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In the branch of Western music theory called serialism, it is desirable to construct chord
progressions that use each chord in a chosen set exactly once. We view this problem
through the scope of the mathematical theory of Gray codes, the notion of ordering a finite
set X so that adjacent elements are related by an element of some specified set R of
involutions in the permutation group of X. Using some basic results from the theory of
permutation groups we translate the problem of finding Gray codes into the problem of
finding Hamiltonian paths and cycles in a Schreier coset graph of the permutation group
generated by the involutions R. Having made this translation we can use known results
about Hamiltonian paths in Schreier (and Cayley) graphs of groups to generate
serialism-like chord progressions. We illustrate the method by examining two theorems
from the literature on Hamiltonian paths, due to Conway, Sloane, and Wilks ( Graphs
Combin. 5 (1989), no. 4, 315-325), and to Eades and Hickey (J. Assoc. Comput. Mach. 31
(1984), no. 1, 19-29). We give proofs of these theorems that complement the published
proofs by filling in some details and clarifying some potentially confusing points, and we

then use the algorithms extracted from these proofs to produce chord progressions.
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CHAPTER 1
INTRODUCTION

This thesis will relate the search for Hamiltonian paths and cycles in graphs to the
problem of producing chord progressions in Western music theory that cycle through a set
of chords in an organized way. This problem is important in the branch of music theory
called serialism - developed by the so-called “Second Viennese School”; consisting of
German composer Schonberg and his pupils - which focuses on composing music that uses
each of the twelve chromatic tones before repeating any. (More information on serialism
can be found in Schonberg’s book [1].) We extend the ideas of serialism to chords by
finding a chord progression that uses every chord in a chosen set exactly once. First, we
will represent connections between chords and graphs, and then establish existence
theorems and develop rigorous algorithms that produce Hamiltonian cycles in such graphs.

Serialism is an application of the theory of Gray codes, the notion of cycling through a
finite set X with respect to a collection of involutions R of the elements of the set. An
overview of Gray codes is given in [I1I]. We will draw a connection between the search for
Gray codes and the existence of Hamiltonian paths in Cayley and Schreier graphs. Then
we will prove two main theorems giving algorithms that produce Gray codes. The first
main theorem comes from Gray Codes for Reflection Groups by Conway, Sloane, and Wilks
[3], and the second main theorem comes from Some Hamiltonian Paths and a Minimal
Change Algorithm by Eades and Hickey [6]. We will interpret both of these examples of
Gray through the scope of serialism, providing chord progressions that use each chord in a
chosen set exactly once.

The search for Gray codes of a set X with respect to a set R of involutions of X goes
hand in hand with graph theory, as the vertices and edges of a graph may represent,
respectively, the elements of X and their connections in R. In Conway, Sloane, and Wilks

[3], the authors construct an algorithm that produces a Gray code for a finite Cozeter



group G with respect to a system of fundamental reflections R (see [9] for this
terminology). We will not need to introduce the specifics of Coxeter groups here, as we will
observe in Theorem that the main result of [3] remains valid, with the same proof,
under a more general and simpler assumption on R.

In Eades and Hickey [6], the authors determine necessary and sufficient conditions for
the existence of a Gray code for the set of k-element subsets of the set {1,2,...,n} with
respect to the set of involutions R that change one element of the subset by a difference of
1. An account of Eades and Hickey’s work is given in Chapter 9. This Gray code is
interpreted musically by assigning n notes to the numbers 1 to n, so that k-element subsets
of {1,2,...,n} represent k-note chords, and successive chords move by changing one note at
a time.

The application of algebra to Western music theory is a relatively new area of
mathematics, developed within the last century. Expanding the work of music theorist
Hugo Riemann (not to be confused with the mathematician), the study of Neo-Riemannian
music theory identifies relationships between chords that do not depend on any tonal
center, demonstrating that operations on sets of chords generate a permutation group. In
A Graph-Theoretic Approach to Efficient Voice-Leading [12], the authors Wixey and
Sturman use the vertices and edges of graphs to represent chords and their connections, in
order to show the “harmonic proximity” of chords. In Musical Actions of Dihedral Groups
[4], the authors Crans, Fiore, and Satyendra completely characterize the dihedral structure
of the TI and PLR groups (permutation groups of the set of 24 major and minor triads).
The authors also provide a Gray code for these musical groups with respect to their
generating sets. In Section [8.2] we will apply the theorem of Conway, Sloane, and Wilks, in
the more general form proved in Theorem [7.1.1], to extend the Gray-code construction in
[3] to larger permutation groups of larger sets of chords, including four-note chords called

seventh chords.



Cannas and Andreatta [2] have generalized the PLR group to the set of major seventh,
dominant seventh, minor seventh, fully diminished seventh and half diminished seventh
chords, creating a much larger graph of chords and their connections than that of Crans,
Fiore, and Satyendra. Cannas and Andreatta provide a Gray code for this set of seventh
chords with respect to a certain set of permutations. However, the fact that there are only
three distinct fully diminished seventh chords (as opposed to one for each of the 12
chromatic tones) complicates this set-up. A mathematical explanation for this
complication is that the graph of seventh chords considered in [2] is not regular - the
vertices corresponding to the fully diminished chords have higher degree than the other
vertices - and so this graph cannot be a Cayley graph of any group. The construction that
we give in Section is different to that of Cannas and Andreatta as we exclude the fully
diminished chords, and the graph corresponding to our set of chords and permutations is,
by design, the Cayley graph of a group generated by involutions.

We will establish a general mathematical context in which to understand these works in
the application of graph-theory to serialism by establishing a bijection between the set of
Gray codes for a set X with respect to a set involutions R C Perm(X) on one hand, and on
the other, the set of Hamiltonian paths in the Schreier graph of the permutation group
generated by R with respect to the stabilizer group of an element of X and the set R. Our
Gray code for seventh chords is an example of the applicability of this correspondence to
music theory: we can apply the algorithm from Conway, Sloane, and Wilks [3] to a group
of permutations of a set of seventh chords that is generated by involutions, and thus obtain
a Gray code.

A potential application of our identification of Gray codes and Hamiltonian paths in
Schreier graphs is discussed in Section [10.1} The Gray code for the k-element subsets of
{1,...,n} studied in [6] corresponds to a Hamiltonian path in the Schreier graph for the
subgroup Si x S, of the symmetric group S,,. This is an example of a parabolic subgroup

in the Coxeter group S, and the results of [6] naturally raise the question of whether



similar results hold for arbitrary parabolic subgroups of finite Coxeter groups. A full
examination of this problem is beyond the scope of this thesis, but in Section [I0.1] we
formulate an explicit question on the existence of a Gray code for parabolic subgroups of
the hyperoctahedral groups. Musically, such a Gray code is an extension of the k-subsets of
{1,2,...,n} Gray code, where k-note chords have each note of the chord in one of two
instruments, and chords change by moving one note, switching the voice of the note
designated by 1, or swapping the voices of two notes in a chord. We leave the full
examination of this problem for future research.

Another potential extension of the work presented in this thesis is the study of
subgroups of the permutation group of a set of chords that are not necessarily generated by
involutions. For instance, in [8], Julian Hook studies uniform triadic transformations, a
group of permutations of the set of 24 major and minor triads. The elements of this group
that are of order 24 are particularly interesting, because they have the potential to cycle

through the entire set of major and minor triads.



CHAPTER 2
GRAY CODES

Given a set of chords and a set of permutations of those chords, we wish to find a chord
progression that uses each chord in the set where the movements between successive chords
are the result of one of the specified permutations. Generalizing this problem, let X be a
finite set and R a set of involutions in the permutation group of X - that is, R is a subset
of Perm(X') such that each element of R has order 2. Then, we can search for an ordering

of the elements of the set X with respect to the set of involutions R in the following way.

Definition 2.0.1. Let X be a finite set of cardinality a, and let R be a set of involutions

in Perm(X). Then, a Gray code for (X, R) is an ordering of the elements of X,
C = (0,71, s Ta—1), Ti F# z; for i # j,

such that for each 0 <1i < a — 1, there exists r; € R with r;(x;) = z;41. The ordering C' is a

cyclic Gray code if there exists r,_1 € R such that r,_1(z, 1) = zo.

Named after physicist Frank Gray, Gray codes have been used in many areas of
computer science since the 1980’s [I1]. It should be noted that there is a more general
definition of a Gray code, where the set R of permutations of the set X need not be
involutions. We restrict to involutions because many of the groups found in music theory

are those generated by order 2 chord operations.

Example 2.0.2. Let X be the set of n-digit binary numerals and let R be the set of
involutions in Perm(X) that change a single digit. Then, a Gray code for (X, R) is called a
reflected binary Gray code, and it is an ordering of the binary numerals such that successive
numbers differ in a single digit. This is the situation that Gray originally studied.
Reflected binary Gray codes can be interpreted musically by assigning n distinct notes
to each of the n digits. Then, an n-digit binary number represents the chord that contains

the notes with a 1 in their respective digit, and a Gray code is a chord progression that



uses all possible chord combinations of the n notes, such that movements between

successive chords are the result of adding or removing a single note.

Example 2.0.3. Let X be the set of subsets of {1,2,...,n} that have some fixed number
k < n of elements, and let R C Perm(X) be the set of involutions
{(12),(23),...,(n — 1 n)}, the adjacent transpositions. Then, a Gray code for (X, R) is
called a k-subsets of n Gray code, an ordering of the k-element subsets of n such that
successive subsets differ in only one element by a difference of 1.

This example can be interpreted in music theory by assigning notes to each element of
{1,2,...,n} so that k-element subsets of n are k-note chords, and a Gray code is a

serialism-like chord progression that moves only one note at a time.

We will define a correspondence between the search for Gray codes and the search for

Hamiltonian paths in Schreier graphs.



CHAPTER 3
HAMILTONIAN PATHS AND CYCLES

3.1 Graphs and Paths

In view of defining Hamiltonian paths, we begin by defining graphs and paths, and
developing some of their properties. See [7], for instance, for more background on graph
theory. A finite graph T is a nonempty finite set of vertices, V(I'), and a finite set of edges,
E(T'), where each edge is a 2-element subset of V(I'). (Graphs of this kind are called
simple, undirected graphs, and this definition prohibits multiple edges between two vertices
and loops on single vertices.) Additionally, a graph A is a subgraph of a graph T" if
V(A) C V(') and E(A) C E(I'). A spanning subgraph of I is a subgraph A with
V(A) =V(I'). If U is a subset of V(I'), then the subgraph of T induced by U is the
subgraph A with V(A) = U and E(A) = {{u,v,} € E(T') : u,v € U}. Two vertices v and
w are said to be adjacent in a graph I' if {v,w} € E(I'). Finally, given a finite graph I" and
a vertex v € V(I'), the degree of v is the number of edges in E(I") that contain v.

It is useful to represent graphs visually in 2-dimensional Euclidean space where vertices
are represented by distinct points and edges are represented by curves that connect
vertices. In this setting, vertices and edges can have labels to designate them. The vertices
may be positioned anywhere in the space as long as the edge information remains the same.

The following definition demonstrates how to move around a graph.

Definition 3.1.1. A path in a graph is a sequence of vertices (vg, vy, ..., v,) such that n > 1
and {v;,v;;1} is an edge for all 0 < i < mn. A cycle is a path (vg, vy, ..., v,) with n > 3 such
that {vo,v,} is an edge and v; # v; for ¢ # j.

A path in a graph is like moving around a map, where each intersection connects to
those adjacent to it. In some cases, it is useful to interpret a path (vg,vq,...,v,) as a

sequence of edges (eq, €1, ..., €,_1) Where ¢; = {v;, v;41} for 0 <14 < n. Sometimes a sequence

of roads on a map is easier to follow than a sequence of intersections.
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A graph I is said to be connected if for all vertices v,w € V(I'), there is a path
(v, ..., V) such that v = vy and w = v,,. In other words, there is a path connecting any two
vertices of I'. The length of a path (vy, ..., v,) is the integer n — 1, or equivalently the
number of edges in the path. In addition, if there is a path between two vertices v and w in
a graph, then the distance between v and w is the minimum length of a path (v, ..., v,)
with v = vy and w = v,,. A graph is called acyclic if it contains no cycles.

For our purposes, graphs will be constructed with vertices and edges that represent
chords and their connections, and a path in such a graph represents a chord progression (a
sequence of chords).

The following lemmas will be useful in the proof of Theorem [7.1.1}
Lemma 3.1.2. Every acyclic finite graph contains a vertex of degree less than 2.

Proof. Assume to the contrary that I' is an acyclic finite graph such that each vertex of I
has degree greater than or equal to 2. Fix a vertex vy and an edge {vg, v1 }; since the degree
of vy is at least 2, there exists a vertex vy # vy that is adjacent to v;. If the path (vg, vy, vs)
is a cycle, we have a contradiction; so vy is not adjacent to vy. Since the degree of vy is also
at least 2, there exists a vertex vs # vp, v; that is adjacent to vy. If the path (vg, vy, v2,v3)
is a cycle, we have a contradiction. Otherwise, recursively, if (v, ...,v;) is a path in T with
distinct vertices and edges e, ..., e;_1, then there is an edge e; # e;_; that adjoins v; to
some v;1, because deg(v;) > 2. If v;1; is distinct from vy, ..., v;, continue in this way, but
since V/(I') is finite, at some point v, = v; for some 0 < j <. In which case, the path

(vj,...,v;) is a cycle in I, a contradiction to I' being acyclic. 0

Lemma 3.1.3. The graph obtained by removing a vertex from an acyclic finite graph is

also acyclic.

Proof. Let A be the graph obtained by removing a vertex from an acyclic finite graph I';
then, each path in A is also a path in I', where no path is a cycle, so A cannot contain any

cycles. O



The following definition provides a condition to consider two graphs equivalent.

Definition 3.1.4. Two graphs I' and A are isomorphic if there exists a bijection
o : V(I') — V(A) such that {v,w} is an edge in I' if and only if {¢(v), ¢(w)} is an edge
in A; such a map is called a graph isomorphism.

In other words, isomorphic graphs have the same structure, but with a different
labelings of their vertices and edges.

Given a graph isomorphism ¢ : V(I') — V(A), if (vo, ..., v,) is a path in T', then

(g@(vo), s go(vn)) is a path in A.

3.2 Hamiltonian Paths and Cycles

The goal of this thesis is to relate the search for Hamiltonian paths in graphs to the
search for Gray codes of a set X with respect to involutions R C Perm(X), so that we can

find systematic chord progressions that use each chord in a chosen set exactly once.

Definition 3.2.1. A Hamiltonian path in a graph is a path that contains all the vertices
exactly once, and a Hamziltonian cycle is a Hamiltonian path that is a cycle.

Given a graph I', a path (vo, ..., v,) is thus a Hamiltonian path if v; # v; for all
0 <i<j<n,and for each v € V(I'), v = v; for some 7. If two graphs are isomorphic via a
graph isomorphism ¢ : V(I') — V(A), then a Hamiltonian path in I" will map to a
Hamiltonian path in A. This idea will be used in the proof of our first main theorem,

Theorem [T.1.11

Lemma 3.2.2. If (vg, vy, ...,v,) is a Hamiltonian cycle in a graph I', then
R := (Vn,Un_1, ..., v0) and T := (0, Vig1, ey Un—1, U,y Vg, V1..n, Vi_1)
are Hamiltonian cycles in I" for 2 < i < n.

Proof. Since (vg, vy, ..., v,) is a Hamiltonian cycle in T, {v,,, vo} and {v;, v;11} are edges of I'
for all 1 <7 < n, meaning both R and T" are cycles in I". Also, each vertex of (vg, vq,...,vy)

appears exactly once in both R and T'; therefore, R and T are Hamiltonian cycles in I'. [J

9



3.3 Bipartite Graphs

The problem of determining whether a given graph admits a Hamiltonian path or cycle
can be quite difficult. Nonetheless, there are some useful necessary conditions that can be
easily checked. In the proof of our second main theorem, Theorem [9.1.1 we search for a

Hamiltonian path in a graph that has the following property.

Definition 3.3.1. A graph T is bipartite if there are subsets A, B C V(I") such that
ANB =10, AUB=V(I), and each edge of T is of the form {a, b} for a € A and b € B.

The sets A and B are called the parts of the bipartite graph I'.

If a graph T is bipartite with parts A and B, then there are no edges in I' that connect
elements of the same part. Therefore, any path in I' must alternate vertices in A and B.

This observation leads to the following lemma.

Lemma 3.3.2. Let ' be a bipartite graph with parts A and B. If I has a Hamiltonian

path, then ||A| — |B|| <1.

Proof. Assume that (vg, vy, ...,v,-1) is a Hamiltonian path in I". Without loss of generality,
we can assume vy € A. Then, since I" has no edges that connect vertices of the same part,
v; € A for all the even indices 7 and v; € B for all the odd indices j. Therefore, we see that

1A] = 1B]| =

“{i €{0,1,.,n—1}:iiseven}| — [{F €{0,1,...,n— 1} : jis odd}|‘ <1 0

3.4 Combs and Graph Products

Another kind of graph that will be considered in the proof of Theorem is the
product of a comb with the graph Ky, the graph with two vertices and an edge connecting

them.

Definition 3.4.1. A comb with main path M and boundary points u and v is a connected,

acyclic, finite graph C' such that each vertex is of maximum degree 3, and all the vertices of

10



Figure 3.1: Comb with boundary points u and v.

degree 3 lie on the main path M, strictly between the boundary points v and v. For each
vertex x on the main path between the boundary points v and v, the tooth at x is the
longest path in C that intersects the main path only at x (and if the degree of x is 2, the
tooth at z is considered trivial). If I is a finite graph, then a spanning comb for I is a

subgraph C of I" that is a comb and V(C) = V/(I').

An example of a comb with boundary points v and v is given in Figure [3.1] The main
path of this comb is the horizontal string of vertices, and the teeth are the vertical paths.

The following defines the product of a finite graph with the graph K, (the graph with
V(K3) = {vg,v1} and E(K3) = {{vo, vl}}). It should be noted that there are more general
notions of the product of two finite graphs, but it is not necessary for the proof of Theorem
011
Definition 3.4.2. If I is a finite graph, the product of I' and K5 is the graph 'K, with
V(I'Ky) ={(i,v) : i € {1,2},v € V(I')} such that two vertices (i,u) and (j,v) are adjacent
if either ¢ = j and {u,v} € E(I') or i # j and u = v.

The introduction of combs and graph products of K is advantageous because the

product of any comb with Ky contains a Hamiltonian path, as shown in the following

lemma.

Lemma 3.4.3. If C' is a comb with boundary points © and v and the distance between u

and v is even, then C'K, has a Hamiltonian path with endpoints (2,u) and (1, v).

Proof. Let (ug, u1, ..., Ug, U, to.0, t1,0s - to0, U, Vo, V1, ..., Uc) be the main path of the comb C'

where v and v form a pair of boundary points. Also, for each 0 < i < b, let

11



(1,v)

VA

JUAN

(2,u)

Figure 3.2: Hamiltonian path in the product of a comb and K.

T; = (tio, tix, ..., tix;) be the tooth at ¢; . Note that since the distance between v and v in

C is even, b is even. Then, the following sequence of vertices is a Hamiltonian path in C'Kos:

(2,u), (2,uq), (2,u4-1), e (2,up),
(L,ug), (1,uq), (1, us), e (1,u),
(1,t00), (1,%01), (1,20.2), s (1, tox),
(2,t0k0)s (25t0k0-1)s (2,t0k0—2)s s (2,t00),
(2,t10),  (2,t11), (2,t12), s (2,1 1),
(1, t1h0)s (Lit1o—1), (1,t1k0—2), s (1,t10),
(1,tp0), (1,tp1), (1,tp2), s (L, tpr,),
(2,tbky), (25t ky—1)s (2,tp1,—2), s (2,%0),
(2,0), (2,0), (2,01), s (2,v,.)
(1,v.), (Lve1), (1,00_9), s (1,v)

An example of the Hamiltonian path defined in the proof of Lemma for the
product of a comb and the graph K, is given in Figure [3.2] This lemma is useful because if
a graph I' has a spanning subgraph that is isomorphic to the product of a comb and Kj,

then I' contains a Hamiltonian path.

12



CHAPTER 4
FINITE GROUPS GENERATED BY INVOLUTIONS

4.1 Finite Groups Generated by Involutions

We wish to understand the structure of groups that appear in the context of music
theory, and in general, the groups associated with Gray codes. Many useful groups in
Western music are generated by involutions. An involution is a group element of order 2,
so then a finite group generated by involutions is a pair (G, R) where G is a finite group
and R C (G is a set of involutions that generates GG. These types of groups appear in the
study of Gray codes as subgroups of the permutation group of a set X that are generated

by order 2 permutations.

Example 4.1.1. A familiar example includes the permutation group S,, of the set of n
integers {1,2,...,n}. It can be shown that for any n, the group S, is generated by the
adjacent transpositions (12),(23),...,(n — 1 n). These transpositions are each of order 2,
making the pair (S,, {(12),...,(n —1 n)}) a finite group generated by involutions. It should
be noted that the set of adjacent transpositions is not the only set of involutions that

generates S,,; another such generating set of involutions includes the transpositions

(12), (13), ..., (1 n).

Example 4.1.2. An important example of a finite group generated by involutions that
will be used later in this thesis is the group C¥, the product of n copies of the additive
group of two elements Co = {0,1}. As a set, C§ comprises the n-bit binary numbers, and

the group can be generated by the set of involutions

».={(1,0,...,0),(0,1,0,...,0), ..., (0,...,0,1)}.

Thus, the pair (C¥, RY) is a finite group generated by involutions.

13



4.2 Finite Groups Generated by Two Involutions

This section considers the case when a finite group is generated by only two involutions.
If G is a finite group generated by two involutions r and s, we want to show that G is

determined up to isomorphism by the order of the element rs.

Definition 4.2.1. For n > 3, the dihedral group of order 2n is the automorphism group

D, of the graph I',, with
V(L) ={1,2,..,n} and E(T,) = {{1,2},{2,3},....{n — 1,n},{n, 1} }.

The graph I',, is the graph with n vertices and edges that form a loop, demonstrating

that the dihedral group of order 2n is the group of symmetries of a regular n-gon.
Lemma 4.2.2. For n > 3, the group D,, has order 2n and is generated by two involutions.

Proof. Let g € Dy, be an automorphism of the graph I',,. Then, there are n options for
g(1), and once g(1) is fixed, g(2) must be adjacent to ¢g(1), leaving two options for g(2). If
both ¢g(1) and ¢(2) are determined, since g is a graph isomorphism, there is only one option
for each ¢(3), g(4), ..., g(n). Therefore, g is completely determined by ¢(1) and ¢(2), with
2n possibilities for g(1) and ¢(2), meaning | Dy, | = 2n.

Now, we want to show that D, is generated by two involutions. Let r € D5, have
r(1) =1 and r(2) = n, and let t € Dy, have ¢(1) = 2 and ¢(2) = 3. Then, r represents an
order 2 reflection of '), about the vertex 1 and ¢ represents a single rotation of I',,. Thus,
the subgroup H = (t) C Ds, is the group of n rotations of I',,. Also, since (1) = 1 and the
only rotation in H that fixes 1 is the identity, we see that r is not in H, so the cosets rH

and H are distinct. Therefore, |H UrH| = 2n = |Dy,|, meaning
Do, = HUrH = {1,t, ¢ .. t" Y rrt,rt?, . rt" 1}
Next, notice that rtr =t=! as

rtr(1) = rt(1) = r(2) =t (1) and rtr(2) = rt(n) = r(1) = 1 =t~ 1(2).

14



Hence, if we let s = rt, then t = rs and s*> = (rtr)t =t 't = 1, so Dy, is generated by the

two involutions r and s. ]

If r,t € Ds, are the automorphisms of I',, that represent the reflection about the vertex
1 and a single rotation, as in the proof of the lemma, then the relation rtr = t=! implies
that t~%r = (rtr)kr = rt* for each 0 < k < n. Therefore, we can completely determine the

multiplication in Ds,, for each 0 < k < n and 0 <[ < n as follows:
gl — kel
th(rt') = rt Mt = rttF
(rtF)th = rekt!
(rt*)(rt') = (tFr)(rth) = ¢F

Theorem 4.2.3. For each n > 1, there is a unique group up to isomorphism of order 2n

that is generated by two involutions.

Proof. If n =1, then (5 is the only group of order 2, and it is generated by two identical
involutions. If n = 2, then any group G of order 4 generated by two involutions r and s is
{1,7,s,7rs}, so G is isomorphic to Cy x Cs.

Otherwise, when n > 3, we know that Ds, is a group of order 2n generated by two
involutions, so we must show that it is unique. Let GG be a group of order 2n that is
generated by involutions r and s. Set ¢t = rs, and let H be the cyclic subgroup of G
generated by t. Note that t> = (rs)? # 1, because rs # sr as the order of G is greater than
4. We claim that r is not in H. In fact, if r = t* for some k& > 0, then 1 = t?*. Also,

s =r(rs) =t""1 so t?* =1 = t?**2 but that implies t*> = 1, a contradiction.
Therefore, rH and H are distinct left cosets of H in G. Next, we want to show that

H UrH is a subgroup of G. For each k > 0, we have rt* = r(rs)* = (sr)*r = t=*r, so
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multiplication in H UrH is given by
tht =" e H
tFrt)y =rt F =rtF erH
(rtf)tt = rt* e rH
(rt*)(rt") = (") (rt") = ¢'" € H,
where (7t*)~! = rt* € rH. Therefore, H UrH is a subgroup of GG containing r and s, and

G = (r,s),so HUrH = G. Since G has the same multiplication table as Ds,, they are

isomorphic. O

This theorem tells us that if G is a finite group generated by two involutions r and s,

then
§

Cy ifr=s

@Q
1%

Cy x Cy  if order(rs) = 2

D, if order(rs) =n > 2.
\

4.3 The PLR Group

In the context of music theory, we will be focusing on subgroups of the permutation
group of a set of chords that are generated by self-invertible chord operations. These
involutions are permutations of a set of chords (say II, the set of 24 major and minor
triads) that represent “smooth” ways to move between chords, creating chord progressions
that have minimal change between chords, or “parsimonious voice-leading”. One such group
is called the PLR Group, a subgroup of the permutation group of II, the set of major and
minor chords. The set II is the union of II™ and II™, respectively the sets of major and

minor triads defined as sets of three element subsets of Z5 as follows.
It = {{a:,a:—i—él,.r—{—?} CZyy:x € Zlg}
I~ = {{I,.T"‘?),l""?} Q Zlg T E Zm}
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The PLR Group is generated by three order 2 permutations of the set II defined below:

P: {z,x2+4,2+7 < {z,2+3,24+ 7}

L: {z,z+4,2+7t—{x—1lLx+4,2+7}

{z,z+3,2+ 7} — {x,x+ 3,2+ 8}

R: {z,z+4,2+7}—{z,2+4,2+9}
{z,e+3, 2+ Tt {x—2,2+ 3,2+ 7}
It can be checked that these operations on major and minor triads are well-defined order 2
permutations of II, making the PLR Group a finite group generated by involutions. Fach
generator P, L, and R operators on a triad by moving only one note of the chord,
exemplifying the use of parsimonious voice-leading. The PLR group will be discussed in

detail in Section 7.3 and more information on the PLR Group is given in [4].
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CHAPTER 5
COMMUTING, CAYLEY, AND SCHREIER GRAPHS

5.1 Commuting Graphs

Given a finite group G that is generated by a subset R C (G, we define a graph that

displays which elements of R commute with one another in G.

Definition 5.1.1. If G is a finite group with generating set R, then the commuting graph
of G with respect to R is the graph Com(G, R) with V(Com(G, R)) = R and
E(Com(G, R)) = {{rs,r;} : rirj #£ i1}

Given a finite group G generated by involutions ry, ..., r,, we have that two generators
r; and r; commute with one another if and only if (r;7;)? = 1. Therefore the commuting
graph of G’ with respect to involutions R can be determined by identifying the order of the
product of each pair of generators. That is, the involutions r; and r; are adjacent in

Com(G, R) if the order of r;r; is greater than 2.

Example 5.1.2. Let G = Sy, the permutation group of four element set {1,2, 3,4}, and let
R be the following set of generating transpositions {(12), (23),(34)}. Then, the commuting
graph of G with respect to R is the graph shown in Figure [5.1} This graph tells us that the
elements (12) and (34) commute in G because they are not adjacent. To see the
dependence of a commuting graph on the generating set, if we instead let

R =1{(12),(23),(34), (14) }, we obtain the commuting graph shown in Figure
(23)

(12)‘/.\.(34)

Figure 5.1: Commuting graph of S; with respect to {(12), (23), (34)}.

Example 5.1.3. Let G = C3, the product of three copies of the additive group Cs, and let
R be the set of involutions RS = {(1,0,0), (0,1,0),(0,0,1)}. Then, the commuting graph of
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(23)
(12) (34)

(14)

Figure 5.2: Commuting graph of S; with respect to {(12), (23), (34), (14)}.

G with respect to R is shown in Figure This edgeless graph tells us that each of the
generators commute with one another. In general, the commuting graph of C'§ with respect
to Ry (defined in Example {4.1.2)) is edgeless, meaning that each of the generators commute
with one another.
(1,0,0) (0,0,1)
o o o
(0,1,0)

Figure 5.3: Commuting graph of C3 with respect to R3.

Example 5.1.4. Referring back to the PLR Group (Section [4.3)), a subgroup of the
permutation group of the set of major and minor triads, the commuting graph of the PLR
Group with respect to the generating involutions P, L, and R is shown in Figure [5.4] This

commuting graph demonstrates that none of the generators commute in the group.

P

pas

Figure 5.4: Commuting graph of the PLR group with respect to {P, L, R}.

5.2 Cayley Graphs

Given a finite group G that is generated by a set of involutions R C G, we wish to
define a finite graph that represents how to move between the elements of G with respect

to the generators in R. In this way, we obtain the following definition.
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Definition 5.2.1. If (G, R) is a finite group generated by involutions, then the Cayley
graph of G with respect to R is the graph Cay(G, R) with V(Cay(G, R)) = G and
E(Cay(G,R)) = {{g,9r} : g € G.r € R}

Given a Cayley graph, Cay(G, R), the edge {g, gr} of the graph is labeled by the
involution r € R. A path in Cay(G, R) is a sequence of group elements (go, g1, ---, gn) such
that for each 0 <14 < n, there exists r; with g;7; = g;11. In this way, a path in a Cayley
graph is also a sequence of generators.

There is a more general definition of the Cayley graph of a group with respect to any
generating set, and such a graph would be a directed graph. By restricting to finite groups

generated by involutions, Cayley graphs are undirected graphs.

Example 5.2.2. Let G = S5 and R = {(12),(23)}; then the the Cayley graph of G with
respect to R is the graph shown in Figure [5.5] Notice that since R contains only the two
involutions (12) and (23), at any vertex of Cay(G, R) there are only two edges, revealing a
Hamiltonian cycle. More generally, if a finite group G is generated by two involutions r;
and 7y, then (1,7, 7179, 717971, ..., (r172)™ r1) is a Hamiltonian cycle for Cay (G, {ri,m2}),

where m is the order of rirs.

id (12)
[ @ [ )
/(23) (2&
23) @ @ (123)
(12) 12)
(23)
o——©

(132) (13)

Figure 5.5: Cayley graph of S3 with respect to {(12),(23)}.

Lemma 5.2.3. Let (G, R) be a finite group generated by involutions. Then, Cay(G, R) is

connected.
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Proof. To verify this claim, it is enough to show that there is a path connecting any vertex
of Cay(G, R) to the vertex that represents the identity of the group, because any two such
paths may be concatenated to form a path between any two vertices. Thus, given any
vertex labeled g of Com(G, R), since R generates G, we have that g = r,,7ry,...rs, for

1 < z; < n, meaning that the path using the edges r,,, ...,7;, connects the identity vertex

k

to the vertex labeled g. O

Example 5.2.4. Let G = C} and R = R} (as defined in Example . Then, the Cayley
graph of G with respect to R is the n-dimensional hypercube, because the vertices of
Cay(G, R) are the n-digit binary numbers and edges are formed between numbers that
differ in only one digit. The Cayley graph of C3 with respect to Rj is given in Figure
Notice that a path in the n-dimensional hypercube graph is a sequence of binary numbers
with minimal change between successive numbers, that is, only one digit changes at a time.
Theorem provides an algorithm that produces a binary reflected Gray code, an
ordering of all the n-digit binary numbers such that adjacent numbers differ only in one
digit [11]. The search for binary reflected Gray codes is equivalent to the search for
Hamiltonian paths in the Cayley graph of C} with respect to RY.

(0,1,0) (1,1,0)

(1,0,0)

(0,1,0)
0°1°0)

(1,0,0)

(0,0,0) (1,0,0)

Figure 5.6: Cayley graph of Cj with respect to R3.

Example 5.2.5. Referring back to the PLR group (Section [4.3)), the Cayley graph of the

PLR group with respect to the set of generators { P, L, R} is called the Tonnetz in Western
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music theory (meaning “tone network”). It has been shown in [4] that the PLR group acts
simply transitively on the set of major and minor triads, allowing us to identify the
elements of the PLR group with each of the 24 major and minor triads, producing the
Tonnetz found in Figure In this figure, uppercase letters denote major triads and
lowercase letters denote minor triads. This graph is a handy compositional tool because it

demonstrates how to move between chords with respect to the three simple operations.

Figure 5.7: Cayley graph of the PLR group with respect to { P, L, R} or Tonnetz [4]

5.3 Schreier Graphs

Given a finite group generated by involutions (G, R) and a subgroup H C G, we will
define a graph that represents how to move between the right cosets of H in G with respect

to the generators in R. In this way, we obtain the following definition.

Definition 5.3.1. If (G, R) is a finite group generated by involutions and H is a subgroup
of G, then the Schreier graph of G with respect to H and R is the graph Sch(G, H, R) with
V(Sch(G, H, R)) = H\G and

E(Sch(G,H,R)) = {{Hg,Hgr}: Hg € H\G,r € R}.

Given a Schreier graph Sch(G, H, R), each edge {Hg, Hgr} is labeled by the involution

r. A path in Sch(G, H, R) is a sequence of right cosets (Hgo, Hgy, ..., Hgy) such that for
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each 0 < i < n, there exists r; with Hg;r; = Hg;+1. Thus, a path in a Schreier graph can be
expressed as a sequence of generators.

Similar to Cayley graphs, there is a more general definition of the Schreier graph of a
group with respect to a chosen subgroup and generating set. The requirement that the
generated set be a set of involutions allows us to work with undirected graphs.

If (G, R) is a finite group generated by involutions, then if H C G is chosen to be the
subgroup containing only the identity of G, then Sch(G, H, R) is canonically isomorphic to

Cay(G, R). In this way, Cayley graphs are a special case of Schreier graphs.

Example 5.3.2. Let G be the symmetric group S,, and R be the set of adjacent

transpositions {(12), (23),...,(n — 1 n)}. For each 1 < k < n, define

S = <R {(kk+ 1)}>,

the subgroup of S, that permutes the first £k numbers {1,2, ..., k} and the last n — k
numbers {n — k + 1,n — k + 2,...,n} separately. The Schreier graph Sch(G, H, R) will be
the focus of Theorem .11

When n =4 and k = 2, the Schreier graph of S4 with respect to the subgroup S, and
{(12),(23), (34)} is shown in Figure [5.§] Notice that this graph is bipartite with parts

A= {H, H(234), H(132), H(13)(24)},

B = {H(23), H(1342)}.

Since |A| — |B| =2 > 1, from Lemma we conclude that no Hamiltonian path exists in

this graph.

Hs342)  Has)e4)
H(132)

Figure 5.8: Schreier graph of Sy with respect to the subgroup Ss 2 and {(12), (23), (34)}.
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CHAPTER 6
CORRESPONDENCE BETWEEN GRAY CODES AND HAMILTONIAN
PATHS

6.1 Simply Transitive Group Actions

In this chapter, we will relate the search for Gray codes and the search for Hamiltonian
paths in Schreier and Cayley graphs. If X is a set and R is a set of involutions in Perm(X),
then let G C Perm(X) be the subgroup generated by R. Then, define a group action of G
on the set X in the usual way by the map G x X — X such that gz — g(z).

Let G be a group that acts on a set X. Recall that the orbit of x € X is the set
Gz ={gr € X : g € G}, and the stabilizer of x € X is the subgroup
G, ={g9 € G: gr =z} of G. The orbits in X are the equivalence classes of the equivalence
relation on X such that x ~ y if there exists g € G with gz = y. Using these notions, we

have the following definition.

Definition 6.1.1. Let GG be a group that acts on a set X. Then, the group action is
transitive if Gxr = X for each x € X, and the group action is simply transitive if it is

transitive and G, = {1} for each = € X.

Example 6.1.2. Let X = {0, 1}", the n-digit binary numerals, and let G = C¥, the
product of n copies of the additive group {0,1}. Then, G acts on X is the usual way, and

the group action is simply transitive.

Example 6.1.3. Let X =II, the set of major and minor triads, and let G be the PLR
group. Then, it can be shown that G acts simply transitively on X [4]. As noted in
Example [5.2.5] since this group action is simply transitive, we can associate each group
element to one of the 24 major and minor triads. This property is generalized in the

following section.
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The following theorem is called the orbit-stabilizer theorem, drawing the connection

between the orbit and stabilizer of each element of X.

Theorem 6.1.4. Let GG be a group that acts on a set X. Then, for each x € X, the map

f: G, \G — Gz defined f(G,g) = g'z is a bijection of sets.

Proof. The map f is well defined and injective because for each g, ¢ € G,

1

Gog=Gof <= gg ' €G, = gglo=rgla=g""a

Also, f is surjective because for each gz € Gz, we have f(G,g~!) = gx. Thus, f is a

bijection. O]

Corollary 6.1.5. Let GG be a finite group that acts on a finite set X. Then, for each
z € X, |G|/|Ga] = |Gxl.

Proof. Since G and X are finite, from the orbit stabilizer theorem and Lagrange’s theorem,

we have |G, \G| = |G|/|G:| = |Gx|. O

6.2 Correspondence Between Gray Codes and Hamiltonian Paths

The following theorem determines the connection between the search for Gray codes

and the search for Hamiltonian paths in Schreier graphs.

Theorem 6.2.1. Let X be a finite set and R C Perm(X) a set of involutions. If the group
G generated by R acts transitively on the set X, then for each x € X, there is a bijection
between the set of Gray codes for (X, R) and the set of Hamiltonian paths in

Sch(G, G, R), where cyclic Gray codes correspond to Hamiltonian cycles.

Proof. To begin, define the graph I' with V(I') = X and E(T') = {{z,rz} : r € R}. Then,
Hamiltonian paths in I' are exactly the Gray codes for (X, R), so we want to show that

Sch(G, G, R) is isomorphic to I' for each x € X.

25



Let € X and define a map ¢ : V(Sch(G, G, R)) — V(T') by »(G.g) = g 'x. Then,
the map ¢ is exactly the map f from the orbit-stabilizer theorem (Theorem [6.1.4)), so it is
a bijection.

To see that the map ¢ is a graph isomorphism, {G,g, G,gr} is an edge of Sch(G, G, R)

if and only if

{0(G29),0(Gagr)} = {g 'z, (gr) 'z} = {g "'z, r(g '2)} € E(T).

Therefore, I' is isomorphic to Sch(G, G,, R), meaning there is a bijection between the
Hamiltonian paths in Sch(G, G, R) and the Gray codes for (X, R), where cyclic Gray

codes for (X, R) are in correspondence with Hamiltonian cycles in Sch(G, G,, R). O

Corollary 6.2.2. Let X be a finite set and R C Perm(X) a set of involutions. If the group
G = (R) acts simply transitively on the set X, then for each x € X, there is a bijection
between the set of Gray codes for (X, R) and the set of Hamiltonian paths in Cay(G, R),

where cyclic Gray codes correspond to Hamiltonian cycles.

Proof. Since G acts simply transitively on X, the stabilizer of each z € X is the trivial
subgroup of G, meaning Sch(G, G,, R) is isomorphic to Cay(G, R). Thus, the proof of the
corollary follows directly from Theorem [6.2.1} O]

6.3 Examples of Gray Codes as Hamiltonian Paths

Having identified the correspondence between Gray codes and Hamiltonian paths in
Schreier graphs, we can interpret the two examples of Gray codes given in Chapter [2| as

Hamiltonian paths in respective Schreier graphs.

Example 6.3.1. Introduced in Example 2.0.2] a reflected binary Gray code is an ordering
of the n-digit binary numerals in which successive numbers differ in only one digit. In this
example, X is the set of n-digit binary numerals and R C Perm(X) is the set of involutions

that change exactly one digit.
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The subgroup G of Perm(X) generated by R is isomorphic to the group C%, the
product of n copies of the additive group {0,1}. As defined in Example , the set R is
the set of generating involutions Rj. In this case, the group C} acts simply transitively on
the set X, meaning there is a correspondence between binary reflected Gray codes and
Hamiltonian paths in Cay(C%, RY).

Theorem provides an algorithm that constructs a Hamiltonian path in

Cay(C%, RY) and equivalently a binary reflected Gray code.

Example 6.3.2. Introduced in Example 2.0.3] a k-subsets of n Gray code is the ordering
of the k-element subsets of {1,2,...,n} such that successive subsets differ in only one

element by a difference of 1. In this example, we have
X ={(ar,a9,....;a;) : 1 <a; <as <..<a,<n}

and R C Perm(X) is the set of involutions that swap only two consecutive integers.

The subgroup G of Perm (X)) generated by R is isomorphic to the group S, where R is
the set of adjacent transpositions {(12), (23),...,(n — 1 n)}. The group G acts transitively
on the set X but not simply transitively. Let z € X be the k-element set {1, 2, ..., k}.
Then, the stabilizer of = is the set of elements of G that permute the numbers 1 to k and
k + 1 to n separately; that is, G, = Sk n—i, as defined in Example . Therefore, each

k-subsets of n Gray code is a Hamiltonian path in the Schreier graph Sch(S,, Sk.n—k, R).
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CHAPTER 7
FIRST MAIN THEOREM

7.1 Statement and Proof of First Main Theorem

The following theorem provides a sufficient condition for the existence of a Hamiltonian
cycle in the Cayley graph of a finite group with respect to a generating set of involutions,
including an algorithm that produces such a cycle. This theorem is originally stated and

proved in Conway, Sloane, and Wilks [3], but it has been adapted for our purposes.

Theorem 7.1.1. Let (G, R) be a finite group generated by involutions with |R| > 2.

Then, if Com(G, R) is acyclic, there is a Hamiltonian cycle in Cay(G, R). [3]

Proof. We prove the theorem by induction on n = |R|, the number of involutions that
generate the finite group G.

4=1r)) is a Hamiltonian

When n =2 and R = {ry, 3}, then (1,71, ri7r9, r172r1, ..\ (r1772)
cycle in Cay(G, R) where d is the order of 7.

Now, proceeding for n > 3, assume that there is a Hamiltonian cycle in the Cayley
graph of any finite group with respect to n — 1 generating involutions with an acyclic
commuting graph, and let (G, R) be a finite group generated by involutions with |R| =n
such that Com(G, R) is acyclic. By Lemma [3.1.2] there is a vertex of Com(G, R) of degree
less than 2, so we can index the elements of R so that the vertex of the commuting graph
that represents r,, has degree 0 or is adjacent only to the vertex r,_;.

Let H C G be the subgroup of G generated by R’ := {ry,...,7,_1}, and let I and A
denote Cay(G, R) and Cay(H, R'), respectively. Since G is the union of m = [G : H] cosets
of H, the graph I is partitioned into m disjoint subgraphs; let A, be the subgraph of I'
induced by the left coset gH. Then, each A, is isomorphic to A via the map A — A,
defined h + gh.

Applying Lemma [3.1.3] since Com(H, R’) is the result of removing a vertex from the

acyclic graph Com(G, R), by the induction hypothesis, there is a Hamiltonian cycle
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B = (hg, ..., hy—1) in A, where b = |H|. We can construct a Hamiltonian cycle in any
subgraph A, with edges identical to the edges contained in B by left multiplying B by
some element of the coset gH. The goal is to string together Hamiltonian cycles in each of
the subgraphs A, via a recursive algorithm in order to construct a Hamiltonian cycle in I

To define this algorithm, consider for each subset X C GG and 1 < i < n the set
0, (X)={9eG—-X:g=ar,ze X},

the elements of G — X that we can get to from the set X via right multiplication by the
involution ;.

Now, suppose we have a subset X C G that is a union of left cosets of H, and we have a
Hamiltonian cycle C' in the subgraph of I' induced by X, such that every edge label
occurring in C' except for the edge label r, also occurs in the Hamiltonian cycle B in A.

Since X is a union of left cosets of H, we have that 0, (X) = () for each 1 <1 < n. Here,
if §,, (X) = 0, then we are done, as the Cayley graph I" is connected and then X = G.
Otherwise, there exists y € G — X and = € X such that y = zr,. Let A, be the subgraph
of I' induced by the coset yH.

As noted in Lemma [3.2.2] given a Hamiltonian cycle, we can shift the cycle to begin at
any element and reverse the order of the cycle as necessary. Therefore, if ¢ = | X|, we can
choose an ordering for the cycle C' = (xy, ..., z.—1) such that z._173 = ro = = where
rg # Tyn1, 7y (which is possible as n > 3).

Next, the cycle C' was chosen so that the edge r3 occurs in the cycle B in A. Thus, we
can reorder B = (ho, ..., hy—1) such that hy_175 = hy. Therefore,

yhy'B = (yhgtho, ..., yhg "hy_1)
=: (Yo, - Yp-1)
is a Hamiltonian cycle for A, such that y,_175 = yo = .

Since r3 # rn—1 and the vertex r, of Com(G, R) is adjacent to at most the vertex r,_1,

the generators r3 and r, commute. Thus, x._17,, = xorsr, = Yors = Yp—1, implying that the

vertices z._1 and y,_; are adjacent in I'.

29



Finally, we have
D= {.',Uo, oy L1, Yo—15 Yo—2, ---73/0}

is a Hamiltonian cycle for the subgraph of I induced by X U yH because each element of
X UyH is contained in D, and yy, = y and xg = = are adjacent in I'. Since X UyH is a
union of left cosets of H and every edge label occurring in D except r,, occurs in B, we
have a well defined recursive algorithm.

Because G is finite, this algorithm can be repeated until Hamiltonian cycles for all the
Ay’s are concatenated to form a Hamiltonian cycle in I', completing the proof of the

theorem. O

7.2 Application to Reflected Binary Gray Codes

The first application of the Theorem [7.1.1]is one that is a useful result in computer
science. As introduced in Example [2.0.2] a binary reflected Gray code is an ordering of the
binary numeral system in which successive numbers only differ in one digit. Gray codes are
used in the error correction of digital communications like satellites and cable [11].
Additionally, reflected binary Gray codes can be interpreted musically by assigning n
distinct notes to each of the n digits. Then, an n-digit binary number represents the chord
that contains the notes with a 1 in their respective digit, and a Gray code is a chord
progression that uses all possible chord combinations of the n notes, such that movements
between successive chords are the result of adding or removing a single note.

In Example [6.3.1] we applied Theorem to see that there is a bijection between
reflected binary Gray codes and Hamiltonian paths in the Cayley graph of C} with respect
to the involutions Ry. And in Example [5.2.4 we found that the graph Cay(C¥, R}) is the
n-dimensional hypercube.

Theorem [7.1.1] applies in this case because, as noted in Example [5.1.3], the commuting
graph of CF with respect to R} is edgeless, and hence acyclic. To see the algorithm in

action, we will construct a Hamiltonian cycle in the 4-dimensional hypercube. The
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algorithm in the proof of Theorem involves starting with two generating involutions,
and adding the remaining generators one at a time. More explicitly, we will construct a
Hamiltonian cycle in the 2-cube, use that to construct a Hamiltonian cycle in the 3-cube,
and then obtain a Hamiltonian cycle in the 4-cube.

Let H be the subgroup of C4 generated by the two involutions (1,0, 0,0) and (0, 1,0,0).
Here, we are in the base case of the induction, so a Hamiltonian cycle for the subgraph
induced by H is given by alternating generators. Moving to the 3-dimensional hypercube,
if we left multiply the Hamiltonian cycle for the subgraph induced by H by the third
generator (0,0, 1,0), we obtain a Hamiltonian cycle for the subgraph induced by the only
nontrivial left coset of H in C3. These two cycles are shown in Figure . Then, we string
the two cycles together as shown in Figure resulting in a Hamiltonian cycle in the
3-dimensional hypercube.

(0,1,0) (1,1,0) (0,1,0)

(1,1,1)

(1,1,1)

(0,1,0)
0°'1°0)
(0,1,0)
0°1°0)

(1,0,1)

(1,0,0) (1,0,0)

(0,0,0) (1,0,0) (0,0,0) (1,0,0)
Figure 7.1: Constructing a Hamiltonian Figure 7.2: Hamiltonian cycle in the
cycle in the 3-dimensional hypercube. 3-dimensional hypercube.

Finally, we move to the 4-dimensional hypercube graph, or the Cayley graph of Cj with
respect to R3. Figure shows two isomorphic copies of a Hamiltonian cycle in the
3-dimensional hypercube, and Figure [7.4] shows how to string them together to obtain a

Hamiltonian cycle in the 4-dimensional hypercube graph. The resulting Hamiltonian cycle
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represents a reflected binary Gray code in the 4-digit case. Notice that we can start the

Gray code at any binary number and move in either direction around the cycle.

Figure 7.3: Constructing a Hamiltonian Figure 7.4: Hamiltonian cycle in the
cycle in the 4-dimensional hypercube. 4-dimensional hypercube.

7.3 Application to the PLR Group

Another application of Theorem is useful in music theory. Given a group G of
permutations on a set of chords X that is generated by a set of order two operations R, if
the group G acts on the set X simply transitively, then each element of the group can be
identified with a distinct chord in the set. Therefore, in this case, a Hamiltonian cycle in
the Cayley graph of G with respect to X is a chord progression that uses each of the
elements of X exactly once, the essence of serialism.

We have already noted in Example that the PLR group acts simply transitively on
the set of 24 major and minor triads II; however, the commuting graph of the PLR group
with respect to the generators P, L, and R contains a cycle, meaning the Theorem
does not immediately apply. Nonetheless, it can be shown that the PLR group is generated
by the two elements L and R [4], where the commuting graph of the PLR group with
respect to the set {L, R} is in fact acyclic. Therefore, Theorem applies to the Cayley

graph of the PLR group with respect to the generators R and L. With only two generating
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involutions, we are in the base case of the induction argument. Therefore, if we alternately
apply the operations L and R to the C major triad, we obtain the following sequence of
triads, where uppercase letters represent major triads and lowercase letter represent minor

ones.

C, a, F, d, Bb, g Eb, c, Ab, f, Db, bb, Gb, eb, B, gfi, E, cff, A, ff, D, b, G, e

Interestingly enough, the first half of this chord progression is used in Beethoven’s
Ninth Symphony, demonstrating that the this application is not restricted to serialism.

The limitation of this example is that the PLR group is generated by only two
involutions, meaning the real substance of the Theorem [7.1.1]is not fully applied. Thus, the
next goal is to provide an example of a group G of permutations of a set of chords X that

has the following properties:

1. The group G is generated by a set of involutions R such that |R| > 2 and Com(G, R)

is acyclic.

2. The group G acts simply transitively on the set X.
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CHAPTER 8
THE SBW GROUP

8.1 Permutations of Sets of Seventh Chords

In order to accomplish this goal, we will move to a larger set of chords: the set W of all
major seventh (7), dominant seventh (7), minor seventh (~7), and half diminished seventh
(°T) chords. More specifically, the collection ¥ is the union of four set of four element

subsets of Z;5 defined as follows.
U = {{z,x+ 4,2+ 7,0 +11} C Zyp 1z € Z}

U ={{z,c+4,2+7,0+10} CZy:x €L}
U7 = {{x,x+3,x+7,x+10} nggil’EZ}
Uo7 = {{x,x+3,x+6,x+10} nggzer}

The size of this set of seventh chords is |¥| = 12 x 4 = 48, as there are twelve notes and
four types of seventh chords.

The group that we begin examining is a semidirect product that defines a group action
on the set ¥. Let Sy act by group automorphisms on Z},, the product of four copies of Zs,,

by permuting coordinates. That is, for o € Sy and z € Z1,, we define
O'(iCl, T2, X3, 374) = (xa—1(1)7 To-1(2), To—1(3), ma—1(4))-

This action defines a semidirect product Sy x Zi,. Explicitly, for each (o, ) and (w,y) in

Sy X Zi,, we define

(07 (1'1, T2, T3, 1’4)) (('LU, (yb Y2, Ys, y4)) = (Uwa (yl + Tw(1), Y2 + Tw(2), Y3 + Tw(3), Y4 + .Z'w(4))) :

In order to define a group action of Sy x Z%, on the set ¥, notice that any chord in the
collection W can be represented by the ordered pair (i,7) € {1,2,3,4} X Zj5, where r is the

root of the chord and ¢ represents the type of chord: 1 for major seventh, 2 for dominant
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seventh, 3 for minor seventh, and 4 for half diminished seventh. Therefore, using this
representation of the set W, for any (o, ) € Sy X Z{, and (i,7) € {1,2,3,4} X Z12, define a
group action

(o,2)(i,7) = (o(i),r + x;).

Example 8.1.1. To see how this group action works in practice, consider the example
where (0, 2) = ((12)(34), (7,5,11,1)) in the group Sy x Z1, and (i,r) = (1,0) in the set
{1,2,3,4} x Zi5. Then, ((12)(34), (7,5, 11,1)) operates on the chord (1,0) - which
represents C major seventh (C27) - by transposing the root 0 up by the interval in the
third entry of x and changing the chord type to the image of 3 under the permutation o.
In this case,

((12)(34),(7,5,11,1))(1,0) = (2,7),

meaning that the operation ((12)(34), (7,5,11, 1)) applied to the chord C major seventh

(CAT) is the chord G dominant seventh (G7).

Example 8.1.2. In order to demonstrate that the group action of S; x Z, on the set ¥ is
a significant chord permutation group, consider the following chord progression taken from

part of the chorus of the jazz standard “Tune Up” by Miles Davis [5]:
E77 A? DA? D77 G? CA7 C77 F’? BbA7.

Consecutive chords in this progression are the result of the element ((132), (0,5,5,0)) of
Sy X Zi,. That is, each minor seventh chord is transposed up an interval of 5 and changed
to a dominant seventh chord; each dominant seventh chord is transposed up and interval of
5 and changed to a major seventh chord; and each major seventh chord is changed to its
parallel minor seventh. As the jazz giant Thelonious Monk once said, “all musicians are

subconsciously mathematicians” [10].

Notice that in this group action, given an element (o, z) of S; X Z], and t € Zi, for

each chord (i,7), if (o,2)(i,r) = (¢/,7"), then (o, z)(i,7 +t) = (¢, +t). It is said that each
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element of Sy X Z3, acts on chords of the same type the “same way”. This result is
analogous to the uniformity condition in Julian Hook’s “Uniform Triadic Transformation”
[8], where a group action is similarly defined on the set of major and minor triads II using

the semidirect product Cy x Z3,.

8.2 The SBW Group

The action of the group S, x Z$, on the set of seventh chords W is transitive, but the
group Sy X Z1, is far too large to act simply transitively on W. Therefore, we will define a
subgroup of Sy X Z1, that is generated by involutions and acts simply transitively on the
set W,

Named after Schonberg, Berg, and Webern of the Second Viennese School, define the

SBW group to be the subgroup of S, x Z{, generated by the elements

= ((12)(34), (7,5,11,1)),

S :
B = ((13)(24), (2,10,10,2)),
W

= ((14)(23),(6,0,0,6)).
Routine calculations show that each of these generators has order 2 in S; X Z{,, meaning
the SBW group is a finite group generated by involutions. It remains to show that the

SBW group acts simply transitively on the set of seventh chords ¥, and that the

commuting graph is acyclic.
Proposition 8.2.1. The SBW group acts simply transitively on the set .

Proof. In order to understand the group action of the SBW group on the set ¥, we can
identify the group Sy x Zi, with a subgroup of the general linear group of degree 5 over the
ring Z12, the group GL(5,Z2) of invertible 5 x 5 matrices with coefficients in Zy5. Then,
the SBW group is isomorphic to a subgroup of GL(5,Z2), so we can easily compute the

order of the SBW group and the stabilizer of an element of U using Sage.
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Define a map ¢ : Sy X Z1, — GL(5,Z12) by

1 0 0 0 T
0 1 0 0 To
o o o o o
(07 ($1,$2,l’3,$4)) = 0 0 1 0 T3
0 0 0 1 T4
0 0 0 0 1

Then, the map ¢ is a group homomorphism because

@((0, (551, L2, T3, 334)) (w, (?/17 Y2, Ys, y4))>

= o(ow, w  (z1, T2, 73, 24) + (Y1, Y2, Y3, Ya))

1 0 O O T U1
0 1 0 0 T Y2
ow ow ow ow o + ow
= 0 0 1 0 T3 Y3
0 0 0 1 Ty Ys
0 0 0 0 1

= ¢(0, (z1, 2, 23, 34) ) (W, (Y1, Y2, Y3, Ya))
for each (o, ), (w,y) € Sy X Z,. Also, the kernel of ¢ is clearly trivial, so ¢ is injective.
Therefore, the group S; X Zi, is isomorphic to the image of ¢ in GL(5, Z1s).

Now, the SBW group is isomorphic to the subgroup G of GL(5,7Z12) generated by the
matrices ¢(5), p(B), and ¢(W). Using the Sage code in Appendix A, we find that the
order of GG is 48. Next, we want to compute the stabilizer of the element
(1,0) € {1,2,3,4} X Zj3. Recall that (o,2)(1,0) = (c(1), 1), so (o,z) is in the stabilizer of
(1,0) if 0(1) = 1 and x; = 0; that is, the matrix ¢(o,x) € G has a 1 in the 1,1 coordinate
and a 0 in the 1,5 coordinate. The Sage code in Appendix A counts the number of elements
in G with these conditions and determines that the the stabilizer of (1,0) is trivial.

Since the SBW group has order 48 and the stabilizer of (1,0) has order 1, the

orbit-stabilizer theorem (Theorem [6.1.4) guarantees that the orbit of (1,0) has size 48=|¥|.
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Thus, there is only one orbit in the group action and the stabilizer of each element of ¥ is

trivial, so the SBW group acts simply transitively on . O]

8.3 Application of Theorem to the SBW Group

Since the SBW group acts simply transitively on the set of seventh chords ¥, each
Hamiltonian cycle in the Cayley graph of the SBW group with respect to the generating
involutions is associated to a Gray code for (¥, {S, B, W}). We will apply Theorem
to the SBW group, but first we have to verify that the commuting graph of the SBW group

with respect to the generating involutions is acyclic.

Lemma 8.3.1. The commuting graph of the SBW group with respect to {S, B, W} is

acyclic.

Proof. The commuting graph of the SBW group with respect to the involutions S, B, and
W can be constructed by determining the order of each pair of generators. Routine

calculations show that order(SB) = 6, order(BW) = 4, and order(SW) = 2. Therefore, the
commuting graph of the SBW group with respect to {S, B, W} is given in Figure Since

this graph has only one vertex of degree greater than 1, it is acyclic. O]

B

s

Figure 8.1: Commuting graph of the SBW Group with respect to {S, B, W}.

Therefore, since the SBW group acts simply transitively on the set ¥ and the
commuting graph of the SBW group with respect to {5, B, W} is acyclic, we can apply
Theorem to obtain a Gray code for (¥, {S, B, W}). If we choose the chord C27 to
represent the identity element of the SBW group and implement the algorithm, we

construct the following cyclic Gray code.
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E E ER
D—? ij7 Gﬂ_7 D7
5 5 5 s
Cﬂ@? CﬂA7 G@? GA?
L L L L
EbT EbT AT AT
s s s s
AbA7 D®7 DA? Gﬁ@?
E L |5 |5
By T g g By
A‘;; AAT w Dﬂ@? Eb‘j7
L L 5 L
BT B~ F7 F7
s s s s
EA? Aﬁ®7 BbA7 E27
s s o s
Fi7 ol c-7 FY
s s s s
F@? FA? B@? BA7
L L L L
GT— W g7 47 __w cr 7

By starting at any point in the cycle and moving in either direction, we have a
serialism-like chord progression that uses each of the 48 seventh chords in the set U exactly
once. The chord progressions found in this cycle exemplify a shifting and occasionally
nonexistent tonal center, deviating from the realm of functional harmony. This trend is

found in contemporary classical and jazz music.
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CHAPTER 9
SECOND MAIN THEOREM

9.1 Statement of the Second Main Theorem

Our second main theorem concerns the existence of k-element subsets of n Gray code -
this theorem is stated and proved in Eades and Hickey [6]. Given the set of positive
integers from 1 to n and some k such that 1 < k < n — 1, we wish to order the k-element
subsets of {1,2,...,n} such that successive subsets differ in only one element by a difference
of 1. Recall from Example that this is equivalent to finding a Hamiltonian path in the
Schreier graph of the symmetric group S,, with respect to the subgroup Sy ,_; and the set
of generating adjacent transpositions.

To achieve this goal, define the graph G, such that

V(Gni) = {(a1,a2,...;a) : 1 <ay < as < ..<a <n},

B(Gos) = {{(ar - a0), (b1, b)) = (D bi)2>1/2 ~1}.

i=1

Notice that the vertex set of G, represents the set of all k-element subsets of {1,2,...,n}
and that two such k-tuples are adjacent in G, if they differ by a quantity of 1 in only one
position. Therefore, the task at hand is to find a Hamiltonian path in the graph G, 4.

With this construction, we obtain the following theorem.

Theorem 9.1.1. If n > 4 and 1 < k < n —1, then G, ; has a Hamiltonian path if and only

if n is even and k is odd.

The necessity of n being even and k being odd is proved in Section [9.2] while the
sufficiency is proved in Section

9.2 Proof of Necessity

This section proves the necessity of n being even and k being odd in Theorem [9.1.1]

Assume that for some n > 4 and 1 < k < n — 1, there is a Hamiltonian path in the graph
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G- First notice that G, is bipartite with parts defined

k
Enx={(ay,aq,...,ar) € V(Gpny) : Zai is even}

=1

k
Oni = {(a1,a2, ...,ax) € V(Gpp) : Y a;is odd}.

i=1

Let 0, and w,,  denote the size of the sets E, ;, and O, respectively. Then, G, contains
a Hamiltonian path only if |7, x| = |9 — wnk| < 1, from Lemma [3.3.2]
Next, in order to determine the number 7, , we want to enumerate the vertices of

V(G,.) whose elements sum to some number N. Consider the polynomial in = and y

n

fay) =[]0+

r=1

Here, if the integer r is used in a vertex of V (G, ), it contributes r to the number N and 1
to the number £, so the number of vertices whose elements sum to NN is given by the
coefficient of z*y" in f(z,y). Therefore, the number 7, is the coefficient of 2* in f(z, —1).

If n is even, then n = 2m for some integer m, so

2m
[[a+az(-1)) =@ +2)"@—a)"
r=1
=(1—a%)™
Thus, using the binomial theorem,
0 if k£ is odd and n is even

Tnk =
(—1)k/2 " if k& is even and n is even
k/2

Next, if n is odd, then n = 2m + 1 for some integer m, so
2m+1

H 14+z(-1D") =1 +2)™(1 —z)™!

r=1
=1 —-2H™(1 1),
Thus, using the binomial theorem,

k+1

(—1)>2 <km1> if k£ is odd and n is odd
2

Tnk =
(—1)/2 <k772) if k& is even and n is odd
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Finally, since n > 4 and 1 < k < n — 1, the only case with |7, x| <1 is when n is even

and k is odd, proving the necessity of Theorem [9.1.1}

9.3 Proof of Sufficiency

In this section, we will prove the sufficiency of Theorem [9.1.1} That is, assuming n is
even and k is odd, we want to show that G, ; contains a Hamiltonian path.
The proof uses induction on n. The following subsets of V(G,, ;) will be used in the

proof.

An,k = {(al,ag, ...,CLk) € V(Gn’k) Tap = 1,a2 = 2}
By = {(a1,az,...;a;) € V(Gpny) : a1 > 3}

(9.3.1)
ka = {(CLl,CLQ, ...,(Zk) & V(Gn,k) Lap = 1,@2 Z 3}

D, x = {(a1,ag,...;a;) € V(Gpy) : a1 = 2}

If we let Amk, l%’n,k, CA’nyk, and ﬁnk denote the subgraphs of G, induced by A, i, By,
Ch.k, and D, respectively, then each of these subgraphs is isomorphic to some G, j as

follows.

~

Ak = Grogo via (1,2,a3, a4, ..., a) — (a3 — 2,a4 — 2...,a — 2),

~

By = Gpoy via (1,09, ...,a;) — (a1 — 2,a2 — 2, ..., a5, — 2),
CA’M &~ an via (1,a9,as, ..., ax) — (2, as, as, ..., ax),
lA)n,k = Gpook—1 via (2,a9,as,...,a5) = (a2 — 2,a3 — 2, ..., a; — 2).
Notice that the requirement of k£ being odd means the induction hypothesis will only apply
to the subgraphs Ank and Bmk, but not to C’nk and ﬁnk Thus, we must strengthen the

inductive hypothesis with a Lemma.
Lemma 9.3.1. If n is even and 1 < k < n, then

1. If k is odd, then G, ; has a Hamiltonian path with endpoints
(1,2,....k)and (n—k+1,n—k+2,...,n)
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2. If k is even, then G, ; has a spanning comb with boundary points

(LLn—k+2,n—k+3,...,n)and (2,3,....k + 1).

Proof. The proof of the lemma is by induction on n. For n = 2, the statement is easily
verified. Now, let n be an even integer and assume that the lemma holds for any even
integer m < n. When k =1 or k = n, the graph G, is just a single path of vertices, so the
lemma holds. Thus, we can restrict to the case when 1 < k£ < n.

If k£ is odd, then by the induction hypothesis, the subgraphs flnk and Enk have

Hamiltonian paths with respective endpoints
ra= (1,2, k) &ya=(1,2,n—k+3,n—k+4,..,n),
rp=03,4,.,k+2) & yp=nn—k+1,n—k+2,...,n).

Additionally, the inductive hypothesis guarantees that the subgraph C’nk has a spanning

comb T with boundary points
zo=(1,3n—k+3n—k+4,...n) & yo = (1,4,5,....k + 2).

Let J denote the subgraph of G, ;, induced by C,, ; U D,, . Recall 