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Composite materials are widely used in aerospace, automotive and wind power industries due 

to their high strength-to-weight and stiffness-to-weight ratios and their improved mechanical 

properties compared to metals. The damage resistance of composite materials due to low 

velocity impact depends on fiber breakage, matrix cracking and delamination between the 

interfaces. In this research, a numerical investigation of low velocity impact response of a 

multidirectional symmetric carbon-epoxy composite laminate is carried out and presented. Two 

different finite element models are developed for composite laminates made of non-crimp fabric 

to investigate their behavior under different levels of impact energy. In the first approach, a finite 

element homogeneous ply model is generated wherein the heterogeneous plies are replaced by 

equivalent homogeneous anisotropic plies. In the second approach, a finite element mesoscale 

model that captures the individual constituents of the composite (i.e., the tows and matrix) has 

been developed. Different failure criteria have been presented in the literature to predict the 

damage modes of the composites during and after impact events. The 3D Hashin failure criteria 

is implemented to predict the intralaminar failure and the surface-based cohesive behavior is 

implemented to capture the delamination between the plies. Following the low velocity impact 



 

investigation, the finite element models are subjected to axial compression to investigate the 

compressive residual strength after impact, which is a measure of damage tolerance. The 

numerical predictions, the low velocity impact response as well as the compressive residual 

strength after impact, are validated with experimental data. The homogeneous ply laminate 

impacted up to 50 J is seen to be capable of predicting the impact response as well as the 

compressive residual strength after impact.
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Chapter 1 Introduction 

This thesis presents an investigation of carbon fiber-reinforced composites subjected to low 

velocity impact loading and compression after impact (CAI) using computational simulations. An 

experimental investigation was previously carried out at the University of Maine’s Advanced 

Structure and Composites Center to analyze the damage resistance and tolerance of 3D woven 

composites and 2D non-crimp fabric (NCF) composites (McDermott, 2019). The primary objective 

of this thesis is to assess the damage resistance and tolerance of the NCF composites using 

computational simulations. This research is carried out to support the usage of composites for 

industrial applications and expand the knowledge of the mechanical behavior of composites 

using numerical tools.  In this study, finite element models of NCF composite are developed to 

analyze their behavior under low velocity impact loading. Different damage models are used to 

determine the effect of impact loading and predict the compressive residual strength of the 

composite after impact. A finite element analysis is performed using ABAQUS to assess the extent 

of damage and the compressive residual strength of the laminated composites. The 

computational results are validated with the experimental results presented by McDermott 

(2019). 

1.1 Background 

A composite material is formed by a combination of two or more materials to form a new 

material. The most common composites are those made from fibers and held together in a binder 

(Barbero, 2011, p.1). Composite material includes a very wide selection of the available materials, 
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such as fiber-reinforced polymers, metal matrix composites, ceramic matrix composites and 

reinforced concrete.  

Carbon fiber-reinforced composites have been widely used in industrial applications. Many 

factors that influence the use of composites such as the weight reduction, high stiffness and 

strength, resistance to fatigue damage and corrosion resistance. These factors enhance the use 

of composites in some applications, most frequently in aerospace and transportation industries. 

Composite structures subjected to different types of loading can reduce the strength of the 

structures significantly. Impact loading is one of the most concerning loading in composite 

structures. Impact due to tool drops or flying debris on a runway can introduce significant 

damage in composite structures. Some damage in composite structures are internal and cannot 

be detected by visual inspection in which this damage grows under load and can significantly 

reduce the load carrying capacity of the structure (Abrate et al., 2011). Damage in composite 

structure has been investigated experimentally and numerically. The finite element method plays 

an important role in the industry to develop numerical tools, which could help to improve the 

performance of composite structures. Numerical modelling makes it possible to accurately 

generate the laminated composite models and simulate the mechanical behavior of composites 

under different types of tests such as impact loading. This thesis presents a prediction of the 

mechanical behavior of carbon fiber-reinforced composite subjected to impact loading as well as 

predict the compressive residual strength of the laminated composite after impact. During the 

impact process, the composite absorbs the impact energy in the form of various damage modes, 

such as fiber breakage, matrix cracking and delamination. In order to enhance the impact 
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resistance and damage tolerance of the composite materials, various damage modes during the 

impact need to be investigated using failure criteria that predict intralaminar failure (such as fiber 

and matrix failure) as well as interlaminar failure (such as delamination). 

1.2 Literature review 

In many industries, the application of fiber reinforced composite materials has seen a rapid 

growth in structural applications, especially in the aerospace industry in the past few decades. 

Composite materials are used in the aircraft industry in the mid-1960s and early 1970s. The 

military was the first users of composite material where it was applied on the F-14 and F-15 

fighter aircraft (Safri et al., 2014). Fiber reinforced composite materials allow for numerous direct 

and indirect benefits over traditional metals and metallic alloys, which generally results in lighter 

weight structures. Additionally, fiber reinforced composite materials have a better fatigue 

performance and resistance to corrosion compared to metals. Fiber reinforced composite 

materials are naturally brittle and generally display a linear-elastic response up to failure without 

any plastic deformation (Dogan et al., 2012).  

Composite structures might experience structural failure and damage due to void in the 

microstructure of the material, existence of a notch and corrosion of the material (Findlay et al., 

2002). Composites in structural applications or aircraft structure are exposed to many kinds of 

impact loading during the process of manufacturing as well as in service (Hirai et al., 1998). 

Impacts are considered one of the dangerous and unsafe types of loads because it affects the 

performance of the composite laminates. It can be categorized as a low velocity impact, 

intermediate impact and high velocity impact (Naik et al., 2004). The low velocity impact occurs 
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at a velocity below 10 m/s, intermediate impact occurs between 10 m/s and 50 m/s and high 

impact occurs in the range of velocity from 50 m/s to 1000 m/s (Vaidya et al., 2011). For low 

velocity impact, this event occurs mostly in service of during maintenance activities (Mathivanan 

et al., 2010). While high velocity impact events occur mostly during take-off, flight and landing of 

the aircraft. In addition, bird strikes are one of the major causes of high velocity impact due to 

high probability of occurrence (Pernas-Sanchez et al., 2012). When a bird strikes an aircraft, the 

relative velocities between the two bodies are so high that the material of the aircraft could 

undergo instant failure (Mathivanan et al., 2010). Damage types/modes that might occur in 

composite laminates due to impact are intralaminar failure such as matrix failure and fiber failure 

and interlaminar failure or delamination (Zumpano et al., 2008). Matrix failure usually takes the 

form of matrix cracking and it happens due to the transverse low velocity impact (Vaidya et al., 

2011). Matrix cracking is the first type of damage caused by impact and usually occurs parallel to 

the fibers due to tension, compression and shearing (Sjoblom et al., 1988). However, 

delamination is the most critical damage mechanism in composites due to impact. Delamination 

occurs between the plies in the laminated composite (Prichard et al., 1990). Delamination or 

separation between the plies happens due to  bending stiffness difference between adjacent 

plies, whereas fiber failure occurs due to high stress field and indentation effects. Fiber damage 

usually exists after matrix cracking and delamination in the composite. The fiber damage is mostly 

found just below the impactor as well as in the back face/surface due to high bending stress 

(Vaidya et al., 2011). 

Damage modes are commonly dependent on several parameters such as type of load applied, 

model geometry, constituent material, laminate layup, impact velocity and location of the impact 
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(Carruthers et al., 1998 and Hull et al., 1991). The location of the impact region is an important 

factor to understand the damage of the impact. A study conducted in the past few years (Breen 

et al., 2006) shows that the damage formation and levels of strength reduction are different for 

central and edge impacts. Edge impact is found to cause a greater reduction in compressive 

strength while a central impact causes more tensile strength reduction. Likewise, the impact 

velocity plays an important factor in the type of damage and the damaged area. Comparing the 

low velocity impact with high velocity impact for the same impact energy, it was found that the 

energy absorbed during low velocity impact was about 40 % lower than that of the high velocity 

impact. In addition, the damage area of the low velocity impact was observed to be about 20 – 

30 % smaller than the high velocity impact, and the damage area increased as the mass decreased 

for high velocity impacts (Zumpano et al., 2008). 

Impact situations can be simulated by performing drop weight impact simulations using a finite 

element package software such as LS-DYNA and ABAQUS. A drop weight impact allows the 

simulation of a wide variety of real-world impact situations and collect detailed performance data 

to improve the performance of composite structures (Mathivanan et al., 2010). For modeling 

purposes, a failure criterion is required to simulate damage and identify the damage mode such 

as fiber or matrix failure. For intralaminar failure, some failure criteria are general which do not 

have the capability to detect the failure modes such as Tsai-Wu criterion, Tsai-Hill criterion and 

Azzi-Tsai-Hill criterion. Various other failure criteria have been proposed in the literature such as 

Hashin and Rotem failure criteria (1973), Hashin failure criteria (1980) and Puck failure criteria 

(2002). Hashin and Rotem and Hashin proposed a quadratic failure criterion in the form of 

material strengths, where each branch of the criteria represents a failure mode. 
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Several researchers have used the 3D Hashin failure criteria successfully to predict the 

intralaminar damage in fiber reinforced composite under low velocity impact (Megat-Yosoff et 

al., 2019). Guo et al. (2013) used 3D Hashin failure criteria and exponential damage evolution 

function to avoid a sudden decrease in the stiffness which may cause stiffness matrix 

singularities. In addition, Maio et al. (2013) used the 3D Hashin failure criteria for intralaminar 

failure initiation and exponential law proposed by Matzenmiller et al. (1995) for damage 

evolution. The proposed damage model predicted delamination in a form of peanut shape and 

size, aligned along the fiber direction. Zhang et al. (2015) used the three-dimensional failure 

criteria proposed by Hashin and Hou et al. (2000) to predict failure in braided composites. 

As previously mentioned, interlaminar damage failure or delamination is the most critical and an 

important failure mode in composite materials under impact loading. Cohesive zone modeling is 

the most widely used delamination modeling approach in which the interface is modeled 

independently, and it does not require the knowledge of the crack position. In cohesive zone 

modeling, both damage initiation and damage propagation are modeled separately. The failure 

criteria in terms of interface stresses are used to predict delamination initiation, whereas the 

fracture mechanics-based approach is used to predict delamination evolution (Megat-Yosoff et 

al., 2019). However, Zhang et al. (2015), Topac et al. (2017) and Abir et al. (2017) used the surface-

based cohesive behavior to implement delamination between the plies under the assumption of 

zero thickness zone of the cohesive zone. This modeling scheme is based on master/slave 

surfaces, which follows bilinear traction separation or displacement law and it is computationally 

efficient. 
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Damage tolerance is defined as the capability of a structure to continue performing their 

intended functions with some tolerable level of damage (Abir et al., 2017). In composites, 

damage tolerance is determined by measuring the residual strength of the composite structure. 

The common approach to perform damage tolerance analysis is to carry out an impact test 

followed by a CAI test to obtain the residual strength of the structure. There has not been too 

much research carried out on compression after impact tests using computational simulations. 

Abir et al. (2017) developed a finite element (FE) model to perform low velocity impact followed 

by CAI test. The author implemented the maximum stress and Tsai Wu failure criteria for damage 

initiation. It was observed that failure under CAI was due to local buckling and delamination 

growth. Also, the important parameters that affect the residual strength of composites were the 

Mode-II interlaminar fracture toughness and fiber compressive fracture toughness. Increase in 

the Mode-II interlaminar fracture toughness reduces delamination size and increases damage 

tolerance. Gonzalaz et al. (2012) performed low velocity impact and CAI simulations using 

interlaminar and intralaminar damage models. The FE model predicted the compressive strength 

after impact and compared it with an experiment where there is about 20% error between 

simulation and experiment data. Waas et al. (2018) developed  continuum shell-based FE models 

to simulate the response of composite structure under impact loading the compression after 

impact loading.  The FE models predicted the compressive strength after impact within 7.2% in 

some cases while others ranged up to 14.4%.  
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1.3 Approach  

In this study, two approaches are considered to develop the finite element models of composites 

and investigate their behavior under low velocity impact loading. The first approach is to develop 

a homogeneous ply model as a plate where the material of the plate is considered to be 

equivalent throughout the plate; therefore, there is no distinction between its constituents. 

Second approach is to develop a mesoscale model as a plate which consists of tows geometries 

as well as matrix geometries where the constituents of the plate are considered as different parts. 

The orientation of the plies for the both models vary from layer to layer.   

In the first investigation of this study, the modeling of mesoscale composites is presented. The 

mesoscale finite element models are generated using TexGen software, which is an open source 

software for modeling the geometry of composite structures such as woven and non-woven 

composites. The mesoscale parameters, such as the tow height, tow spacing, tow width and ply 

thickness, for the modeling purposes are approximated through experimental examination. 

Then, unit cell models are generated using TexGen to predict the effective elastic properties 

(homogenized properties) and to determine the appropriate mesh size for the mesoscale models. 

In the second investigation, preliminary finite element analysis is performed using mesoscale 

models and homogeneous ply models to examine the structural response of both models 

subjected to different types of loads and compare them to each other. The structural analysis is 

performed within the finite element analysis package ABAQUS. The structural response of the 

mesoscale and homogeneous ply models is analyzed by performing static simulations of tensile 

loading and flexural loading. The reason for performing the structural analysis is to ensure that 
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both models give the same structural response under certain types of static loadings before 

moving to more complicated problems such as dynamic loadings. 

In the next investigation, the modeling technique for the NCF laminated composites is presented. 

The NCF laminated composites are used for the low velocity impact and CAI simulations. A finite 

element homogeneous ply model and a finite element mesoscale model are developed to 

investigate their mechanical behavior under impact loading. The homogeneous ply model is 

generated within ABAQUS while the mesoscale plies are generated using TexGen. The mesoscale 

plies are imported into ABAQUS for further assembly. In this study, all the parts/models are 

generated with the use of continuum/solid elements. Solid elements have three translational 

degrees of freedom for each node. Since this research is carried out to study the behavior of 

composites subjected to impact loading, the transverse response or the through thickness 

response is important to predict more accurate results. The solid elements are capable of 

predicting the transverse response more accurately compared to other element types such as 

shell elements. The disadvantage of solid elements is that it requires more elements compared 

to shell elements to produce results with high accuracy. 

In the next investigation, the mechanical behavior of the NCF laminated composites is 

investigated under low velocity impact loading in ABAQUS. There are two models that are 

analyzed under impact loading. The NCF laminates used in this investigation are the mesoscale 

model and the homogeneous ply model. The NCF laminates are impacted with different energy 

levels to examine the damage accumulation of the models. The 3D Hashin failure criteria and the 

exponential damage evolution law are used in this study to evaluate the intralaminar damage 
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during impact. Additionally, the interlaminar damage is evaluated through the use of the 

quadratic stress criterion and the Benzeggagh-Kenane (BK) mixed mode fracture law based on 

the fracture energy release rate method. Once the impact response is simulated for the NCF 

laminates, CAI simulations are performed to predict the damage tolerance of the NCF 

composites. Finally, the simulations results are validated with experimental investigation.  

1.4 Contributions 

The aim of this research is to expand the knowledge of the mechanical behavior of carbon fiber 

reinforced composites subjected to low velocity impact loading and predict the compressive 

residual strength of the composites after impact. The contribution of this research falls into the 

category of computational simulations. Numerical analysis tools are developed to help the 

industry and institutions to improve and examine the performance of composite structures. This 

tool is used to perform damage analysis of laminated composite models. In addition, a Fortran 

subroutine is developed to implement the damage models of the intralaminar failure and to 

evaluate the laminated composites during and after impact events.  

The simulations of impact and CAI of the laminated composite models are investigated using the 

FE package ABAQUS. Most of the literature consider only a homogeneous ply model to examine 

the mechanical behavior of the laminates under impact loading. In this study, a mesoscale model 

is considered as well to provide a more detailed description of the damage from the impact event. 

The impact response of the mesoscale model is predicted and compared to the response of the 

homogeneous ply model and both models are validated with experimental data.  
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 1.5 Thesis outline   

This thesis is organized as follows, the second chapter focuses on the modeling technique used 

in this study and preliminary finite element analysis. The third chapter presents the details of 

impact simulations modeling and the mechanical behavior response of the NCF laminated 

composite models under impact loading. The fourth chapter details the modeling of CAI 

simulations and the response of the NCF laminated composites. Conclusions and 

recommendations are summarized in the fifth chapter.  
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Chapter 2 Modeling of Non-Crimp Fabric Composites 

2.1 Introduction  

The intention of this study is to investigate the behavior of composite laminates under impact 

loading and compression after impact (CAI).  The composite laminates studied in this thesis are a 

multidirectional fiber-reinforced composite and consist of 24 layers. An important part of the 

modeling purposes is the prediction of the effective elastic properties through a homogenization 

process using unit cell finite element models. The unit cell models can be defined as the smallest 

material volume element for which the macroscopic model is sufficient to represent the whole 

model. The unit cell model can provide sufficient accuracy of representing the material’s larger 

scale (Omairey et al., 2019). Figure 2.1 illustrates a schematic of fiber arrays and its corresponding 

unit cell. A convergence study is carried out using unit cell models to determine the homogenized 

elastic properties and the appropriate mesh size. Additionally, a preliminary finite element 

analysis is performed to study the structural response of a lamina as well as laminates under 

plane tensile and flexural loading. A mesoscale finite element model and homogeneous finite 

element model are developed for the structural analysis. The mesoscale model consists of tows 

geometries and matrix geometries whereas the homogeneous ply model is just a plate with using 

the smeared elastic properties. Both models are used to investigate a lamina as well as laminate 

plates.  

The modeling of the unit cell, convergence study and structural analysis are discussed in detail in 

this chapter. In addition, the generation of the composite laminate models for the impact and 
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CAI simulations are discussed as well. The finite element modeling technique and the modeling 

assumptions are presented in detail along with the modeling software used. 

 

Figure 2. 1 Macroscale of fiber arrays and its corresponding unit cell 

2.2 Unit Cell Modeling 

Each lamina consists of multiple in-plane tows that are embedded in a matrix. The properties of 

a lamina are predicted through the use of unit cell models. The unit cell model represents the 

microstructure of a single ply of unidirectional composites as shown in Figure 2.1. The unit cell is 

a rectangular shape with a single tow through the thickness. The procedure of predicting the 

elastic properties is called a homogenization process. The effective properties predicted, which 

depend on the fiber and matrix properties as well as the fiber volume fraction and tow geometry, 

are referred to as the homogenized or smeared properties. 

2.2.1 Generation of Unit Cell 

A non-crimp fabric (NCF) composite is investigated experimentally and presented by McDermott 

(2019), and the purpose of this study is to investigate the NCF composite numerically. A 
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representative microstructure of the actual NCF composite is shown in Figure 2.2. As can be seen 

from the image, the tows have an elliptical shape. Accordingly, the unit cell is modeled with a 

rectangular shape consisting of one elliptical tow that is surrounded by the matrix material. The 

unit cell models are constructed using TexGen software. The parameters required for modeling 

the unit cell are the tow width a, tow height b, tow spacing w and ply/unit cell thickness h. The 

dimensions are approximated based on the experimentally obtained microstructure image of the 

actual non-crimp fabric specimen, shown in Figure 2.2. The microstructure image was analyzed 

in an image processing program to approximate the needed parameters. The tow spacing is 

approximated by measuring the distance between the centers of 5 adjacent tows, calculating the 

average distance between the neighboring tows. The tow width is determined by measuring the 

width of multiple tows and taking the average. The ply thickness is obtained by dividing the total 

specimen thickness by the number of layers. Lastly, the tow height is difficult to be approximated 

from the microstructure image; therefore, it was assumed to be b = 0.98*h. Figure 2.3 shows a 

sketch of the cross section of the unit cell model along with the tow cross-section. The 

corresponding unit cell parameters are listed in Table 2.1. 



15 

 

                Figure 2. 2 A microstructure image of the NCF specimen  

 
                    Figure 2. 3 Unit cell and tow cross section 

                               Table 2. 1 The tow parameters used for the unit-cell 

Unit-cell Parameters 

Tow width a (mm) 2.345 

Tow spacing w (mm) 2.355 

Tow height  b (mm) 0.1823 

Ply thickness h (mm) 0.186 

 

The unit cell models are generated through a Python script which takes as an input the unit cell 

parameters. Additionally, through the use of the available built-in functions/libraries within 

TexGen, the developer can specify the tow’s cross section, tow’s path, tow repetition in the X-Y 

space, tow resolution and assign unit cell domain. TexGen modeling flow chart is illustrated in 
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Figure 2.4. This script can be run through TexGen and visualize the model within TexGen GUI. A 

3D unit cell model generated in TexGen is shown in Figure 2.5. 

 

                   Figure 2.4 TexGen modeling flow chart 
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Figure 2.5 Unit-cell model generated in TexGen 

The NCF composite is fabricated using 12K fiber filament count tows. The fiber volume fraction 

Vf is found to be 57.2 % experimentally by performing acid digestion test. The unit cell is modeled 

using the tow’s parameters listed in Table 2.1 to predict the Vf that is approximately close to the 

experimental value. TexGen has the capability to predict the total fiber volume fraction which 

the fiber density and tow linear density need to be assigned to the tows in order to predict the 

total Vf accurately. The fiber volume fraction Vf  of the composite is the product of the fiber 

volume fraction within the tows and the volume fraction of the tows:  

                                                         𝑉𝑓 = 𝑉𝑓
𝑡𝑜𝑤 ∗ 𝑉𝑡𝑜𝑤                     (2.1) 

where Vf is the composite fiber volume fraction, Vf
tow is the fiber volume fraction within the tow 

and  Vtow is the tow volume fraction . The carbon fiber properties used in this study are the IM7 

carbon fiber properties from HEXCEL. The  fiber density, fiber linear density and a comparison of 

Vf between the experimental and predicted values are listed in Table 2.2. 
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Table 2.2 IM7 carbon fiber properties and fiber volume fraction Vf comparison. 

IM7 Carbon Fiber Properties (12K) 

Linear density (g/m) 0.446 

Fiber Density (g/cm3) 1.78 

TexGen Prediction of Vf (%) 

Vf
tow 74.68 

Vtow 76.44 

Unit cell Vf 57.09 

Experimental Vf 57.2 

% Difference 0.19 

 

The predicted fiber volume fraction within the tow Vf
tow  and the tow volume fraction Vtow are 

found to be 74.68 % and 76.44 % respectively. The product of the Vf
tow  and Vtow give a unit cell 

fiber volume fraction Vf to be 57.09 % with a difference of 0.19 % compared with experiment. 

The predicted unit cell fiber volume fraction Vf is in good agreement with the experimental fiber 

volume fraction. This small percentage difference of 0.19 % gives confidence in the unit cell 

models for homogenization studies.  

2.2.2 Voxel Mesh Technique 

Generating a mesoscale model for a composite material can be challenging due to the complex 

architecture of the tow and the surrounding resin. In this study, a voxel mesh technique is used 

to mesh the geometry of the mesoscale model. However, conformal mesh technique has also 

been investigated in this study. The conformal mesh technique is based on the use of tetrahedral 

elements, and the use of conformal mesh technique in FE analysis results in element distortion 
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specifically in the tow region due to the mesoscale’s structure complexity. A solution is proposed 

by TexGen developers to address mesh distortion that uses an artificial gap between the tow’s 

surface and the matrix elements surrounding the tow . This artificial gap strategy is done through 

TexGen and it introduces a contact area to eliminate the tow’s surface/elements from interfering 

with the surrounding matrix elements which in this way reduce the elements’ distortion. 

However, this strategy can be questioned if it has an influence on the end goal results accuracy 

and therefore it requires more investigation to validate this method. Additionally, another 

strategy to reduce element distortion for the conformal mesh technique is to increase the 

number of elements. However, this approach is not efficient because it would be computationally 

expensive. A unit cell model is generated with a conformal mesh technique as shown in Figure 

2.6. The model shown in the left side is generated with a coarse mesh and the model shown in 

the right side is generated with a fine mesh. The elements that have severe distortion are shown 

in yellow. As shown in Figure 2.6, the coarse mesh has severe element distortion and as the 

number of elements increases, the element distortion decreases but the element quality is still 

poor especially in the boundaries of the tow (the straight yellow band of elements in the fine 

mesh).  
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 Figure 2.6 Unit cell with conformal mesh technique 

The voxel mesh consists of square/rectangular hexahedral elements (C3D8, eight-node brick 

element). The voxel mesh can be generated without any artificial changes in the composite 

geometry. However, due to the type of element used in the voxel meshing technique, it is difficult 

to capture the mesoscale model geometries very well. The mesh quality is improved by using a 

large number of elements which enhances the resolution of the mesh and also captures the 

mesoscale geometry (tow’s geometry) very well. The mesh for the mesoscale/unit cell model for 

this study is generated in TexGen. Figure 2.7 shows a tow cross-section and FE unit cell model 

with a voxel mesh technique generated within TexGen. 
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Figure 2.7 Tow cross section and unit cell model generated in TexGen with voxel mesh technique  

2.2.3 Boundary Conditions 

The unit cell models are constrained by implementing periodic boundary conditions. The periodic 

boundary conditions can be easily applied within TexGen. The periodic boundary conditions are 

implemented by creating node-to-node equation constraints in which the nodes from one side 

(e.g. left side) are tied to the corresponding nodes in the other side (e.g. right side). The nodes 

on opposite sides are constrained to a reference point so that the displacement of the nodes on 

the opposite sides are equal to the displacement applied to the reference point. More details on 

the periodic boundary conditions and its application, can be found in Li et al. (2001). The periodic 

boundary conditions used in this study is to ensure the displacement in opposite sides of the unit 

cell models move the same displacement and also to ensure stress continuity. 
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As mentioned previously, TexGen has the ability to apply periodic boundary conditions and 

generate the mesh of the unit cell models. These unit cell models are exported as an ABAQUS 

input file from TexGen along with its mesh and boundary conditions. Subsequently, the unit cell 

models are imported into ABAQUS to perform a convergence study and estimate the effective 

elastic properties of the composite. 

2.2.4 Convergence Study 

Mesh density is an important factor when it comes to accuracy of the results. Capturing the 

geometry of the tows of the mesoscale/unit cell models require high mesh density. As the mesh 

gets finer, the finite element analysis gets more computationally expensive. Thus, it is important 

to determine the appropriate mesh size to obtain converged results within a reasonable time. To 

perform the convergence study, several unit cell models are generated using TexGen as described 

in section 2.2.1 with different mesh sizes to perform the convergence study. The ABAQUS input 

files are exported from TexGen, and each ABAQUS file has the model information with its voxel 

mesh and boundary conditions. Before post processing the input file, a small modification to the 

material definition is made in ABAQUS input file to define the proper epoxy matrix properties 

and impregnated tow elastic properties. The properties of the impregnated tow and epoxy matrix 

are listed in Table 2.3 and 2.4. The impregnated tow elastic properties are obtained based on an 

experimental investigation reported by Warren et al. (2016). 
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          Table 2.3 Impregnated tow elastic properties 

Tow Elastic Properties 

E1t 180 GPa XT (MPa) 1810 

E2t 9.45 GPa Xc (MPa) 669 

E3t 9.45 GPa YT (MPa) 64.0 

v12t 0.433 Yc (MPa) 174 

v13t 0.433 S12 (MPa) 105 

v23t 0.465 S13 (MPa) 105 

G12t 6.67 GPa S23 (MPa) 105 

G13t 6.67 GPa   

G23t 3.23 GPa   

 

Table 2. 4 Isotropic epoxy matrix properties (PR-520) 

Matrix Properties 

Em 4 GPa Tensile Strength (MPa) 82.1 

vm 0.398 Compressive Strength (MPa) 128 

  Shear Strength (MPa) 61.4 

 

2.2.4.1 Convergence Study Results 

A total of 21-unit cell models are generated in TexGen with different mesh sizes to determine the 

converged homogenized elastic properties. Three parameters, namely the voxels in the X, Y and 

Z directions, need to be chosen for the mesh generation. The convergence study is divided into 

four different studies. In each study, the number of voxels in the axial (X) and thickness (Z) 

directions are held fixed and the number of voxels in the transverse (Y) direction is varied. This 

approach is to minimize the number of voxels in Y and Z directions and still obtain converged 

elastic properties. The Y and Z voxels are important parameters which they have a huge influence 

on capturing the unit cell  geometry (i.g. the tow’s geometry). The number of voxels in X direction 

is fixed to be 5 voxels for all unit cell models since it does not influence the unit cell geometry 
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and the accuracy of the results. The number of voxels in Y direction vary from 50 to 6000 voxels 

in each study. The number of voxels in Z direction are selected to be 12, 14, 20 and 30 voxels for 

the first, second, third and fourth study, respectively.  

The effective elastic properties are post-processed in ABAQUS by using a Python script. This script 

is developed to calculate the stresses and strains from the reaction forces and the prescribed 

displacements. The average composite normal stress σi is calculated by taking the reaction force 

and dividing it by the surface area. Additionally, the axial strain εi is calculated by dividing the 

prescribed displacement by the length of the unit cell along the corresponding direction. 

Thereafter, the Young’s modulus Ei is obtained by dividing the average normal stress by the axial 

strain as illustrated in equation (2.2). Furthermore,  the Poisson’s ratio vij is obtained by dividing 

the transverse strain by the axial strain as illustrated in equation (2.3).  

                                          𝐸𝑖 =
𝜎𝑖

𝜀𝑖
                                                                               (2.2) 

                                        𝑣𝑖𝑗 =
− 𝜀𝑗

𝜀𝑖
                                                          (2.3) 

The shear modulus Gij is obtained by dividing the shear stress τij by the shear strain ϒij in a similar 

approach as the Young’s modulus. The shear modulus is calculated as illustrated in equation  

(2.4). 

                                        𝐺𝑖𝑗 =
𝜏𝑖𝑗

𝛾𝑖𝑗
                                                             (2.4) 

The results of the FE converged effective properties are obtained for the four convergence 

studies. The FE results of E1 and G12 are compared with the Mori-Tanaka approach and illustrated 
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in Figures 2.8 - 2.11. In Figure 2.8, the properties start to converge around 2000 voxels in the Y 

direction whereas in Figure 2.9, the properties start to converge around 1500 voxels in the Y 

direction. This indicates that as the number of voxels in Z direction increases, the smaller number 

of voxels in Y direction is needed to obtain the converged effective properties. This results in a 

smaller number of elements required to obtain converged results as seen in Figures 2.10 and 

2.11, the properties start to converge around 950 voxels in the Y direction.  

 

 

  Figure 2.8 Plot of E1 and G12 versus the number of voxels in Y direction with Z voxels is held fixed to 12 voxels 
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Figure 2.9  Plot of E1 and G12 versus the number of voxels in Y direction with Z voxels is held fixed to 14 voxels 

 

 

Figure 2.10  Plot of E1 and G12 versus the number of voxels in Y direction with Z voxels is held fixed to 20 voxels 
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Figure 2.11  Plot of E1 and G12 versus the number of voxels in Y direction with Z voxels is fixed to 30 voxels 

The convergence study is used to determine the number of elements required to obtain accurate 

FE results. As seen in Figure 2.11, the effective elastic properties converge around 950 voxels in 

the Y-direction and the computed properties correlate well compared with the Mori-Tanaka 

approach. Comparing the results presented in Figures 2.10 and 2.11, there is no significant 

difference in both moduli E1 and G12. Therefore, a small number of voxels in Z direction is used, 

20 voxels, since there is no significant difference to the results of using 30 voxels in Z direction. A 

comparison between the converged FE elastic properties with Mori-Tanaka method is shown in 

Table 2.5. overall, the FE results found to be close to the approximated properties using the Mori-

Tanaka method. The shear modulus G12 has a large percentage difference between FE approach 

and Mori-Tanaka method. This is because the Mori-Tanaka method approximates the elastic 
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properties based on the assumption that the tow has a circular cross-section whereas in this 

study the tow has more of an elliptical cross-section. 

Table 2.5 Comparison of FE effective properties and Mori-Tanaka approach 

   

Effective Properties FE Approach Mori-Tanaka Method FE and Mori-Tanaka %Difference 

E1 (GPa) 139.54 138.5443 0.7161 

E2 (GPa) 8.276 7.8981 4.6729 

E3 (GPa) 8.2018 7.8981 3.7727 

v12 0.4265 0.42501 0.3500 

v13 0.4242 0.42501 0.1908 

v23 0.5013 0.51708 3.0990 

G12 (GPa) 4.9818 4.2289 16.3484 

G13 (GPa) 4.3491 4.2289 2.8025 

G23 (GPa) 2.5168 2.6031 3.3712 

 

2.3 Structural Analysis  

A preliminary finite element analysis (FEA) is performed in ABAQUS using mesoscale models and 

homogeneous ply models. The mesoscale models of lamina and laminate are generated in 

TexGen using the impregnated tow elastic properties and matrix properties listed in Table 2.3 

and Table 2.4, respectively. Whereas the homogeneous ply models of lamina and laminate are 

generated in ABAQUS using the converged FE elastic properties (homogenized properties) 

presented in Table 2.5. The structure response of both models is analyzed by performing static 

simulations of tensile and flexural tests. 
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Models of one ply with orientation of 0o and 45o and laminates with orientation of [±45o]s and 

[0o/90o]s are developed for the structural response analysis of both mesoscale and homogeneous 

ply models. The lamina and laminate dimensions used are 14.13 mm x 14.13 mm x 0.186 mm and 

14.13 mm x 14.13 mm x 0.744 mm, respectively. Number of elements generated for lamina and 

laminate models are listed in Table 2.6. The mesoscale model is meshed using 8-node linear brick 

C3D8 and the homogeneous ply model is meshed using 8-node linear brick, reduced integration 

and hourglass control C3D8R. The use of C3D8R for the mesoscale would result in some element 

distortion. To eliminate the element distortion, the fully integrated element C3D8 must be used 

for the mesoscale models. Fully integrated elements have four integration points compared to 

the reduced integration elements which have only one integration point at the centroid of the 

element. Reduced integration elements take less time to solve due to the reduced order of 

integration, but it might not have the capabilities to detect strains at the integration point 

accurately for the mesoscale model since there two material properties are defined, for example, 

fiber and matrix material properties. Thus, fully integrated elements are required in order to 

capture an accurate structure response of the mesoscale that can be comparable to the structure 

response of the  homogeneous ply model.  

 

Table 2.6 Number of elements generated for lamina and laminate analysis 

Lamina Models 
Mesoscale 2,100,000 

Homogeneous 150,000 

Laminate Models 
Mesoscale 1,920,000 

Homogeneous 240,000 
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2.3.1 Tensile Loading Simulation 

A lamina and laminate structure of mesoscale and homogeneous ply models are analyzed 

subjected to tensile loading. For tensile loading analysis, the boundary conditions and load used 

are shown in Figure 2.12. The load is applied to the models using displacement control. A 

prescribed displacement is applied using kinematic coupling constraint. The kinematic coupling 

constraint is very useful in this case since there are a large number of nodes. The kinematic 

coupling constrains the motion of the slave nodes to the motion of a single reference point which 

is the master node.  

 

Figure 2.12 Tensile simulation load and boundary conditions 

 

The Young’s modulus Ex and Poisson ratio vxy are calculated and compared between the 

mesoscale and homogeneous ply models. The results of the Young’s modulus and Poisson’s ratio 

are calculated using the average stress and strain as illustrated in equation (2.5). The average 
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values of stress and strain are calculated by taking the summation of stress and strain of all 

elements and dividing them by the total number of elements. 

                                𝐸𝑥 =
𝜎̅𝑥

𝜀̅𝑥
                       𝑣𝑥𝑦 = −

𝜀̅𝑦

𝜀̅𝑥
                                              (2.5) 

where 𝜎𝑥 is the average stress in X direction, 𝜀𝑥̅ is the average strain in X direction and 𝜀𝑦̅ is the 

average strain in Y direction. The results for a lamina with orientation of 0o and 45o under tensile 

loading are presented in Tables 2.7 and 2.8, respectively.  

 

Table 2.7 Result for a lamina under tensile loading for tow oriented at 0 deg. 

Models Ex (GPa) vxy 

Mesoscale 139.522 0.4274 

Homogeneous 139.539 0.4265 

% Difference  0.013 0.223 

 
 
 

Table 2.8 Result for a lamina under tensile loading for tow oriented at 45 deg. 

Models Ex (GPa) vxy 

Mesoscale 12.4703 0.2302 

Homogeneous 12.3987 0.2444 

% Difference 0.576 5.995 

 

 



32 

The results for a laminate with orientation of [± 45o]s and [0o/90o]s under tensile loading are 

presented in Tables 2.9 and 2.10, respectively. 

Table 2.9 Result for a laminate under tensile loading for layup of [± 45o]
s
 

Models   Ex (GPa) vxy 

Mesoscale 18.416 0.7207 

Homogeneous 17.425 0.7489 

% Difference  5.531 3.834 

Table 2.10 Result for a laminate under tensile loading for layup of [0o/90o]
s
 

Models  Ex (GPa) vxy 

Mesoscale 75.422 0.0569 

Homogeneous 74.518 0.0550 

% Difference  1.207 3.303 

 

The results for tensile simulation of a lamina of mesoscale model and homogeneous ply model 

are in good agreement. The percentage difference of the Young’s modulus Ex between the 

mesoscale model and the homogeneous ply model of a lamina with orientation of 0o and 45o are 

0.013 % and 0.576 %, respectively. Also, the percentage difference of the Poisson ratio vxy 

between the mesoscale model and the homogeneous ply model of a lamina with orientation of 

0o and 45o are 0.223 % and 5.995 %, respectively. However, there is a difference between the 

results for the laminate models of [±45o]s and [0o/90o]s. For [±45o]s laminates, the percentage 

difference of the Young’s modulus Ex and Poisson ratio vxy between mesoscale and homogeneous 

ply models are 5.531 % and 3.834 %, respectively. In the case of [0o/90o]s laminates, the 
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percentage difference of the Young’s modulus Ex and Poisson ratio vxy between mesoscale and 

homogeneous ply models are 1.207 % and 3.303 %, respectively. This difference is because the 

geometry of the mesoscale models was not captured accurately; therefore, the results are 

under/over predicted. When the tows in the mesoscale models are oriented with orientation 

other than 0o, it gets very complex to capture the tows’ geometry with the use of the hexahedral 

solid element that is aligned with the coordinate axes. Due to the nature of the hexahedral solid 

element, some of the tow’s elements are taken as matrix elements which lead to over/under 

predicting the results of the mesoscale models. 

2.3.2 Transverse Loading Simulation 

Mesoscale and homogeneous ply models of composite laminate are analyzed under transverse 

loading. Mesoscale and homogeneous laminates, with orientation of [±45o]s, are developed to 

analyze the flexural response of the composite models. Two studies are performed. In the first 

study, the composite plate is analyzed under a concentrated force applied in the center of the 

plate. While the second study, the composite plate is analyzed under uniform distributed load. 

The composite plate is simply supported for both studies as shown in Figure 2.13(a). A 

concentrated force of 0.001 N is applied in the first study whereas a uniform distributed load of 

0.01 Pa is applied in the second study as illustrated in Figure 2.13 (b) and (c), respectively.  
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Figure 2.13 Transverse loads and boundary conditions for b) concentrated load and c) distributed load 

The flexural response for the concentrated force and distributed load cases are summarized in 

Tables 2.11 and 2.12, respectively. The maximum deflection of the composite plates is compared. 

The mesoscale and homogeneous ply models correlate well in the case of the concentrated force 

as well as in the case of the distributed load with a percentage difference of 0.75 % and 0.086 %, 

respectively. 

Table 2.11 Flexural response of [± 45]s laminate of concentrated force of 0.001 N 

 
Mesoscale Model Homogenized Model 

Deflection (mm) - 3.9949 x 10
-6

 mm - 3.9652 x 10
-6

 mm 
% Difference: 0.75 % 

 
 
 

Table 2.12 Flexural response of [± 45]s laminate of distributed load of 0.01 Pa  

 
Mesoscale Model Homogenized Model 

Deflection (mm) - 4.5937 x 10
-3

 mm - 4.5898 x 10
-3

 mm 
% Difference: 0.086 % 
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2.3.3 Edge Bending Simulation  

Mesoscale and homogeneous laminates, with orientation of [±45o]s, are developed to analyze 

their response under concentrated force applied along an edge of the laminates. The composite 

laminates are simply supported and a concentrated force of 0.01 N is applied along one of the 

laminate edges as illustrated in Figure 2.14.  

 

          Figure 2.14 Edge Bending simulation load and boundary conditions 

The structural response of the edge bending test is summarized in Table 2.13. The maximum 

displacement of the mesoscale and homogeneous ply models is compared. About 6% difference 

between the mesoscale and homogeneous ply models. The difference is due to the mesoscale 

tow geometries were not captured very well. Due to the nature of the voxel mesh, some of the 

tow’s elements are taken as matrix elements in the mesoscale model which results in larger 

deflection in the mesoscale model compared to the homogenous model.  

Table 2.13 Laminate result of edge bending simulation for layup of [± 45]s 

 Mesoscale Model Homogenized Model 

Deflection (mm) - 2.84106 x 10
-2 - 2.67756 x 10

-2 
% Difference:  5.9 % 
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2.3.4 Structural Analysis Conclusion 

A preliminary finite element analysis has been performed to study the structural response of a 

composite lamina as well as laminates under tensile loading and flexural loading. A mesoscale 

model and a homogeneous ply model are used for the structural analysis of the composite lamina 

and laminates. For composite lamina analysis, the structural response comparison between the 

mesoscale models and the homogeneous ply models is in good agreement. However, there are 

discrepancies in the structural response of the composite laminates between the mesoscale and 

homogeneous ply models. The difference in the laminates analysis is due to how the tows 

geometries are captured in the mesoscale models. The tow elements in the [±45o]s laminate are 

taken as matrix elements which results in under/over predicting the structural response of the 

mesoscale model. For the [0o/90o]s laminate, there is no issue when it comes to capture the 

geometry of the tows oriented at 0o, but for 90o orientation, the tows require more elements (or 

voxels) in the X direction to capture the tows accurately.  

Overall, based on the preliminary finite element analysis, it can be concluded that the mesoscale 

finite element model and the homogeneous finite element model generate a similar structural 

response. However, the mesoscale model requires a large number of elements to give a 

comparable structural response to the homogeneous ply model. Therefore, both models can be 

used in this study to generate the composite laminates for the impact and compression after 

impact simulations.  
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2.4 Modeling of the Non-Crimp Fabric Composite 

NCF composite laminates are developed to analyze their behavior under impact loading and 

predict the compressive residual strength after impact. A mesoscale finite element model and a 

homogeneous finite element model are developed to assess the damage resistance and 

tolerance of the laminated composites. Both models are generated based on the non-crimp 

fabric specimen that has been investigated experimentally by McDermott (2019). The NCF 

specimen is fabricated with a multidirectional 24 plies and each ply consists of one tow through 

the thickness. The NCF model is generated to be consistent with the specimen used in the 

experiment. The modeling parameters for the mesoscale model such as the tow width, tow 

spacing, tow height and ply thickness are obtained based on experimental investigation as 

discussed in Section 2.2.1. Since the mesoscale model has tow geometries and matrix 

geometries, it provides the ability to evaluate the fiber and matrix damage separately for the 

impact analysis. The response of the impact and compression after impact of the mesoscale and 

homogeneous ply models is used to be compared with experimental data obtained from 

McDermott (2019).  

2.4.1 Mesoscale Model 

A finite element mesoscale model is generated to investigate the behavior of the model 

subjected to impact loading and predict the compressive residual strength after impact. As 

previously mentioned, the finite element mesoscale model is developed  where the model 

captures the individual constituents of the composite (i.e., the tows and matrix). This modeling 

approach helps to evaluate the damage during impact and after impact events in more detail 
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such that a separate investigation of the fiber and matrix failure. The modeling parameters for 

the mesoscale model are listed in Table 2.1. The mesoscale model is generated as a 

multidirectional symmetric NCF laminate with 24 layers. The NCF laminate schedule is shown in 

Table 2.14. Four plies with orientation of -45o, 45o, 0o and 90o are generated separately in TexGen 

with one tow through the thickness. Each ply is generated with 64 in-plane tows and one tow 

through the thickness. The four plies are imported into ABAQUS for further assembly of the 

composite mesoscale laminate. The mesoscale model dimensions are 150.72 mm x 100 mm x 

4.464 mm. The impregnated tow elastic properties and epoxy matrix properties used for the 

mesoscale model are listed in Tables 2.3 and 2.4, respectively. 

                             Table 2.14 The laminate schedule [-45/45/0/90/0/±45/03/90/45]s of the non-crimp fabric 

Midplane 

12                                       45    

11                                      90 

10                                       0 

9                                         0 

8                                         0 

7                                      -45 

6                                       45 

5                                         0 

4                                       90 

3                                         0 

2                                       45 

1                                      -45 

 

A Python script is developed for the mesoscale generation and processed in TexGen. As 

mentioned, the plies are generated with one tow through the thickness. Four plies are developed 

with different tow’s orientation 0o, 45o, -45o and 90o. For simplicity, the script generates the plies 

and exports an ABAQUS input file with the ply’s information. The element type used is C3D8 solid 
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element. All four plies are imported into ABAQUS with their proper tow’s orientation and mesh. 

The assembly of the mesoscale model can be done through TexGen but to implement the 

interlaminar failure criteria between the plies, it is easier to assemble the model and implement 

the failure criteria in ABAQUS. A sample mesoscale ply generated in TexGen with the tows 

oriented 45o is shown in Figure 2.15. A Python script of the ply generation is attached in Appendix 

A. 

  

Figure 2.15 A mesoscale model generated in TexGen with the tows oriented 45o. 

2.4.2 Homogeneous ply model 

A finite element homogeneous ply model is developed in ABAQUS to analyze the behavior of the 

model under impact loading and predict the compressive strength of the laminate after impact. 

The finite element homogeneous ply model is generated wherein the heterogeneous plies are 

replaced by equivalent homogeneous anisotropic plies. The plies of the homogeneous model are 

created using 3D deformable solid elements. Plies with orientation of 45o,  -45o, 0o and 90o are 

created separately and then used to assemble the laminate based on the composite layup in 
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Table 2.14. The homogeneous ply model dimensions are 150 mm x 100 mm x 4.464 mm. The 

material orientation is defined using the available tool in ABAQUS. A local coordinate system is 

defined for each ply. Then, each ply is assigned a material orientation based on the local 

coordinate system of the ply. The homogenized properties listed in Table 2.5 are used for this 

model.  

2.4.3 Mesh Generation  

The composite laminates for the impact and compression after impact events are meshed using 

the voxel mesh technique. The mesoscale model is meshed within TexGen. The element type 

used for the mesoscale is the 8-node brick element C3D8. This element type is a general-purpose 

linear brick element and it is fully integrated. However, the homogeneous ply model is meshed 

within ABAQUS with fully integrated 8-node brick element C3D8. The fully integrated elements 

are used for the homogeneous ply model with fewer number of elements compared to the 

mesoscale model. Based upon the structural response analysis presented in Section 2.3, the 

mesoscale model requires high mesh density (large number of elements) to capture the tows 

geometries accurately. The total number of elements generated for the mesoscale model as well 

as the homogeneous ply model is listed in Table 2.15.  

Table 2. 15 Number of elements generated for the mesoscale and homogeneous ply models 

Model Element Type Number of Elements 

Homogeneous ply model C3D8 460,800 

Mesoscale Model C3D8 1,920,000 
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2.4.4 Experiment Comparison 

In this section, the homogenized properties are validated with experimental data by predicting 

the laminate Young’s modulus Ex and Ey. This validation is performed to ensure that the 

homogenized properties estimate the laminate modulus close to the experimental values. The 

experiment is presented in McDermott (2019). The Young’s modulus Ex and Ey are obtained 

experimentally by performing tension tests. The experimental results are the average value of 

seven to eight specimens. The specimens are loaded in tension in the 0o and 90o orientation. To 

predict the Young’s modulus Ex and Ey, the extensional stiffness matrix [A] was computed using 

the classical laminate theory. The inverse of [A], the compliance matrix [a], is calculated to predict 

the Young’s modulus Ex and Ey using equation (2.6).  

                            𝐸𝑥 =
1

𝑎11𝐻
                           𝐸𝑦 =

1

𝑎22𝐻
                                     (2.6) 

where a11 and a22 are the extensional terms and H is the laminate thickness. Table 2.16 

summarizes the results of both experimental and predicted results of the laminate moduli. As 

shown in the results, there is no significant difference between the experimental and predicted 

results. A 0.71 % and a 2.48 % difference for Ex and Ey, respectively. The predicted and 

experimental results correlate well which demonstrate confidence in the composite laminate 

model.  
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Table 2.16 Experiment and prediction comparison of laminate moduli 

V
f
 (%) 

Laminate Moduli (GPa) 

E
x
 E

y
 

Experimental Predicted Diff. (%) Experimental  Predicted Diff. (%) 

57.2 – Expt. 
57.09 –Pred. 

72.2 72.511 0.71 40.7 41.72 2.48 
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Chapter 3 Damage Analysis during Low Velocity Impact Loading 

of Multidirectional Fiber-Reinforced Laminate 

3.1 Introduction 

Unidirectional fiber-reinforced composites are being increasingly used in automobiles, 

aerospace, and many other industries due to their higher structural strength, low weight and 

impact tolerance compared to those of metallic parts. One of the objectives of this research is to 

perform computational simulations of carbon fiber-reinforced composites subjected to low 

velocity impact loading using finite element analysis. Two finite element models are developed 

to analyze the behavior of composite laminates made of non-crimp fabric under impact loading. 

The finite element models are developed as symmetric laminates of 24 multidirectional plies. The 

first model is a homogeneous ply finite element model which is generated within the finite 

element package ABAQUS. The second model is a mesoscale finite element model where its plies 

are generated using textile generation software called TexGen. The mesoscale plies are imported 

into ABAQUS for the mesoscale laminate assembly. The modeling details of the non-crimp fabric 

models are presented in Chapter 2. The impact simulations of the homogeneous ply and 

mesoscale models are setup and performed using ABAQUS/Explicit.  

The 3D Hashin failure criteria is used to evaluate the intralaminar damage initiation of the 

composite laminates during impact event. The Hashin failure criteria has four failure 

modes/indicators. Two modes are for fiber tension and compression failure initiation and the 

other two modes are for matrix tension and compression failure initiation. In addition, a damage 
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evolution law is adopted to determine the damage variables for each failure mode. These 

damage variables are used to modify or degrade the elastic properties based on the induced 

damage mode.  

Additionally, the interlaminar failure is evaluated using a surface-based cohesive behavior. This 

approach implements cohesive contact behavior between the plies to predict delamination. The 

damage initiation is evaluated using the quadratic stress criterion. A damage evolution law is 

implemented to describe the rate at which the cohesive stiffness is degraded once the 

corresponding initiation criterion is reached. Mixed mode failure criterion based upon energies 

is used for interlaminar damage propagation.  

The proposed progressive intralaminar damage models are implemented in ABAQUS using a 

Fortran user defined subroutine. This subroutine checks for failure initiation at every integration 

point using the Hashin failure criteria and computes the damage variables using the exponential 

law. It then returns the damage variables to ABAQUS using the field variable tool for material 

properties assignment. A look up table is defined in ABAQUS input file to relate the field variables 

to the original elastic material properties as well as the degraded material properties. The impact 

results of both homogeneous ply and mesoscale models are compared with each other and 

validated with experimental data. All experimental data used to validate the finite element 

models presented in this chapter are obtained from McDermott (2019). 

This chapter is organized as follows, Section 3.2 describes the explicit finite element simulation 

algorithm, and Section 3.3 describes the intralaminar damage models. Section 3.4 summarizes 

the modeling of delamination using cohesive behavior. Section 3.5 contains an outline of the 
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implementation of the Fortran user subroutine and its interaction with ABAQUS. The material 

model validation using ABAQUS subroutine is summarized in Section 3.6. Sections 3.7 and 3.8 

summarize the impact simulations with damage followed by the results of the impact simulations 

section, respectively.  

3.2 Explicit Finite Element Simulation 

Impact simulations can be performed using ABAQUS/Implicit and ABAQUS/Explicit. In this thesis, 

ABAQUS/Explicit is used to evaluate the finite element models under impact loading. 

ABAQUS/Explicit is a finite element analysis product that is applicable to analyze many types of 

problems such as short duration dynamic, nonlinear, quasi-static analyses and many more. 

ABAQUS/Explicit has the ability to handle nonlinear behavior efficiently, which makes it a perfect 

candidate for the present study. Some of the advantages of using ABAQUS/Explicit in this study 

compared to ABAQUS/Implicit are as follows: 

● It has been designed to solve highly discontinuous and high-speed dynamics problems. 

● It has a robust contact algorithm that does not require additional degrees of freedom.  

● It does not require large disk space for analyzing large problems. 

ABAQUS/Explicit uses an explicit method that integrates through time. The explicit time 

integration used is the central difference method. The equations of motion are integrated 

through time. When the solver is initiated, it solves the discretized equation of motion (3.1) to 

obtain the nodal acceleration for each time increment (ABAQUS, 2017).  

                                                            𝑀𝑢̈ = 𝑃 − 𝐼            (3.1) 
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where M is the nodal mass matrix, 𝑢̈ is the nodal acceleration, P is the external force applied and 

I is the internal element force.  

Nodal velocities are calculated using the nodal accelerations. Nodal accelerations are integrated 

through time using the central difference approach. The change in velocity is calculated by 

assuming that the acceleration is constant. The velocity at the middle of the current increment is 

obtained using the acceleration and the velocity at the middle of the previous increment using 

equation (3.2) (ABAQUS, 2017). 

                                                       𝑢̇|
(𝑡+

∆𝑡

2
)

=  𝑢̇|
(𝑡− 

∆𝑡

2
)

+
∆𝑡|(𝑡+∆𝑡)+ ∆𝑡|(𝑡)

2
 𝑢|̈ (𝑡)                                (3.2) 

Similarly, the nodal displacements are obtained by integrating the nodal velocities using equation 

(3.3). 

                                                       𝑢|(𝑡+∆𝑡) =  𝑢|(𝑡) + ∆𝑡|(𝑡+∆𝑡) 𝑢|̇
(𝑡+

∆𝑡

2
)
                                (3.3) 

To obtain accurate results, sufficiently small-time increments must be used to have nearly 

constant accelerations. Since a small-time increment is used, a large number of increments is 

required to finish the analysis. However, each increment is computationally inexpensive since the 

equations are not solved at the same time. The element strain increments are computed from 

the strain rate. The computed strain increment makes it possible to compute the element 

stresses by applying the material constitutive relationships (ABAQUS, 2017).  
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The process described is performed for each time increment. When all the above stated steps 

are applied for the current increment, the process gets repeated for the next increment by setting 

a new time for the next increment (ABAQUS, 2017).  

3.2.1 Impactor Modeling 

The hemispherical impactor is modeled in ABAQUS as a 3D discrete rigid body. The impactor is 

modeled with a diameter of 16 mm and a spherical tip shape to be consistent with the 

experiment setup. It is meshed with linear quadrilateral elements of type R3D4 and linear 

triangular elements of type R3D3 with a total of 11,232 elements. 

3.2.2 Material Definition 

The material system used for the impact simulation study is Hexcel® 12K IM7 carbon fibers and 

Cycom® PR-520 toughened epoxy matrix. The mesoscale model is assigned the material 

properties of the impregnated tow elastic properties listed in Table 2.3 and matrix properties 

listed in Table 2.4. The material properties used for the homogeneous ply model are the effective 

elastic properties listed in Table 2.5, which are found based on the convergence study presented 

in Chapter 2. 

The density cannot be assigned for the impactor since it is modeled as a rigid body. Instead, an 

inertia is assigned to it to account for the total drop weight. For the impact simulations, the 

impactor is assigned a mass corresponding to the impact energies and impact velocity. 
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Due to the lack of the material properties of the current investigated composite, the composite 

material strengths are used from previous study investigated by Warren et al. (2016). Warren 

used the same material system IM7/PR-520 for his study and he investigated a uni-ply panel of 

IM7 carbon fiber manufactured with 24K tows and injected with PR-520 epoxy resin. The fiber 

volume fraction of the panel is 61.4 %. The panel was evaluated experimentally to compute the 

material properties by loading the panel in tension, compression and shear directions. The 

material strengths obtained experimentally are listed in Table 3.1.  

Table 3. 1 Uni-ply material strength properties 

Load Symbol Strength (MPa) 

Tensile strengths 

XT 1750 

YT 69.6 

Compressive strengths 

XC 665 

YC 177 

Shear strength S 106 

 

Mechanical properties validation is performed using computational simulations and compared 

to experimental investigation presented by McDermott (2019). The NCF model is generated in 

ABAQUS to validate the material strengths properties listed in Table 3.1. The FE model is a 

multidirectional NCF composite and consists of 24 layers. The layup schedule of the NCF 
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composite is shown in Table 2.14. The FE model is evaluated in tensile loading oriented parallel 

to, perpendicular to and biased to (oriented at 45o) the fiber direction. For tensile testing, the FE 

model is generated with 3D solid elements and dimensions of 100 mm x 25 mm x 4.464 mm. It is 

meshed with C3D8 elements and assigned the homogenized properties listed in Table 2.5. The 

experiment is carried out with ASTM D3039. Seven to eight specimens were characterized 

experimentally  at each load orientation 0o, 45o and 90o. The specimens tested experimentally of 

IM7 carbon fiber are manufactured with 12K tows and injected with PR-520 epoxy resin. The 

results of the tensile loading are presented in Figures 3.1a-c which shows the correlation between 

the finite element simulations and experimental results. The computational model predicted the 

mechanical behavior of the tensile tests very well. A summary of the tensile tests results is 

presented in Table 3.2. The experimental results presented in Table 3.2 are the average value of 

multiple specimens. It can be concluded that the tensile strength properties presented in Table 

3.1 are valid to be used in this study with knowing that the tow size is different between Warren’s 

work and this current study.  The other strength properties for the compression and shear are 

assumed to be valid as well.  
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Figure 3. 1 Results of tensile loading of the NCF composites: (a) load orientation 0o (b) load orientation 45o (c) load orientation 

90o 

 

0

200

400

600

800

1000

1200

0 0.5 1 1.5 2

Te
n

si
le

 S
tr

es
s 

(M
P

a)

Tensile Strain (%)

Stress-Strain Curves for NCF Composite 
(orientation: 0)

Specimen 1

Specimen 2

Specimen 3

Specimen 4

Specimen 5

Specimen 6

Specimen 7

FEA

(a)

0

200

400

600

800

0 0.5 1 1.5 2

Te
n

si
le

 S
tr

es
s 

(M
P

a)

Tensile Strain (%)

Stress-Strain Curves for NCF Composite 
(orientation:45)

Specimen 1

Specimen 2

Specimen 3

Specimen 4

Specimen 5

Specimen 6

Specimen 7

FEA

(b)

0

200

400

600

800

0 0.5 1 1.5 2

Te
n

si
le

 S
tr

es
s 

(M
P

a)

Tensile Strain (%)

Stress-Strain Curves for NCF Composite 
(orientation: 90)

Specimen 1

Specimen 2

Specimen 3

Specimen 4

Specimen 5

Specimen 6

Specimen 7

Specimen 8

FEA

(c)



51 

Table 3. 2 Summary of tensile test results 

Load Orientation Ultimate Strength (MPa) Young’s Modulus (GPa) 

0o 

Experiment 983 72.2 

FEA prediction 885 72 

45o 

Experiment 709 51.8 

FEA prediction 626.8 51.5 

90o 

Experiment 566 40.7 

FEA prediction 505.2 41.3 

3.2.3 Analysis Step  

The analysis step is created in the step module in ABAQUS, the procedure of the step is chosen 

to be Dynamic Explicit with a step time in the range of 5 to 9 milliseconds for the impact 

simulations. The geometric nonlinearity is toggled on in the basic tab. Automatic time 

incrementation is used with the stable increment estimator is selected to be global with a time 

scaling factor of 1. Since the density and the Young’s modulus are known, the critical parameter 

for the stable time increment is the dimension of the smallest element. The composite laminates 

are modeled to have the smallest element dimension which limits the stable time increment for 

the whole model/assembly of the impact setup. Maximum time increment is kept to its default 

setting, unlimited. Mass scaling is not applied for any region of the model and the linear and 

quadratic bulk viscosity parameters are set to default values of 0.06 and 1.2, respectively. 
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3.2.4 Boundary Conditions and Load Applied 

The boundary conditions used for the finite element laminated composite are a representation 

of the experimental setup used in the impact test. The drop weight test is carried out 

experimentally using Airbus Industries AITM 1-0010 standard. In order to represent the 

experiment setup, the laminated composite is simply supported in the entire inner perimeter, 75 

mm x 125 mm, such that the displacement component U3=0. Additionally, two constraints are 

included to prevent the laminate from translating and rotating in the other directions. The 

boundary conditions applied on the composite laminate for the impact simulations are shown in 

Figure 3.2.  

 
Figure 3. 2 The boundary conditions applied on the composite laminate for the impact simulation 

The 16 mm hemispherical rigid impactor is modeled with a reference point at the impactor tip to 

be able to apply boundary conditions and load. The impactor’s reference point is fixed in all 

directions except the impact translation direction. Additionally, an impact velocity is applied to 
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the impactor in which this initial velocity accounts for the drop height of the impactor. The initial 

velocity is applied to the reference point of the impactor through the predefined field option in 

ABAQUS. Figure 3.3 illustrates the load and boundary conditions used for the impactor. 

 

Figure 3. 3 Impactor's boundary conditions and load used for the impact simulations 

3.2.5 Contact Definition 

The general contact algorithm for ABAQUS/Explicit analysis is used for the impact simulations. 

ABAQUS/Explicit is a very robust FEA package with a proven contact algorithm. This contact 

method goes through the finite element model and defines contact between any two or more 

solid parts. The contact domain is set to “All with self” with the use of global contact properties. 

This contact algorithm definition is a necessity in order to prevent penetration between the parts 

that will be in contact. The contact properties definition is created in the contact property tool in 

ABAQUS. A mechanical tangential behavior is defined, and the penalty friction formulation is 

used with a small friction coefficient of 0.3. The value of the friction coefficient is used for the 

contact between the impactor and the top surface of the laminate. 
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Also, a normal behavior is used for the contact definition, with the ”Hard” contact as the 

pressure-over closure, which means that the friction is applied only when two surfaces are in 

contact. In addition, the constraint enforcement method is set to default and separation is 

allowed after contact. 

3.3 Intralaminar Damage Model 

In this study, the three-dimensional Hashin failure criterion is adopted to determine the damage 

initiation of the composite laminate during impact. It has been used successfully in numerous 

FEA studies of composite materials to evaluate failure initiation. The Hashin failure criteria is 

developed for unidirectional composites and derived based on the quadratic five stress invariants 

presented in Hashin et al. (1980). The stress invariants are presented in equation (3.4).  

  𝐼1 =  𝜎11            𝐼2 =  𝜎22 + 𝜎33           𝐼3 =  𝜎23
2 − 𝜎22𝜎33                     (3.4) 

𝐼4 =  𝜎12
2 + 𝜎13

2          𝐼5 = 2𝜎12𝜎23𝜎13 −  𝜎22𝜎13
2 − 𝜎33𝜎12

2                         

The failure criteria include four individual failure modes, fiber tension and compression modes 

and matrix tension and compression modes. The failure indicator variables are calculated to 

evaluate the failure initiation for each failure mode as seen in equations (3.5a-d). As can be seen 

in the Hashin failure indicator’s equations, the theory accounts for the interaction between shear 

and normal stress.  
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Fiber tension failure mode  (FTF) (𝜎11 > 0) 

                         𝑓1 =  (
𝜎11

𝑋𝑇
)

2

+ 
𝜎12

2 +𝜎13
2

𝑆𝐿
2                                                                  (3.5a) 

Fiber compression failure mode (FCF) (𝜎11 < 0)  

                               𝑓2 = (
𝜎11

𝑋𝐶
)

2

                                                                                         (3.5b) 

Matrix tension failure mode (MTF) (𝜎22 +  𝜎33 > 0) 

    𝑓3 =
1

𝑌𝑇
2 (𝜎22 + 𝜎33)2 +

1

𝑆𝑇
2 (𝜎23

2 − 𝜎22𝜎33) +  
𝜎12

2 +𝜎13
2

𝑆𝐿
2                                                (3.5c) 

Matrix compression failure mode (MCF) (𝜎22 +  𝜎33 < 0) 

𝑓4 =
1

𝑌𝐶
[(

𝑌𝐶

2𝑆𝑇
)

2

− 1] (𝜎22 + 𝜎33) +
1

4𝑆𝑇
2 (𝜎22 + 𝜎33)2 +

1

𝑆𝑇
2 (𝜎23

2 − 𝜎22𝜎33) +  
𝜎12

2 +𝜎13
2

𝑆𝐿
2              (3.5d) 

Where, fi is the Hashin failure indicator for each failure mode. σij are the stress components in the 

material coordinate system, XT and XC are the axial tensile and compressive strength, respectively. 

YT and YC are the transverse tensile and compressive strength, respectively and SL and ST are the 

axial shear strength and transverse shear strength, respectively. The strength values required for 

the failure initiation calculation used in equations (3.5a-d) are obtained from experimental 

investigation and presented in Table 3.1. 
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3.3.1 Damage Evolution 

A damage evolution law is used in this study to evaluate the intralaminar failure propagation for 

each failure mode, i.e. fiber tension or compression failure mode and matrix tension or 

compression failure mode. The exponential damage evolution law is adopted from Warren et al. 

(2016) to calculate the damage variable for each failure mode. The damage evolution law utilizes 

equation (3.6) to calculate the damage variable. 

                                           𝑑(𝑓𝑖) =  𝐷𝑖 𝑚𝑎𝑥 [1 − 𝑒𝑥𝑝 (−
𝑓𝑖

𝑚

𝑚 𝑒
)]    (3.6) 

Where Dmax is the maximum degradation variable, fi is the Hashin failure indicator, m is the 

material response parameter and e is the base of the natural logarithm. Equation (3.6) can be 

used to enforce different damage evolution law including instant failure or more of ductile 

failure. Using a small value of the material response m would generate a ductile response of the 

material damage. The damage becomes an instantaneous failure when m approaches an infinite 

value. Equation (3.7) describes the instantaneous failure using the exponential damage evolution 

law. The damage variable is computed for any value given by the Hashin failure indicator f.   

                                               𝑑(𝑓) = {
0,              𝑖𝑓 𝑓 = 0
𝐷𝑚𝑎𝑥 ,     𝑖𝑓 𝑓 > 0

                             (3.7) 

A plot of equation (3.6) is shown in Figure 3.4 with varying Hashin failure indicator f from 0 to 2.4 

and specifying Dmax to be 0.8. The plot of equation (3.6) is evaluated at different values of material 

response m. A value of 150 is used for the material response parameter m for the impact 

simulations throughout this study.   
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Figure 3. 4 Damage variable value di as a function of the failure indicator fi using the exponential damage evolution law with Dmax 

= 0.8 evaluated at various values of the material parameter m 

The maximum damage variable must be specified for each Hashin failure mode. In this study, the 

maximum damage variables for the tensile and compression damage modes in both fiber (D1max) 

and transverse (D2max) directions are listed in equations (3.8) and (3.9). The elastic material 

properties are degraded based on the maximum damage variable for each mode such that when 

Dmax = 0.93, the elastic properties are degraded 7% of their original values. A property 

degradation rule, which shows the Hashin failure modes along with the property that is being 

degraded, is presented in Table 3.3.  

                                     𝐷1 𝑚𝑎𝑥 = {
0.93, 𝑖𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
0.80, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

                                 (3.8) 

                                               𝐷2 𝑚𝑎𝑥 = {
0.85, 𝑖𝑓 𝑡𝑒𝑛𝑠𝑖𝑜𝑛
0.85, 𝑖𝑓 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛

                                 (3.9)                                
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Table 3. 3 Properties degradation rule 

Elastic 

Property 

Hashin Failure Modes 

FTF FCF MTF MCF 

E1 X X - - 

E2 - - X X 

E3 - - X X 

v12 - - - - 

v13 - - - - 

v23 - - - - 

G12 X - X X 

G13 X - X X 

G23 - - X X 
 

3.4 Interlaminar Damage model 

Delamination is a major failure mode for composites under impact loading and it has been 

investigated by researchers both in experimental tests and numerical simulations. Sun et al. 

(2014), Liu et al. (2018) and other researchers have used and proposed methods in the literature 

to model delamination failure such as applying the three-dimensional delamination failure 

criteria in the composite laminates. Applying the three-dimensional delamination failure criteria 

in composites might lead to the inaccurate prediction of the interface properties because of the 

complexity of delamination modeling. Therefore, for this study, implementing a cohesive 

behavior between the interfaces becomes a better option to predict delamination between the 

plies. ABAQUS has the capability to model cohesive behavior for solid elements without the need 

to use subroutines to implement interlaminar failure.  
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3.4.1 Cohesive Behavior Modeling 

The interlaminar failure implementation is based upon the surface-based cohesive behavior in 

ABAQUS. This method is intended for problems where the interface thickness is negligibly small. 

Delamination is captured by using a traction-separation relationship. This approach is convenient 

to model the cohesive behavior as an interaction without the need to model cohesive elements. 

A quadratic nominal stress criterion is adopted to evaluate the initiation of delamination:  

                                                  {
〈𝑡𝑛〉

𝑡𝑛
𝑜 }

2

+  {
𝑡𝑠

𝑡𝑠
𝑜}

2
+ {

𝑡𝑡

𝑡𝑡
𝑜}

2
= 1                                                   (3.10) 

Where tn
o, ts,

o
 and tt

o
 represent the interface normal and first and second shear strengths, 

respectively. The symbol  used in equation (3.10) represents the Macaulay bracket. The 

Macaulay bracket signifies a purely compressive displacement, or a purely compressive stress 

state does not initiate damage.  

Once the quadratic nominal stress criterion is met, the delamination initiation phase is finished, 

and the delamination begins to propagate. The mixed-mode criterion is used to simulate the 

delamination propagation. This criterion is based on the fracture energy release rate and fracture 

toughness method. The mixed mode criterion proposed by Benzeggagh and Kenane et al. (1996) 

(BK criterion) is able to account for the variation of fracture toughness as a function of mode ratio 

in the epoxy composites. The BK criterion assumes the first and second shear directions are the 

same, i.e., GIIc  = GIIIc. The BK criterion is used in this study to evaluate the delamination 

propagation, which its expression is as follows: 
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𝐺𝐼𝐶 +  (𝐺𝐼𝐼𝐶  −  𝐺𝐼𝐶) (
𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
)

𝜂

=  𝐺𝑇𝐶  

                                         𝐺𝑠ℎ𝑒𝑎𝑟 =  𝐺𝐼𝐼 +  𝐺𝐼𝐼𝐼          𝐺𝑇 =  𝐺𝐼 + 𝐺𝑠ℎ𝑒𝑎𝑟                                           (3.11) 

Where GTC is the mixed-mode fracture toughness under combined mode loading and GT is the 

total fracture energy release rate. GIc and GIIc denote the interfacial Mode I and II critical fracture 

energy corresponding to GI and GII  respectively, and  ⴄ is the cohesive property parameter. The 

BK criterion is activated once the total fracture energy release rate GT  is equal to or greater than 

the mixed-mode fracture toughness GTC. When the ratio 
𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
 in equation (3.11) is zero, the 

interlaminar failure becomes a mode I dominated. However, when the ratio 
𝐺𝑠ℎ𝑒𝑎𝑟

𝐺𝑇
 is one, the 

interlaminar failure becomes mode II dominated. In this research, the parameter ⴄ is assumed; 

however, the parameter ⴄ should be determined using a least square fit from a set of 

experimental data. A plot of equation (3.11) is shown in Figure 3.5 with varying the value of the 

cohesive property parameter, ⴄ.  

The material properties used for the cohesive modeling are listed in Table 3.4. The strength 

properties of the interface are assumed to be the epoxy matrix strength properties of PR-520. 

The fracture energy of Mode I is found experimentally and presented in McDermott (2019). 

However, the fracture energies of Mode II and III are assumed to be 2.4*GIc.  
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Figure 3. 5 Plot of the BK criterion with varying the value of the cohesive property parameter  

 

Table 3. 4 Cohesive parameter used in this study 

Property Value 

tn
o    (MPa) 82.1 

ts
o     (MPa) 61.4 

tt
o      (MPa) 61.4 

GIC  (mJ/mm2) 1.097 

GIIC = GIIIc  (mJ/mm2) 2.633 

ⴄ 2.0 
 

3.5 ABAQUS User Subroutine  

A Fortran user subroutine (VUSDFLD) is developed to evaluate the intralaminar damage of the 

composite using the proposed Hashin failure criteria with the exponential damage evolution law. 

The user subroutine receives stresses from ABAQUS at every integration point and uses them to 

calculate the Hashin failure indicators for each failure mode. Next, the damage variable d for each 
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mode is computed based on the exponential damage evolution law. The damage variables di are 

returned to ABAQUS using the field variables tool. A look up table is defined in ABAQUS input file 

to relate the field variables to the elastic material properties. Based on the returned field variable, 

the appropriate material properties are assigned to the FE model. A flowchart of the 

implementation of the progressive damage model corresponding to the VUSDFLD user 

subroutine in ABAQUS is shown in Figure 3.6. A copy of the VUSDFLD Fortran subroutine is 

attached in Appendix B.  
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Figure 3. 6 Flowchart of the implementation of the progressive damage model corresponding to the user subroutine 
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3.6 Validation of Material Model  

In this section, the model validation of a single element and coupon tests is presented. This 

validation is performed to ensure that the proposed progressive damage model produces 

physically realistic behavior while reducing the level of complexity. The simulation models 

consisted of loading for each failure mode individually and tested to verify the model response 

and the damage progression. The simulations are performed with the parameter response m of 

the intralaminar damage is set to be 100. The material properties used for the validation of the 

material model are the homogenized properties and they are listed in Table 2.5, and the material 

strengths are listed in Table 3.1. 

For the single element simulations, an eight-node linear brick with dimensions of 2 mm x 2 mm 

x 2 mm is modeled in ABAQUS and loaded under displacement control in each direction with 

boundary conditions as shown in Figure 3.7. The stress responses of the solid element are 

evaluated in the fiber, transverse and shear directions. 

 

Figure 3. 7 Boundary conditions and loads of single element simulations: a) Fiber direction. b) Transverse direction. c) Shear 
direction. 

 



65 

For the simulation of the coupon tests, the FEA model is a rectangular plate generated in ABAQUS 

with dimensions of 70 mm x 15 mm x 2 mm. The plate models are generated with hexahedral 

solid elements and loaded in all directions, fiber, transverse and shear direction. The plate is 

meshed as C3D8 with 280 elements. The boundary conditions and loads applied for each test are 

shown in Figure 3.8. 

 

Figure 3. 8 Boundary conditions and loads of coupon simulations: a) Fiber direction. b) Transverse direction. c) Shear direction. 

3.6.1 Results of Model Validation  

The simulation results of the single element tests loaded in tension, compression and shear 

directions are illustrated in Figures 3.9. In the case of the tension in fiber direction, tension in 

transverse direction and shear direction, the stresses were gradually increased until the material 

reached its failure strength. Also, for the compression fiber and transverse directions, the 

magnitude of the compressive stresses is gradually increased until the material reaches its failure 

strength. Once the material failure occurs, the elastic properties get degraded based on the 

degradation rule presented in Table 3.3.  
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Figure  Simulation results of single element tests: a) fiber direction b) transverse direction c) shear 

direction.  

Figure 3. 9 Results of single element test loaded in (a) fiber direction (b) transverse direction and (c) shear direction 
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The results of the coupon simulations are illustrated in Figures 3.10 for tension and compression 

in the fiber direction, tension and compression in the transverse direction and the shear 

direction. The coupon plate is loaded in tension, compression and shear directions like the single 

element simulations. The coupon simulations are performed to ensure that the developed 

ABAQUS user subroutine evaluates the intralaminar damage for larger models with several 

numbers of elements as well as to ensure the mechanical response of the coupons is accurate. 

The results of the coupon simulations are as expected. The coupons fail once the material reaches 

its failure strength. It could be concluded that the response of the progressive failure model is 

consistent with the expected mechanical behavior of the composite. Also, it could be concluded 

that ABAQUS user subroutine can be used for practical FEA simulations. 
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3.7 Impact Simulations with Damage 

The FEA simulations are performed to investigate the NCF laminated composites under low 

velocity impact loading. The NCF laminates are impacted at three different energy levels, 30 J, 50 

J and 60 J. The parameters used for the impact simulations are listed in Table 3.5. The finite 

element homogeneous ply model is subjected to the three different energy levels. While the 

finite element mesoscale model is investigated under one energy level, 30 J. The numerical 

impact response of the homogeneous ply model and the mesoscale model are presented and 

validated with experimental data. 

Table 3. 5 Impact parameters used in simulations 

Impact energy (J) Drop mass (kg) Impact velocity (m/s) 

30 5.498 3.303 

50 9.498 3.245 

60 10.498 3.381 
 

3.8 Impact Results and Discussion  

The low velocity impact simulations are performed using homogeneous ply model and mesoscale 

model. This section presents a characterization of the impact simulations in terms of the force 

histories, absorbed energy and damage area for low and high energy impacts. 
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3.8.1 Contact Force and Displacement Histories and Absorbed Energy  

3.8.1.1 Low Energy Impact 

For 30 J impact, the numerical force-time and force-displacement curves for the homogeneous 

laminate are shown in Figure 3.11(a-b). The homogeneous laminate exhibits a similar impact 

response with experiment, characterized by an increase in the contact force during the loading 

phase with no evidence of significant damage such as drop in the contact force or high frequency 

oscillations (Belingardi et al., 2002). Figure 3.11(a) shows the force-time curve, the predicted 

peak force of the homogeneous ply model correlates very well with experiment with a difference 

of 2.76 %. The irregular oscillating pattern is captured very well compared to experiment which 

indicates that no significant damage had occurred at 30 J impact. The oscillations in the force-

time curve for the homogeneous ply model are mostly due to the plate vibration. The force-

displacement curves of the homogeneous ply model and experiment are shown in Figure 3.11(b). 

The maximum deflection is under predicted by 3.09 % compared to experiment as shown in 

Figure 3.11(c). The transverse displacement (deflection) of the top and bottom surfaces of the 

homogeneous ply model is plotted against the in-plane X-coordinate as shown in Figure 3.12(a).  

Additionally, a contour plot of the top surface and through the thickness (X-Z plane) of the 

homogeneous ply model is shown in Figures 3.12(b) and (c), respectively, which illustrate the 

deflection of the laminate at the peak load. It can be observed from Figure 3.11 that the rebound 

response of the homogeneous ply model is slower than experiment. The total impact duration of 

the homogeneous ply model is about 4.93 ms while the experiment is about 4.5 ms. The slower 

rebound might be due to the accuracy of capturing the material behavior such as the model 
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indentation damage mechanism. Also, it may be caused by the friction between the impactor and 

the top surface as well as the friction between the delaminated plies.  

 

 

 

Figure 3. 11 Numerical results for the homogeneous laminate impacted at 30 J impact: (a) force-time (b) force-displacement 

and (c) deflection-time curves 
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(a) 

 

(b) 

 

(c) 

Figure 3. 12 Out of plane displacement of the homogeneous ply model: (a) plot of the transverse displacement of the top and 
bottom surfaces  against the X-coordinate, (b) X-Y plane contour plot of the top surface and (c) X-Z plane contour plot. 
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The numerical force-time and force-displacement curves of the mesoscale model are illustrated 

in Figures 3.13(a) and 3.13(b), respectively and compared with the impact response of the 

homogeneous ply model and experiment. The mesoscale model has predicted a larger peak force 

than experiment by 21.51 %. The maximum deflection of the mesoscale model is lower than 

experiment by 14.38 % as shown in Figure 3.13(c). The numerical impact results of the mesoscale 

model differ from the results obtained from experiment. The difference is because the mesoscale 

model requires mesh refinement in order to improve the accuracy of the results. Based on the 

structural analysis presented in Section 2.3, the mesoscale model requires a large number of 

elements to capture the geometry of the tows accurately and predict the structural behavior 

more accurately. The current model is generated with 1,920,000 C3D8 elements and increasing 

the number of elements of the mesoscale model would be computationally expensive. 
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Figure 3. 13 Numerical results for the mesoscale laminate impacted at 30 J impact: (a) force-time, (b) force-displacement and 

(c) deflection-time curves  
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It  is observed from the force-displacement curve of the homogeneous ply model for the low 

energy impact, 30 J shown in Figure 3.12(b), the homogeneous ply model does not have the 

capability to accurately predict the residual displacement. This is because the permanent 

deformation and the tow entanglement are not captured after impact as observed in the 

experiment. In addition, it is observed that the predicted force-displacement curve is almost 

enclosed by the experimental curve; this observation concludes that the predicted absorbed 

energies are lower than the experimental absorbed energy. However, the force-displacement 

curve of the mesoscale model is under predicted as shown in Figure 3.13(b). As previously stated, 

the mesoscale model is generated with low mesh density which results in under predicting the 

impact response. The plots of the absorbed energies are shown in Figure 3.14. As can be seen 

from the absorbed energies plots, the homogeneous ply model curve compares very well with 

experiment during the initial impact until the impactor reaches nearly zero velocity. The residual 

absorbed energies get released from the impact damage during the rebound of the impactor. 

Also, the under prediction of the absorbed energies is due to not capturing the residual strain 

effect in the model (Lin et al., 2019). Table 3.6 summarizes the peak force, maximum deflection 

and absorbed energy of the low energy impact simulations compared to experiment. 

Table 3. 6 Summary of the peak force, maximum deflection and absorbed energy for the low impact energy 

Impact Energy (J)/Model Peak Force (N) Maximum Deflection (mm) Absorbed Energy (J) 

30 

Experiment 11300.74 4.92 17.6 

Homogeneous ply 
model  

11617.20 
(2.76%) 

4.77 (3.09%) 10.69 (48.85%) 

Mesoscale Model  
14024.80 
(21.51%) 

4.26 (14.38%) 4.72 (115.41%) 
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Figure 3. 14 Absorbed energy vs. time curves for low impact energy, 30 J 
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experimentally in the back face (breaching of the back face) of the laminate. However, the impact 

simulation using the homogeneous ply model has not captured the tows failure mechanism in 

the back face of the model. This might be due to the modeling approach used to generate the 

homogeneous ply model. The homogeneous plies are modeled as smeared plies (no tow and 

matrix geometries involved). In addition, the interlaminar fracture energies of modes I, II and III 

are another factor that influence the accuracy of the predicted results. As mentioned previously 

in Section 3.2.2, the value of the interlaminar fracture energy for mode I GIC is obtained from 

experiment. However, the values of the interlaminar fracture energy for modes II GIIC and III GIIIC 

are assumed to be 2.4*GIC. From the literature, it is found that an accurate prediction of an 

impact response is improved when an accurate value of the fracture properties is used (Tan and 

Falzon et al., 2016). The exact value of mode II fracture energy is required to accurately predict 

the impact response as well as the delamination/damage area (Francesconi and Aymerich et al., 

2017). 
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Figure 3. 15 Numerical results for homogeneous ply models impacted at 50 J impact: (a) force-time, (b) force-displacement and 

(c) deflection-time curves 
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Figure 3. 16 Numerical results for homogeneous ply model impacted at 60 J impact: (a) force-time, (b) force-displacement and 

(c) deflection-time curves 
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It  is observed from the force-displacement curves of the simulations for the high impact energy, 

50 J and 60 J shown in Figures 3.15(b) and 3.16(b), the homogeneous ply model does not have 

the capability to accurately predict the residual displacement. This is because the permanent 

deformation and the tow entanglement are not captured after impact as observed in the 

experiment. In addition, it is observed that the predicted force-displacement curves are almost 

enclosed by the experimental curves; this observation concludes that the predicted absorbed 

energies are lower than the experimental absorbed energies. The plots of the absorbed energies 

are shown in Figure 3.17(a-b). As can be seen from the absorbed energies plots, the curves 

compare very well with experiment during the initial impact until the impactor reaches nearly 

zero velocity. The residual absorbed energies get released from the impact damage during the 

rebound of the impactor. Also, the under prediction of the absorbed energies is due to not 

capturing the residual strain effect in the model (Lin et al., 2019). As the impact energy increases, 

a significant discrepancy is found in terms of the peak force and the absorbed energy. Table 3.7 

summarizes the peak force, maximum deflection and absorbed energy for high impact energy 

simulations compared to experiment.  

Table 3. 7 Summary of the peak force, maximum deflection and absorbed energy for high impact energy 

Impact Energy (J)/Model Peak Force (N) 
Maximum Deflection 

(mm) 
Absorbed Energy 

(J) 

50 
Experiment 13959.73 6.49 33.86 

Homogeneous ply 
model  

14907.70 (6.57%) 6.37 (1.87%) 20.41 (49.57%) 

60 
Experiment 14119.70 7.04 48.33 

Homogeneous ply 
model  

17186.30 
(19.59%) 

6.92 (1.72%) 21.95 (75.07%) 
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Figure 3. 17 Absorbed energies vs. time curves for high impact energy (a) 50 J impact and (b) 60 J impact 
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experimental ultrasonic C-scan are shown in Figure 3.18(a-c). For 30 J, 50 J and 60 J impact, the 

predicted damage area is mostly an elliptical shape and as the incident impact energy increases, 

the damage area increases. However, the delamination area for the 50 J and 60 J impact is under 

predicted. From the experimental C-scan, the delamination growth is larger than the predicted 

damage. The failure mode is de-bonding in the tows of the back-face of the laminate which the 

homogeneous ply model has not captured. Figure 3.19 illustrates a comparison of the damage 

area between numerical and experiment. The predicted damage area measurements have been 

performed using ImageJ software. As shown in the plot, the experimental damage area increases 

linearly which indicates damage growth as the impact energy increases. As seen in Figure 3.19, 

there is a good agreement between predicted damage area for 30 J impact and experiment. 

While for 50 J and 60 J impact, a significant difference is observed in the predicted damage area 

compared to experiment. This difference is due to the release of the absorbed energy during the 

rebound stage of the impactor. Also, the discrepancy is because of the capability of the 

intralaminar failure criteria to predict an accurate damage at higher level of energy as well as the 

accuracy of the used values for the fracture energies.  



83 

 

Figure 3. 18 Predicted damage envelope compared with experimental C-scan for laminates impacted at (a) 30 J, (b) 50 J and (c) 
60 J 
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Figure 3. 19 Plot of the damage area vs. incident impact energy 

During impact, damage occurs in the form of fiber failure, matrix failure and delamination 

between the plies. The predicted complete damage status (all failure modes) for 30 J impact in 

each lamina of the homogeneous ply model, starting from the top ply (impact region) to bottom 

ply is shown in Figure 3.20.  The “rotating fan” damage pattern is predicted on the top few plies 

where the damage occurs perpendicular to the fiber direction as seen in Figure 3.20. The different 

damage modes for 30 J impact of the homogeneous ply model are shown in Figure 3.21. It is 

observed that most of the damage at the top plies are compression fiber failure as well as 

compression matrix failure. Whereas the tension failure modes, fiber and matrix, start to occur 

from the back surface of the laminate and progress toward the top surface. The topmost plies 

(impact region – under the impactor) have little fiber damage compared to matrix damage. A 

similar damage pattern of the rotating fan is predicted for the 50 J and 60 J impacts. Figures 3.22 

and 3.23 illustrate the first eight plies as well as the through thickness damage for different 

0

500

1000

1500

2000

2500

3000

20 30 40 50 60 70

D
am

ag
e 

A
re

a 
(m

m
2

)

Impact Energy (J)

Homogeneous Model

Experiment



85 

damage modes of the laminate impacted at 50 J and 60 J, respectively. As can be seen from the 

figures, with increasing impact energy, the damage extent is larger for 50 J and 60 J impacts 

compared with 30 J impact. 

 

Figure 3. 20 The predicted damage extent in each ply for the 30 J impact 
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Figure 3. 21 Predicted through thickness damage contour for different damage modes for 30 J impact 

 

Figure 3. 22 Predicted damage contour of the laminate impacted at 50 J 
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Figure 3. 23 Predicted damage contour of the laminate impacted at 60 J 

The progressive damage of the homogeneous ply model during the 30 J impact event is shown in 

Figure 3.24. The time intervals are marked on the force-time curve and illustrated in Figure 3.24 

(a). The progressive damage growth for different failure modes, fiber and matrix failure modes, 

of the homogeneous ply model is shown in Figures 3.24 (b) and (c). The damage of the 

homogeneous ply model grows steadily until the peak load, point (e). At the peak load (e) and 

beyond the peak load state, the extent of the damage is reached its final state, completely 

damaged. 
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(a) 

 
(b) 

 
(c) 

Figure 3. 24 The progressive damage growth of a homogeneous ply model impacted at 30J: (a) force-time curve, (b) fiber 
damage growth and (c) matrix damage growth 
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3.8.3 Conclusion 

The NCF homogeneous ply laminate and mesoscale laminate are used to predict the low velocity 

impact response. The laminated composites are impacted at three different energy levels 30 J, 

50 J and 60 J. The numerical results are validated with experimental results in terms of the force 

histories, absorbed energy and damage/delamination area. Excellent agreement is observed in 

terms of peak force, maximum deflection and damage area between homogeneous ply laminate 

and experiment for the 30 J impact with an overall error percentage less than 3 %. However, the 

mesoscale laminate is impacted at 30 J and the impact response is under predicted compared to 

experiment. The mesoscale laminate model requires mesh refinement to improve the accuracy 

of the impact response results. In the case of higher impact energies, 50 J and 60 J, the 

homogeneous ply model under predicts the impact response. It is observed that the level of 

accuracy decreases as the level of impact energy increases. The under prediction of the impact 

response is due to the accuracy of capturing the material behavior (damage) under impact 

loading. The fracture energies of mode II and III have to be determined experimentally in order 

to predict an accurate material behavior under the low velocity impact loading. In addition, the 

absorbed energies are under predicted in the case of low as well as high impact energy, and this 

is due to the released damage energy during the rebound phase of the impactor, and the residual 

strain effect is not captured in the models. Overall, based on the presented results of the low 

velocity impact, it can be concluded that the homogeneous ply model is reliable to predict the 

impact response up to 50 J impact energy.  
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Chapter 4 Predicting the Compression After Impact Performance 

of Multidirectional Fiber-Reinforced Laminate 

4.1 Introduction 

The accurate prediction of damage tolerance in fiber reinforced composite plays a significant role 

in reducing the weight of aerospace structures, especially in civil aircraft (Megat-Yusoff et al., 

2019). The damage tolerance is studied to determine the effect of impact energies on the residual 

strength of the composites. The compression after impact (CAI) behavior of laminated structures 

is used/evaluated to measure the residual strength of composite structures (Tuo and Zhang et 

al., 2019). In this chapter, the proposed FE models for predicting the CAI response of the NCF 

composites are presented. The modeling of the FE NCF laminates is presented in Chapter 2. The 

CAI simulations are performed to measure the damage tolerance of the FE laminates after being 

damaged by low velocity impact. The composite laminates are subjected to an axial compression 

load to predict the compressive residual strength of the composites. The first step is to induce 

damage to the laminates using low velocity impact as presented in Chapter 3. This is then 

followed by a compression simulation of the damaged laminates. The CAI simulations utilize the 

progressive damage models detailed in Chapter 3 to predict the intralaminar and interlaminar 

failure. All experimental data presented in this Chapter are obtained from McDermott (2019) and 

used for the validation of the FE models for the CAI simulations.  
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4.2 Compression After Impact Methodology  

The damage and failure models implemented to predict the intralaminar failure of the laminates 

utilize the 3D Hashin failure criteria to predict failure initiation and the exponential damage 

evolution law used to compute the damage variables for each failure mode. For the interlaminar 

failure, the quadratic stress criterion and the Benzeggagh and Kenane (BK) law are used to predict 

damage initiation and damage propagation, respectively. The damage models of the intralaminar 

and interlaminar failure are presented in detail in Chapter 3.  

The CAI simulations are performed using ABAQUS/Explicit since it was used for the low velocity 

impact simulations. Instead of using ABAQUS/Implicit solver method for the CAI simulations 

(Quasi-static CAI), the ABAQUS/Explicit solver is implemented to avoid the complexity of 

converting the damaged model from the Explicit impact simulation to Implicit solver. In addition, 

the use of ABAQUS/Explicit would eliminate the conversion issue of ABAQUS/Implicit solver since 

there is non-linear behavior involved in the model.  

As mentioned previously, the CAI simulation is carried out to study the effect of the impacted 

laminates on their residual strength. First, the damage of the laminates is induced using a low 

velocity impact as presented in Chapter 3. Once the impact simulations are completed, the 

composite laminates are subjected to axial compression to assess their damage tolerance. 

However, in order to predict an accurate response of the compression after impact, an 

intermediate process is performed to import the results from the impacted laminate to the CAI 

model as an initial state. The ABAQUS command “ *Import ” is used to import the results obtained 

from the impact simulations to the CAI model. The *Import command has the capability to import 
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the stresses, strains and displacement to the CAI model. Additionally, this command is able to 

import the results of the intralaminar failure such as the field/damage variables and state 

variables (failure indicators) for each element as well as the delamination failure variable to the 

CAI model from the impacted laminate. To ensure that the results from the impacted laminate 

get imported accurately as an initial state to the CAI model, the CAI model has to be the same as 

the impacted laminate in terms of the number of elements, element type and part instances’ 

name. Figure 4.1 illustrates a schematic of ABAQUS analysis steps. 

 

Figure 4. 1 A schematic of ABAQUS analysis steps 

The laminated composite models are simulated in two sequential steps as follow: 

1) Impact step: simulation of the impact loading and evaluation of the impact damage. 

2) CAI step: the results from the impacted laminate are imported as an initial state to the 

CAI model and then the simulation of the CAI is performed until the model’s failure.  
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In the second step, the results of the impacted laminate are imported on the CAI model where 

new boundary conditions are applied to perform the CAI simulations. The model dimensions, CAI 

setup and boundary conditions used for the simulations are shown in Figure 4.2. The dimensions 

of the composite plate used in the CAI simulations are 150 mm x 100 mm x 4.464 mm. The 

boundary conditions are applied based on the experiment setup where the Airbus test fixture 

(AITM 1-0010) is used to carry out the compression tests. The top and bottom regions are 

restrained in the thickness direction with the displacement component U3=0. The bottom face is 

constrained such that there is no translation in 1-direction U1=0 (vertical translation). One node 

at the bottom face is constrained in the horizontal translation such that U2=0. The knife/side 

edges are simply supported through the thickness such that the displacement component U3=0. 

The side edges are 115 mm long and they are 5 mm apart from the outer perimeter of the model. 

The prescribed load is applied as a displacement control at a constant load rate of 13.5 m/min in 

ABAQUS and it is applied on a reference point. The nodes of the top face are constrained to the 

motion of the reference point using the kinematic coupling constraint feature in ABAQUS.  
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Figure 4. 2 Virtual CAI test setup of the FE model 

4.3 Stress and Strain Calculations 

The compressive stress-strain response for the composite laminates is calculated based on the 

reaction force and the displacement of the point load of the model. This approach is adopted so 

that an average stress and strain is determined for the whole model. The average stress and 

strain equations are shown in Equation (4.1) and (4.2), respectively.  

                                        𝜎 =  
𝑅𝐹

𝐴
          (4.1) 

                   𝜀 ̅ =  
𝛿

𝐿
                             (4.2) 

1 - Top and bottom regions are  restrained 
such that U3 = 0. The width of the area is 
10 mm. 
2 - Side edges (Knife edges) are simply 
supported U3 = 0. 
3 - Bottom face: translation in 1 is fixed 
U1=0. 
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where RF is the reaction force of the load reference point, A is the cross-sectional area of the 

region where the load is applied, δ is the change in displacement and L is the length of the model. 

In the current model, the cross-sectional area A = 446.4 mm2and the length of the model L = 130 

mm. 

4.4 Results and Discussion  

The predicted compressive stress-strain responses for undamaged homogeneous ply and 

mesoscale models are shown in Figure 4.3 and summarized in Table 4.1. As seen in the figure and 

Table 4.1, the predicted moduli of the homogeneous ply model and mesoscale model are higher 

than the results obtained from experiment by 11.29 % and 12.57 %, respectively. The predicted 

compressive ultimate strength of the undamaged homogeneous ply laminate is higher than 

experiment by 2.69 %. However, for undamaged mesoscale laminate, the predicted ultimate 

strength is lower than experiment by 16.75 %. The under prediction of the ultimate strength for 

the mesoscale model is due to the inability of the mesoscale model to capture the tow 

geometries precisely, for more detail on the discussion of the mesoscale geometries is presented 

in Chapter 2 and 3.  

As mentioned previously, in order to predict the compressive residual strength of the laminate 

accurately, it is important to first capture the impact response accurately. Based on the impact 

numerical results presented in Chapter 3, the impact response of the homogeneous ply laminate 

impacted at 30 J correlates very well with experiment in terms of peak force, maximum 

deflection, absorbed energy and damage area. Therefore, the homogeneous ply laminate 

impacted at 30 J is taken to a further step to measure the damage tolerance of the laminate after 



96 

impact. The comparison of the compressive stress-strain response between numerical and 

experiment for 30 J CAI test is shown in Figure 4.4. The predicted stress-strain response of 

homogeneous laminate for 30 J CAI correlates very well with experiment. The predicted 

compressive residual strength, listed in Table 4.1, is lower than experiment by 4.75 %. The effect 

on the ultimate strength is shown in Figure 4.4 of the impacted laminate where a lower ultimate 

strength is predicted compared to the undamaged result of the homogeneous ply model 

illustrated in Figure 4.3. A summary of the predicted and experimental moduli is listed in Table 

4.1 where the percentages are the difference between numerical and experiment. The moduli 

for the laminates are predicted and compared with experiment, the predicted and experimental 

moduli are computed in the range of 0.1 % to 0.3 % strain. The experimental values presented 

are the average value of four to five tested specimens. The predicted moduli are higher than 

experiment as seen in Table 4.1. The reason for obtaining low compressive modulus 

experimentally can be due to the difference between the setup of the test and the boundary 

conditions used for numerical simulations. Another reason for obtaining different moduli is 

because of the material behavior of the composite under compression test. For instance, there 

is a tendency for micro buckling of carbon fibers subjected to compression load which has been 

noticed experimentally (Mujika et al., 2006).  
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Figure 4. 3 Compressive stress-strain responses for undamaged homogenous model and mesoscale model 

 

 

Figure 4. 4 Compressive stress-strain responses for 30 J CAI test of homogeneous ply model 
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Table 4. 1 Results summary of CAI 

Energy Level / Model Ultimate Strength (MPa) Modulus (GPa) 

0 J 

Experiment  335 65 

Homogeneous ply model 344.12 (2.69%) 72.78 (11.29%) 

Mesoscale Model 283.21 (16.75%) 73.72 (12.57%) 

30 J 
Experiment 250 63.50 

Homogeneous ply model 238.39 (4.75%) 68.49 (5.0%) 

 

4.5 Conclusions 

The compressive residual strength of the homogeneous ply model impacted at 30 J is predicted. 

Good agreement is observed between the CAI of the homogeneous ply model and experiment. 

The predicted compressive residual strength of the homogeneous ply laminate impacted at 30 J 

is within 4.75 % of the averaged experimental value. For the undamaged CAI simulations, the 

homogeneous ply laminate demonstrates a better prediction of the ultimate strength compared 

to the mesoscale laminate. The predicted moduli of the laminates are higher than experiment. 

The difference between the numerical and experimental results is due to the application of the 

boundary conditions. In addition, the difference between the numerical and experimental moduli 

is because of the material behavior of the composite under compression test such that the 

composite laminate might experience a micro buckling of the fibers during the experiment and it 

was not captured numerically (Mujika et al., 2006). Overall, the homogeneous ply laminate 

showed excellent performance in terms of predicting the compressive residual strength for a 

laminate impacted at 30 J as well as the undamaged compressive strength. 
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Chapter 5 Conclusions and Future Work/Recommendations 

5.1 Conclusions  

In this thesis, numerical tools are used to investigate fiber-reinforced composites under low 

velocity impact loading and predict the compressive residual strength of the laminate after 

impact. Finite element NCF models are developed to study their mechanical behavior under 

impact loading. The NCF models are generated using two approaches. First approach, a finite 

element homogeneous ply laminate is generated where in this model there is no difference in 

the model’s constituent. Second approach, a finite element mesoscale model as a plate which 

consists of tows geometries as well as matrix geometries where the constituents of the plate are 

considered as different parts.  

Chapter 3 presents the modeling and results of the low velocity impact simulations. The finite 

element homogeneous ply laminate is impacted at three different levels of impact energy 30 J, 

50 J and 60 J. While the finite element mesoscale laminate is impacted at only 30 J because it is 

computationally expensive due to the large number of elements used to generate the mesoscale 

model. The presented numerical results are validated with experimental data in terms of the 

peak force, absorbed energy, maximum deflection and damage area. It is observed that the 

predicted impact response of the mesoscale model does not correlate well with the experimental 

data. In order to have an accurate impact response of the mesoscale model, a mesh refinement 

has to be performed to the mesoscale model where a large number of elements is required to 

capture the geometries of the model, e.g. tow geometries and matrix geometries. Based on the 
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convergence study presented in Chapter 2, the mesoscale model requires over 10,000,000 

elements to produce accurate results whereas the current mesoscale model is generated with 

1,920,000 elements. However, the homogeneous ply model showed excellent agreement with 

experimental data up to 50 J impact energy. In the case of higher impact energies, 50 J and 60 J, 

the homogeneous ply model over predicted the peak forces and under predicted the progressive 

damage of the laminate compared to experiment. The discrepancy between the numerical and 

experiment for higher levels of impact energy might be due to the inaccuracy of some of the 

assumed parameters such as the interlaminar material properties. Based on the literature 

presented in Chapter 1, it is found that the values of the fracture energies used in simulations 

play an important key to capture the overall impact response.  

Chapter 4 presents the modeling and results of the compression after impact. The compressive 

ultimate strength is predicted for undamaged mesoscale model as well as undamaged 

homogeneous ply model. The predicted ultimate strength for the undamaged homogeneous ply 

model is in good agreement with experiment with a difference of 2.69 %. However, the 

mesoscale model under predicts the ultimate strength compared to experiment by 16.75 %. The 

compressive residual strength after impact is predicted for homogeneous ply laminate subjected 

to 30 J impact. The predicted compressive residual strength correlates well with experiment with 

a difference of 4.75 %. In addition, the laminates moduli are calculated and listed in Table 4.1. 

The predicted Young’s moduli are higher than the experimental values. The difference in the 

numerical and experimental moduli may be due to the application of the boundary conditions. 

Also, the difference between the numerical and experimental moduli is because of the material 

behavior of the composite under compression test such that the carbon fibers of the specimen 
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might experience a micro buckling during the experiment and it was not captured numerically 

(Mujika et al., 2006). 

From the results presented in Chapters 3 and 4, it can be concluded that the homogeneous ply 

model can be used to perform low velocity impact simulations and predict the compressive 

residual strength of the laminate. It is computationally efficient to use a homogeneous ply model 

since it does not require a large number of elements to predict the impact response as well as 

the compressive residual strength. Based on the results presented, the homogeneous ply 

laminate can predict an accurate low velocity impact response up to 50 J impact energy. There 

are still more improvements that can be done to improve the accuracy of the results as well as 

to reduce the cost of the simulations.  

5.2 Future Work/Recommendations 

The finite element simulations require additional work to accurately predict the progressive 

damage of the laminates. Additional implementations are presented below that would be 

beneficial for improving the accuracy of the results.  

1. The modeling technique used to generate the homogeneous ply model and the mesoscale 

model can be revised. A small impact region (homogeneous/mesoscale region) can be 

generated with fine mesh surrounded by a homogeneous region generated with coarse 

mesh. The impact region and the surrounded region is connected through a “tie 

constraint” to control the motion between the two regions. This approach would make 

the simulations more efficient which will lower the cost of running the simulations.  
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2. The accuracy of the finite element simulations depends on the values of fracture energy. 

To improve the interlaminar damage prediction, it is very important to measure the 

fracture energy experimentally and use the values in the modeling to simulate an accurate 

impact response as well as predict the compressive residual strength. In addition, the 

cohesive response parameter ⴄ should be obtained based on experimental data of 

fracture energy to predict delamination more accurately.  

3. A criterion should be implemented to account for the residual strain that would capture 

the permanent deformation.  

4. For predicting the compressive residual strength of the laminate after impact, it is 

recommended to stabilize the laminate (i.e. use Rayleigh damping) after impact and then 

import the damage from impact to the CAI model.  
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APPENDICES  

APPENDIX A: TexGen Scripts 

A.1  A Python script to generate a unit cell model in TexGen 
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A.2   A Python script to generate NCF mesoscale model in TexGen  

 



109 

 



110 

 

 

  



111 

APPENDIX B: ABAQUS (VUSDFLD) Subroutine 

B.1  VUSDFLD subroutine used for a homogeneous ply model  
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B2. VUSDFLD subroutine used for a mesoscale model 
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