The University of Maine

Digital Commons@UMaine

Electronic Theses and Dissertations Fogler Library

Spring 5-10-2020

A Method to Reclaim Multifractal Statistics from Saturated
Images

Jeremy Juybari
University of Maine, jeremy.juybari@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd

b Part of the Numerical Analysis and Computation Commons

Recommended Citation

Juybari, Jeremy, "A Method to Reclaim Multifractal Statistics from Saturated Images" (2020). Electronic
Theses and Dissertations. 3176.

https://digitalcommons.library.umaine.edu/etd/3176

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.


https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/119?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3176?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3176&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

A METHOD TO RECLAIM MULTIFRACTAL STATISTICS FROM
SATURATED IMAGES
By
Jeremy Bijan Juybari

B.A., San Diego State University 2017

A THESIS

Submitted in Partial Fulfillment of the
Requirements for the Degree of
Master of Arts

(in Mathematics)

The Graduate School
The University of Maine
May 2020

Advisory Committee:
Dr. Andre Khalil, Associate Professor of Biomedical Engineering, Co-Advisor
Dr. David Bradley, Associate Professor of Mathematics, Co-Advisor

Dr. Peter Stechlinski, Associate Professor of Mathematics



A METHOD TO RECLAIM MULTIFRACTAL STATISTICS FROM
SATURATED IMAGES

By Jeremy Bijan Juybari

Thesis Co-Advisors: Dr. Andre Khalil and Dr. David Bradley

An Abstract of the Thesis Presented
in Partial Fulfillment of the Requirements for the
Degree of Master of Arts
(in Mathematics)
May 2020

The CompuMAINE lab has developed a patented computational cancer detection method
utilizing the 2D Wavelet Transform Modulus Maxima (WTMM) method to help predict
disrupted, tumor-associated breast tissue from mammography. The lab has a database of
mammograms in which some of the image subregions contain artifacts which are excluded
from the analysis, image saturation is one such artefact. These rejected image subregions
reduce the number of statistics for a given image hence decreasing the statistical power of
clinical analyses. Thus our goal is therefore to minimize the rejection of image subregions
containing artifacts. The aim of this particular project is to explore the effects of image
saturation on the resulting multifractal statistics from the 2D WTMM method. Groups of
numerically simulated (monofractal) fractional Brownian motion (fBm) surfaces with
varying roughness exponents were generated and saturated at the 1%, 5%, 10% and 20%
levels. We find that image saturation reduces the range of available statistical order
moments relative to an unsaturated image. By assessing the effects of image saturation on
the 2D WTMM calculations, we developed a filtering approach where we nearly regained

the entire range of statistical order moments thus limiting the impacts of image saturation.
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CHAPTER 1

INTRODUCTION

The radiological interpretation of mammograms in diagnosing breast cancer is a complex
task, since normal mammographic tissue varies in its structure. Mammograms are either
processed by two expert radiologists or a radiologist in conjunction with a Computer Aided
Detection (CAD) method. The Federal Food And Drug Administration, approved CAD
methods for breast cancer in the 1990s; the period from 2002 to 2016 saw the widespread
adoption of CAD from 3% to 92% [12,/19]. However promising CAD methods failed
performance expectations [11]: they are associated with decreased specificity (decreased
accuracy in diagnostic tests) |10], increased recall rates of healthy women (a diagnostic
check-in from a previous mammogram) [8,|12,[25] and a false-positive rate on up to

70% |18]. The chief medical officer of the American Cancer Society in 2017 stated “we have

a phenomenon of over diagnosis” [26].

A powerful risk factor in diagnosing breast cancer, is breast density with dense breast
tissue used as a competent predictor [28]. A common metric for breast density is the
percent mammographic density (PMD) which, when added to breast cancer risk models,
improved the prediction rate [20]. The CompuMAINE research lab, colloquially known as
the lab, has developed an alternative risk factor, based upon biophysical processes that
previous research has not considered, utilizing breast tissue disruption. The patented
computational cancer detection method implements the 2D Wavelet Transform Modulus

Maxima (WTMM) method [16].

The 2D WTMM method is a multiscale multifractal formalism perfectly suited for the
analysis of self-affine rough surfaces such as mammograms by identifying density
fluctuations and spatial correlations within these surfaces. [24}7,/15,17,[24,27]. The Holder

exponent locally quantifies these correlations as a multifractal while the Hurst exponent



globally quantifies these correlations as a monofractal. Image subregions from
mammograms (breast tissue regions) compelling display monofractal fluctuations
permitting the use of the the Hurst exponent (H). The lab has classified three types of
mammographic breast tissue based upon the correlation they exhibit: fatty tissue

(H < 0.45), dense tissue (H > 0.55) and disrupted tissue (0.45 < H < 0.55) [24]. This
process is displayed in Figure with yellow for disrupted tissue, red for dense tissue and

blue for fatty tissue.

MLO
Opposite

Figure 1.1: Example of the output from the CompuMAINE lab patented algorithm on a
mammogram. Each color corresponds to a different type of fractal signature for that image
subregion: 0.45 < H < 0.55 for disrupted tissue (yellow), H > 0.55 for dense tissue (red),
H < 0.45 for fatty tissue (blue). Observe that the tumorous breast has more yellow squares
than the opposite, non-tumorous, breast. MLO stands for the mediolateral oblique view
which is a specific angle at which the mammogram is captured. The gray regions correspond
to image subregions that were excluded.

The importance of these results is that they are not solely numerical, there is a biophysical
basis. The yellow squares in Figure [I.1] corresponding to disrupted breast tissue, were

principally located in tumorous breasts. A signature of H ~ 0.5 is associated with coin-flip
randomness and a lack of spatial correlation. Furthermore previous researchers found that
malignant cells are associated with loss of cellular coherent angular motion |5,131]. Thus it

is hypothesized that tissue disruption (yellow squares) is also associated with H ~ 0.5.



However, some of the mammograms in the lab’s database contain image subregion
artifacts. The gray regions in Figure [I.1] are such subregions, where we could not determine
the fractal signature. Since regions are then excluded from the analysis, our goal is to
minimize the rejection of image subregions containing such artifacts in order to maximize

statistical power in our clinical analyses.

One such artifact is saturation, an over abundance of pixels that have greatest pixel value.
By empirically exploring the effect of image saturation we were able to develop a method
that is analogous to a vaccine: effects from image saturation were eliminated from the
analysis while at the same, the method only had negligible effects on control
(non-saturated) images. We refer to this as the rescue method. This technique did not
previously exist in the literature or the CompuMAINE lab’s patented algorithm. The
rescue method is a novel approach to mitigate the effects of image saturation and it will be
used in combination with the lab’s algorithm. Future work would focus on other image

artifacts.

1.1 Image Saturation

Image saturation is when an image has a greater proportion of pixels at a specific value
relative to the unsaturated (normal) image. For example, an unsigned 32 bit gray scale
image will have pixel values ranging from 0 to 232 — 1. A pixel value of 0 corresponds to
black and the max value corresponds to white, while other values are various shades of gray.
Image saturation means that there is a greater density of pixels at the max value relative to
an unsaturated image. For this research we saturated images by looking at the cumulative
density function of the pixel values for a specific image, then determined the corresponding

pixel for a desired percentile and saturated all pixels in the percentile or higher.

For instance, to ensure that an image has 20% saturation, we find the pixel value at the

80" percentile and then make all those pixels that have this pixel value or higher the max



pixel value (pure white). This image is then considered 20% saturated. Observe that any
information about shading among those values is lost. An analogy is to compare image
saturation to cutting off the tops of mountains. The portion of mountain removed also

removes the corresponding information about elevation.

Figure shows fractional Brownian motion surfaces (fBms) for H = 0.1,0.3,0.5,0.7 and
saturation for each image at the 20% level. The statistical tendencies of the Hurst exponent
are visible moving from Figure|1.2| (a) to (d). In this context, H = 0.1 means that low pixel
values tend to be followed by larger values (antipersistant) while H = 0.7 means that large
pixel values tend to stay large (long-range correlated) and similarly, small pixel values tend
to stay small. Image roughness is clearly displayed in Figure (a) (H =0.1) compared to
Figure (d) (H = 0.7) which is a more smooth image. Furthermore, we see that image
saturation affects the fractional Brownian motion surfaces differently depending on the
Hurst exponent. Larger exponents have the saturated pixels closely clustered together

while lower exponents have a more uniform dispersion as shown in Figure [1.3]

Figure shows image saturation on a mammogram in the lower left side of the image.
The white spot within the black box are pixels that all share the max pixel value of the
image, hence they are white. This is an example of an image artifact from saturation that

decreases the statistical power of the algorithm.



H=0.1,5=20% H H =055

Figure 1.2: The top row shows unsaturated 2D fractional Brownian motion surfaces. Moving left
to right, it is possible to see the image becoming more smooth as a function of the Hurst exponent.
The second row is the same images but saturated at the 20% level which is the highest level of
saturation we numerically simulated.
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Figure 1.3: A boxplot of the max pixel areas conditioned on the area greater than 15000
pixels, for all the fBms saturated at 20%. The median (black bar) is higher for By than
it is for for By which means that fbm surfaces with H = 0.7 had more large regions of
homogeneous max pixel values.



Figure 1.4: The black box in the lower left portion of the image is showing a region with
image saturation (white spots). Such a region leads to a gray subregion in Figure .



CHAPTER 2

METHODOLOGY

In this chapter we develop the concepts needed for the 2D Wavelet Transform Modulus
Maxima (WTMM) method used in this project. We begin with defining a notion of
roughness locally then globally, then discussing fractional Brownian motion, the fractal

dimension, and multifractals. Lastly we cover the 2D WTMM method.

2.1 Holder Exponent

The Hélder exponent, also known as a Lipschitz exponent, is a measurement of the strength
of a singularity in a signal which could also be called a function. The Holder exponent is a
function of time or space or other independent variables, as a signal can have singularities
at points in the signal’s domain with different Hélder exponents. We state Taylor’s

Reminder Theorem and then develop the main definition of this section, from [1], is below

Definition 2.1.1 (Hélder exponent). Let f: R — R be a continuous mapping. f has a
Holder exponent of order h(zg), the largest possible exponent, at xg, such that there exists

some C' € R, C' > 0, so that for any point x in some neighborhood of x, one has,

|[f (@) = Pul2)] < Cla — a0, (2.1)

Remark. Definition included continuity as a property of the function, which means
that h(zo) > 0 otherwise h(z¢) < 0 is possible with discontinuities present. Note that we

are only interested in continuous functions.

Lemma 2.1.1. The possible values for the Holder exponent in Definition [2.1.1] are

h(zo) € (0,1) if f is continuous but not differentiable.



Proof. We proceed by contradiction, let h(zg) > 1, by equation ([2.1)) we have
|f(z) = flwo)] < Cla — ao| ")

without loss of generality let x # xq,

|f(z) — f(x0)] < Cla — mo|Me0)-1
|z — o]

taking the limit on both sides,

lim |f($) _ f(x0)| S lim O|I . x0|h(r0)—1

T—T0 |,Z‘ — f[,'0| T—rT0
and by the squeeze theorem,

|f (o) <0

which is a contradiction as needed since f is not differentiable at z. O]

However note that if h(zg) = 1 the function is lipschitz continuous and for A > 1 the
function is differentiable. The estimation of the Holder exponent is done by using Taylor
Polynomials to relate the differentiability of the signal to the polynomial

approximation [21,30].

Definition 2.1.2 (Taylor Polynomials). Let f be an m times differentiable function in
[zg — b, xg + b] for b > 0. The mth-order Taylor polynomial for f centered at x, denoted
Pazo.m (), has the property that it matches f in value, slope and all derivatives up to the

mth derivative,

P:co,m(iUo) = f(xo)J?g(clo),m(xo) = f(l)(xo), --->Pg(cron,)m(x0) = f(m)(l’o)-

And we have

™) (g .
Dag.m(T) = Z 1o )(:1: — xzp)". (2.2)

k!
k=0

We will use Taylor’s Remainder Theorem to get an upper bound for the estimate of the

remainder.



Theorem 2.1.2 (Taylor’s Remainder Theorem). Let f be m + 1 times differentiable on

the interval (a,b), where xy € (a,b). For all x € (a,b),

f(x) = pxo,m(x) + Rxo,m(x)a

where py, () is the m th order Taylor polynomial for f centered at zy and the remainder

is
f(m—i—l)(c)
|

(m+1)! m

Ry m(z) = (x — xo

for some point ¢ between x and xg.

Note that the notation is preserved from [30] by using m + 1 differentiability, others |21]
defined the Taylor Polynomial of order m with m — 1 instead of m in Eq. (2.2).

Theorem 2.1.3 (Estimate of the Remainder). Let m € N. The remainder in the

mth-order Taylor polynomial for f centered at x, for some d € R, d > 0 satisfies

Rapn)] = [£0) = bl < B2y g
xo,m o, m —= (m + 1)| ue[xo_d7x0+d]
The following definition of the Holder exponent comes from Arneodo [1] which is a seminal

paper for multifractal analysis with the 2D WTMM method which is the same as[2.1.1]
Definition 2.1.3. Singular means a discontinuity in the derivative of the signal.

Definition 2.1.4 (Holder exponent). A definition of the Holder exponent, as the strength
of the singularity of a function f at the point x, is given by the largest exponent h(zg)
such that there exists a Taylor Polynomial P,(x) of degree n < h(z() and a constant

C > 0, so that for any point x in some neighborhood of z,

h(zo)

fla) — Pn(x)‘ < c(a; ~ 2 (2.3)

It is possible to design a function that has a Holder exponent, h, at each point. This means

that a function can have the same h at every point or a different h or a collection of Holder

9



exponents pertaining to groups of points. This distinction will become very important
when discussing monofractal and multifractal signals. Furthermore, from Lemma [2.1.1] we

know, if 0 < h(xg) < 1 then the expression in Eq. (2.3) becomes
|f(x) = f(xo)| < Cla — o[ (2.4)

meaning that f is not differentiable at =y and P,(z) = f(xo).
The following propositions all use Definition unless otherwise noted.

Proposition 2.1.4. All polynomials have a Holder exponent of oo for any point zy € R.

Proof. Note that for any polynomial the Taylor Polynomial is the polynomial itself. Let
f(z) = P(z) be a polynomial and z, € R. By (2.3 we have

|f(z) = Py(z)| < Cla — x|

and by the above note,

0 < Cla — x|

which clearly holds for x on any neighborhood of xy with h(zq) any positive number. O

Proposition 2.1.5. Any real analytic function, f, on R has h(zg) = oo for any point

o € R.

Proof. By Eq. (2.3 we have,
|f(z) = Pu(2)] < Clz — o)

where n is the order of the Taylor Polynomial from Theorem 2.1.3,

’Qf _ :L,O|n+1

_ L I n+1
|[f(x) = Pa(2)] < CE] ue[xosifxﬁd]'f (u)]

<z =)™ sup  [f"FH(w)].
u€[xo—d,xo+d]

10



h values
0.7
0,

6 7

Figure 2.1: A figure showing the different behavior of h € (0,1) for f(z) = |z — 5|" with
h =0.1,0.3,0.5,0.7. As h the strength of the singularity decreases.

Let C' = |2 — 20| SUDye (g —d o ra | f" (w)| and thus
|f() = Pu2)] < Clo — wol™,
Since f is analytic n exists for all orders, h(zg) = oo as needed. O
Corollary 2.1.6. e” has h(zg) = oo for any point z( € R.
Proof. Since e® is an analytic function we use Proposition as needed. n

These h values give a notion of the strength of the singularity which is illustrated below,
for f(z) = |x — 5| where h takes the following values 0.1,0.3,0.5,0.7. Notice in Figure
that as h increases the weaker the singularity becomes at x = 5 while lower h values
correspond to a stronger singularity. In the following section we shall see a function that

has the same Holder exponent everywhere, which is characterized by the Hurst exponent.

2.2 Hurst Exponent and Fractional Brownian Motion (fBm)

In the previous section we saw how the Holder exponent quantifies the strength of a local

singularity. Now consider a signal that is continuous everywhere, but nowhere differentiable

11



that has the same Holder exponent everywhere, that is, for all zg in the domain, h(zg)
remains constant. This is characterized by the Hurst exponent H, a single exponent that
describes the roughness of the signal. The Hurst exponent is not a function of space or

time, that each point has the same singularity strength.

Fractional Brownian motions (fBm) are processes that are governed by the Hurst exponent,
they have homogeneous roughness. These processes are used throughout many scientific
disciplines. To alleviate the text and for simplicity, the introduction and explorations of
notions surrounding fBms was kept to 1D even though the analyses of subsequent chapters

make use of 2D fBms.

Definition 2.2.1 (fractional Brownian motion (fBm)). From [9}21],29], a fractional

Brownian motion of Hurst exponent 0 < H < 1 is a Gaussian process By(t) such that
By (0) = 0 and By is continuous

and for every t > 0 and b > 0 the increment By (t +b) — By (t) follows the normal

distribution with mean zero and variance b* so that

1 s —x?
P(Bp(t+0b) — By(t) <s)= NG /_Oo exp (2b2H) dx. (2.5)
We will verify the mean and variance in Eq. (2.5).

Lemma 2.2.1. With the terms defined in Eq. the following holds
—x? —x?
/xexp <W> dr = —b* exp (2b2H) +C.
Proof. With u = 2%2 consider the following,
_IQ dr = bQH U = b2H u C
T exp b2 Tr = — eau = —b"e" +

= —bp*H ex e +C
- P 2b2H

as needed. O

12



Proposition 2.2.2. The mean of the probability density function in Eq. (2.5)) is 0.
Proof. By Eq. (2.5) we have,

E (Bu(t+b) — Bu(t)) = me/ xexp( bf;) da

by Lemma [2.2.1

—bH —00 —bH —o0
—_— eduy = —e" =0
V 2 —00 VvV 2 —00

as needed.
Proposition 2.2.3. The variance of the probability density function in Eq. is b2
Proof. From [6] we know that for a random variable Y,
Var(Y) = E(Y?) — (E(Y))”.
From the previous Proposition [2.2.2] we know that
E(By(t+b)—Bg(t)) =0

and therefore

Var (Bu(t+b) — Bu(t)) = E (Bu(t +b) — Bu(t))?).

Now counsider that

E ((Bu(t+b) — Bu(t)?) = me/ 7% ex p(%‘i) dx.

We proceed with integration by parts with u =  and v = —b* exp ( b2H> by Lemma
[2.2.1] Now the integral becomes

1 —2b*H ex o ‘OO +/OO b2t ex =
NG Ploperr ) 10 ) P\ g

2b2H o) —.’B2
= pian Jy P (—> -

13



Now by a change of variable y = 25% and dr = %dy
op2H oo p2H
Nl 7e’ydy
note that z = \/W therefore
op3H oo p2H oo

=—= [ yVeVdy

1
e Yd
V21 Jo \/y2b2H Y ﬁ 0

by the gamma function [6], we have

2H
— b_pé) = p2H
N

as needed.

We will prove the covariance of an fBm, which will illustrate the statistical tendencies

mentioned earlier. These next propositions are useful in proving the covariance.

Proposition 2.2.4. E((By(t))?) = t*1.
Proof. See [23].
Proposition 2.2.5. E(By(t)By(t +b)) = (7 + (¢ + b)*7 — v*H7).

Proof. From Eq. we know that,
E ((Br(t +b) — By)*) = b*"
E ((By(t+b) — By)(By(t +b) — By)) = b*
E((Bu(t+1b))* —2By(t)Bu(t +b) + (Bu(t))?) = 0>
E((By(t+b))?) — 2E(By(t)By(t + b)) + E((Bp(t))?) = b
—2B(By(t)Bu(t +0)) = b — E((Bu(t +1))*) — E((Br(1))*)
from Proposition we have

E(Bu(t)Bu(t+b) = = (7 + (t + b)*" — p*7)

N —

as needed.

14



Proposition 2.2.6. E ((By(t) — By(0))(Bu(t +b) — Bu(t)) = 5 ((t + b)* — 27 — p*H) |
Proof. We have, by Eq. [2.5]
E((Bu(t) — Bu(0))(Bu(t +b) — Bu(t)) = E(Bu(t)(Bu(t +b) — Bu(t))

= E (Byu(t)Bu(t +b) — (Bu(t))?) = E(By(t)Bu(t + b)) — E(Bu(1))?)

by Proposition [2.2.4] and [2.2.5],

1 1
— §(t2H + (t 4+ b)QH o b2H> o t2H — 5(@ + b)ZH o t2H o bQH)
as needed. O

From Proposition , we see that H = 1/2 gives a zero covariance which means that the
increments are independent. Furthermore, H = 1/2 is Brownian Motion which is
associated with coin flip randomness. For 0 < H < 1/2 the covariance is negative which
corresponds to anti-persistence, while 1/2 < H < 1 gives a positive covariance for
long-range correlation statistical tendencies [2,9,29]. Additionally, the probability density
function in Definition 2.5 does not depend on ¢ and so the increments are stationary for all
H. In Figure , inspired by [29], we see that different Hurst exponents correspond to

different roughness behavior in the signal.

Falconer [9] showed that for A € R, H € (0,1), 0 < A < H then with probability 1 there is

a constant K € R such that
|Bu(t+b) — Bu(t)] < K|H[M

Note that the sup A = H since A\ cannot be equal to H, the largest possible value. In other
words fBms are of homogeneous roughness satisfying the requirement for the Hurst

Exponent [9]. This is why one can say that fBms are governed by the Hurst exponent.

From Figure [2.2] the following terms make intuitive sense.

15



This is directly related to the singularity behavior shown in Figure [2.1] For instance,

f(x) = |r — 5|%7 has a singularity at z = 5 with & = 0.7 but for the Hurst exponent (H)
now every point has the same roughness, the same singularity everywhere rather than
isolated singularities. This marks the distinction between h and H, where h is a function of
either time or space while H is independent of time or space, the roughness is
homogeneous. This notion of roughness is intimately related with the Fractal Dimension,

as demonstrated in the following section; the instances of fBms are all monofractals.

H=0.1,Dg=19

H=03,Dg=17

H=05Dg=15

H=0.7,Dg=13

Figure 2.2: This figure highlights the different behavior of 1D fBms as a function of the Hurst
exponent. The larger the H the more smooth the fBm and the lower the fractal dimension.

2.3 Fractal Dimension

Fractal phenomena are present in many different fields. Fractal geometry was originally
developed by Mandelbrot to explore patterns in natural phenomena that did not adhere to

Euclidean geometry. For instance, a classic example is the coast line of Britain [22| which

16



upon magnification reveals more coastline which resembles the original coastline. This is a
critical idea of fractals, called self-similarity which can be either exact or statistical.
Loosely speaking self-similarity means that the signal behaves (looks) the same at every
level of magnification. The fractal dimension is a generalized notion of the Euclidean
dimension that allows for noninteger dimensions. The fractal dimension D gives a measure

of how much space a fractal occupies. An example of a fractal is displayed in Figure

Fractional Brownian motions are self-similar [21,[29] and the fractal dimension for a 1D
fBm is given by Dp =2 — H [22] and [1]. For H = 0.1, Dp = 1.9 which means that the
fractal nearly occupies as much space as a 2D object. Another perspective on viewing fBms
is also illustrated in Figure 2.2] where the lower H values are more rough which means that
they occupy more space. The larger H values have Dg closer to one and more approximate
a line, they are more smooth. Furthermore, Dy quantifies a large class of functions. Some
of these functions can be made to fit Drp = 2 — H, for instance the Koch Curve displayed in
Figure It is possible to make the Koch Curve resemble a fBm by cutting through the
center horizontally and bringing up the bottom half to make a 1D "time-series." The

fractal dimension is still 1.26 but now we can use Dp =2 — H to get H =~ 0.74

Figure 2.3: The Koch curve has Dp = % ~ 1.26 |14]. The fractal dimension is a

generalized notion of dimension that includes Euclidean dimension. It is a measurement
of how much space a fractal occupies.

A common way to estimate Dy is with the the Box-Counting dimension [3].
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Definition 2.3.1 (Box-Counting Dimension). The Box-Counting Dimension is defined as,

if the limit exists,

where NN, is the number of boxes of size S, required to cover the fractal, a compact set, at

the n-th iteration.

Note that this is only one method to estimate Dp and keep in mind that the fractal only
exists as n — 0o. There are different ways to generate fractals that are not fBms [3], but
this is beyond the scope of this paper. A classic example of a fractal, that is not a fBm, is
the Cantor Set which is generated by consecutively removing the middle third ad infitium
of a closed line segment usually [0, 1]. Note that Dr = 2 — H does not apply to the Cantor
set because it is not continuous, nonetheless the Dp can still be obtained by the Box

Counting Dimension.

Definition 2.3.2 (Cantor Set). Let Cy = [0, 1] and C,, = % U (% + %) for n > 1.

Then the Cantor Set is C' =Ny ,C),

The first few iterations of the Cantor Set are displayed in Figure [2.4] keep in mind the
iterations are not actually the Cantor Set, which only exists when n = oo. This is an
example of an exact self-similar fractal because at every iteration the generation procedure
is exactly the same. Moreover at any iteration, n > 1, for a = 3" one can take a single
component of C,,, shift the interval so it starts at zero and then multiply the interval by a,

returning Cp, thus showing a scale-invariant property.

Proposition 2.3.1. The Box-Counting dimension of the Cantor Set is log(2)/log(3).

Proof. Note that N,, =2" and S,, = Sin since for every iteration there are 2" segments of

length 3% Furthermore observe that

1
log — = log 3" = nlog 3.
3n
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Figure 2.4: First few iterations of generating the Cantor set by the deterministic algorithm
3]

By Definition [2.3.1] we have

log N, log 2"
D= lim —22" = lim —2°
n—oo log 5~ n—00 log -
n kg
log2" .. nlog2 log2

= = ~ 0.6309.
n 300 log 3™ w00 1 log3 log3

Compare this to the Box Counting dimension of a line on [0, 1], which at every iteration
requires one box of length 1. Definition becomes

log N,, 1
D = lim ogl = lim =1
n—oo log = n—oo log T

n 1

which conforms with the Euclidean Dimension. As mentioned earlier, the fractal dimension
is a generalized notion of the Euclidean dimension that allows for noninteger dimensions
and it gives a measure of how much space a fractal occupies. Intuitively this makes sense
with our example; the Cantor Set has a dimension less than the line but is not zero because
the Cantor Set is not just a single point, with a point having D = 0. Furthermore, strong
support for the Box-counting Dimension comes from Analysis. These boxes are actually

balls and a fractal, in this context, is a compact set.
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Figure 2.5: From [2[7] (a) is a monofractal signal with H = 1/3. (b) is multifractal signal
with roughness exponents ranging from h = 0.155 to h = 0.555. (c) is a 2D fractional
Brownian motion with H = 1/2. (d) is a 2D multifractal, with a spectrum of roughness
exponents ranging from h = 0.1 to h = 0.6.

2.3.1 Multifractals and Roughness Exponents

A multifractal signal has heterogeneous roughness while a monofractal signal has
homogeneous roughness. To summarize, a very important point is that, a multifractal has
multiple roughness exponents that describe the signal while a monofractal has a single
roughness exponent that describes the signal. In other words, a multifractal is described by
a spectrum of Holder exponents while a monofractal is described by the Hurst exponent.

The difference between a monofractal and a multifractal is not obvious as in Figure

borrowed from [7].

The difference is very important because other popular methodologies, including Fourier
Power Spectrum assume an underlying monofractal signal. These methodologies will
output an incorrect measurement for the roughness if a multifractal is analyzed. Worse,
they can not discriminate monofractal and multifractal signals; they will only output a
single roughness exponent even when the underlying signal has a spectrum of roughness

exponents. Figure [2.5]illustrates that the difference is not immediately obvious.
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2.4 2D Wavelet Transform Modulus Maxima Method

The 2D Wavelet Transform Modulus Maxima (WTMM) method is the multifractal
methodology the lab’s algorithm utilizes, it is built upon the Continuous Wavelet
Transform (CWT). This section starts with the CWT and then moves on to the 2D
WTMM method. Throughout this section, the notation, terminology and definitions come

from |[2].

The CWT allows the ability to analyze frequencies that are localized by time or space.
This permits the investigation into local phenomena of the signal. In comparison, the
Fourier Transform only allows for global analysis. The power spectrum analysis can not
localize salient features of the signal. The result of the CWT are wavelet coefficients which

are a function of scale (inverse relationship with frequency) and a space parameter.

Definition 2.4.1. The CW'T coeflicients are defined as,

T lfl = a2 [i(a™t(x — b)) f(x)d’x
Ty, [fl = a2 [o(a ™ (x — b)) f(x)d*x

Ty[f1(b,a) =

where b is the space parameter, f € L*(R) is, a represents scale, x = (x,y) and 1 is the

wavelet.

For this research we used the Gaussian function G(z,y), and defined the wavelets as:

G (x,y)
ox

and y(z, y) = 220

wl(x7y) = ay

where

Gla,y) = @ A2 = o IxP/2

An additional property of the Gaussian wavelets is that they are orthogonal to lower order
polynomials [2|. This is useful in singularity detection since a Taylor Polynomial is utilized
in the definition of the Holder exponent as explained in Section 1.1. The first order

Gaussian wavelet, utilized in this research, is orthogonal to constant behavior in the signal,
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that this they integrate to zero when multiplied by a constant. Recall, that the class of
functions we are interested in do not have a Taylor Polynomial beyond the function value.
The following proposition shows that the first derivative Gaussian wavelet is orthogonal to

constant behavior.

Proposition 2.4.1. The first derivative Gaussian wavelet 1 (x,y) and ¥y(x,y) is

orthogonal to constant behavior.

Proof. Without a loss of generality, the proposition will be shown for ¢ (x,y), for Z € R

with Z > 0,
/ / Zy(z,y)dzdy = Z/ / —xe_(m2+y2)/2dxdy
= Z/ ey2/2dy/ —ze " Py
where u = _Tﬁ giving both integral bounds as —oo,
= Z/ ey2/2dy/ e'du =0
as needed. O

Proposition can be generalized such that order n + 1 derivative Gaussian wavelets are
orthogonal to polynomials of degree n [1,2,[21]. Although this property was not utilized, it

is worth mentioning.

The wavelet transform can be expressed in polar coordinates, i.e. in terms of its modulus

and argument:
Ty[fl(b,a) = (My[f](b, a), Ay[f](b, a))

where

0.5

M¢[f](b7 a) - ((Twl [f] (b’ a))2 + (Tw [f](bv a>>2)
Ay[fl(b,a) = Arg (Ty,[f](b, a) + iTy, [ f](b, a)).

My fl(b,a) is the modulus of the wavelet transform while Ay[f](b, a) is the argument.
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The WTMM are locations b where M, [f](b, a) is a local maximum in the direction of
Ay [f](b,a) for a given scale a. The WTMM capture the gradient changes in the
underlying signal. The WTMM are on connected chains, called maxima chains [2|. This

process is repeated at every scale and an example for a 2D fBm with H = 0.7 is provided in

Figure [2.6a], the black lines are the WTMM.

The WTMM maxima (WTMMM) are defined as the points along the maxima chains where
My [f](b, a) is locally maximum. The WTMMM are connected through scales, a, and
these connected WTMMM are called maxima lines. The maxima lines are formed by
linking the WTMMM with the nearest WTMMM at the next scale. The set of all maxima
lines is called the WT skeleton and illustrated in Figure [2.6b] The Wavelet Transform
(WT) Skeleton contains the spatial information about the maxima lines, each point in
Figure contains (x,y, a) coordinates and the value of the WTMMM at that point. The

following power laws remove the need for the spatial information with maxima curves |2].

Remark. The WTMMM follow,
Mylf](Lxo(a)) ~ ")

as a — 07 where L, (a) is the maxima line at xg, and h(xp) is the roughness exponent.

See [1] and references therein for a detailed explanation.

For reference, L4, (a) is the maxima line from Figure for some point x¢. From
Definition a log-log plot will estimate the roughness exponent h(xq) by following the

behavior of the maxima line through the scales a

log(My[f](£Lx,(a)))
log(a)

~ h(Xo).

Figure shows such a log-log plot and is named a sheaf (sheaves). To reiterate an
important point, Definition [2.4] permits the estimation of the roughness exponent from the

sheaf in Figure 2.6d To clarify, Figure and Figure [2.6b] both contain the same maxima
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lines however, Figure preserves the spatial information. The data from the sheaf,

Figure [2.6d] is passed to the partition functions.

2.4.1 Partition Function and Statistical Order Moments

Statistical order moments (g values) play a crucial role in the 2D WTMM method. These
values allow one to emphasize different singularity strengths of the underlying signal by
weighting the modulus of the wavelet transform along the maxima lines. The quantity and
quality of the underlying data will determine the range of the available statistical order
moments. A wide range of statistical order moments allows for a more detailed picture of

the underlying signal.

Definition 2.4.2. Let £(a) be the set of maxima lines at scale a and define the partition

function as:

Z(q.a) =Y <( sup M¢[f](b,a’))

/ !
le£(a) b,a’)€l,a’<a

where g are the statistical order moments.

A power-law relationship was defined for the partition function in [2|. Note that negative ¢
values give more weight to small modulus values while positive ¢ values give more weight to
large modulus values. This power-law is what allows us to get an estimate for the

roughness for a signal.

Remark. The power-law of the partition function is,
Z(q,a) ~a™ @ a — 0F.

See [1] and references therein for a detailed explanation.

From a log-log plot it is possible to obtain an estimate for 7(¢q). For a mathematically
rigorous development of the partition function and 7(g) see |9,/13] and |1] and references

therein. In the case of a monofractal, 7(¢) is a linear function where the slope of 7(q) gives
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SR A ICY
Figure 2.6a: The left most diagram is a fractional Brownian surface with H = 0.7, following the
maxima chains for a = 15 (19.8 pixels), then a = 30 (56 pixels), and the last right diagram is an
overlay of the WTMM and WTMMM on the original image smoothed at scale a = 45 (158 pixels).

The methodology preserves spatial information and captures the gradient changes. The larger the
scale the less detail. The black lines are the WTMM while the black dots are the WTMMM.

al
S| B

log,a

xy)
Figure 2.6b: Each line is known as a maxima line. They are the WI'MMM connected through
scales, by linking the WTMMM closest at the next scale. The position in the original image is
preserved, the x and y coordinates are for the underlying signal.

log,WTMMM value

scale

Figure 2.6¢c: The three vertical purple lines correspond to 15, 30,45 the scales represented in Figure
The black dots in Figure are connected through all the scales to generate this figure,
known as a sheaf.

Figure 2.6: This is an example of the 2D WTMM method with generating the maxima lines for a
fractional Brownian surface with H = 0.7.
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an estimate for the Hurst exponent. However in a multifractal, 7(¢) is nonlinear which

highlights the varying roughness exponents in the underlying signal.

The reason for a discrete sum instead of an integral is to prevent singularities for negative ¢
values. Additionally, the 2D WTMM method includes something similar to the box
counting method, where 7(0) gives box counting method except that instead of boxes,
small oscillating functions (wavelets) are utilized [2]. This can be seen in Definition [2.4.2)
with a 0 for an exponent and the sum counting the maxima lines at a given scale.
Furthermore, 7(2) is related to power spectrum analysis with 5 = 2 + 7(2) where § is the

scaling exponent of the spectral density [2].

In addition to 7(gq) there are expectation values, that utilize the partition function, which
give estimates for the dimension and the roughness. These expectation values are used
since using the Legendre transform involves smoothing 7(¢) which could mask non-analytic

curves [2].

Definition 2.4.3. From [2] let,

‘Sup(b a’)€l,a’<a Md’[f](b? a/) |q
Z(q,a)

Wy[f1(g, 1, a) =

= | sup  My[fl(b,d)|Wylfl(a.l,a)

le£L(a) (b,a’)el,a’<a

Z Woulf)(a.1, a) In Wy[f](g.1, a)

leL(a
This gives the following,
dr(q) _ . hig,a)
h(q) = =1
(9) dq ag(l)l+ Ina
... D(g,a)
D(Q) N aliglJr Ina ’

26



In order to have proper statistics the curves in D(a, q) and h(a, q) need to follow power law

behavior in order to be included in the D(g) and h(q) functions.

Definition 2.4.4. From |2], let f be a function from R? into R and S}, the set of all points
x so that the Holder exponent of f at xg is h. The singularity spectrum D(h) of f is the

function which associates with any h, the fractal dimension of .S},

D(h) = Dp{x € R* | h(x) = h}.

Definition defines a singularity spectrum of all the various h values a function may
contain. Here h(x) is a function and h is a particular value, the notation comes from the
literature. Observe, that in a monofractal D(h) collapses to a single point because the
roughness is homogeneous. While a multifractal function will have an upside down
parabola whose width corresponds to the extent of the variety of roughness exponents
characterizing the signal |1]. From D(h) one can find the most predominant roughness
exponents for a multifractal. To clarify, D corresponds to the dimension and h corresponds
to the roughness exponent(s) and Definition gives that D(h) is D(h(q)). An example

of this process is given in the following section.
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CHAPTER 3

THE DEVELOPMENT OF THE RESCUE METHOD FOR SATURATED
IMAGES

For an experimental environment, we generated 32 fractional Brownian surfaces of size
1024x1024 for H = 0.1,0.3,0.5,0.7. The number 32 comes from [1] which says that 32 is an
appropriate amount to get a "quintessential" statistical results from a fractional Brownian
surface. Recall that they are statistical processes and hence single instances can deviate
from the "expected" path. Thus all the figures and statistics in this section are averages of
the individual statistical results of the 32 fractional Brownian surfaces. We also saturated
the images at the 1%, 5%, 10% and 20% levels. This chapter begins by applying the 2D
WTMM method for all the fBm surfaces without saturation, then looking at the effects of
image saturation on h(a,q) and D(a,q), described in Definition and the resulting loss
of statistical order moments. Then we explain the development of the rescue method, we
illustrate the iterative process of creating the novel technique by analyzing sheaves. The
rescue method is then applied to saturated images as a means of recapturing some lost

statistical order moments.

We are utilizing fBms to mimic the output statistics from an actual mammogram. The

methodology is the same for both, however we have numerical control over the fBms.

3.1 Detailed Overview of the 2D WTMM Method on Fractional Brownian

Motion Surfaces

Previous research has illustrated the efficacy of the 2D WTMM method with fBm
surfaces [1,2]. Furthermore, the 2D WTMM method works in a similar way for different

fBm surfaces and in order to alleviate the text, we will focus on H = 0.7.
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In Figure |3.1} one can see equations from Definition for unsaturated fBm surfaces.
Note that in Figure [3.1a) and [3.1b] the curves are all averages of the individual analyses of
the 32 fractional Brownian motions surfaces with H = 0.7. Additionally note how both
figures have curves with a relatively good power law fit for the statistical order moments.
Recall that these figures are generated by weighting the maxima lines from Figure [2.6d
with a range of ¢ values from —3 < ¢ < 5 with negative ¢ values weighting small values of
the modulus more and larger ¢ values weighting larger values of the modulus more.
Observe that the black curves are shifted down versions of ¢ = 0 for illustrative purposes
only, this is the benchmark of a good power law fit. This benchmark curve also highlights
the range of scales used from 0.1 to 3.75. Although, there is not image saturation present,
at scales larger than 3.75, especially in Figure |3.1al one can see the linearity diminished.
This nonlinear behavior is a numerical effect because of the underlying size of the images.
If we used larger images these curves would become more straight for a larger range of
scales, and we could include more statistical order moments. However, with image

saturation in the next section, this range is greatly impacted for the same set of images.

From Figures and we generate Figures and which include the values for

the other Hurst exponents. Both are generated by taking the slope of each curve in Figure
[3.Ta] and [3.1b] which highlights the importance of linearity in the trends. It is not proper
to get a power law fit for a nonlinear trend. Each point in Figure [3.1d on the curve near 0.6
is the slope of the corresponding statistical order moment in [3.1a] as described in Definition
2.4.3] To clarify, the other curves displayed in Figures and correspond to other
Hurst exponents in which they each have their own h(a, q) and D(a,q) plots which are the

averages of 32 fBm’s with respective Hurst exponents.

In the D(q) plot in Figure , one can see that the 2D WTMM method provides consistent
estimates for the dimension of the image. That regardless of the ¢ values used in the range

kept, we get an estimate for the dimension around 2. The estimate for H comes from

29



taking the slope of best fit yet again on the h(q) plot in Figure . Note that although the
methodology consistently underestimates the actual Hurst exponent, the estimates are
consistent which is of main importance. Furthermore the error is not relative but rather
absolute since we are estimating an exponent. Figure shows the D(h) plot as described
in Definition [2.4.4] most of the points are clustered near 2. This is correct because the
dimension of an image is 2 and the roughness throughout the image has an exponent of

H =0.7. The D(h) plot is confirming that the fBm surface is indeed a monofractal with a

roughness exponent H = 0.7.

3.2 Overview of Saturated fBm Surfaces with H = 0.7

In this section we look at the fBm surfaces with H = 0.7 and saturation at the 20%, 10%,
5% and 1% levels. This is without a loss of generality since, the other fractional Brownian

motion surfaces experienced similar effects in the 2D WTMM statistics.

Figure [3.2 shows a fBm process with H = 0.7 saturated and the resulting sheaves, as
defined in the previous chapter. There is a distinct difference from Figure 3.2a and Figures
3.2b, 3.2¢, 3.2d and 3.2e, namely the low modulus values that exist in all saturation levels.
These low modulus values highlight the lack of gradient changes within the image.
Intuitively, this makes sense, as these {Bms are long-range correlated and the saturation is
occurring at the 80% percentile or higher. As mentioned earlier, these saturated islands are
most predominate for this H value. Figures 3.2b, 3.2¢, 3.2d and 3.2e are passed to the

expectation functions in order to generate h(a,q) and D(a, q).

Figure [3.3] conveys the impact of image saturation on the statistics from the 2D WTMM
method. Similarly to the sheaves, an immediate difference is observable relative to

unsaturated fBm surfaces. In Figures [3.3a, 3.3b] 3.3 and [3.3d] one can see stair step

behavior in the h(a,q) curves that did not exist in the unsaturated case as in Figure [3.1] It

is not proper to take a slope of best fit for those curves, and thus those statistical order
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Figure 3.1: We take the best fit slope of each curve (unique ¢ value) in (a) and (b) and plot the
value in (¢) and (e). (d) is the legend for the ¢ values. Note the straight curves and the consistent
estimates, regardless of statistical order moment. This is the process for estimating the roughness
exponent and dimension for a monofractal for different statistical order moments. Note that ¢ =0
is shifted down for display purposes, this is the benchmark for a good power law fit. (e) confirms
the monofractal image with a consistent dimension of 2 for all the roughness exponents. (f) is the
D(h) plot with vertical lines at the Hurst exponent which these fBm surfaces were generated. For
each set of fBms the statistics are consistent with a monofractal image.
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Figure 3.2: (a) The sheaf for the fractional Brownian motion surface with H = 0.7 pictured left.
(b) — (e) The corresponding sheafs to the above fractional Brownian surfaces, saturated at 1%, 5%,
10% and 20% from left to right. Notice the extremely low modulus values for the saturation levels.
These maxima lines are those that will interfere with h(a,q) and D(a, q) plots, which then reduces
the number of statistical order moments as shown Figure @

moments are removed from the analysis and hence the next set of plots, Figures [3-31
and are missing statistical order moments (black dots) compared to the
unsaturated case (blue dots). For reference —3 < ¢ < —0.10 were eliminated. A narrower
range of statistical order is a concern for the mammogram analysis, we have less statistics
for a given subregion. A wider range of ¢ values, as discussed in the previous section,

allows the implementer to emphasize various underlying aspects of the signal.
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Figure 3.3: Each column has the same structure, the first row is the h(a, q) plot followed by h(q),
D(a,q) and D(q). The first column is for saturation at the 1% level followed by 5%,10% and 20%
levels. The colors corresponds to the different ¢ values as described in the legend in Figure
Image saturation reduces the range of statistical order moments because of the lack of a good power
law fit in the h(a,q) and D(a,q) plots. Thus in the corresponding h(q) and D(q) plots there are
less statistics for saturated images (black dots).
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The last two rows of Figure (D(a, q) and D(q) plots) followed a similar procedure as
the h(a,q) and h(q) plots. It is clear that image saturation affects the output statistics of
the 2D WTMM method. In the next section, we explain the rescue method and its ability

to recapture lost statistical order moments.

3.3 The Rescue Method

As mentioned in the Introduction, the rescue method is a novel technique that was
developed by exploring the effects of saturation; it did not exist in the previous literature.
Specifically we constructed a filtering approach of the sheaves that reduces the impact of
image saturation, and recaptures lost ¢ values. In similar style, we will only discuss the
long-range correlated (H = 0.7) fBm surfaces, without loss of generality. The rescue
method’s filtering approach is similar for all fBm surfaces, only the parameter coefficients

change.

We noticed the impact, as mentioned before, early on in the sheaves of saturated images
displayed in Figure [3.2] these corrupted sheafs would affect the h(a,¢) and D(a, q) plots.
We developed a filter approach based upon the modulus value and "adjusted" slope of the
maxima line where M F' corresponds to the modulus filter while SF corresponds to the

slope filter.

Definition 3.3.1. Let [ € L(a) be a maxima line ending at scale a,,q,, where Mi(a=ary 18

the value of the modulus for maxima line [ at scale a’, we define the adjusted slope as:

~ Mi=0) = Mia=amaz)

Madj =
M l (a:amaz )

zo To calculate m,g4; one takes the starting modulus value of a maxima line (scale 0) and
subtracts the ending modulus value all divided by the ending modulus value. When

working with SF', all maxima lines that satisfied m,q < SF' were kept.
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In this section, any red coloring corresponds to maxima that were removed from
thresholding on the modulus, while green corresponds to maxima removed from the slope
filtering. Setting the modulus threshold was straight forward however the adjusted slope
threshold required more simulations. From comparing saturated sheaves with normal
sheaves we determined that any maxima lines with a value of 16 (2%) or less should be
removed. Figure illustrates the data mining approach that we took to determine the
optimal filtering coefficients. For all three columns in Figure [3.4) M F = 16, with

SF =0.2,0.5,0.8 in order to show how the sloping parameter functioned; the goal was to
remove the maxima lines that caused the saturated sheaf to look different from an
unsaturated sheaf. For instance in Figure the resulting filtered saturated sheaf has
maxima lines that are truncated while Figure has many negative sloping, low valued
maxima lines compared to the unsaturated case. Figure [3.41)] displays what was determined
to be the optimal filtering coefficients. Figure [3.4j|is a sheaf on an unsaturated fBm surface

with H = 0.7 and was the benchmark.

The filtering parameters selected were M F' = 16 and SF = 0.5 which are displayed in
Figure [3.4] Figure [3.6] shows the effect of the rescue method on the WT skeleton. These
pruned sheaves were then passed to the partition functions to make the h(a,q) and D(a,q)
plots. Figure [3.5] shows this for H = 0.7 and S = 0.20, we can see the lack of stair step
behavior in the Figures and compared to their saturated counterparts in Figure
[B.3] and [3.3d] With more curves providing a good power law fit we are able to expand the
range of statistical order moments displayed in Figure [3.5 For reference, the saturated
images had a ¢ range of 0.1 < ¢ < 5 with the rescue method the range was expanded to

—2<q<5.

3.4 Final Remarks

The rescue method, with a slight adjustment in values, works for the other fractional

Brownian surfaces for all the saturation levels. We also tested the rescue method on
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Figure 3.4: This is an example of the data mining approach to isolate the optimal values for M F
and SF. All three columns have M F = 16 while the left most has SF' = 0.2 and the right most

SF =0.8. (j) is unsaturated sheaf.
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Figure 3.5: These graphs show the efficacy of the rescue method. The h(a,q) and D(a,q) plots
have better power law fits for a wider range of statistical order moments relative to their saturated
counterparts. This expanded range of g values is reflected in the h(q) and D(q) plots. The saturated
images had a g range 0.1 < ¢ < 5 while the rescue method had —2 < ¢ < 5.

unsaturated fractional Brownian motion surfaces, and saw minimal impact on the statistics
displayed in Figure [3.7] This shows that the method does not have unintended effects on
normal fBm surfaces. The black dots are normal fBms while the blue dots are the same set
of normal images but with the rescue method applied. Lastly Figure [3.8 shows the

difference in the statistical order moment range in saturated and rescued images. The

figure shows the efficacy of the rescue method and we will be able to recover some of the
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Figure 3.6: The red dots correspond to maxima lines that were removed from MF = 16 and the
green dots are the maxima lines that were removed from SF = 0.5.

gray image subregions in Figure thus reducing the impact of image saturation.
Moreover, nearly the entire range of ¢ values is recaptured which gives more statistics to
describe the underlying image. Future work includes developing techniques for other image

artifacts that impact the analysis.
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Figure 3.7: These graphs show the lack of effect of the rescue method on normal unsaturated
fractional Brownian surfaces. The statistics remain about the same.
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Figure 3.8: The larger the bar, the wider the range of statistical order moments for fBm
surfaces with H = 0.7. The rescued method consistently provided a wider range of ¢ values
compared to the saturated images.



1]

2l

3]

4]

[5]

[6]

7]

18]

19]

[10]

[11]

[12]

REFERENCES

A Arneodo, B Audit, N Decoster, J Muzy, and C Vaillant. Wavelet based multifractal
formalism: applications to dna sequences, satellite images of the cloud structure, and
stock market data. In The science of Disasters, pages 26—-102. Springer, 2002.

A Arneodo, N Decoster, and S Roux. A wavelet-based method for multifractal image
analysis. I. methodology and test applications on isotropic and anisotropic random
rough surfaces. The European Physical Journal B-Condensed Matter and Complex
Systems, 15(3):567-600, 2000.

M Barnsley. Fractals everywhere. Academic Press Professional, Boston, MA, second
edition, 1993.

K Batchelder, A Tanenbaum, S Albert, . Guimond, P Kestener, A Arneodo, and

A Khalil. Wavelet-based 3d reconstruction of microcalcification clusters from two
mammographic views: new evidence that fractal tumors are malignant and euclidean
tumors are benign. PloS one, 9(9), 2014.

M Bissell and W Hines. Why don’t we get more cancer? a proposed role of the
microenvironment in restraining cancer progression. Nature medicine, 17(3):320, 2011.

G Casella and R Berger. Statistical inference. The Wadsworth & Brooks/Cole
Statistics/Probability Series. Wadsworth & Brooks/Cole Advanced Books & Software,
Pacific Grove, CA, 1990.

N Decoster, S Roux, and A Arneodo. A wavelet-based method for multifractal image
analysis. II. applications to synthetic multifractal rough surfaces. The Furopean
Physical Journal B-Condensed Matter and Complex Systems, 15(4):739-764, 2000.

L Eadie, P Taylor, and A Gibson. A systematic review of computer-assisted diagnosis
in diagnostic cancer imaging. Furopean journal of radiology, 81(1):e70-e76, 2012.

K Falconer. Fractal geometry. John Wiley & Sons, Ltd., Chichester, third edition,
2014. Mathematical foundations and applications.

J Fenton, L Abraham, S Taplin, B Geller, P Carney, C D’Orsi, J Elmore, W Barlow,
and Breast Cancer Surveillance Consortium. Effectiveness of computer-aided detection

in community mammography practice. Journal of the National Cancer institute,
103(15):1152-1161, 2011.

J Fenton, S Taplin, P Carney, L. Abraham, E Sickles, C D’Orsi, E Berns, G Cutter,
E Hendrick, W Barlow, et al. Influence of computer-aided detection on performance of
screening mammography. New England Journal of Medicine, 356(14):1399-1409, 2007.

J Fenton, G Xing, J Elmore, H Bang, S Chen, K Lindfors, and L. Baldwin. Short-term
outcomes of screening mammography using computer-aided detection: a
population-based study of medicare enrollees. Annals of internal medicine,
158(8):580-587, 2013.

40



[13] Thomas C. Halsey, Mogens H. Jensen, Leo P. Kadanoff, Itamar Procaccia, and Boris 1.
Shraiman. Fractal measures and their singularities: the characterization of strange
sets. Phys. Rev. A (3), 33(2):1141-1151, 1986.

[14] A Khalil. Biomedical image analysis. University Lecture Slides, 2019.

[15] A Khalil, C Aponte, R Zhang, T Davisson, I Dickey, D Engelman, M Hawkins, and
M Mason. Image analysis of soft-tissue in-growth and attachment into highly porous
alumina ceramic foam metals. Medical engineering € physics, 31(7):775-783, 2009.

[16] A Khalil and K Batchelder. Improved methods of cancer detection, U.S. Patent 10 467
755B2, 2019.

[17] A Khalil, G Joncas, F Nekka, P Kestener, and A Arnéodo. Morphological analysis of
hi features. II. wavelet-based multifractal formalism. The Astrophysical Journal
Supplement Series, 165(2):512, 2006.

[18] S Kim, W Moon, M Seong, N Cho, and J Chang. Computer-aided detection in digital
mammography: false-positive marks and their reproducibility in negative
mammograms. Acta Radiologica, 50(9):999-1004, 2009.

[19] C Lehman, R Wellman, D Buist, K Kerlikowske, A Tosteson, and D Miglioretti.
Diagnostic accuracy of digital screening mammography with and without
computer-aided detection. JAMA internal medicine, 175(11):1828-1837, 2015.

[20] J Louro, M Posso, M Boon, M Romén, L. Domingo, X Castells, and M Sala. A
systematic review and quality assessment of individualised breast cancer risk
prediction models. British journal of cancer, 121(1):76-85, 2019.

[21] S Mallat. A wavelet tour of signal processing. Academic Press, Inc., San Diego, CA,
1998.

[22] B Mandelbrot. The fractal geometry of nature, volume 173. WH freeman New York,
1983.

[23] B Mandelbrot and J Van Ness. Fractional Brownian motions, fractional noises and
applications. SIAM review, 10(4):422-437, 1968.

[24] Z Marin, K Batchelder, B Toner, L. Guimond, E Gerasimova-Chechkina, A Harrow,
A Arneodo, and A Khalil. Mammographic evidence of microenvironment changes in
tumorous breasts. Medical physics, 44(4):1324-1336, 2017.

[25] M Noble, W Bruening, S Uhl, and K Schoelles. Computer-aided detection
mammography for breast cancer screening: systematic review and meta-analysis.
Archives of gynecology and obstetrics, 279(6):881-890, 2009.

[26] R Pool. Artificial intelligence: Best for breast, 2018.

[27] S Roux, A Arneodo, and N Decoster. A wavelet-based method for multifractal image
analysis. III. applications to high-resolution satellite images of cloud structure. The
European Physical Journal B-Condensed Matter and Complex Systems, 15(4):765-786,
2000.

41



[28] M Sak, P Littrup, N Duric, M Mullooly, M Sherman, and G Gierach. Current and
future methods for measuring breast density: a brief comparative review. Breast
cancer management, 4(4):209-221, 2015.

[29] G Shevchenko. Fractional Brownian motion in a nutshell. In Analysis of fractional

stochastic processes, volume 36 of Int. J. Modern Phys. Conf. Ser., pages 1560002, 16.
World Sci. Publ., Hackensack, NJ, 2015.

[30] J Stewart. Multivariable calculus early transcendental, 2003.

[31] K Tanner, H Mori, R Mroue, A Bruni-Cardoso, and M Bissell. Coherent angular
motion in the establishment of multicellular architecture of glandular tissues.
Proceedings of the National Academy of Sciences, 109(6):1973-1978, 2012.

42



BIOGRAPHY OF THE AUTHOR

An intrigue of wavelets and fractals brought him to the University of Maine so he could
work with Dr. Andre Khalil whose specialty is such. He also works with the
CompuMAINE lab in developing metrics for image colocalization that offer different
insights than the standard, off-the-shelf algorithms. Jeremy enjoys the programming and
interdisciplinary nature of the research. He is also the founder of the machine learning
subgroup within CompuMAINE. He will begin a PhD program in Electrical and Computer

Engineering at the University of Maine in Fall 2020.

LinkedIn Profile: https://www.linkedin.com/in/jeremyjuybari

Personal website: https://jjuybari.com/

Jeremy Bijan Juybari is a candidate for the Master of Arts degree in Mathematics from the

University of Maine in May 2020.

43


https://www.linkedin.com/in/jeremyjuybari
https://jjuybari.com/

	A Method to Reclaim Multifractal Statistics from Saturated Images
	Recommended Citation

	List of Figures
	 Introduction
	Image Saturation

	 Methodology
	Hölder Exponent
	Hurst Exponent and Fractional Brownian Motion (fBm)
	Fractal Dimension
	Multifractals and Roughness Exponents

	2D Wavelet Transform Modulus Maxima Method
	Partition Function and Statistical Order Moments


	 The Development of the Rescue Method for Saturated Images
	Detailed Overview of the 2D WTMM Method on Fractional Brownian Motion Surfaces
	Overview of Saturated fBm Surfaces with H=0.7
	The Rescue Method
	Final Remarks

	References
	Biography of the Author

