG(a,b,c,d) be a basis element. It acts on

V ′ ⊗W ′ and CGk′ ⊗CGl ′ via the element (σa,σb)⊗ (σc,σd) ∈ CG(a,b) ⊗CG(c,d). Observe:

α
�

eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)⊗ (σa,σb,σc,σd)(v ⊗w)

�

= α
�

eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)⊗ ((σa,σb)v ⊗ (σc,σd)w)

�

= eUk′
(a,b)

gk′ ⊗ (σa,σb)v ⊗ eU l′
(c,d)

gl ′ ⊗ (σc,σd)w

= ek′

(a,b)gk′(σa,σb)⊗ v ⊗ eU l′
(c,d)

gl ′(σc,σd)⊗w

= α(eU (k
′ ,l′)

(a,b,c,d)
(gk′(σa,σb)⊗ gl ′(σc,σd))⊗ v ⊗w

= α
�

eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)(σa,σb,σc,σd)⊗ (v ⊗w)

�

.
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Hence α is well-defined, and a similar computation shows that β is well-defined. It’s clear by

the definitions that β = α−1, so to finish the proof it will suffice to demonstrate that either α

or β is a map of CG(a,b,c,d)-modules. We’ll check β .

Recall from Lemma 2.4.7 that eU (k
′ ,l′)

(a,b,c,d)
commutes with G(a,b,c,d). Let

(σa,σb,σc,σd) ∈ G(a,b,c,d) be as above. Then we have the following:

β
�

(σa,σb,σc,σd)[eUk′
(a,b)

gk′ ⊗ v ⊗ eU l′
(c,d)

gl ′ ⊗w]
�

= β
�

(σa,σb)eUk′
(a,b)

gk′ ⊗ v ⊗ (σc,σd)eU l′
(c,d)

gl ′ ⊗w
�

= β
�h

eUk′
(a,b)
(σa,σb)gk′ ⊗ v

i

⊗
h

eU l′
(c,d)
(σc,σd)gl ′ ⊗w

i�

= eU (k
′ ,l′)

(a,b,c,d)
[(σa,σb)gk′ ⊗ (σc,σd)gl ′]⊗ v ⊗w

= eU (k
′ ,l′)

(a,b,c,d)
(σa,σb,σc,σd)(gk′ ⊗ gl ′)⊗ v ⊗w

= (σa,σb,σc,σd)eU (k
′ ,l′)

(a,b,c,d)
(gk′ ⊗ gl ′)⊗ v ⊗w

= (σa,σb,σc,σd)β
�

eUk′
(a,b)

gk′ ⊗ v ⊗ eU l′
(c,d)

gl ′ ⊗w
�

.

This proves that β is a map of CG(a,b,c,d)-modules, as needed.

What we’ve just seen is that the diagram

R(Gk)⊗R(Gl)

rk
(a,b)⊗r l

(c,d)

��

ψ // R(G(k,l))

r(k,l)
(a,b,c,d)
��

R(G(a,b))⊗Z R(G(c,d)) ϕ
// R(G(a,b,c,d))

commutes, where ϕ and ψ are the canonical isomorphisms. We will now prove the

corresponding fact for the i functors.

Proposition 4.4.4. The diagram

R(Gk)⊗R(Gl)
ψ // R(G(k,l))

R(G(a,b))⊗Z R(G(c,d))

ik
(a,b)⊗i l

(c,d)

OO

ϕ
// R(G(a,b,c,d))

i(k,l)
(a,b,c,d)

OO

commutes.
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Proof. To prove this, we will take advantage of the inner product on R(G), which is defined

such that tn≥0 Irr(Gn) is orthonormal. Also, recall that m and m∗ are adjoint maps with

respect to this inner product. Additionally, ϕ and ψ preserve this inner product. Now

suppose V ∈ R(G(a,b), W ∈ R(G(c,d), and let U1 ∈ R(Gk) and U2 ∈ R(Gl). Then

〈ψ(ik
(a,b)(V )⊗ i l

(c,d)(W )),ψ(U1 ⊗ U2)〉

= 〈ik
(a,b)(V )⊗ i l

(c,d)(W ), U1 ⊗ U2〉

= 〈ik
(a,b)(V ), U1)(i

l
(c,d)(W ), U2〉

= 〈V, rk
(a,b)(U1))(W, r l

(c,d)(U2)〉

= 〈V ⊗W, rk
(a,b)(U1)⊗ r l

(c,d)(U2)〉

= 〈ϕ(V ⊗W ),ϕ(rk
(a,b)(U1)⊗ r l

(c,d)(U2))〉

= 〈ϕ(V ⊗W ), r(k,l)
(a,b,c,d) ◦ψ(U1 ⊗ U2)〉

= 〈i(k,l)
(a,b,c,d) ◦ϕ(V ⊗W ),ψ(U1 ⊗ U2)〉.

We may set the first and last lines equal to one another, and conclude that

〈
�

ψ(ik
(a,b) ⊗ i l

(c,d))− i(k,l)
(a,b,c,d) ◦ϕ

�

(V ⊗W ),ψ(U1 ⊗ U2)〉= 0.

Since this holds for all U1 and U2, and since ψ is an isomorphism, we deduce that

〈
�

ψ(ik
(a,b) ⊗ i l

(c,d))− i(k,l)
(a,b,c,d) ◦ϕ

�

(V ⊗W ),π〉= 0

for every π ∈ R(Gk,l). In particular, we set π=
�

ψ(ik
(a,b) ⊗ i l

(c,d))− i(k,l)
(a,b,c,d) ◦ϕ

�

(V ⊗W ) and see

that we must have
�

ψ(ik
(a,b) ⊗ i l

(c,d))− i(k,l)
(a,b,c,d) ◦ϕ

�

(V ⊗W ) = 0. So the diagram commutes.

Proof of Theorem 4.3.5. The functor Φw defines a unique Z-linear map

Φw : R(Sk′ × Sl ′)→ R(Sk × Sl). According to the identification R(Sk × Sl)∼= R(Sk)⊗R(Sl), we

may regard Φw : R(Sk′)⊗R(Sl ′)→ R(Sk)⊗R(Sl). In diagram form, Φw is the composition
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R(Gk′)
rk′
(a,b)

��

⊗R(Gl ′)
r l′
(c,d)

��
R(Ga)

��

⊗R(Gb)

  

⊗R(Gc)

~~

⊗R(Gd)
Adw−1
��

R(Ga)⊗

ik
(a,c) ��

R(Gc) ⊗R(Gb)⊗

i l
(b,d)��

R(Gd)

R(Gk)⊗R(Gl)

The composition (i ⊗ i) ◦Adw−1 turns out to be exactly the definition for multiplication in

R(G)⊗R(G). It follows that Φw(π⊗ρ) = rk′
a,b(π) · r

l ′
c,d(ρ). Now, in full form,

m∗(πρ) =
∑

n=k+l

rn
k,l(πρ) =

∑

n=k+l

rn
k,l ◦ in

k′,l ′(π⊗ρ).

By the Mackey Theorem (Theorem 2.5.5), this sum is equal to

∑

n=k+l

∑

w=wK
K∈M(k′ ,l′),(k,l)

Φw(π⊗ρ) =
∑

n=k+l

∑

a,b,c,d
a+b=k′,c+d=l ′
a+c=k,b+d=l

rk′

a,b(π) · r
l ′

c,d(ρ).

Reindexing, we may express this sum as

∑

a+b=k′
c+d=l ′

rk′

a,b(π) · r
l ′

c,d(ρ) =
∑

a+b=k′
rk′

a,b(π) ·
∑

c+d=l ′
r l ′

c,d(ρ) = m∗(π) ·m∗(ρ).

The module R(S) is thus a PSH algebra, for the structure maps m and m∗.
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