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Derivative information is useful for many problems found in science and engineering

that require equation solving or optimization. Driven by its utility and mathematical

curiosity, researchers over the years have developed a variety of generalized derivatives. In

this thesis, we will first take a look at Clarke’s generalized derivative for locally Lipschitz

continuous functions between Euclidean spaces, which roughly is the smallest convex set

containing all nearby derivatives of a domain point of interest. Clarke’s generalized

derivative in this setting possesses a strong theoretical and numerical toolkit, which is

analogous to that of the classical derivative. It includes nonsmooth versions of the chain

rule, the mean value theorem, and the implicit function theorem, as well as nonsmooth

equation-solving and optimization methods. However, it is generally difficult to obtain

elements of Clarke’s generalized derivative in the Euclidean space setting. To address this

issue, we use lexicographic differentiation by Nesterov and lexicographic directional

differentiation by Khan and Barton. They are generalized derivatives theories for a

subclass of locally Lipschitz continuous functions, called the class of lexicographically

smooth functions, which help to find elements of Clarke’s generalized derivative in the

Euclidean space setting systematically. Lexicographic derivatives are either elements of

Clarke’s generalized derivative in the Euclidean space setting or at least indistinguishable



from them as far as numerical tools are concerned. We outline a process by which we can

find a lexicographic derivative once a lexicographic directional derivative is known. Lastly,

we present lexicographic differentiation theory for a subclass of locally Lipschitz continuous

functions mapping between Banach spaces that have Schauder bases, called, unsurprisingly,

the class of lexicographically smooth functions. We provide a proof for Nesterov’s result

that, as in the Euclidean space setting, lexicographic derivatives in this setting satisfy a

sharp calculus rule.
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CHAPTER 1

INTRODUCTION

Differentiation is a key concept in mathematics that finds a wide range of applications

in fundamental problems in science and engineering such as equation-solving and

optimization. One classic example of equation-solving is Newton’s method, an algorithm

that uses derivative information of a function to find its roots. Given a function

f : X ⊂ R→ R, where X is an open subset of R, and an initial guess x0 for a root x ∈ X of

f , Newton’s method provides a recursive formula for subsequent approximations to x, i.e.,

xn+1 = xn −
f(xn)

f ′(xn)
, n ∈ {0, 1, 2, . . . }.

If x0 is “sufficiently" close to x and there exists a closed neighborhood of x containing x0 in

which f is twice continuously differentiable and f ′ does not attain zero, then Newton’s

method guarantees that the sequence {xn} of approximations converges to x, at a rate such

that

|xn+1 − x| ≤M |xn − x|2

for some M ≥ 0. Simply put, Newton’s method works provided that x0 is “sufficiently"

close to x and f is “well-behaved" around x. For example, consider the function f : R→ R

defined by f(x) = x3. For any nonzero initial guess x0 ∈ R, the subsequent approximations

to the root 0 are given recursively by

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

(xn)3

3 (xn)2
=

2

3
xn, n ∈ {0, 1, 2, . . . }.

Hence,

xn =

(
2

3

)n
x0.

Therefore, the sequence {xn} of approximations converges to 0. In this example, any

nonzero initial guess x0 is “sufficiently" close to 0. However, this is not the case in general.
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Consider the function g : R→ R defined by g(x) = x
1
3 . For any nonzero initial guess

x0 ∈ R, the subsequent approximations to the root 0 are given recursively by

xn+1 = xn −
f(xn)

f ′(xn)
= xn −

(xn)
1
3

1
3

(xn)−
2
3

= −2xn, n ∈ {0, 1, 2, . . . }.

Hence,

xn = (−2)nx0.

Therefore, no matter how close x0 is to 0, the sequence {xn} of approximations does not

converge to 0. The complete failure of Newton’s method in this example is because the

function g is not “well-behaved" around 0, as the derivative of g does not exist at 0.

There are functions for which Newton’s method fails. Take for example the function

h : R→ R defined by

h(x) =


|x| if |x| < 1,

x2 if |x| ≥ 1.

Suppose that we want to use Newton’s method to find the root 0 of h with the initial guess

x0 = 1. Newton’s method cannot compute x1 since the derivative of h is not defined at x0.

This example necessitates a generalization of Newton’s method to a larger class of

functions that contains “nonsmooth" functions such as h. To that end, we must first

generalize the notion of a derivative for a function. Over the years, researchers have

extended the classical derivative to nonsmooth functions in a number of ways, motivated

either by mathematical curiosity or by problems arising in science and engineering. These

generalized notions of the classical derivative differ from one another in many regards, such

as the class of functions for which they apply and the kind and purpose of derivative

information that they provide. In general, the broader the class of functions for which a

theory of generalized differentiation applies, the less useful the derivative information. In

this thesis, we will focus on Clarke’s theory of generalized differentiation [3], which is

applicable to the class of locally Lipschitz continuous functions. Roughly speaking, the

Clarke generalized derivative at a point in the domain of a locally Lipschitz continuous

2



function is the smallest convex set containing “nearby derivatives." For example, let us

recall the nonsmooth function h, introduced above. Since h′(x) = 1 for x ∈ (−1, 1) and

h′(x) = 2x for x ∈ (1,∞), the Clarke generalized derivative of h at x = 1 is the convex hull

of the set {1, 2(1)} = {1, 2}, i.e., [1, 2], and is denoted ∂h(1). Clarke generalized derivatives

are just what we need to generalize Newton’s method for locally Lipschitz continuous

functions. Suppose that we want to find the root 0 of h with the initial guess x0 = 1 using

a generalized Newton’s method in which the “derivative" of h at x0 is set to be any number

in ∂h(1), i.e., [1, 2]. Then the first approximation is given by

x1 = x0 −
h(x0)

a
, a ∈ [1, 2] = ∂h(x0).

Since x1 ∈ [0, 1
2
] and h′(x) = 1 for all x ∈ (−1, 1), the Clarke generalized derivative of h at

x1, denoted ∂h(x1), is the smallest convex set containing 1, i.e., {1}. Then the second

approximation is given by

x2 = x1 −
h(x1)

b
, b ∈ {1} = ∂h(x1),

i.e., x2 = 0. Hence, regardless of the choice of the number a ∈ ∂h(1), the sequence {xn} of

approximations does converge to the root, which demonstrates the power of Clarke’s theory

of generalized differentiation in equation-solving.

This thesis will concentrate on Clarke’s theory of generalized differentiation for two

main reasons. First of all, it is designed for the class of locally Lipschitz continuous

functions, which contains many functions commonly encountered in problems arising in

science and engineering. In addition, Clarke’s theory of generalized differentiation possesses

a strong theoretical toolkit that contains powerful theorems, such as a mean value theorem

and inverse and implicit function theorems [3], and a strong numerical toolkit that includes

techniques useful in nonsmooth equation-solving and optimization methods, such as the

generalized Newton’s method described above [10]. Unfortunately, it is quite challenging to

compute Clarke generalized derivative elements in general for a number of reasons. First of

all, while classical calculus rules are equality-based, the calculus rules for Clarke

3



generalized derivatives are inclusion-based. For example, consider the functions A : R→ R

defined by A(x) = max (0, x) and B : R→ R defined by B(x) = min (0, x). Then the sum

of the two functions A+B : R→ R is the identity map, i.e., [A+B] (x) = x. Being the

smallest convex sets containing “nearby derivatives," the Clarke generalized derivatives of

A, B, and their sum at the origin are

∂A(0) = [0, 1]

∂B(0) = [0, 1]

∂ [A+B] (0) = {1}

respectively. Hence, ∂ [A+B] (0) ⊂ ∂A(0) + ∂B(0), where the inclusion is proper.

Therefore, it is not always possible to obtain an element of the Clarke generalized

derivative of A+B by adding together elements of the Clarke generalized derivative of A

and B. Secondly, it is generally not possible to obtain a Clarke generalized derivative

element by “stitching" together directional derivatives in coordinate directions, which are

more straightforward to compute. Lastly, in case of vector-valued functions, it is generally

not possible to obtain a Clarke generalized derivative element by calculating the

corresponding Clarke generalized derivative elements of the component functions.

Recently, two theories have been developed for a subclass of locally Lipschitz

continuous functions to address these challenges: lexicographic differentiation by Nesterov

[9] and lexicographic directional differentiation by Khan and Barton [6]. This subclass

consisting of lexicographically smooth (L-smooth) functions, is a broad class of functions

containing commonly encountered functions in problems that require numerical treatment,

such as convex functions, piecewise differentiable functions [11], and any compositions of

L-smooth functions [9, 6]. In the context of many numerical methods, lexicographic

derivatives are indistinguishable from Clarke generalized derivative elements, but can be

computed in an efficient, accurate, and automated way, unlike Clarke generalized derivative

elements. This advantage of lexicographic derivatives comes from the fact that

lexicographic directional derivatives are “well-behaved" in that they can be calculated

4



component-wise and satisfy equality-based calculus rules. Lexicographic differentiation and

lexicographic directional differentiation are both theories with powerful theoretical toolkits

containing tools such as implicit and inverse function theorems. Since their development,

lexicographic differentiation and lexicographic directional differentiation have been

successfully applied to finite-dimensional problems arising in nonsmooth optimization [13]

and nonsmooth dynamic systems [5, 12] (see [1] for more details).

For some subclasses of L-smooth functions, lexicographic derivatives are

indistinguishable not only from Clarke generalized derivative elements, but also from other

generalized derivative elements. For example, if f is piecewise differentiable [11], then the

lexicographic derivative of f is an element of the Bouligand subdifferential [3] and an

element of the Mordukhovich subdifferential [7]. Just as Clarke’s generalized derivative is

developed for locally Lipschitz continuous functions, a number of generalized derivatives,

such as Dini’s derivative, are developed for discontinuous functions. However, this thesis

will not expand on such generalized derivatives, as they are not suitable for the

equation-solving and optimization problems of our interest.

In Chapter 2, we introduce the classical theory of differentiation and present Newton’s

method as an example of a numerical tool for which the classical derivative is useful. In

Chapter 3, we present Clarke’s theory of differentiation as a generalized theory of

differentiation for the class of locally Lipschitz continuous functions mapping between

Euclidean spaces. We highlight the important subclass consisting of piecewise differentiable

functions, for which Clarke’s theory of differentiation is particularly simple to formulate.

We present the theoretical toolkit of Clarke’s generalized derivative object, which mirrors

that of the classical derivative. Moreover, we highlight a Newton’s method for the class of

locally Lipschitz continuous functions to illustrate a numerical tool to which Clarke’s

theory of differentiation applies.

Despite the utility of Clarke’s theory, it is difficult to obtain elements of Clarke’s

generalized derivative object, even for functions that are constructed from functions whose

5



Clarke’s derivative objects are known, since they obey inclusion-based calculus rules. In

Chapter 4, we will address this issue by presenting Nesterov’s theory of lexicographic

differentiation and Khan and Barton’s theory of lexicographic directional differentiation.

These generalized differentiation theories for a subclass of locally Lipschitz continuous

functions, called the class of L-smooth functions, provide a systematic way to find elements

of Clarke’s derivative object. First, we introduce these theories for the class of L-smooth

functions mapping between Euclidean spaces. We highlight that lexicographic derivatives

are at best elements of Clarke’s derivative object and at least indistinguishable from

elements of Clarke’s derivative object in nonsmooth numerical tools. We note that unlike

Clarke’s generalized derivative object, L-derivatives satisfy an equality-based chain rule. To

make it easier to find L-derivatives, we present lexicographic directional derivatives for

L-smooth functions. Unlike elements of Clarke’s generalized derivative object, it is

straightforward to find LD-derivatives of elementary functions and LD-derivatives of

functions constructed from functions whose LD-derivatives are known. An L-derivative is

easy to obtain once an LD-derivative is known. Next, we introduce Nesterov’s

lexicographic differentiation for a subclass of locally Lipschitz continuous functions

mapping between Banach spaces with Schauder bases, called, as expected, the class of

L-smooth functions. We state L-derivatives for such functions and provide a proof for

Nesterov’s result that these L-derivatives obey an equality-based chain rule, just like the

L-derivatives in the Euclidean space setting. For illustration, we present examples of

L-smooth functions, find their L-derivatives, and show that they indeed obey the sharp

chain rule. In Chapter 5, we give conclusions and discuss future work.

The contributions made in this thesis include elaboration of existing proofs wherever

deemed appropriate, a proof for Theorem 4.3.5, and provision of new illustrative examples

in Section 4.3.5.

6



CHAPTER 2

PRELIMINARIES AND BACKGROUND

In this chapter, we review the classical theory of differentiation.

2.1 Notation

In this chapter, we use X and Y to denote open subsets of Rn and Rm, respectively.

2.2 Vector Spaces and Linear Maps

Definition 2.2.1. Let F be a field and V a set equipped with two operations: addition and

scalar multiplication. Addition is a function + : V × V → V mapping (v,w) to v +w.

Scalar multiplication is a function · : F× V → V mapping (α,v) to αv. If V satisfies the

following axioms, then V is called a vector space over F:

For any vectors u,v,w ∈ V and any scalars a, b ∈ F,

1. u+ (v +w) = (u+ v) +w.

2. u+ v = v + u.

3. There exists an element 0 ∈ V , called a zero vector, such that v+0 = v for all v ∈ V .

4. For every v ∈ V , there exists an element −v ∈ V , called an additive inverse of v,

such that v + (−v) = 0.

5. a(bv) = (ab)v.

6. 1v = v, where 1 denotes the multiplicative identity in F.

7. a(u+ v) = au+ av.

8. (a+ b)v = av + bv.

7



Elements of V are called vectors and elements of F are called scalars.

Definition 2.2.2. A normed vector space is a vector space V over a field F (= R or C),

equipped with a function ‖·‖ : V → R, called a norm on V , that satisfies the following

properties:

1. ‖x‖ ≥ 0 for any x ∈ V , and ‖x‖ = 0 if and only if x = 0.

2. ‖ax‖ = |a| ‖x‖ for any a ∈ F and any x ∈ V .

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for any x,y ∈ V .

Definition 2.2.3. A normed vector space V over a field F (= R or C) is complete if every

Cauchy sequence of elements of V converges to an element of V with respect to the norm.

A complete normed vector space is called a Banach space.

Remark 2.2.4. In this thesis, we will always view Rn as a Banach space with the

Euclidean norm.

Definition 2.2.5. Let V be a Banach space over a field F (= R or C). A Schauder basis is

a sequence {bn} of elements of V such that for every element v ∈ V there exists a unique

sequence {an} of scalars in F for which

v =
∞∑
n=0

anbn,

where the convergence is with respect to the norm.

Definition 2.2.6. Let V and W be vector spaces over a field F. A function f : V → W is

a linear map if for any vectors u,v ∈ V and any scalar c ∈ F,

f(u+ v) = f(u) + f(v)

f(cu) = cf(u).

If V = W , then a linear map is called a linear operator.

8



Definition 2.2.7. Let V and W be normed vector spaces over a field F (= R or C), where

‖·‖V is the norm on V and ‖·‖W is the norm on W . A linear map f : V → W is bounded

if there exists some M ≥ 0 such that for all v ∈ V ,

‖f(v)‖W ≤M ‖v‖V .

Remark 2.2.8. Let V and W be normed vector spaces over a field F (= R or C), where

‖·‖V is the norm on V and ‖·‖W is the norm on W . The set of bounded linear maps from

V to W equipped with the two operations

(A+B)(v) = A(v) +B(v), v ∈ V

(αA)(v) = αA(v), v ∈ V

for any bounded linear maps A and B and any α ∈ F(= R or C) forms a vector space

denoted by C(V,W ). This notation is justified by the fact that a linear map A : V → W is

bounded if and only if it is continuous with respect to topologies induced from the norms

‖·‖V and ‖·‖W of V and W , respectively. The vector space C(V,W ) equipped with the norm

‖·‖ : C(V,W )→ R defined by

‖A‖ = inf{M ≥ 0 : ‖Av‖W ≤M ‖v‖V for all v ∈ V }

forms a normed vector space. The norm ‖·‖ is called the operator norm.

2.3 Theory of Differentiation

We introduce differentiation notions that are commonly encountered in the Euclidean

space setting.

Definition 2.3.1. Let f : X ⊂ Rn → R be a function. The partial derivative of f at

a = (a1 . . . an)T ∈ X with respect to the i-th variable xi is

∂f

∂xi
(a) := lim

h→0

f(a1, . . . , ai−1, ai + h, ai+1, . . . , an)− f(a1, . . . , ai, . . . , an)

h

if the limit exists.
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Definition 2.3.2. Let f : X ⊂ Rn → Rm be a function that maps x = (x1 . . . xn)T ∈ X to

f(x) = (f1(x) . . . fm(x))T ∈ Rm. If the partial derivative ∂fi
∂xj

of fi with respect to the j-th

variable xj exists at a ∈ X for all i ∈ {1, . . . ,m} and all j ∈ {1, . . . , n}, then the Jacobian

matrix of f at a is the matrix

Jf(a) :=


∂f1
∂x1

(a) · · · ∂f1
∂xn

(a)

... . . . ...
∂fm
∂x1

(a) · · · ∂fm
∂xn

(a)

 .

Definition 2.3.3. A function f : X ⊂ Rn → Rm is called (Fréchet-) differentiable at

x ∈ X if there exists a bounded linear map Ax ∈ C(Rn,Rm) such that

lim
h→0

|f(x+ h)− f(x)−Axh|
|h|

= 0.

Remark 2.3.4. If a function f : X ⊂ Rn → Rm is differentiable at x ∈ X, then the

bounded linear map Ax ∈ C(Rn,Rm) is unique, all of the partial derivatives of f at x exist,

and Ax is the Jacobian matrix Jf(x) taken as an element of C(Rn,Rm). We call Ax the

(Fréchet) derivative of f at x. In general, the existence of all of the partial derivatives of a

function f : X ⊂ Rn → Rm at a point x ∈ X does not imply that f is differentiable at x.

For example, consider the function f : R2 → R defined by

f(x y)T =


x if y 6= x2,

0 if y = x2.

Then f is not differentiable at (0 0)T , but all of the partial derivatives of f at (0 0)T exist.

However, if all of the partial derivatives of a function f : X ⊂ Rn → Rm exist in a

neighborhood of a point x ∈ X, and are continuous at x, then f is differentiable at x. If

f : X ⊂ Rn → Rm is differentiable at all points in X, then we say that f is differentiable

on X.

Definition 2.3.5. A function f : X ⊂ Rn → Rm is continuously differentiable (C1) on X if

it is differentiable on X and the derivative Jf : X → C(Rn,Rm) of f is continuous on X.
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Example 2.3.6. Let f : R→ R be the function defined by f(x) = x2. Then f is

differentiable on R since at any x ∈ R we have a bounded linear map Ax : R→ R defined

by Ax(h) = 2xh such that

lim
h→0

|f(x+ h)− f(x)− Axh|
|h|

= lim
h→0

|(x+ h)2 − x2 − 2xh|
|h|

= 0.

Hence, Ax = Jf(x) = 2x is the derivative of f at x, as expected. In fact, f is C1 since the

derivative of f mapping x to 2x is continuous on R.

Definition 2.3.7. A function f : X ⊂ Rn → Rm is directionally differentiable at x ∈ X in

the direction of h ∈ Rn if

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t

exists. In this case, f ′(x;h) is called the directional derivative of f at x in the direction of

h. If f is differentiable at x in all directions in Rn, then f is called directionally

differentiable at x. If f is directionally differentiable at all points in X, then f is called

directionally differentiable on X.

Proposition 2.3.8. Let f : X ⊂ Rn → Rm be a C1 function. For any x ∈ X and h ∈ Rn,

f is directionally differentiable at x in the direction of h. Also,

f ′(x;h) = Jf(x)h.

Example 2.3.9. Let f : R2 → R be a function defined by f(x1 x2)
T = x21 + x22. Then f is

C1. Note that

Jf(x)d = (2x1 2x2)

d1
d2

 = 2x1d1 + 2x2d2.

Then

f ′(x;d) = lim
α↓0

f(x+ αd)− f(x)

α

= lim
α↓0

(x1 + αd1)
2 + (x2 + αd2)

2 − x21 − x22
α

= 2x1d1 + 2x2d2

= Jf(x)d,
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as expected.

2.3.1 The Theoretical Toolkit of Differentiation

Here, we present the classical theory of differentiation.

Theorem 2.3.10 (The classical mean value theorem). Let [a, b] ⊂ R be a compact interval

and f : [a, b]→ R a function continuous on [a, b] and differentiable on (a, b). Then there

exists c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 2.3.11. If f : X ⊂ Rn → Rm and g : X → Rm are functions differentiable at

x ∈ X, then for any a, b ∈ R, the function af + bg : X → Rm defined by

[af + bf ] (y) = af(y) + bg(y) is differentiable at x. Moreover,

J [af + bg] (x) = aJf(x) + bJg(x).

Theorem 2.3.12 (The classical chain rule). If f : X ⊂ Rn → Y ⊂ Rm is a function

differentiable at x ∈ X and g : Y → Rk is a function differentiable at f(x) ∈ Y , then the

composition g ◦ f : X → Rk is differentiable at x. Moreover, its derivative at x is given by

J [g ◦ f ] (x) = Jg (f(x))Jf(x).

Let f : X × Y ⊂ Rn × Rm → Rm be a function. Consider the following equation:

f(x,y) = 0.

An implicit function theorem provides conditions under which it is possible to solve this

equation for y as a function of x in the neighborhood of a known solution (x̄, ȳ). There are

a number of implicit function theorems; the stronger the assumptions, the stronger the

conclusions. Below, we give a standard implicit function theorem.

Theorem 2.3.13 (The classical implicit function theorem). Let

f : X × Y ⊂ Rn × Rm → Rm be a C1 function and suppose there exist x̄ ∈ X and ȳ ∈ Y

12



such that f(x̄, ȳ) = 0. If 
∂f1
∂y1

(x̄, ȳ) · · · ∂f1
∂ym

(x̄, ȳ)

... . . . ...
∂fm
∂y1

(x̄, ȳ) · · · ∂fm
∂ym

(x̄, ȳ)


is invertible, then there exist neighborhoods U ⊂ X and V ⊂ Y of x̄ and ȳ, respectively, on

which the equation

f(x,y) = 0

uniquely defines y as a function of x. That is, there is a function p : U → V such that

1. f (u,p(u)) = 0 for all u ∈ U .

2. For each u ∈ U , p(u) is the unique solution to f(x,y) = 0 lying in V . In particular,

p(x̄) = ȳ.

3. p is C1 on U . Moreover, for any u ∈ U ,
∂p1
∂u1

(u) · · · ∂p1
∂un

(u)

... . . . ...
∂pm
∂u1

(u) · · · ∂pm
∂un

(u)

 = −


∂f1
∂y1

(u) · · · ∂f1
∂ym

(u)

... . . . ...
∂fm
∂y1

(u) · · · ∂fm
∂ym

(u)


−1

∂f1
∂x1

(u) · · · ∂f1
∂xn

(u)

... . . . ...
∂fm
∂x1

(u) · · · ∂fm
∂xn

(u)

 .

2.3.2 Newton’s Method

In addition to a useful theoretical toolkit, the theory of differentiation possesses a

strong numerical toolkit. In this section, we demonstrate how the derivative is used in

equation-solving methods. In particular, we will use Newton’s method to solve the system

of equations

f(x) = 0

where f : X ⊂ Rn → Rn is a C1 function. Let x0 be an initial guess for a root of f . If xk−1

is a current approximation for the root, then Newton’s method gives a formula for the

subsequent approximation xk, i.e.,

xk = xk−1 − [Jf(xk−1)]
−1 f(xk−1).
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For sufficiently simple systems, we can often compute the inverse of the Jacobian matrix

directly with no difficulty. For more complicated systems, it is usually more efficient to

solve the following equivalent system of linear equations for xk − xk−1:

Jf(xk−1)(xk − xk−1) = −f(xk−1).

Example 2.3.14. Suppose that we are given the following system of equations: x1 + x2

x1
2 − x2

 =

0

0

 .

Geometrically, solutions to this system of equations correspond to the intersections of the

curves y = −x and y = x2 on the Cartesian plane. In this example, we will use Newton’s

method to solve this system of equations. Letting x = (x1 x2)
T , we can rewrite this system

of equations as

f(x) = 0,

where f(x) = (x1 + x2 x1
2 − x2)T . Then, the Jacobian matrix of f at x is

Jf(x) =

 1 1

2x1 −1


and its inverse is

[Jf(x)]−1 =
1

2x1 + 1

 1 1

2x1 −1

 .

x0 (−2 3)T

x1 (−4
3

4
3
)T

x2 (−16
15

16
15

)T

x3 (−256
255

256
255

)T

x4 (−65536
65535

65536
65535

)T

Table 2.1. First few approximations to the root (−1 1)T
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The above table displays the first few approximations to the left intersection point (−1 1)T

of the two curves provided that we choose x0 = (−2 3)T as the initial guess for it. As

expected, these approximations are approaching (−1 1)T .
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CHAPTER 3

GENERALIZED DIFFERENTIATION THEORY

In this chapter, we present a generalized theory of differentiation for a class of functions

called locally Lipschitz continuous functions.

3.1 Notation

In this chapter, we use X and Y to denote open subsets of Rn and Rm, respectively.

3.2 Nonsmooth Functions

3.2.1 Locally Lipschitz Continuous Functions

Definition 3.2.1. A function f : X ⊂ Rn → Rm is Lipschitz continuous if there exists

K ≥ 0 such that for all x and y in X,

|f(x)− f(y)| ≤ K |x− y| .

Any such constant K is called a Lipschitz constant. A function f : X ⊂ Rn → Rm is locally

Lipschitz continuous if for any x ∈ X, there exists a neighborhood Ux of x such that f

restricted to Ux is Lipschitz continuous.

Remark 3.2.2. A Lipschitz continuous function is locally Lipschitz continuous. However,

the converse is not true. For example, the function f : R→ R given by f(x) = x2 is locally

Lipschitz continuous, but not Lipschitz continuous. Moreover, compositions of locally

Lipschitz continuous functions are locally Lipschitz continuous.

A C1 function is locally Lipschitz continuous. Not every differentiable function is locally

Lipschitz continuous. For example, consider the function h : R→ R defined by

h(x) =


x2 sin 1

x2
if x 6= 0,

0 if x = 0.
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Then h is differentiable, with the derivative

h′(x) =


2x sin 1

x2
− 2

x
cos 1

x2
if x 6= 0,

0 if x = 0.

However, h is not locally Lipschitz continuous, due to its behavior at 0. Conversely, not

every locally Lipschitz continuous function is differentiable. For example, the absolute value

function f : R→ R defined by f(x) = |x| is locally Lipschitz continuous, but not

differentiable.

Example 3.2.3. The square root function f : R→ R defined by f(x) =
√
|x| is not locally

Lipschitz continuous.

It is convenient to develop a generalized theory of differentiation for locally Lipschitz

continuous functions due to Rademacher’s theorem, because it allows us to work with

nondifferentiability in a controlled manner. The following theorem is from [4].

Theorem 3.2.4 (Rademacher’s Theorem). If f : X ⊂ Rn → Rm is locally Lipschitz

continuous, then f is differentiable almost everywhere on X.

Example 3.2.5. For the absolute value function f : R→ R defined by f(x) = |x|, the set

of points of nondifferentiability in the domain is {0}, which has Lebesgue measure 0.

Example 3.2.6. For the function g : R2 → R defined by g(x1 x2)
T = min (x1, x2), the set

of points of nondifferentiability in the domain is {(x1, x2) ∈ R2 : x1 = x2}, which has

Lebesgue measure 0.

3.2.2 Piecewise Differentiable Functions

There is an important subclass of locally Lipschitz continuous functions containing the

class of C1 functions, which we introduce below. The material here comes from [11].

Definition 3.2.7. A function f : X ⊂ Rn → Rm is piecewise differentiable (PC1) at

x ∈ X if there exists a neighborhood Nx ⊂ X of x and a finite collection
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Ff (x) =
{
f (1), . . . ,f (k)

}
of C1 functions mapping Nx into Rm such that f is continuous on

Nx and for all y ∈ Nx, f(y) ∈
{
f (i)(y) : i ∈ {1, . . . , k}

}
. If f is PC1 at all points of X,

then f is called PC1 on X. Given the set of functions Ff (x), there is an associated set

Iessf (x) :=
{
i ∈ {1, . . . , k} : x ∈ cl

{
int
{{
y ∈ Nx : f(y) = f (i)(y)

}}}}
,

called the set of essentially active indices of f at x with respect to Ff (x). Corresponding to

a set of essentially active indices is a set of essentially active functions

Ef (x) :=
{
f (i) : i ∈ Iessf (x)

}
.

Remark 3.2.8. A composition of PC1 functions is PC1. A PC1 function is directionally

differentiable.

Example 3.2.9. Let g : R2 → R be the function defined by

g(x1 x2)
T = max (0,min (x1, x2)). Then g is PC1, with Fg

(
(0 0)T

)
=
{
g(1), g(2), g(3)

}
, where

g(1)(x1 x2)
T = 0

g(2)(x1 x2)
T = x1

g(3)(x1 x2)
T = x2.

We will show that a directional derivative of g can be obtained from an appropriate

selection function. Since

g′
(
(1 1)T ; (−1 0)T

)
= lim

α→0+

g
(
(1 1)T + α(−1 0)T

)
− g(1 1)T

α
= −1

and

g′(2)((1 1)T ; (−1 0)T ) = Jg(2)(1 1)T

−1

0

 =

(
1 0

)−1

0

 = −1,

we see that g′((1 1)T ; (−1 0)T ) = g′(2)((1 1)T ; (−1 0)T ).

Example 3.2.10. The absolute value function f : R→ R defined by f(x) = |x| is PC1 on

R.
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Example 3.2.11. For any n ∈ N, the minimum function min : Rn → R defined by

min (x) = min {x1, . . . , xn} where x = (x1 . . . xn)T and the maximum function

max : Rn → R defined by max (x) = max {x1, . . . , xn} where x = (x1 . . . xn)T are PC1 on

Rn.

Example 3.2.12. For any n ∈ {2, 3, 4, . . . }, the Euclidean norm function |·| : Rn → R

mapping x to |x| is not PC1 at 0.

3.3 Clarke’s Theory of Differentiation

In this section, definitions and results come from [3].

3.3.1 Bouligand Subdifferentials and Clarke Jacobians

Definition 3.3.1. Let f : X ⊂ Rn → Rm be a locally Lipschitz continuous function. If

Zf ⊂ X is the set of points of nondifferentiability in the domain of f , then the Bouligand

(B-) subdifferential of f at x ∈ X is

∂Bf(x) :=

{
H ∈ Rm×n : H = lim

j→∞
Jf(x(j)) for some sequence

{
x(j)

}
in X \ Zf converging to x

}
.

Definition 3.3.2. Let f : X ⊂ Rn → Rm be a locally Lipschitz continuous function. If

Zf ⊂ X is the set of points of nondifferentiability in the domain of f , then the Clarke

Jacobian of f at x ∈ X is

∂f(x) := conv ∂Bf(x).

In words, the Clarke Jacobian of f at x ∈ X is the convex hull of the B-subdifferential

of f at x.

Proposition 3.3.3. A Clarke Jacobian is nonempty, compact, and convex.
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Example 3.3.4. For the absolute value function f : R→ R defined by f(x) = |x|,

∂Bf(x) =


{−1} if x < 0,

{−1, 1} if x = 0,

{1} if x > 0,

and

∂f(x) =


{−1} if x < 0,

[−1, 1] if x = 0,

{1} if x > 0.

In the above example, f is PC1. In general, the Clarke Jacobian is straightforward to

compute for PC1 functions.

Proposition 3.3.5. Let f : X ⊂ Rn → Rm be a PC1 function on X, and x ∈ X. Then

∂f(x) = conv
{
Jf (i)(x) : i ∈ Iessf (x)

}
.

Example 3.3.6. Recall the function g in Example 3.2.9. We have

∂Bg(0 0)T = {[1 0], [0 1], [0 0]}

and

∂g(0 0)T = {[λ1 λ2] : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1} .

3.3.2 The Theoretical Toolkit of Clarke Jacobians

Just like classical differentiaton, Clarke’s theory of differentiation possesses a useful

theoretical toolkit.

Theorem 3.3.7 (The chain rule for Clarke Jacobians). If f : X ⊂ Rn → Y ⊂ Rm and

h : Y → Rr are locally Lipschitz continuous functions, then h ◦ f is locally Lipschitz

continuous and the Clarke Jacobian of h ◦ f satisfies

∂ [h ◦ f ] (x) ⊂ conv {HF : H ∈ ∂h(f(x)),F ∈ ∂f(x)}.
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Remark 3.3.8. Unlike the classical chain rule, which is an equality-based rule, the Clarke

Jacobian chain rule is an inclusion-based rule.

Example 3.3.9. Let f : R2 → R, f(x1 x2)
T = min (x1, x2), and h : R→ R,

h(y) = max (0, y), both of which are locally Lipschitz continuous functions. Then

[h ◦ f ] (x1 x2)
T = max (0,min (x1, x2)). As seen above,

∂B [h ◦ f ] (0 0)T = {[1 0], [0 1], [0 0]}

and

∂ [h ◦ f ] (0 0)T = {[λ1 λ2] : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1}.

On the other hand,

conv
{
HF : H ∈ ∂h

(
f(0 0)T

)
,F ∈ ∂f(0 0)T

}
= conv {HF : H ∈ [0, 1],F ∈ {[λ 1− λ] : 0 ≤ λ ≤ 1}}

= conv {H[λ 1− λ] : 0 ≤ H ≤ 1, 0 ≤ λ ≤ 1}

= {[λ1 λ2] : λ1, λ2 ≥ 0, λ1 + λ2 ≤ 1}

= ∂ [h ◦ f ] (0 0)T .

In the above example, the chain rule relation holds with equality. In general, however,

it is not the case.

Example 3.3.10. Let f : R→ R, f(x) = min (0, x), and h : R→ R, h(y) = max (0, y),

both of which are locally Lipschitz continuous functions. Then

[h ◦ f ] (x) = max (0,min (0, x)) = 0, i.e., the composition is identically zero. Note that

∂B [h ◦ f ] (0) = {0}

∂ [h ◦ f ] (0) = conv {0} = {0}.

On the other hand,

conv {HF : H ∈ ∂h(f(0)), F ∈ ∂f(0)} = conv {HF : H ∈ [0, 1], F ∈ [0, 1]} = [0, 1].
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In the above example, the chain rule relation is a proper inclusion.

The Clarke Jacobian possesses a theoretical toolkit that mirrors that of the classical

derivative, which includes a mean value theorem and an implicit function theorem.

Theorem 3.3.11 (The mean value theorem for Clarke Jacobians). Let [a, b] ⊂ R be a

compact interval and f : [a, b]→ R a function Lipschitz continuous on [a, b]. Then there

exists c ∈ (a, b) such that
f(b)− f(a)

b− a
∈ ∂f(c).

Theorem 3.3.12 (The implicit function theorem for Clarke Jacobians). If

g : X ⊂ Rn × Y ⊂ Rm → Rm is a locally Lipschitz continuous function such that

g(x0,y0) = 0 for some x0 ∈ X and y0 ∈ Y , and det(Y ) 6= 0 for all

Y ∈
{
Y ∈ Rn×n : [X Y ] ∈ ∂g(x0,y0)

}
,

then there exists a Lipschitz continuous function r : Rn → Rm such that g(x, r(x)) = 0 in

a neighborhood of x0.

3.3.3 Nonsmooth Newton’s Method

In addition to a useful theoretical toolkit, Clarke’s theory of differentiation possesses a

strong numerical toolkit that includes Newton’s methods and local optimization methods.

In this section, we introduce a Newton’s method for the class of locally Lipschitz

continuous functions. Consider a locally Lipschitz continuous function f : Rn → Rn. Let

x(0) be an initial guess for a root of f . We can obtain subsequent approximations to the

root using the recursive formula

x(k) = x(k−1) −H−1f
(
x(k−1)

)
, where H ∈ ∂f

(
x(k−1)

)
, k ∈ N.

Example 3.3.13. Suppose that we are given the equation

f(x) = 0
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to solve, where

f(x) =


|x| if |x| < 1

x2 if |x| ≥ 1.

To find a root of this equation, we can apply the locally Lipschitz continuous version of

Newton’s method, since f is locally Lipschitz continuous. Let x0 = 1 be an initial guess for

the root 0. Then

x1 = x0 −
1

a
f(x0) = 1− 1

a
, where a ∈ ∂f(x0) = conv {1, 2} = [1, 2].

To obtain x2, we may choose any a ∈ ∂f(x0) = [1, 2]. For any a ∈ [1, 2],

x2 = x1 −
1

b
f(x1) =

(
1− 1

a

)
− 1

b

(
1− 1

a

)
, where b ∈ ∂f(x1) = conv {1} = {1},

i.e., x2 = 0, the root of the equation.

It is worth noting that the classical version of Newton’s method would have failed to give

us x1 since f is not differentiable at x0 = 1.

As we have just seen with Newton’s method, Clarke Jacobian elements are essential in

implementing numerical tools for the class of locally Lipschitz continuous functions.

However, the fact that calculus rules for Clarke Jacobians are inclusion-based makes it

difficult to obtain Clarke Jacobian elements even for a function constructed from functions

whose Clarke Jacobians are known.

Example 3.3.14. If g : X ⊂ Rn → Rm and h : X → Rm are locally Lipschitz continuous

functions, then g + h : X → Rm is locally Lipschitz continuous and

∂[g + h](0) ⊂ ∂g(0) + ∂h(0),

where the inclusion may be proper. Thus, adding a Clarke Jacobian element of g and a

Clarke Jacobian element of h will not necessarily yield a Clarke Jacobian element of g + h.

For instance, consider g : R→ R, g(x) = max (0, x), and h : R→ R, h(x) = min (0, x), both

of which are locally Lipschitz continuous with ∂g(0) = [0, 1] and ∂h(0) = [0, 1]. By the above

23



rule, g + h : R→ R, [g + h] (x) = x, is locally Lipschitz continuous with ∂ [g + h] (0) = {1}.

However, although 0 ∈ ∂g(0) ∪ ∂h(0) = [0, 1], we have 0 + 0 /∈ ∂f(0) = {1}.

Example 3.3.15. In general, we cannot compute Clarke Jacobian elements for a

vector-valued function f = (f1 . . . fm)T : Rn → Rm component-wise due to the following

rule:

∂f(x) ⊂ ∂f1(x)× · · · × ∂fm(x) =




F 1

...

Fm

 : F i ∈ ∂fi(x)

 ,

where the inclusion may be proper. For instance, consider the function f : R2 → R2 defined

by

f(x1 x2)
T =

x1 + |x2|

x1 − |x2|

 .

Then

∂f(0 0)T =


1 2λ− 1

1 1− 2λ

 : 0 ≤ λ ≤ 1

 .

However,

∂f(0 0)T ⊂ ∂f1(0 0)T × ∂f2(0 0)T =


1 2λ1 − 1

1 2λ2 − 1

 : (λ1 λ2)
T ∈ [0, 1]2

 ,

where the inclusion is proper.

Example 3.3.16. In general, it is not possible to compute a B-subdifferential element or

Clarke Jacobian element of a function by calculating its directional derivatives in coordinate

directions and then “stitching" them together. For instance, let f : R2 → R be a function

defined by f(x1 x2)
T = |x1 − x2|. Note that f is PC1, with Ff ((0 0)T ) =

{
f(1), f(2)

}
, where

f(1)(x1 x2)
T = x1 − x2

f(2)(x1 x2)
T = −x1 + x2.
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Then

f ′((0 0)T ; (1 0)T ) =
[
Jf(1)(0 0)T

]
(1 0)T = (1 − 1)(1 0)T = 1

f ′((0 0)T ; (0 1)T ) =
[
Jf(2)(0 0)T

]
(0 1)T = (−1 1)(0 1)T = 1.

Moreover,

∂Bf(0 0)T = {(1 − 1), (−1 1)}

∂f(0 0)T = {(1− λ − 1 + λ) : 0 ≤ λ ≤ 2} .

However, (
f ′((0 0)T ; (1 0)T ) f ′((0 0)T ; (0 1)T )

)
= (1 1) /∈ ∂f(0 0)T .
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CHAPTER 4

THEORY OF LEXICOGRAPHIC DIFFERENTIATION

Recently, lexicographic differentiation introduced by Nesterov [9] and lexicographic

directional differentiation by Khan and Barton [6] have provided a way to find Clarke

Jacobian elements systematically. In this chapter, we will present both theories, which are

developed for a subclass of locally Lipschitz functions called lexicographically (L-) smooth

functions. We will fill in some details for lexicographic differentiation in the Banach space

setting that had been omitted by Nesterov and provide new illustrative examples.

4.1 Preliminaries

4.1.1 Notation

In this section, let E1, E2, and E3 be real normed vector spaces and let ‖·‖1, ‖·‖2, and

‖·‖3 denote the norms of E1, E2, and E3, respectively.

4.1.2 Locally Lipschitz Continuous and Directionally Differentiable Functions

Definition 4.1.1. A function f : E1 → E2 is Lipschitz continuous if there exists K ≥ 0

such that for all x and y in E1,

‖f(x)− f(y)‖2 ≤ K ‖x− y‖1 .

Any such constant K is called a Lipschitz constant. A function f : E1 → E2 is locally

Lipschitz continuous if for any x ∈ E1, there exists a neighborhood Ux of x such that f

restricted to Ux is Lipschitz continuous.

Definition 4.1.2. A function f : E1 → E2 is differentiable at x ∈ E1 in the direction of

h ∈ E1 if

f ′(x;h) := lim
t→0+

f(x+ th)− f(x)

t
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exists. In that case, f ′(x;h) is called the directional derivative of f at x in the direction h.

If f is differentiable at x in all directions in E1, then f is called directionally differentiable

at x. If f is directionally differentiable at all points in E1, then f is called directionally

differentiable on E1.

If f : E1 → E2 is locally Lipschitz continuous and directionally differentiable on E1, we

write

f ∈ D(E1, E2).

Definition 4.1.3. Let f ∈ D(E1, E2) and x ∈ E1. The function Hx[f ] : E1 → E2 defined

by

Hx[f ](h) = f ′(x;h), h ∈ E1

is called the homogenization of f at x.

Proposition 4.1.4. Let f , g ∈ D(E1, E2) and x ∈ E1. Then for any α, β ∈ R,

Hx[αf + βg] = αHx[f ] + βHx[g].

Proof. Let f , g ∈ D(E1, E2), x ∈ E1, and α, β ∈ R. First, we check that

αf + βg ∈ D(E1, E2) to ensure that the function Hx[αf + βg] : E1 → E2 is defined. Let

z ∈ E1. Since f , g ∈ D(E1, E2), there exist neighborhoods Uz and Vz of z on which f and

g are Lipschitz continuous, respectively. Then for all w1 and w2 in the neighborhood

Uz ∩ Vz of z,

‖(αf + βg)(w1)− (αf + βg)(w2)‖2 ≤ α ‖f(w1)− f(w2)‖2 + β ‖g(w1)− g(w2)‖2

≤ αK1 ‖w1 −w2‖1 + βK2 ‖w1 −w2‖1

≤ K3 ‖w1 −w2‖1 ,

where K3 = max {αK1, βK2}. Therefore, αf + βg is locally Lipschitz continuous. Let

h ∈ E1. Since

lim
t→0+

(αf + βg)(x+ th)− (αf + βg)(x)

t
= lim

t→0+

[
α
f(x+ th)− f(x)

t
+ β

g(x+ th)− g(x)

t

]
= αf ′(x;h) + βg′(x;h),
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αf + βg is directionally differentiable at x. Therefore, αf + βg ∈ D(E1, E2), as needed.

The proposition follows immediately from above and the definition of homogenization.

Proposition 4.1.5. Let f ∈ D(E1, E2) and x ∈ E1. Then Hx[f ] is Lipschitz continuous.

Proof. Let f ∈ D(E1, E2) and x ∈ E1. Since f is locally Lipschitz continuous, there exists

a neighborhood Ux of x on which f is Lipschitz continuous. Then, for all h1 and h2 in E1,

‖f ′(x;h1)− f ′(x;h2)‖2 =

∥∥∥∥ lim
t→0+

f(x+ th1)− f(x)

t
− lim

t→0+

f(x+ th2)− f(x)

t

∥∥∥∥
2

=

∥∥∥∥ lim
t→0+

f(x+ th1)− f(x+ th2)

t

∥∥∥∥
2

= lim
t→0+

‖f(x+ th1)− f(x+ th2)‖2
t

≤ lim
t→0+

K ‖(x+ th1)− (x+ th2)‖1
t

= K ‖h1 − h2‖1 .

Therefore, Hx[f ] is Lipschitz continuous.

Proposition 4.1.6 (The chain rule for directional derivatives). If f ∈ D(E1, E2) and

F ∈ D(E2, E3), then F ◦ f ∈ D(E1, E3). Moreover,

Hx[F ◦ f ](·) = Hf(x)[F ](Hx[f ](·)).

Proof. Let f ∈ D(E1, E2) and F ∈ D(E2, E3). First, we show that F ◦ f ∈ D(E1, E3). Let

z ∈ E1. Since f ∈ D(E1, E2) and F ∈ D(E2, E3), there exist a neighborhood Uz of z on

which f is Lipschitz continuous and a neighborhood Vf(z) of f(z) on which F is Lipschitz

continuous. Clearly, z ∈ Uz ∩ f−1
(
Vf(z)

)
. Note that f is continuous since it is locally

Lipschitz continuous. Since the preimage of every open set under a continuous function is

open, f−1
(
Vf(z)

)
is open. Hence, Uz ∩ f−1

(
Vf(z)

)
is a neighborhood of z. For all x and y

in Uz ∩ f−1
(
Vf(z)

)
,

‖F (f(x))− F (f(y))‖3 ≤ K1 ‖f(x)− f(y)‖2 ≤ K1K2 ‖x− y‖1 .
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Therefore, F ◦ f is locally Lipschitz continuous. Let x ∈ E1 and h ∈ E1. To show that

F ◦ f is directionally differentiable on E1, it is enough to show that

(F ◦ f)′(x;h) = F ′(f(x);f ′(x;h)).

Since f and F are directionally differentiable on E1 and E2, respectively,

f(x+ αh)− f(x) = f ′(x;h)α + εx,h(α)α,

F (f(x) + βh)− F (f(x)) = F ′(f(x);h)β + ηx,h(β)β,

where εx,h : R+ → E2 and ηx,h : R+ → E3 are functions such that

lim
α↓0
εx,h(α) = 0,

lim
β↓0
ηx,h(β) = 0.

Hence,

F (f(x+ αh))− F (f(x)) = F (f(x) + αkx,h(α))− F (f(x))

= F ′(f(x);kx,h(α))α + ηx,kx,h(α)
(α)α,

where kx,h : R+ → E2 is a function given by

kx,h(·) = f ′(x;h) + εx,h(·).

Hf(x)[F ] is continuous since it is Lipschitz continuous by Proposition 4.1.5. Hence,

lim
α↓0

F (f(x+ αh))− F (f(x))

α
= lim

α↓0

(
F ′(f(x);kx,h(α)) + ηx,kx,h(α)

(α)
)

= lim
α↓0
F ′ (f(x);kx,h(α))

= F ′(f(x); lim
α↓0
kx,h(α))

= F ′(f(x);f ′(x;h)),

as needed. The proposition follows immediately from above and the definition of

homogenization.
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Example 4.1.7. Let f : R2 → R be the function defined by f(x1 x2)
T = min (x1, x2) and

h : R→ R the function defined by h(y) = max (0, y). Then

h′(y; d) = lim
α↓0

h(y + αd)− h(y)

α

=


0 if y < 0, or y = 0 and d ≤ 0,

d if y > 0, or y = 0 and d > 0,

and

f ′((x1 x2)
T ; (d1 d2)

T ) = lim
α↓0

f
(
(x1 x2)

T + α(d1 d2)
T
)
− f(x1 x2)

T

α

=


d1 if x1 < x2, or x1 = x2 and d1 ≤ d2,

d2 if x1 > x2, or x1 = x2 and d1 > d2.

Hence, h′(0; d) = max (0, d) and f ′((0 0)T ; (d1 d2)
T ) = min (d1, d2). On the other hand,

[h ◦ f ]′
(
(0 0)T ; (d1 d2)

T
)

= lim
α↓0

g
(
(0 0)T + α(d1 d2)

T
)
− g(0 0)T

α

=


d1 if 0 ≤ d1 ≤ d2,

d2 if d1 > d2 > 0,

0 otherwise,

= max (0,min (d1, d2)).

Thus, [h ◦ f ]′
(
(0 0)T ; (d1 d2)

T
)

= h′
(
f(0 0)T ; f ′

(
(0 0)T ; (d1 d2)

T
))
, as expected.

Definition 4.1.8. A function f : E1 → E2 is called homogeneous if for all α ∈ R and all

x ∈ E1,

f(αx) = αf(x).

Remark 4.1.9. Let a function f : E1 → E2 be directionally differentiable on E1. If

x ∈ E1, then the directional derivative of f at x is homogeneous since

f ′(x;0) = 0
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and if h ∈ E1 and α 6= 0, then

f ′(x;αh) = lim
t→0+

f(x+ tαh)− f(x)

t

= lim
t→0+

α
f(x+ αth)− f(x)

αt

= α lim
t→0+

f(x+ th)− f(x)

t

= αf ′(x;h).

Proposition 4.1.10. Let f ∈ D(E1, E2) be a homogeneous function. Then for any x ∈ E1,

Hx[Hx[f ]] = Hx[f ].

Moreover,

Hτx[f ] = Hx[f ] for any τ > 0,

Hx[f ](αx) = αf(x) for any α ∈ R.

Finally, for any x,y ∈ E1 and any α ∈ R,

Hx[f ](y + αx) = Hx[f ](y) + αf(x).

Proof. Let f ∈ D(E1, E2) be a homogeneous function, x ∈ E1, and α ∈ R. Since f is

homogeneous,

Hx[f ](αx) = lim
t→0+

f(x+ tαx)− f(x)

t

= lim
t→0+

f((1 + tα)x)− f(x)

t

= lim
t→0+

(1 + tα)f(x)− f(x)

t

= αf(x).
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For all h ∈ E1,

Hx[Hx[f ]](h) = lim
t→0+

Hx[f ](x+ th)−Hx[f ](x)

t

= lim
t→0+

1

t

(
lim
s→0+

f (x+ s (x+ th))− f(x+ sx)

s

)
= lim

t→0+

1

t

(
lim
s→0+

f (x+ s(1 + s)−1th)− f(x)

s(1 + s)−1

)
= lim

t→0+

f ′(x; th)

t

= f ′(x;h)

= Hx[f ](h).

For τ > 0 and h ∈ E1,

Hτx[f ](h) = f ′(τx;h)

= lim
t→0+

f(τx+ th)− f(τx)

t

= lim
t→0+

τ
f(x+ t

τ
h)− f(x)

t

= lim
t→0+

f(x+ t
τ
h)− f(x)
t
τ

= f ′(x;h).

Finally, for x,y ∈ E1 and α ∈ R,

Hx[f ](y) = lim
t→0+

f(x+ ty)− f(x)

t

= lim
t→0+

f((1− tα)x+ t(y + αx))− f(x)

t

= lim
t→0+

1

t

(
(1− tα)f

(
x+

t

1− tα
(y + αx)

)
− f(x)

)
= lim

t→0+

1

t

(
(1− tα)f

(
x+

t

1− tα
(y + αx)

)
− (1− tα)f(x)− tαf(x)

)
= lim

t→0+

1

t

(
(1− tα)f

(
x+

t

1− tα
(y + αx)

)
− (1− tα)f(x)

)
− αf(x)

= lim
t→0+

f
(
x+ t

1−tα(y + αx)
)
− f(x)

t
1−tα

− αf(x)

= f ′(x;y + αx)− αf(x)

= Hx[f ](y + αx)− αf(x).
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4.1.3 Lexicographically Smooth Functions

Nesterov’s lexicographic differentiation [9] is developed for the class of lexicographically

(L-) smooth functions. The definitions and results here are drawn from that work. The

proofs here, due to Nesterov, have been expanded for ease of comprehension.

Definition 4.1.11. Let f ∈ D(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of vectors,

called directions, in E1. The sequence of the recursively defined functions

f
(0)
x,U = Hx[f ],

f
(k)
x,U = Huk

[f
(k−1)
x,U ], k ∈ N,

is called the homogenization sequence of f generated by x and U , if it exists.

Definition 4.1.12. A function f ∈ D(E1, E2) is lexicographically smooth on E1, or

L-smooth on E1 for short, if its homogenization sequence exists for any x ∈ E1 and any

sequence U of directions in E1. If f is L-smooth on E1, we write f ∈ L(E1, E2).

Remark 4.1.13. The class of L-smooth functions contains convex functions, differentiable

functions, and compositions of L-smooth functions. In the case of E1 = Rn and E2 = Rm,

the class of L-smooth functions also contains PC1 functions.

Proposition 4.1.14. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of

directions in E1. Then f (k)
x,U is Lipschitz continuous for each k ∈ {0, 1, 2, . . . }.
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Proof. By Proposition 4.1.5, f (0)
x,U is Lipschitz continuous. Suppose that f (k)

x,U is Lipchitz

continuous. Then, for all h1 and h2 in E1,∥∥∥f (k+1)
x,U (h1)− f (k+1)

x,U (h2)
∥∥∥
2

=

∥∥∥∥∥ lim
t→0+

f
(k)
x,U (uk+1 + th1)− f (k)

x,U (uk+1)

t
− lim

t→0+

f
(k)
x,U (uk+1 + th2)− f (k)

x,U (uk+1)

t

∥∥∥∥∥
2

=

∥∥∥∥∥ lim
t→0+

f
(k)
x,U (uk+1 + th1)− f (k)

x,U (uk+1 + th2)

t

∥∥∥∥∥
2

= lim
t→0+

∥∥∥f (k)
x,U (uk+1 + th1)− f (k)

x,U (uk+1 + th2)
∥∥∥
2

t

≤ lim
t→0+

K ‖(uk+1 + th1)− (uk+1 + th2)‖1
t

= K ‖h1 − h2‖1 .

Therefore, the proposition follows from the principle of induction.

Proposition 4.1.15. Let f , g ∈ L(E1, E2). Then, for any α, β ∈ R,

αf + βg ∈ L(E1, E2).

Proof. Let f , g ∈ L(E1, E2). Hence, f , g ∈ D(E1, E2). Then, αf + βg ∈ D(E1, E2) by

Proposition 4.1.4. Let x ∈ E1 and U = {uk}∞k=1 a sequence of directions in E1. It suffices

to show that the homogenization sequence of αf + βg generated by x and U exists. We

claim that

(αf + βg)
(k)
x,U = αf

(k)
x,U + βg

(k)
x,U , k ∈ {0, 1, 2, . . . }.

Since

(αf + βg)
(0)
x,U = Hx[αf + βg] = αHx[f ] + βHx[g]
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by Proposition 4.1.4, the statement holds when k = 0. Suppose that the kth statement is

true. Then, for all h ∈ E1,

(αf + βg)
(k+1)
x,U (h)

= ((αf + βg)
(k)
x,U )′(uk+1;h)

= lim
t→0+

(αf + βg)
(k)
x,U (uk+1 + th)− (αf + βg)

(k)
x,U (uk+1)

t

= lim
t→0+

[
α
f

(k)
x,U (uk+1 + th)− f (k)

x,U (uk+1)

t
+ β

g
(k)
x,U (uk+1 + th)− g(k)x,U (uk+1)

t

]

= αf
(k+1)
x,U (h) + βg

(k+1)
x,U (h).

Hence, the claim follows from the principle of induction. Thus, the homogenization

sequence of αf + βg exists for any x ∈ E1 and any sequence U = {uk}∞k=1 of directions in

E1. Therefore, αf + βg ∈ L(E1, E2).

The homogenization sequence functions satisfy an equality-based chain rule.

Theorem 4.1.16. If f ∈ L(E1, E2) and F ∈ L(E2, E3), then F ◦ f ∈ L(E1, E3).

Moreover, for any x ∈ E1 and any sequence U = {uk}∞k=1 of directions in E1,

(F ◦ f)
(k)
x,U (·) = F

(k)
f(x),V

(
f

(k)
x,U (·)

)
, k ∈ {0, 1, 2, . . . },

where the sequence V = {vk}∞k=1 of directions in E2 is given by

vk = f
(k)
x,U (uk), k ∈ N.

Proof. Let f ∈ L(E1, E2) and F ∈ L(E2, E3). Then f ∈ D(E1, E2) and F ∈ D(E2, E3).

Thus, F ◦ f ∈ D(E1, E3) by Proposition 4.1.6. We claim that if x ∈ E1 and U = {uk}∞k=1,

a sequence of directions in E1, then

(F ◦ f)
(j)
x,U (h) = F

(j)
f(x),V

(
f

(j)
x,U (h)

)
, j ∈ {0, 1, 2, . . . }

for all h ∈ E1, where the sequence V = {vk}∞k=1 of directions in E2 is given by

vk = f
(k)
x,U (uk), k ∈ N.
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By Proposition 4.1.6,

(F ◦ f)′ (x;h) = F ′ (f(x);f ′(x;h)) for any h ∈ E1,

so

(F ◦ f)
(0)
x,U (h) = F

(0)
f(x),V

(
f

(0)
x,U (h)

)
for any h ∈ E1,

which confirms that the statement is true when j = 0. By Propositions 4.1.6 and 4.1.10,

(F ◦ f)
(1)
x,U (h) = Hu1

[
(F ◦ f)

(0)
x,U

]
(h)

= Hu1

[
F

(0)
f(x),V ◦ f

(0)
x,U

]
(h)

= H
f
(0)
x,U (u1)

[
F

(0)
f(x),V

] (
Hu1

[
f

(0)
x,U

]
(h)
)

= H
f
(0)
x,U (u1)

[
F

(0)
f(x),V

] (
f

(1)
x,U (h)

)
=
(
F

(0)
f(x),V

)′ (
f

(0)
x,U (u1) ;f

(1)
x,U (h)

)
=
(
F

(0)
f(x),V

)′ (
f

(1)
x,U (u1) ;f

(1)
x,U (h)

)
=
(
F

(0)
f(x),V

)′ (
v1;f

(1)
x,U (h)

)
= F

(1)
f(x),V

(
f

(1)
x,U (h)

)
.

Hence, the statement is true when j = 1. Now, suppose that

(F ◦ f)
(j)
x,U (h) = F

(j)
f(x),V ◦ f

(j)
x,U (h)

for all h ∈ E1, where the sequence V = {vk}jk=1 of directions in E2 is given by

vk = f
(k)
x,U (uk), k ∈ {1, · · · , j}.
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By Propositions 4.1.6 and 4.1.10,

(F ◦ f)
(k+1)
x,U (h) = Huk+1

[
(F ◦ f)

(k)
x,U

]
(h)

= Huk+1

[
F

(k)
f(x),V ◦ f

(k)
x,U

]
(h)

= H
f
(k)
x,U (uk+1)

[
F

(k)
f(x),V

] (
Huk+1

[
f

(k)
x,U

]
(h)
)

= H
f
(k)
x,U (uk+1)

[
F

(k)
f(x),V

] (
f

(k+1)
x,U (h)

)
=
(
F

(k)
f(x),V

)′ (
f

(k)
x,U (uk+1) ;f

(k+1)
x,U (h)

)
=
(
F

(k)
f(x),V

)′ (
f

(k+1)
x,U (uk+1) ;f

(k+1)
x,U (h)

)
=
(
F

(k)
f(x),V

)′ (
vk+1;f

(k+1)
x,U (h)

)
= F

(k+1)
f(x),V

(
f

(k+1)
x,U (h)

)
.

Hence, the theorem follows from the principle of induction.

Definition 4.1.17. Let U be a sequence of directions in E1. For any k ∈ N, we denote the

span of the first k directions of U by Lk(U). Let L0(U) := {0}.

Proposition 4.1.18. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of

directions in E1. Then the members of the homogenization sequence of f generated by x

and U satisfy the following:

f
(k)
x,U (τh) = τf

(k)
x,U (h), where h ∈ E1 and τ ≥ 0,

f
(k)
x,U (h+ αd) = f

(k)
x,U (h) + αf

(k)
x,U (d), where h ∈ E1, d ∈ Lk(U), and α ∈ R,

f
(k)
x,U (h) = f

(k−1)
x,U (h), where h ∈ Lk−1(U).

Proof. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions in E1. The

first statement in the proposition follows from the Remark on Definition 4.1.8. We show

that the second statement is true using the principle of induction. It is clear that the

statement holds when k = 0. Suppose that the kth statement is true. Let h ∈ E1,
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d ∈ Lk+1(U), and α ∈ R. Then d = dk + βuk+1 for some β ∈ R, where dk ∈ Lk(U). Then

Huk+1

[
f

(k)
x,U

]
(h+ αdk) =

(
f

(k)
x,U

)′
(uk+1;h+ αdk)

= lim
t→0+

f
(k)
x,U (uk+1 + t(h+ αdk))− f (k)

x,U (uk+1)

t

= lim
t→0+

f
(k)
x,U (uk+1 + th) + tαf

(k)
x,U (dk)− f (k)

x,U (uk+1)

t

= lim
t→0+

f
(k)
x,U (uk+1 + th)− f (k)

x,U (uk+1)

t
+ αf

(k)
x,U (dk)

=
(
f

(k)
x,U

)′
(uk+1;h) + αf

(k)
x,U (dk)

= Huk+1

[
f

(k)
x,U

]
(h) + αf

(k)
x,U (dk).

Note that when h = 0 and α = 1,

f
(k+1)
x,U (dk) = f

(k)
x,U (dk).

Then, by Proposition 4.1.10,

f
(k+1)
x,U (h+ αd) = f

(k+1)
x,U (h+ αdk + αβuk+1)

=
(
f

(k)
x,U

)′
(uk+1;h+ αdk + αβuk+1)

= Huk+1

[
f

(k)
x,U

]
(h+ αdk + αβuk+1)

= Huk+1

[
f

(k)
x,U

]
(h+ αdk) + αf

(k)
x,U (βuk+1)

= Huk+1

[
f

(k)
x,U

]
(h) + α

(
f

(k)
x,U (dk) + f

(k)
x,U (βuk+1)

)
= f

(k+1)
x,U (h) + α

(
fk+1

x,U (dk) + βf
(k)
x,U (uk+1)

)
= f

(k+1)
x,U (h) + α

(
Huk+1

[
f

(k)
x,U

]
(dk) + βf

(k)
x,U (uk+1)

)
= f

(k+1)
x,U (h) + α

(
Huk+1

[
f

(k)
x,U

]
(dk + βuk+1)

)
= f

(k+1)
x,U (h) + αf

(k+1)
x,U (dk + βuk+1)

= f
(k+1)
x,U (h) + αf

(k+1)
x,U (d).

Therefore, the second statement follows from the principle of induction. We show that the

third statement is true using the principle of induction. The statement holds trivially when
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k = 0. Suppose that the kth statement is true. Let h ∈ Lk(U). By the second statement,

f
(k+1)
x,U (h) = lim

t→0+

f
(k)
x,U (uk+1 + th)− f (k)

x,U (uk+1)

t

= lim
t→0+

f
(k)
x,U (uk+1) + tf

(k)
x,U (h)− f (k)

x,U (uk+1)

t

= f
(k)
x,U (h).

Therefore, the third statement follows from the principle of induction.

This result allows us to establish linearity of the kth homogenization sequence function

restricted to the span of the first k direction vectors for any k ∈ N.

Corollary 4.1.19. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions

in E1. Let k ∈ N. Then, for any h =
∑k

i=1 αiui ∈ Lk(U),

f
(k)
x,U (h) =

k∑
i=1

αif
(k)
x,U (ui).

Proof. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions in E1. We

show the corollary using the principle of induction. Let h = α1u1 ∈ L1(U). Since

f
(1)
x,U (α1u1) = α1f

(1)
x,U (u1),

the statement holds when k = 1. Suppose that the kth statement is true. Let h ∈ Lk+1(U).

Then h = hk + αk+1uk+1 for some αk+1 ∈ R, where hk =
∑k

i=1 αiui ∈ Lk(U). Then, by

Proposition 4.1.18,

f
(k+1)
x,U (h) = f

(k+1)
x,U (hk + αk+1uk+1)

= f
(k+1)
x,U (hk) + αk+1f

(k+1)
x,U (uk+1)

= f
(k)
x,U (hk) + αk+1f

(k+1)
x,U (uk+1)

=
k∑
i=1

αif
(k)
x,U (ui) + αk+1f

(k+1)
x,U (uk+1)

=
k∑
i=1

αif
(k+1)
x,U (ui) + αk+1f

(k+1)
x,U (uk+1)

=
k+1∑
i=1

αif
(k+1)
x,U (ui).
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The corollary follows from the principle of induction.

The properties of homogenization sequences outlined in this section will be useful in the

upcoming sections on lexicographic differentiation.

4.2 Lexicographic Differentiation in the Euclidean Space Setting

4.2.1 Notation

In this section, we restrict our discussion to finite-dimensional real normed vector

spaces. That is, let E1, E2, and E3 be finite-dimensional real normed vector spaces and let

‖·‖1, ‖·‖2, and ‖·‖3 denote the norms of E1, E2, and E3, respectively.

4.2.2 Preliminaries

Definition 4.2.1. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}mk=1, an ordered set of

directions in E1. For each k ∈ {1, . . . ,m}, the function f (k)
x,U restricted to Lk(U) is called

the Lk derivative of f at x along U .

Remark 4.2.2. By Corollary 4.1.19, the function f (k)
x,U restricted to Lk(U) is linear.

Hence, the Lk derivative of f at x along U has a matrix representation given a basis for

E1 and a basis for E2.

Theorem 4.2.3. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}mk=1, an ordered set of

directions in E1 that span E1. Then there exists k0 ∈ {0, 1, . . . ,m} such that the function

f
(k)
x,U is linear for any k ≥ k0. For any k ≥ k0,

f
(k)
x,U

∣∣∣
Lk(U)

= f
(k0)
x,U

∣∣∣
Lk0

(U)
.

Proof. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}mk=1, an ordered set of directions in E1

that span E1. Since Lm(U) = E1, there exists k0 ∈ {0, 1, . . . ,m} such that Lk0(U) = E1.

Since

f
(k0)
x,U = f

(k0)
x,U

∣∣∣
Lk0

(U)
,
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the function f (k0)
x,U : E1 → E2 is linear by Corollary 4.1.19. Therefore, by Proposition 4.1.18,

f
(k)
x,U

∣∣∣
Lk(U)

= f
(k0)
x,U

∣∣∣
Lk0

(U)
for any k ≥ k0,

and the function f (k)
x,U is linear for any k ≥ k0.

Remark 4.2.4. The well-ordering of N guarantees that without loss of generality, we can

set k0 in Theorem 4.2.3 to be the least such number. Then, k0 is called the degree of

nondifferentiability of f at x along U .

4.2.3 The Lexicographic Derivative

Definition 4.2.5. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}mk=1, an ordered set of

directions in E1 that span E1. For any k greater than or equal to the degree of

nondifferentiability of f at x along U , the function f (k)
x,U restricted to Lk(U) is called the

lexicographic derivative (or L-derivative for short) of f at x along U .

Equivalently, we have the following, more straightforward, definition of the L-derivative.

Definition 4.2.6. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}mk=1, an ordered set of

directions in E1 that span E1. The function f (m)
x,U : E1 → E2 is called the lexicographic

derivative (or L-derivative for short) of f at x along U and is denoted by JLf(x;U).

Definition 4.2.7. The lexicographic subdifferential (or L subdifferential for short) of

f ∈ L(E1, E2) at x ∈ E1 is defined to be

∂Lf(x) := {JLf(x;U) : U spans E1}.

Example 4.2.8. Let g : R2 → R be a function defined by g(x1 x2)
T = max (0,min (x1, x2))

and I =

1 0

0 1

 a direction matrix. That is, the sequence of directions in R2 is

U =


1

0

 ,

0

1


 .
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We have g ∈ L(R2,R) and

g
(0)

(0 0)T ,I
(d1 d2)

T = g′((0 0)T ; (d1 d2)
T ) = max (0,min (d1, d2))

g
(1)

(0 0)T ,I
(d1 d2)

T =
[
g
(0)

(0 0)T ,I

]′
1

0

 ; (d1 d2)
T

 = max (0, d2)

g
(2)

(0 0)T ,I
(d1 d2)

T =
[
g
(1)

(0 0)T ,I

]′
0

1

 ; (d1 d2)
T

 = d2.

As expected, g(2)
(0 0)T ,I

is linear. Moreover, the L derivative of g at (0 0)T along I is

JLg
(
(0 0)T ; I

)
= Jg

(2)

(0 0)T ,I
= (0 1).

It is worth noting that

JLg
(
(0 0)T ; I

)
∈ ∂Bg(0 0)T = {(1 0), (0 1), (0 0)} .

4.2.4 The Theoretical Toolkit of L-Derivatives

L-derivatives possess an equality-based chain rule, as stated below.

Theorem 4.2.9. Let f ∈ L(E1, E2) and F ∈ L(E2, E3). Then F ◦ f ∈ L(E1, E3).

Moreover, for any x ∈ E1 and any basis U = {uk}mk=1 for E1,

(F ◦ f)
(m)
x,U = F

(m)
f(x),V ◦ f

(m)
x,U ,

where the sequence V = {vk}mk=1 of directions in E2 is given by

vk = f
(m)
x,U (uk), k ∈ {1, . . . ,m}.

Proof. The theorem follows immediately from Theorem 4.1.16 and Proposition 4.1.18.

In Example 4.2.8, we observed that the L-derivative of g at (0 0)T along I is an element

of the B-subdifferential of g at (0 0)T . In the following proposition, we present a

generalized derivatives landscape showing how different generalized derivatives are related

to one another, which combines results from [5, 6, 9].
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Proposition 4.2.10. Let X be an open subset of Rn.

(i) If f : X → R is an L-smooth function, then ∂Lf(x) ⊂ ∂f(x) for any x ∈ X.

(ii) If f : X → Rm is a PC1 function, then ∂Lf(x) ⊂ ∂Bf(x) ⊂ ∂f(x) for any x ∈ X.

(iii) If f : X → Rm is a C1 function, then ∂Lf(x) = ∂Bf(x) = ∂f(x) = {Jf(x)} for

any x ∈ X.

(iv) If f : X → Rm is an L-smooth function, then for any x ∈ X and any d ∈ Rn,

{Ad : A ∈ ∂Lf(x)} ⊂ {Ad : A ∈ ∂f(x)}.

In the above proposition, the last item states that for an L-smooth function the plenary

hull of the L-subdifferential is contained in the plenary hull of the Clarke Jacobian. One

implication of this statement is that L-derivatives can be used in place of Clarke Jacobian

elements in implementing a numerical tool associated with Clarke Jacobians, such as a

Newton’s method, since it is concerned with matrix-vector products.

4.2.5 The Lexicographic Directional Derivative

Lexicographic directional differentiation by Khan and Barton [6] provides a systematic

way to find L-derivatives, allowing for implementation of numerical tools requiring Clarke

Jacobians.

Definition 4.2.11. Let f : E1 → E2 be an L-smooth function. The lexicographic

directional derivative (or LD-derivative for short) of f at x ∈ E1 for a matrix

M =
[
m(1) · · ·m(k)

]
of directions in E1 is defined as

f ′(x;M ) :=
[
f

(0)
x,M (m(1)) · · · f (k−1)

x,M (m(k))
]
.

The LD-derivative is a generalization of the directional derivative for the class of

L-smooth functions.
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Proposition 4.2.12. Let X be an open subset of Rn.

(i) If f : X → Rm is an L-smooth function and M ∈ Rn×n is nonsingular, then

f ′(x;M ) = JLf(x;M )M .

(ii) If f : X → Rm is an L-smooth function that is differentiable at x ∈ X, then

f ′(x;M ) = Jf(x)M .

The name “LD-derivative" comes from the fact that LD-derivatives for elementary

functions, such as the max and min functions, the absolute value function, and the 2-norm

function, are naturally expressed using lexicographic ordering on Rn.

Definition 4.2.13. The binary relation ≺ on Rn is defined such that if

x = (x1 . . . xn)T ,y = (y1 . . . yn)T ∈ Rn, then

x1

x2
...

xn


≺



y1

y2
...

yn


if there exists k ∈ {1, . . . , n} such that xk < yk and xi = yi for all i ∈ {1, . . . , k − 1}. The

relations �, �, and � are defined similarly.

Remark 4.2.14. The binary relations in Definition 4.2.13 are total orders on Rn.

Example 4.2.15. In R3, we have 
2

6

9

 ≺


2

7

1

 .
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Example 4.2.16. LD-derivatives of elementary functions are naturally expressed using

lexicographic ordering. For min : R2 → R, min(x1 x2)
T = min (x1, x2), and max : R2 → R,

max(x1 x2)
T = max (x1, x2),

min ′


x
y

 ;

m11 m12

m21 m22


 =



[m11 m12] if


x

m11

m12

 ≺


y

m21

m22



[m21 m22] if


x

m11

m12

 �


y

m21

m22



max ′


x
y

 ;

m11 m12

m21 m22


 =



[m21 m22] if


x

m11

m12

 ≺


y

m21

m22



[m11 m12] if


x

m11

m12

 �


y

m21

m22



.

4.2.6 The Theoretical Toolkit of LD-Derivatives

Recall that although Clarke Jacobian elements are critical in implementing numerical

tools for the class of locally Lipschitz continuous functions, the fact that calculus rules for

Clarke Jacobians are inclusion-based makes it difficult to obtain Clarke Jacobian elements

even for a function constructed from functions whose Clarke Jacobians are known. Unlike

Clarke Jacobians, however, LD-derivatives possess equality-based calculus rules [6].

Proposition 4.2.17 (The chain rule for the LD-derivative). Let X and Y be open subsets

of Rn. Let f : X → Rm and g : Y → Rm be L-smooth functions. Then the composition
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f ◦ g is L-smooth and

[f ◦ g]′ (x;M) = f ′ (g(x); g′(x;M )) .

Proposition 4.2.18. Let X be an open subset of Rn. Let u = (u1 . . . un)T : X → Rm and

v = (v1 . . . vn)T : X → Rm be L-smooth functions and M =
[
m(1) · · ·m(k)

]
a row of

directions in X. For any x ∈ X,

(i) u′(x;M ) = (u′1(x;M) u′2(x;M ) . . . u′m(x;M ))T

(ii) [u+ v]′ (x;M ) = u′(x;M) + v′(x;M )

(iii) If n = 1, then

[uv]′ (x;M ) = u′(x;M )v(x) + u(x)v′(x;M ).

These equality-based calculus rules allow us to find an L-derivative, i.e., a Clarke

Jacobian element, in a systematic way. The process is outlined below for an L-smooth

function f : X ⊂ Rn → Rm. Let x ∈ X.

(i) Choose a nonsingular directions matrix M ∈ Rn×n.

(ii) Find the LD-derivative f ′(x;M) using either the definition or the equality-based

calculus rules.

(iii) Solve the linear equation system

f ′(x;M) = JLf(x;M )M

for the L-derivative JLf(x;M ), which is unique since M is nonsingular.

Example 4.2.19. Consider the function g : R2 → R defined by

g(x1 x2)
T = max (0,min (x1, x2)). Then

g
(0)

(0 0)T ,I
(d1 d2)

T = max (0,min (d1, d2))

g
(1)

(0 0)T ,I
(d1 d2)

T = max (0, d2).
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Hence,

g′
(
(0 0)T ; I

)
=
[
g
(0)

(0 0)T ,I
(1 0)T g

(1)

(0 0)T ,I
(0 1)T

]
= [0 1].

Therefore,

JLg
(
(0 0)T ; I

)
= g′

(
(0 0)T ; I

)
I−1 = [0 1].

4.3 Lexicographic Differentiation in the Banach Space Setting

Motivated by the utility of lexicographic differentiation in obtaining Clarke Jacobian

elements via the LD-derivative, we now focus our attention on the Banach space setting. In

this section, we restrict our discussion to Banach spaces that have Schauder bases. The

definitions and results here are from [9]. The proofs here are due to Nesterov except for the

one for Theorem 4.3.5. His proofs have been expanded for ease of comprehension.

4.3.1 Notation

Let E1, E2, and E3 be Banach spaces and let ‖·‖1, ‖·‖2, and ‖·‖3 denote the norms of

E1, E2, and E3, respectively.

4.3.2 Preliminaries

Definition 4.3.1. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions

in E1. For each k ∈ N, the function f (k)
x,U restricted to Lk(U) is called the Lk derivative of

f at x along U .

Proposition 4.3.2. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions

in E1. For each k ∈ N, the function f (k)
x,U restricted to Lk(U) is a bounded linear operator.

Proof. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a sequence of directions in E1. By

Corollary 4.1.19, the function f (k)
x,U restricted to Lk(U) is linear for each k ∈ N. We show

that the function f (k)
x,U restricted to Lk(U ) is bounded for each k ∈ N. Let h ∈ L1(U).
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Since ∥∥∥f (1)
x,U (h)

∥∥∥
2

=

∥∥∥∥∥lim
t↓∞

f
(0)
x,U (x+ th)− f (0)

x,U (x)

t

∥∥∥∥∥
2

= lim
t↓∞

∥∥∥∥∥f
(0)
x,U (x+ th)− f (0)

x,U (x)

t

∥∥∥∥∥
2

= lim
t↓∞

∥∥∥f (0)
x,U (x+ th)− f (0)

x,U (x)
∥∥∥
2

t

≤ lim
t↓∞

K ‖(x+ th)− x‖1
t

= K ‖h‖1

for some K ≥ 0, the function f (1)
x,U is bounded. Suppose that the function f (k)

x,U restricted

to Lk(U ) is bounded. Let h ∈ Lk+1(U). Then

∥∥∥f (k+1)
x,U (h)

∥∥∥
2

=

∥∥∥∥∥lim
t↓∞

f
(k)
x,U (x+ th)− f (k)

x,U (x)

t

∥∥∥∥∥
2

= lim
t↓∞

∥∥∥∥∥f
(k)
x,U (x+ th)− f (k)

x,U (x)

t

∥∥∥∥∥
2

= lim
t↓∞

∥∥∥f (k)
x,U (x+ th)− f (k)

x,U (x)
∥∥∥
2

t

≤ lim
t↓∞

K ‖(x+ th)− x‖1
t

= K ‖h‖1

for some K ≥ 0. Hence, the function f (k+1)
x,U restricted to Lk+1(U) is bounded. The

theorem follows from the principle of induction.

4.3.3 The Lexicographic Derivative

Theorem 4.3.3. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a basis for E1. Then there

exists a unique bounded linear operator f (∞)
x,U : E1 → E2 such that

f
(∞)
x,U (h) = lim

k→∞
f

(k)
x,U (h), h ∈ E1.
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Proof. Let f ∈ L(E1, E2), x ∈ E1, and U = {uk}∞k=1, a basis for E1. If

h =
∞∑
k=1

hkuk ∈ E1,

then let f (∞)
x,U : E1 → E2 be a function defined by

f
(∞)
x,U (h) =

∞∑
k=1

hkf
(k−1)
x,U (uk).

We first show that f (∞)
x,U exists. For each m ∈ N, let

hm =
m∑
k=1

hkuk,

ym =
m∑
k=1

hkf
(k−1)
x,U (uk).

By Proposition 4.1.14, each member of the homogenization sequence of f generated by x

and U is Lipschitz continuous with a Lipschitz constant K > 0. Let ε > 0. Since {hm}∞m=1

is a Cauchy sequence, there exists N ∈ N such that for any m1,m2 ≥ N ,

‖hm1 − hm2‖1 <
ε

K
.

Then, for m1 > m2 ≥ N ,

∥∥ym1
− ym2

∥∥
2

=

∥∥∥∥∥
m1∑

k=m2+1

hkf
(k−1)
x,U (uk)

∥∥∥∥∥
2

=

∥∥∥∥∥
m1∑

k=m2+1

hkf
(m1)
x,U (uk)

∥∥∥∥∥
2

=

∥∥∥∥∥f (m1)
x,U

(
m1∑

k=m2+1

hkuk

)∥∥∥∥∥
2

=
∥∥∥f (m1)

x,U (hm1 − hm2)
∥∥∥
2

≤ K ‖hm1 − hm2‖1

< ε.
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Hence, {ym}∞m=1 is Cauchy and therefore convergent, as needed. The function

f
(∞)
x,U : E1 → E2 is linear since for

a =
∞∑
k=1

akuk ∈ E1,

b =
∞∑
k=1

bkuk ∈ E1,

and α, β ∈ R,

f
(∞)
x,U (αa+ βb) =

∞∑
k=1

(αak + βbk)f
(k−1)
x,U (uk)

= lim
m→∞

m∑
k=1

(αak + βbk)f
(k−1)
x,U (uk)

= lim
m→∞

(
α

m∑
k=1

akf
(k−1)
x,U (uk) + β

m∑
k=1

bkf
(k−1)
x,U (uk)

)

= α
∞∑
k=1

akf
(k−1)
x,U (uk) + β

∞∑
k=1

bkf
(k−1)
x,U (uk)

= αf
(∞)
x,U (a) + βf

(∞)
x,U (b).

It is bounded since if

h =
∞∑
k=1

hkuk ∈ E1,

then ∥∥∥f (∞)
x,U (h)

∥∥∥
2

=

∥∥∥∥∥ lim
m→∞

m∑
k=1

hkf
(k−1)
x,U (uk)

∥∥∥∥∥
2

= lim
m→∞

∥∥∥∥∥
m∑
k=1

hkf
(k−1)
x,U (uk)

∥∥∥∥∥
2

= lim
m→∞

∥∥∥∥∥
m∑
k=1

hkf
(m)
x,U (uk)

∥∥∥∥∥
2

= lim
m→∞

∥∥∥∥∥f (m)
x,U

(
m∑
k=1

hkuk

)∥∥∥∥∥
2

= lim
m→∞

∥∥∥f (m)
x,U (hm)

∥∥∥
2

≤ lim
m→∞

M ‖hm‖1

= M ‖h‖1 .
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Note that

f
(∞)
x,U (h) = lim

m→∞

m∑
k=1

hkf
(k−1)
x,U (uk)

= lim
m→∞

m∑
k=1

hkf
(m)
x,U (uk)

= lim
m→∞

f
(m)
x,U

(
m∑
k=1

hkuk

)

= lim
m→∞

f
(m)
x,U (hm).

Hence, ∥∥∥f (∞)
x,U (h)− lim

m→∞
f

(m)
x,U (h)

∥∥∥
2

=
∥∥∥ lim
m→∞

(
f

(m)
x,U (hm)− f (m)

x,U (h)
)∥∥∥

2

= lim
m→∞

∥∥∥f (m)
x,U (hm)− f (m)

x,U (h)
∥∥∥
2

≤ K lim
m→∞

‖hm − h‖2

= 0.

Therefore,

f
(∞)
x,U (h) = lim

m→∞
f

(m)
x,U (h).

Note that E2 is Hausdorff since it is a metric space with respect to the norm ‖·‖2. This

limit is unique since every convergent sequence has a unique limit in a Hausdorff space.

Remark 4.3.4. The function f (∞)
x,U : E1 → E2 is called the lexicographic derivative (or L

derivative for short) of f at x for U .

4.3.4 The Theoretical Toolkit of L-Derivatives

Theorem 4.3.5. Let f ∈ L(E1, E2) and F ∈ L(E2, E3). Then F ◦ f ∈ L(E1, E3).

Moreover, for any x ∈ E1 and U = {uk}∞k=1, a basis for E1,

(F ◦ f)
(∞)
x,U = F

(∞)
f(x),V ◦ f

(∞)
x,U ,

where the sequence V = {vk}∞k=1 of directions in E2 is given by

vk = f
(∞)
x,U (uk), k ∈ N.
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Proof. Let f ∈ L(E1, E2) and F ∈ L(E2, E3). Then f ∈ D(E1, E2) and F ∈ D(E2, E3).

Thus, F ◦ f ∈ D(E1, E3) by Proposition 4.1.6. Let x ∈ E1 and U = {uk}∞k=1, a basis for

E1. By Theorem 4.1.16,

(F ◦ f)
(k)
x,U (·) = F

(k)
f(x),V

(
f

(k)
x,U (·)

)
, k ∈ {0, 1, 2, . . . },

where the sequence V = {vk}mk=1 of directions in E2 is given by

vk = f
(k)
x,U (uk), k ∈ N.

For each k ∈ N,

vk = f
(k)
x,U (uk) = lim

m→∞
f

(m)
x,U (uk) = f

(∞)
x,U (uk).

Moreover, if h ∈ E1,∥∥∥(F ◦ f)
(∞)
x,U (h)−

(
F

(∞)
f(x),V ◦ f

(∞)
x,U

)
(h)
∥∥∥
3

=
∥∥∥ lim
m→∞

(F ◦ f)
(m)
x,U (h)− lim

m→∞
F

(m)
f(x),V

(
f

(∞)
x,U (h)

)∥∥∥
3

= lim
m→∞

∥∥∥F (m)
f(x),V

(
f

(m)
x,U (h)

)
− F (m)

f(x),V

(
f

(∞)
x,U (h)

)∥∥∥
3

≤ K lim
m→∞

∥∥∥f (m)
x,U (h)− f (∞)

x,U (h)
∥∥∥
2

= 0.

Hence,

(F ◦ f)
(∞)
x,U (h) =

(
F

(∞)
f(x),V ◦ f

(∞)
x,U

)
(h), h ∈ E1,

where the sequence V = {vk}∞k=1 of directions in E2 is given by

vk = f
(∞)
x,U (uk), k ∈ N,

as needed.

4.3.5 Examples

In this section, we provide examples to illustrate lexicographic differentiation in the

Banach space setting. Consider the collection C of all real sequences. Let
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{xk}∞k=1, {yk}∞k=1 ∈ C and α ∈ R. Define vector addition by

{xk}∞k=1 + {yk}∞k=1 = {xn + yn}∞k=1

and scalar multiplication by

α{xk}∞k=1 = {αxk}∞k=1.

Then C equipped with the vector addition and the scalar multiplication is a vector space.

Consider the collection `2(R) of real sequences {xk}∞k=1 satisfying
∞∑
k=1

|xk|2 <∞.

Then `2(R) is a subspace of C. Moreover,

‖{xk}∞k=1‖2 =

(
∞∑
k=1

|xk|2
)1/2

, {xk}∞k=1 ∈ `2(R)

is a norm for `2(R). In fact, `2(R) is a complete metric space with respect to this norm and

therefore is a complete normed vector space.

Example 4.3.6. Let f : `2(R)→ `2(R) be a function given by

f({xk}∞k=1) = {max (0, xk)}∞k=1.

The function f exists since
∞∑
k=1

|max (0, xk)|2 ≤
∞∑
k=1

|xk|2 <∞.

It is Lipschitz continuous since for any {xk}∞k=1 and {yk}∞k=1 in `2(R),

‖f({xk}∞k=1)− f({yk}∞k=1)‖2 =

(
∞∑
k=1

|max (0, xk)−max (0, yk)|2
)1/2

= lim
m→∞

(
m∑
k=1

|max (0, xk)−max (0, yk)|2
)1/2

≤ lim
m→∞

(
m∑
k=1

|xk − yk|2
)1/2

= ‖{xk}∞k=1 − {yk}∞k=1‖2 ,
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and is directionally differentiable on `2(R) since for any {xk}∞k=1 and {hk}∞k=1 in `2(R),

f ′({xk}∞k=1; {hk}∞k=1) = {yk}∞k=1,

where for each k ∈ N,

yk =



hi if xk > 0,

0 if xk < 0,

hk if xk = 0 and hi > 0,

0 if xi = 0 and hi ≤ 0.

In fact, f ∈ L(`2(R), `2(R)) since for any {xk}∞k=1, {hk}∞k=1 ∈ `2(R) and any sequence

U = {{ukj}∞j=1}∞k=1 of directions in `2(R),

f
(n)
{xk}∞k=1,U

({hk}∞k=1) = {ynk}∞k=1, n ∈ N,

where for each k ∈ N,

ynk =



hk if



xk

u1k

u2k

...

unk

dk



�



0

0

0

...

0

0



,

0 if



xk

u1k

u2k

...

unk

dk



�



0

0

0

...

0

0



.
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Example 4.3.7. Let g : `2(R)→ `2(R) be a function given by

g({xk}∞k=1) = {|xk|}∞k=1.

The function g exists since

∞∑
k=1

|(|xk|)|2 =
∞∑
k=1

|xk|2 <∞.

It is Lipschitz continuous since for any {xk}∞k=1 and {yk}∞k=1 in `2(R),

‖g({xk}∞k=1)− g({yk}∞k=1)‖2 =

(
∞∑
k=1

||xk| − |yk||2
)1/2

= lim
m→∞

(
m∑
k=1

||xk| − |yk||2
)1/2

≤ lim
m→∞

(
m∑
k=1

|xk − yk|2
)1/2

= ‖{xk}∞k=1 − {yk}∞k=1‖2

by the reverse triangle inequality, and is directionally differentiable on `2(R) since for any

{xk}∞k=1 and {hk}∞k=1 in `2(R),

g′({xk}∞k=1; {hk}∞k=1) = {yk}∞k=1,

where for each k ∈ N,

yk =



hk if xk > 0,

−hk if xk < 0,

hk if xk = 0 and dk > 0,

−hk if xk = 0 and dk ≤ 0.

In fact, g ∈ L(`2(R), `2(R)) since for any {xk}∞k=1, {hk}∞k=1 ∈ `2(R) and any sequence

U = {{ukj}∞j=1}∞k=1 of directions in `2(R),

g
(n)
{xk}∞k=1,U

({hk}∞k=1) = {ynk}∞k=1, n ∈ N,
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where for each k ∈ N,

ynk =



hk if



xk

u1k

u2k

...

unk

dk



�



0

0

0

...

0

0



,

−hk if



xk

u1k

u2k

...

unk

dk



�



0

0

0

...

0

0



.

We check that Theorem 4.3.5 holds for the functions f and g and their composition

φ = f ◦ g with U = {{ukj}∞j=1}∞k=1, a standard basis for `2(R), i.e., for each k ∈ N,

ukj =


0 if j 6= k,

1 if j = k.

First of all, φ = g since if {xk}∞k=1 ∈ `2(R), then

φ ({xk}∞k=1) = f (g({xk}∞k=1)) = f({|xk|}∞k=1) = {max (0, |xk|)}∞k=1 = {|xk|}∞k=1 = g ({xk}∞k=1) .

Thus, φ ∈ L(`2(R), `2(R)). Let {xk}∞k=1 ∈ `2(R). The sequence V = {{vkj}∞j=1}∞k=1 of

directions in `2(R) is given by

{vkj}∞j=1 = g
(k)
{xj}∞j=1,U

({ukj}∞j=1), k ∈ N,
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i.e., for each j ∈ N,

vkj =


1 if j = k and xj ≥ 0

−1 if j = k and xj < 0

0 if j 6= k

, k ∈ N.

Let {hk}∞k=1 ∈ `2(R). Then

f
(0)

g({xj}∞j=1),V
({hj}∞j=1) = {zk}∞k=1,

where for each k ∈ N,

zk =



hk if g({xj}∞j=1)k > 0,

0 if g({xj}∞j=1)k > 0,

hk if g({xj}∞j=1)k = 0 and hk > 0,

0 if g({xj}∞j=1)k = 0 and hk ≤ 0.

Hence,

f
(n)

g({xj}∞j=1),V
({hj}∞j=1) = {znk}∞k=1, n ∈ N,

where for each k ∈ N,

znk =



hk if g
(
{xj}∞j=1

)
k
> 0,

0 if g
(
{xj}∞j=1

)
k
< 0,

hk if g
(
{xj}∞j=1

)
k

= 0, k ∈ {1, . . . , n}, and xk ≥ 0,

0 if g
(
{xj}∞j=1

)
k

= 0, k ∈ {1, . . . , n}, and xk < 0,

hk if g
(
{xj}∞j=1

)
k

= 0, k /∈ {1, . . . , n}, and hk > 0,

0 if g
(
{xj}∞j=1

)
k

= 0, k /∈ {1, . . . , n}, and hk ≤ 0.

Thus, the L derivative of f at g ({xk}∞k=1) for V is identity, i.e.,

f
(∞)

g({xk}∞k=1),V
= 1.
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Therefore,

φ
(∞)
{xk}∞k=1,U

= 1 ◦ φ(∞)
{xk}∞k=1,U

= f
(∞)

g({xk}∞k=1),V
◦ g(∞)
{xk}∞k=1,U

,

as expected.

4.4 A Remark on the Domains of Functions

In this chapter, we have presented results for functions whose domains are real normed

vector spaces or Banach spaces. The same results can be shown to hold for functions whose

domains are open subsets of such spaces.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we have presented a generalized theory of differentiation for the class of

locally Lipschitz continuous functions. First, we studied the classical theory of

differentiation in the Euclidean space setting. We explored the theoretical toolkit for the

classical derivative. We also noted the utility of the numerical toolkit for the classical

derivative, which includes Newton’s method for solving systems of nonlinear equations.

Next, we studied Clarke’s theory of differentiation, which generalizes the classical notion of

derivative to the class of locally Lipschitz continuous functions. In particular, we studied

Clarke’s derivative objects for a select subclass of locally Lipschitz continuous functions

called PC1 functions, because they demonstrate Clarke’s theory of differentiation clearly.

We also explored both the theoretical toolkit and the numerical toolkit for Clarke’s

derivative objects, which preserve the powerful theorems and numerical techniques for the

classical derivative. We observed that although Clarke’s derivative objects are useful, they

are difficult to obtain, even for functions constructed from functions whose Clarke’s

derivative objects are known, because they obey inclusion-based calculus rules. To address

this issue, we introduced Nesterov’s lexicographic differentiation and Khan and Barton’s

lexicographic directional differentiation, i.e., generalized derivatives theories for a subclass

of locally Lipschitz continuous functions called L-smooth functions, which help to find

elements of Clarke’s derivative object systematically. We highlighted that L-derivatives are

at best elements of Clarke’s derivative object and at least indistinguishable from elements

of Clarke’s derivative objects as far as nonsmooth numerical tools are concerned. We also

noted that unlike Clarke’s derivative object, L-derivatives obey an equality-based chain

rule. Next, we introduced LD-derivatives for L-smooth functions, whose name, as well as

the term “L-derivative," comes from the fact that LD-derivatives of elementary L-smooth

functions are naturally expressed with lexicographic ordering. We observed that

59



LD-derivatives of elementary L-smooth functions can be obtained readily from the

definition. Unlike elements of Clarke’s derivative object, it is less difficult to obtain

LD-derivatives of functions that are constructed from functions whose LD-derivatives are

known, thanks to the equality-based chain rule obeyed by LD-derivatives. A proposition

relating an LD-derivative to an L-derivative makes it straightforward to calculate an

L-derivative once an LD-derivative is known.

The definition of Clarke’s derivative object can be generalized to the class of locally

Lipschitz continuous functions mapping a Banach space into R (see page 27 of [3]).

Ultimately, the aim of our work is to find a systematic way to access elements of Clarke’s

generalized derivative object in this setting. To that end, we presented the class of

L-smooth functions, a subclass of locally Lipschitz continuous functions mapping between

Banach spaces that have Schauder bases. Next, we presented L-derivatives for such

functions and showed that these L-derivatives obey an equality-based chain rule, just like

the L-derivatives defined earlier. Lastly, we gave examples of L-smooth functions, found

their L-derivatives, and demonstrated that they indeed satisfy the chain rule.

In terms of future work, it remains to be shown that L-derivatives for L-smooth

functions mapping between Banach spaces that have Schauder bases are at best elements

of Clarke’s generalized derivative object or at least indistinguishable from elements of

Clarke’s generalized derivative object as far as nonsmooth numerical tools are concerned.

Next, it is desirable to define LD-derivatives for L-smooth functions mapping between

Banach spaces that have Schauder bases and to find LD-derivatives of elementary functions

for illustration. We also want to show that LD-derivatives satisfy an equality-based chain

rule in this setting. Moreover, we want to find a relation between an L-derivative and an

LD-derivative that enables us to obtain an L-derivative once an LD-derivative is known.

Once we have a theory of lexicographic directional differentiation for the class of

L-smooth functions mapping between Banach spaces that have Schauder bases, we want to
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apply this machinery to real-world problems arising in science and engineering, including

those involving variational inequalities, elliptic equations, and optimal control [2, 3, 8, 14].

61



REFERENCES

[1] Paul I. Barton, Kamil A. Khan, Peter Stechlinski, and Harry A. J. Watson.
Computationally relevant generalized derivatives: theory, evaluation and applications.
Optimization Methods and Software, 33(4-6):1030–1072, 2018.

[2] Constantin Christof, Christian Clason, Christian Meyer, and Walther Stephan.
Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control
and Related Fields, 8(1):247–276, 2018.

[3] Frank H. Clarke. Optimization and Nonsmooth Analysis. SIAM, Philadelphia, PA,
1990.

[4] Juha Heinonen. Lectures on Lipschitz analysis, August 2004.

[5] Kamil A. Khan and Paul I. Barton. Generalized derivatives for solutions of parametric
ordinary differential equations with non-differentiable right-hand sides. Journal of
Optimization Theory and Applications, 163:355–386, 2014.

[6] Kamil A. Khan and Paul I. Barton. A vector forward mode of automatic
differentiation for generalized derivative evaluation. Optimization Methods and
Software, 30(6):1185–1212, 2015.

[7] Boris S. Mordukhovich. Variational Analysis and Generalized Differentiation I: Basic
Theory. Springer, Berlin, 2006.

[8] Boris S. Mordukhovich. Variational Analysis and Generalized Differentiation II:
Applications. Springer, Berlin, 2006.

[9] Yu Nesterov. Lexicographic differentiation of nonsmooth functions. Mathematical
Programming, 104(2-3):669–700, 2005.

[10] Liqun Qi and Jie Sun. A nonsmooth version of Newton’s method. Mathematical
Programming, 58(1-3):353–367, 1993.

[11] Stefan Scholtes. Introduction to Piecewise Differentiable Equations. Springer, New
York, NY, 2012.

[12] Peter G. Stechlinski and Paul I. Barton. Generalized derivatives of
differential-algebraic equations. Journal of Optimization Theory and Applications,
171:1–26, 2016.

[13] Peter G. Stechlinski, Kamil A. Khan, and Paul I. Barton. Generalized sensitivity
analysis of nonlinear programs. SIAM Journal on Optimization, 28(1):272–301, 2018.

[14] Michael Ulbrich. Semismooth Newton methods for operator equations in function
spaces. SIAM Journal on Optimization, 13(3):805–841, 2003.

62



BIOGRAPHY OF THE AUTHOR

Jaeho Choi was born in Seoul, South Korea. He graduated from Thomas S. Wootton High

School in Rockville, Maryland, and from Williams College in Williamstown, Massachusetts,

in 2017 with a Bachelor of Arts degree in Mathematics, Physics, and Economics. He has

co-authored a paper titled On the Lp regularity of solutions to the generalized

Hunter-Saxton system, which has been published in Journal of Discrete Continuous

Dynamical Systems Series B, and a paper titled The Boltzmann distribution and the

quantum-classical correspondence, which has been published in Journal of Physics A:

Mathematical and Theoretical. Jaeho Choi is a candidate for the Master of Arts in

Mathematics degree in The Department of Mathematics and Statistics from the University

of Maine in December 2019.

63


	Theory of Lexicographic Differentiation in the Banach Space Setting
	Recommended Citation

	tmp.1580763119.pdf.ttXpN

