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  The terrestrial biosphere plays an important role in the global carbon cycle, and 

disturbance fire and climate extreme drought have strong direct and indirect impacts on the 

carbon fluxes. In addition, the lateral dissolved organic carbon (DOC) flux from soils to 

inland waters represents an important component of the terrestrial biosphere carbon cycle. 

 Fires play an important role in the terrestrial biosphere carbon cycle, not only through 

direct carbon release but also contributing to a potential long-term storage as pyrogenic 

carbon (PyC). PyC is formed through fires, and because it may resist further biological and 

chemical degradation, is more stable in soil and sediment than original biomass. The chapter 

1 presents estimates of global PyC production.   

 Worldwide, droughts are becoming more frequent with increasing weather extremes, 

resulting in substantial impacts on land-atmosphere carbon exchange. However, the patterns 

of carbon fluxes in response to droughts differ across biomes and time scales due to 

variations in the adaptation and resilience of different plant species, soil properties, and 



 

 

 

available water and nutrients. In chapter 2, I examined the biome-scale spatial patterns in the 

response of carbon fluxes to droughts at different time scales.  

 The export of dissolved organic carbon (DOC) from a watershed is a critical flux of 

terrestrial biosphere carbon cycles. Advanced understanding of how environmental factors 

drive the temporal patterns of this biogeochemical process and their relative magnitudes of 

impacts is necessary to accurately model and evaluate terrestrial carbon storage and fluxes. In 

chapter 3, I examined the impacts of environmental factors on the temporal patterns of DOC 

export and their relative magnitudes, as well as the autocorrelation of DOC export. The 

lateral flux of dissolved organic carbon (DOC) from soils to inland waters and ultimately 

delivered to the ocean represents a fundamental component of the global carbon cycle. To 

estimate the production, delivery and potential fates of DOC flux from terrestrial through 

aquatic ecosystems to the ocean, I developed a process-based terrestrial-aquatic DOC fluxes 

model (TAF-DOC), which has the ability to estimate the spatial and temporal dynamics of 

DOC flux through incorporating various environmental factors. 
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CHAPTER 1 

1. GLOBAL PYROGENIC CARBON PRODUCTION DURING RECENT DECADES 

HAS CREATED THE POTENTIAL FOR A LARGE, LONG-TERM SINK OF 

ATMOSPHERIC CO2 

1.1 Introduction 

 Fires, as worldwide ecological disturbances, appeared in the geological record soon 

after the appearance of terrestrial plants. Fires strongly influence the terrestrial carbon cycle 

across a broad range of spatial and temporal scales by transferring carbon between ecosystem 

pools and the atmosphere, as well as through the legacy effects of resetting succession 

(Giglio et al., 2013; Wei and Larsen, 2019). Fires directly convert carbon stored in biomass, 

including litter and soil organic matter, to gaseous and particulate forms, which are released 

to the atmosphere (Forbes et al., 2006; Wei and Larsen, 2018). These gases consist primarily 

(>90%) of CO2, but also include CO, CH4, and CH3Cl (Crutzen and Andreae, 1990). At the 

same time, a portion of organic carbon is thermochemically converted to recalcitrant 

pyrogenic carbon (PyC, also named as black carbon, charred biomass, soot, or colloquially as 

charcoal), which is formed from the combustion of organic matter through biomass burning 

(Bird et al., 2017; Wagner et al., 2018). 

 PyC includes a range of particle sizes, from mainly macroscopic charcoal and 

partially charred vegetation material that remains on site, to small particles in smoke that may 

remain in the atmosphere for over a week and thus transported far from the site of origin 
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(Cooke and Wilson, 1996). Due to its more chemically and biologically stable properties, 

when compared to original biomass (Kuzyakov et al., 2014; Santín et al., 2015), PyC may 

have a relative long residence time (e.g. Cotrufo et al., 2016; Singh et al., 2014). Assuming 

the post-fire carbon can recover to the pre-fire status, PyC may thus serve as a long-term, 

stable sink that is distributed globally via fluvial and atmospheric transport to become a 

ubiquitous component in soil, lacustrine, and marine sediment (Santín et al., 2016). 

 Fuel type, fire intensity, and weather conditions codetermine PyC production during 

fires (Czimczik et al., 2005; Schmidt and Noack, 2000). Previous studies have explored PyC 

production rates across various biomes; these rates may be estimated in one of the three 

ways: (1) the ratio of carbon contained in PyC to that directly released as CO2 through a 

burning event (PyC/CO2) (e.g. Hao et al., 1990; Kuhlbusch and Crutzen, 1996); (2) the ratio 

of carbon contained in PyC to the carbon exposed to the fire (PyC/C exposed) (e.g. Santín et 

al., 2015); or (3) the ratio of carbon contained in PyC to the carbon consumed through 

burning (PyC/C consumed) (e.g. Forbes et al., 2006; Santín et al., 2016). If these ratios were 

relatively constant within a biome, and the denominators were reasonably estimated, PyC 

production from fires could be quantified at the biome-, continental-, and global-scale (e.g. 

Crutzen and Andreae, 1990; Forbes et al., 2006; Kuhlbusch et al., 1996; Preston and Schmidt, 

2006; Santín et al., 2016).  

 Given the substantial impact of fires on the global carbon cycle (van der Werf et al., 

2017), improved estimates of PyC production are necessary to better understand, quantify and 

model the global carbon cycle. Several previous studies have estimated PyC production at the 
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global scale (e.g. Bird et al., 2015; Kuhlbusch and Crutzen, 1995; Santín et al., 2016), but 

none have incorporated the full set of biome-specific conversion ratios to characterize and 

quantify the temporally- and spatially-explicit patterns of PyC production from global 

vegetation burning. The objectives of our study were to (1) update the estimate of PyC 

produced by global fires using detailed, biome-scale PyC-carbon ratios obtained from 

previous studies, and (2) present the spatio-temporal and inter-annual variations of CO2 

emissions and PyC production from global fires in the period of 2000-2016. 

1.2 Materials and Methods 

1.2.1 Estimates for Fire-caused CO2 Emissions 

 The magnitude and rate of carbon emissions to the atmosphere from fires over large 

regions has been quantified and extrapolated based on inventories and ecosystem models (e.g. 

French et al., 2011; Kasischke et al., 2013). Using the inventory-based burned area data along 

with meteorological information, vegetation characteristics, and emission factors for different 

land ecosystems, such approaches can estimate the CO2 released from global fires (van der 

Werf et al., 2017). Here we use existing estimates of fire emissions from previous simulation 

results from two distinct, process-based carbon cycle models, namely the Global Fire 

Emissions Database (van der Werf et al., 2017) and the Terrestrial Ecosystem Model (Hayes 

et al., 2011). Because neither model directly estimates PyC production from fires, we used 

the CO2 emissions estimates provided by these model results, along with published biome-

specific PyC/CO2 ratios, to estimate the spatial and temporal patterns of global PyC 

production. 
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 The Global Fire Emissions Database version 4 (GFED4; Giglio et al., 2013; van der 

Werf et al., 2010) provides a framework for assessing the impact of fires on the terrestrial 

biosphere carbon cycle, including global burned area and monthly emissions during 1997-

2016. The monthly emissions are estimated based on observed burn area data and active fire 

information classified from MODIS imagery, land cover characteristics, and meteorological 

data (Giglio et al., 2013). Carbon in biomass and soil organic matter representing fuels in 

combustion are simulated with a revised version of the Carnegie-Ames-Stanford Approach 

(CASA) biogeochemical model (van der Werf et al., 2017). In the latest version, GFED4s 

(van der Werf et al., 2017), “s” means that burned area caused by small fires estimated by 

models is included in this database, which provides global CO2 emissions at monthly time 

step and 0.25° spatial resolution. In our analysis, the worldwide monthly CO2 emissions from 

2000 to 2016 were used to estimate PyC resulting from fires. 

 The Terrestrial Ecosystem Model version 6 (TEM6; Chen et al., 2017; Hayes et al., 

2011) is within the class of process-based terrestrial biosphere models (McGuire et al., 2000) 

that simulate the dynamics of carbon, nitrogen, and water through plants and soils as 

determined by climate, atmospheric chemistry, land use and disturbances (Huntzinger et al., 

2017; McGuire et al., 2000). TEM6 has been used to examine terrestrial carbon dynamics at 

various spatial scales and monthly temporal resolution (e.g. Hayes et al., 2011). It was 

modified by Balshi et al. (2007) to simulate the changes of carbon pools resulting from fires 

in pan-boreal region, and further modified and applied to estimate the carbon fluxes and 

storage from burning over large regions (e.g. Chen et al., 2017). In our study, TEM6 provided 
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CO2 emissions released from fires at monthly time step and 0.5⁰ spatial resolution from 2000 

to 2010 based on the global simulation results developed for the Multi-Scale Synthesis and 

Terrestrial Model Intercomparison Project (Huntzinger et al., 2013; Wei et al., 2014). 

1.2.2 PyC Estimation 

 The two modeling approaches used here estimated carbon directly released by fires as 

CO2. Published relationships between PyC and CO2, specific to each biome of interest, are 

described below and used to estimate PyC from fires in this analysis. Because several 

published studies did not present the conversion ratio PyC/CO2, we calculated it from their 

results, using Equation 1.1.  

PyC/CO2  =
𝑃𝑜𝑠𝐹_𝑃𝑦𝐶 − 𝑃𝑟𝑒𝐹_𝑃𝑦𝐶

[(𝑃𝑜𝑠𝐹_𝐶 + 𝑃𝑜𝑠𝐹_𝑃𝑦𝐶) − (𝑃𝑟𝑒𝐹_𝐶 + 𝑃𝑟𝑒𝐹_𝑃𝑦𝐶)] ∗ 𝐸𝐹
 

Equation 1.1 

where PreF_C is the total Pre-fire carbon, PreF_PyC is the total Pre-fire PyC, PosF_C is the 

total Post-fire carbon, PosF_PyC is the total Post-fire PyC, and EF is a constant emission 

factor, representing the percentage of C in released CO2 of total released carbon. Given that 

the EF is ~90% (e.g. Crutzen and Andreae, 1990; Forbes et al., 2006), we used 0.9 in the 

calculation. 

 Based on the set of PyC/CO2 ratios that we synthesized across various land 

ecosystems, we divided the global terrestrial biosphere into seven biomes (Figure 1.1). The 

biome information was obtained using the Terrestrial Ecoregions of the World Map (Olson et 

al., 2001; http://www.worldwildlife.org/science/data/item1875.html), and was resampled at 

both 0.25×0.25 (GFED4s) and 0.5×0.5 (TEM6) degree resolutions to estimate the PyC 
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production from CO2 emissions. In addition, we further aggregated biome regions to five 

continents, including Africa, Australia, Eurasia, North America, and South America. 

 

Figure 1.1. The seven global biomes used in this study, aggregated to five continental-scale 

regions. 

 Santín et al. (2015) quantified the prefire and postfire fuel and PyC in the boreal forest 

under the experimental fire, then they concluded that the PyC/CO2 ratio was 38.1%. 

Thompson et al. (2016) used laboratory burning for masticated wood fuel particles collected 

from the boreal forest and concluded a PyC/CO2 ratio of 0.3-1.4%. Czimczik et al. (2003) 

analyzed elemental concentrations in both unburned and burned samples from a naturally 

occurring boreal surface fire in west Siberian, concluding that the PyC/CO2 ratio was 1.9%. 

Kuhlbusch and Crutzen (1995) sampled organic materials from various biomes and 

combusted them in the laboratory to measure the PyC/CO2 ratios in various biome regions. 

Their laboratory analyses of boreal forest determined a PyC/CO2 ratio of 5.0-7.0%. It should 
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be noted that this study focussed on particles with an average diameter of 40 μm, meaning 

that smaller PyC particles may have been omitted. 
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Table 1.1. PyC conversion ratios (PyC/CO2) from published studies. 

Study location PyC/CO2 (%) Type of fire Fuel type Type of PyC Reference 

Boreal Forest    

Canada 38.1 Experimental All fuels Charred mass Santín et al. (2015)  

Canada 0.3-1.4 Laboratory Masticated fuel Total Thompson et al. (2016) 

Siberia 1.9 Wildfire Forest floor Total Czimczik et al. (2003) 

Global 5.0-7.0 Laboratory All fuels ≥40μm Kuhlbusch and Crutzen (1995) 

Temperate Forest   

Australia 6.4-11.3 All¶ Surface fuel Total Graetz and Skjemstad (2003) 

Australia 5.1 Prescribed Surface fuel Charcoal, ash Jenkins et al. (2016) 

Arizona, USA 1.1-5.1 Prescribed Slash pile Total Finkral et al. (2012) 

California, USA 4.1 Wildfire All fuels Total Miesel et al. (2018) 

Florida, USA 9.9 Prescribed Surface fuel Visual charcoal Comery (1981) 

Idaho, USA 11.8-12.7 Laboratory All fuels Charcoal, ash Brewer et al. (2013) 

Oregon, USA 1.1-8.9 Prescribed Woody fuels >2000μm Pingree et al. (2012) 

Germany 8.9 Experimental Slash pile ≥1 mm Eckmeier et al. (2007) 

Global 5.0-7.0 Laboratory All fuels ≥40 μm Kuhlbusch and Crutzen (1995) 

Tropical Forest   

Amazon  10.8 Prescribed Slash pile Visual charcoal Fearnside et al. (1993) 

Amazon 2.9 Prescribed Slash pile Visual charcoal Barbosa and Fearnside (1996) 

Amazon 3.3 Prescribed Slash pile Visual charcoal Fearnside et al. (1999) 

Amazon  4.5 Prescribed Slash pile Visual charcoal Fearnside et al. (2001) 

Amazon 4.6 Prescribed Slash pile Visual charcoal Fearnside et al. (2007) 

Amazon  10.2 Experimental Slash pile Charcoal, ash Graça et al. (1999) 
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Table 1.1 continued. 

 

Amazon 8.4-19.7 Prescribed Woody debris Ash Kauffman et al. (1995) 

Amazon 14.0 Prescribed Slash pile Visual charcoal Righi et al. (2009) 

Global 5.0-7.0 Laboratory All fuels ≥40μm Kuhlbusch and Crutzen (1995) 

Temperate Grassland   

America 3.7 Wildfire Surface fuel Visual charcoal Hao et al. (1990) 

Asia 0.3 Wildfire Surface fuel Visual charcoal Hao et al. (1990) 

UK 5.0 Prescribed Surface fuel Total Clay and Worrall (2011) 

UK 3.0 Laboratory Surface fuel Total Worrall et al. (2013) 

Global 6.0 Laboratory Surface fuel Ash Lobert et al. (1991) 

Global 1.3 Laboratory All fuels Total Kuhlbusch et al. (1996) 

Global 1.3-2.9 Laboratory All fuels ≥40μm Kuhlbusch and Crutzen (1995) 

Tropical Savanna   

Africa 11.8 Wildfire Surface fuel Visual charcoal Delmas et al. (1991) 

Africa 11.6 Wildfire Surface fuel Visual charcoal  Hao et al. (1990) 

Africa 15.4 Wildfire Surface fuel Visual charcoal Kuhlbusch et al. (1996) 

Africa 6.2 Wildfire Surface fuel Visual charcoal Lacaux et al. (1993) 

Africa 1.6 Wildfire Surface fuel Visual charcoal Menaut et al. (1991) 

Australia 4.0 Wildfire Surface fuel Total Graetz and Skjemstad (2003) 

Australia 2.0 Wildfire Surface fuel Visual charcoal Hao et al. (1990) 

Australia 1.3 Wildfire Surface fuel Visual charcoal Hurst et al. (1994) 

Australia 21.2 Experimental Surface fuel Visual charcoal Saiz et al. (2014) 

Global 1.3-2.9 Laboratory All fuels ≥40μm Kuhlbusch and Crutzen (1995) 

 
¶Managed and unmanaged forest fires.
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 In an Australian temperate forest, Graetz and Skjemstad (2003) applied a quantitative 

framework of charcoal redistribution to estimate the PyC ratios. By monitoring the quantity of 

PyC in situ and moved by water before and after managed and unmanaged fires, they estimated a 

PyC/CO2 ratio of 6.4-11.3% (Table 1.1). However, their calculations ignored the small PyC 

particles, because they assumed this to be a very small component. Jenkins et al. (2016) 

investigated both the charcoal and ash created by planned burning in an Australian forest, and 

reported a PyC/CO2 ratio of 5.1%. Finkral et al. (2012) sampled the slash pile before and after a 

prescribed burning in northern Arizona, USA, and measured the char particles. Their results 

indicated a PyC/CO2 ratio of 1.1-5.1%. Miesel et al. (2018) quantified the PyC production and 

carbon losses by five wildfires in the California mixed-conifer forest. They reported a PyC/CO2 

ratio of 4.1%. Comery (1981) analyzed residues from a temperate conifer forest in Florida before 

and after prescribed burning, reporting a PyC/CO2 ratio of 9.9%. Brewer et al. (2013) used 

laboratory fire to burn masticated fuels collected from Idaho, USA, and measured the post-fire 

charred residues. This analysis suggested a PyC/CO2 ratio of 11.8-12.7%. Pingree et al. (2012) 

compared the charcoal quantity in pre- and post-wildfire soil and fuel in southwest Oregon, 

USA, and their results suggested a PyC/CO2 ratio of 1.1-8.9%. Eckmeier et al. (2007) used 

experimental fires to burn slash of a temperate deciduous forest in Germany, then analyzed the 

fire-created charcoal. Their analysis suggested a PyC/CO2 ratio of 8.9%. Kuhlbusch and Crutzen 

(1995) applied the lab-based method to measure the PyC conversion ratio for the temperate 

forest biome, reporting that the PyC/CO2 ratio ranged from 5.0% to 7.0%.  

 Fearnside et al. (1993) sampled PyC materials after a slash-and-burn deforestation fire in 

the Amazon rainforest, mainly by visually assessing charcoal content, and reported a PyC/CO2 

ratio of 10.8% (Table 1). Fearnside and Barbosa (1996) resampled the post-fire residues in 
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Amazon fires and updated this ratio to 2.9%. Then, Fearnside et al. (1999) reported a ratio of 

3.3% in the Amazon. In another study, Fearnside et al. (2001) updated this ratio to 4.5%. In a 

later study, Fearnside et al. (2007) estimated a similar ratio of 4.6%. Graça et al. (1999) 

measured post-fire residues in the soil after a slash-and-burn deforestation fire in the Amazon 

rainforest, and estimated the PyC/CO2 ratio to be 10.2%. Kauffman et al. (1995) quantified the 

total above-ground biomass and charcoal before and after a slash-and-burn deforestation fire in 

an Amazon tropical moist forest, and their analysis suggested a PyC/CO2 ratio of 8.4-19.7%. 

Righi et al. (2009) measured the total aboveground biomass and charcoal in each plot before and 

then again after prescribed burning, reporting a PyC/CO2 ratio of 14.0%. Kuhlbusch and Crutzen 

(1995) used laboratory analyses to determine that the PyC/CO2 ratio ranged from 5.0 to 7.0% for 

tropical forest at the global-scale. 

 Using the inventory data provided by the Food and Agriculture Organization of the 

United Nations (FAO), Hao et al. (1990) reported a PyC/CO2 ratio of 0.3% (Table 1) across the 

Asian steppe; however, this ratio increased to 3.7% in North American grassland. Clay and 

Worrall (2011) investigated char production from a series of prescribed burns from moorland in 

the Peak District, UK. Their results indicated a PyC/CO2 ratio of 5.0%. Worrall et al. (2013) 

applied the same method and updated this ratio to 3.0% for this area. Lobert et al. (1991) 

sampled organic materials from temperate grassland, and burned them in the laboratory. They 

estimated a PyC/CO2 ratio of 6.0%. In temperate grasslands, based on lab experiments, 

Kuhlbusch and Crutzen (1995) estimated the PyC/CO2 ratio to be in the range from 1.3 to 2.9% 

globally. In a later study, Kuhlbusch and Crutzen (1996) updated this ratio to 1.3%. 

 Delmas et al. (1991) and Lacaux et al. (1993) reported PyC/CO2 ratios of 11.8% and 

6.2%, respectively, through measuring the char particles in both pre- and post-fire residues in 
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Africa (Table 1). With the the inventory data, Hao et al. (1990) reported a PyC/CO2 ratio of 

11.6% in African tropical savanna ecosystems, and this ratio decreased to 2.0% in Australian 

tropical savanna. Kuhlbusch et al. (1996) quantified the PyC formed in the residues of savanna 

fires on six experimental sites in southern Africa, and determined a PyC/CO2 ratio of 15.4%. 

Menaut et al. (1991) measured the visual char created from savanna fires in West Africa, and 

concluded a PyC/CO2 ratio of 1.6%. Hurst et al. (1994) used physical separation of PyC particles 

following a tropical savanna fire to obtain a PyC/CO2 ratio of 1.3% in Australia. Saiz et al. 

(2014) used controlled field burning experiments in four savanna sites in northeastern Australia, 

and quantified the production of visual PyC. Their results suggested a PyC/CO2 ratio of 21.2%. 

Kuhlbusch and Crutzen (1995) estimated a PyC/CO2 ratio of 1.3-2.9% globally through their 

laboratory-based experiment. 

 The fuel type and fire weather in desert, xeric shrubland ecosystems differ substantially 

from those of other terrestrial ecosystems. Perhaps partly due to the unique vegetation types 

found in desert shrublands, which mainly consist of prostrate shrubs and short-stature woody 

trees, there are no published studies of PyC production in these ecosystems. Therefore, we 

simply applied a global temperate grassland PyC/CO2 ratio to estimate the PyC production in 

these regions. Similarly, the tundra regions have no available quantitative information on PyC 

production or conversion rates, although the presence of charcoal in tundra soils can be abundant 

(e.g. Qi et al., 2017). Recent climatic warming has caused pronounced environmental changes, 

including shrub expansion and vegetation type change in the tundra region (Myers-Smith et al., 

2011), but the paucity of available information on PyC limits our ability to assess the impact of 

these changes on PyC production. Therefore, as with desert ecosystems, we simply employed the 

same PyC/CO2 ratio for temperate grassland to calculate the PyC production in tundra areas. 
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 In this study, we used a Monte Carlo approach to obtain the PyC/CO2 conversion ratio for 

each biome region, as follows. First, for each biome region, five conversion ratios from 

published studies were randomly selected (boreal forest had four, see below). If there were 

insufficient studies for a given region, conversation ratios from a similar biome were selected to 

construct the estimate. If the published conversion ratio appeared as a range, a number within 

this range (to one decimal or 0.1%) was randomly generated. For example, the conversion ratio 

5.0-7.0% was used to generate a list of ratios: 5.0% 5.1%, 5.2% ... 7.0%; a ratio was then 

randomly selected from this list. Second, one conversion ratio was calculated as the mean of the 

five selected ratios (boreal forest had four). Third, this process was repeated 100 times to 

produce a set of conversion ratios, from which means and standard deviations were calculated. 

 Selecting five PyC/CO2 conversion ratios for each biome presented a challenge, given the 

dearth of published studies from several biomes (Table 1). For the boreal forest biome, all four 

ratios obtained from the literature were used here. For temperate forest in North and South 

America, the five published ratios in USA were used. For temperate forest in Australia, the 

conversation ratios for Australian and global temperate forest with two randomly selected ratios 

from the other six temperate forest studies were used. For temperate forest in Eurasia, 

conversation ratios for Germany and global studies were selected with three randomly selected 

ratios from the other seven studies were used. For tropical forest, all the nine ratios were used. 

For temperate grassland in Eurasia, the published ratios in Asia and UK were used with other 

two randomly selected from the three global studies. For temperate grassland in North and South 

America, the published ratio in America was used with other four randomly selected ratios. For 

tropical savanna in Africa, four conversion ratios randomly selected from five African studies 

with one global ratio were used. For tropical savanna in Australia, four studies in Australia and 
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one from the other six studies were used. For desert, xeric shrubland and tundra, five randomly 

selected ratios for temperate grassland were used. 

1.3 Results 

1.3.1 PyC Conversion Ratio 

 Through these Monte Carlo estimates, overall, the highest PyC conversion ratio was in 

boreal forest, having a value of 11.7±0.2 (Figure 1.2). In temperate forest regions, North and 

South America had the lowest ratio of 6.9±0.5%, and Australia had a similar ratio of 7.1±0.8%, 

but Eurasia had the highest ratio of 7.4±1.0%. In tropical forest, the ratio was 7.8±1.3%. 

Globally, the lowest PyC conversion ratio was in Eurasian temperate grassland, having a value of 

2.9±0.4%, while the ratio was increased to 3.1±0.4% in North and South American temperate 

grassland. African tropical savanna had a value of 7.8±0.9%, while it decreased to 7.2±1.0% in 

tropical savanna of Australia. The PyC conversion ratio in desert, xeric shrubland and tundra, 

was 3.1±0.5%. 

 

Figure 1.2. The spatial distribution of PyC conversion ratio by biome. 
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1.3.2 CO2 Emissions 

 The CO2 emissions from GFED4s had been reported by van der Werf et al. (2017) and 

summarized here according to the biome and continent regions used in this study. Over the 2000-

2010 study period, GFED4s estimated that, on average, 2086 Tg C yr-1 was released to the 

atmosphere as direct CO2 emissions from global fires (Table 1.2), with a minimum in 2009 

(1838 Tg C) and a maximum in 2002 (2314 Tg C). By comparison, TEM6 estimated direct CO2 

emissions from global fires as an average of 643 Tg C yr-1 over the same time period, with a 

minimum in 2010 (492 Tg C) and maximum in 2003 (898 Tg C). The GFED4s results suggested 

that fires in African ecosystems were responsible for more than half (1126 Tg C yr-1) of the 

global fire-related CO2 emissions, and 90% (1010 Tg C yr-1) of this estimate was contributed by 

savanna fires. In contrast, TEM6 results suggested that fires in Eurasian ecosystems were 

responsible for approximately 50% (310 Tg C yr-1) of its estimated global total. GFED4s results 

indicate that North American ecosystems produced the least amount of CO2 from fires (82 Tg C 

yr-1) during the 2000 to 2010 time period, while TEM6 results identify the least amount from 

Australian ecosystems (10 Tg C yr-1). At the global scale, results from both models suggested 

that grassland fires (including temperate grassland and tropical savanna) emitted the largest 

amount of CO2 (1258 Tg C yr-1 from GFED4s, and 187 Tg C yr-1 from TEM6; Table 1.3). In 

tropical forest regions, GFED4s estimated CO2 emissions from fires to be 569 Tg C yr-1, 

compared to 172 Tg C yr-1 estimated by TEM6. GFED4s estimated a 102 Tg C yr-1 release of 

CO2 from fires across global temperate forest regions during this time period, which was larger 

than the TEM6 estimate (73 Tg C yr-1). Although their estimates differ among the four temperate 

forest regions, both models identify the Eurasian temperate forest as producing the greatest 

amount of CO2 (52 Tg C yr-1 and 61 Tg C yr-1), while the South American temperate forest 
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released the least amount (2 Tg C yr-1 and 1 Tg C yr-1). In addition, GFED4s results suggested 

that CO2 amounts released from global desert and tundra fires were 34 Tg C yr-1 and 15 Tg C yr-

1, respectively, and both are similar to the TEM6 estimates (34 Tg C yr-1 and 21 Tg C yr-1). 

 During the period 2000-2016, the global fire CO2 emissions estimated from GFED4s 

results was 2041 Tg C yr-1. While TEM6 results were only available up to 2010, we analyzed the 

GFED4s results from 2011 to 2016, which estimated direct CO2 emissions during this time 

period to be 1959 Tg C yr-1 globally as a result of fires. During this later time period, African 

land ecosystems again produced the greatest amount of CO2, responsible for more than 50% of 

the global emissions. Compared to the 2000-2010 time period, CO2 released from South 

American tropical forest decreased by 33% (73 Tg C yr-1), having the largest absolute reduction 

of all biomes. CO2 released from the North American boreal forest increased by 76% (31 Tg C 

yr-1), having the largest percentage increase. CO2 released from tropical savannas decreased by 

6% (68 Tg C yr-1), having the minimum rate of change. 
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Table 1.2. Modeled estimates of the average annual CO2 emissions and PyC production. 

 Shaded rows indicate sums (Tg C yr-1). 

 GFED4s TEM6 

 2000-2010 2011-2016 2000-2010 

 CO2 PyC CO2 PyC CO2  PyC 

Africa 1125.8 87.8±10.6 1051.2 82.0±9.9 141.0 11.0±1.4 

Tropical Forest 115.7 9.0±1.5 111.0 8.7±1.4 37.4 2.9±0.5 

Tropical Savanna 1010.0 78.8±9.1 940.0 73.3±8.5 103.6 8.1±0.9 

Desert, Xeric Shrubland 0.1 0.0±0.0 0.2 0.0±0.0 0.0 0.0±0.0 

Australia 124.6 8.3±1.1 128.0 8.3±1.1 10.4 0.8±0.1 

Temperate Forest 30.2 2.2±0.2 26.2 1.9±0.2 6.5 0.5±0.1 

Tropical Savanna 77.4 5.6±0.8 79.5 5.7±0.8 3.8 0.3±0.0 

Desert, Xeric Shrubland 16.9 0.5±0.1 22.2 0.7±0.1 0.0 0.0±0.0 

Eurasia 388.4 30.0±3.7 402.6 32.8±3.8 309.8 24.5±1.7 

Boreal Forest 67.2 7.9±0.1 93.0 10.9±0.2 128.9 15.1±0.3 

Temperate Forest 52.4 3.9±0.5 41.0 3.0±0.4 60.7 4.5±0.6 

Tropical Forest 213.3 16.6±2.8 228.2 17.8±3.0 27.7 2.2±0.4 

Temperate Grassland 42.0 1.2±0.2 29.2 0.8±0.1 60.0 1.7±0.2 

Desert, Xeric Shrubland 13.5 0.4±0.1 11.2 0.3±0.1 32.5 1.0±0.2 

North America 81.6 7.5±0.4 114.3 11.2±0.4 36.9 3.7±0.1 

Boreal Forest 40.6 4.8±0.1 71.5 8.4±0.1 28.2 3.3±0.1 

Temperate Forest 17.8 1.2±0.1 20.9 1.4±0.1 4.6 0.3±0.0 

Tropical Forest 18.5 1.4±0.2 17.1 1.3±0.2 1.7 0.1±0.0 

Temperate Grassland 3.7 0.1±0.0 3.5 0.1±0.0 1.1 0.0±0.0 

Desert, Xeric Shrubland 1.0 0.0±0.0 1.3 0.0±0.0 1.3 0.0±0.0 

South America 350.4 19.0±3.4 251.4 15.0±2.3 124.5 8.9±1.5 

Temperate Forest 1.5 0.1±0.0 2.2 0.2±0.0 0.9 0.1±0.0 

Tropical Forest 221.4 17.3±2.9 148.3 11.6±1.9 105.0 8.2±1.4 

Temperate Grassland 124.9 3.9±0.5 98.7 3.1±0.4 18.4 0.6±0.1 

Desert, Xeric Shrubland 2.7 0.1±0.0 2.1 0.1±0.0 0.2 0.0±0.0 

Tundra 15.0 0.5±0.1 11.0 0.3±0.1 20.7 0.6±0.1 

Total 2085.7 153.0±19.3 1958.5 149.6±17.7 643.3 49.5±4.9 
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Table 1.3. Modeled estimates of the CO2 and PyC produced from fires and summarized at the 

global biome scale (Tg C yr-1). 

 GFED4s TEM6 

 2000-2010 2011-2016 2000-2010 

 CO2 PyC CO2 PyC CO2 PyC 

Boreal Forest 107.8 12.7±0.2 164.4 19.2±0.3 157.0 18.4±0.4 

Temperate Forest 101.9 7.4±0.8 90.4 6.5±0.7 72.7 5.3±0.7 

Tropical Forest 568.8 42.7±7.4 504.6 39.4±6.6 171.9 13.4±2.2 

Temperate Grassland 170.6 4.4±0.7 131.4 4.0±0.5 79.5 2.3±0.3 

Tropical Savanna 1087.4 84.4±9.9 1019.6 79.1±9.3 107.4 8.4±1.0 

Desert, Xeric Shrubland 34.2 1.0±0.2 37.1 1.1±0.2 34.1 1.1±0.2 

Tundra 15.0 0.4±0.1 11.0 0.3±0.1 20.7 0.6±0.1 

Total 2085.7 153.0±19.3 1958.5 149.6±17.7 643.3 49.5±4.9 

 

1.3.3 PyC Production 

 During the 2000-2010 analysis period, the average global PyC production from fires was 

153.0±19.3Tg C yr-1, as estimated from the GFED4s results (PyCGFED4s), ranging from 

139.6±16.4 Tg C in 2008 to 173.5±20.6 Tg C in 2002 (Table 1.2). In comparison, the average 

global PyC production from fires as estimated from the TEM6 results (PyCTEM6) was 49.5±4.9 

Tg C yr-1, ranging from 37.1±4.1 Tg C (2010) to 73.1±5.6 Tg C (2003). PyCGFED4s suggested the 

largest amount of PyC (58.3±6.2% of total) was produced in African land ecosystems, while 

PyCTEM6 suggested 22.3±2.4% was produced there. (Note that the percent difference between 

two distributions was estimated by a Monte Carlo approach. Initially, 100 paired samples, that is, 

one from each distribution, were randomly selected from the two distributions, and the percent 

difference for each pair was calculated. Finally, mean and standard deviation were obtained from 

the 100 percentages.) PyCTEM6 suggested the largest amount of PyC (50.2±4.2% of total) was 

produced in Eurasian land ecosystems, while PyCGFED4s suggested 19.0±2.1% was produced 

there. PyCGFED4s suggested that North American land ecosystems produced the least amount at 



 

19 

 

37.5±0.4 Tg C yr-1, but PyCTEM6 suggested Australian land ecosystems produced the least 

amount at 0.8±0.1 Tg C yr-1. PyCGFED4s suggested that tropical savanna fires created the greatest 

amount at 84.4±9.9 Tg C yr-1, while PyCTEM6 suggested that boreal forest fires created the 

greatest amount at 18.4±0.4 Tg C yr-1 (Table 3). PyCGFED4s suggested that 28.1±4.0% (42.7±7.4 

Tg C yr-1) of the global PyC total was produced in tropical forests, while PyCTEM6 suggested 

28.2±3.4% (13.4±2.2 Tg C yr-1) was produced there. In temperate forest ecosystems, PyCGFED4s 

estimated the PyC production at 7.4±0.8 Tg C yr-1, which was higher than PyCTEM6 estimate 

(5.3±0.7 Tg C yr-1). However, in boreal forest ecosystems, PyCGFED4s estimated the PyC 

production at 12.7±0.2 TgC yr-1, which was lower than PyCTEM6 estimate (18.4±0.4Tg C yr-1). In 

desert and tundra regions, PyCGFED4s estimated 1.0±0.2 Tg C yr-1 and 0.4±0.1 Tg C yr-1, 

respectively, of PyC formed through fires, which are very close to estimates from PyCTEM6 

(1.1±0.2 Tg C yr-1 and 0.6±0.1 Tg C yr-1, respectively). 

 During the period 2000-2016, global PyC production was estimated as 153.4±18.7 Tg C 

yr-1 based on the GFED4s results. Because TEM6 results were only available up to 2010, we 

analyzed the PyC results from GFED4s during the period 2011-2016, which indicated an average 

of 149.6±17.7 Tg C yr-1 PyC produced by fires. Fires in African ecosystems still produced the 

greatest amount of PyC (82.0±9.9 Tg C yr-1), and 89.3±8.0% resulted from African savanna 

burning. Compared with the period 2000-2010, PyC produced from African tropical savanna 

decreased by 7.4±6.5% (5.5±3.6 Tg C yr-1), having the largest absolute reduction. PyC produced 

from North American boreal forest increased by 77.0±2.2% (3.56±0.2Tg C yr-1), having the 

largest percentage increase. PyC produced from South American tropical forest decreased by 

26.4±4.5% (4.15±1.7 Tg C yr-1), having the largest percentage reduction. 
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1.4 Discussion 

 We improved current PyC estimations (e.g. Bird et al., 2015; Kuhlbusch and Crutzen, 

1995; Santín et al., 2016) in three aspects. First, we used estimates of fire-induced CO2 emissions 

from two ecosystem models (GFED4s and TEM6), along with published biome-specific 

PyC/CO2 ratios, to estimate the PyC production. To the best of our knowledge, ours is the first 

attempt to estimate PyC production from fires at a global scale, based on detailed biome-specific 

PyC production rates.  

 Second, we depicted the spatial distributions and dynamics of global fire produced CO2 

and PyC, which made it possible to compare PyC production in biome- and continental-scales. 

GFED4s identified Africa as the largest source of fire-produced CO2 (Figure 3a); in contrast, 

TEM6 identified Eurasia as the largest source (Figure 3b). GFED4s suggested that African 

tropical savanna fires released the largest amount of CO2; however, TEM6 suggested that 

Eurasian boreal forest released the largest amount. Using the detailed biome-specific PyC 

conversion ratios with the two modelling results, both PyCGFED4s and PyCTEM6 suggested that 

African savanna fires produced the largest amount of PyC (Figure 1.4a and 1.4b). 

 Third, our results provided the interannual variations of fire produced CO2 emissions and 

PyC production. They varied among continental regions and among biomes. Both GFED4s and 

TEM6 indicated that this variation was greatest in tropical forests. Interannual variation of CO2 

emissions and PyC production among other biomes was markedly lower. The higher interannual 

variability in the tropics may be attributable to ever-changing patterns in slash-and-burn 

agriculture (Marle et al., 2017), leading to varying CO2 emissions and PyC production. Extreme 

weather (e.g., drought, El Niño) may be another contributor to this significant interannual 

variability (Chen et al., 2017). Alencar et al. (2006) reported that El Niño can significantly 
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increase the annual fire frequency and burning area in Amazon tropical forest. Sloan et al. (2017) 

concluded that droughts induced by El Niño can magnify the frequency and severity of fire 

activity in South Asia. 

 

Figure 1.3. The mean of grid-weighted average annual CO2 (g C m-2 yr-1) released from fires 

resulting from (a) GFED4s in the period of 2000-2016, and (b) TEM6 in the period of 2000-2010. 
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Figure 1.4. The mean of grid-weighted average annual PyC (g C m-2 yr-1) produced by fires, which 

were calculated from CO2 emissions estimated by (a) GFED4s in the period of 2000-2016, and (b) 

TEM6 in the period 2000-2010. 

 PyC production from fires may represent approximately 0.2-0.6% of annual global net 

primary production (Huston and Wolverton, 2009). Though this percentage is relatively small, 

we emphasize that PyC is more recalcitrant than original biomass (Bird et al., 2017), meaning 

that it accumulates in terrestrial and marine ecosystems. Using the central reburning loss rate 

7.8% and decomposition rate 0.5% of PyC (Landry and Matthews, 2017) over the study period, 

PyCGFED4s suggested that a total of 1415±171 Tg C of PyC accumulated during the period 2000-

2016 (Figure 5a), while PyCTEM6 suggested that 354±35 Tg C accumulated during the period 

2000-2010 (Figure 5b). These estimates suggested that PyC from fires may be a significant sink 
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of atmospheric CO2 when considered over longer time periods, assuming the post-fire carbon can 

recover to the pre-fire status. 

 

Figure 1.5. The mean of cumulative PyC production estimated from CO2 emissions provided by 

(a) GFED4s from 2000 to 2016, and (b) TEM from 2000 to 2010. 

 The CO2 emitted and PyC produced by global fires were first discussed by Seiler and 

Crutzen (1980). They estimated the total amount of global biomass affected by fires using data 

on fuel burning efficiency along with global transfer rates of CO2 and PyC in natural and 

agricultural ecosystems. They estimated global PyC production from biomass burning ranged 

from 500 to 1700 Tg C yr-1, and CO2 emissions from 2000 to 4000 Tg C yr-1. Crutzen and 

Andreae (1990) later estimated that global PyC production from fires ranged from 200 to 600 Tg 

C yr-1, and CO2 emissions from 2700 to 6800 Tg C yr-1. However, challenges in measuring PyC 

conversion rates and CO2 emissions in diverse land ecosystems results in high uncertainties 

around these estimates (Crutzen and Andreae, 1990). Kuhlbusch and Crutzen (1995) attempted 
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to reduce these uncertainties by measuring PyC in the residue after fires in laboratory-based 

measurements, and clarified the relationships between PyC production and gaseous emissions. 

Using these refinements, they estimated global PyC production to be approximately 50 to 270 Tg 

C yr-1. Kuhlbusch and Crutzen (1996) then synthesized previous PyC conversion ratios across 

coarsely-defined biome regions and concluded that global PyC production ranged from 50 to 200 

Tg C yr-1. However, none of these estimates were conducted for specific time periods nor 

provided PyC spatio-temporal dynamics. Bird et al. (2015) synthesized current knowledge of 

PyC production, stocks, and fluxes, and estimated a production of 56-123 Tg C yr−1 as char. 

Santín et al. (2016) used a global PyC conversion ratio with the GFED4s for the 1997-2014 time 

period to estimate that average annual PyC production ranged from 114 to 383 Tg C globally. In 

our study, the global CO2 emitted annually from fires was estimated to be 2041 TgC yr-1 during 

the period 2000-2016 obtained from GFED4s, and 643 Tg C yr-1 from TEM6 during 2000-2010. 

The corresponding global PyC production estimated from the GFED4s results was 153±12 Tg C 

yr-1, and 50±5 Tg C yr-1 by TEM6, which roughly correspond with estimates of Bird et al. 

(2015).  

 Our study revealed large differences between GFED4s and TEM6 results at both the 

biome-level and the continental-scale. In many cases the two models produced quite different 

estimates of both CO2 and thus PyC production. They often differed in the relative ranking of 

continental regions and biomes with respect to CO2 and PyC production. Both models use similar 

area burned data from satellite image sources but, unlike GFED4s, TEM6 does not incorporate 

small fires or agricultural burning in its estimates. When the small fires are excluded, GFED4 

estimates 1500 Tg C yr-1 of CO2 emissions in the period 1997-2016 (van der Werf et al., 2017). 

The greatest difference between the two model estimates was in the tropical savanna biome, 
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which was responsible for 69.4±4.5% of the total difference. The second was the tropical forest 

biome consisting of 27.9±2.9% of the total difference. These uncertainties could arise from the 

input data, simulated biochemical processes, and model parameters. In addition, these 

differences in estimates of the carbon impacts of fire between the two modeling approaches are a 

function of how each simulates the carbon pools that are exposed to fire, and the fire severity 

parameters that transfer carbon among them. Therefore, future improvement for the input data 

(e.g., burn area, burn severity, climate data, fuel load, and vegetation map), simulated 

biochemical processes (e.g., photosynthesis, respiration, and biomass decomposition), and 

related parameters (e.g., combustion completeness, combustion efficiency, and emission factors) 

can enhance their estimation abilities. 

 In this study, we used conversion ratios from simulated distributions (constrained by 

published ratios) to estimate annual global PyC production from fires. Because weather 

conditions, fuel loads, fuel types, and fire types influence these PyC conversion ratios, their use 

contributes to the uncertainties in our results. Given the factors that influence the PyC 

production, our estimate could be improved in at least three regards. First, Kuhlbusch and 

Crutzen (1995) summarized the PyC/CO2 conversion ratios in various fire types (e.g., wildfire, 

prescribed fire, deforestation fire), and concluded that fire types could influence the conversion 

ratio. Miesel et al. (2018) reported that intense fire type (e.g., prescribed fire) could significantly 

increase PyC production, thereby increasing the PyC/CO2 conversion ratio. Thus, the lack of fire 

type information can underestimate the PyC production. Although we employed a sensitivity test 

with published conversion ratios, detailed fire type information along with corresponding 

released carbon could decrease the fire-type uncertainties in PyC estimates. 
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 Second, the paucity of fuel type information in various biomes precludes further 

refinements in our calculations. Using before-vs-after fire inventories, Tinker and Knight (2000) 

concluded that the presence of coarse fuel biomass can increase PyC production. Similarly, Ward 

et al. (2017) found that coarse fuel biomass significantly increased PyC production during 

burning. However, in our study, the influence of coarse fuel loads on PyC production was not 

considered, which may have led to underestimates of PyC production; the magnitude of this 

underestimate is unknown. Therefore, fuel type and fuel load information could improve the 

calibration of PyC conversion ratios, thereby improving estimates. 

 Third, although we employed biome- and continental-scale PyC conversion ratios to 

improve existing the PyC estimates, agricultural fire was not considered as one special class. 

Thus, improved PyC estimates for agricultural fire would decrease the uncertainties in our 

estimates. Seiler and Crutzen (1980) reported agricultural fire had a different PyC conversion 

ratio from that of its biome (the PyC/CO2 was not presented in their study), and agricultural fire 

produced 53% of the total burned carbon. Through summarizing published studies, Kuhlbusch 

and Crutzen (1995) also reported that the PyC conversion ratio for agricultural fire differed from 

that of its biome.  

 Though unrelated to our modelling approach, we note that authors have chosen different 

fuel types (see Table 1, e.g. forest floor, slash pile, woody debris), carried out the burning in 

different fire conditions (e.g. experimental, laboratory, wildfire), and used various size criteria to 

define PyC types (size of visual charcoal are defined differently in various studies). All of these 

differences presumably influence PyC conversion ratios. Future modelling approaches aimed at 

global carbon accounting could benefit from a standardized measurement for PyC in order to 

increase predictive confidence of such models. 
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1.5 Conclusions 

 Our approach – based on biome-specific PyC/CO2 ratios – represents an improved 

estimate of global PyC emissions from fires. These fires represent a large carbon source to the 

atmosphere by releasing CO2 and other gaseous carbon compounds; however, they also create 

PyC in the form of charred material that remains on site or small particles that are transported far 

from the site of origin (Bird et al., 2015; Cotrufo et al., 2016). Because PyC is more recalcitrant 

to decay than original biomass, the accumulated PyC may serve as a potentially growing, stable 

carbon sink that is distributed globally. We believe the size of this carbon pool and the processes 

responsible for its formation merit further research attention. 
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CHAPTER 2 

2. BIOME CORRELATION AND TIME-DEPEND RESPONSE OF TERRESTRIAL 

ECOSYSTEM CARBON FLUXES TO LONG-LASTING DROUGHTS 

 

2.1 Introduction 

 The terrestrial biosphere acts as a major sink for atmospheric carbon dioxide (CO2) (Le 

Quéré et al., 2009) by taking up and storing carbon in vegetation biomass, soil organic matter, 

and other ecosystem pools (Dixon et al., 1994; Pan et al., 2011). Through modifying both carbon 

uptake by photosynthesis and carbon release by total ecosystem respiration (Heimann and 

Reichstein, 2008; Stocker et al., 2019), as well as introducing time-lagged impacts such as fire, 

insect outbreak and soil erosion (Chen et al., 2019; Wei et al., 2018; Zhang et al., 2019), 

droughts can greatly affect terrestrial biosphere carbon fluxes and storage (van der Molen et al., 

2011). These effects occur from regional to continental scales, and can persist for long time 

periods (Dai et al., 2004; van der Molen et al., 2011). Currently, because the area affected by 

droughts is increasing globally (Huang et al., 2017), droughts can strongly regulate current, 

biome-scale net ecosystem carbon exchange between terrestrial ecosystems and the atmosphere 

(Frank et al., 2015). 

 Each terrestrial biome has distinctive vegetation, climate, edaphic and other 

environmental conditions, and all of these determine its particular drought response of land-

atmosphere carbon exchange over different time scales. To understand the relationship between 

carbon fluxes and droughts at the biome-scale, several techniques have been applied. One 

primary approach is using Terrestrial Biosphere Models (TBMs) (e.g. Schwalm et al., 2017; 

Zscheischler et al., 2014), which estimate past, present, and future land-atmosphere carbon 
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exchange through simulating biogeochemical processes controlling net carbon exchange (Fisher 

et al., 2014). Atmospheric Inversion Models (AIMs) represent another modeling approach 

whereby atmospheric transport models are combined with atmospheric CO2 concentrations to 

spatially infer the magnitude and spatial patterns of land-atmosphere carbon exchange (Boese et 

al., 2019). In addition, by linking remote sensing data with appropriate models, time-series 

carbon flux information can be obtained to study the drought impact on terrestrial biosphere 

carbon exchange (e.g. Gouveia et al., 2017; Zhao and Running, 2010). Finally, at the site-level, 

tower-based eddy covariance techniques provide continuous measurements of land-atmosphere 

carbon fluxes during drought extremes (e.g. Ciais et al., 2005). Other methods based on biomass 

inventory use a combination of field surveys to estimate the net land-atmosphere carbon 

exchange from regional to continental scales with and without droughts and for various time 

periods (e.g. Klesse et al., 2016; Liski et al., 2006). 

 Previous studies have demonstrated that the impacts of drought on carbon fluxes will 

vary among different ecosystems and at different time scales. Using FLUXNET, a global 

network of eddy covariance towers, Schwalm et al. (2010) analyzed the functional relationships 

between carbon fluxes and droughts. They found that drought induces an increase of both gross 

primary production and ecosystem respiration in evergreen forests and wetlands during the 

growing season; however, drought events overall reduce terrestrial carbon uptake at monthly 

scales. Zhao and Running (2010) modeled global annual net primary production from MODIS 

observations, and reported that continued, large-scale drought extremes decrease global 

terrestrial biosphere carbon uptake. An analysis of carbon flux estimates from ten TBMs 

conducted by Zscheischler et al. (2014) suggest that carbon fluxes in tropical forests are more 

likely driven by water availability at a 3-month scale, whereas temperature plays a more 
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important role in boreal forests at a monthly scale. Mekonnen et al. (2017) used a comprehensive 

process model to study the impacts of major droughts on terrestrial biosphere carbon fluxes in 

North America at annual time scale. They concluded that warming in northern ecosystems during 

drought periods generally increases carbon uptake because of longer growing seasons; however, 

in several sub-regions, frequent droughts reduce carbon uptake.  

 The frequency and intensity of droughts are projected to increase under climate change 

(Solomon et al., 2007) and land-atmospheric carbon exchange in response to droughts remains 

largely uncertain at different timescales. In addition, differences in ecosystem resilience will 

result in varying responses to droughts at different time scales (He et al., 2018), and droughts in 

turn can slow the pace of ecosystem recovery (Kolus et al., 2019; Schwalm et al., 2017). 

Therefore, we examined the biome-scale patterns in the correlation of land-atmosphere carbon 

exchange with droughts at different time scales, and examined the time scales at which carbon 

flux variables are most highly correlated with droughts. To characterize the magnitude and 

direction of drought on biome-scale net carbon exchange we developed a new categorical 

Drought Response Index (DRI), which allowed us to analyze the full range of various carbon 

source / sink responses.  

2.2 Materials and Methods 

2.2.1 Carbon Fluxes Data 

 Terrestrial Biosphere Models (TBMs) are advanced in their sensitivities to climate 

change and have the ability to estimate land-atmospheric carbon fluxes for a long-term, including 

net ecosystem exchange (NEE) and its component fluxes gross primary production (GPP), total 

ecosystem respiration (TR), as well as other fluxes (e.g. fire, harvesting, land cover change) 

(equation 2.1). In addition, disturbances associated with droughts such as fire can be included in 
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their estimates. Therefore, global-scale carbon flux estimates based on the simulation outputs 

from eight state-of-the-art TBMs (Table 2.1) that participated in the North American Carbon 

Program (NACP) Multi-scale Synthesis and Terrestrial Model Intercomparison Project 

(MsTMIP; Huntzinger et al., 2013) were selected in our analysis. In these eight models, 

temperature and water stress limit photosynthesis, moisture and temperature influence 

heterotrophic respiration. In addition, fire disturbance and land use change are included in their 

estimates of land-atmospheric carbon fluxes (Huntzinger et al., 2013).  

𝑁𝐸𝐸 = −𝐺𝑃𝑃 + 𝑇𝑅 + "𝑂𝑡ℎ𝑒𝑟 𝐹𝑙𝑢𝑥𝑒𝑠"  

Equation 2.1 

 The eight models were all driven with the same environmental and meteorological 

forcing data sets, including climate, land cover, land-use history, atmospheric CO2 concentration, 

and atmospheric nitrogen deposition for the period of 1901-2010, and the model outputs were 

standardized to a monthly time scale and 0.5 degree grid size (Huntzinger et al., 2013; Wei et al., 

2014). All of the TBMs in the MsTMIP ensemble were run with a common spin-up procedure; 

biome boundaries were fixed across all models during their simulations; and both water and 

temperature stress limit photosynthesis in all eight models (Huntzinger et al., 2014). By 

successively turning on different time-varying forcing data sets, simulation scenarios were 

designed to explore the influence of driving factors on their carbon flux estimates and other 

outputs (Huntzinger et al., 2013; Wei et al., 2014). 
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Table 2.1. Description of the eight TBMs from the MsTMIP study.  

Model 
Simulation 

Scenario 

Simulated processes in 

NEE 
Reference 

CLASS-CTEM-N BG1 land cover change Huang et al. (2011) 

CLM4 BG1 fire, land cover change 
Mao et al. (2013); 

Mao et al. (2012) 

CLM4VIC BG1 fire, land cover change Li et al. (2011) 

GTEC SG3 land cover change Post et al. (1997) 

LPJ-wsl SG3 fire, land cover change Sitch et al. (2003) 

SiBCASA SG3 land cover change 
Schaefer et al. (2008); 

Schaefer et al. (2009) 

TEM6 BG1 fire, land cover change Hayes et al. (2011) 

VISIT SG3 land cover change Ito (2010) 

 

 These carbon flux variables (i.e. GPP, TR, NEE) estimated by simulation scenario BG1, 

which turned on all the driving forces, were used. Since nitrogen cycle were not included in all 

the eight TBMs, for these models, estimates from SG3 (nitrogen cycle was not included) were 

used. Given that environmental drivers are better constrained by observations for the most recent 

30-year estimates (Zscheischler et al., 2014), our analysis included the estimated carbon fluxes 

for the period of 1981-2010. Both GPP and TR are expressed as positive values, while a negative 

value of NEE represents carbon uptake on land (terrestrial carbon sink) and a positive value 

represents carbon release to the atmosphere (source). The eight model estimates for the carbon 

fluxes were integrated using the mean value. Schwalm et al. (2015) reported that naïve (“one 

model - one vote” where each model is weighted equally) integration is statistically 

indistinguishable from the more complex optimal integration, where weights are derived using 

reliability ensemble averaging. Therefore, we integrated each carbon flux estimate on a grid-by-

grid basis with the mean value of the eight estimates calculated at the monthly time scale. 

Carbon fluxes are expressed as sums for various time periods. 
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2.2.2 Drought Metric 

 Drought and its impacts on vegetation require a specific time period for evaluation, 

because drought initiation, intensity, duration, and magnitude are all dependent on timescale 

(McKee et al., 1993). In this study, the response of biome carbon fluxes to droughts was 

examined at time scales of 3, 6, 12, 24, and 48 months, which are commonly-used time periods 

to analyze long-lasting droughts (e.g. McKee et al., 1993; Zscheischler et al., 2014). Drought 

was quantified using the standardized precipitation evapotranspiration index (SPEI), which 

integrates both precipitation and temperature at different time scales to represent the cumulative 

water balance (Vicente-Serrano et al., 2010). The SPEI was obtained from SPEIbase v.2.5 and 

resampled to 0.5 degree (Beguería et al., 2014) (http://hdl.handle.net/10261/153475). SPEI is a 

drought indicator of deviations from the average water balance, and represents the cumulative 

water balance over the previous scaled n months (Vicente-Serrano et al., 2010; Vicente-Serrano 

et al., 2013). It has advantages in that it can identify drought at various time scales, and is also 

sensitive to changes in evaporative demand. However, it is weak in representing soil properties, 

as water extractability is not incorporated (Bachmair et al., 2015; Blauhut et al., 2016; Vicente-

Serrano et al., 2010). SPEI has been adjusted to a log-logistic probability distribution and is 

expressed as a standardized index, with negative values indicating drought over a given time 

scale (Vicente-Serrano et al., 2010). 

2.2.3 Soil Moisture Metric 

 Because the eight models were different in their numbers of soils layers (ranging from 1 

to 14 layers) and the rooting zone depths of their various vegetation types, it was impossible to 

directly compare the soil moisture estimates of the eight models. We therefore used an 

independent model data set to assess the relationship between drought and soil moisture and 

http://hdl.handle.net/10261/153475
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further explain the biome response to drought at different time scales. Global, half-degree 

gridded estimates of monthly soil moisture obtained from the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC; 

https://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm) (Van den Dool et al., 2003) were used to 

evaluate the relationships between SPEI and soil moisture at time scales of 3, 6, 12, 24, and 48 

months. Note that the soil moisture estimates at various time scales were recalculated as the 

monthly mean of the period.  

2.2.4 Biome Aggregation 

 To compare the sensitivity and response of carbon fluxes to droughts among the biomes 

at different time scales, we grouped the global terrestrial biosphere into six biomes: tundra 

(TUN), boreal forest (BOF), temperate forest (TEF), tropical forest (TRF), temperate grassland 

(TEG) and tropical savanna (TRS). Since the biome data used by the MsTMIP project only has 

the grid vegetation type information (e.g. forest, shrub, grassland), but the physical climate 

boundary was not provided, so the biome information was obtained using the Terrestrial 

Ecoregions of the World Map (Olson et al., 2001) 

(http://www.worldwildlife.org/science/data/item1875.html) (Figure 2.1), and was resampled to 

0.5×0.5 degree spatial resolution. 

 

https://www.cpc.ncep.noaa.gov/soilmst/leaky_glb.htm
http://www.worldwildlife.org/science/data/item1875.html
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Figure 2.1. The six global biomes, including tundra (TUN), boreal forest (BOF), temperate forest 

(TEF), tropical forest (TRF), temperate grassland (TEG) and tropical savanna (TRS). 

2.2.5 Correlation Analysis 

 To assess the correlation strength between droughts and carbon fluxes at different time 

scales, the Pearson’s coefficient (Pearson's r) was used as the statistical measure to represent the 

strength of their linear relationship. To overcome the seasonal influence on carbon fluxes, the 

anomalies of carbon fluxes at all time scales were used in estimating the Pearson's r, which was 

calculated for each half-degree grid cell. A negative Pearson's r value indicates a negative linear 

correlation between the SPEI and the flux, while a positive value indicates a positive linear 

correlation. Accordingly, a positive Pearson's r means that increasing droughts correspond to a 

decreasing value of GPP, TR or NEE, while a negative Pearson's r means that increasing 

droughts correspond to an increase in the value of GPP, TR or NEE (Figure A1). 

 Because the numbers of paired SPEI and carbon flux anomalies (i.e. GPP, TR, and NEE) 

or soil moisture at the five time scales were different, a bootstrapping method was used to 

eliminate the sample size impact on calculating the Pearson's r. The bootstrapping was 

conducted as follows: 100 paired SPEI and carbon-flux anomalies or soil moisture estimates 
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were randomly selected for each grid cell, and a Pearson's r was calculated from them. This 

process was repeated 100 times, and the mean value of these values was used as the correlation 

score for that grid cell. Because the standard deviation had a very small value (normally < 0.01), 

it was not reported in our results.  

 We further explored the time scale at which the SPEI had the highest correlation with the 

flux anomaly for each grid cell. The same analysis method was used to assess the correlation 

strength between droughts and soil moisture at different time scales. Here, the absolute value 

magnitude of the Pearson's r was calculated to assess the strength of their relationship. 

2.2.6 Biome-level Response to Droughts 

 Since the positive and negative values of NEE represent terrestrial carbon uptake (sink) 

and release (source), respectively, the Pearson's r alone could not characterize the patterns of net 

carbon exchange in response to drought. Therefore, to investigate the biome-scale net carbon 

exchange in response to droughts at different time scales, we developed a categorical Drought 

Response Index (DRI) (Table 2.2), representing six possible outcomes between terrestrial 

ecosystem carbon uptake and release during drought (SPEI < 0) and normal (non-drought, SPEI 

≥ 0) periods: 

(1) Droughts are associated with an increase in terrestrial carbon uptake (IU), which occurs 

when the average NEE estimates of both normal and drought periods correspond to 

carbon uptake (negative value), and the difference in NEE values between the two 

periods is positive. 

(2) Droughts are associated with a decrease in terrestrial carbon release (DR), which occurs 

when the average NEE of both normal and drought periods corresponds to terrestrial 

carbon release (positive value), and the difference in the NEE values between the two 
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periods is positive.  

(3) Droughts are associated with a decrease in terrestrial carbon release and an increase in 

carbon uptake (DRIU), which occurs when the average NEE of normal periods 

corresponds to terrestrial carbon release (positive value), the NEE of drought periods 

corresponds to uptake (negative value), and the difference in the NEE values between the 

two periods is positive. 

(4) Droughts are associated with an increase in terrestrial carbon release (IR), which occurs 

when the average NEE of both normal and drought periods corresponds to terrestrial 

carbon release (positive value), and the difference in the NEE values between the two 

periods is negative.  

(5) Droughts are associated with a decrease in terrestrial carbon uptake (DU), which occurs 

when the average NEE of both normal and drought periods corresponds to terrestrial 

carbon uptake (negative value), and the difference in the NEE values between the two 

periods is negative.   

(6) Droughts are associated with a decrease in terrestrial carbon uptake and an increase in 

carbon release (DUIR), which occurs when the average NEE of normal periods 

corresponds with terrestrial carbon uptake (negative value), the NEE of drought periods 

corresponds with release (positive value), and the difference in the NEE values between 

the two periods is negative. 
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Table 2.2. The Drought Response Index (DRI) in terms of increasing or decreasing NEE during 

normal (N) and drought (D) periods. 

 DRI N D N - D Description 

(1) IU - - + Droughts increase carbon uptake. 

(2) DR + + + Droughts decrease carbon release. 

(3) DRIU + - + Droughts decrease carbon release and increase uptake. 

(4) IR + + - Droughts increase carbon release. 

(5) DU - - - Droughts decrease carbon uptake. 

(6) DUIR - + - Droughts decrease carbon uptake and increase release. 

 

Note that the positive value of NEE represents carbon release, while the negative value 

represents carbon uptake). 

 

2.3 Results 

2.3.1 Correlations of Carbon Fluxes with Droughts 

 GPP, TR and NEE were all strongly correlated with SPEI over large areas at the biome-

scale. Globally, these carbon flux variables had stronger correlations with SPEI at 12-, 24-, and 

48- month time scales than 3- and 6- month time scales (Figure 2.2). The tropical regions, 

including forest and savanna, showed stronger correlations than the other biomes. In contrast, 

most tundra areas showed the weakest correlation. Overall, both GPP and TR had strong positive 

correlations with SPEI, which suggests that increasing droughts were coincident with reductions 

of both of these major components of NEE. On the other hand, NEE had a strong negative 

correlation with SPEI, which suggests that increasing droughts were coincident with increases in 

NEE (i.e., decreased terrestrial carbon uptake, increased terrestrial carbon release to the 

atmosphere).  
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Figure 2.2. Geographical patterns of the correlation (Pearson's r) between drought (SPEI) and 

carbon flux anomaly (i.e., GPP, TR, NEE) at different time scales.  

 Overall, from the summarized correlation results, the six biomes differed in their 

correlation strength between carbon fluxes and SPEI at varying time scales (Figure 2.3). When 

the time scale increased from 3- to 12-month, the correlation strength of these six biomes became 

stronger, and then relatively stable. GPP had the most robust correlation across all biomes, and 

NEE had the weakest correlation with SPEI. Carbon fluxes in the tundra biome were more 

strongly correlated with 48-month SPEI, while all other biomes were more strongly correlated 

with the SPEI at 12- and 24- month time scales. 
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Figure 2.3. The area-weighted average absolute Pearson's r on each biome between carbon flux 

anomaly and SPEI. 

2.3.2 The Highest Correlated Time Scale 

 GPP and TR had similar spatial patterns regarding the highest correlated time scale; 

however, NEE showed a somewhat different pattern (Figure 2.4). Overall, this correlation was 

highest when SPEI was assessed at the 24- and 48- month periods; however, several exceptions 

were found. The central Siberian tundra area was strongly correlated with SPEI at the 3-month 

time scale. Central North America and most of the Eurasian boreal forest were strongly 

correlated with SPEI at the 12-month time scale. Western North American temperate forest was 

strongly correlated with SPEI at the 12-month time scale. The central African tropical savanna 

was strongly correlated with SPEI at the 6-month time scale. The southern Amazon tropical 

forest was strongly correlated with SPEI at the 12-month time scale.  
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Figure 2.4. The global pattern of the time scale of each grid, at which SPEI had the highest 

correlation with GPP, TR, and NEE. 

 From the summarized results of the most correlated time scale, the GPP, TR and NEE 

had similar patterns across the six biomes in terms of their highest correlated time scales (Figure 

5). Overall, the 12-, 24-, and 48- month time scales were dominant across all biomes. GPP and 

TR in a small portion of the six biomes were both highly correlated with SPEI at 3- and 6- month 

time scales. However, NEE exhibited higher correlation with SPEI on longer time scales.  
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Figure 2.5. The percent of the highest correlated time scale on the six biomes for GPP, TR and 

NEE. 

2.3.3 Net Carbon Exchange Response to Droughts 

 Geographically, the patterns of net carbon exchange in response to SPEI were similar at 

3- and 6- month time scales (Figure 2.6). When the time scale of SPEI increased from 6- to 12- 

month, the net carbon exchange patterns in response to SPEI were greatly changed. These 

changes mostly occurred in the boreal forest and tundra biomes. Otherwise, the response patterns 

were similar at the 12-, 24-, and 48- month time scales. IU (droughts increase carbon uptake) 

was the dominant response in the Eurasian tundra, boreal and northern temperate forests, as well 

as parts of the temperate grasslands at 3- and 6- month time scales, but when the time scale 

increased to 12-month, the response of these regions shifted to DU (droughts decrease carbon 

uptake) response. DUIR (droughts decrease carbon uptake and increase release) was the 

dominant response pattern in North American tundra and boreal forest at 3- and 6- month time 

scales, but when the timescale increased to 12-month, the response of these regions were mostly 

changed to IR (droughts increase carbon release). Globally, DUIR, IR and DU (droughts 

decrease carbon uptake) were the dominant responses at all five time scales.  
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Figure 2.6. Geographical patterns of net carbon exchange in response to drought extremes shown 

as a map of grid cells categorized by the Drought Response Index (DRI). 

 From the summarized results of the biome net carbon exchange response to SPEI (Figure 

7), in the tundra biome, the area with IU (droughts increase carbon uptake) response decreased 

with increasing time scale from 3- to 12-month, but the area with IR (droughts increase carbon 

release) response increased. The area of the other four responses remained stable across the 

different time scales. In the boreal forest biome, when the time scale increased from 3- to 12-

month, the area with IU response increased, while the area with IR and DU (droughts decrease 

carbon uptake) responses decreased. When the time scale increased from 12- to 48-month, the 

area of each response was relatively stable. In the temperate forest, with the increasing time scale 

from 3- to 12-month, the area with DUIR (droughts decrease carbon uptake and increase release) 

response decreased and then became relatively stable. But, DU response was the dominant 

response at all time-scales. In the tropical forest, with the increasing time scale from 6- to 12-
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month, the area of DUIR response greatly decreased. At all time scales, DU response was the 

dominant response. In the temperate grassland biome, the response patterns changed until the 

time scale reached 24-month. DUIR and DU were the dominant responses at the five time scales. 

In the tropical savanna, DUIR response was the dominant response at all time scales. With the 

increasing time scale, decreasing area with DRIU (droughts decrease carbon release and increase 

uptake) response was coincident with an increase area with DU response. 

 

Figure 2.7. The percent of area of each Drought Response Index (DRI) for the six biomes. 

2.3.4 Relationship between Soil Moisture and Droughts 

 Globally, the strength of the relationship between soil moisture and SPEI was different 

across the six biomes, where temperate forest had the strongest relationship with a mean of 0.5 at 

the five time scales, but the tundra biome had the weakest relationship with a mean of 0.33 at the 

five time scales (Figure 8). Overall, with increasing time scale, the strength of relationship 

between SPEI and soil moisture increased in all of the biomes. In tropical forest, the strength of 
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the relationship between SPEI and soil moisture was least changed by the time scale (ranged 

from 0.20 to 0.40), whereas temperate grassland was greatly changed (ranged from 0.28 to 0.61).  

 

Figure 2.8. The correlation (absolute Pearson's r) between drought (SPEI) and soil moisture in 

each biome region. 

2.4 Discussion 

2.4.1 Biome Difference in Correlation Strength 

 The results suggest that terrestrial biosphere carbon fluxes are strongly correlated with 

droughts. However, the strength of their correlations differs among six global biomes. This is 

because different plant traits, soil characteristics, available nutrients, and species-specific 

responses can all influence the strength of the relationship between drought and biome-scale 

carbon flux (Ciais et al., 2005). Drought stress on vegetation occurs when the available water 

drops below a critical threshold, and this threshold changes according to plant species (Granier et 

al., 2007). In addition, the amount of water actually available to plants strongly depends on the 

root depth and type (Tolk, 2003). Therefore, the plant species assemblages in an ecosystem can 
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greatly influence the strength of the correlation between carbon flux variables and droughts. In 

addition, soil type along with other local surface and subsurface characteristics can influence the 

available water for plants, such as the depth to groundwater or bedrock (Tolk, 2003). 

Furthermore, mycorrhizal associations influence the response of ecosystem-scale carbon fluxes 

(i.e., GPP, TR) to changes in temperature and precipitation, where ectomycorrhizal-dominated 

ecosystems are primarily controlled by interannual variation in mean annual temperature, while 

arbuscular mycorrhizal-dominated ecosystems are primarily controlled by interannual variation 

in precipitation (Vargas et al., 2010). In addition, plants may respond to droughts by structural or 

physiological adjustments such as decreased leaf area, changes in the root-shoot ratio, internal 

carbohydrate concentration, or changes in osmolyte concentration, which may also increase the 

vegetation adaptation ability to droughts (Adams et al., 2017; Teuling et al., 2006). 

  Our results suggest that, among the six biomes, tundra shows the weakest relationship 

between carbon fluxes and droughts; this is consistent with the fact that warming increases the 

availability of soil water from snowmelt and thus mitigate droughts (Oechel et al., 1993). In 

some dry grassland and forest ecosystems, drought and GPP response may not be strongly 

correlated because photosynthesis can only increase if nutrients are available to support them 

(Peñuelas et al., 2007). In temperate forests, the carbon flux variables are not strongly correlated 

with drought likely,  because in these ecosystems decreased GPP and autotrophic respiration are 

observed when relative root-extractable soil water drops below 40% (Granier et al., 2007) and so 

droughts with low severity may not greatly impact their carbon fluxes. 

2.4.2 Spatial Similarity and Difference of Carbon Fluxes 

 The results of our model-ensemble analysis indicate that droughts are typically coincident 

with decreases in both GPP and TR. Droughts decrease photosynthetic and respiration rates 
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through reducing stomatal and mesophyll conductance, as well as the activity and concentrations 

of enzymes (Keenan et al., 2010). At the ecosystem-scale, droughts generally have a greater 

impact on photosynthesis than on respiration (Atkin and Macherel, 2008; Schwalm et al., 2010). 

Therefore, the net effect of droughts is primarily to reduce the rate of carbon uptake by an 

ecosystem. In addition, drought suppresses photosynthesis, and trees thus reduce investment in 

their tissue maintenance (Doughty et al., 2015), which can lead to high mortality rates 

(Greenwood et al., 2017; Phillips et al., 2010) and therefore lower rates of carbon uptake by live 

biomass and higher rates of release from dead and decaying organic matter. In addition, fires 

resulting from time-lagged drought effects can directly release carbon to the atmosphere and 

indirectly reduce the carbon uptake and storage in ecosystems (Frank et al., 2015). 

 GPP and TR have similar spatial patterns of their correlation strengths with drought, but 

the spatial patterns of NEE in a biome are different from its patterns of GPP and TR fluxes. This 

is because droughts can directly affect photosynthesis and respiration (e.g. reducing the activity 

of enzymes and soil microbes) (Keenan et al., 2010). For example, low photosynthetic rates are 

typically associated with low costs in autotrophic maintenance respiration (Meir et al., 2008). 

But, at the biome-scale, the patterns of carbon release and uptake can be influenced by time-

lagged impacts (e.g. the changing composition of plant species, frequency of fires, and soil 

microbial community structure and activity), which are indirectly caused by droughts and 

substantially promote ecosystem carbon release to the atmosphere (Frank et al., 2015). 

2.4.3 Response Similarity and Difference   

 Our results suggest that in portions of particular biomes, increasing droughts are 

coincident with increasing GPP and TR resulting in an increase in carbon uptake or a decrease in 

carbon release. In tundra and boreal forest ecosystems, drought is associated with longer and 
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warmer growing seasons, which can promote photosynthetic rates as well as respiratory losses 

(Black et al., 2000; Jager et al., 2009). In tropical forest ecosystems, droughts can also promote 

GPP and TR because, in radiation-limited environments, relatively drier conditions and the 

associated decreased cloudiness and higher insolation can accelerate carbon uptake (Huete et al., 

2006; Scott et al., 2009). In temperate forest and grassland regions, droughts may induce plant 

activity earlier and thus increase the carbon uptake, which has been observed at biome scales 

with remote sensing (Myneni et al., 1997; Pilegaard et al., 2011). 

 Our results suggest that the net carbon exchange in response to droughts is strongly 

influenced by biome type and time scale. When the time scale is increased from 6-month to 12-

month, the response patterns changed dramatically in part of the boreal forest and tundra area, 

where temperature represents the major control on carbon fluxes (Oechel et al., 1993; Welp et 

al., 2007). Short episodes of drought in late winter and spring may extend the growing seasons 

and thus reduce the carbon release or increase the carbon uptake (Jager et al., 2009). In contrast, 

droughts with longer time scales are associated with warmer summers, which can greatly reduce 

GPP and further decrease carbon uptake or increase carbon release (Welp et al., 2007).  

 In water-limited regions such as the tropical biomes, plant species are adapted to water 

shortage, droughts with shorter time scales may not impact their carbon uptake or release 

patterns as much as in other biomes. In contrast, plant species of humid biomes are not well-

adapted to drought, so droughts with shorter time scales may significantly change their response 

patterns (Maherali et al., 2004). This is in agreement with our results that suggest the drought 

response patterns of each biome are relatively stable within shorter time scales (3- and 6- month 

time scales) while much more highly impacted at the 6-month to 12-month time scale. The time-
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lagged impacts may occur at the end of drought events on a longer time scale (Yin et al., 2013) 

and influence the patterns of carbon fluxes. 

2.4.4 Effect of Soil Moisture on Drought Response 

 Because the SPEI is weak in representing soil properties and could not measure water 

extractability, the impact of soil porosity and moisture on biome carbon fluxes was not 

examined. However, soil moisture greatly affects the land-atmospheric carbon exchange in 

response to drought (e.g. Bartlett et al., 2012; Prentice et al., 1992). Our results suggest that soil 

moisture is correlated to drought and the strength becomes stronger with increasing time scale, 

which means that drought events with longer time scales can further change the patterns of 

carbon fluxes. The strength of the relationship between soil moisture and drought is strongly 

influenced by biome type and by time scale, both of which influence the dynamic drought 

response patterns of carbon fluxes. In the tundra biome, where soil moisture is weakly correlated 

to drought, the patterns of carbon fluxes are weakly influenced by drought. In temperate forests, 

because soil moisture is strongly correlated with drought format the 3- to 12-month time scale, 

the patterns of carbon fluxes are highly influenced by the response to drought. In tropical forests, 

since the strength of relationship between SPEI and soil moisture is least influenced by the time 

scale, the response patterns of carbon fluxes are also not greatly changed. In both temperate 

grassland and tropical savanna, the strengths of the relationships between SPEI and soil moisture 

are influenced by the time scale, which significantly changes the temporal patterns of carbon 

fluxes in response to drought. 

2.5 Conclusions 

  Our study used an ensemble of terrestrial biosphere model outputs to examine the biome-

scale relationship and magnitude of ecosystem carbon fluxes in response to droughts in different 
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biomes and at varying time scales. Our results suggest that tropical regions, including both forest 

and savanna, have the most robust correlation with drought whereas the tundra biome has the 

weakest. In addition, the time-scale at which drought most affects carbon fluxes is useful to 

understand and therefore predict how biome-scale carbon fluxes may respond to future climate 

change. Globally, the patterns of biome carbon fluxes vary according to time scale, and are most 

highly correlated to drought at the 24-month scale. The drought response index suggest that 

carbon uptake / release patterns are influenced by the biomes and time scales. Overall, drought 

primarily decreased carbon uptake or increased carbon release; however, they may increase 

carbon uptake or reduce the carbon release in particular portions of each biome. 
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CHAPTER 3 

3. EFFECTS OF ENVIRONMENTAL FACTORS ON REGULATING TEMPORAL 

PATTERNS OF DISSOLVED ORGANIC CARBON EXPORT 

3.1 Introduction 

 An advanced understanding and accurate accounting of the terrestrial carbon cycle is 

required to predict future climate change and ecosystem response (Chapin et al., 2006; Cox et al., 

2000). Carbon budget estimation and scaling efforts have typically focused on comparing 

“bottom-up” estimates of carbon stock change from field inventories and process models with 

“top-down” estimates of land-atmosphere carbon exchange from inversion modeling frameworks 

(King et al., 2015). Increasingly recognized, however, is the important role that lateral transfer of 

carbon through the aquatic system plays in the overall dynamics of the terrestrial ecosystem 

(Battin et al., 2009; Regnier et al., 2013), and that these “sideways” fluxes must be better 

characterized in order to balance the carbon budget and reconcile differences between top-down 

and bottom-up estimates (Hayes et al., 2018). Current carbon budget estimation and scaling 

approaches may only implicitly include these lateral fluxes or ignore them altogether, thus 

making it difficult or impossible to compare among estimates (Hayes and Turner, 2012). 

 Dissolved organic carbon (DOC), which is primarily formed by the incomplete 

decomposition of soil organic carbon and exuded by plants (Michalzik et al., 2003), can be 

moved from the soils to inland waters by surface runoff and subsurface lateral flow, and serve as 

an important component of the lateral terrestrial-aquatic carbon flux (Cole et al., 2007; Tank et 

al., 2018). In aquatic ecosystems, DOC can be subject to sedimentation in water bodies or be 

biotically or abiotically oxidized into CO2 and released to the atmosphere, with the remaining 
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DOC exported to the ocean (Cole et al., 2007). Therefore, including the terrestrial-aquatic DOC 

flux is necessary to improve estimates of broad-scale ecosystem carbon dynamics; however, this 

flux is excluded or not well represented in some carbon flux estimation methods. Eddy-

covariance measurements have the ability to capture carbon fluxes from aquatic ecosystems 

within the tower footprint (Foken et al., 2012; Zhao et al., 2019). Atmospheric inversion models 

are a type of top-down method that estimates vertical, terrestrial-atmosphere carbon exchange 

including carbon outgassing from aquatic ecosystems within the modeling domain (Peters et al., 

2007; Schuh et al., 2019). However, neither of these methods are able to explicitly account for 

the fate of carbon exported to aquatic ecosystems. Inventory-based methods may indirectly 

estimate fluxes from carbon stock changes in the major carbon pools (Hayes et al., 2012; Pan et 

al., 2011); however, they do not track the direction of carbon transfers among these carbon pools. 

 To estimate this terrestrial-aquatic DOC flux, numerous modeling methods including 

empirical and process-based models have been applied at various spatial and temporal scales. 

Ludwig et al. (1996) presented an empirical model using drainage intensity, landscape and soil 

organic carbon content to estimate DOC flux from terrestrial to aquatic ecosystems. Aitkenhead 

and McDowell (2000) developed a linear empirical model based on soil carbon to nitrogen ratios 

and estimated the global DOC export from land to oceans. Neff and Asner (2001) developed a 

runoff-based layered soil model, which is driven by the water fluxes, to estimate the DOC 

transported from terrestrial to aquatic ecosystems. Michalzik et al. (2003) developed a process-

based model that used precipitation, air and soil temperature to drive the DOC flux process in 

forest soil. Harrison et al. (2005) proposed an empirical modelling method using runoff, wetland 

area, and consumptive water use to assess determine DOC export. Futter et al. (2007) used land 

cover, air temperature, and precipitation to estimate the DOC flux from soil to stream. 
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Kicklighter et al. (2013) improved and applied the Terrestrial Ecosystem Model (TEM) to 

estimate the DOC loading from terrestrial ecosystems to the river networks in pan-Arctic region. 

Ren et al. (2016) improved the Dynamic Land Ecosystem Model (DLEM) to simulate the DOC 

export from the Mississippi River to the ocean. Lauerwald et al. (2017) added the DOC flux 

estimation module with the existing Organising Carbon and Hydrology in Dynamic Ecosystems 

(ORCHIDEE) model, which has the ability to estimate the DOC production, leaching from soils 

to inland waters, and decomposition. Li et al. (2019) developed a process-based model, 

TRIPLEX-hydrological routing algorithm (TRIPLEX-HYDRA), which has the ability to 

simulate the fate of DOC in terrestrial and aquatic ecosystems. 

 Many environmental factors interact to control DOC export from watersheds, and various 

combinations of these factors have been used in existing modelling methods. Recent studies have 

suggested that the export rate is primarily related to air temperature (Raymond and Saiers, 2010; 

Winterdahl et al., 2016), precipitation (Raymond et al., 2016), sulfur deposition (Meyer-Jacob et 

al., 2015; SanClements et al., 2012), nitrogen deposition (Chen et al., 2015), and land cover 

(Sawicka et al., 2016; Webster and McLaughlin, 2010). At the subcontinental watershed-scale, 

there remains considerable uncertainty as to the relative importance of these environmental 

factors in determining the rate and temporal patterns on DOC export. Investigating these factors 

and understanding their relative importance in determining intra-annual variability as well as 

temporal patterns in DOC export are critical for adequately assessing and modelling terrestrial 

biosphere carbon cycle dynamics at regional and global scales. In this synthesis study, we 

integrated the data sets for DOC export from 14 watersheds at the subcontinental scale within the 

conterminous United States and analyzed the influence of major potential environmental factors 
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governing DOC export, including air temperature, precipitation, nitrogen deposition, sulfur 

deposition and land cover on a multi-decadal time scale. 

3.2 Data and Methods 

3.2.1 Watershed DOC Export Data 

 The watershed DOC export data for each of 14 watersheds was obtained from the long-

term observational data of DOC concentration and water discharge provided by the US 

Geological Survey (USGS) National Water Information System (NWIS; 

waterdata.usgs.gov/nwis/, Figure 1, Figure S1). The 14 watersheds were selected based on two 

criteria: (1) that they were located entirely within only one climate division as defined by the 

National Oceanic and Atmospheric Administration (NOAA) data set 

(esrl.noaa.gov/psd/data/usclimdivs/) to better represent their climate information, with one 

exception being Suwannee River Watershed (which had 43% area located in Georgia south 

central climate division and 57% in Georgia southeast, so that the weighted average air 

temperature and precipitation of the two climate divisions were used as its climate information); 

(2) included at least 200 records of organic carbon concentration and all daily hydrological 

discharge in the analyzed time period (These two conditions were required to realize the DOC 

export calculation in section 2.3.), mean annual and monthly air temperature, total annual 

precipitation, and total annual atmospheric sulfur and nitrogen deposition. Since the organic 

carbon concentration measured from unfiltered water samples included all organic matter (i.e. 

both dissolved and particulate organic carbon), the organic carbon concentrations measured from 

the unfiltered water samples were adjusted as DOC concentration estimates via a linear 

regression model (y=0.60x+0.63, R2=0.91, Figure B2). 

https://waterdata.usgs.gov/nwis/
https://www.esrl.noaa.gov/psd/data/usclimdivs/
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 The boundary and stream flow of each watershed were obtained from the USGS 

Watershed Boundary Dataset (WBD) and National Hydrography Dataset (NHD) of the National 

Geospatial Program (NGP; usgs.gov/core-science-systems/ngp/national-hydrography) (Table 

B1). The 14 watershed varied greatly in size, and ranged from 6 km2 (McDonalds Branch) to 

2927 km2 (Suwannee River). To assess the impact of watershed size on DOC export, the linear 

relationship between annual DOC export from a watershed and watershed size as well as the 

linear relationship between coefficient of variation of annual DOC export from a watershed (an 

indicator of the magnitude of interannual changes) and watershed size were analyzed. 

 

1Conneticut, 2New Jersey, 3Maryland, 4Virginia, 5North Carolina, 6Georgia, 7Florida, 
8Wisconsin, 9Texas, 10Colorado 

Figure 3.1. Maps of the 14 watersheds, as well as the size, time period of available data sets, 

climate division, stream flow, location of the watershed outlet, and land cover composition. 

https://www.usgs.gov/core-science-systems/ngp/national-hydrography
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3.2.2 Environmental Factors 

 The climate data for each watershed including mean annual and monthly air temperature 

(°C) and annual and monthly total precipitation (cm) were obtained from NOAA's National 

Centers for Environmental Information (NCEI; ncdc.noaa.gov/cag/divisional). The wet sulfur 

(SO4
2- deposition, g/m2 per year as sulfur) and total inorganic nitrogen (NH4

+ and NO3
- 

deposition, g/m2 per year as nitrogen) deposition were obtained from the National Trends 

Network (NTN) of National Atmospheric Deposition Program (NADP; nadp.slh.wisc.edu/data/) 

(NADP, 2019). NTN provided annual gradient raster maps of atmospheric deposition from 1985 

to 2017. We used the boundary of each watershed to extract its annual gradient raster maps, and 

calculated the mean value (g/m2 per year) to represent the annual watershed sulfur and nitrogen 

deposition. NTN also provided site recorded atmospheric deposition data, which has longer 

records (started from 1978 and end in 2018). To extend the length of atmospheric deposition data 

for a watershed, we used the annual records from a site that was within the watershed (or the 

closest site), as well as the mean values obtained from the gradient maps of the watershed to 

build a linear regression model. The model was then used to extend the length of atmospheric 

deposition records for that watershed.  

 The most recent National Land Cover Database 2016 (NLCD2016) (Yang et al., 2018), 

provided by the Multi-Resolution Land Characteristics (MRLC) Consortium (mrlc.gov), was 

used to characterize each watershed for its proportional land cover (Figures 2). For this analysis, 

we aggregated the 16 classes of the original NLCD2016 into six land cover types (Table S2): 

developed area, agriculture land, grassland, shrub, forest, and wetland. 

https://www.ncdc.noaa.gov/cag/divisional/time-series
http://nadp.slh.wisc.edu/data/
https://www.mrlc.gov/
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Figure 3.2. The percentage of the six land cover types in each of the 14 watersheds used in this 

study. 

3.2.3 DOC Export Estimation 

 Because of the methodological weakness of lab measurement of DOC concentration, 

sample bias, and the limited samples that directly measured DOC concentration, the Weighted 

Regressions on Times, Discharges, and Season model (WRTDS, equation 3.1) proposed by 

Hirsch et al. (2010) was used to calculate DOC export from each watershed. This model allows 

for maximum flexibility in representations of the long-term trend, seasonal components, and 

discharge-related components of the behavior of the DOC export (Hirsch et al., 2010).  

ln(𝐶) = 𝛼 ln(𝑄) + 𝛽𝑡𝑦 + 𝛾sin (2𝜋𝑡𝑚) + 𝛿cos (2𝜋𝑡𝑑) + 𝜀  

Equation 3.1. 
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where C is the daily DOC concentration, Q is the daily discharge, ty is the order of the year, tm is 

the order of month (i.e. 1, 2, 3 … 12), and td is the order of the day (i.e. 1, 2, 3 … 365 or 

366).Parameters α, β, γ, and δ are fitted coefficients, and ε is the unexplained variation. 

 The monthly DOC export from a watershed was calculated with the daily discharge and 

estimated daily DOC concentration (equation 3.2). 

𝑀𝐷𝑂𝐶 = ∑ 𝐷𝐷𝑂𝐶 ∗ 𝐷𝐷𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

𝑁

𝑑=1
  

Equation 3.2 

where MDOC is the monthly DOC export, DDOC is the estimated daily DOC concentration, 

DDischarge is the daily discharge, and N is the total days in that month. 

3.2.4 Relative Importance Analysis 

 Since these environmental factors were measured in different units, it was impossible to 

examine the relative magnitude of each factor by directly comparing coefficients of a multiple 

regression model. To overcome this problem, the standardized coefficient was used, which is an 

index that can estimate the relative importance of multiple independent variables on a dependent 

variable (Bring, 1994). To examine and compare the magnitudes of impacts of annual air 

temperature, precipitation, sulfur and nitrogen deposition on DOC export, all these variables 

were first standardized (equation 3.3 and 3.4). 

�̂�𝑗 =
𝑦𝑗 − �̅�

𝑆𝑇𝐷𝑦
 

Equation 3.3 

�̂�𝑖𝑗 =
𝑥𝑖𝑗 − 𝑥�̅�

𝑆𝑇𝐷𝑥𝑖

 

Equation 3.4 
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where �̂� is the normalized annual DOC export, j is the year, �̅� is the mean of annual total DOC 

export, 𝑆𝑇𝐷𝑦 is the standard deviation of annual DOC exports, �̂�𝑖 is the normalized 

environmental factor i (i.e. air temperature, precipitation, sulfur and nitrogen), 𝑥�̅� is the mean 

value of factor i, 𝑆𝑇𝐷𝑥𝑖
 is the standard deviation of environmental factor i. Then these 

standardized variables were used to create the multiple regression model (equation 3.5). 

�̂� = 𝛽𝑇�̂�𝑇 + 𝛽𝑃�̂�𝑃 + 𝛽𝑆�̂�𝑆 + 𝛽𝑁�̂�𝑁 + 𝜑   

Equation 3.5 

where 𝛽𝑖 is the standardized coefficient representing the average change in y when 𝑥𝑖 is changed 

by one unit, 𝜑 is the intercept. T is the mean annual air temperature, P is the total annual 

precipitation, S is the total annual sulfur deposition, and N is the total annual nitrogen deposition. 

 The multiple regression model was created for each of the 14 watersheds. A higher 

absolute value of standardized coefficient means that the changes of this environmental factor 

had a greater magnitude impact on DOC export. A negative value of the standardized coefficient 

indicates that the increasing absolute value of the factor was coincident with declining DOC 

export, but a positive value indicates that the increasing standardized coefficient for that factor 

was coincident with increasing DOC export.  

3.2.5 Time-series Patterns Analysis 

 To characterize the time-series patterns, an additive model was used to decompose the 

monthly DOC export data (equation 3.6). The monthly DOC export from a watershed was 

decomposed to four temporal patterns including major level (DOCLevel), long-term trend 

(DOCTrend), seasonal dynamics (DOCSeason), and random residual (DOCResidual), through using the 

moving average decomposition method (frequency=12, Figure 3.3). Note that with this time 

series decomposition method, the major level was a constant value. Then, linear relationships 
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between environmental factors and total DOC export or these temporal patterns were assessed at 

different temporal scales, and strongly correlated environmental factors and total DOC export or 

temporal patterns were reported in this study (i.e., air temperature and seasonal dynamics at 

monthly temporal scale, total precipitation and DOC export at annual temporal scale, sulfur 

deposition and long-term trend at annual temporal scale). 

𝐷𝑂𝐶 = 𝐷𝑂𝐶𝐿𝑒𝑣𝑒𝑙 + 𝐷𝑂𝐶𝑆𝑒𝑎𝑠𝑜𝑛 + 𝐷𝑂𝐶𝑇𝑟𝑒𝑛𝑑 + 𝐷𝑂𝐶𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙   

Equation 3.6 

 

Figure 3.3. An example of the decomposed DOC export from Suwannee River watershed including 

long-term trend, seasonal dynamics, and random residual (The unit is gC/m2 per month. Note that 

the major level is a constant value, it is not presented.). 

 Temporal autocorrelation of DOC export was examined using the Durbin-Watson (DW) 

test (equation 3.7). The hypotheses for the DW test was no first order autocorrelation with the 



 

61 

 

monthly random residual. When the DW value equals 2, it indicates no autocorrelation; when the 

DW value is larger than 0 but less than 2, it indicates a positive autocorrelation; when the DW 

value is larger than 2 but less than 4, it indicates a negative autocorrelation. A rule of thumb 

suggested by Field (2009) is that DW values under 1 or more than 3 are a definite cause for 

concern. 

𝐷𝑊 =
∑ (𝐸𝑡−𝐸𝑡−1)2𝑇

𝑖=2

∑ 𝐸𝑖
2𝑇

𝑖=1

  

Equation 3.7 

where Et is the random residual at time t, T is the total number of the time-series data. 

3.2.6 Land Cover Analysis 

 Annual land cover information for each watershed was not available, and the 

comparisons of land cover maps in 2006 (NLCD2006) and 2016 (NLCD2016) suggested that 

land cover changed less than 7.6% (ranged from 0.2 to 7.6%) in these 14 watersheds for that time 

period. Thus, the 14 watersheds were combined, and the linear relationship for each land cover 

type and the average annual DOC export was examined to assess the relationship between each 

land cover type and annual DOC export. 

3.3 Results 

3.3.1 Watershed DOC Export 

 The average annual DOC export from these 14 watersheds was 2.97±1.56 gC/m2 per year 

(Table 3.1). Piceance Creek watershed had the lowest export of 0.08±0.07 gC/m2 per year, and 

the Reedy Creek watershed had the highest export of 8.81±5.78 gC/m2 per year. The magnitudes 

of interannual changes of these 14 watersheds varied greatly. Quinnipiac River watershed had 

the lowest significance of interannual changes (coefficient of variation=26%), and Piceance 
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Creek watershed had the highest significance of interannual changes (coefficient of 

variation=88%). 

Table 3.1. The annual DOC export and coefficient of variation of these 14 watersheds (CV= 

coefficient of variation). 

Watershed 
Size 

(km2) 

DOC (gC/m2 yr-1) CV 

(%) Mean Std 

Bunnell Brook 11 2.12 0.79 37 

Quinnipiac River 298 2.42 0.63 26 

McDonalds Branch 6 2.41 1.41 59 

Paulins Kill River 326 2.16 0.81 38 

Rahway River 106 1.85 0.63 34 

Saddle River 141 2.68 0.77 29 

Choptank River 293 2.53 1.57 62 

Mattaponi River 1526 1.82 0.97 53 

Eno River 171 1.33 0.69 52 

Suwannee River 2927 7.80 4.83 62 

Reedy Creek 219 8.81 5.78 66 

Popple River 360 3.79 1.56 41 

Tehuacana Creek 368 1.71 1.31 77 

Piceance Creek 1311 0.08 0.07 88 

Mean 576 2.97 1.56 52 

  

 The coefficient of determination (R2) between sizes of watersheds and their annual DOC 

exports was 0.06 (Figure 4a), which indicated that there was no obvious relationship between 

sizes of watersheds and DOC exports (Note that the relationship between sizes of watersheds and 

their annual DOC exports was created with a bootstrapping method, which used ten estimated 

DOC exports from a watershed that randomly generated from its range.). The R2 between sizes 

of watersheds and their magnitudes of interannual changes of DOC exports was 0.07 (Figure 

3.4b), which indicated that there was no obvious relationship between sizes of watersheds and 

magnitudes of interannual changes of DOC exports. 
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Figure 3.4. The coefficient of determination (R2) between sizes of watersheds and their annual 

DOC exports (a), and the R2 between sizes of watersheds and their magnitudes of interannual 

changes of DOC exports (b).  

3.3.2 Relative Magnitudes of Environmental Factors 

 Standardized regression models for the 14 watersheds indicated that these models could 

adequately represent the relationship between these environmental variables and annual DOC 

export (Table 2, R2=0.72±0.06). The standardized regression model created for the Saddle River 

watershed had the highest R2 of 0.85, while Popple River watershed had the lowest R2 of 0.65. 

Precipitation had the strongest impact on DOC export, with an average standardized coefficient 

of 0.81±0.07, but temperature had the weakest impact on DOC export with an average absolute 

standardized coefficient of 0.01±0.11. Precipitation had the strongest positive relationship with 

DOC export (0.81±0.07), while sulfur deposition had the strongest negative relationship (-

0.22±0.20). Within all watersheds, precipitation showed a positive relationship with DOC export. 

Overall, nitrogen deposition showed a positive relationship with DOC export, and was negatively 
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related to sulfur deposition. However, the responses of DOC export to temperature were 

substantially different from watershed to watershed.  

Table 3.2. The standardized coefficients of mean annual air temperature (Temp), total annual 

precipitation (Precip), total annual atmospheric sulfur (S) deposition, total annual nitrogen (N) 

deposition, R2 for each standardized regression model, and their mean and mean of absolute 

values. 

Watershed Temp Precip S N R2 

Bunnell Brook -0.08 0.84 -0.28 0.26 0.70 

Quinnipiac River  -0.16 0.91 -0.13 -0.09 0.69 

McDonalds Branch -0.03 0.79 -0.09 0.23 0.75 

Paulins Kill River  -0.09 0.80 -0.45 0.43 0.80 

Rahway River 0.11 0.89 -0.78 0.02 0.76 

Saddle River -0.07 0.88 -0.11 0.15 0.85 

Choptank River  -0.07 0.79 -0.44 0.27 0.78 

Mattaponi River 0.00 0.78 0.00 0.13 0.68 

Eno River  -0.07 0.65 -0.07 -0.09 0.66 

Suwannee River  0.18 0.77 -0.13 -0.02 0.66 

Reedy Creek -0.07 0.83 -0.09 0.18 0.74 

Popple River 0.00 0.79 -0.04 0.00 0.65 

Tehuacana Creek  0.22 0.88 -0.24 0.09 0.73 

Piceance Creek  -0.06 0.72 -0.24 0.29 0.68 

Mean±Std -

0.01±0.11 
0.81±0.07 -0.22±0.20 0.13±0.15 

0.72±0.06 

Mean±Std (abs) 0.09±0.06 0.81±0.07 0.22±0.20 0.16±0.12 0.72±0.06 

 

3.3.3 Temporal Patterns of DOC Export 

 The coefficient of determination (R2) between air temperature and seasonal dynamics at 

monthly temporal scale ranged from 0.59 in Reedy Creek watershed to 0.91 in Rahway River 

watershed with a mean of 0.74 (Table 3.3). The R2 between total precipitation and DOC export 

at annual temporal scale ranged from 0.63 in Bunnell Brook watershed to 0.85 in Saddle River 

watershed with a mean of 0.70. The R2 between sulfur deposition and long-term trend at annual 
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temporal scale ranged from -0.89 in Choptank River watershed to -0.59 in Piceance Creek 

Watershed with a mean of -0.72. The DW values ranged from 1.44 in McDonalds Branch 

watershed to 1.87 in Saddle River watershed with a mean of 1.68. 

Table 3.3. Summary of the coefficient of determination (R2) between environmental factors and 

temporal patterns or total DOC export, including air temperature and seasonal dynamics at 

monthly temporal scale (T - Season), total precipitation and DOC export at annual temporal scale 

(P - DOC), sulfur deposition and long trend at annual temporal scale (S - Trend), as well as 

autocorrelation of random residual (DW= Durbin-Watson Value). 

Watershed T - Season P - DOC S - Trend DW 

Bunnell Brook 0.69 0.63 -0.69 1.85 

Quinnipiac River  0.75 0.65 -0.86 1.50 

McDonalds Branch 0.85 0.70 -0.61 1.44 

Paulins Kill River 0.85 0.76 -0.63 1.68 

Rahway River 0.91 0.72 -0.74 1.47 

Saddle River 0.75 0.85 -0.85 1.92 

Choptank River  0.69 0.71 -0.89 1.91 

Mattaponi River 0.62 0.73 -0.69 1.64 

Eno River  0.67 0.66 -0.73 1.55 

Suwannee River  0.66 0.64 -0.74 1.52 

Reedy Creek 0.59 0.72 -0.76 1.73 

Popple River 0.86 0.65 -0.73 1.76 

Tehuacana Creek  0.71 0.67 -0.61 1.75 

Piceance Creek  0.78 0.64 -0.59 1.84 

Mean±Std 0.74±0.09 0.70±0.06 -0.72±0.09 1.68±0.16 

 

3.3.4 Land Cover Influence 

 The percentage of wetlands within a watershed had a strong positive correlation with 

annual DOC export (R2=0.81, Figure 3.5); however, all other land cover types studied did not 

show strong correlations with DOC export (R2 ranges from 0.05 to 0.20). 
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Figure 3.5. The relationship between annual DOC export and the percentage of each land cover 

type within a watershed. 

3.4 Discussion 

 Our results indicate that annual DOC export from all 14 watersheds was only weakly 

influenced by mean annual air temperature, with high variability in the influence of annual 

temperature on DOC export across watersheds. The seasonal pattern is strongly positive-

correlated with monthly temperature. Given the numerous other factors that can regulate DOC 

export, it is not surprising that air temperature and DOC export are not strongly related within all 

watersheds using annual data, and that the contribution of seasonality to DOC export only 

accounts for a small portion of the total annual DOC export. In fact, higher temperatures may 

accelerate the biological processes that are involved in the production of DOC (Schulze et al., 
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2011; Solomon et al., 2015); however, higher temperatures may at the same time accelerate DOC 

decomposition in the water column, which increases outgassing from inland water bodies and 

thus reduces the amount that is ultimately exported from the watershed (Catalán et al., 2016; 

Søndergaard et al., 2000). 

 Our results suggest that precipitation has a dominant control on DOC export from 

watersheds for the variables studied at an annual scale, with increasing precipitation coincident 

with increasing DOC export in all 14 watersheds. In addition, the total DOC export is strongly 

correlated to precipitation at annual scale. This can be interpreted as reflecting the role of 

increasing precipitation in accelerating lateral flow through shallow soil layers, where DOC is 

rich, thereby increasing the DOC loading from soils to water bodies (Raymond et al., 2016). In 

addition, increasing discharge can accelerate flow speeds and make the residence times of DOC 

in waters shorter (Weyhenmeyer et al., 2012), which can reduce the sedimentation and 

decomposition of DOC in aquatic ecosystems. Especially in dry regions, precipitation is a strong 

and positive driver of DOC export (de Wit et al., 2016), which is the reason why precipitation 

has less impact on watersheds with a larger proportion of wetland area. The four watersheds 

including McDonalds Branch, Suwannee River, Reedy Creek and Popple River have more 

wetlands (> 47%) than others (Figure 2); their average standardized coefficient of precipitation is 

0.75, which is less than the average of the other ten (0.83). Because temperature can increase the 

discharge from melting ice and snow (Winterdahl et al., 2016), and many of the study watersheds 

were within zones impacted by frozen winter precipitation, DOC export was more strongly 

correlated with precipitation at the annual temporal scale (R2=0.74±0.09) than at a monthly scale 

(R2=0.13±0.07)). 



 

68 

 

 Decreasing sulfur deposition is coincident with increasing watershed DOC export. This is 

a result of declining soil acidity caused by declining sulfur deposition accelerating DOC 

production from organic matter decomposition and root exudates (Creed et al., 2018; Porcal et 

al., 2009). Decreasing atmospheric sulfur deposition results in recovery from acidification in 

watershed soils (Lawrence et al. 2015), and the resulting decrease in acidity and ionic strength of 

the soil solution can increase the solubility of soil organic matter and consequently increase DOC 

loading to drainage waters (Rosén et al., 2009). In contrast, in regions that previously 

experienced low loads of atmospheric sulfur deposition, the impact of sulfur deposition on DOC 

export is not obvious (Clark et al., 2010). In addition, the long-term trend of DOC export is 

strongly negative-correlated with sulfur deposition at annual scale. Deindustrialization in the 

conterminous United States in recent decades has reduced atmospheric sulfur deposition and is 

contributing to long-term increasing of DOC export (Meyer-Jacob et al., 2015). 

 Overall, increased DOC export is associated with higher rates of atmospheric nitrogen 

deposition, however, the magnitudes are varied greatly. This underlying mechanism remains 

debatable (Balestrini et al., 2019; Findlay, 2005; Rowe et al., 2014). More nitrogen deposition 

accelerates net primary production leading to increased litter generation, which is a substrate for 

DOC production (Sawicka et al., 2016). However, three watersheds including Quinnipiac River, 

Eno River, and Suwannee River showed that decreasing DOC export was associated with higher 

rates of atmospheric nitrogen deposition. One plausible mechanism is the reduction of DOC 

production due to more nitrogen deposition causing a decrease in soil pH, and further reducing 

the activity of microbes in soils (Findlay, 2005; Sinsabaugh et al., 2004). In addition, the 

standardized coefficients of the three watershed range from -0.02 to -0.09, with an average of -

0.07, suggesting that other environmental factors have more significant impacts. 
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 Our results suggest that there is a positive autocorrelation with DOC export 

(DW=1.68±0.16<2), which means that the DOC export increases in one month, it is also likely 

that the DOC export in the next month increases. But this positive autocorrelation is not obvious 

and does not need to be considered in modelling estimates (Field, 2009). 

 Some studies have linked the dynamics of DOC export to recent changes in land-use 

practices or to changes in land cover, which can greatly influence DOC production (Kothawala 

et al., 2015; Neff and Asner, 2001). Our results suggest that wetlands are the most important land 

cover type influencing DOC export and an increasing extent of wetland within a watershed 

enhances DOC export. This reflects the high rate of DOC production in wetlands that serve as a 

major contributor of DOC export (Dosskey and Bertsch, 1994). In addition, more wetland area 

increases the likelihood that DOC in soil will be moved via surface or near-surface hydrologic 

pathways provided by the wetland and then transferred to the water bodies (Creed et al., 2003). 

However, for other land cover types, our results suggest no clear relationship between cover type 

and DOC export. Our results indicate that there is no obvious relationship between DOC export 

and the proportional area of forested land cover in a watershed. This could be attributed to 

differences in forest composition, because the type of tree species has a significant impact on 

DOC production (Borken et al., 2011; Cuss and Guéguen, 2015). Precipitation plays a dominant 

role in regulating DOC flux from soil to surface waters in both grasslands and agriculture lands, 

therefore the relative proportion of these two land types does not explain variations in rates of 

DOC export from a watershed (Royer and David, 2005; Rüegg et al., 2015).  

 Given that vegetation species composition, nutrient availability, topography, and soil type 

also potentially influence the export of DOC from watersheds at the subcontinental scale, a more 

comprehensive examination of their relative influence would also contribute to the improvement 
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of DOC estimation and modelling. Because there were no large proportions of open water in 

these 14 watersheds (ranged from 0.01% to 5.03% with an average of 1.3%, Table S2), the 

processes of photosynthesis, decomposition, sedimentation, and movement of DOC in aquatic 

systems are not examined in this analysis. Available data sets for watersheds having large 

proportions of water bodies would give us a more comprehensive understanding of DOC export. 

The 14 watersheds varied significantly in size, but our results suggest that there is no obvious 

relationship between watershed size and DOC export. 

3.5 Conclusion 

 Including the lateral flux of DOC in carbon estimation methods is necessary to improve 

our understanding of regional and global carbon cycles, but the relative magnitudes of different 

environmental factors and their effects on temporal patterns of DOC export are not well 

understood. Our results suggest that various environmental factors affect the DOC export, with 

precipitation emerging as the dominant factor for this process at annual time scale. Among all the 

land cover types evaluated, the proportion of wetlands within a watershed exerts the strongest 

control on annual DOC export. Through decomposing the time-series data of monthly DOC 

export, we found that the seasonal dynamics of DOC export is strongly positive-correlated with 

air temperature at monthly temporal scale; the long-term trend of DOC export is strongly 

negative-correlated with the sulfur disposition at annual temporal scale. In addition, there is no 

obvious autocorrelation with the DOC export. Our conclusions have important implications for 

deciding and selecting environment factors that should be included in estimating the lateral DOC 

export from watershed so as to characterize its temporal patterns.   
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CHAPTER 4 

4. EXCLUDING IMPACTS OF CLIMATE AND ANTHROPOGENIC CHANGES ON 

DISSOLVED ORGANIC CARBON FLUX COULD NOT MODEL ITS SPATIO-

TEMPORAL PATTERNS 

4.1 Introduction 

 Inland waters receive large quantities of carbon from soils including dissolved organic 

carbon (DOC) and dissolved inorganic carbon (DIC), with recent studies suggesting that this 

lateral flux serves as an important component in global carbon budget (Drake et al., 2018; 

Tranvik et al., 2018). In inland waters, terrestrially-derived carbon can be released to the 

atmosphere through outgassing or buried in sediments, with the remainder transported to the 

ocean (Butman and Raymond, 2011; Cole et al., 2007). Existing estimates summarized by Drake 

et al. (2018) suggest that the contemporary global carbon flux from terrestrial to aquatic 

ecosystems ranges from 1.1 to 5.1 PgC per year with a mean of 3.2 PgC per year, 57% of which 

is emitted to the atmosphere via outgassing, 16% buried as sediment, and 27% exported to 

oceans. Compared with the global terrestrial biosphere carbon sink (0.7~2.2 PgC per year) 

(Huntzinger et al., 2014), the lateral flux of carbon through the aquatic system is a significant 

quantity, including this flux is required to improve the assessment of the global carbon budget, 

predict climate change, and reconcile the discrepancy between bottom-up estimates of carbon 

stock change (i.e., from field inventories and process-based models) with top-down estimates of 

terrestrial-atmosphere carbon exchange from inversion modeling frameworks (Hayes et al., 

2018). In order to estimate carbon budgets of terrestrial and aquatic ecosystems, a better 

characterization of these biogeochemical processes and potential fates of carbon flux from 
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terrestrial ecosystems to the ocean through aquatic ecosystems is necessary (Battin et al., 2009; 

Regnier et al., 2013). 

 As a significant part of the total inland water carbon flux, DOC is primarily produced by 

the incomplete decomposition of soil organic carbon, exuded by plants, or moved along with the 

washout of organic compounds in vegetation throughfall (Aitkenhead-Peterson et al., 2003; 

Michalzik et al., 2003), with some proportion of this production then loaded into the aquatic 

system via surface runoff (Futter et al., 2011). In aquatic ecosystems, DOC can be decomposed 

as CO2 and released to the atmosphere through outgassing or buried in the sediments of inland 

water bodies, with the remaining DOC transported to the ocean through riverine export (Cole et 

al., 2007). Climate changes and anthropogenic activities substantially regulate DOC production, 

movement in soils, flux from terrestrial to aquatic ecosystems, settlement and decomposition in 

inland waters, and transportation in rivers (Aitkenhead‐Peterson et al., 2005; Lajtha and Jones, 

2018). Recent studies suggest that these biogeochemical processes are related to air temperature 

(Raymond and Saiers, 2010), precipitation (Raymond et al., 2016), sulfur deposition 

(SanClements et al., 2012), nitrogen deposition (Chen et al., 2015), and land cover types 

(Webster and McLaughlin, 2010). Higher temperatures accelerate biological processes that are 

involved in the production of DOC in soils as well as the decomposition rate in waters (Solomon 

et al., 2015; Søndergaard et al., 2000). More precipitation accelerates lateral flow through 

shallow soil layers, thereby increasing the DOC loading from soils to inland waters (Raymond et 

al., 2016). Less sulfur deposition reduces the soil acidity and thus accelerates DOC production 

from root exudates and organic matter decomposition (Creed et al., 2018). More nitrogen 

deposition accelerates net primary production leading to increased soil organic carbon 

generation, which is a substrate for DOC production (Sawicka et al., 2016); however, it also 
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increases soil acidity, and constrains the activity of microbes in soils (Findlay, 2005). In addition, 

wetlands serve as a major contributor of DOC export (Dosskey and Bertsch, 1994) and more 

wetland area increases the likelihood that DOC in soil will be moved via surface or near-surface 

hydrologic pathways provided by the wetland and then transferred to the water bodies (Creed et 

al., 2003). 

 Numerous methods including field inventory, empirical modeling, and process-based 

simulation have been applied to estimate the terrestrial-aquatic DOC flux at various spatial and 

temporal scales. Stets and Striegl (2012), based on field measurements of discharge and water 

quality data from the network of the United States Geological Survey (USGS) gauging stations, 

estimated that the carbon export from the conterminous United States to the ocean is 41-49 TgC 

per year. Butman et al. (2016) used the field measurements together with empirical models to 

estimate the terrestrial-aquatic carbon fluxes (DOC and DIC) as well as their potential fates in 

the conterminous United States. They estimated a 106 TgC per year flux from soils to inland 

waters, 65% of which is released to the atmosphere, 20% is stored in the sediment, and the rest is 

delivered to oceans. Ludwig et al. (1996) used an empirical model together with various 

environmental factors to estimate a 710 TgC per year total flux of carbon from terrestrial to 

aquatic ecosystems globally, 205 TgC of which contains DOC. Aitkenhead and McDowell 

(2000) developed a linear empirical model based on soil carbon to nitrogen ratios and estimated 

the global DOC export from land to oceans as 360 TgC per year. Harrison et al. (2005) proposed 

an empirical modelling method using the runoff, wetland area, and consumptive water use to 

assess the global DOC export. They estimated that a 170 TgC per year of DOC is exported from 

land to oceans.  
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 Process-based terrestrial biosphere models (TBMs) offer another approach to estimating 

the terrestrial-aquatic DOC flux. Kicklighter et al. (2013) applied the Terrestrial Ecosystem 

Model (TEM) across the pan-Arctic region and estimated a 32 TgC per year DOC loading from 

terrestrial ecosystems to the river networks. By this model, DOC production is a proportional of 

total soil organic matter decomposition, and the flux from soils to inland waters (i.e., “DOC 

loading”) is determined by the runoff of rainwater and snowmelt. Ren et al. (2016) updated the 

Dynamic Land Ecosystem Model (DLEM) to simulate DOC export from the Mississippi River to 

the coastal ocean during 1901-2010. This model formulation integrated the processes of 

production, consumption, and transport of DOC in soils and surface waters. Lauerwald et al. 

(2017) added a DOC flux estimation module to the Organising Carbon and Hydrology in 

Dynamic Ecosystems (ORCHIDEE) model and named it as ORCHILEAK, which includes DOC 

production, leaching from soils to inland waters, and decomposition and releasing to the 

atmosphere in the water column. They applied it to assess the terrestrial-aquatic carbon flux 

(DOC and DIC) in the Amazon basin and estimated that total CO2 evasion from the water 

surface equals about 5% of terrestrial net primary production. Nakhavali et al. (2018) developed 

the Joint UK Land Environment Simulator (JULES-DOCM) model, which integrates 

biogeochemical processes of DOC production in terrestrial ecosystems, decomposition within 

the soil column, and DOC loading to inland waters. Li et al. (2019) developed a process-based 

model, TRIPLEX-hydrological routing algorithm (TRIPLEX-HYDRA), which has the ability to 

simulate the fate of DOC in terrestrial and aquatic ecosystems. They applied the model to 

estimate a global flux of 235 TgC per year to oceans. 

 While these previous studies have provided broad constraints on global- and continental- 

scale DOC flux estimates, the key driving factors and sensitivities of the underlying 
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biogeochemical processes have not been well-studied and thus not well-represented in existing 

empirical models and TBMs. In this study, we developed a process-based model of terrestrial-

aquatic DOC fluxes (TAF-DOC), which has the ability to estimate the spatial and temporal 

dynamics of DOC flux through incorporating various environmental factors (e.g., meteorology, 

atmospheric deposition, land cover and landscape attributes). We then applied TAF-DOC to 

assess the DOC flux and potential fates across the conterminous United States from 1985 to 

2018. 

4.2 Methodology and Data 

4.2.1 Model Structure and Workflow 

 The process-based terrestrial-aquatic DOC fluxes model (TAF-DOC) developed for this 

study consists of three modules (Figure 1) and operates at annual temporal. TAF-DOC is 

operated at the fourth level of the United States Geological Survey (USGS) hydrologic 

watershed spatial scale. This hydrologic watershed is the smallest element in the hierarchy of 

hydrologic units, which is a geographic area representing part of all of a surface drainage basin, a 

combination of drainage basins, or a distinct hydrologic feature (Seaber et al., 1987). The 

Watershed Soil DOC Module (WSDOCM) is used to estimate the DOC quantities available to be 

moved from soils to inland waters (DOCM) of a given watershed by using the input soil organic 

carbon (SOC) data. The Watershed DOC Fluxes Module (WFDOCM) is then used to estimate the 

fluxes and fates of DOC within a watershed (i.e., loading from soils, outgassing, sedimentation, 

and export). To drive this module, environmental factors including air temperature, precipitation, 

wet sulfur and nitrogen deposition, as well as information on various important landscape 

attributes of each watershed are required. In a watershed, the total DOC loading from terrestrial 

to aquatic ecosystems (DOCF) is calculated as the total decomposed DOC, settled DOC, and 
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exported DOC from this watershed (equation 4.1). Flux to the Ocean Module (FODOCM) is used 

to estimate the fluxes and fates of exported DOC from a watershed outlet to the ocean. In a study 

area, the total DOC flux from terrestrial to aquatic ecosystems is calculated as the summary of 

DOC fluxes in all watersheds within the study area (equation 4.2).  

𝐷𝑂𝐶𝐹 = 𝐷𝑂𝐶𝑆 + 𝐷𝑂𝐶𝐺 + 𝐷𝑂𝐶𝐸 

Equation 4.1 

𝑇𝑜𝑡𝑎𝑙_𝐷𝑂𝐶𝐹 = ∑(𝐷𝑂𝐶𝑆 + 𝐷𝑂𝐶𝑆 + 𝐷𝑂𝐶𝐸)𝑖

𝑛

𝑖=1

 

Equation 4.2 

where DOCF is the total DOC loading from terrestrial to aquatic ecosystems, DOCS is the settled 

DOC as sediment and DOCG is the decomposed DOC as outgassing within an individual 

watershed. DOCE is the DOC exported from the watershed. Total_DOCF is the total DOC flux 

from terrestrial to aquatic ecosystems in the study area, and n is total number of watersheds 

within the study area. 
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Figure 4.1. Structure and workflow of the process-based terrestrial-aquatic DOC fluxes model 

(TAF-DOC). Dark gray highlighted variables are input data sets.  

 In Figure 4.1, blue highlighted processes are simulation modules, and light green 

highlighted variables are output variables. T is air temperature, P is precipitation, N is wet sulfur 

deposition, N is wet nitrogen deposition, and Pwl and Piw are the proportions of wetland land 

cover and inland water surface area within the watershed, respectively. DEM is the raster Digital 

Elevation Model. SOC is the soil organic carbon, and DOCM is the DOC can be moved from 

soils to inland waters. DOCS is the settled DOC as sediment, and DOCG is the decomposed DOC 

as outgassing within the watershed. DOCE is the DOC exported from the watershed. WRTr is the 

water retention time in the river. DOCEG is the decomposed DOCE as outgassing, and DOCES is 

the settled DOCE as sediment during the delivery process from the watershed outlet to the ocean. 

DOCEO is the DOC ultimately exported to the ocean. 

4.2.2 Watershed Soil DOC Module (WSDOCM) 

 The WSDOCM estimates the soil DOC pool and the DOC available to be moved from soils 

to inland waters (DOCM). The soil DOC (SDOC) is formed by the incomplete decomposition of 
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SOC, the production of root exudates by vegetation, and the washout of organic compounds in 

throughfall (Guggenberger and Kaiser, 2003; Sokol and Bradford, 2019). Because of the 

relatively high biodegradability of the organic components of throughfall (Qualls and Haines, 

1992), the model does not regard throughfall DOC as a direct contributor to SDOC, but simply as 

a part of the carbon input to the soil. Because the contributions of different soil layers to the 

DOC loading from soils to inland waters are greatly different (Neff and Asner, 2001), the SDOC 

pool consists of top- (0-30cm) and sub- layer SDOC pools (30-100cm) (equation 4.3). The DOCM 

is estimated with the a desorption model (equation 4.4) (Jones and Willett, 2006). 

𝑆𝐷𝑂𝐶 = 𝐾𝑇 ∗ 𝑇𝑆𝑆𝑂𝐶 + 𝐾𝑆 ∗ 𝑆𝑆𝑆𝑂𝐶 

Equation 4.3 

𝐷𝑂𝐶𝑀 = 𝐾𝐷𝑇 × 𝑇𝑆𝑆𝑂𝐶 + 𝐾𝐷𝑆 × 𝑆𝑆𝑆𝑂𝐶 

Equation 4.4 

where SDOC (gC/m2) is the soil DOC concentration, TSSOC (gC/m2) is the top soil layer (0-30cm) 

SOC concentration, SSSOC (gC/m2) is the sub soil layer SOC concentration (30-100cm), and KT 

and KS (%) are the ratios of DOC in top and sub soil layers, respectively (Table 4.1). TSDOC 

(gC/m2) is the top soil layer DOC concentration and SSDOC (gC/m2) is the sub soil layer DOC 

concentration. KDT and KDS (%) are the desorption coefficients of DOC in the top and sub soil 

layers, respectively (Table 4.1). DOCM (gC/m2) is the total SDOC available to be moved from soils 

to inland waters. 
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Table 4.1. Summary of the symbols used in TAF-DOC. 

Symbol Value Reference 

KT 0.1181 Michalzik et al. (2001) 

KS 0.0680 Guggenberger and Kaiser (2003) 

KDT 0.9891 Neff and Asner (2001) 

KDS 0.7770 Neff and Asner (2001) 

εdw 0.3745 Hanson et al. (2011) 

μdw 0.5250 Hanson et al. (2011) 

φ 0.5250 Cole et al. (2007) 

ω 0.0016 Cole et al. (2007) 

εRS 1.0891 McGuire et al. (2005) 

μRS -0.3052 McGuire et al. (2005) 

α 0.0050 Coynel et al. (2005) 

β 148.6111 Coynel et al. (2005) 

γ -0.0013 Coynel et al. (2005) 

 

4.2.3 Watershed DOC Fluxes Module (WFDOCM) 

 The WFDOCM estimates the DOC flux within a watershed including the flux from soils to 

inland waters and the delivery process to the outlet of the watershed. Because it is impossible to 

directly measure the amount of DOC flux from soils to inland waters in a watershed, but the 

DOC export from a watershed through the watershed outlet can be directly measured, the DOC 

export from a watershed is firstly estimated in the WFDOCM. Observational data sets from 14 

watersheds in the conterminous United States analyzed in the study by Chapter 3 were used to 

build multiple regression models, which together represent the relationships among DOC export 

from a watershed with the impacts of environmental factors (i.e., air temperature, precipitation, 

sulfur and nitrogen deposition). Since the extent of wetlands within a watershed greatly 

influences the DOC export, the data sets of these 14 watersheds were classified to five groups 

based on the criteria that the changes of the percentage of wetland (Pwl) could result in a more 

than 50% change of average annual DOC export from a watershed (Table 4.2). A multiple linear 
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regression model of annual DOC export (yDOC as gC/m2 of watershed area per year) was 

parameterized for each of these five classes (equation 4.5, Table 4.2). 

𝑦𝐷𝑂𝐶 = 𝑎𝑖 ∗ 𝑇 + 𝑏𝑖 ∗ 𝑃 + 𝑐𝑖 ∗ 𝑆 + 𝑑𝑖 ∗ 𝑁 + 𝑒𝑖 

Equation 4.5 

where T is the mean annual air temperature (°C), P is the total annual precipitation (cm), S is the 

total annual sulfur deposition (g/m2 per year as sulfur), and N is the total annual nitrogen 

deposition (g/m2 per year as nitrogen). These coefficients and interceptions are summarized in 

Table 4.2. 

Table 4.2. Coefficients and interceptions of these 5 multiple regression models (Pwl is the 

percentage of wetland with a watershed.). 

i Pwl (%) ai bi ci di ei 

1 <1 -0.0072 0.0061 -0.4039 0.3055 -0.1207 

2 1~5 -0.0507 0.0333 -0.2503 -0.1859 -0.6080 

3 5~50 0.0906 0.0514 -0.3544 1.724 -4.0303 

4 50~55 0.0103 0.1775 -2.389 -0.3321 -5.2635 

5 >55 -0.9553 0.3371 -0.3368 1.3467 -5.2082 

  

 Because the extent of wetland in a watershed and annual precipitation are the most 

important environmental factors that regulate the annual DOC export (Chapter 3), in cases where 

not all of the climate drivers are available the estimation method is replaced by a simple linear 

regression model that only used the Pwl and precipitation drivers. A linear regression model was 

created for each Pwl level (equation 4.6, Table 4.3). 

𝑦𝐷𝑂𝐶 = 𝛿𝑖 ∗ 𝑃 + 𝜎𝑖 

Equation 4.6 
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Table 4.3. Coefficients and interceptions of the five linear regression models (Pwl is the percentage 

of wetland within a watershed.). 

i Pwl (%) δ σ 

1 <1 0.0053 -0.1976 

2 1~5 0.0257 -1.4293 

3 5~50 0.0369 -2.0598 

4 50~55 0.1486 -7.7067 

5 >55 0.2238 -20.4120 

  

 The decomposition ratio of DOC in aquatic ecosystems is related to the water retention 

time (Catalán et al., 2016; Weyhenmeyer et al., 2012) (equation 4.7). The annual decomposition 

rate is calculated with an exponential model by using the proportion of open water in the 

watershed (equation 8), and the water retention time of this watershed is estimated by using the 

Digital Elevation Model (DEM) together with an exponential model proposed by McGuire et al. 

(2005) (equation 4.9). The sedimentation ratio of DOC in the aquatic ecosystems within a 

watershed is calculated with an exponential model, which also uses the water retention time 

(equation 4.10) (Cole et al., 2007). 

𝑅𝐺 = 𝑑𝑤 × 𝜏 

Equation 4.7 

𝑑𝑤 = 𝑃𝑖𝑤 × 𝜀𝑑𝑤 + 𝜇𝑑𝑤 

Equation 4.8 

𝜏 = 𝜑 × 𝑒
(

∑ 𝐸𝑗
𝑚
𝑗

𝑚
×𝜔) 

 

Equation 4.9 
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𝑅𝑆 = 𝜏 × 𝜀𝑅𝑆 + 𝜇𝑅𝑆 

Equation 4.10 

where RG is the DOC decomposition ratio, dw is the annual DOC decomposition rate, and τ is the 

water retention time (years, e.g., 0.5 year, 3.5 years). Piw is the proportion of inland water surface 

area within a watershed. m is the total number of grids of the DEM within a watershed and E is 

the elevation of grid cell j. RS is the DOC settlement ratio in the watershed. All the parameters 

are summarized in Table 4.1. 

4.2.4 DOC Fluxes to Ocean Module (FODOCM) 

 The DOC Fluxes to Ocean Module (FODOCM) estimates the flux processes of exported 

DOC from a watershed (DOCE) to the ocean. During the riverine transportation process, DOCE is 

moved from the outlet of a watershed to the ocean, the decomposition ratio is estimated with the 

decomposition empirical model (equation 4.7), and the settlement ratio is estimated with an 

exponential model (equation 11) (Coynel et al., 2005). The water retention time was obtained by 

using the DEM data and Hydrology Analysis Module in ArcGIS Pro. 

𝑅𝐸𝑆 = 𝛼 × 𝑒𝛽×𝜏 + 𝛾 

Equation 4.11 

where RES is the settlement ratio of DOC export from the watershed outlet, and τ is the water 

retention time (years, e.g. 0.5 year, 3.5 years). All the parameters were summarized in Table 4.1. 

4.2.5 Model Input Data 

 The study area was the conterminous United States, and there were 2110 fourth level of 

USGS hydrologic watersheds. The watershed boundary data was obtained from the USGS 

Watershed Boundary Dataset (WBD) of the National Geospatial Program (NGP; usgs.gov/core-

science-systems/ngp/national-hydrography). The size of these watersheds ranges from 184 to 

https://www.usgs.gov/core-science-systems/ngp/national-hydrography
https://www.usgs.gov/core-science-systems/ngp/national-hydrography
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22963 km2 with a mean of 3688 km2 (Figure S1). The elevation data (DEM) was obtained from 

Global 30 Arc-Second Elevation (GTOPO30) provided by the USGS Earth Resources 

Observation and Science (EROS) Center (https://www.usgs.gov/centers/eros/science/), and the 

spatial resolution is 1×1 km. The mean annual air temperature (°C) was provided by the Global 

Historical Climatology Network Monthly - Version 4 (GHCN) data set from the National 

Oceanic and Atmospheric Administration (NOAA; https://ncdc.noaa.gov/), and this is climate 

divisional data (NOAA 2020). The annual total precipitation (cm) was provided by the Daily 

Surface Weather and Climatological Summaries (DAYMET) from Oak Ridge National 

Laboratory Distributed Active Archive Center (ORNL DAAC; https://daac.ornl.gov/) (Thornton 

et al., 2017), and the spatial resolution is 1×1 km. The wet sulfur (SO4
2- deposition, g/m2/year as 

sulfur) and nitrogen (NH4
+ and NO3

- deposition, g/m2/year as nitrogen) deposition gridded data 

sets were obtained from the National Trends Network (NTN) of National Atmospheric 

Deposition Program (NADP; http://nadp.slh.wisc.edu/data/) (NADP, 2019), and the spatial 

resolution is 2.3×2.3 km. The most recent National Land Cover Database 2016 (NLCD2016) 

(Yang et al., 2018), provided by the Multi-Resolution Land Characteristics (MRLC) Consortium 

(https://www.mrlc.gov/), was used to characterize each watershed by its proportional wetland 

and open water. The spatial resolution of the NLCD2016 data is 30×30 m. The most recent 

Gridded Soil Survey Geographic (gSSURGO) Database (https://gdg.sc.egov.usda.gov/) provided 

the soil organic carbon data (gSSURGO, 2019), and the spatial resolution is 90×90 m. 

4.2.6 Benchmarks 

 To validate the estimation results, the USGS measured daily DOC concentration and 

discharge data together with DOC export estimation method proposed by Hirsch et al. (2010) 

were used to estimate the annual DOC exports to oceans from three continental-scale watersheds, 

https://www.usgs.gov/centers/eros/science/
https://ncdc.noaa.gov/
https://daac.ornl.gov/
http://nadp.slh.wisc.edu/data/
https://www.mrlc.gov/
https://gdg.sc.egov.usda.gov/
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including the Mississippi, Colorado and Rio Grande basins, and then were compared with the 

TAF-DOC estimates. Differences between the two estimates of DOC export were assessed using 

a two-sample t-test. In addition, the DOC flux from terrestrial ecosystems to oceans can be 

estimated with the soil carbon and nitrogen ratio (C:N) method (Aitkenhead and McDowell, 

2000) (equation 4.12). This model was applied together with the C:N data provided by 

International Soil Reference and Information Centre-World Inventory of Soil Emission 

Potentials (ISRIC-WISE, https://www.isric.org/) (Batjes, 2005) to estimate the DOC flux to 

oceans in the conterminous United States and thus compared with TAF-DOC estimates. 

𝐷𝑂𝐶𝐸𝑂 = 4.863 × (C: N) − 60.873 

Equation 4.12 

4.2.7 Model Sensitivity Test 

 To assess the model’s global sensitivity to four input environmental drivers (i.e., annual 

air temperature, precipitation, sulfur and nitrogen deposition), we used the Monte Carlo 

simulation approach together with the Pearson correlation coefficient (Pearson’s r) global 

sensitivity test (Gardner et al., 1981; Hamby, 1994). A higher value of Pearson’s r indicates a 

more sensitive relationship. This test was operated as the following steps: firstly, in a watershed, 

one year driver was randomly selected from its 34-year driver dataset. This process was repeated 

for these 2110 watersheds and thus to organize one year driver dataset; Secondly, this process 

was repeated 500 times, and thus generated a 500-year driver dataset; Thirdly, a 500-year 

simulation with TAF-DOC model was conducted by this driver dataset; Fourthly, the Pearson’s r 

of annual total terrestrial-aquatic DOC flux with each driver was calculated to assess the 

sensitivity. 

https://www.isric.org/
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4.3 Results 

4.3.1 The Spatio-temporal Patterns of DOC Flux 

 Over the 1985-2018 time period, the total annual DOC loading from terrestrial to aquatic 

ecosystems in conterminous United States watersheds ranged from 30.5 (1988) to 40.8 TgC 

(2018) with a mean of 33.5 TgC per year. The estimated DOC flux from soils to inland waters of 

these 2110 watersheds ranged from 0.1 to 25.7 gC/m2 per year with a mean of 4.4 gC/m2 per 

year (Figure 2). Regions having higher DOC loading were mostly located in seaboard areas 

(Atlantic Ocean Seaboard and Gulf of Mexico Seaboard) (Figure 4.2). The low DOC flux 

regions were located in the southwestern and mid-southern conterminous United States (Figure 

4.2). 

 

Figure 4.2. The spatial pattern of mean annual DOC loading from terrestrial to aquatic 

ecosystems in each conterminous United States watershed during 1985-2018. 
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 The estimated annual DOC loading from terrestrial to aquatic ecosystems in the 

conterminous United States was 33.5±2.2 TgC per year over the of 1985-2018 time period. In the 

aquatic ecosystems of these 2110 watersheds, 10.8±0.3 TgC per year of DOC was estimated to 

be decomposed and released to the atmosphere, and 5.4±0.2 TgC per year DOC was buried in 

sediment (Figure 4.3). The remaining 17.3±0.5 TgC per year of the total DOC budget was 

ultimately exported from these individual watershed areas. In the transportation process of DOC 

from watershed outlets to the ocean, 2.1±0.1 TgC per year of DOC was estimated to be 

decomposed and released to the atmosphere, 1.7±0.1 TgC per year DOC buried in sediment, and 

13.5±0.9 TgC per year DOC was ultimately exported to oceans. Note that in Figure 4.3, DOCS is 

buried as sediment, and DOCG is decomposed and outgassed from individual watershed. DOCE 

is the DOC exported from a watershed. DOCEG is the decomposed DOCE as outgassing, and 

DOCES is the DOCE buried in sediment during the transportation process from the watershed 

outlet to the ocean. DOCEO is the DOC exported to the ocean. 
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Figure 4.3. The DOC budget of the conterminous United States in the period of 1985-2018, in 

units of Tg C per year.  

4.3.2 Benchmarks and Model Performance 

 The annual DOC export from the Colorado River watershed to the ocean provided by 

USGS measurements ranged from 0.6 TgC (2007) to 1.9 TgC (1998) with a mean of 0.9 TgC per 

year in the period of 1996-2018 (Figure 4.4). In the same time period, the simulated DOC export 

with TAF-DOC from this watershed ranged from 0.3 TgC (2009) to 1.6 TgC per year (1998) 

with a mean of 0.8 TgC per year, which was 10% lower than USGS measurements. The two 

estimates were not significant difference (p=0.07) The DOC export from the Mississippi River 

watershed to the ocean provided by USGS measurements ranged from 1.7 TgC (2012) to 3.5 

TgC (2009) with a mean of 2.7 TgC per year. In the same time period, the simulated DOC export 

with TAF-DOC ranged from 1.9 TgC (2006) to 3.7 TgC (2009) with a mean of 2.8 TgC per year, 

which is 4% higher than USGS measurements. The two estimates were not significant difference 

(p=0.09). The DOC export from Rio Grande Watershed provided by USGS measurements 
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ranged from 0.03 TgC (2011) to 0.7 TgC (2009) with a mean of 0.3 TgC per year in the period of 

2008-2018. In the same time period, the simulated DOC export with TAF-DOC from Rio Grande 

Watershed ranged from 0.02 TgC (2012) to 0.8 TgC (2009) with a mean of 0.3 TgC per year, 

which is 10% lower than USGS measurements. The two estimates were not significant difference 

(p=0.39). 

 

Figure 4.4. The annual DOC export from the three continental-scale watersheds (i.e., Colorado, 

Mississippi, and Rio Grande watersheds) to oceans as estimated by the TAF-DOC model and 

compared against benchmark data from USGS measurements over the 1985-2018 time period. 

 Using the soil organic carbon to nitrogen ratio method, the estimated annual DOC export 

from the conterminous United States was 18.2 TgC per year, which is 18% higher than the 

estimate by TAF-DOC (13.6 TgC per year). The spatial patterns of the two estimates were 

similar (Figure 4.5). Both methods identified that the regions having higher DOC flux were 

mostly located in seaboard areas (Atlantic Ocean Seaboard and Gulf of Mexico Seaboard), and 

the contributions of the southwestern and mid-southern conterminous United States were lower. 
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Figure 4.5. The DOC export from the conterminous United States to oceans estimated by the soil 

organic carbon and nitrogen ratio method (a) and terrestrial-aquatic DOC fluxes (TAF-DOC) 

model (b). 

4.3.4 Global Sensitivity 

 The linear relationship between each input driver and DOC flux from terrestrial to 

aquatic ecosystems suggested that annual DOC flux was the most sensitive to annual 

precipitation (R2 = 0.48) (Figure 4.6), and also sensitive to sulfur deposition (R2 = 0.46). 

However, the DOC flux was no sensitive to air temperature and nitrogen deposition (R2 = 0.00 

and 0.01 respectively). In addition, the precipitation had a positive sensitivity (correlation 
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coefficient = 0.89), while the sulfur deposition had a negative sensitivity (correlation coefficient 

= -21.35). 

 

Figure 4.6. The linear relationship between each input driver (i.e., air temperature, precipitation, 

sulfur and nitrogen deposition) and DOC flux from terrestrial to aquatic ecosystems. 

4.4 Discussion 

 Our results estimate that a total of 33.5±2.2 TgC per year was transferred from the 

terrestrial to aquatic ecosystems (DOC loading) in the conterminous United States during 1985-

2018, which represents about 0.39-0.49% of the total soil organic carbon (gSSURGO, 2019). 

The dominant fate of the DOC is export to the ocean (41%), while 38% is decomposed in the 

aquatic ecosystems and released to the atmosphere, and the remaining 21% is buried in sediment. 

The mean of net carbon exchange (NEE) estimates for the conterminous United States as 
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estimated by an ensemble 22 terrestrial biosphere models (TBMs) that participated in the North 

American Carbon Program (NACP) Multi-scale Synthesis and Terrestrial Model 

Intercomparison Project (MsTMIP) is -371 TgC per year (carbon sinks). Hayes et al. (2012) 

calculated the NEE as -357 TgC per year with forward models and -302 TgC per year with the 

inventory-based method. The fates of DOC as sediment and export to the ocean can be assumed 

as annual terrestrial carbon sequestration (Hayes et al., 2018). But these methods ignore the 

lateral DOC flux and thus underestimate the annual carbon uptake as much as 5.5-6.4%. 

 The DOC loading from soil to inland waters estimated with TAF-DOC ranges from 0.1 to 

25.7 gC/m2 per year among these 2110 watersheds with a mean of 4.4 gC/m2 per year, which is 

similar with the results provided by Hope et al. (1994) (1 to 10 gC/m2 per year). Butman et al. 

(2016) estimated that the total DOC and DIC fluxes from land to inland waters is 106 (ranged 

from 71 to 149) TgC per year in the conterminous United States, and ~30% of this flux is DOC. 

Therefore, the total DOC flux from terrestrial to aquatic ecosystems is about 31.8 (ranging from 

21.3 to 44.7) TgC per year, which is similar with our estimated 33.5 (30.46 to 40.8) TgC per 

year. 

 TAF-DOC estimates DOC flux based on the watershed level, however these 2110 

watersheds greatly differ in their size ranging from 184 to 22963 km2 with a mean of 3689 km2 

(Figure S1). Our results suggest that there is no obvious relationship between the size of 

watershed and terrestrial-aquatic DOC flux density (y=-3.91x+18.63, R2=0.05) (Figure S2). 

Chapter 3 suggested that precipitation is the major driver for the interannual variability in DOC 

loading from terrestrial to aquatic ecosystems and Futter et al. (2011) concluded that sulfur 

deposition can explain the long-term trend in DOC loading. TAF-DOC includes these 

environmental factors and successfully estimates the DOC loading as compared to independent 
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benchmark datasets, and characterizes the spatial and temporal patterns of DOC loading at the 

watershed-scale (Figure 7a). Our results suggest that precipitation is the major driver for the 

interannual dynamics of DOC loading (Figure 4.7a and b), which agrees with the conclusion of 

the study by (Futter et al., 2007). Overall, in the period of 1985-2018, the DOC loading from 

terrestrial to aquatic ecosystems is continually increasing; however, the sulfur deposition is 

continually decreasing (Figure 7a), with an obvious negative relationship between them (Figure 

7c). Note that in figure 4.7, the time-series plots include DOC flux anomaly (N [DOC 

Anomaly]), temperature anomaly (N [T Anomaly]), precipitation anomaly (N [P Anomaly]), 

sulfur deposition anomaly (N [S Anomaly]), and nitrogen deposition (N [N Anomaly]) anomaly 

in the period of 1985-2018 (a). The linear relationship between N [DOC Anomaly] and N [P 

Anomaly] (b). The linear relationship between N [DOC Anomaly] and N [S Anomaly] (c).  
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Figure 4.7. The time series of normalized DOC flux anomaly from terrestrial to aquatic 

ecosystems.  

 The atmosphere inverse model approach was used to estimate a 689 TgC per year carbon 

uptake in the conterminous United States (Hayes et al., 2012), and the carbon uptake estimated 

with inventory measurements and bottom-up models is 323-392 TgC per year when including 

the DOC flux component in the overall calculation. There is still a discrepancy between the two 

estimation frameworks. This is because that DIC, particulate inorganic carbon (PIC) and 

particulate organic carbon (POC) are not included in these bottom-up estimates. In the future, 

including these fluxes in bottom-up frameworks could better explain this difference. In addition, 
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the carbon flux of inland water photosynthesis and other biogeochemical processes are not 

counted, which could be another reason for this difference. 

4.5. Conclusion 

 Our results suggest that this proposed process-based terrestrial-aquatic DOC fluxes model 

(TAF-DOC) can successfully estimate the total flux DOC fluxes and capture the watershed-scale 

spatial and annual temporal dynamics of DOC loading, burial, outgassing and export. 

Precipitation is the dominant driver for the interannual DOC dynamics, while the longer-term 

trend of DOC flux is greatly controlled by the rate of sulfur deposition. Our results estimate total 

DOC loading from terrestrial to aquatic ecosystems across the watersheds of the conterminous 

United States to be 33.5±2.1 TgC per year on average, which is about 0.39-0.49% of the total 

soil organic carbon pool. In aquatic ecosystems, 38% of the total DOC is decomposed and 

emitted as outgassing, 21% DOC settles into sediment, and the remaining 41% is ultimately 

delivered to the ocean. Considering the sedimentation and export of DOC to the ocean as a 

relatively long-term sink of sequestered carbon, the annual terrestrial net carbon uptake will be 

underestimated by as much as 5.5-6.4% using carbon budget estimation and modeling 

approaches that do not include DOC fluxes. 
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APPENDICES 

APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 2 

 

Figure A.1. The relationship between SPEI and carbon fluxes (i.e. GPP, TR, and NEE).  

 Both GPP and TR are expressed as positive values, while a negative value of NEE 

represents carbon uptake on land (carbon sink) and a positive value represents carbon release to 

the atmosphere (source). The positive relationship means that increasing droughts (decreasing 

value of SPEI) corresponds to a decrease value of GPP, TR or NEE (a), while a negative 

relationship means that increasing droughts corresponds to an increase in the value of GPP, TR or 

NEE (b). 
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APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 3 

 

Figure B.1. Locations of the 14 watersheds. 

  



 

114 

 

 

Figure B.2. The model used to modify the DOC concentrations measured from unfiltered waters 

samples. 

 To examine the relationship between the organic carbon concentrations measured from 

the filtered water samples and unfiltered water samples, 300 samples from 5 watersheds that 

measured the organic carbon from both filtered and unfiltered water samples were used to build a 

regression model (y=0.60x+0.63, R2=0.91).  
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Table B.1 The hydrologic unit of each watershed and site numbers that used to obtain the discharge 

and DOC concentration data sets. They are defined by USGS. 

Watershed Hydrologic Unit  Site Number 

Bunnell Brook 01080207 1188000 

Quinnipiac River  01100004 1196500 

McDonalds Branch 02040202 1466500 

Paulins Kill River 02040105 1443500 

Rahway River 02030104 1394500 

Saddle River  02030103 1391500 

Choptank River  02060005 1491000 

Mattaponi River 02080105 1674500 

Eno River  03020201 2085000 

Suwannee River  03110201 2314500 

Reedy Creek 03090101 2266300, 2266301 

Popple River 04030108 4063700 

Tehuacana Creek  12030201 8064700 

Piceance Creek  14050006 9306200, 9306222 
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Table B.2. Land cover types. 

This study NLCD 2016 

Wetland Open water; Woody wetlands; Emergent wetland 

Shrub Shrub 

Forest Deciduous forest; Evergreen forest; Mixed forest 

Grassland Herbaceous 

Agriculture Land Hay/Pasture; Cultivated crops 

Developed Area Open space; Barren; Developed low, median, and high 

 

 The National Land Cover Database in 2016 (NLCD2016) has 16 land cover classes based 

on a modified Anderson Level II classification system at a 30-m spatial resolution. In this 

analysis, we condensed these 16 classes to six land cover types. The proportions of open water of 

the 14 watersheds ranged from 0.01% (Piceance Creek) to 5.03% (McDonalds Branch) with an 

average of 1.3%; the land cover ‘Open water’ was thus assigned to the wetland class. The land 

cover type ‘Perennial ice/Snow’ is not included in these watersheds. 
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APPENDIX C. SUPPORTING INFORMATION FOR CHAPTER 4 

 

 

Figure C.1. Size of these 2110 watersheds. 
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Figure C.2. The relationship between DOC loading from terrestrial to aquatic ecosystems 

estimated with TAF-DOC and the size of watershed. 

 The linear regression model is y=-3.91x+18.63, R2=0.05. 
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