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Over three million people in the U.S. suffer from forearm and hand disabilities.  

This can result from aging, neurological disorders (e.g., stroke), chronic disease (e.g., 

arthritis), and injuries.  Injuries to hands comprise one-third of all work-related injuries 

worldwide.  This can lead to difficulties with activities of daily living (ADL), where one 

needs to grasp, lift, and release objects in the household.  There is a rise in demand for 

assistive orthoses and gloves that can allow many people to regain their 

grasping/releasing ability and, thereby, their independence.  The main contribution of 

this thesis is developing an assistive glove with the actuating mechanism comprised of 

linear actuators and strips of spring steel to enable bidirectional motion of users' fingers 

during ADL.  The target group of people to use this proposed actuation system was 

chosen to those who had only diminished hand grasping capabilities.  There are already 

many different gloves in the market.  Each one uses different methods of actuation and 

force transmission, as well as different control methods.  These gloves were analyzed by 

looking at their actuation mechanisms, control systems, and the benefits and downfalls 

of each one. 



 
 

Vigorous testing was conducted to choose the most effective components for the 

actuating mechanism.  Then, an assistive glove was fabricated which included a control 

system box that could be easily worn on the forearm of the user.  Tests were conducted 

on the glove to test its effectiveness when the user’s hand was completely passive using 

four to six participants.  Motion capture, force, and electromyography (EMG) data were 

collected and from those, range of finger motion, maximum grasping capabilities, 

maximum force generation, and muscle activity were analyzed.  The glove was shown to 

actuate the fingers enough to grasp objects with different sizes ranging in diameter from 

40mm to 80mm, with maximum possible weight able to be picked up being around 

1000g for the larger sizes.  The glove could generate 4N-5N to the index and middle 

fingers and 10N to the thumb.  EMG analysis showed that using the glove to pick up 

heavy objects caused a decrease in muscle activity of up to 80%.  From this analysis, it 

was shown that the glove has potential to assist with ADL and would provide greater 

independence for those with diminished hand grasping abilities.
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CHAPTER 1 

INTRODUCTION 

Over three million people in the U.S. suffer from forearm and hand disabilities.  

This can result from aging, neurological disorders (e.g., stroke), chronic disease (e.g., 

arthritis), and injuries.  Injuries to hands comprise one-third of all work-related injuries 

worldwide [1].  This can lead to difficulties with activities of daily living (ADL), where one 

needs to grasp, lift, and release objects in the household.  There is a rise in demand for 

assistive orthoses and gloves that can allow many people to regain their 

grasping/releasing ability and, thereby, their independence [2], [3]. 

The following sections in this chapter will go over the current advances in 

orthosis design.  Various actuation and sensing mechanisms will be discussed in this 

chapter.  Different control strategies will be reviewed, and a brief explanation of the 

biomechanics of a human hand and its anatomy will also be covered. 

 

1.1 Current Actuation Designs 

1.1.1 Methods of Actuation 

 Robotic gloves are comprised of three parts:  actuators, a method by which to 

transmit the force from the actuator to the fingers, and a control system.  The most 

commonly used actuators are DC motors, servo motors (rotary or linear), and 

pneumatics.  Examples of orthoses and gloves using the different actuators are shown in 

Figure 1.1.  Figure 1.1(a) shows an orthosis that uses DC motors to actuate rigid 

linkages, whereas Figure 1.1(b) utilizes a linear actuator to move cables.  Figure 1.1(c) 

uses pneumatic actuators to send air through tubes along the fingers to actuate them. 
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Figure 1.1 Examples of different actuators used in orthosis and glove design:  (a) DC  

motors [4], (b) a linear actuator [5], and (c) pneumatics [6]. 

1.1.2 Force Transmission 

The most commonly used forms of force transmission from the actuators to the 

fingers are with cables, rigid linkages, or tubing.  Each method of force transmission has 

its advantages and disadvantages. 

Cable-driven gloves can have a very low profile on the hand and very effective in 

manipulating a wide variety of objects [1], [7]-[9].  They allow the user to have as much 

of a range of motion in the hand as a healthy person.  Depending on how they’re 

designed, these gloves may provide unidirectional or bidirectional movement of the 

fingers.  However, the cables are at risk of getting jammed in the cable guide, which 

leads to insufficient force transmission to the fingertips.  Figure 1.2 shows different 

examples of cable-drive gloves. 

  
Figure 1.2 Examples of a cable-driven mechanism by (a) In, et al. [10],  

(b) Nycz, et al. [11], and (c) Biggar, et al. [12]. 

Rigid linkages are another effective method for actuating each finger.  These 

methods have been used designs by Cui, et al. [13], Ho, et al. [14], and Arata, et al. [15], 

to name a few.  However, if the linkages are too big, which they are in many cases, they 

(a) (b) (c) 

(a) (b) (c) 
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can restrict the user’s ability to grasp certain objects such as things with handles (e.g., 

mugs, kettles, and coffee pots).  Having linkages for each finger also increases the 

complexity of the orthosis and has an increased risk of something going wrong during 

operation such as the linkage joints misaligning.  Figure 1.3 shows examples of different 

rigid linkage designs. 

  
Figure 1.3 Examples of high- and low-profile rigid linkages used in orthoses that were designed  

by (a) Wang, et al. [16], (b) Hasegawa, et al. [17], and (c) Ben-Tzvi, et al. [18]. 

Gloves that use pneumatics require tubing to transfer force to the fingertips, such 

as those made by Yap, et al. [19], Polygerinos, et al. [20], and Connelly, et al. [21].  

These tubes are usually used to inflate special pockets that sit along the fingers.  As 

fluids are pumped into them, the inflated pockets curl the fingers.  This is a very effective 

and low-profile way of actuating hands.  Unfortunately, the air compressors and fluid 

pumps used in these designs can be bulky, heavy, and noisy, restricting the portability of 

the glove.  Figure 1.4 shows different examples of gloves that implement pneumatics to 

actuate the fingers. 

 
Figure 1.4 Examples of soft robotic gloves by (a) Borboni, et al. [22],  

(b) Polygerinos, et al. [23], and (c) Tadano, et al. [24]. 

 

 

(a) (b) (c) 

(a) (b) (c) 
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1.1.3 Control System Design 

As previously stated, size matters when it comes to the design of an glove, and 

that does not change for the control system hardware.  A compact control box, such as 

the ones in Figure 1.5, will allow the user to use the glove more easily and in a greater 

number of places. 

  
Figure 1.5 Examples of wearable control systems mounted on the (a) upper  

arm [3], (b) wrist [8], and (c) again on the upper arm [25]. 

Control systems are made up of a power source, some sort of circuit board, such 

as a microcontroller or even a graphical user interface (GUI), and any other electrical 

components associated with controlling the gloves’ actuation, such as sensors.  If the 

control system uses a GUI, such as those in Figure 1.6, the glove is usually intended for 

feasibility testing or rehabilitation and not everyday use.  

  
Figure 1.6 Gloves designed by (a) In, et al. [26] and (b) Polygerinos,  

et al. [27] being controlled with a GUI. 

Depending on the overall design of the glove, the actuators may be housed with 

the control system.  The cable-driven glove by Cui, et al. shown in Figure 1.7 is low-

profile and very effective for ADL [13].  However, the control system and actuators are 

not wearable, limiting the portability of the device. 

(a) (b) (c) 

(a) (b) 
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Figure 1.7 (a) A low-profile cable-driven glove and (b) its control system  

with attached actuators [13]. 

Similarly, gloves with air compressors and hydraulic pumps suffer from the lack 

of portability.  The control system itself may be small, but the air pump and its additional 

components are housed with it as shown in Figure 1.8(b).  The entire system has been 

designed to be worn on the waist but would still be difficult to don without assistance. 

 
Figure 1.8 (a) A glove that uses a water pump to actuate the fingers  

and (b) its wearable control system [20]. 

If the control system does not use any sensors on the glove, buttons located on 

the control box may be used, as shown in Figure 1.9.  It is important to note that these 

gloves are mainly intended for rehabilitation, so it is not critical for the control box to be 

easily transportable.  However, the fact remains that a compressed air-based control 

system is not the best option for having a lightweight and portable glove. 

(a) (b) 

(a) (b) 
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Figure 1.9 (a) A control box with button control on its top.  The microcontroller and pump parts  

are housed inside.  (b) A glove with its control box (center) and GUI (left) [6], [28]. 

 

1.2 Sensors 

 Sensors are used in different ways in a control system.  They may be used as 

inputs to actuate the glove or feedback sensors.  Electromyography (EMG), force, flex, 

and distance sensors are such examples. 

1.2.1 EMG 

 EMG sensors are used to measure the muscle activity as a means of controlling 

an glove.  The higher the voltage measured, the higher the muscle activity.  The most 

common type of EMG used in control systems are surface EMGs (EMG).  These sit on 

one’s skin using an adhesive.  They use either an electroconductive adhesive 

membrane (called wet EMG) or metal contacts (called dry EMG) to detect the muscle 

activity. 

(b) 

(a) 
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Figure 1.10 Examples of (a) a wet EMG and (b) a dry one. 

1.2.2 Force Sensor 

 Two kinds of force sensors are typically used in control systems:  a resistance-

based sensor called a force sensitive resistor (FSR), or a capacitive-based sensor.  

These sensors measure the change in either resistance or capacitance.  As the applied 

force increases, the value the sensors read increases.  Another type of force sensor, 

called a load cell, may also be used, but they are usually only used to test the glove and 

not control it.  The following figure shows examples of each force sensor. 

 
Figure 1.11 Examples of (a) an FSR, (b) a capacitive force sensor,  

and (c) a load cell [29]-[31]. 

1.2.3 Flex Sensor 

 Flex sensors act the same way as FSRs in the sense that they read the change 

in resistance, this time by the sensor’s bending.  As the sensor bends more, the 

resistance increases.  Because flex sensors are long and thin, they can be attached to 

one or more fingers in a glove to independently control them.  Figure 1.12 shows an 

(b) 
(a) 

(b) 

(c) 

(a) 
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example of a flex sensor and a glove design by Popov, et al. that uses one its control 

system [1]. 

 
Figure 1.12 (a) A flex sensor and (b) a glove that uses them in its control system [1]. 

 Flex sensors may also be calibrated like FSRs to measure the angle of 

something bending, like a finger joint.  This is done by collecting the analog output signal 

of the sensor when it is bent at different angles.  The data is then analyzed the same 

way as the FSR data to find an equation that relates analog signal to angle 

measurement. 

1.2.4 Distance Sensor 

 A distance sensor may be attached to the palmar area of a glove to detect when 

it is close enough to an object to grasp it.  One such sensor uses ultrasound to detect a 

change in distance, but these are rather large.  A more low-profile sensor is an infrared 

(IR) sensor.  This one uses a small infrared light to detect a change in distance.  Figure 

1.13 shows examples of (a) an ultrasonic sensor, (b) an IR sensor, and (c) a glove that 

uses a distance sensor in its control system. 

(a) 

(b) 
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Figure 1.13 Examples of (a) an ultrasonic sensor and (b) an IR sensor.  (c) shows an assembled 

glove with IR sensor located on the palmar side of the wrist [1]. 

 

1.3 Biomechanics and Anatomy of the Human Hand and Forearm 

 From a mechanical standpoint, the anatomy of the hand is the most complex part 

of the human body.  It is our main way of interacting with the environment, and its 

dexterity allows us to manipulate different tools and objects.  Positioning the fingers 

differently allows us to grasp large objects and perform a pinch grip on smaller objects.  

Diminished grip strength can be caused by illness, such as stroke or arthritis, or injury, 

such as a spinal injury. 

 
Figure 1.14 A hand (a) grasping a coffee mug and (b) pinch gripping a pen. 

 

 

(b) 
(c) 

(a) 

(b) (a) 
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1.3.1 Anatomical Directions 

 Directions are important when discussing any part of human anatomy.  The 

terms vary depending on what part of the body is being referred.  For the hand, the 

following directional terms are used [32].  Moving from the wrist to the fingers is called 

the distal direction.  Moving vice versa is called the proximal direction.  The direction 

towards the thumb from the imaginary midline of the hand is called lateral and the 

direction towards the pinky finger from the midline is called medial.  The palm’s side of 

the hand is called the palmar side and the opposite side is called the dorsal side.  

Moving towards the palm is called the anterior direction and moving towards the dorsal 

side is called the posterior direction. 

 
Figure 1.15 Anatomical directions of the hand and forearm. 

1.3.2 Bones and Joints 

Each digit in the hand is comprised of three joints [33], as shown in Figure 1.16.  

The joint closest to the palm is called the metacarpophalangeal joint (MCP).  The next 

joint is called the proximal interphalangeal joint (PIP).  The last one is called the distal 

interphalangeal joint (DIP).  The joints are a bit different for the thumb.  The farthest joint 

is just called the interphalangeal joint, but for simplicity, it shall be called the PIP here.  
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The next joint closer to the palm is the MCP.  The joint closest to the wrist is called the 

carpometacarpal joint (CMC). 

 
Figure 1.16 Joints of the hand. 

1.3.3 Muscles 

 The muscles that control the movement of the fingers are located in the forearm.  

According to W. D. Gardner’s Structure of the Human Body, there are five muscles that 

do this [34].  They are the flexor digitorum superficialis, flexor digitorum profundus, 

extensor digitorum, extensor digiti minimi, and extensor indicis.  As the names imply, the 

first two muscles control finger flexion and the last three control finger extension.  

Figures 1.17(a-b) show the flexor muscles and Figures 1.17(c-e) show the extensor 

muscles. 
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Figure 1.17 Posterior views of the muscles that control finger movement.  (a) Flexor digitorum 

superficialis, (b) flexor digitorum profundus, (c) extensor indicis, (d) extensor digiti minimi,  

and (e) extensor digitorum [35]. 

An additional four muscles, shown in Figure 1.18, are used for controlling thumb flexion 

and extension.  They are the flexor pollicis longus, abductor pollicis longus, extensor 

pollicis brevis, and extensor pollicis longus. 

 
Figure 1.18 Posterior views of the muscles that control thumb movement.  (a) Flexor pollicis 

longus, (b) abductor pollicis longus, (c) extensor pollicis brevis,  

and (d) extensor pollicis longus [35]. 
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CHAPTER 2 

PLAN OF ACTION FOR THE DESIGN OF THE GLOVE 

The research conducted on different gloves yielded many different designs, each 

with their merits and downsides.  In order to design a unique glove without any of the 

possible issues mentioned in the previous chapter, a different approach had to be taken.  

This chapter will discuss what the glove should be able to do, how the different parts of 

the glove will be chosen, and how the final design will be tested. 

 

2.1 Glove Objectives 

The goal of this research is to design a new glove that performs as well as the 

current designs already conceived of without any of the potential flaws.  It should be 

intended for people who need assistance grasping household items.  The glove will not 

be intended to fully replace a person’s grasping capabilities. 

Many gloves only actuated the index and middle fingers and the thumb while still 

transmitting enough force to assist with activities of daily living (ADL) [10], [25], [26].  

Therefore, the new glove would also actuate these three digits.  The proposed actuation 

mechanism design follows the idea of using spring steel for transferring force to the 

fingertips, as found in a number of papers [15], [36], [37]. 
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Figure 2.1 (a-b) The linear actuator-spring steel driven glove and (c) an up-close look at  

the actuating mechanism [36], [37]. 

As shown in Figure 2.1, this spring steel design was able to mimic the natural 

curling motion of the hand and was able to transmit 3N of force to each finger.  The three 

layers of steel made the system act like a Bowden cable so that it could accommodate 

compression.  Furthermore, it had no potential risks associated with cable-driven or rigid 

linkage force transmission methods.  Investigation into this specific force transmission 

method had been done prior to this glove, so incorporating spring steel in this thesis 

seemed like an opportune way to further research its potential applications. 

 It has been noted that the grasping forces needed to manipulate objects in ADL 

are typically within the range of 10N-15N [1], [18], [20], [22].  The goal of this glove is to 

generate 3N-5N of force for each finger using this linear actuator/spring steel actuation 

system so that up to 15N of grasping force may be generated by using multiple actuators 

in the glove.  Another goal of the proposed design would be to actuate the index and 

middle fingers and the thumb to enable both grasping and pinching tasks.  This design 

can mitigate the issues of joint misalignment and cable management by directly moving 

the fingertip to enable grasping.  Bidirectionality, or having the actuation mechanism 

both flex and extend the fingers, is another goal the glove should meet. 

The design in Figure 2.1 uses three layers of spring steel to enable curling of a 

finger and transmit force to the fingertip.  The proposed design in this thesis used a 

single strip of spring steel to transmit force directly to the fingertip by converting the 

(b) (a) (c) 
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linear motion of the actuator to the bending motion of the finger.  The proposed design is 

simpler than the one in Figure 2.1, which means the risk of faulty operation is decreased.  

The actuators were positioned on a base on the dorsal side of the hand with strips of 

spring steel extending from the actuators to the distal phalanx of each finger.  The 

microcontroller and power source were positioned somewhere on the forearm in order 

for the entire system to be easily transportable. 

 

2.2 Glove Part Selection 

The parts of the glove were chosen through rigorous experiments.  The 50-mm 

stroke Actuonix L12 and L16 actuator were chosen to be tested for the glove, where the 

L12 has been used by Ho, et al. [14].  These models were chosen for their lightweight, 

compact size, and easy-to-control features.  Technical information about the actuators 

are found in Table 2.1. 

Table 2.1 Technical information about the linear actuators [38], [39].   

Actuator Type L12 L16 

Model Number L12-50-50-6-R L16-50-35-6-R 

Gear Ratio 50:1 35:1 

Retracted Dimensions 
(L x W x H) 

102mm x 15.1mm x 18mm 118mm x 18mm x 20mm 

Mass 40g 56g 

Max. Generated Force 22N 50N 

Max. No Load Speed at 6V 25mm/s 32mm/s 

 

 The spring steel used in the preliminary feasibility testing is AISI 1095 shim steel.  

One strip was 0.01” thick and the other was 0.025” thick.  These thicknesses were 

chosen to serve as the limits of a range of possible thicknesses to use.  Strips thinner 

than 0.01” were deemed too flimsy to able to lift weight and those thicker than 0.025” 

were deemed to be unnecessarily rigid to allow flexibility with the design.  The 

dimensions of the strips were 13mm wide and 73mm long.  Cantilever buckling 

calculations were made which showed the stiffness of the 0.01” thick strip was 27.32N/m 
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and the stiffness of the 0.025” strip was 427.35N/m.  This indicates that the thinner strip 

might not be as effective as the thicker one in actuating the finger. 

The actuators and steel strips were tested using an experimental setup 

consisting of a 3D-printed mounting structure and model finger, the actuating system, 

and a hanging weight to evaluate the actuators’ generated forces and motions.  This 

setup enabled the quantification of performance of the actuators and strips rather than 

the user. 

A 3D-printed thimble was also fabricated and positioned on the dorsal side of the 

distal phalanx to secure the steel strip onto the finger.  The model finger simulated a 

user’s passive finger for which the actuating system would provide full assistance.  

Although the model finger did not behave like a natural finger whose distal phalanx 

movement relies on the movement of the intermediate phalanx, it could still give an 

approximation of how an actual finger would behave with this system in place.  The 

entire setup was constructed such that the model finger would curl upwards to lift various 

weights, as shown in Figure 2.2.  The actuators would be controlled with an Arduino Uno 

microcontroller and powered by a 9V battery. 

 
Figure 2.2 The designed one-finger experimental setup. 
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2.3 Finalized Glove Design Feasibility Testing 

 Once the glove has been fully assembled, further experiments were conducted to 

test the feasibility of the glove with human subjects, both healthy young adults and older 

adults.  It has been shown that older people have a weaker hand grip strength, meaning 

they have to exert more energy during ADL than healthy people [40].  This is reflected in 

their muscle activity [41].  For this reason, muscle activity was measured in the human 

subjects to see if there was a noticeable change in the activity when the glove was being 

used to manipulate different sized and weighted objects versus when the subjects used 

solely their own abilities to perform the same tasks.  Grasping force generated by the 

glove was also measured.  Adjustments to the design of the assistive glove were made 

following analysis of the collected data and further experiments may be conducted. 
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CHAPTER 3 

EXPERIMENTAL PROCEDURE 

In order to prove the effectiveness of the designed glove, numerous tests had to 

be conducted.  This chapter will discuss the feasibility experiments done for the 

actuating mechanism followed by the tests done on the fully assembled glove.  The tests 

consisted of motion capture while attempting to grasp different sized objects, 

determining how much users are able to pick up with the glove depending on the size of 

the objects, force generation capabilities of the glove, and muscle activity analysis while 

the glove is being used. 

 

3.1 Actuation Mechanism Feasibility Test 

The Arduino microcontroller was programmed to extend the linear actuator in 

four quarter-stroke increments, 12.5mm, 25mm, 37.5mm, and 50mm, and retract it in the 

same way.  This allowed for better analysis of the model finger’s movement.  The 

actuating system in Figure 2.2 was tested by adding hanging masses to the end of the 

finger with increments of 100g.  Each mass was tested five times.  Motion data in the 

form of x- and y-coordinates of the PIP and DIP joints, and the fingertip was then 

collected using Tracker Video Analysis software [42].  The MCP joint was stationary and 

served as the origin.  Screenshots showing the different increments of the actuator 

extension with the tracking markers on each joint can be shown in Figure 3.1.  This data 

was then exported into MATLAB to calculate the three joint angles. 
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Figure 3.1 (a-b) Incremental extension of the linear actuator.  (b) The placement  

of tracking markers in Tracker. 

Using the joints’ coordinates, vectors were formed between phalangeal joints as 

represented in Equations (1) – (3): 

 
𝐥MCP = [

𝑃𝐼𝑃x

𝑃𝐼𝑃y
] (1) 

 
𝐥PIP = [

𝐷𝐼𝑃x − 𝑃𝐼𝑃x

𝐷𝐼𝑃y − 𝑃𝐼𝑃y
] (2) 

 
𝐥DIP = [

𝑇𝑖𝑝x − 𝐷𝐼𝑃x

𝑇𝑖𝑝y − 𝐷𝐼𝑃y
] (3) 

 

where (𝑃𝐼𝑃x, 𝑃𝐼𝑃y), (𝐷𝐼𝑃x, 𝐷𝐼𝑃y), and (𝑇𝑖𝑝x, 𝑇𝑖𝑝y) are the coordinates of the points used 

to calculate the segment vectors of 𝐥MCP, 𝐥PIP, and 𝐥DIP as shown in Figure 3.2.  The 

finger’s joint angles were calculated as shown in Equations (4) and (5) for 𝜃MCP, where 

the rest of angles were calculated in the same manner. 

 
cos(𝜃MCP) =

𝐥MCP ∙ 𝐥PIP

(‖𝐥MCP‖)(‖𝐥PIP‖)
 (4) 

 

𝜃MCP = ±2 tan−1 (√
1 − cos(𝜃MCP)

1 + cos(𝜃MCP)
) (5) 

 

(a) (b) 
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Figure 3.2 Kinematic diagram of the finger. 

Figure 3.3 shows a diagram of the Denavit-Hartenberg (DH) frames attached to the 

actuating mechanism in its “zero-angle position,” where the mechanism consists of a 

prismatic and a rotary joint.  The diagram is used to compare the movement of the 

fingertip with the movement of the actuation mechanism.  The forward kinematics of the 

mechanism were evaluated using Equations (6) and (7). 

 
Figure 3.3 A diagram of the DH frames attached to the actuation mechanism  

in a zero-angle position. 

 
𝐝0

01 = [
0
0

𝑑1
∗
]   𝐝1

12 = [
90 cos(𝜃2

∗)

90 sin(𝜃2
∗)

0

] (6) 
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𝐝0

02 = 𝐝0
01 + 𝐑0

1 𝐝1
12 = [

90 cos(𝜃2
∗)

0
𝑑1

∗ − 90 sin(𝜃2
∗)

] (7) 

 

In Equation (7), 𝐝0
02 represents a vector from O0 to O2 expressed in frame {0}, which is 

the position of the shim’s end-point connection to the finger. 𝐑0
1 represents the rotation 

matrix from frame {1} to frame {0}.  It should be noted that the values of DH parameters 

in the following table have already been used in Equations (6) and (7). 

Table 3.1 DH parameters.  Lengths are in mm; angles  

are in radians (* indicates a variable) 

𝑖 𝑎𝑖 𝑑𝑖 𝛼𝑖 𝜃𝑖 

1 0 𝑑1
∗ -𝜋 2⁄  0 

2 90 0 0 𝜃2
∗ 

     
Analysis of variance (ANOVA) was performed to investigate the effect of mass, 

steel thickness, and actuator type on the tip height of the model finger and the actuator 

velocity.  The finger’s tip height represents the ability of the actuating system to generate 

sufficient forces for lifting the suspended weights.  If the actuating system is not capable 

of generating enough force, the tip height would remain close to its initial position.  The 

actuator velocity demonstrates its ability to grasp and release an object in a timely 

manner. 

 

3.2 Assessment of the Assembled Glove 

3.2.1 Assembled Glove Motion Capture 

 The movement of the index finger was captured as the glove articulated it around 

different sized cylinders and also without the glove.  The two instances were compared 

to see if there was any difference in the range of motion.  The joint angles were also 

compared between the different cases.  Theoretically, the differences in both the range 

of motion and the joint angles would decrease as the size of the cylinder increases. 
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3.2.2 Assembled Glove Grasping and Lifting Tests 

 To test how much the glove can grasp and lift in relation to the size of the object 

while the hand is passive, a 3D-printed container with different sized covers was used.  

The sizes of the cylinders were chosen by looking for common household objects that 

could be held with one hand.  The widest objects found were 80mm in diameter and 

included a jar of pasta sauce, a water bottle, and a Bluetooth speaker.  The narrowest 

object was a broom at about 30mm in diameter, but after some preliminary tests, it was 

determined the glove could not pick up something so thin.  The second-narrowest 

objects found were a tube of lotion and a bottle of dish detergent, both about 40mm 

wide.  From this search for household objects, the sizes of the cylinders were between 

40mm and 80mm, increasing in width by 10mm.   

 
Figure 3.4 Examples of common household objects.  (a) a jar of pasta sauce,  

a water bottle, and a speaker.  (b) a tube of lotion. 

 
Figure 3.5 The container used for testing (far right) and the different caps.  From left to right, the 

cap diameters are 40mm, 50mm, 60mm, 70mm, and 80mm.  The container is also 80mm in  

diameter. 

(b) (a) 
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The most common object papers that covered grasping experiments used was a 

water bottle filled with 500mL of water, or weighing 500g [39], [43].  Narrow objects were 

either not tested or their weights were not disclosed.  Water bottles are typically between 

60mm and 80mm in diameter.  The target of this experiment was for the glove to grasp 

and lift at least 500g for the 70mm and 80mm cylinders. 

The experiment proceeded as follows.  The container would be filled with 

gradually increasing weights, starting at empty and increasing in 100g increments.  The 

user would grasp and lift the container by the cap and hold it up for five seconds.  

Weight would stop being added when the user is no longer able to lift the container.  

This was repeated for each container cap. 

3.2.3 Assembled Glove Force Generation Test 

 To test the force generation capability of the glove, an FSR was placed on an 

80mm diameter cylinder.  The user was made to grasp the cylinder while having the 

digits applying force on the FSR one at a time for 5 seconds.  This experiment was 

repeated five times.  The data was collected with an Arduino Mega and an Adafruit data 

shield that is separate from the ones used in the glove’s control system. 

 
Figure 3.6 The force testing setup with the FSR attached to the side of the cylinder. 

The microcontroller is on the bottom left. 

Microcontroller 

FSR 

Cylinder 
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Force sensors must be calibrated in order to for the microcontroller to read the 

force value.  This is done by placing objects of increasing mass on them and collecting 

the corresponding output signal, which is a typical process for calibrating these sensors.  

These points are plotted in MATLAB and a curve fitting function is used to calculate the 

equation that relates the output signal of the sensor with the applied force.  Figure 3.7 

shows the calibration curve of the FSR in Figure 3.6.  The blue dots are the averages of 

the collected data points and the bars on each point is the standard deviation. 

 
Figure 3.7 Calibration curve for the FSR used in the experiment. 

Equation (8) is the equation of the fitted curve and was included in the code to convert 

the analog signal of the FSR to force in Newtons. 

 F = [(0.01226 × 𝐴𝑛𝑎𝑙𝑜𝑔2) + (3.527 × 𝐴𝑛𝑎𝑙𝑜𝑔) + 4.815] × 9.81/1000 (8) 
   

3.2.4 Assembled Glove Muscle Activity Test 

 To determine how effective the glove is in grasping and lifting objects while the 

hand is fully passive, the activity of muscles in the forearm was measured.  A number of 

papers have measured muscle activity in their glove feasibility proofs [44], [45], [46].  

Each paper focused on different muscles in their experiments.  One paper measured 15 

extensor and flexor muscles associated with finger movement [44].  Another measured 
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10 muscles [45].  One paper focused on all forearm muscle signals and machine 

learning to find the five signals, each one associated with a finger [46]. 

For the experiment for this glove, three muscles were measured, the extensor 

carpi radialis longus (ECRL), the flexor carpi radialis (FCR), and the flexor digitorum 

superficialis (FDS).  Not only were these muscles measured in the previous papers, but 

the manufacturer for the EMG system that was used also recommended these muscles 

to be measured when analyzing hand grasp [47]. 

 
Figure 3.8 The muscles used in the experiments. 

(a) ECRL, (b) FCR, and (c) FDS [47].  

 

In reality, the EMG system does not record the activity of single muscles, but a 

combination of them.  The only way to measure activity of individual muscles would be to 

insert EMGs directly into them.  The ECRL and FCR actually control wrist movement but 

are located over muscles that do control finger movement.  This means that EMGs 

placed on these muscles would also detect activity from the finger movement muscles 

that are located deeper in the arm. 

(b) (a) (c) 
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Figure 3.9 Anterior (a,d), lateral (b,e), and posterior (c,f) views of extensor and flexor muscles.   

(a)-(c) show the finger extensor and flexor muscles overlapping over each other and (d)-(f) show 

the muscles that the EMGs were positioned over [35]. 

 

This experiment consisted of two parts.  The first part involved the subject 

grasping and raising a weighted 70mm diameter cylinder for five seconds and lower and 

release it for five seconds.  This would be repeated five times.  The second part would 

be the same as the first part, except the subjects would wear the glove and keep their 

hand passive during the experiment.  The weight in the cylinder would be the maximum 

weight each subject could lift in the full grasp test.  These last two tests would be 

compared to see if there is any change in muscle activity while the glove was being 

used. 

Typically, EMG signals need to be filtered to properly analyze and view the 

muscle activity.  This is done by calculating the root-mean-square (RMS) of the raw 

signal and then applying a filter to it.  RMS is first used because the average of the raw 

(a) (b) (c) 

(d) (e) (f) 
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signal is always zero.  RMS calculates the absolute value of the raw signal, ensuring that 

the data is always greater than zero, and makes the average change depending on the 

intensity of the muscle activity, as discussed in Chapter 10 of Winter [48].  The filter 

usually used is some order of a Butterworth filter with a cutoff frequency between 5Hz 

and 15Hz [27], [44].  Figure 3.10 shows the raw EMG signal, shown in blue, the RMS 

signal, shown in gray, and the filtered RMS signal, shown in red, of the maximum 

voluntary contraction (MVC), i.e. squeezing your hand as tightly as you can around an 

object, of the extensor carpi radialis longus muscle.  In this case, a second order 

Butterworth filter with a cutoff frequency of 5 Hz was used.  The sampling rate used 

while collecting the data was 1000 Hz. 

 
Figure 3.10 (a) The collected MVC signal of the extensor carpi radialis longus.  (b) shows the  

muscle from the anterior side and (c) shows it from the lateral side [48]. 

The EMG signals was collected through Vicon Nexus software.  The resting 

muscle signal was subtracted from the periods of activity, and the resulting signals were 

integrated, as discussed in Chapter 10 of Winter [48].  The difference between the 

integrated signals were compared between the two sets of the experiment.  The 

following figure shows the already filtered EMG signal before the resting signal was 

subtracted and after.  The shaded areas during the periods of activity are what were 

integrated. 

(a) (b) (c) 
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Figure 3.11 Plot of filtered muscle signal (a) before resting signal was subtracted, and (b) after.   

The shaded areas are what were integrated. 

  

{ 

Resting muscle signal 

(a) (b) 
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CHAPTER 4 

RESULTS 

 This chapter discusses the obtained results.  The feasibility of the proposed 

actuation mechanism is discussed first.  Next, the feasibility of the glove comprised of 

the proposed actuation mechanism was evaluated. Force generation capability, range of 

motion, and the users' muscle activities are presented in detail. 

 

4.1 Actuation Mechanism Feasibility Results 

 The motion data of the finger was collected using Tracker Video Analysis 

software and analyzed in MATLAB.  Referencing the DH parameters in Table 3.1, Figure 

3.3, and Equations (6) and (7), the coordinates of 𝐝0
02 are expressed in the axes of 

frame {0} and are shown by the blue circles in Figure 4.1.  The red crosses in Figure 4.1 

show the position of the fingertip expressed in the axes of frame {MCP} relative to its 

origin OMCP.   
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Figure 4.1 Graphical representation of the workspace of the actuation mechanism (blue “o”) and 

the fingertip coordinates (red “x”).  The left y-axis shows the shim’s height from the forward 

kinematics analysis, while the right y-axis shows the height of the fingertip from motion capture  

analysis. 

In Figure 4.1, the left y-axis shows the shim’s position obtained from forward 

kinematics analysis relative to O0 and along the 𝐱𝟎-axis, whereas the right y-axis shows 

the fingertip’s position relative to OMCP along 𝐲𝐌𝐂𝐏-axis.  It should be noted that for 

frames {0} and {MCP}, the 𝐱𝐌𝐂𝐏-axis equals to the 𝐳𝟎-axis.  The difference between the 

two sets of points in Figure 3.4 is due to there being a physical offset between the origin 

of the linear actuator’s coordinate system O0 and the MCP joint center OMCP.  These 

results show the capability of the actuating system in properly bending the finger for 

grasping an object. 

A relation between the stroke length 𝑑1 and the 𝐝0
02 coordinate along x0 can be 

properly approximated by a second-order polynomial with an R2 value of 0.996.  This 

establishes a direct relationship between the stroke length and the position of the finger 

and its bending curvature, given that 𝜃2 cannot be directly measured.  This can be used 

to estimate the position of the fingertip given the stroke length of the linear actuator. 

 

x 

x 

o 

o 
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4.1.1 Steel Thickness 

 Analyzing the finger’s profiles for both actuators and strips showed that the 

profiles adversely changed with increasing the mass when using the 0.010” spring steel 

(i.e., the thinner one).  Comparing the tip height versus the actuator’s stroke length, it 

was observed that the finger did not move uniformly due to the high load.  Figure 4.2 

shows the height (i.e., the coordinate along yMCP-axis from the initial position) of the PIP 

and DIP joints and the fingertip versus the stroke length.  The dashed vertical lines 

indicate the stroke increments of 12.5mm, 25mm, 37.5mm, and 50mm. 

 
Figure 4.2 Finger joints’ heights when using the L12 actuator with (a) no load, (b) 100g, (c) 300g, 

and (d) 400g.  Solid lines represent the 0.010” strip while the dashed lines represent the 0.025” 

strip.  The vertical dashed lines indicate the stroke increments.  The profiles for different masses  

using the L16 actuator follow similar patterns. 

The solid lines are the profiles when the 0.010” steel strip was tested, and the dashed 

lines are the profiles when the 0.025” strip (i.e., the thicker strip) was tested.  As one can 

see, the profiles for both strips at 0g are nearly identical.  As the mass increased, the 

changes became more pronounced in the thinner strip while the profiles for the thicker 
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one remained consistent during increasing the mass.  The finger’s behavior for the 

thinner strip was due to the fact that as the actuator extended farther and the mass 

increased, the strip bent more extremely.  The thinner strip would eventually straighten 

and force the finger up rapidly like a released spring, which can be seen in the solid 

green line in Figures 4.2(c) and (d).  In addition, the calculated stiffnesses of the strips in 

Subsection 2.2 (27.32N/m for the 0.01” strip and 427.35N/m for the 0.025” strip) 

indicated that the thinner strip may not be able to lift the finger as effectively as the 

thicker one, thus making it the lower limit of the range discussed in Subsection 2.2.  This 

and the results from Figure 4.2 indicate that the thin strip is not sufficient for transmitting 

the force. 

The unnatural movement of the finger with the thinner strip at heavier masses 

such as 300g and 400g yielded unnatural joint angles as well, especially in the DIP joint.  

As shown in Figure 4.3, the behavior of the model finger using the thin strip 0.010” 

deviates from what would be expected of a real finger, in which the DIP angle is typically 

less than the PIP angle in an index and middle finger [49]. 

 
Figure 4.3 Joint angles of the model finger under the L12 actuator, 0.010” strip, while lifting a 

300g mass.  Solid lines represent the 0.010” strip and dashed lines represent the 0.025” strip.  

The vertical dashed lines indicate the stroke increments.  Similar behavior was observed when  

using the L16 actuator, or when using heavier masses. 
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A 2-way ANOVA analysis was also performed to compare the effects of mass 

and steel thickness on the height of the fingertip when the actuator was fully extended.  

Each spring steel was tested in 50 experimental trials (i.e., 2 actuators x 5 weight 

conditions x 5 repetitions).  It was observed that strip thickness and mass parameters 

both significantly (with α = 0.05) affected the fingertip height at the full extension of the 

actuator.  As Figure 4.4 demonstrates, the thicker strip increased the tip height 

significantly under a load (p < 0.001) and generated greater forces over the range of 

tested masses compared to the thinner strip.  It was found that increasing the mass 

significantly reduced the tip height (p < 0.001). 

  
Figure 4.4 Bar plots show the means and standard errors of the fingertip height at the actuators’ 

full extension for different (a) strip thicknesses and (b) masses (* indicates a significant difference  

between the conditions). 

4.1.2 Actuator Type 

 Another design parameter investigated in this study was the effect of linear 

actuator type (i.e., L12 and L16) on the performance of the actuating system.  As a 

performance indicator, the velocity of the actuator extension and retraction was 

examined under different actuator types and mass conditions.  As mentioned earlier, the 

velocity quantifies the responsiveness of the actuating system when assisting the user 

during grasping and releasing of an object.  The tip height was not considered in this 

analysis due to a slight height difference between the two actuators’ mounting setup and 

its effect on the tip height measurements.  However, it was demonstrated that both 

(b) (a) 
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actuators could achieve adequate tip height under various mass conditions as presented 

in Subsection 4.1.1.  Figure 4.5 shows the full extension and retraction velocities of the 

actuators for different masses and strip thicknesses. 

 
Figure 4.5 Bar plots show the means and standard errors of the extension and retraction 

velocities of both actuators and strips tested by different masses.  The (a) L12 actuator with 

0.010” strip, (b) L16 actuator with 0.010” strip, (c) L12 actuator with 0.025” strip, and (d) L16  

actuator with 0.025” strip. 

Almost in all cases, the retraction velocity was faster than the extension one due 

to the effect of gravity. It was also found that the actuator type significantly affected the 

velocity of the actuating system.  The L16 results in faster extension and retraction under 

a load than the L12 due to its lower gear ratio. There were no significant differences in 

the retraction velocities across the range of tested masses.  The 0.010” strip yielded 

faster extension velocities for the L12 actuator than the 0.025” strip, most likely because 

of the extreme bending of the 0.010” strip and its rapid release similar to a spring as 

mentioned earlier, which can be seen in Figure 4.5.  Comparing the actuators when 

0.025” strip was tested, the increase of mass had a more pronounced effect on the 

(a) (b) 

(c) (d) 
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extension velocity of the L12 (shown in Figure 4.5(c)) than the extension velocity of the 

L16 (shown in Figure 4.5(d)).  At the extreme case of a 500g mass, the L16 actuator 

could extend 77% faster than the L12. 

Using a 2-way ANOVA to further investigate the effects of mass and actuator 

type on the extension and retraction velocities, it was found that both of these variables 

were statistically significant with p < 0.001, as depicted in Figure 4.6.  Only the actuator 

type was a significant variable affecting the retraction velocity p < 0.001, whereas the 

effect of mass on the retraction velocity was not significant (p = 0.659). 

 
Figure 4.6 Bar plots show the means and standard errors of the extension velocities.  (a) 

Extension velocity and (b) retraction velocity for different actuator types and masses.  The *  

indicates a significant difference between the conditions. 

4.1.3 Other Effects 

 Figure 4.7 shows the average tip height at each stroke increment versus the 

mass.  The actuators and spring steels had similar trends when lifting the weights.  As 

the mass increased, the tip height decreased.  As the stroke increased, the tip height 

increased, but the thickness of the steel affected how much the finger rose at each 

stroke increment.  Shown in Figure 4.7(b), the tip heights for a 400g mass at 1/4, 1/2, 

(a) 

(b) 
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and 3/4 of the L16 full stroke when using the 0.010” strip are much lower than the tip 

heights for the 0.025” strip as shown in Figure 4.7(d).  The same comparison can be 

made between Figures 4.7(a) and (c) when the L12 was used.  Table 4.1 summarizes 

the comparisons between the effects of different masses on the extension and retraction 

velocities and the tip heights. 

 
Figure 4.7 Bar plots show the mean and standard errors of the tip height for both actuators and 

strips tested by different masses.  The (a) L12 actuator with 0.010” strip, (b) L16 actuator with  

0.010” strip, (c) L12 actuator with 0.025” strip, and (d) L16 actuator with 0.025” strip. 

Table 4.1 Pairwise comparison of different masses affecting the dependent variables (* indicates 

a significant difference between pairs) 

Mass 
Comparison 

Extension 
Velocity p-value 

Retraction 
Velocity p-value 

Tip Height 
p-value 

0g 100g 0.673 0.998 0.223 

0g 200g 0.003* 1.000 0.948 

0g 300g < 0.001* 1.000 < 0.001* 

0g 400g <0.001* 0.700 < 0.001* 

100g 200g 0.169 1.000 0.042* 

100g 300g 0.003* 0.997 < 0.001* 

100g 400g < 0.001* 0.863 < 0.001* 

200g 300g 0.666 1.000 0.004* 

200g 400g 0.001* 0.761 < 0.001* 

300g 400g 0.058 0.675 0.053 

 

(a) (b) 

(c) (d) 
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The time of extension and retraction can be also calculated from the velocities 

and the stroke lengths.  On average, it took about 1.3 seconds for the L16 to extend and 

another 1.2 seconds for it to retract.  These times makes the design suitable for 

rehabilitation exercises, in which repetitive extensions/flexions need to be performed.  It 

has been reported that an average of about two seconds per cycle would be sufficient 

for rehabilitation purposes and performing ADL [27].  The actuating system’s response 

time is within a reasonable range of this reported value. 

 

4.2 Assistive Glove Design 

 The assistive glove was constructed with two L16 actuators with a 50mm stroke 

fixed on a 3D-printed base located on the dorsal side of a glove and an L12 actuator with 

a 30mm stroke fixed on another 3D-printed base on the dorsal side of the thumb’s MCP 

joint as shown in Figure 4.8. 

 
Figure 4.8 The assembled assistive glove. 

3D-printed 
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3D-printed 
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The spring steel is attached to the actuator with a small aluminum rivet that 

allows the user to still move his or her fingers side to side in addition to flexing and 

extending them during the glove’s operation.  The steel strips are held in place with a 

small 3D-printed sleeve.  Two holes in the sleeve line up with holes in the strip to insert a 

small piece of wire to fix the sleeve in place.  The thimble that connects the steel strip to 

the finger has a slot so it could be properly adjusted for the user’s finger lengths.  The 

glove is a men’s golf glove.  This was chosen for its good grip and tight fit on the hand.  

All the components of the actuation mechanisms attached to the glove make the glove 

lightweight at 196g, easy to don and remove, and customizable.  In addition, the glove 

itself may be changed depending on the hand size of the user.  Currently, there are 

three sizes available for users to choose from:  medium, large, and extra-large.  These 

are shown in Figure 4.9. 

  
Figure 4.9 The three different gloves available for users.  (a) medium, (b) large,  

and (c) extra-large.  The large glove has the actuating mechanism connected to it. 

 The control system consists of an Arduino Mega and an Adafruit Data Shield.  It 

is powered with a 3.7V 2500mAh LiPo battery and an Adafruit PowerBoost 1000c.  The 

PowerBoost converts the 3.7V into 5V at 1A current that may be used to power the 

control system.  This is all housed in a 3D-printed box that may be mounted on the 

(b) (a) (c) 
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forearm.  The control system and housing weigh 208g, slightly heavier than the actuation 

mechanism on the glove.  CAD design iterations of the thimbles, actuator bases, and 

control system housing can be found in the Appendix.  Additionally, design iterations of 

the spring steel can be found there. 

The new power source could allow the actuators to fully extend in 1.1 seconds 

and retract in 1.2 seconds and give the glove a maximum run time of 2.5 hours.  A larger 

battery may be used for longer use time.  The actuators may be controlled with either a 

flex sensor that is attached to the pinky finger or a separate two-button control box.  The 

flex sensor option works such that when users flexes their pinky finger, the actuators 

fully extend.  When the pinky finger is extended, the actuators fully retract.  The control 

box option works by pressing the “OUT” button to fully extend the actuators and pressing 

the “IN” button to fully retract them.  Figure 4.10 shows the control system inside its 

housing, the battery connected to the PowerBoost, and the two control options for the 

glove. 
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Figure 4.10 (a) The control system hardware inside the housing and (b) the battery connected  

to the PowerBoost. (c) and (d) show the two different control mechanisms:  a flex  

sensor inside a sleeve on the pinky finger and a control box. 

 As previously mentioned, the part of the assistive glove worn on the hand (i.e., 

the actuators, spring steels, and the glove) weighs 196g and the control system 

hardware in its housing weighs 208g, making the entire device weigh 404g.  The weight 

of the glove is close to others already developed, such as the one by In, et al. [10] at 

194g and the one by Nycz, et al. [36] at 113g.  The weight of the control system in its 

housing is much lighter than Nycz’s, which weighed 754g, but was heavier than the 

assistive glove developed by Popov, et al. [1], which weight 90g.  Figure 4.11 shows the 
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Arduino 

Mega and 

Adafruit 
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Sleeve for 
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glove being worn with the control system worn on the forearm.  The flex sensor option is 

implemented in this image. 

 
Figure 4.11 The fully assembled glove worn on the right hand with the pinky finger flex sensor  

control option implemented.  (a) anterior view and (b) posterior view. 

The assistive glove costs about $311 to make.  A breakdown of the cost of the 

glove can be found in Table 4.2.  The majority of the cost came from the three linear 

actuators which totaled $210.  The remainder of the cost went towards electronics, 3D 

printed parts, and the physical glove.  Adhesives and wires were not included in the cost 

rundown. 

 

 

 

 

 

(b) (a) 
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Table 4.2 Cost breakdown of the assistive glove. (~ indicates an estimated cost as it depends on 

where the parts are printed) 

Part Amount Price 

3.7V 2500mAh LiPo battery 1 $14.95 

3D-printed mounts and housings (FDM) 11 ~$5.00 

3D-printed thimbles (SLA) 3 ~$5.20 

Adafruit Data Shield 1 $13.95 

Adafruit PowerBoost 1000C 1 $19.95 

Callaway men’s golf glove 1 $19.95 

Flex sensor 1 $10.74 

Generic Arduino Mega 1 $10.99 

L12 30mm stroke actuator 1 $70.00 

L16 50mm stroke actuator 2 $140.00 

Total $310.73 

 

4.3 Assessment of the Glove’s Performance 

 To evaluate the performance of the glove, its force generation, range of motion, 

and muscle activity reduction of the user were investigated using six young male adults.  

The purpose of these pilot tests was to inform the function and capabilities of the glove 

for future studies.  An IRB was submitted and under review based on the results 

discussed in this section in order to do further testing that would focus on human 

performance. 

4.3.1 Glove Assembly 

 The experiments started off with each subject having their right index finger 

measured for proper motion capture.  Next, the subject donned a disposable nitrile glove 

before trying on the assistive glove to keep it clean.  As mentioned before, three sizes of 

the assistive glove were available for the subjects to try on.  Once the appropriate glove 

was selected by the subject, the actuation mechanism was attached.  The actuators 

were put in place first, followed by the steel strips.  The strips were fixed into place in the 

thimbles with a hot glue gun, as shown in Figure 4.12. 
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Figure 4.12 The steel strip for the thumb being fixed to the thimble. 

4.3.2 Assembled Glove Motion Capture Results 

 The first experiment conducted was motion capture of the index finger.  Each 

subject had the free movement of their right index finger video recorded with a camera.  

The glove was then donned, and the subjects used the glove to wrap their hands around 

the different sized cylinders.  The motion of the index finger was captured during each 

trial.  The final motion capture contained the free movement of the index finger actuated 

by the glove.  These videos were then uploaded to the Tracker software to be analyzed.  

Figure 4.13 are screenshots of motion capture analysis in progress. 
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Figure 4.13 Screenshots of the Tracker software for (a) a free-moving finger, (b) a cylinder,  

and (c) a finger freely actuated by the glove. 

Data from all six subjects were collected.  From this point on, the subjects will be 

referred to as A, B, C, D, E, and F.  The finger lengths of each subject and glove sizes 

the subjects chose is found in Table 4.3.   

Table 4.3 Index finger lengths of each subject and their respective glove sizes 

Subject Finger Length (mm) Glove Size 

A 89 M 

B 102 L 

C 95 XL 

D 97 L 

E 85 M 

F 101 L 

 

The workspace of the index finger was analyzed for three cases:  when it was 

curling around a 40mm cylinder, 80mm cylinder, and when it was grasping nothing.  

Figure 4.14 shows the workspaces of each case from each subject. 

(a) (b) 

(c) 

Fingertip 

DIP 

PIP 

MCP 
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Figure 4.14 Finger joint motion profiles of each subject while grasping a 40mm cylinder, 80mm 

cylinder, and nothing.  The final plot (F) has the motion profile of Subject F grasping a 70mm  

cylinder instead because that was the largest object he could grasp. 

The workspace of the finger decreases as the size of the cylinder increases, as 

was expected.  The workspace when the subjects grasp the 40mm cylinder is very 

similar to the empty grasp, but thanks to the thumb’s actuation, they are still able to 

grasp and manipulate the small cylinder.  Figure 4.15 shows a comparison of the finger 

movement profiles from one subject when he grasps a 40mm cylinder and 80mm 

cylinder, as well as the free movement of the index finger. 

(A) (B) 

(D) (C) 

(E) (F) 



46 
 

 
Figure 4.15 The finger joint motion profiles of (a) a 40mm cylinder, (b) an 80mm cylinder, and (c) 

free movement when Subject B is wearing the glove and when he isn’t.  The point in the lower 

left-hand part of each plot is the stationary MCP joint and the rightmost profiles  

are those of the fingertip. 

 The live finger profiles in Figure 4.15(a) and (c) are much greater than the 

profiles of the gloved finger.  The profiles of the two cases in Figure 4.15(b) are very 

similar, most likely due to the size of the object.  Despite the gloved finger profile not fully 

lining up with the live finger profile, the glove still adequately actuates the fingers for the 

hand to successfully grasp and manipulate each object. 

 The final part of the motion capture analysis was to calculate the joint angles of 

the index finger for the live finger and the gloved finger at maximum flexion using 

Equations (1) – (5) in Chapter 3.  Figure 4.16 shows the average angles of each joint 

from all of the subjects for each case.  The PIP joint has greatest angle for the live finger 

case and gloved finger case, 62.6° and 35.2°, respectively.  For the live finger case, the 

MCP has the second-highest angle at 38.7° and the DIP last at 26.6°.  For the gloved 

finger case, the MCP has the lowest angle at 15.8°, and the DIP is slightly higher at 

17.8°.  These angles are tabulated in Table 4.4. 

(a) (b) 

(c) 
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Figure 4.16 Joint angles of the index finger when the glove  

is not used (blue) and when it is used (red). 

Table 4.4 The average angles of the live index finger and gloved index finger at maximum flexion 

along with their respective standard deviations. 

 MCP PIP DIP 

 
Average 

Standard 
Deviation 

Average 
Standard 
Deviation 

Average 
Standard 
Deviation 

Live Finger 38.7° 11.3° 62.6° 14.6° 26.6° 11.8° 

Gloved Finger 15.8° 8.2° 35.2° 23.0° 17.8° 7.7° 

 

4.3.3 Assembled Glove Grasping and Lifting Results 

 The goal of the next experiment was to see how much weight the subjects could 

lift with the glove while the hand was passive in relation to the size of the object.  The 

subjects started at no added load (0g) for each cylinder and had the weight increased by 

100g until they could no longer maintain a grasp on the cylinder.  The experiment is 

shown being conducted with a 70mm cylinder and 40mm cylinder in Figure 4.17. 
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Figure 4.17 The experiment being conducted with a subject attempting to grasp  

(a) a 70mm cylinder and (b) a 40mm cylinder. 

Data from Subjects B, C, E, and F were used in the full grasp test.  Figure 4.18 

shows the average weight that could be lifted by the users in relation to the size of the 

cylinder.  The maximum average liftable weights were 350g, 600g, 975g, 1025g, and 

1000g, from smallest diameter to largest.  As mentioned in Subsection 3.2.2, the goal 

was for the glove to lift at least 500g with the 60mm, 70mm, and 80mm cylinders.  This 

experiment showed that it was more than capable of doing this.  The data also shows 

that as the size of the cylinder increased, the more weight the subject could lift.  This 

was most likely due to there being more surface contact with between the larger 

cylinders and the glove. 

(a) (b) 
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Figure 4.18 Liftable weight in relation to the size of the cylinder. 

4.3.4 Assembled Glove Force Generation Results 

 Force generation by the glove was collected using a force-sensitive resistor 

(FSR) connected to an Arduino Mega and Adafruit data shield.  This microcontroller 

setup was separate from the one being used to control the glove.  The microcontroller 

was coded to take the analog input of the FSR and convert it to force in Newtons using 

Equation (8). 

The data shield, shown in Figure 3.6, had an SD card which collected the force 

data that was then transferred to the computer for analysis.  The FSR was attached to 

the largest cylinder the subject could grasp, and force data was captured by each finger 

individually.  Figure 4.19 shows the setup in use by a subject with the microcontroller 

collecting force data from the middle finger. 
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Figure 4.19 A subject grasping the 80mm cylinder with the FSR collecting  

force data from the middle finger. 

Force data was collected from all six subjects.  Figure 4.20 shows the average 

force generated by the glove on each digit when the users grasped the widest cylinder 

they could with the glove. 

 
Figure 4.20 Force generated by each digit on the cylinder. 

As previously stated in Chapter 2, the acceptable range of force generation for 

each finger is 3N-5N [1], [18], [20].  The glove is able to generate force within that range 

for the index and middle fingers (an average of 4.2N and 4.9N, respectively).  The thumb 

can apply an average of 10.2N of force with the glove, well beyond the target range.  

Cylinder 

FSR 
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This makes the total average force generated with the glove to be 19.3N, showing that 

the glove can provide adequate force generation to manipulate objects in ADL [1], [18], 

[20]. 

4.3.5 Assembled Glove Muscle Activity Analysis  

 Muscle activity data from the extensor carpi radialis longus (ECRL), flexor carpi 

radialis (FCR), and flexor digitorum superficialis (FDS) was recorded from four subjects.  

Two cases were tested.  The first case was when the subjects manipulated a weighted 

70mm cylinder without the glove and the second case was when they manipulated the 

cylinder with the glove.  Figure 4.21 shows a subject performing the experiment while 

wearing the glove. 

 
Figure 4.21 The EMG reading being acquired while the  

subject gets ready to lift the cylinder. 

The following plots in Figure 4.22 show the observed muscle activity of the FDS 

when the glove was not used and when it was used. 
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Figure 4.22 Muscle activity of the FDS of Subject B (a) when the glove was not used and the  

hand was active, and (b) when the glove was used and the hand was passive. 

Figure 4.23 shows the average of the muscle activity while the hand was 

manipulating the cylinder during the two cases and the percent decrease in muscle 

activity between the case of lifting an object without the glove and with the glove.  

Activity decreases 21% in the ECRL, 80.8% in the FCR, and 76.1% in the FDS. 

  
Figure 4.23 (a) Average muscle activity while the cylinder was manipulated.  (b) Percent  

decrease in muscle activity between the case of lifting an object with and without the glove. 

A t-test was also conducted to further compare the muscle activity between the 

two cases.  Both tests were conducted 20 times (i.e., 4 subjects x 5 repetitions) to 

determine the p-values of the three muscles between the two experiments.  It was 

observed that the glove significantly affected the subjects’ abilities to grasp the cylinder, 

with the p-values for all of the muscles being less than 0.01, which can be seen in Table 

4.5 along with the average percent differences and standard deviations.  These results 

(a) (b) 

(a) (b) 
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further prove that with the hand being completely passive, the glove is still able to lift 

heavy objects.  Since the glove is intended for people who just need extra help, not 

those who have completely lost their grasping abilities, it should not have any difficulty 

assisting with ADL. 

Table 4.5 Average percent differences, standard deviations, and pairwise comparison of glove 

affecting the muscle activity (* indicates a significant difference between pairs) 

 Average Percent 
Difference 

Standard Deviation p-value 

ECRL 21.0 49.5 < 0.001* 

FCR 80.8 25.4 0.0051 

FDS 76.1 21.5 < 0.001* 

 

  



54 
 

CHAPTER 5 

CONCLUSION 

 The purpose of this thesis was to design an assistive glove for people who need 

additional help with activities of daily living (ADL).  This includes grasping and holding 

household objects like a filled water bottle, cans of food, or a tube of lotion.  A significant 

amount of work went into researching current designs of gloves to see how they worked 

and what could be learned from them.  A design for the actuation mechanism consisting 

of a strip of spring steel attached at one end to a linear actuator and the fingertip at the 

other end was devised, and vigorous testing was conducted on it to determine its 

feasibility.  Once it was proven that the proposed design would work, the rest of the 

glove was designed. 

The proposed glove was intended to actuate the index finger, middle finger, and 

thumb.  This was successfully done using two actuation mechanisms with L16 actuators 

for the fingers and one mechanism with an L12 actuator for the thumb.  The control 

system was constructed using an Arduino Mega, an Adafruit Data Shield, and a flex 

sensor attached to the pinky finger of the glove.  The entire system was powered with a 

3.7V 2500mAh LiPo battery giving the glove a maximum run time of 2.5 hours.  The goal 

was to have the glove and control system weigh less than 500g.  The resulting weight 

was 400g. 

The glove was intended to grasp and lift objects between 60mm and 80mm in 

diameter weighing at least 500g while the subject’s hand was completely passive.  

Experiments showed that it was it was capable of lifting around double this target.  The 
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next goal for the glove was for it to generate 3N-5N in each digit.  The glove succeeded 

in generating forces within this range for the index and middle fingers and around 10N 

for the thumb. 

The final experiment was to see if having the glove grasp and lift a heavy object 

while the subject’s hand was passive resulted in a noticeable decrease in muscle 

activity.  Three muscles were tested using EMGs:  the extensor carpi radialis longus, the 

flexor carpi radialis, and the flexor digitorum superficialis.  The results from this 

experiment showed that muscle activity decreased 21% in the ECRL and around 80% in 

the two flexor muscles.  Statistical analysis further proved that the use of the glove 

significantly affected the muscle activity and allowed users to grasp objects greater than 

500g without the use of their own strength. 

All in all, the glove exceeded expectations.  The target demographic of the glove 

was people with only diminished grasping abilities.  However, all of the tests were 

conducted while the hand was fully passive.  From this analysis, it was shown that the 

glove helps in assisting with ADL and can grant those with diminished hand grasping 

abilities greater independence. 

 

5.1 Possibilities for Future Investigation 

 A number of things may be improved to the design and testing of the assistive 

glove.  Most importantly, more human testing must be done to show stronger evidence 

that the glove does what has been claimed.  A group of healthy adults over the age of 55 

should be brought in for testing, since age is a factor in decreased hand grasping 

abilities.  Pinch gripping is an important test that many scholars have tested.  Similar 

experiments should be done with this glove to determine its capabilities in being able to 

pick up and hold things like a pen, cooking utensil, or a toothbrush. 
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 One thing that was noticed throughout the second half of the research is that the 

surface of the glove can affect how much of a grip a user can have on an object.  The 

golfer’s glove performed well in the test described in Subsection 4.3.3, but if the entire 

palmar side was coated with a material of a higher friction coefficient (i.e., silicone or 

rubber), the glove may be able to hold even heavier objects, especially those with 

smaller sizes.
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APPENDIX 

Figure A.1 Design iterations of the dorsal actuator mount. 

 
 

Figure A.2 Design iterations of the thumb actuator mount. 
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Figure A.3 Design iterations of the thimbles. Model v3 was used in the initial feasibility test. 

 
 

Figure A.4 Design iterations of the control system box. 
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Figure A.5 Design iterations of the spring steel strips. 
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