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Among the many exciting and thought-provoking discoveries facilitated by the Kepler telescope, 

one of the most puzzling is the very large proportion of systems with only a single transiting 

planet in them, relative to the number of systems with multiple transiting planets. Given that 

most of these multis are close together and have low mutual inclinations, and that planetary 

systems tend to form in such a configuration, the next logical step is to guess that at least some of 

the singles are part of multi-planet systems with large mutual inclinations between planets, 

excited by some other object’s gravitational perturbations. A number of such mechanisms have 

been put forth as explanations for the excess of singles, but our currently limited knowledge of 

planetary systems prevents any one mechanism from being identified as the most probable cause. 

One mechanism involves a young, tilted, oblate star that forces its closest-in planets to precess 

about its spin axis, rotating them out of alignment with each other as its oblateness decays. Still 

relatively new territory in planetary science, the stellar oblateness mechanism has only been 

explored thus far for specific Kepler systems; its effects on generic systems as different planetary 

variables are tuned is not well understood. In addition, while it has been put forth as a possible 



 

 
 

source for the abundance of single-transit systems, we do not know whether the stellar oblateness 

mechanism creates singles from multis frequently enough to reproduce that high single/multi 

ratio. To address this issue, I perform a suite of N-body simulations on Kepler-like systems, 

evolved under the influence of a star with different tilts and spin periods. I observe the final 

average mutual inclinations of the surviving systems, as well as the conditions under which they 

go unstable, and the maximum number of transiting planets observable at the end of evolution. 

Recent data analysis has shown that the closest-in exoplanet pairs are also the most highly 

mutually inclined; I demonstrate that this is a natural outcome of evolution around an oblate, 

tilted star. I have further found that multi-planet systems in this scenario most often come out of 

it with all of their planets on fairly coplanar orbits, or with very few of their planets remaining, 

dynamically excited to the point where only one of the few surviving planets can be observed to 

transit at a time. Thus, I conclude that Kepler singles are almost always truly single, sometimes 

with one or two hidden neighbors, very rarely more. In addition, truly single post-instability 

planets tend to “relax” onto lower-inclination orbits, somewhat erasing their star’s initial 

obliquity. This implies that modern measurements of misalignment in Kepler singles likely 

underrepresent the true distribution of initial stellar obliquities in the universe. 
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CHAPTER 1 

INTRODUCTION AND BACKGROUND 

1.1 Introduction 

When we imagine the types of planets that exist around stars other than the Sun, we do so 

through the lens of a Solar System inhabitant. We name whole classes of extrasolar planets after 

our own neighbors – hot Jupiters, super-Earths, sub-Neptunes – and elevate the discovery of 

planets with the potential to bear the thing that is most familiar to us in the universe, that 

provides meaning for many to the hunt for exoplanetary systems: life. Indeed, when the Kepler 

space telescope began observations in 2009, its primary purpose was to search ~250,000 stars for 

potentially life-hosting planets (Borucki et al. 2009). In addition, the data it gathered over the 

course of its operation provided invaluable insights into the architectures of these alien systems, 

characterizing planets’ orbital periods, radii, and semimajor axes, as well as the number of 

observable planets extant in a given system. This data set has revealed much about planetary 

systems that, while perhaps only of partial interest to exobiologists, provides ample opportunity 

for astrophysicists and planetary scientists to study real systems and model the processes that 

form and sculpt them. 

The detection method employed by Kepler was, however, limited in its planet-finding 

abilities. The Kepler telescope was designed to look for minute variations in light intensity 

coming from target stars, caused by planets in orbit around those stars. If the viewing geometry 

is just right, a planet passes between the observer and the host star along the observer’s line of 

sight, briefly and periodically reducing the amount of light the observer receives from the host 

star. This is the “transit method” for detecting extrasolar planets, and its implementation has led 

to the majority of exoplanet discoveries (thanks in no small part to the fruitfulness of the Kepler 
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and K2 missions: a project intended to last for 4 years was extended multiple times, despite 

partial failure of the telescope’s directional controls, for a total of 9.5 years of data gathering1. 

The transit method is inherently biased toward systems that are oriented close to line of sight. 

For a star with radius 𝑅∗ and a planet with semimajor axis a (see List of Definitions and Symbols) 

orbiting in a plane inclined at angle  relative to the viewer’s line of sight, the following inequality 

must generally be satisfied in order for the planet to transit: 

sin(𝜃) ≲
𝑅∗

𝑎
(1) 

For a planet pair with semimajor axes a1 and a2, angles 1 and 2 relative to an observer’s 

line of sight, and mutual inclination i=1+2, the spherical law of cosines relates all angles: 

sin(𝑖) =  sin1cos 2 +  sin 2cos1 (2) 

When 1 and 2 are very small, cos1≈ cos2 ≈ 1. Using the substitution sinp = R*/ap, we reach 

the co-transiting criterion 

sin(𝑖) ≲
𝑅∗

𝑎1
+

𝑅∗

𝑎2

(3) 

In reality, two planets that fail to satisfy equation (3) can still transit if the point at which 

their orbits intersect is close to the line of sight (Ragozzine & Holman 2010). This is a rare 

occurrence and will be excluded this work to maintain simplicity. Thus, I consider both planets 

to be detectable via the transit method only if the above expression holds true. (See Figure 1 for a 

visual aid.) 

 
1 https://www.nasa.gov/mission_pages/kepler/main/index.html 
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If a system contains multiple planets, there is a chance that not all of those planets will be 

detected, particularly if their orbits relative to each other aren’t fairly well aligned (“coplanar”). 

This sensitivity to orbital inclination increases as the semimajor axis of a planet is increased – 

greater distances from the host gives a planet less wiggle room before it is removed from 

transiting and becomes undetectable by the transit method. Therefore, it is possible, maybe even 

likely, that systems found by Kepler to host transiting planets possess additional, as yet unseen 

inclined planets.  

Analyses of system architectural data came in soon after the project’s onset (Borucki et 

al. 2011). An unexpected phenomenon revealed itself in the analyses of systems of planets with 

radii smaller than 6 Earth radii: while Kepler had found many systems containing different 

numbers of planets, the number of systems with only one planet detected by transit (a.k.a. a 

“single-tranet system” [Tremaine & Dong 2012]) comprised about 50% of the entire Kepler 

system set (Lissauer et al. 2011). Systems with multiplicities between two and six made up the 

other half of the set. This “overabundance of singles”, now called the Kepler dichotomy, has 

Figure 1. A two-planet system with nonzero mutual inclination. The two orbits straddle the 

boundary between singly transiting and doubly transiting. 
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continued to exist even as we expand and refine our data set using complementary detection 

techniques and alternate telescopes (Ballard & Johnson 2016). See section 3.1 of this thesis for 

an up-to-date report on the Kepler dichotomy.  

The cause of the Kepler dichotomy is still open to debate. Some believe that systems 

containing multiple planets are artificially pared down in transit multiplicity by the Kepler 

project’s data processing method (e.g. Bovaird & Lineweaver 2017, Zink et al. 2019). Others 

prefer to view this as a genuine phenomenon with an astrophysical explanation. The 

aforementioned weakness in the transit method naturally leads one to wonder whether these 

single-tranet systems are truly single, or whether they contain planets that are simply too inclined 

to the observer’s line of sight to be detected. One hypothesis proposes that the planetary birth 

environment around young stars tends to favor the formation of either one planet or many 

planets, perhaps due to the presence of a large planet (Johansen et al. 2012, Hansen & Murray 

2013) – however, it has been shown that a single birth environment may produce the observed 

transit multiplicity rates, if one makes alternative assumptions about the protoplanetary disk’s 

shape and density, as well as about the true distribution of modeled planet multiplicities at 

formation (Moriarty & Ballard 2016, Bovaird & Lineweaver 2017). 

These formation-driven ideas assume that systems experience fairly dull lives once their 

formation disks disperse, undergoing little to no dynamical excitation. In contrast, another 

interpretation of the Kepler dichotomy is connected to dynamical excitation. It’s theorized that 

systems leave the disk-hosting stage with fairly high multiplicities and low inclinations between 

planetary orbits (Kant 1755). Over time, these planets interact with each other, with objects 

exterior to them, and with their host star, potentially becoming misaligned in the process. In the 

context of the Kepler dichotomy, a system influenced by an inclination-exciting mechanism can 
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wind up with planets just spread out enough in their tilts relative to each other that only one 

planet will ever be seen to transit at a time – an orbit that is inclined and/or stretched out of 

circularity (made “eccentric”) is called a “dynamically hot” orbit. Some interactions can be 

strong enough that the system goes “unstable”, causing planets to collide with each other or with 

the host star, or get ejected from the system entirely, reducing the true multiplicity of the whole 

system. Planets that survive instability are often left on dynamically hot orbits (see for example 

Carrera et al. 2019). Thus, a system with a dynamical history may have a larger spread in 

inclinations between its constituent planets than it had initially, potentially enhanced further by 

instability and subsequent planet loss.  

There are a number of mechanisms capable of dynamically heating planetary systems and 

pushing them to instability, including (but not limited to) secular chaos (Lithwick & Wu 2013), 

perturbations due to an external companion (and, as a special case of this, induced Kozai-Lidov 

oscillations) (Becker & Adams 2017, Hansen 2017, Naoz et al. 2011), planet-planet scattering 

(Ford & Rasio 2008, Johansen et al. 2012), and stellar oblateness (Spalding & Batygin 2016, 

Spalding et al. 2018).  These mechanisms can each excite the mutual inclinations of planetary 

systems to greater or lesser extents, but require specific sets of initial conditions to do so. 

Consequently, as we strengthen our understanding of the true architectures of Kepler systems, 

and as we further explore these mechanisms and their unique effects on planetary systems, we 

will be in a better position to determine which mechanism/s is/are the dominant cause of the 

dynamical states of Kepler systems. I discuss each of these mechanisms in more detail in the 

next section. 

One can begin to identify whether a particular mechanism is responsible for shaping the 

architecture of a Kepler system by comparing the system’s observed properties – inclinations, 
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eccentricities, spacing, et cetera – to those typically resulting from the mechanism’s operation. 

We have had some success in measuring the eccentricities of some Kepler systems using the 

transit timing variation (TTV) method of analysis (e.g. Xie et al. 2016), but inclinations between 

planets are much more difficult to measure in all but the most well-aligned systems. (Winn & 

Fabrycky 2015). Recently, though, Dai et al. (2018) analyzed transit data from approximately 

100 stars to recover mutual inclinations between the two planets closest to their star in each 

system. They found that the closer a pair is to the star, the larger their mutual inclination is, 

especially among pairs within about 5 stellar radii from their hosts. This is consistent with the 

hypothesis that interactions with the host star are responsible. Of the mechanisms listed above, 

only the last in the list is associated with the central star of a planetary system. Within the past 

five years, it has been shown (Spalding & Batygin 2016) that inclinations between planets can 

become excited if their host star is spinning rapidly and has some nonzero tilt relative to the 

system in orbit around it. Like a ball of pizza dough, a rotating star becomes deformed about its 

equator (“oblate”), causing symmetric nonuniformities in its gravitational field. Planets will be 

driven into orbital precession about the host’s spin axis if they are at all misaligned with the host 

star (see section 1.3); planets closest to the star will precess more quickly than those further 

away. As these orbits precess at different rates, they rotate away from each other, and the angle 

between them increases. One would expect this mutual inclination to grow more pronounced as 

the planets’ distance from their host decreases, reflecting the trend observed by Dai et al. (2018). 

The oblate star mechanism is the focus of this thesis, and the first goal in chapter 2 is to 

demonstrate that such a mechanism does excite larger mutual inclinations between closer-in 

planet pairs. 
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While an analytic (mathematical) solution exists that predicts the evolution of mutual 

inclination between a planet pair orbiting this kind of star (Spalding & Batygin 2016), it only 

applies in the case where a star is rotating at a constant rate. In fact, stars begin to spin down very 

early in their lives, gradually losing the oblateness that powers the mutual inclination excitation 

process. As an analytic solution incorporating stellar spin-down doesn’t yet exist, we must turn 

to N-body computer simulations to model the evolution of planetary systems in this scenario. 

Prior works have limited their application of this mechanism to specific, known Kepler systems 

(Spalding & Batygin 2016, Spalding et al. 2018) or to special cases designed to probe a 

particular part of the physics arising from the mechanism (Spalding & Batygin 2015). A broader 

N-body survey of the influence a young, tilted star has on its planets would improve our 

understanding of the mechanism’s ability to alter the architecture and multiplicities of a wider 

variety of systems than have been previously examined. It’s therefore my second goal in this 

thesis to determine the effect that different Kepler-like systems can achieve under the influence 

of such a star with varying levels of tilt and oblateness. I explore this effect in chapter two using 

two-planet (N=2) systems, and in chapter 3 with systems of more than two planets, creating a 

robust set of expected outcomes at a population level that can be used to more accurately 

evaluate the ubiquity of the oblate star mechanism than before. 

Spalding et al. (2016, 2018) demonstrated that an oblate, tilted star can excite mutual 

inclinations between planets enough to reduce a multi-planet system to an apparently single-

tranet system, potentially explaining the entire Kepler dichotomy – however, “can” is not the 

same as “does”. For example, although emerging evidence suggests that giant planet are fairly 

common around compact inner systems (Bryan et al. 2019), and that their influence over inner 

planets could excite multis to the point of singledom (Pu & Lai 2018), a population-level set of 
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N-body simulations confirmed that an entire, as-yet-undetected group of Saturn-mass giant 

companions is required to reproduce the Kepler dichotomy through giant companion 

perturbation alone (Hansen 2017). By performing a suite of simulations on systems with 

physically-informed initial conditions, across different starting multiplicities, my third goal is to 

assess whether or not the oblate star mechanism naturally turns a large proportion of multis into 

singles, on par with the fraction present in our Kepler data. Doing so will either provide strong 

evidence that oblate, tilted stars are indeed responsible for the Kepler dichotomy, or emphasize 

observational and theoretical areas that need further study as we seek the truth about the Kepler 

singles. 

We have seen, through telescopes and with mathematics, that planetary systems can play 

host to a wealth of interesting dynamics. Astrophysical interpretations of the Kepler dichotomy 

encourage us to push forward into this scientific frontier. A formation interpretation is difficult to 

confirm against modern Kepler observations: the planet formation process is still nebulous, and 

the dispersal of the formation disk early in systems’ lifetimes means no information remains 

about the properties of a disk that created a given Kepler system. On the other hand, a dynamical 

interpretation can be directly checked against observational data – with a well-developed 

theoretical foundation, working knowledge of the occurrence rates of initial conditions for 

various mechanisms, and simulations to help us predict outcomes due to these mechanisms, we 

can begin to map out the possible histories that shaped modern Kepler system architectures. 

Many of these possible histories have been subject to scientific scrutiny in the decade since 

Kepler was launched; some, as seen in the next section, are still ripe for investigation. 
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1.2 A Brief Overview of Transit-Reducing Mechanisms 

Among the different avenues by which planets can become mutually inclined, the first to 

be tested for single-tranet production was planet-planet scattering (Johansen et al. 2012). In this 

situation, planets in a system exert small perturbations on each other over long periods of time, 

culminating in large enough alterations to their original orbits to tip the system into instability. 

(Veras & Armitage 2004, Ford & Rasio 2008). It is an inevitability that a system will go 

unstable, if given enough time; the time scale for instability depends sensitively on the distance 

between planets (Davies et al. 2014). Leveraging this fact, Johansen et al. performed N-body 

simulations on a number of three-planet Kepler systems of different masses and separations, to 

determine whether their post-instability architectures and surviving multiplicities could 

reproduce the Kepler population of singles. The time scale on which instability occurred was 

longer than the expected lifetime of all but the most massive systems – thus, if planet-planet 

scattering creates singly transiting systems from initial multis, it can only do so with planets on 

the order of one Jupiter mass. This fails to explain the large number of low-mass planets 

observed in single-tranet systems. Planet-planet scattering was therefore ruled out early as a 

driver of the Kepler dichotomy. 

Secular chaos is not so easy to eliminate. An explanation of the conditions under which it 

occurs will benefit the reader as they proceed through the remaining chapters of the text: 

A closed orbit requires six coordinates to fully describe it: eccentricity, semimajor axis, 

orbital inclination, mean anomaly, longitude of ascending node, and argument of pericenter, the 

last three of which are circulating angular coordinates (see glossary for definitions). Because 

angles are measures of position on a circle, they can have any value from 0 to 360. The mean 

anomaly represents a planet’s position along its orbit, and therefore is constantly changing; 
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similarly, the ascending node and argument of pericenter are rarely static. Often they’ll circulate 

periodically through the full 360 – this is called precession, and a single complete circuit can 

take many of the planet’s orbits. Long-term behavior, usually involving the ascending node 

and/or argument of pericenter, is called “secular” behavior, and it’s in this secular realm that 

much of the interesting dynamics in a planetary system occur. 

When two planets’ ascending nodes (or arguments of pericenter) precess at the same 

frequency, or when the ratio of their precession frequencies is a simple fraction, they’re 

considered to be in a secular resonance. Resonances allow objects to influence each other much 

more strongly than in the non-resonant regime. An inner planet caught in two resonances 

simultaneously (a “resonance overlap”) experiences impulsive changes in its eccentricity and 

inclination; this is the gist of secular chaos (Lithwick & Wu 2013). 

For the most part, this mechanism has been invoked as an explanation for odd inner 

exoplanetary architectures in systems such as GJ 876 (Puranam & Batygin 2018) and 55 Cancri 

(Hansen & Zink 2015). Similar mean motion chaotic evolution was found to exist in Kepler-36 

(Deck et al. 2012). Secular chaos has also been demonstrated to lurk at the edge of Mercury’s 

current orbit (Lithwick & Wu 2011, Batygin & Laughlin 2008). Whether or not a planet enters 

the chaotic regime depends on the configuration of other planets in the system; Hansen & Zink 

(2015) present ten observed systems in which a planet may encounter two overlapping 

resonances if it occupies, or migrates through, the correct orbit. If future works confirm that 

chaos is present in these systems, it will strengthen the case that chaos is culpable for some 

portion of the Kepler excess of single-tranet systems. However, due to the nature of chaos, the 

outcome of such evolution at a population level is difficult to predict. As of the writing of this 

thesis, no attempt has been made to study the general dynamical signature of secular chaos, 
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implying that chaos’ role is difficult to distinguish from a statistical perspective. Without a grasp 

of its unique signature, we cannot quickly discern whether it is responsible for the observed 

architectures of Kepler systems. It may be that we must continue to check for chaos-friendly 

conditions on a system by system basis, if we’re to understand chaos’ broader influence on 

exoplanetary systems. 

Although the previous two mechanisms are associated with a wide range of final i, in 

truth it might not take more than a few degrees’ separation to remove a planet from transit. A 

small amount of misalignment between planets is expected to be a natural outcome of planet 

formation (Lissauer et al. 2011). In a system of at least three planets, in the absence of other 

perturbers, the planets’ orbits will “attempt” to realign with each other if even slightly mutually 

inclined. Secular coupling between the planets forces their orbital inclinations and ascending 

nodes to exhibit steady-state fluctuations (see Figure 2). If the amplitudes of these fluctuations 

are sufficiently large and the planets are far enough from their host, the total number of transit-

observable planets can change periodically over time (equation 3).  

Becker & Adams (2015) questioned whether this continuous “self-stirring” in a multi-

planet system could achieve i amplitudes large enough to intermittently reduce that system’s 

transit number. It is believed that the Kepler multis, being relatively coplanar, represent the state 

of a system just after birth (Kant 1755). Previous work has found that inclinations in the 

population of relatively coplanar Kepler multis can be modelled via a Rayleigh distribution with 

varying widths (Lissauer et al. 2011, Fabrycky et al. 2014). Thus, Becker & Adams drew their 

planets’ initial inclinations from a Rayleigh distribution with 1.5 width and concluded that 

pristine four-planet systems would only rarely be able to oscillate with high enough amplitudes 

to affect their transit numbers. When combined with the results from Johansen et al. (2012), it 
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became clear that a system of multiple sub-Neptunes cannot excite itself into transit reduction. If 

we’re to continue pursuing a dynamical explanation for the Kepler dichotomy, we must look for 

guilty parties outside of the compact multi-planet systems we’re attempting to dynamically heat. 

All other mechanisms oft invoked as exciters of inclination fall within the category of 

“one massive outer object acting upon the orbits of inner objects”, the outer object ranging in 

mass from a giant planet to a companion star. An outer planetary or stellar companion must be 

inclined relative to the inner multiplanet system and sufficiently close/massive in order to 

stimulate the inner planets’ mutual inclinations (Hansen 2017). In this general scenario, the 

companion’s angular momentum vector is tilted relative to those of all of the other bodies in the 

system, and the planets’ orbits precess about this vector (see Figure 3, next section). The 

(Eccentric) Kozai-Lidov mechanism is a special case of this scenario in which an outer, eccentric 

companion and inner system are mutually tilted by at least 39 (Naoz et al. 2011). In addition to 

forcing the usual i oscillations, the EKL companion can enter into a secular resonance with one 

Figure 2. Self-stirring in a 3-planet system. Each planet pair’s mutual inclination is represented 

by a different colored curve. 
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of the inner planets, stimulating chaotic eccentricity growth and instability (Denham et al. 2018). 

Interestingly, Hansen & Zink (2015) noted that it may be necessary for a system to contain at 

least one Jupiter-mass planet for chaotic (non-Kozai) evolution to take place. It is evident that 

inner systems and giant companions can interact with each other in multiple, dynamically 

exciting ways. 

Interest in giant external perturbers as generators of single-tranet systems began to pick 

up when observational data indicated the presence of such companions beyond known planetary 

systems (Knutson et al. 2014, Bryan et al. 2016, Bryan et al. 2019). Lai & Pu (2016) and Pu & 

Lai (2018) derived analytic solutions predicting RMS inclinations and eccentricities for N-planet 

systems with a giant exterior companion2. Becker & Adams (2017) followed up on their self-

stirring work, introducing a giant planet exterior to a 5-planet Kepler-like system in order to 

boost the system’s mutual inclination oscillation amplitudes. They were able to constrain the 

presence of a giant companion in a number of real Kepler systems this way. Perhaps the most 

comprehensive and conclusive was Hansen (2017)’s work: after using a giant companion to 

separately perturb eccentricity or inclination, he found that it was impossible to excite mutual 

inclinations enough to reduce the transit number of the inner system without also exciting 

eccentricities, causing the system to go unstable. Based on the observed occurrence rate of 

Jupiter-size planets, he estimated that all low-mass single-tranet Kepler systems could be the 

outcome of instability induced by a giant companion. However, his model couldn’t account for 

the slightly higher-mass portion of the Kepler single-tranet population unless a separate group of 

 
2 I attempted to apply the “recipe” laid out in Appendix B of Pu & Lai (2018) to reproduce the results therein, but 

was not successful. 
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Saturn-sized planets exists, too small to be discovered by current distant planet detection 

methods. 

Other work has followed that further discusses the influence that giant companions can 

have on planetary systems (Huang et al. 2017, Mustill et al. 2017, Pu & Lai 2019, Spalding & 

Millholland in prep), and data connecting long-period giant companions continues to come in 

(Foreman-Mackey 2016, Uehara et al. 2016, Zhu & Wu 2018, Bryan et al. 2019). It is clear, 

based on this sheer volume of data and scholarship, that a giant companion is the best contender 

among possible planetary perturbers when considering the dynamical creation of single-tranet 

systems. Indeed, the variety of ways in which a giant outer companion can excite inner systems 

makes it a powerful influencer.  

However, if an outer giant is to stimulate inclination growth between inner planets, it 

must already be tilted away from the inner planets’ orbits while they remain essentially coplanar, 

and it must be close enough that it doesn’t simply lift the entire plane of planets at once (Hansen 

2017). The prevailing theory proposes that an inclined binary companion gives the giant its tilt 

(Lai et al. 2018). Binary companions themselves have little effect on inner planetary systems, as 

shown by Mustill et al. (2017) – at the same time, they report that current observed occurrence 

rates of binaries+giants, and giants+inner systems, restrict the percentage of inner systems with 

giant, binary-tilted companions to about 13%. The proportion of inner systems excited by a giant 

companion to the point where their transit number is reduced is even lower (Hansen 2017). Even 

the best contender among planet-sized perturbers may not have a strong enough presence in the 

universe to be the main cause of the Kepler dichotomy. Fortunately, there remains an object 

present in every planetary system, active enough in its youth to potentially disrupt coplanarity, 

whose candidacy as top exciter has not been fully tested: the host star itself. In the following 
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section, I provide background and context for the mechanism by which a star alters the 

inclinations between its planets, as well as an overview of the work done thus far to investigate 

its effects. 

1.3 The Stellar Agitator 

Two conditions must be satisfied before a star can excite mutual inclinations (i) 

between its close-in planets: the star must be tilted relative to the system, and it must be rotating 

rapidly enough that its quadrupolar gravitational potential, driven by the resulting oblateness, has 

a stronger influence over the planets than they do on each other. Data from the Kepler mission as 

well as from multiple ground-based telescopes have enabled us to find limits for stellar tilts in 

multiple systems, and to learn that these tilts are often higher than the ~7 tilt of our own star 

(Lissauer et al. 2011). Until recently, most of our data has been associated with stars hosting a 

class of planets referred to as “hot Jupiters” – very close-in giant planets whose formation 

histories are a topic of active research. To address this mystery, a theory was developed that 

permits stars to become misaligned with entire coplanar systems of planets at once, removing the 

need for planets to undergo dynamical excitation individually.  Meanwhile, it has been known 

for almost a century (Sterne 1939) that nonuniform gravitational fields arise from oblate stars, 

although this knowledge has rested largely (Ward et al. 1976) unapplied to star+planet systems 

until well into the 20th century.  

Key to our search for information about a star’s tilt is the Rossiter-McLaughlin effect. As 

a star rotates, one side of it always seems to be moving “toward” an observer as the other side 

moves “away”. Light from the “toward” side is slightly shifted toward the blue end of the 

spectrum, while light from the “away” side is redshifted. If a planet transits across the face of the 
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star, it blocks light from some shifted region of the star, causing the star’s entire spectrum to 

change slightly according to the shift of the unobscured region. This is the Rossiter-McLaughlin 

effect, and it happens periodically as the planet makes multiple transits. By observing this effect, 

as well as the trajectory of the transiting planet, one can measure the tilt of the spin axis against 

the plane of the sky and place constraints upon the true orientation of the star’s spin axis relative 

to the orbital plane of the planet (Winn 2007). We refer to the latter angle as the star’s 

“obliquity” or “spin-orbit misalignment”. While measurements of the Rossiter-McLaughlin 

effect yield true stellar obliquities only when combined with radius and spin period 

measurements (which aren’t always available), the angle between sky-projected spin axis and 

planet trajectory is still a useful observational parameter on which a number of important 

discoveries have been founded. 

Winn et al. (2010) used a combination of radial velocity- and transit-detected planets, 

combined with measurements of the Rossiter-McLaughlin effect, to report on the projected 

obliquities of stars hosting hot Jupiters. They reported that hotter (≳ 6000 Kelvin) stars tended to 

be more strongly misaligned with their hot Jupiter than cooler stars. One possible explanation for 

this correlation is that the inner and outer layers of a cool star are relatively weakly coupled, 

allowing the outer layer – the part on which we rely for spin information – to realign with a 

close-in giant planet. Two years later, Steffen et al. (2012) found that hot Jupiters tend to be 

singly transiting, lacking neighbors. These two results tentatively link single-tranet systems with 

high misalignment relative to their stars (although observations of stellar obliquities in low-mass 

single-tranet systems had not yet been performed).  

Similar findings followed from Albrecht et al. in 2012, with the concluding hypothesis 

that misalignments between hot Jupiter orbits and their host stars’ spin axes occupy the entire 
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possible range, but that cooler hosts tended to realign with their giant planets, potentially via 

tides. Smaller planets were incorporated in a later analysis: Morton & Winn (2014) compared the 

projected stellar obliquity distributions of single-tranet Kepler stars and multi-tranet Kepler stars 

and found the former to be more misaligned with their planets. This study confirmed previous 

observations that planets in multi-tranet systems tend to have smaller radii than singly-transiting 

planets. However, the original report on the Kepler dichotomy had filtered for planets smaller 

than 6 Earth radii (Lissauer et al. 2011) – Morton et al.’s sample of single-tranet systems 

included planets with radii larger than 6 Earth radii, with no distinction between the two groups. 

It is therefore possible that their data set artificially boosted the expected stellar obliquity of 

single-tranet systems, as it had been previously shown by Winn et al. and Steffen et al. that hot 

Jupiters tend to be both lonely and out of alignment.  

Mazeh et al. (2015) again demonstrated that hot stars tend to be more misaligned with 

their planets than cool stars, but again did not separate large and small planets, instead 

implementing the entire confirmed Kepler planet catalog in their analysis. However, it was clear 

at this point that a) stars and their largest, closest-in planets were often tilted relative to each 

other, and b) the chances that these giants formed at their current positions seemed slim, given 

that the inner regions of protoplanetary disks were thought to contain too little material to form 

the massive cores required to accrete gas on Jupiter scales (Rafikov 2006) . Therefore, it was 

presumed that hot Jupiters must have migrated inward from farther out, implying that the 

migration and lifting onto higher inclinations may have happened via the same post-disk 

mechanism. Many attempts have been made to explain the existence of hot Jupiters using 

dynamical excitation processes, such as Kozai forcing (Nagasawa et al. 2008, Naoz et al. 

2011,Teyssandier et al. 2013), secular chaos (Wu & Lithwick 2011), and planet-planet scattering 
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(Weidenschilling & Marzari 1996, Petrovich et al. 2014, Nagasawa et al. 2008), none of which 

depend directly on the properties of the star, despite evidence that spin-orbit misalignments in 

systems of hot Jupiters are related to the host’s effective temperature (and therefore also to stellar 

mass). 

Inspired by this conundrum, Batygin (2012) proposed an alternate route to increased 

stellar obliquities in planetary systems. In this theory, the protoplanetary disk is torqued by a 

distant stellar companion, causing the disk to precess about the angular momentum vector of the 

binary pair. As the disk precesses, it oscillates between perfect initial alignment with its host and 

total misalignment. The maximum angle between disk and star is determined by the geometry of 

the host-disk-companion system, as well as the strength with which the host star is coupled to the 

disk itself, the latter itself a rich area of study (Batygin & Adams 2013, Spalding & Batygin 

2014, Spalding & Batygin 2015). The final inclination between the embedded, fully-formed 

planets and their host star becomes fixed once the gaseous disk dissipates.  

There have been multiple follow-up papers to this work: Batygin & Adams (2013) 

modelled in more detail the interactions that affect star-disk coupling and found that as the disk 

begins to dissipate, a resonance can be excited between the precession frequencies of the disk 

and of the star (which is still coupled to the disk, and therefore lagging behind it). The resonance 

causes a sudden jump in spin-orbit misalignment, but is only encountered if the star’s spin rate is 

held constant or is decreasing. Further exploration of the theory with more refined star-disk 

interaction modeling and a wider range of initial conditions led Spalding & Batygin (2014) to 

conclude that disk torqueing could result in any degree of misalignment. The temperature-

misalignment trend, rebranded as a mass-misalignment trend, was revisited in Spalding & 

Batygin (2015), where it was found to arise due to the stronger magnetic coupling of cool, low-
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mass (<1.2 M) stars – and therefore the weaker magnetic coupling of hot, high-mass stars – 

with their disks. Weaker star-disk coupling leads to longer required timescales for realignment 

with the disk, once it becomes misaligned. By comparison, hot, massive stars effectively “run out 

of time” to realign before their disk dissipates.  

It should be noted that the disk-torqueing pathway proposed by Batygin (2012) is only 

accessible to star-disk systems that have a wide, inclined stellar companion during the early parts 

of their lifetimes. From their multi-year direct imaging survey of hot Jupiter hosts, Ngo et al. 

(2015) observed that only 50% of misaligned hot Jupiter systems had binary companions, 

suggesting that at best, companion disk-torqueing can only explain half of the observed instances 

of close-in, highly inclined giant planets3. A survey for wide binary companions around Kepler 

single-tranet systems has not been conducted, although Winn et al. (2017) studied high-

resolution spectral data of stars hosting mostly sub-Neptune-sized planets (R ≲4R) and 

determined that Kepler systems that don’t contain hot Jupiters tend to have a mean stellar 

obliquity of about 20. They state that this is an upper limit, but also that their data is biased 

toward lower obliquities. As it’s unclear which of the two caveats is dominant, we’ll assume a 

fixed mean stellar obliquity of 20 in this work. 

Likewise vital to the operation of the star-driven excitation mechanism is the oblateness 

of a star early in its lifetime. The gravitational potential due to an oblate central object is 

modelled in Murray & Dermott (1999) as the azimuthally-symmetric solution to the Laplace 

equation in terms of spherical harmonics: 

 
3 It is important to point out that binary pairs can become decoupled early in life (Duchene & Kraus 2013), allowing 

modern systems to possess misalignments without currently being part of a binary. 
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where G is the universal gravitational constant, M is the mass of the object, R is its radius at the 

most oblate part, r is viewer’s distance away from the center of mass of the object, and θ is the 

angle of the viewer with respect to the object’s equatorial plane. The generic Legendre 

polynomial Pn(cosθ) represents the set of spherical harmonics that define the object’s shape in 

space, symmetric about its spin axis. Jn is a set of parameters expressing oblateness as a function 

of the object’s evolution; the first, J2, is dominant and usually sufficient when modelling 

perturbations due to this type of central body. It is directly related to the unique structure of the 

object itself, and must therefore either be directly measured or approximated analytically. J2 is 

known as the “second-order quadrupole moment”, or simply the “quadrupole moment” in this 

work. It fixes n at 2, conveniently leaving us with only one surviving term in the entire sum. The 

relevant Legendre polynomial is P2 =
3

2
cos2𝜃 −

1

2
. 

The relationship between rotation and deformation has been more thoroughly studied in 

planets and satellites than in stars (Clairaut 1743, Cook 1980, Murray & Dermott 1999 and 

sources therein). Modern investigations involving the quadrupole moment of stars (e.g. Li et al. 

2020, Spalding & Batygin 2016) take their model from T.E. Sterne (1939), who derived an 

expression for J2 when calculating variations in the potentials of stars in elliptical binaries: 

𝐽2 =
1

3
𝑘2 (

Ω

Ωbr
)
2

(5) 

Ω is the rotational frequency of the star (2/T for spin period T). Ωbr is the “breakup frequency”, 

defined as √G𝑀/𝑅3. k2 is the Love number, related to the mass distribution of the star, and can 
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have different values depending on our stellar model (Sterne 1939). Based on observations of 

spin periods and physical properties of young stars in the Orion Molecular Cloud Complex 

(Briceño 2005, Karim 2016), the typical range of J2 early in a star’s lifetime falls between 10-6 

and 10-2 if the star is modelled as fully convective. With equations (4) and (5) in hand, one is 

equipped to simulate the evolution of a planetary system in orbit around a misaligned, rapidly 

rotating star. 

To summarize the salient points: Observations of Kepler stars have revealed that the 

stars’ spin vectors aren’t always perfectly parallel to the angular momentum vectors of the 

planets in orbit around them – indeed, they can be quite misaligned. Although this signal is 

strongest among massive, hot stars hosting close-in giant planets, systems with low-mass singly 

transiting planets also demonstrate nonzero spin-orbit misalignments. In an attempt to allow 

systems of giant planets to retain coplanarity and other architectural features that would be 

erased by dynamical excitation, but still become tilted relative to their host stars, Batygin (2012) 

and others explore the possibility that the star itself became tilted within its own protoplanetary 

disk. This opens up the possibility that any system, not just systems of giant planets, could have 

started out with some measure of misalignment, as long as it was part of a wide binary pair in its 

youth. 

In addition, it is well established that celestial objects with short rotational periods can 

become oblate, creating a nonuniform gravitational field that will cause objects in tilted orbits 

around them to precess about the central host’s spin axis (Figure 3). A young star is capable of 

achieving rotational periods of about 1-10 days (Bouvier et al. 2013), much faster than those of 

modern stars (the Sun, by comparison, rotates with a period of about 25 days at the equator, 

slower at the poles). Thus, the quadrupolar gravitational potential of a young star may be 
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sufficient to induce precession in the orbits of its closest planets, altering their mutual 

inclinations. It was in this context that Spalding & Batygin (2016) proposed a new mechanism by 

which planets’ mutual inclinations could be excited, potentially hindering our ability to observe 

all of the planets in a multi-planet system. The details of excitation are as follows. 

An object on a tilted, circular orbit around a perfectly spherical host experiences 

acceleration due only to the first term in equation (4). As long as its orbit remains circular, it will 

stay the same distance from its host, pass through the same gravitational potential, and feel the 

same acceleration, at every point in its orbit. By contrast, the same object orbiting an oblate host 

feels an acceleration caused by both terms in equation (4) – the second of which depends not 

only on distance from the host, but also on the object’s angular position relative to the host’s 

equatorial plane. Orbiting bodies in this scenario feel nonuniform accelerations as they move. It 

is this nonuniform acceleration that leads to orbital precession. In terms of Keplerian 

coordinates, the component of an orbit that changes under this type of precession is the 

“ascending node”, and the motion is called “nodal precession”. Figure 3 depicts a simple 

example of a single tilted planet precessing about its host’s spin axis; one full revolution appears 

on the accompanying plot as one completed cycle of the ascending node through 360. 

Figure 3. Left: A single planet precessing about its host’s spin axis. Right: Same as left, 

with a two-planet system to illustrate the potential for misalignment. 
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When two or more planets are in close orbits around this type of star, the closer-in planet 

experiences a larger acceleration and will precess at a higher frequency (shorter period) than its 

outer neighbor. If they start on coplanar orbits, this mismatched precession will cause the inner 

planet’s orbit to outpace the outer, increasing the angle between the two orbital planes (Figure 3). 

The maximum possible angle between the two planets is restricted by their initial tilt (*) relative 

to the star – as long as the inner planet has less orbital angular momentum than the outer, their 

maximum i can’t exceed 2* (see Spalding & Batygin 2016). 

In a simpler system with a perfectly spherical star, the orbits of planets in the system will 

still undergo small oscillations in some of their elements due to the presence of all of the other 

planets, as discussed in the previous section. So, too, do planets orbiting a tilted, oblate star cause 

oscillations in each other’s orbital inclinations as the star attempts to increase their misalignment. 

This results in a sort of complex wobbling motion of each planet’s angular momentum vector, a 

phenomenon difficult to capture in a static figure. 

These planets don’t experience constant-amplitude oscillations eternally, however. After 

its disk dissipates, a young star begins to gravitationally contract, shrinking onto the main 

sequence (Batygin & Adams 2013, Bouvier et al. 2013) and spinning up until internal pressure 

balances gravitation and it enters the fusion phase (Asimov 1977). The influence of a spinning-

up star on its planets has not been explored yet. After spin up, however, stars of up to 1.2M will 

begin to slowly spin down as their angular momentum is carried away by stellar winds 

(Schatzman 1962). Slower rotation leads to a weaker quadrupole moment, decreasing the 

acceleration that drives planet precession and causing the precession frequencies to decrease as 

well. Eventually the quadrupolar contribution to the star’s gravity becomes negligible, and the 
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orbits in the system continue to oscillate in one form or another about the final mutual 

inclinations they acquired while experiencing quadrupolar torqueing. 

Spalding & Batygin’s (2016) first steps were to calculate a proof-of-concept analytic 

solution for the evolution over time of the mutual inclination i between two planets orbiting an 

oblate, tilted star. Their solution derives from Laplace-Lagrange secular theory, and is based on 

the assumptions that a) both planets are on initially circular, nearly coplanar orbits, b) the ratio of 

their periods is not a simple fraction (a.k.a. the planets are not near mean motion resonance), c) 

the stellar spin axis points along the same direction at all times, and d) the star’s spin rate is 

constant. The solution, shown below, is a simple sine function with an amplitude less than or 

equal to twice the obliquity, *, of the host star. 

𝑖(𝑡) = 2
∗
𝒢 sin (

𝜔0𝑡

2
) (6)  

where

𝒢 = ℒ [1 + ℒ2 + 2 [
Λ2−Λ1

Λ2+Λ1
] ℒ]

−
1

2 (7)  

ℒ =
𝜈2 − 𝜈1

𝐵2 + 𝐵1
 (8) 

𝜔0 = [(𝐵1 + 𝐵2)
2 + (𝜈1 − 𝜈2)(𝜈1 − 𝜈2 + 2[𝐵1 + 𝐵2])]

1

2 (9)  
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1
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𝑎1

𝑎2
)
2

(
𝑚2

𝑀∗
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(
𝑎1

𝑎2
) 

𝐵2 = 
1

4
𝑛2 (

𝑎1

𝑎2
) (

𝑚1

𝑀∗
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(
𝑎1
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Λ𝑝 is approximately the angular momentum of planet p, and is given by 𝑚𝑝√G𝑀∗𝑎𝑝. The mass 

and semimajor axis of planet p are mp and ap, respectively. For the period T of one orbit, the 

orbital frequency, or mean motion, np  is equal to 2/T. M* and R* are the mass and radius of the 

host star, and b is the Laplace coefficient, a special integral function of a1/a2, given by 

𝑏3
2⁄

(1)
(
𝑎1

𝑎2
) =

1

𝜋
∫

[
 
 
 
 

cosψ

(1 + (
𝑎1

𝑎2
)
2

− 2(
𝑎1

𝑎2
) cosψ)

3
2

]
 
 
 
 

2𝜋

0

𝑑𝜓 (11) 

The amplitude 𝒢 of equation (6) was inspected to gain insight into the limits of the 

planets’ i under different sets of physical parameters. Perhaps most interestingly, they found 

that when the inner planet has more angular momentum than the outer, the two enter a secular 

resonance, meaning that they precess at similar frequencies and achieve maximum inclinations 

larger than 2*. Such a result was the backbone of their subsequent paper, in which they explored 

the possibility that hot Jupiters with low-mass exterior neighbors cannot be seen transiting with 

those neighbors, again due to resonant precession driven by a tilted, oblate star (Spalding & 

Batygin 2017). According to equation (6), it should be possible for that kind of star to decrease 

the number of transiting planets in a system by increasing their mutual inclinations. 

In order to lend robustness to their solution, incorporate stellar spin-down, and look into 

the specific evolution of a system all throughout its life, they performed 110 N-body simulations 

using Kepler-11 (6 planets) as a basis system, using different combinations of initial J2 (denoted 

as J2,0 in this work) and * when initiating each run. In the end, these test systems not only saw a 

reduction in their transit number – in some cases they went unstable, losing a minimum of three, 

or a maximum of five planets in the process, and always appearing as a single-tranet system 
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afterward. A majority of possible combinations of * and J2,0, from 0 to 90 and 10-4 to 10-2 

respectively, resulted in a reduction in transit number. Systems with *  above approximately 30 

and/or J2,0 above ~10-3 nearly always went unstable, losing their smallest planets first.  

Kepler systems are generally expected to have 3 or so planets per host star (Lissauer et al. 

2011, Zhu et al. 2018), so the results of Spalding & Batygin (2016) were lacking in information 

about excitation and stability at the N>2-planet level. The physics underlying instability was 

likewise uninvestigated. Consequently, Spalding et al. (2018) performed a larger collection of N-

body simulations on different known Kepler systems of 2, 3, or 4 planets, again mapping their 

final maximum transit numbers and instability rates. They concluded the following: 

i. the stellar oblateness mechanism can reduce the transit number of any Kepler system, 

through i excitation (all) or by triggering instability (most); 

ii. the average eccentricity of a planet surviving instability in an initially two-planet system 

may be 0.3-0.4, although more sophisticated collision models in simulations would 

produce more accurate estimates on eccentricity outcomes. Tidal interactions will 

circularize the closest-in planets, and distant planets are unlikely to; 

iii. in the two-planet case, instability seems to occur as the result of a secular resonance, this 

time between the two planets’ arguments of pericenter. They predict that, for a planet pair 

where the outer planet has more angular momentum, the two planets must reach i of 

approximately 40 before instability occurs. 

Using the initial properties of each 2-planet system in the set, they solved equation (6) for 

* as a function of J2,0 and predicted the * and J2,0 values above which the given planet pair will 
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be excited out of transit. The resulting curve very roughly followed the boundary between fully 

transiting and partially transiting systems, with varying levels of accuracy. 

 This paper opened multiple avenues for future work. It was noted that a young system’s 

spin-orbit misalignment is sensitive to the time scale on which the disk dissipates; a slowly-

dispersing disk has the potential to damp inclination growth between system and star, a factor 

that was not accounted for in the 2018 paper. Disk dispersal is an elusive phenomenon, and not 

much is known about it. Spalding & Millholland (in prep) are currently investigating this era of 

stellar evolution, seeking to clarify the conditions under which a star will retain appreciable 

misalignment as it loses its disk. Their results will help distinguish the stellar oblateness 

mechanism’s ubiquity in planetary systems. 

 The authors also note that their small sample size of 11 systems prevented them from 

placing tighter constraints on the occurrence rate and conditions for instability. They again cite 

J2,0 ~10-3 and * ≈30 as approximate limits above which systems go unstable, but point out that 

the range varies widely from system to system. The ensemble of simulations conducted within 

this thesis can provide instability criteria for Kepler-like systems as a function of the measurable 

properties of the system, with which we can more precisely predict the frequency of planetary 

instability due to this mechanism. 

 The Kepler dichotomy is fundamentally a question of true multiplicity: are we seeing all 

of the planets that are really there, or are we missing planets? Put another way, what is the transit 

distribution of a population of Kepler systems orbiting an oblate star, and what is the true 

multiplicity distribution? Spalding et al. (2018) have shown that Kepler systems respond 

diversely to young, inclined, rapidly rotating stars, and so their results cannot be used to predict 

the multiplicity of a randomly selected transiting system. Thus, with our knowledge as it 
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currently stands, we can’t answer those questions most pertinent to the Kepler dichotomy. It is 

the goal of this thesis to begin answering those questions. 
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CHAPTER 2 

PERTURBED COUPLES: N=2 

2.1 Introduction and Assumptions 

The oblate, tilted star (referred to as OTS from this point forward) mechanism has only 

been applied to a handful of Kepler systems (Spalding 2016, 2018, Li et al. 2020), too small a 

collection to be considered representative of the entire Kepler/K2 set of over 1800 systems. In 

this chapter, I perform N-body simulations on 45 different artificial planetary systems with 

different average planet masses m and innermost semimajor axis a1, each evolved under 105 

unique combinations of initial quadrupole moment (J2,0) and stellar tilt *. These systems have 

been constructed based on recent analyses of the Kepler population (Weiss et al. 2017, 

Millholland et al. 2018); their responses to an OTS generate a framework of parameters that will 

help us contextualize our past and future observations of close-in planetary systems. I compare 

my results to those of Dai et al. (2018) to show that the observable inclinations of the closest-in 

transiting systems could easily have originated from interactions with an OTS. I further discuss 

the relationship between a system’s fate and its initial conditions, confirm and improve upon 

predictions from other work about instability triggers, and address the implications of my 

findings.  

Assumptions: 

1. The protoplanetary disk dispersed quickly. 

As mentioned in chapter 1, spin-orbit misalignment in young systems is theorized to be 

the product of multiple interactions between star, disk, and companion. Not only does the disk 

influence its host star’s evolution through magnetic, gravitational, and accretionary interactions, 

it also hosts its own potential that can competitively torque planets embedded within it. A 
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suitably massive disk will keep its planets in fairly good alignment within it as the companion-

driven precession described in Batygin (2012) occurs, even as the host star attempts to excite the 

orbits out of coplanarity. However, Spalding & Millholland (in prep) show that a slow transfer of 

dominance from disk to host star (slow disk dissipation) will allow the entire collection of 

coplanar orbits to drift from disk-aligned to star-aligned, erasing any stellar obliquity previously 

attained and disempowering the OTS mechanism. On the other hand, if the disk dissipates 

quickly, the planets are unable to ‘drift’ into stellar realignment before OTS-induced nodal 

precession begins to dynamically excite them. “Slow” and “quick” are defined relative to the 

precession frequency due to the OTS, but because very little is understood about this phase of a 

system’s life (Spalding et al. 2018), a precise boundary between the two dispersal rates is 

difficult to define. Thus, for the sake of simplicity, we assume that the disk dispersed rapidly 

enough that planets and star remained misaligned. Future work will help place this assumption 

into better perspective. 

2. The young star has already fully contracted, and the planets lie on modern orbits. 

A young star in the post-disk, pre-main-sequence (PMS) stage will both shrink in radius 

and increase in spin rate over several tens of millions of years; its initial radius can be as large as 

twice its final radius (Shu et al. 1987), and it will rotate with a period between 1 and 10 days at 

the onset of contraction, potentially on the order of tenths of days just after contraction (Bouvier 

et al. 2013). After this point, its size remains relatively constant and, if lower than around 1.2 

M, it gradually slows its rotation over the next several Gyr (see previous chapter).  Previous 

applications of the OTS mechanism were confined to the spin-down phase, choosing an inflated 

stellar radius and spin periods representative of the PMS stage and essentially ignoring the 

complications introduced by the spin-up phase. It is beyond the scope of this thesis to explore the 
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dynamics between an OTS and a close-in system in the spin-up phase, but the issue is still 

important to address. Among the systems simulated in this work, the closest-in contain an inner 

planet in orbit at only a few final stellar radii away from the center of mass of its host. If the 

host’s initial radius is twice its final, the host will engulf the closest-in planets in simulations, 

depriving us of data on those planets with very short periods. It is for this reason that I have 

chosen a stellar radius of 1 Solar radius (R) as an initial condition, and hold it fixed while J2 

decays over the course of the simulation. The outcome of the spin-up phase of evolution, perhaps 

in tandem with disk dissipation, is a question left for future work. 

I further assume that modern Kepler architecture is a good representation of the 

organization of a planetary system just after emergence from its disk. This is supported by 

evidence from Weiss et al. (2018), which suggests that planets form close to their final positions. 

Ultra-short-period planets (USPs), which comprise those planets in our sample set with the 

smallest semimajor axes, are unlikely to have formed where they currently lie for the reason 

mentioned above, in addition to the lack of solid materials at such small separations from the star 

(see Petrovich et al. 2018 for a possible migration scenario for this class of planets, invoking 

secular chaos). I therefore assume that all necessary planet migration has taken place before OTS 

precession begins, and that it occurs with no dynamical excitation so that all planets start on 

coplanar, circular orbits. Massive companion + OTS excitation is explored in greater detail in Pu 

& Lai (2019) as another pathway to USP creation. 

2.2 Methods 

All simulations in this work were performed using the “well-tested” (Spalding & Batygin 

2016) N-body integration software package mercury6 (Chambers 1999). In its essence, the 

integrator starts with the planetary system in an initial configuration; it calculates all 
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accelerations on all objects due to all other objects, and applies a user-defined time step to evolve 

the objects’ new velocities due to those accelerations; using different approximation methods, it 

solves for the position of each object at this new point in time; finally, it re-calculates 

accelerations based on the updated positions of the objects and repeats the process with the next 

time step. The algorithm one implements to perform these calculations dictates the relative speed 

and accuracy of the simulation. Accuracy is measured by the degree to which a simulation 

conserves the total initial energy of a system – smaller time steps lead to smaller deviations away 

from the system’s would-be state if it were evolving in reality, and thus results in better 

conservation of energy. At the same time, a smaller time step means that more iterations are 

required to evolve a system for the desired duration. One must choose between efficiency and 

accuracy when selecting a time step and algorithm. 

I employed mercury6’s hybrid Bulirsch-Stoer/symplectic algorithm with a time step of 

1/20th of the shortest planet period in the system. This time step conserved energy to within 

0.0001%. The symplectic part of this algorithm incorporates Hamiltonian mechanics to 

additionally preserve the system’s volume in phase space, improving energy conservation, and 

operates for a majority of the duration of the simulation. The Bulirsch-Stoer method takes over 

when planets enter close encounters with each other, performing more “brute force” calculations 

like the ones outlined above to provide more accurate close-encounter outcomes than the 

symplectic algorithm. 

Because part of the goal of this chapter is to compare OTS-driven outcomes to the data 

from Dai et al. (2018, henceforth called the “Dai set”), the innermost semimajor axis a1 in each 

artificial system is drawn from a set of values expressed as a multiple of stellar radius R*, ranging 

from 2 to 20: 
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𝑎1

𝑅∗
∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20} (12) 

The exact value of each a1 in the Dai set depends on the radius of the host star attached to 

a given data point. I choose to evolve my artificial systems around a Sun-like (𝑅∗=R=0.005 AU, 

𝑀∗=M) star, resulting in values of a1 between 0.01 and 0.1 AU.  

Recent analyses of Kepler data presented interesting trends amongst planets in a system 

of multis: it was found that they tend to be evenly spaced, with a mean separation of 20 mutual 

Hill radii (Weiss et al. 2017). The mutual Hill radius between a planet j and its next outer 

neighbor j+1 is defined as 

𝑅𝐻 = (
𝑚𝑗 + 𝑚𝑗+1

3𝑀∗
)

1
3 (𝑎𝑗 + 𝑎𝑗+1)

2
(13) 

so the mean separation between Kepler planets is simply 

𝑎𝑗+1 − 𝑎𝑗 = 20𝑅𝐻 (14) 

Each pair of neighbors in a system is separated by 20 mutual Hill radii based on the above 

expressions. Every successive semimajor axis depends on the one before it: 

𝑎𝑗+1 = 𝑎𝑗

1 + 10 (
𝑚𝑗 + 𝑚𝑗+1

3𝑀∗
)

1
3

1 − 10 (
𝑚𝑗 + 𝑚𝑗+1

3𝑀∗
)

1
3

(15) 

Likewise, Millholland et al. (2018) discovered that all planets within a randomly selected 

Kepler system had masses more similar to each other than if they had all been thrown together 

by chance. This uniformity of mass allows us to select a single value that represents the average 

planet mass of planets in a system, and assign that same value to each planet in the system 
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without diverging far from the organization of a true Kepler system. According to Weiss & 

Marcy (2014), planets with radii <4R have an average mass of about 4.3 M; therefore, each 

planet in a pair of planets in my simulations has the same mass, equal to 1, 5, or 10 Earth masses. 

Their radii are calculated using the piecewise mass-radius power law from Weiss & Marcy 

(2014), where mass mp and radius Rp are in Solar units: 

𝑚𝑝 = 2.69𝑅𝑝
0.93 (16) 

From there, assuming perfectly spherical planets, their densities are simple to calculate (=m/V). 

Most of the 2-planet systems studied by Spalding et al. (2018) remained stable at tilts 

below 30. In order to more thoroughly investigate stable cases, multiple cases of * ranging 

between 0 and 30 were simulated, with two additional, large-obliquity runs included for 

comparison: 

𝛽∗ ∈ {1°, 6°, 10°, 20°, 30°, 50°, 70°} (17)  

Ten spin periods, evenly distributed in log space (10X, where x is between 0 and 1 in 

multiples of 0.1), were plugged into equation (5) along with the relevant physical properties of 

the star to generate input values for J2,0. The Love number k2 can take on values spanning an 

order of magnitude (0.014 to 0.28) depending on whether one chooses to model a young star as 

fully radiative or fully convective, respectively – a PMS star can evolve from the former to the 

latter as it contracts, so either may suffice (Batygin & Adams 2013). J2,0 values will turn out to 

span several orders of magnitude regardless, so the choice is more or less moot. In keeping with 

past literature (Spalding & Batygin 2016, Spalding et al. 2018), k2 is set to 0.28 for a fully 

convective young star, leading to a possible over-estimate of the quadrupolar potential. However, 

as mentioned above, we chose a smaller stellar radius than may exist in reality. Thus, our results 

are representative to real, PMS stars within an order of magnitude. 
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Over 30 young, Solar-mass PMS stars, called T-Tauri stars, in the Orion Molecular cloud 

have had their masses and radii (Briceño et al. 2005) as well as their spin periods (Karim et al. 

2016) characterized. When modelled as fully convective, their calculated J2 values range from 

10-5 to 10-3, with a small number pushing as high as 10-2. The above set of J2,0, based on 

previously observed T-Tauri spin rates, doesn’t exceed 10-3. To bridge the gap, five more J2,0 

between 10-3 and 10-2 were selected. The complete set of J2,0, with values rounded, is: 

𝐽2,0 ∈ {
1.98 × 10−5, 3.14 × 10−5, 4.98 × 10−5, 7.89 × 10−5,

 1.25 × 10−4, 1.98 × 10−4, 3.14 × 10−4, 4.98 × 10−4, 7.89 × 10−4,

1.25 × 10−3, 1.98 × 10−3, 3.14 × 10−3, 4.98 × 10−3, 7.89 × 10−3, 1.25 × 10−2

} (18) 

  

The quadrupole moment is allowed to exponentially decay over time, to simulate stellar spin-

down: 

𝐽2 = 𝐽2,0 𝑒
−𝑡
𝜏 (19) 

Actual spin-down lasts a star’s whole lifetime (Bouvier et al. 2013). It would be 

computationally inefficient to perform over 3000 Gyr-long simulations. In a system where 

nothing else dynamically interesting is expected to happen on time scales longer than the planets’ 

precession periods, we have the freedom to assign any value to the decay parameter , as long as 

it is large relative to those precession periods. Behavior that occurs on much longer time scales 

than other periodic effects in a physical system is called “adiabatic” (discussed more thoroughly 

in Lichtenberg & Lieberman 1992). Following Spalding & Batygin (2016), I set the decay 

parameter to 1Myr. 

Although mercury6 does have the option to include the influence of an oblate star when 

integrating, there’s no way to incorporate stellar spin-down without implementing a custom 

subroutine. Fortunately, mercury6 allows users to define their own additional forces (mfo_user). 
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An object in orbit around an OTS experiences a gravitational potential per unit mass defined by 

equation (4). The acceleration due to this potential is simply the gradient, V, of its oblateness-

induced component where n=2: 

𝑉 =
G𝑀

𝑟
 𝐽2 (

𝑅

𝑟
)
2

(
3

2
cos2𝜃 −

1

2
) (20)  

With r=√𝑥2 + 𝑦2 + 𝑧2 and cosθ = z/r, and incorporating equation (19), the three-dimensional 

Cartesian gradient of the above potential is 

𝑎𝐽𝑥 = −𝐽2,0 𝑒
−𝑡
𝜏 (

𝐺𝑀∗

𝑟3
) (

𝑅∗

𝑟
)
2

𝑥 [7.5 (
𝑧

𝑟
)
2

− 1.5] 

𝑎𝐽𝑥 = −𝐽2,0 𝑒
−𝑡
𝜏 (

𝐺𝑀∗

𝑟3
) (

𝑅∗

𝑟
)
2

𝑦 [7.5 (
𝑧

𝑟
)
2

− 1.5] (21) 

𝑎𝐽𝑥 = −𝐽2,0 𝑒
−𝑡
𝜏 (

𝐺𝑀∗

𝑟3
) (

𝑅∗

𝑟
)
2

𝑧 [7.5 (
𝑧

𝑟
)
2

− 4.5] 

 

General relativistic effects were modelled using an approximation from Nobili & Roxburgh 

(1986): 

𝑎𝐺𝑅,𝑥 = 1.625 × 10−11 (
𝑥

𝑟2
) (

𝑀∗

𝐾2
)
2

 

𝑎𝐺𝑅,𝑦 = 1.625 × 10−11 (
𝑦

𝑟2
) (

𝑀∗

𝐾2
)
2

(22) 

𝑎𝐺𝑅,𝑧 = 1.625 × 10−11 (
𝑧

𝑟2
) (

𝑀∗

𝐾2
)
2

 

K2 in this context is the Gaussian gravitational constant squared, equal to around 2.59×10-4. 

These accelerations as they appear in the mercury6 subroutine mfo_user are in Appendix A. 

The duration of the simulations was 5Myr, long enough for the closest-in systems to 

settle into steady state oscillation about a fixed i. Upon completion, I calculated the mutual 
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inclination between each surviving planet pair using the following relations and the definition of 

r, above. (The second expression is a vector cross product, the third a dot product.) 

𝑟̇ = √𝑥̇2 + 𝑦̇2 + 𝑧̇2 (23)  

ℎ⃗ = 𝑟  ×  𝑟 ̇ (24)  

|∆𝑖| = acos(
ℎ1
⃗⃗⃗⃗ ∙ ℎ2

⃗⃗⃗⃗ 

||ℎ1
⃗⃗⃗⃗ || ||ℎ2

⃗⃗⃗⃗ ||
) (25) 

This calculation was performed at each time step for the last 10,000 years of an integration and 

averaged together, to smooth over the planets’ ambient oscillations. 

To give the resulting data an organic appearance while retaining the trends inherent in it, 

I fed it to the Mathematica machine learning function Predict[]. Like any function-fitting 

method, Predict[] takes real, N-dimensional input+result data and processes it with a 

combination of fitting algorithms to best model the relationships between inputs and result. As 

the name implies, it can then generate predictive sets of data based on alternative input sets. I 

drew values of a1, m, J2,0, and * from different distributions to create physically-informed 

inputs; a1 came from a uniform distribution on [0.01, 0.1] AU, m from a uniform distribution on 

[1, 10] Earth masses, J2,0 from a distribution fitted to the aforementioned T-Tauri J2 set, and * 

from a Rayleigh distribution, as suggested by Winn et al. (2017). In fact, multiple distributions 

have been proposed to fit the current stellar obliquity data (Li et al. 2020). I investigated whether 

the choice of * distribution and mean significantly affected the inclination outcome produced by 

Predict[]. As such, I created four separate fabricated input sets following the process outlined 
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above, each set containing * drawn from a different distribution: Rayleigh with means 20, 30, 

and 45, and a uniform distribution on [0, 90]. 

Finally, to clearly illustrate the dependence of i on stellar parameters J2,0 and *, I 

performed a second-order polynomial interpolation on the original N-body data set using 

Mathematica’s Interpolate[]. The resulting curves can be found in Appendix B. 

2.3 Results and Discussion 

2.3.1 a1 

Figures 4 and 5 contain the direct results of my simulations. Mutual inclinations between 

same-mass planets in the constant-spin regime are capped off at 2* (Spalding & Batygin 2016). 

However, a notable feature of the simulations is that, as the stellar J2 decays, planetary mutual 

inclinations adiabatically decrease, reducing the maximum final misalignment between them to 

1.4*. This can be seen in the right-hand panel of Figure 4, where i of a system is scaled by that 

Figure 4. The complete set of N-body simulation results, colored according to J2,0. Left (a) is 

a plot of mutual inclination against the innermost planet’s distance from the host. Right (b) is 

the same plot, with mutual inclination scaled according to initial stellar tilt. 
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system’s initial stellar obliquity. The left-hand panel in the same figure can be thought of as 

seven separate layers of data, one for each initial *, superimposed over each other. The warmer 

the color, the higher J2,0 was at initialization. Red banding, corresponding to the highest J2,0, 

appears at approximately 1.4* for each initial *, most prominently at about 14 (*=10) and 

28 (*=20), with hints of a band around 8 (*=6). As expected, the more strongly misaligned 

a star is, and the more oblate, the larger an impact it has on its planets’ mutual inclinations. 

Despite the new upper limit imposed on i by stellar spin-down, there appears to be a 

lack of mutual inclinations higher than 30-40, and no high J2,0 band for *=30, 50, or 70, in 

Figure 4a. Figure 5 more clearly shows this pattern. A majority of systems with high */high J2,0 

went unstable (and therefore have no mutual inclination to plot), while the high */low J2,0 

systems wound up with only a few degrees’ excitation as a consolation prize for surviving. 

Mutual inclinations at *=50 and 70 in Figure 5 rarely exceed 15 or so, in contrast with the i 

of  *=30 systems, which bump right up against the instability limit. Spalding et al. (2018) 

Figure 5. i vs * for the entire surviving set of simulated systems, colored according to J2,0. 
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found that the barrier between stability and instability is marked by *≈30 and J2,010-3, 

regardless of system multiplicity; they predicted that a planet pair would go unstable upon 

reaching a mutual inclination of about 40, and that systems with * at or above 50 would 

experience inclination growth unlike that at lower obliquities.  The deficit of mutual inclinations 

above the 40 line in Figure 4a, combined with the absence of mutual inclinations above 15 at 

high obliquities in Figure 5, support their conclusions. 

A second data deficit appears at i≈15 in Figure 4a; this is an artefact of a combination 

of real behavior and input-selection effects. The amplitude [equation (7)] in Spalding & 

Batygin’s (2016) constant-spin solution for i was shown in that paper to increase nearly 

asymptotically to its maximum value as J2,0 was increased. Here we see similar behavior, where 

for a given value of *, values of J2,0 between 10-3 and 10-2 do relatively little to increase i 

further toward 1.4*. Similarly, choosing J2,0 that grow on orders of magnitude mean that low-

end J2,0 are fairly well clustered together on a linear scale, progressively spreading out at higher 

J2,0. This causes the lowest and highest parts of a i versus a1/R* plot to appear denser than the 

middle (see Figure 7) – clustering at the higher end is a natural result, while clustering at the 

lower end is a selection effect. The deficit of points at 15 occurs in the “slice” of i data 

associated with *=20, and would be filled if the * set had included values between 10 and 

20.  

While there does appear to be an anticorrelation between innermost semimajor axis and 

mutual inclination in Figure 4a, the trend can be made clearer. Figure 6b is a 2D histogram of 

5,000 Predict[] points, created by following the procedure laid out in the previous section,  
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Figure 6. i versus a1/R* for observational and artificial data sets. (a) Figure 3 from Dai et al. 

(2018), showing mutual inclinations extracted from the light curves of multi-transiting 

systems. The black line demarcates the boundary between mutually transiting and singly 

transiting; the orange is a best fit line chosen by the authors. The green region separates pairs 

that are strongly coupled from pairs that are weakly coupled. The color of each point is 

related to the method employed to extract i. (b) A 2D histogram comprised of artificial data 

from Mathematica’s Predict[] function, trained on N-body data. The artificial input data 

selection process is described in the text. Color corresponds to the density of data points 

within each bin. The magenta and orange lines are equivalent to the black and orange lines, 

respectively, from the Dai et al. plot. 
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drawing * from a Rayleigh distribuuion with mean 20. Only those data points with J2,0≲10-3 

are included on this histogram in order to reduce the high-J2,0 density banding described above. 

In the top panel of Figure 6, I have included the original i versus a1/R* plot published in Dai et 

al. (2018, Figure 3 in that work). The important curves from the Dai et al. figure have been 

superimposed over the 2D histogram for ease of comparison: the orange line is a best fit line 

derived by Dai et al., where at a given a1/R*, inclinations are Rayleigh-distributed with a scale 

parameter 

𝜎 = 𝜎0 (
𝑎1

𝑅∗
)
𝑚

(26) 

specified by 0 and m (not related to this thesis’ input variable m), which are equal to 0.382 and -

1.28, respectively (see Dai et al. 2018, table 2). This scale parameter σ represents the statistical 

mode, in radians, of all mutual inclinations at a specific a1/R*. The orange curve on both plots is 

this mode converted to degrees.  

The two parts of Figure 6 complement each other in a number of ways. First, and most 

importantly, they both demonstrate that mutual inclinations between planet pairs are larger and 

more spread out as proximity to the host star decreases. Second, the orange Dai curve is 

qualitatively a good fit to this simulated data set. In light of the fact that the Dai data set is 

supposed to represent only a lower bound on possible mutual inclinations between planets, this is 

a particularly interesting result, suggesting that the Dai method for extracting mutual inclinations 

from light curves is fairly accurate. A statistical comparison between the two data sets, 

observational and theoretical, is beyond the scope of this thesis. Third, most of the simulated 

systems lie below the no-transit line. If systems with J2,0>10-3 had been included on the 2D 

histogram, they would appear above the no-transit line; however, these high J2,0  stars are 

relatively rare (Briceño et al. 2005, Karim et al. 2016) and are not expected to constitute more 
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than a small fraction of real systems, so their removal doesn’t significantly alter the big picture. 

This abundance of simulated systems below the transit line implies that most of the time, two-

planet systems can be fully observed if the viewing geometry is just right. It may be that the Dai 

set, though limited, is fairly well representative of the true relationship between i and innermost 

semimajor axis of planet pairs across the universe. 

2.3.2 * 

Varying * in the simulations did not reveal any interesting behavior beyond what has 

already been reported in the literature and above. Likewise, a comparison of 2D histograms of 

predictive data sets based on the different * distributions yields very little discernible difference 

between them (Appendix B). The underlying distribution of stellar obliquities in the universe 

cannot be constrained using this data set. As an OTS’s obliquity is linked to the survivability of 

its planets, one may be able to estimate the true mean stellar obliquity by studying instability 

rates and residue in Kepler systems; chapter 3 delves into this possibility in greater detail. 

2.3.3 m 

Figure 7a is a single constant-* slice of Figure 4a, colored according to the average 

planet mass m assigned to each planet pair. The points overlap for the most part at low i – 

indeed, systems with the largest mass seem to pull ahead very slightly between 1 and 3. Above 

3, the smallest-mass systems begin to experience sharper inclination growth than either of the 

two other mass classes, becoming most widely separated from them at small distances from the 

star and creating ‘smeariness’ in the upper regions of the plot. The relative differences in i are 
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not necessarily remarkable – mass group 2 is five times as large as mass group 1, but mass group 

3 is only twice as large as mass group 2, so it’s reasonable that mass groups 2 and 3 are close 

together in i. The general trend is notable, however, and becomes somewhat more pronounced 

at higher *. Evidently, average planet mass corresponds to slightly higher i, particularly for 

moderate-to-large J2,0 and small a1/R*. However, the differences are so small that system mass is 

not likely to be a determining factor in whether a surviving OTS-evolved planet pair appears 

singly or doubly transiting. Low-mass systems tended to go unstable around 15% of the time, 

compared to a 12% instability rate for both of the other mass groups – it is therefore slightly 

more probable that a truly single-planet system is lower in mass, according to this data.  

This mass dependence becomes more interesting when compared to the set of i 

produced by equation (6). Using the same inputs as went into Figure 7a, but calculating the root-

mean-squared mutual inclination of equation (6) (amplitude/√2), we arrive at Figure 7b. A small 

measure of mass group/inclination divergence is present in this constant-spin solution, though 

Figure 7. Plots of i vs a1/R* with colors indicating average planet mass. Navy is the lowest 

mass, green is middle, and yellow is highest. (a) Left, a “slice” of Figure 4a at *=10. (b) 

Right, the same set of inputs as in figure (a), plugged into the RMS amplitude of Spalding & 

Batygin’s (2016) solution for i in an OTS-planet-planet system [equation (6) in this work]. 
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not to the same extent as in the simulated data – the spin down process separates out masses 

while exciting all systems somewhat anemically. Hence, the RMS of equation (6) may be an 

approximate predictor of a pair’s i for the closest-in systems, but will overpredict with more 

severity as the pair is moved farther out and its mass is increased. 

2.3.4 J2,0 

Although the range of * in this experiment was selected to keep systems stable, based on 

estimated stability boundaries established by Spalding et al. (2018), it still provides us with 

valuable information about instability prerequisites from system to system. The  * slices seen in 

Figure 8, represent systems on the lower edge of stability (20), in the thick of it (30), or all 

fully unstable (50). In the leftmost panel, systems at a1/R*=2 and 3 exhibit discordant behavior 

in their upper J2,0 regions; these data points represent systems that did not go unstable on the 

5Myr time scale, but did when evolved for a further 2Myr beyond that. Thus, disorderly changes 

in i after smooth growth through low J2,0 are indicators that a system is close to or in the middle 

of chaotic mutual inclination evolution and, given enough integration time, will go unstable. The  

 

Figure 8. The evolution of a group of systems as stellar obliquity is increased. Each panel 

represents a “slice” of N-body data at *=20, 30, and 50 (left to right). The curves are high 

order fits of i vs J2,0, color coded according to a1/R*. The systems that would have gone 

unstable if allowed to evolve past 5Myr create disruptions in otherwise smooth mutual 

inclination curves. The black line marks where i≈30. All systems here are from the m=5M 

subset. 
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Figure 9. Instability boundaries for surviving systems with m=5M, from the N-body set. The 

y-axis is J2,0, the x-axis is a1/R*. As in the previous figure, each panel contains a “slice” of data 

at constant * (20, 30, and 50 top to bottom). All of the systems from Figure 8 appear here, 

with the exception of those showing signs of long-term instability. The blue curves are 

approximate fit lines relating a1/R* to the critical value J2,0,crit above which a system with that 

position and obliquity will go unstable [equations (27)-(29)]. 
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middle panel in Figure 8 even more clearly shows this disorder. At 50 of obliquity, rightmost 

panel, every system destined for instability has achieved it by 5Myr. 

That only the close-in systems start to go unstable at *=20 suggests there may be a 

more subtle relationship between the critical stellar obliquity/J2,0 values leading to instability 

than has been previously reported. Each dot in Figure 9 is a planet pair that showed no signs of 

instability over the entire integration. The blue curves, expressions for J2,0crit as a function of a1, 

are estimated fits of the boundary above which systems do not survive integration. For *=20, 

30, and 50, respectively, these take on the form 

𝐽2,0𝑐𝑟𝑖𝑡 = −0.0003 + 0.006𝑥 + 0.68𝑥2 + 50,000𝑥4 (27) 

𝐽2,0𝑐𝑟𝑖𝑡 = −0.0015 + 3.1𝑥2 − 72𝑥3 + 550𝑥4 (28) 

𝐽2,0𝑐𝑟𝑖𝑡 = −0.00005 + 0.003𝑥 + 0.14𝑥2 (29) 

The *=70 equivalent to Figure 9 is identical to the *=50 panel in that figure, and so the 

boundary in equation (29) fits both obliquities. It appears that at some point between 30 and 

50, an OTS has reached its maximum destructive potential, and the boundary between stable 

and unstable is fixed. 

It’s important to keep in mind that these boundaries cannot be extrapolated beyond the 

range of a1 explored in this work. They are intended to illustrate that J2,0crit can vary by several 

orders of magnitude for very close-in systems, such that the previous estimate of 10-3 is valid 

when *=30, but only for the most distant systems at higher obliquities, and only for the closest 

at lower obliquities. Using these three curves, one may find an approximate J2,0crit for any 

obliquity between 20 and 50, for any star-inner planet separation in the designated range, 
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provided that the two planets are of roughly equal mass close to m=5M. (This may seem a tall 

order, but recall that the mean mass of a Kepler system with R<6R is at least 4.3M, that 

masses are fairly similar within a system, and that the inner edges of Kepler systems often fall 

within the range examined here.) 

2.3.5 The Survivors 

 No mention has yet been made of the planets that are left behind after instability. In 

general, instability in a multi-planet system leaves behind planets with increased orbital 

inclinations (e.g. Hansen 2017). Upon inspection of the surviving planets’ inclinations, however, 

I have found that in a majority of cases, instability due to an OTS reduces the final misalignment 

between star and planet. Figure 10 demonstrates this trend. Most of the points above the green 

line come from *=70 systems, the rest from *=50 systems. This pattern has interesting 

implications: if a single-tranet system is truly single, made lonely by an OTS, then the obliquity 

Figure 10. The final orbital inclinations of lone post-instability planets, as a function of a1. The 

vertical axis expresses inclination as a fraction of the system’s initial stellar obliquity (which 

also served as the planets’ initial orbital inclination). The green line marks planets whose final 

inclinations remain unchanged. Note that the horizontal axis isn’t a measure of the survivor’s 

final semimajor axis, only the initial position of the inner edge of the system. 
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of the modern system will read as lower, potentially much lower, than its initial obliquity. Winn 

et al. (2017) observed that single-tranet and multi-tranet systems both appeared to have low 

obliquities; on the face of it, this seems to put a damper on the viability of the OTS mechanism in 

creating single-tranet systems, as it does so most effectively at higher obliquities than Winn et al. 

reported. However, these results reduce the damping somewhat by opening up the possibility that 

large spin-orbit misalignments early in a star’s life can lead to low misalignments and single-

tranet systems later on. More investigation, using systems of higher multiplicity, is needed to 

determine whether single-tranets are always accompanied by a drop in spin-orbit misalignment, 

or if this effect is different when multiple planets are lost from a system. 

2.4 Conclusions 

The OTS mechanism is an area of celestial mechanics heretofore explored only for 

unique, individual Kepler systems. While previous works (Spalding & Batygin 2016, Spalding et 

al. 2018) mapped out the effects that physically-informed ranges of * and decaying J2 have on 

transit numbers in these individual systems, it was not well known to what level the properties of 

the systems themselves affected their fates. This chapter set out to improve our understanding of 

this mechanism’s dynamical signatures, as well as the initial conditions that ultimately drive a 

planetary system to instability. I put forth the following conclusions: 

1. An OTS excites larger mutual inclinations for the shortest-period planet pairs. Indeed, 

it seems to reproduce quite well the data at the core of Dai et al.’s (2018) paper. The authors 

incorporate an additional factor into their study which has not been included in mine: they draw a 

distinction between small-a1 planet pairs with large mutual separations and more distant, closely 

packed systems – the boundary between these two groups appears as the green box situated 
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around a1/R*=5 in Figure 6a. The innermost planets in former group can be loosely categorized 

as USPs (see section 2.1) the formation histories of which are an area of active research (e.g. 

Petrovich et al. 2018, Pu & Lai 2019, Li et al. 2020). Because planets in these USP pairs are 

physically farther from each other than typical Kepler pairs (more than the 20 mutual Hill radii 

used in this work), they aren’t as strongly coupled, and thus respond more to dynamical stimuli 

than strongly-coupled pairs. Had I chosen a larger spacing for the planet pairs closer than 0.025 

AU from their star, they likely would have ended up with larger mutual inclinations and possibly 

a higher rate of instability, increasing the already substantial inclination spread in Figure 6b and 

thinning out the data below the transit line. 

It has been suggested in the aforementioned works (and in the assumption statement at 

the beginning of this chapter) that USPs migrated inward from farther out in their systems. Their 

final inclinations and survival probably depend on the timing of this migration relative to the age 

of the star; the longer it takes them to move in, the weaker the OTS’s quadrupole moment will be 

once they get there, and the smaller their inclinations (Pu & Lai 2019). We might therefore 

expect that inner planets with relatively low i in the USP region of Figure 6a had finished 

migrating inward some time after their star had begun to spin down, whereas more excited USPs 

fell into place more quickly. 

2. An OTS with decaying spin rate excites lower-mass systems somewhat more than 

higher-mass systems, which could lead to a slight preference for lower masses in single-tranet 

systems. This is in contrast with findings in Johansen et al. (2012), which showed that singles 

tend to have larger radii than multis. However, no distinction was made between the population 

of lonely hot Jupiters and the collection of smaller planets first reported on in Lissauer et al. 

(2011). Weiss et al. (2018) remedied this and concluded that, for sub-Neptunes in the Kepler data 
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set, there is no difference in average radius between singles and multis. The remainder of the 

single-tranet population consists of hot Jupiters and distant ice planets, both with histories likely 

very different from the Kepler sub-Neptunes. 

Further, Spalding & Batygin (2016) demonstrated that the smallest planets are destroyed 

first when a given system goes unstable. Had I retained the average mass parameter m in the 

lowest-mass systems in my simulations, but allowed the planets in a pair to be different sizes, the 

larger planet would likely survive instability, perhaps weakening the already weak preference 

shown here for low-mass single tranet systems. Regardless, the OTS-planet mass relationship, 

while stronger than in the constant spin scenario, is still relatively minor. 

3. The planet that survives OTS-induced instability in a system of two planets almost 

always realigns somewhat with its star after instability. This can partially, if not entirely, erase 

the star’s initial obliquity if no other planets exist in the system, leading to low modern 

obliquities in single-tranet systems. This may partially explain the similarities in obliquities 

among singles and multis as reported by Winn et al. (2017). That hot Jupiters continue to exhibit 

strong obliquities, while smaller singles do not, suggests that hot Jupiters form/migrate without 

giant, nearby neighbors to potentially scatter off them and change their misalignment. 

One interesting point that cannot be explained by the work done in this thesis is the lack 

of high-obliquity Kepler multis. All OTS investigations have allowed for combinations of high 

* and low J2,0, which has been shown to have very little influence over an initially coplanar 

multi-planet system; if such combinations exist, we might expect to see multis with extremely 

tilted stars that never reached high enough spin rates to excite their systems. This does not seem 

to be the case. Perhaps there’s an association between stellar obliquity and spin rate – perhaps all 

misaligned stars are oblate enough to excite the planets closest to them? This also doesn’t seem 
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to be the case: Batygin & Adams (2013) concluded that stars with low to moderate spin rates, not 

high ones, are more likely to retain their misalignment after their disks have dispersed. It may 

take further study of the intricate physics of misalignment to show that high *, low J2,0 systems 

don’t exist, or that well-aligned Kepler multis occupy only the low *, low J2,0 quadrant of the 

obliquity/oblateness box. Perhaps an OTS with low O and high T occurs under conditions that 

also favor the formation of hot Jupiters. Though beyond the scope of this thesis, it is certainly a 

question worth addressing in the future. 

4. In addition to the above observations, I have more fully explored the parameter space 

of the OTS mechanism. My results allow us to make predictions about the survivabilty of a two-

planet system based on a set of initial conditions, as well as the architecture of surviving systems. 

Concurrent with the data analysis phase of this chapter, a separate group arrived at the main part 

of conclusion (1) independently (Li et al. 2020). My work diverges from theirs in that it 

considers full spin-down dynamics, while the methods in that work are almost purely analytical. 

Though quantitatively different, our combined work makes a stronger case for the OTS 

mechanism than either work does alone. 

The work presented in this chapter lends itself to a number of additional questions, not 

least of which is: what happens when you throw more planets into the mix? Do they stabilize 

each other against excitation? Inspection of the Dai data set hints that planet pairs that are part of 

larger systems do lie fairly close to the horizontal axis in Figure 6a. If N>2 systems are flatter 

than N=2 systems, they would appear to fully transit more often than N=2 systems. What kinds 

of transit frequencies can we expect from higher-multiplicity systems? How does that relate to 

transit multiplicities in our current data? With these questions, let’s proceed to the next chapter. 
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CHAPTER 3 

BRITTLE GROUPS: N>2 

3.1 Reintroduction 

Nearly ten years have passed since it was first reported that the Kepler data contains an 

unexpectedly high number of single-tranet systems (Lissauer et al. 2011). Our database of 

confirmed exoplanets has only grown since then, supplemented by other telescopes (e.g. Keck; 

Marcy et al. 2014) and other detection methods (e.g. radial velocity; Ford et al. 2011, Bryan et al. 

2016). One is led to wonder if any of the original Kepler singles have been found to possess non-

transiting neighbors that impose transit timing variations on the single, or are large enough to 

influence the host star itself. According to the database4, as of April 2020, only a fraction (about 

30 in several thousand) of all transit-detected singles, across multiple observatories, have 

additional planets that were found using non-transit methods. Giant planets comprise more than 

half of this set; the other part largely consists of small singles with radial velocity companions. 

Two systems (KOI-124 and Kepler-19) had singles with enough variation in their transit timing 

that an additional planet could be confirmed in the system. For the most part, Kepler singles have 

remained in the singles club, gathering more members as observations go on. 

The RV method is best at detecting large planets, preferably with short orbital periods. 

The TTV method is favored when searching for planets that are still fairly well aligned, closely 

packed, and bordering mean-motion resonances, but just out of transit sight. Neither of these is 

ideal if one is looking for small, inclined planets in a single-tranet system. “Inclined” is, of 

course, a relative term – if a multi-planet system does resist OTS excitation more than a lone 

 
4 https://exoplanetarchive.ipac.caltech.edu/ 
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planet pair does, then it might be more easily detectable by TTV or transit. The low number of 

transiting singles with TTV neighbors implies otherwise. This is where our knowledge about 

OTS systems fails us: we know that a system of multiple planets will go unstable before it starts 

looking like a single-tranet system (Spalding & Batygin 2016, Hansen 2017, Spalding et al. 

2018), but the number of survivors and their final inclinations after OTS instability have not been 

thoroughly examined. 

Weiss et al. (2018) confirmed that the majority of Kepler sub-Neptunes are still singles. 

While they looked at a smaller set of data than is currently available, an inspection of the larger 

set tells the same story: the proportion of singles among all planets is roughly 0.5 (Figure 11a), 

and the proportion of single-tranet systems among all systems is accordingly higher (about 75%, 

Figure 11b). All of our questions about underlying versus apparent multiplicity, the creation of 

singles, and the possible architectures of multi-planet systems are all still valid.  

At this point, it is valuable to point out that the “dichotomy” part of the Kepler dichotomy 

is somewhat subtle.  Lissauer et al. (2011) reported that the Kepler multis alone are much easier 

to fit a suitable orbital inclination distribution to than both multis and singles together – it 

Figure 11. Histograms of current exoplanet data. a) The number of planets that are part of N-

planet systems, and b) the number of systems containing N planets, from N=1 to N=6. Singles 

dominate the population at both levels. 
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seemed that Kepler multis and singles had completely separate, “dichotomous” inclination 

distributions. However, recent works (Zhu et al. 2018, Sandford et al. 2019, He et al. 2019) have 

proposed inclination distributions that reproduce both multis and singles. They maintain that 

dynamical ‘heat’ increases inversely with true system multiplicity, and that two separate 

inclination distributions are consequently not required to describe the Kepler data set. 

Unfortunately, this resolves the Kepler dichotomy only in a semantic sense; there still firmly 

exists a surplus of singles, now suggested to be part of undetected multis, and it begs 

explanation. Moreover, as has been demonstrated time and again (e.g. Ford & Rasio 2008, 

Johansen et al. 2012, Spalding & Batygin 2016, Hansen 2017, Spalding et al. 2018), instability is 

a key player in dynamical heating and transit reduction – how often is a single truly single, and 

how often can it have the hidden neighbors that recent studies claim it to have? Does the OTS 

mechanism naturally lead to successively weaker excitation in higher-N systems? 

In the previous chapter, I confirmed the hypothesis that close-in planet pairs become 

more mutually inclined by an OTS than distant pairs do. Most pairs exhibited stability on large 

time scales with final mutual inclinations as large as 35. In this chapter, I combine N=2 data 

with simulation data from N=3, 4, 5, and 6 systems and inspect the relationship between initial 

multiplicity Ni, final multiplicity Nf, and number of transiting planets NT in OTS systems. I 

determine the resilience of N>2-systems to OTS excitation, establish the requirements that must 

be met in order for the OTS mechanism to explain the excess of single-tranet systems in the 

Kepler set, and comment on the viability of these requirements in light of current observations 

and the results from chapter 2.  

All of my assumptions from the previous chapter carry over to this one. 
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3.2 Methods 

The basic setup for this experiment is identical to the previous chapter’s, with a few 

alterations made to save computation time and maintain physical accuracy. A half-set of 

innermost semimajor axes is used, based on equation (12): 

𝑎1

𝑅∗
∈ {2, 4, 6, 8, 10, 12, 16, 20} (30) 

The stellar parameters are the same, so a1 again ranges from 0.01 to 0.1 AU. Successive 

semimajor axes calculated using equation (13). However, Weiss et al. (2017) reported that high 

multiplicity Kepler systems (N  4) are more closely packed than N=2 and N=3 systems. It’s 

possible that extra non-transiting planets are present between known planets in these Kepler 

systems, such that observed planet-planet separations misrepresent the true organization (and 

multiplicity) of Kepler systems, particularly in the low-multiplicity cases. As shown by Fang & 

Margot (2013), though, at least 30% of 2-, 3-, and 4-planet Kepler-like systems with observed 

spacings and multiplicities are not long-term stable if extra unseen planets exist between extant 

orbits. This proportion increases with increasing system multiplicity, and is only a lower limit on 

the proportion of Kepler systems that are “dynamically packed” – a.k.a. do not and cannot hold 

additional undetected intra-orbit planets, and so are likely genuinely separated by the observed 

distances. In keeping with the observations of Weiss et al. (2017), then, separations of 20, 15, 14, 

and 13 mutual Hill radii are used for the N=3, 4, 5, and 6 sets of simulations, respectively. As 

there was only a small difference in excitation and instability rates across the masses assigned in 

chapter 2, I use only the middle mass (5M) from that set in these simulations. Five J2,0 are drawn 

evenly from the lowest 10 values from equation (18): 

𝐽2,0 ∈ {3.14 × 10−5, 7.89 × 10−5, 1.98 × 10−4, 4.98 × 10−4, 1.25 × 10−3} (31) 
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Stellar obliquity is again taken from the full range in equation (17). All simulations – a total of 

960 -- are run for 5Myr or until only one planet remains.  

At every point for the final 10,000 years in a simulation, the mutual inclination between 

each surviving planet pair is calculated using equations (23)-(25). The mean of these mutual 

inclinations is also recorded. Based on these individual instantaneous mutual inclinations, the 

maximum possible transit number at that point in time can be calculated using equation (3) and 

the method implemented in Spalding & Batygin (2016) and Spalding et al. (2018). Starting with 

the entire group of surviving planets (p total planets), every mutual inclination between pairs in 

the group is checked against the transit criterion in equation (3). If all pairs satisfy the criterion, 

then the maximum transit number at epoch is p. If any planet pair fails to satisfy the criterion, it’s 

impossible to observe p transits in this system. The required transit number is then lowered to p-

1 and new groups are made out of all possible combinations of p-1 planets; each of these groups 

is checked via the above method, and if all of the pairs in at least one group satisfy the transit 

criterion, then the maximum transit number at epoch is p-1. If not, the next lowest transit number 

is sought out, and the process repeats until some sub-group of the surviving planets passes the 

test. The three calculations – mutual inclinations, mean mutual inclination, and maximum transit 

number – are performed at each time step and averaged over at the end. In this chapter, “the 

mutual inclination of an N=n system” refers to the mean-mean-mutual-inclination () 

associated with a system, as opposed to the collection of average individual is. If only one 

planet survived at the end, the mean-mean-mutual-inclination  is set equal to its final orbital 

inclination. Note that in the surviving N=2 case, only one planet pair exists to be averaged over, 

so  and i are the same. Only the N=2 systems with initial conditions from the above sets are 

used in this chapter. 
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3.3 Results and Discussion 

3.3.1: N>3 Systems Are Stiff 

I will first address the population of systems that remained completely intact throughout 

the simulation (same final and initial multiplicities). To create Figure 12, for each Ni, all of the 

 for systems with a given value of the relevant parameter were averaged together. All three 

panels generally demonstrate a tendency for excitation to decrease with increasing multiplicity. 

The Ni=2 and Ni=3 cases were constructed almost identically – Ni=3 is simply an Ni=2 system 

with another planet tacked on to the outside edge. When comparing these two sets of curves, it 

appears generally true that extra planets in a system makes it more resistant to excitation. The 

story is a bit more complicated at the Ni>3 level: although separation between planets was 

decreased while extra planets were added, neither of these actions seemed to make much of a 

difference in the final mean inclination in Ni=4, 5, or 6 planets. It seems logical to guess that 

either would result in stronger resistance to excitation, and so together make a system very 

resistant. However, the sudden jump in mean inclinations between the low (2 and 3) 

multiplicities and the high (4, 5, and 6) multiplicities, accompanied by a sudden jump in planet 

separations (20RH to about 14RH), points to planet separation being a much stronger determining 

Figure 12. Mean final mutual inclinations for completely intact N-planet systems, as functions 

of a1 (left), J2,0 (middle), and * (right). Each point is the average of about 20 simulated systems.  
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factor than multiplicity in a system’s final architecture. This makes sense: an extra planet placed 

far away is likely going to exert less force than a nearby planet moved in closer. The exact cause 

for the tight clustering among Ni>3 systems is unclear – six-planet systems still have the most 

distant outer edges, which would respond sluggishly to OTS excitation, keeping  low. Perhaps 

there’s a ‘resistance limit’ against outside influence that high-Ni Kepler systems have attained. 

More research into this is required to elucidate close-packed systems’ response to external 

perturbers. Nevertheless, when taken as a whole, it appears that the more planets occurring in a 

young Kepler-like system, the less an OTS will be able to excite it, largely thanks to the 

association between multiplicity and small planet-planet separations. The signal is strongest as a 

function of J2,0, at moderate values of *, and in systems with an inner edge within about 

0.07AU. 

3.3.2: The Bigger They Are, The Harder They Fall  

Evidently, high-Ni systems take more effort to excite to higher inclinations. Does this 

resilience also apply to instability? Broadly speaking, the values of * and J2,0 associated with 

instability in the N>2 cases are about the same as those that resulted in instability in the N=2 

cases, if a little lower. The instability rate in this data set is only slightly higher – 15% in the N=2 

cases, around 20% in the N>2 cases, with no further multiplicity dependence in the latter set of 

cases. In these ways, high-Ni systems are somewhat less resilient to instability than lone planet 

pairs are. The most striking distinction between low-Ni and high-Ni systems, stable versus 

unstable, can be seen in Figure 13. The set of systems featured represent a typical instability 

outcome: upon crossing the threshold from stable to unstable, a high-multiplicity system will 
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lose at least half of its planets, if not all of them. Post-instability systems are further estranged 

from stable systems by their dynamically heated orbits (Figure 14a), almost always appearing as 

single-tranet systems instead of smaller multis (Figure 14b). Lower surviving multiplicities 

combined with larger inclinations seems to force young Kepler-like multis into a nearly binary 

final state: either the system stays whole, and appears whole, or it loses parts of itself and appears 

single (Figure 15). For every Ni in Figure 15, the most frequent outcome was intact coplanarity 

(between 60% and 80%, lowest for Ni=6 and increasing with decreasing Ni). The second-most 

frequent outcome was true singleness (10-15%) or a pair appearing single (10% for Ni5). 

These pieces come together to form an interesting whole. A Kepler-like multi (Ni>2) 

orbiting an OTS at small distances will most likely evolve into a dynamically hot, highly reduced 

system or a dynamically cool, intact multi. The outcome depends more sensitively on stellar 

obliquity than in the Ni=2 case, especially for the closest-in systems; a few degrees’ tilt one way 

or the other could mean the difference between a lifetime of companionship and a Red Wedding. 

All-or-nothing planet loss was also encountered in Spalding & Batygin (2016), but only briefly 

acknowledged; here I add robustness to that observation. 

Figure 13. A histogram of the final multiplicities of N-planet systems when evolved 

around an OTS with different stellar tilts. This is a slice of data taken at a1/R*=2 and 

J2,0=1.98x10-4, a mild value for J2,0. 
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Figure 14.  vs true final multiplicity Nf, (a) colored according to initial multiplicity Ni, 

and (b) colored according to final transit number NT. 

Figure 15. A frequency plot of NT versus Nf.. Each dot is colored by initial multiplicity Ni and 

sized according to the percentage of systems that ended up with the given combination of Nf and 

NT. 
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3.3.3: We’re Gonna Need a Bigger Tilt 

With a basic grasp of the relationship between Ni, Nf, and NT under the influence of the 

OTS mechanism, we can puzzle together a rudimentary answer to the question, “could OTSs be 

the cause of the Kepler dichotomy?” It’s important to keep in mind that the initial conditions on 

which this data set is based were not selected to encapsulate all of Kepler parameter space – most 

Kepler systems’ inner edges are further from their host than mine. The mean period of the 

innermost edge of a Kepler system is about 7 or 8 days, equivalent to 0.07AU around a Sun-like 

star, or a1/R*=14. In addition, the initial * set was chosen mainly to ensure that the full possible 

range of i could be accessed while minimizing instability. The true rates at which young 

Kepler-like multis lose planets and/or have their transit number reduced will be different than 

those appearing in this work, although real systems should still exhibit the bimodality of fates 

that simulated systems do. 

Figure 16 tabulates final transit numbers according to initial multiplicities -- it’s is the 

equivalent of rotating Figure 15 90 clockwise, combining all of the dots in each column by 

Figure 16. A histogram of final maximum transit number, colored according to the original 

(left) and final (right) number of planets in the system. 
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color, and condensing them into a bar. This histogram doesn’t resemble Figure 11b very closely 

because during the input selection process, I’ve assumed that young Kepler-like systems have 

planet multiplicities drawn from a discrete uniform distribution between 2 and 6; in reality, 

we’ve detected very few high-multiplicity systems. The bars in Figure 16 require scaling in order 

to more closely match Figure 11b. In turn, this scaling will tell us how many systems of each Ni 

are needed to reproduce the transit counts associated with the Kepler dichotomy, and whether the 

inputs I’ve selected can cause instability frequently enough to create a large population of 

singles.  

If we assume that the relative rates at which different Ni systems turn into each NT system 

are fixed (i.e. would be about the same for larger data sets – again, this may not be exactly true, 

but bear with me for argument’s sake), Figure 16 can be translated into a set of linear equations 

and scaled to match the current set of transiting Kepler data (Figure 11b). For example: if the 

total number of systems that started with Ni=5 (red bars) is X5i, then some proportion of X5i is 

systems that have five maximum transiting planets (the biggest red bar, comprising most of 

NT=5) – call that proportion P5i,5, and call the total number of systems in the biggest red bar N5i,5. 

So 

𝑋5𝑖𝑃5𝑖,5 = 𝑁5𝑖,5 . (32) 

The rest of the NT=5 bar is a sliver of purple Ni=6 systems. The number of initially 6-planet 

systems with maximum transit number 5 is N6i,5. As above, we can relate the total number X6i of 

initially 6-planet systems to the number that appear to quintuply transit: 

𝑋6𝑖𝑃6𝑖,5 = 𝑁6𝑖,5 (33) 
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The total number of systems Y5 in the NT=5 bar is the sum of N6i,5 and N5i,5. Substituting in 

equations (32) and (33): 

𝑋5𝑖𝑃5𝑖,5 + 𝑋6𝑖𝑃6𝑖,5 = 𝑌5 (34) 

Reducing the height Y5 of the NT=5 bar to match the equivalent bar in Figure 11b requires 

decreasing X5f and X6f by undetermined amounts. These amounts can be constrained when the 

full set of equations is constructed via the same method. If there are 1257 single-tranet, 320 

double-tranet, 110 triple-tranet, 46 quadruple-tranet, 17 quintuple-tranet, and 3 sextuple-tranet 

systems in Figure 11b, then the system of equations relating initial multiplicities to final 

maximum transiting multiplicities is 

𝑋1𝑖 + 0.212𝑋2𝑖 + 0.220𝑋3𝑖 + 0.193𝑋4𝑖 + 0.229𝑋5𝑖 + 0.240𝑋6𝑖 = 1250 

0.788𝑋2𝑖 + 0.116𝑋3𝑖 + 0.021𝑋4𝑖 + 0.025𝑋5𝑖 + 0.032𝑋6𝑖 = 320 

0.664𝑋3𝑖 + 0.093𝑋4𝑖 + 0.032𝑋5𝑖 + 0.036𝑋6𝑖 = 110 (35)  

0.638𝑋4𝑖 + 0.075𝑋5𝑖 + 0.029𝑋6𝑖 = 46 

0.638𝑋5𝑖 + 0.072𝑋6𝑖 = 17 

0.591𝑋6𝑖 = 3 

where the coefficients in both sets have been rounded for display. The resulting scaled histogram 

is shown in Figure 17. 

Too few systems went unstable in my data to fill the entire single-tranet quota – only 

about 10% of the single-tranet systems in Figure 17 were created by exciting a system of multis. 

In addition to a collection of young multis, over 1000 of the Kepler-observed systems would 

need to be born naturally single, making an OTS ultimately responsible for only a small portion 
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of all single-tranet systems. This is to be expected from a data set that was chiefly designed to 

avoid instability while probing parameter space as widely as possible.  

There are a number of ways to considerably boost the instability rate among planetary 

systems: one could push systems’ inner edges close to their host, or increase the host’s 

quadrupole moment, or perhaps decrease the planets’ masses and increase their separations 

(though the last two may not boost instability “considerably”). Any of these would be in 

violation of observation, however – Kepler systems are often more distant from the star than 

mine, hosts’ J2,0 rarely exceed the upper limit enforced in this chapter, and Kepler masses and 

separations are well-documented and have already been incorporated in my simulations. The 

obvious answer is that I have underrepresented stellar obliquity. * is still the most mysterious 

parameter of all, and as seen in the previous section, just few degrees’ tilt can mean the 

difference between long-term companionship and a community tragedy. 

The most distant systems to go unstable in this data set did so at obliquities above 30 -- 

this limit decreases to somewhere in the teens for the closest-in systems. To boost instability 

Figure 17. The spread of initial multiplicities required to reproduce the Kepler dichotomy by the 

OTS mechanism, based on transit rates from N-body simulations. 1116 singles, 380 doubles, 155 

triples, 64 quadruples, 26 quintuples, and 5 sextuples are needed in this scenario, where transit 

reduction is infrequent. 
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rates at all levels, then, would require stellar tilts distributed with a moderately high mean. I 

observed in chapter 2 that, in almost all cases, the sole surviving planet of an instability erases 

part of its spin-orbit misalignment by dropping to a lower inclination; the same trend is found 

across all OTS systems in this data set (Figure 18), where 82% of survivors settled into lower-

inclination orbits after their last remaining neighbor was destroyed. Single-tranet systems are 

truly single most of the time (Figure 16b); the remainder are very likely to be doubles on highly 

mutually inclined orbits (Figure 14b). The oscillations in inclination caused by these misaligned 

pairs may also help conceal the host’s true original obliquity. Due to these effects, it is clear that 

the spin-orbit misalignments we have measured and will measure likely do not reflect the true 

distribution of initial misalignments that contribute to the OTS mechanism. 

Figure 18. The final orbital inclinations of the lone survivors of instability, scaled by initial 

stellar tilt and colored according to initial system multiplicity. As in Figure 10, the horizontal 

axis represents the initial inner edge of the system. 



 

67 
 

3.4 Conclusions 

In a universe where all planetary systems are born compact, with similar masses and 

close to their star, the only way they can become a Kepler single with hidden neighbors is to 

experience inclination excitation between planet pairs. A Kepler single with many hidden 

neighbors is a science fictionist’s dream – a central star surrounded by a web of orbits. The 

reality seems to be much less fantastical. The purpose of this chapter was to investigate the way 

that systems born with more than two planets respond to inclination excitation while in orbit 

around an oblate, tilted star, and to use this knowledge to move us one step closer toward 

identifying the source of the excess of Kepler singles. I conclude the following: 

 1. Multi-planet, Kepler-like systems with N>3 are less excitable in mutual inclination 

than low-multiplicity systems, assuming that the multiplicity/spacing data we’ve gathered from 

Kepler accurately represent true system spacings. This is likely because they are more closely 

packed than low-N systems; close neighbors bolster each other against outside perturbations 

(Becker & Adams 2017). Moreover, the N>3 systems exhibit very similar levels of mutual 

inclination excitation across multiplicities, though intuition expects their resistance to increase as 

planets are added and separations are decreased. Most of the planet pairs in the Dai set that are 

part of reportedly higher-multiplicity systems all demonstrate low excitations, in agreement with 

this result. Previous work (Zhu et al. 2018, Sandford et al. 2019) conclude that mean inclinations 

in the Kepler systems increase inversely with multiplicity; while is true in the broadest sense that 

an OTS excites mutual inclinations at the lowest multiplicities more than at the highest, the 

transition is not smooth. 

 2. A Kepler-like system with more than two planets will lose at least half, if not all but 

one, of those planets if it encounters instability. While it’s not news that close-packed multis go 
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thoroughly unstable (Spalding & Batygin 2016, Pu & Wu 2015), this result is important when 

combined with the previous point. Multi-planet systems that go unstable are bound to nearly 

binary destinies: most will remain flat enough that, from the perfect vantage point, all of their 

planets can be seen to transit, while most of the rest will almost completely fall apart and acquire 

large mutual inclinations with any surviving neighbors. The states in between occur less 

frequently. 

If a single-tranet system is almost always the product of instability, and if instability 

always reduces the number of planets in a system to a maximum of three, but usually only one or 

two, then the Kepler singles’ prospects for companionship are looking grim. In light of this, it 

seems probable that most of the planet pairs in the Dai set without additional reported neighbors 

are genuinely just pairs, assuming that they originate from an OTS-evolved system. This is again 

in contrast with Zhu et al. (2018) and others that single-tranet systems are mostly part of excited 

multi-planet systems. 

 3. The OTS mechanism could lead to the creation of a large number of single-tranet 

systems if conditions favor instability more than they do under the conditions set up in this 

chapter and the previous one. Stellar obliquity is the wild card in this situation – it has been 

suggested (Spalding & Batygin 2015) that any possible degree of misalignment is achievable 

through disk torqueing, so it’s conceivable that hosts are tilted enough (>30 for distant, 15 for 

very close systems) often enough to boost instability rates beyond those recovered in this work. 

At first glance, this seems unlikely in light of recent observations of stellar obliquities in Kepler 

singles and multis, which show little difference between the two populations, with a mean at or 

below 20. However, conclusion (4) in the previous chapter has only been strengthened by 

simulations of higher-multiplicity systems – regardless of initial system multiplicity, the spin-
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orbit misalignment between a star and the sole surviving member of its unstable system will 

appear reduced relative to its original value. Thus, if the initial obliquities of host stars are widely 

spread, they’ll be somewhat compressed and pushed down toward lower – perhaps considerably 

lower – values post-instability. Where before the OTS mechanism’s prospective power was 

restrained by reports of low obliquity in singles, it is now somewhat freer. It depends now on the 

relationship between initial and final misalignment in the OTS regime, a topic worth further 

investigation.  
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CHAPTER 4 

SUMMARY 

4.1 Recapitulation and Predictions 

 In chapter 2, we opened the door onto a crowd of planetary pairs whose stars were all 

misaligned and fast-rotating in their youth – a larger crowd than we’d ever met before. From this 

crowd we picked out patterns across couples: the ones that lived close to their stars had larger 

mutual inclinations, seemed a little more distant from each other. The smaller ones also seemed 

more misaligned, and there were fewer low-mass pairs in the crowd, though only by a bit in both 

cases. By asking around, we learned about the couples who couldn’t make it to the party of 

survivors because they had broken up; we saw trends, we mapped out the properties of young 

host stars that put strain on planet pairs to the point of instability. It was confirmed that the 

unstable couples had all reached the same breaking point by different means, a breaking point 

previously predicted based on a smaller group of data and some theory. We asked about the 

planets left behind after instability – most of the time, they had realigned somewhat with their 

star after everything was said and done. Without having prior knowledge of the situation, one 

might look at a single and its star and not know whether the potential for instability had ever 

existed. 

In chapter 3, the multis came in. They all seemed less susceptible to perturbation by their 

host star compared to the pairs – particularly the fours, fives, and sixes. The intact groups were 

all fairly well-aligned. However, they showed us that they were also more sensitive to upset than 

the pairs – an instability among them causes many members to leave, leaving at best a triple, 

possibly a pair, all made more inclined away from each other by the event. We learned that most 

of the time, a multi almost completely self-destroys and became a single which, like the other 
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singles, usually falls onto a lower-inclination orbit. Current observations of singles and multis 

find low obliquities in both sets, which suggests that these lonely singles may be good at 

concealing their turbulent histories. 

If future observations of stellar obliquities in systems of Kepler singles continue to yield 

low (<30) misalignments, this obliquity-erasing behavior could be the essential factor that 

lends credence to the mechanism discussed in this thesis. Assume for now that initial spin-orbit 

misalignments are evenly distributed between 0 and 90 -- perhaps weighted toward the low 

end, taking into account that certain physics in the disk-hosting stage do operate to realign star 

and planets, so call the mean misalignment 40 or so. As demonstrated in this work, 40 is 

sufficient to cause instability in most close-in Kepler-like systems, and should increase the rate 

of instability among multis above the conservative rates simulated in chapter 3. Based on the 

apparently randomly scattered final singleton inclinations in Figure 18, I tentatively predict that 

stellar obliquities in Kepler singles will be observed with a mean of around ½ the mean of the 

true distribution of initial stellar obliquities. This puts the observed mean misalignment in Kepler 

singles at around 20, which is the estimated average observed obliquity among Kepler singles 

and multis as put forth by Winn et al. (2017).  

The two most common outcomes for a multi in orbit around an oblate, tilted star are 

intact and coplanar, or single/surviving as a pair and appearing single. I predict that most Kepler 

singles are truly single, with only one other neighbor similar in size to it, two neighbors in rare 

cases. While it isn’t impossible for a single to be part of a very excited multi of similar sizes, the 

chances of that are slim. Thus, I further predict that any neighbors we do discover in Kepler 

single-tranet systems will be very distant from the original transiting planet, or have migrated 
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inward from farther out post-instability and be of a different size and composition than the 

original single. 

4.2 Future Work 

At the time that Spalding & Batygin (2016) proposed the oblate, tilted star mechanism, 

evidence suggested that single-tranet systems were more common around misaligned stars (Winn 

et al. 2010, Albretch 2012), and that misaligned stars tended to be hot. However, followup work 

(Winn et al. 2017, Weiss et al. 2018) has shown that this signal was biased by hot Jupiters, and 

that Kepler stars hosting small singles versus small multis are essentially the same. This is at 

odds with our assumption that the final transit multiplicity of a Kepler-like system depends on 

stellar properties. Moreover, as addressed in chapter 2, current observations reveal a deficit of 

high-obliquity, coplanar Kepler multis – if we assume that a star’s misalignment is not 

correlated, or even anticorrelated, with the strength of its quadrupole moment, then that leaves us 

with either an entirely unobserved group of misaligned, coplanar multis that a star was unable to 

excite, or with the prediction that stellar obliquity and oblateness are linked. It is therefore vital 

that we continue to study the process (or processes) by which stars acquire their misalignments, 

to determine whether such a link does exist. 

Obliquity erasure is also an interesting new result. It is likely generic to all destabilizing 

mechanisms that force precession about some perturber’s angular momentum axis. Right now, 

those all involve large objects on wide orbits, with smaller objects inside (see chapter 1). Should 

a giant perturber be responsible for creating some fraction of the Kepler singles, we might expect 

to see mild, but not severe, misalignment between them as we discover more giants around 

close-in systems. The physics behind this relaxation is another topic for future inquiry. 
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APPENDIX A 

MERCURY6 CUSTOM SUBROUTINE 

 This is the custom code implemented in all mercury6 N-body simulations performed 

during the data gathering phase of this inquiry. It assumes that the user has modified mercury6 to 

read two additional lines from the input file param.in, defining J2,0 (called cusJ2 in the code) and 

the quadrupole moment decay constant  (called tDecy). To remove this requirement and insert 

the code directly into mercury6_2.for, a few simple changes can be made: 

• delete cusJ2 and tDecy on lines 4 and 12 

• add cusJ2 and tDecy to the end of line 16 

• define cusJ2 and tDecy at some point between lines 19 and 25, including desired values 

Note that editing mercury6_2.for requires that the executable mercury6 be recompiled to 

incorporate the changes. Ensure that no lines contain extra tabs or spaces preceding content – 

otherwise the code won’t compile. 

 mercury6 can be downloaded from GitHub at https://github.com/4xxi/mercury.  

1 c------------------------------------------------------------------------------ 

2 c 

3       subroutine mfo_user (time,jcen,nbod,nbig,m,x,v,a, 

4      % cusJ2,tDecy,rcen) 

5 c 

6       implicit none 

7       include 'mercury.inc' 

8 c 

9 c Input/Output 

10       integer nbod, nbig 

https://github.com/4xxi/mercury


 

80 
 

11       real*8 time,jcen(3),m(nbod),x(3,nbod),v(3,nbod),a(3,nbod) 

12       real*8 cusJ2,tDecy,rcen 

13 c 

14 c Local 

15       integer j, k 

16       real*8 acen(3),j2,G 

17       real*8 jr2,r2,r_1,r_2,r_3,u2,tmp1,tmp2,tmp3,tmp4 

18 c 

19 c------------------------------------------------------------------------------ 

20 c 

21       acen(1)=0.0d0 

22       acen(2)=0.0d0 

23       acen(3)=0.0d0 

24  

25       j2 = cusJ2 * (rcen ** 2) * exp(-time/tDecy) 

26  

27      G= 2.9599027E-4 

28  

29       do j=2,nbod 

30  

31         r2 = x(1,j)*x(1,j) + x(2,j)*x(2,j) + x(3,j)*x(3,j) 

32         r_1 = 1.d0 / sqrt(r2) 

33         r_2 = r_1 * r_1 

34         r_3 = r_2 * r_1 

35         jr2 = j2 * r_2 

36         u2 = x(3,j) * x(3,j) * r_2 

37  

38         tmp1 = m(1) * r_3 * G 



 

81 
 

39         tmp2 =jr2*(7.5d0*u2 - 1.5d0) 

40         tmp3 = jr2*3.d0 

41  

42         a(1,j) = x(1,j) * tmp1 * tmp2 

43         a(2,j) = x(2,j) * tmp1 * tmp2 

44         a(3,j) = x(3,j) * tmp1 * (tmp2 - tmp3) 

45  

46  a(1,j) = a(1,j) - 1.62506E-11 * x(1,j) 

47      %    /((x(1,j)*x(1,j)+x(2,j)* 

48      %    x(2,j) + x(3,j)*x(3,j) )**2) 

49      %    *((m(1)/K2)**2) 

50         a(2,j) = a(2,j) - 1.62506E-11 * x(2,j) 

51      %    /((x(1,j)*x(1,j)+x(2,j)* 

52      %    x(2,j) + x(3,j)*x(3,j) )**2) 

53      %    *((m(1)/K2)**2) 

54         a(3,j) = a(3,j) - 1.62506E-11 * x(3,j) 

55      %    /((x(1,j)*x(1,j)+x(2,j)* 

56      %    x(2,j) + x(3,j)*x(3,j) )**2) 

57      %    *((m(1)/K2)**2) 

58  

59         acen(1) = acen(1)  -  (m(j) / m(1)) * a(1,j) 

60         acen(2) = acen(2)  -  (m(j) / m(1)) * a(2,j) 

61         acen(3) = acen(3)  -  (m(j) / m(1)) * a(3,j) 

62  

63       end do 

64  

65       do k = 2, nbod 

66  
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67         a(1,k) = a(1,k) - acen(1) 

68         a(2,k) = a(2,k) - acen(2) 

69         a(3,k) = a(3,k) - acen(3) 

70  

71       end do    

72 c 

73 c------------------------------------------------------------------------------ 
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APPENDIX B 

ADDITIONAL PLOTS AND INTERPOLATED CURVES 

 This contains three additional density histograms excluded from chapter 2, as well as a 

set of interpolated curves connecting initial oblateness J2,0, stellar obliquity *, and innermost 

semimajor axis a1 to the mutual inclination of a surviving simulated planet pair. The dotted line 

appearing on Figures 26 and 27 is the curve expressed by equation (29), and marks the point 

above which systems would go unstable rather than continuing to gain mutual inclination.  

 Curves that terminate at *=80 in Figures 28-42 are systems that remained stable at all 

stellar tilts; curves that terminate elsewhere or are concave up went unstable, usually between 

30 and 50 of obliquity. 

 

 

Figure 19. A 2D histogram of Predict[] data, where * is drawn from a Rayleigh distribution 

with mean 30. 
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Figure 20. A 2D histogram of Predict[] data, where * is drawn from a Rayleigh distribution 

with mean 45. 

Figure 21. Interpolated i vs J2,0 curves for different a1 at *=1. 
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Figure 22. Interpolated i vs J2,0 curves for different a1 at *=6. 

Figure 23. Interpolated i vs J2,0 curves for different a1 at *=10. 
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Figure 25. Interpolated i vs J2,0 curves for different a1 at *=30. 

Figure 24. Interpolated i vs J2,0 curves for different a1 at *=20. 
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Figure 27. Interpolated i vs J2,0 curves for different a1 at *=70. 

 

Figure 26. Interpolated i vs J2,0 curves for different a1 at *=50. 



 

88 
 

 

  

Figure 28. Interpolated i vs * curves for different J2,0 at a1=0.01 AU. 

 

Figure 29. Interpolated i vs * curves for different J2,0 at a1=0.015 AU. 
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Figure 30. Interpolated i vs * curves for different J2,0 at a1=0.02 AU. 

 

Figure 31. Interpolated i vs * curves for different J2,0 at a1=0.025 AU. 
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Figure 32. Interpolated i vs * curves for different J2,0 at a1=0.03 AU. 

 

Figure 33. Interpolated i vs * curves for different J2,0 at a1=0.035 AU. 
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Figure 34. Interpolated i vs * curves for different J2,0 at a1=0.04 AU. 

 

Figure 35. Interpolated i vs * curves for different J2,0 at a1=0.045 AU. 
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Figure 36. Interpolated i vs * curves for different J2,0 at a1=0.05 AU. 

 

Figure 37. Interpolated i vs * curves for different J2,0 at a1=0.055 AU. 
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Figure 38. Interpolated i vs * curves for different J2,0 at a1=0.06 AU. 

 

Figure 39. Interpolated i vs * curves for different J2,0 at a1=0.07 AU. 
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Figure 40. Interpolated i vs * curves for different J2,0 at a1=0.08 AU. 

 

Figure 41. Interpolated i vs * curves for different J2,0 at a1=0.09 AU. 
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Figure 42. Interpolated i vs * curves for different J2,0 at a1=0.1 AU. 
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