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Charcot-Marie-Tooth disease (CMT) is a debilitating inherited peripheral neuropathy resulting in 

progressive distal muscle atrophy and loss of sensation.  CMT is genetically heterogeneous, 

with mutations in over 80 different genes leading to demyelinating or axonal forms.  There are 

genetically similar subgroups, including the largest protein family implicated in the disease, the 

tRNA synthetases (ARSs).  ARSs are responsible for aminoacylation of tRNAs during 

translation and are therefore ubiquitously expressed and essential proteins.  Dominant 

mutations in at least five ARSs cause axonal forms of CMT.  How mutations in ARSs cause 

CMT is unclear, however, the similar clinical presentation of patients suggests shared disease 

mechanisms.  To investigate peripheral axon sensitivity to dominant mutations in ARSs, we first 

performed an extensive examination of motor axon terminals in two mouse models of CMT type 

2D, caused by mutations in glycyl-ARS (GARS).  Our findings reveal a progressive, presynaptic 

dysfunction at the mutant neuromuscular junction that correlates with fewer acetylcholine 

vesicles, release sites, and mitochondria.  One of the proposed disease mechanisms of mutant 

ARSs is through gain-of-function impairments in translation.  Because all ARSs participate in 

translation, impairment in this process is an attractive disease mechanism to test in mammalian 

models of ARS-associated CMT.  To this end we have profiled translation and transcription in 

motor neurons of three CMT2D mouse models.  This profiling has revealed global impairments 

in translation in mutant Gars motor neurons.  Identification of the integrated stress response 



(ISR) only in the largest motor and sensory peripheral neurons has further refined our 

understanding of the cell type-specificity of CMT2D.  Activation of the ISR occurs in these cells 

through the translational homeostasis-sensing kinase, GCN2, indicating that GCN2 is 

responding to impairments in translation.  Genetic removal of GCN2 alleviates mutant Gars 

neuropathy, suggesting that chronic activation of the ISR contributes to CMT2D.  The ISR is 

also activated in motor neurons of mice with dominant mutations in Yars, a model of CMT type 

C.  These data support impairments in translation as a disease mechanism in mice with 

dominant mutations in Gars and Yars and have increased our understanding of the cellular and 

molecular pathways leading to motor axon degeneration. 
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CHAPTER 1 
 

TRNA SYNTHETASE-MEDIATED PERIPHERAL NEUROPATHY 
 

  Introduction 
 

     Peripheral neuropathy impacts an estimated 1 in 5 adults in the United States, and can be 

the result of an inherited mutation, exposure to neurotoxic agents, or another primary disease.  

All forms cause the specific degeneration of peripheral axons.  Both the wide array of causes 

and the technical challenge of studying this unique cell compartment in vivo contribute to the 

lack of a cure.  Among the many types of peripheral neuropathies, Charcot-Marie-Tooth (CMT) 

is the most common inherited form (Saporta and Shy 2013a; Skre 1974a).  While CMT is 

genetically heterogeneous, dominant mutations in at least five aminoacyl tRNA synthetases 

(ARSs) have been firmly linked to the disease (Antonellis and Green 2008).  The first report of 

the involvement of an ARS in CMT came as a surprise to the field (Antonellis et al. 2003b).  

How could mutations in a ubiquitously expressed housekeeping gene cause such a cell type-

specific disease?  As the list of ARSs implicated in CMT grew, an additional question surfaced; 

do all forms of ARS-mediated peripheral neuropathy share a common disease mechanism?  For 

almost the past two decades the search for a unified disease mechanism that helps to explain 

the extreme tissue specificity of the disease has been a major goal of the field.  Gene therapy 

approaches to treat this group of dominantly-inherited CMTs show great promise.  However, 

determining how ARSs cause disease will broaden the therapeutic landscape for patients and 

allow for a better understanding of the basic biology of ARSs and their role in peripheral neuron 

health. 

Biology of Aminoacyl tRNA Synthetases 
 

Canonical Role of tRNA Synthetases in Translation 
 

     The delicate balance of cellular homeostasis depends on the correct expression of the 

genetic code as a complex repertoire of protein.  Many factors influence the fidelity of 

translation, the process of decoding mRNA into protein.  Among these factors are the ARSs, 
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essential enzymes that charge tRNA molecules with amino acids.  The aminoacylation reaction 

is carried out in two steps: (1) ARSs bind to their respective amino acid and ATP to catalyze the 

formation of an enzyme-bound aminoacyl-adenylate, and (2) the aminoacyl-adenylate then 

reacts with the correct tRNA.  In both human and mouse cells there are 19 members of the ARS 

family, each responsible for one of the 20 amino acids, with the exception of the bifunctional 

Glutamyl-Prolyl-ARS (GLU-PRO-ARS). Two separate ARSs are usually used for cytosolic and 

mitochondrial translation, except for glcyl-ARS (GARS) and lysyl-ARS (KARS), which are dual-

localized.  Most ARSs contain catalytic and anticodon binding domains, and a number of ARSs 

contain additional domains for dimerization, editing, or other unknown functions. Based on the 

architecture of the catalytic domain and the mechanism of tRNA binding and activation, ARSs 

are equally divided into class I and class II enzymes (Eriani et al. 1990; Ribas de Pouplana and 

Schimmel 2001).   

     The importance of ARS functional accuracy cannot be overstated; misacylation of tRNAs will 

result in a faulty proteome.  Thus, mistakes made by ARSs are just as detrimental to cellular 

homeostasis as a mutation at the DNA level.  An accurate aminoacylation reaction depends on 

recognition of the correct amino acid and the correct tRNA by the ARS.  The tertiary structure of 

some, but not all, ARSs limits the incorrect binding of larger amino acids through steric 

hindrance.  However, occasional misincorporations of smaller amino acids or of those that are 

structurally similar to the cognate amino acid do occur, in which case ARSs have to rely on 

mechanisms other than steric exclusion. These mechanisms together form the “triple sieve” of 

proofreading, and involve the ARS active site, separate editing domains, and free-standing 

“trans” proteins.  Half of all ARSs possess direct editing abilities that are divided into two forms: 

(1) pre-transfer editing occurs at the active site when the incorrect aminoacyl adenylate 

produced in the first part of the reaction is removed, and (2) post-transfer editing involves 

hydrolysis of misacylated tRNA at a separate editing domain. Some class II ARSs also employ 

the help of trans editing factors which catalyze the post-transfer hydrolysis of misacylated tRNA 
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after its release from the ARS (Perona and Gruic-Sovulj 2014). The importance of the editing 

abilities of ARSs in maintaining a stable cellular proteome is evident in mice that contain a 

defective editing domain in alanyl-ARS (AARS).  In these mice, mutant AARS has reduced 

ability to edit misincorporated serine, resulting in accumulation of misfolded proteins, activation 

of the unfolded protein response, and degeneration of Purkinje neurons (Lee et al. 2006).  

Accumulation of misfolded proteins and neurodegeneration is alleviated by an editing co-factor, 

ANKRD16, which binds directly to the catalytic domain of AARS and captures misactivated 

serine.  Intriguingly, low levels of ANKRD16 expression in Purkinje cells speaks to the cell type-

specificity of neurodegeneration due to mutations in Aars, a ubiquitously expressed gene (Vo et 

al. 2018).  This provides a compelling example of how expression levels of genes that work in 

parallel to the gene with the neurodegenerative-associated mutation can modulate the severity 

and tissue specificity of phenotypes. 

     Similar to amino acid binding to the ARS, accurate and efficient tRNA binding is also crucial. 

At physiological pH, the association of ARSs with tRNAs is much weaker than most protein-

DNA interactions, with dissociation constants several orders of magnitude larger.  This feature 

of the ARS-tRNA physical interaction allows for the rapid turnover of the aminoacylation reaction 

which feeds the translational burden of a cell (Schimmel and Soll 1979).  Therefore, equally 

important as the accurate creation of the aminoacylated tRNA is its timely release from the 

ARS.  Upon release from the ARS, proper shuttling of the aminoacylated tRNA to the ribosome 

by translation elongation factors is also a key step in maintaining the required speed of 

translation.  In fact, evidence suggests that the movements of tRNA occur not through diffusion, 

but rather by a “processive mechanism,” meaning the tRNA is directly transferred from one 

translation component to the next in a highly regulated manner.  Early evidence suggested that 

tRNAs never freely diffuse throughout mammalian cells and are always bound to components of 

the translation machinery under normal physiological conditions (Negrutskii and Deutscher 

1992; Stapulionis and Deutscher 1995).  This “tRNA cycle” includes (1) association with the 
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ARS, (2) direct handoff to the translation elongation factor eEF1A, (3) transfer from eEF1A to 

the ribosome, and finally (4) release from the ribosome and a renewed association with the ARS 

(Mirande 2010).  The constant supervision of tRNA molecules by translation factors strongly 

suggests that the efficient cycling of tRNA is critical to translational homeostasis. 

Non-canonical Functions of tRNA Synthetases 
 
     In light of their fundamental role in protein synthesis, the finding that most ARSs have novel 

and essential functions in higher organisms came as a surprise to the field.  These functions are 

spread throughout the cytoplasm and nucleus, and even extend beyond the boundary of the 

cell.  Some of the earliest suggestions of a role for ARSs beyond aminoacylation came from 

work in bacteria and lower eukaryotes.  This work revealed that some ARSs are involved in 

regulating their own transcription and translation.  For example, mRNA sequences of ARSs can 

encode short sequences that fold to mimic their cognate tRNAs.  When the ARS protein is in 

excess, binding of this tRNA mimic blocks translation of the full ARS mRNA, thereby limiting its 

expression within the cell (Ryckelynck, Giege, and Frugier 2005).  At the transcriptional level, E. 

coli AARS binds to its own gene promotor and represses its expression (Putney and Schimmel 

1981). 

     In members of the animal kingdom, the evolution of new domains of ARSs have greatly 

expanded the possibility of non-translational functions.  Early in the structural analysis of higher 

eukaryotic ARSs, it was found that in addition to the catalytic core of the enzyme were regions 

completely dispensable to the aminoacylation reaction.  This suggested that ARSs might have 

other roles within cells that are unrelated to the canonical aminoacylation function (Schimmel 

1987).  Indeed, a plethora of biological functions have now been assigned to some ARSs 

including (1) glucose and amino acid metabolism, (2) tissue and organ development, (3) control 

of angiogenesis, (4) inflammation, (5) tumorigenesis, and (6) regulation of the immune 

response.  Proteolysis or alternative splicing of ARSs can also create truncated protein 
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fragments that lack aminoacylation activity but are endowed with novel biological functions (Guo 

and Schimmel 2013).  

     The early finding that at least 7 tRNA synthetase enzymes formed a very specific 

multisynthetase complex (MSC) in two different rabbit and sheep tissues strongly suggested 

biological relevance, perhaps relating to translation or denoting a completely novel function 

(Mirande et al. 1982; Kellermann et al. 1982).  It is now known that in higher eukaryotes 9 ARSs 

and 3 scaffold proteins comprise this large complex.  The complex is thought to facilitate 

efficient translation, but other unknown functions are quite possible, especially because the 3 

MSC scaffold proteins participate in diverse, non-translational biological processes (Guo and 

Schimmel 2013). 

tRNA Synthetases and Human Neurological Disease 
 

Recessive Loss of Function Mutations Cause Multi-Systemic Syndromes 
 
     Autosomal recessive mutations in cytosolic (ARS) and mitochondrial tRNA synthetases 

(ARS2) presumably impair translation, and cause a broad range of syndromes.  Recessive loss 

of function mutations in every single ARS2 gene have been linked to human disease, and cause 

phenotypes that are often severe and most prominent in tissues with high metabolic demand.  

For example, virtually all of these mutations result in central nervous system dysfunction, with 

the most common clinical presentation being leukoencephalopathy with brainstem and spinal 

cord or thalamus involvement due to mutations in mt-aspartyl-ARS (DARS2) and mt-glutamyl-

ARS (EARS2).  In contrast, mt-alanyl-ARS (AARS2) mutations either cause neurological 

problems with late onset ovarian failure or infantile mitochondrial cardiomyopathy.  These 

diseases present with a large degree of clinical heterogeneity and may also include 

developmental delays (Boczonadi, Jennings, and Horvath 2018).  

     Recessive mutations in 16 cytoplasmic ARSs cause human disease and affect an even 

broader range of organ systems than mutations in ARS2 genes.  Symptoms are extremely 

variable even among mutations within a single ARS gene, but can include microcephaly, 
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epileptic encephalopathy, hearing loss, developmental delay, liver dysfunction, or lung disease 

(Boczonadi, Jennings, and Horvath 2018).  Despite the ubiquitous nature of ARSs and the 

universal need for protein synthesis, some tissues are uniquely sensitive to mutations in specific 

ARSs.  For example, retinitis pigmentosa is only found in patients with bi-allelic histidyl-ARS 

(HARS) mutations (Puffenberger et al. 2012).  Likely, some of the tissue specificity of mutations 

can be attributed to the many tissue-specific, non-translational functions of cytosolic ARSs. 

     Patients with recessive ARS-associated disease are usually homozygous for missense 

mutations, compound heterozygous for missense mutations, or compound heterozygous for one 

missense mutation and one null allele.  Based on work in mice, homozygosity for null alleles 

would be incompatible with life (Seburn et al. 2006).  There is strong evidence that recessive 

ARS mutations that cause human disease work through a loss-of-function mechanism.  For 

example, ARS protein levels are decreased and/or the mutant enzyme shows significant 

decrease in enzymatic activity.  In addition, studies in zebrafish and C. elegans demonstrate 

that knocking down the ARS gene recapitulates hallmark phenotypes of the human disorders 

(Meyer-Schuman and Antonellis 2017). 

Dominant Mutations in a Subset of tRNA Synthetases Cause Peripheral Neuropathy 
 
     The first human disease linked to an ARS was the neurodegenerative condition, Charcot-

Marie-Tooth disease (CMT).  Dominant mutations in GARS were found to cause the length-

dependent degeneration of peripheral motor and sensory axons, resulting in patient weakness, 

motor impairment, and sensory loss (Antonellis et al. 2003b).  CMT can be divided into two 

classes: the demyelinating type 1, in which a gene mutation affects the integrity of the myelin 

sheath surrounding peripheral axons, or the axonal type 2, in which the mutation affects the 

health of the peripheral axon directly.  All ARS-associated forms of CMT fall into the type 2 

axonal class (or are considered an intermediate form), indicating a special sensitivity of motor 

and sensory axons to dominant mutations in ARS genes.  Despite the genetic heterogeneity of 

CMT as a whole, the ARS protein family is the largest implicated in the disease.  Dominant 
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mutations in at least five different ARSs cause CMT.  Because patients with these mutations 

present with similar clinical symptoms, shared disease mechanisms are thought to be likely 

(Wei, Zhang, and Yang 2019). 

Glycyl tRNA-synthetase (GARS). 
 
At least 19 dominant mutations in GARS have been associated with CMT type 2D (CMT2D).  

These mutations are spread across every domain of the protein.  The majority are found in the 

class II catalytic domain, but others are located in the anticodon binding domain and in the 

metazoan-specific helix-turn-helix WHEP domain of unknown function.  GARS is the only 

bifunctional tRNA-synthetase associated with CMT (Wei, Zhang, and Yang 2019). 

Tyrosyl tRNA-synthetase (YARS). 
 
YARS is a class I aaRS with evolutionarily conserved catalytic and anticodon binding domains 

and a C-terminal EMAP-II-like-domain first found in insects.  5 dominant mutations have been 

linked to Dominant-Intermediate CMT type C (DI-CMTC), which contains features of both 

demyelinating and axonal forms.  All 5 mutations are found in the catalytic domain of the protein 

(Wei, Zhang, and Yang 2019). 

Histidyl tRNA-synthetase (HARS). 
 
Similar to GARS, the HARS enzyme contains a class II catalytic domain, an anticodon binding 

domain, and the WHEP domain.  Thus far, 8 different dominant mutations are associated with 

CMT type 2W (CMT2W) and all are located in the catalytic domain of the protein (Wei, Zhang, 

and Yang 2019). 

Tryptophanyl tRNA-synthetase (WARS). 
 
WARS has an N-terminal WHEP domain, a class I catalytic domain, and an anticodon binding 

domain.  Only one mutation, located in the catalytic domain, has been reported in CMT patients, 

but it has been found in multiple families with a clear inheritance pattern (Wei, Zhang, and Yang 

2019). 
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Alanyl tRNA-synthetase (AARS). 
 
AARS is a structurally unique cytoplasmic tRNA synthetase in that it has not acquired any new 

domains during evolution.  It also stands out among the other CMT-associated ARS in that it 

lacks an anticodon binding domain but has an editing domain and a special C terminal domain.  

In total, 9 mutations in AARS are linked to CMT type 2N (CMT2N), with the majority in the 

catalytic domain, but a few in the editing domain and the C terminal domain (Wei, Zhang, and 

Yang 2019). 

Methionyl tRNA-synthetase (MARS). 
 
MARS contains a class I catalytic domain, an anticodon binding domain, an N-terminal domain 

to anchor it to the MSC, and a WHEP domain.  MARS is unique among the other CMT-linked 

ARSs both in participating in the MSC and in not forming a dimer.  3 mutations all found in the 

anticodon binding domain have been linked to CMT type 2U (CMT2U), but are currently lacking 

enough human genetic evidence to unequivocally classify them as CMT-causing (Wei, Zhang, 

and Yang 2019). 

Animal Models of tRNA Synthetase-Mediated Peripheral Neuropathy 
 
The first mammalian model of an ARS-associated CMT arose from a spontaneous mutation in 

the mouse Gars gene at The Jackson Laboratory (P278KY).  These mice display several 

characteristics of human CMT2D, including overt muscle weakness and atrophy, reduced nerve 

conduction velocity, motor and sensory axon loss, and synaptic dysfunction (Seburn et al. 2006; 

Spaulding et al. 2016).  The second mouse model of CMT2D was a product of a mutagen-

induced mutation (C201R), which results in a similar but milder phenotype compared to P278KY 

(Achilli et al. 2009a).  The third model of CMT2D includes a 12 base pair deletion introduced 

into exon 8 of the Gars gene, as found in a human patient (deltaETAQ) (Morelli et al., 

submitted).  These mice present with similar phenotypes as compared to P278KY and C201R, 

with a severity falling in the middle of the spectrum. 
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     D. melanogaster has been another successful experimental system in which to study ARS-

associated CMT, largely through the forced expression of mutant forms of human GARS and 

YARS enzymes.  This expression causes overt motor deficits, neuronal dysfunction, and axon 

degeneration (Niehues et al. 2015; Ermanoska et al. 2014).  C. elegans has been used to 

demonstrate the dominant toxicity of mutations in HARS.  Transgenic overexpression of mutant 

C. elegans hars-1 in a cell type equivalent to motor neurons causes severe morphological 

phenotypes (Vester et al. 2013).  Finally, zebrafish have been used for the demonstration of 

genetic causation of AARS mutations found in three families with features of a dominant axonal 

form of CMT.  Injection of mRNAs of three different AARS mutants, but not wild-type AARS, 

resulted in neuronal abnormalities in fish (Weterman et al. 2018). 

Potential Disease Mechanisms of Dominant Mutations in tRNA Synthetases 
 
Loss of Function or Gain of Function? 
 
     When dominant mutations in ARSs were first linked to CMT, an obvious disease mechanism  

to test was loss of aminoacylation function.  However, human disease phenotypes, mouse 

genetics, and fly experiments strongly suggest that loss of aminoacylation activity is not the 

cause of CMT neuropathy.  A few years after GARS was implicated in CMT2D, it became clear 

that homozygous recessive or bi-allelic mutations in ARS or ARS2 genes caused severe multi-

system syndromes in humans.  Although some of these syndromes included peripheral 

neuropathy, only dominant mutations in ARS genes cause pure axonal CMT.   

     Just as bi-allelic mutations were first being associated with a different type of human 

disease, genetic experiments in mice began to suggest that neuropathy was caused by a toxic 

gain of function mechanism.  Mice with a heterozygous gene trap allele in the Gars gene show 

mRNA expression levels around 50% of wild-type.  These mice showed no signs of peripheral 

neuropathy, suggesting that a heterozygous loss of function allele would not be sufficient to 

cause CMT (Seburn et al. 2006).  If CMT2D neuropathy was caused by a heterozygous loss of 

function mutation, overexpression of wild-type GARS should improve the phenotype.  In 



 10 

contrast, if neuropathy is caused by a toxic gain of function, increasing wild-type GARS levels 

would not improve the phenotype.  Consistent with the second possibility, ubiquitous 

overexpression of wild-type GARS at levels resulting in a greater than 10-fold increase in 

aminoacylation activity failed to rescue neuropathy in two different mutant Gars mouse models 

(Motley et al. 2011b).   

     Lack of viability of homozygous Gars mutants suggests some impairments in aminoacylation 

activity in vivo.  Interestingly, overexpression of wild-type GARS on homozygous backgrounds 

fully rescued viability, but resulted in a much more severe neuropathy.  These results indicate 

that the transgene is effective at restoring aminoacylation to the mutant protein and at the same 

time, show that increased dosage of the mutant protein leads to greater toxicity in peripheral 

motor and sensory neurons (Motley et al. 2011b).   

     Overexpression of human forms of mutant GARS (with wild-type drosophila-Gars present at 

normal levels) is inherently toxic to motor neurons in flies, as demonstrated by impaired 

performance on a negative geotaxis climbing assay and cell morphology defects.  Dose- 

dependent motor neuron toxicity was observed with overexpression in motor neurons, just as 

was observed in mouse models.  Interestingly, ubiquitous overexpression of mutant GARS 

results in developmental lethality in flies, suggesting that mutant GARS proteins can become 

toxic to cell types other than peripheral neurons when present at high enough levels.  All human 

mutant forms of GARS tested were found to have normal subcellular localization, and 

aminoacylation activity was not diminished in any of the mutant lines (Niehues et al. 2015).  

Taken together, evidence from humans, mice, and flies strongly suggest that CMT2D 

neuropathy is not caused by loss of aminoacylation activity, but rather by an unknown toxic gain 

of function of mutant forms of GARS. 

Aberrant Protein-Protein Interactions 
 
     Hydrogen-deuterium exchange and small-angle X-ray scattering have demonstrated that 

several human GARS and YARS mutations, as well as the mouse P278KY, result in a 
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conformational change in the proteins (He et al. 2011; Blocquel et al. 2017; He et al. 2015).  

Protein domains normally buried in the wild-type enzyme become open to the surface, 

potentially available for aberrant binding to other proteins.  In support of this, several 

interactions between mutant GARS and YARS and other proteins important to peripheral axon 

health seem to contribute to CMT phenotypes.   

     Neuropilin 1 (Nrp1) is a cell-surface receptor that binds to various signaling proteins, 

including the semaphorins and vascular endothelial growth factor (VEGF).  Several human 

mutant forms of GARS, and the mouse P278KY and C201R mutants, all bind to Nrp1, whereas 

wild-type does not.  Mutant GARS competes with VEGF-A for Nrp1 binding, and is proposed to 

result in motor axon degeneration through attenuation of this signaling pathway (He et al. 2015; 

Sleigh, Gomez-Martin, et al. 2017). Heterozygous removal of Nrp1 from P278KY mice worsens 

neuropathy, and overexpression of VEGF-A results in a mild improvement in motor 

performance.  Effects of VEGF-A on neuromuscular junction innervation, nerve conduction 

velocity, or axon number/size are not reported. However, at least one human mutant form of 

GARS (deltaETAQ) that causes a severe form of CMT2D, has very low levels of Nrp1 binding 

(Morelli et al., submitted).  In addition, disruption of VEGF signaling is known to affect vascular 

development, but mouse CMT2D tissues including the muscle, retina, sciatic nerve, and 

hindbrain show no defects in blood vessel number or morphology (Sleigh, Gomez-Martin, et al. 

2017; Fantin et al. 2014).  There is also no evidence linking aberrant VEGF-A signaling to 

sensory neuron degeneration, which is a component of neuropathy in mouse models and some 

patients.  Thus, although aberrant GARS-Nrp1 interactions may contribute to motor neuropathy 

in some animal models and patients, this mechanism is unlikely to be the major cause of 

CMT2D neuropathy.   

     Tropomyosin receptor kinase (Trk) receptors, essential for sensory neuron development, 

have also been shown to aberrantly interact with some human mutant forms of GARS in vitro.  

Both P278KY and C201R mouse models have perturbed sensory neuron differentiation, with a 
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smaller proportion of large-fiber sensory neurons in dorsal root ganglia and a corresponding 

greater proportion of small-fiber neurons.  C201R mice show altered performance on several 

sensory tests, supporting the abnormalities in sensory subtypes (Sleigh, Dawes, et al. 2017).  

Sensory neuron identity may be altered at birth in CMT2D mice, but in the severe P278KY 

model, sensory axon degeneration occurs well after birth.  Thus, there must be additional 

disease mechanisms at play long after development of sensory neurons is complete.  

Interestingly, motor neuron fate is not disturbed in CMT2D mice.  Motor neurons are arguably 

the primary cell type affected in CMT2D patients and undergo the most severe degeneration.  

This work demonstrates that altered peripheral neuron fate underlies some sensory components 

of CMT2D neuropathy, but is unlikely to play a major role in disease progression, especially of 

motor phenotypes. 

     Histone deacetylase 6 (HDAC6) has also been shown to interact with several human GARS 

mutants.  One of the main targets of HDAC6 is a-tubulin, a component of microtubules and 

essential for axonal transport.  Binding of mutant GARS to HDAC6 is hypothesized to enhance 

its activity, resulting in decreased acetylation of a-tubulin and impaired transport.  Indeed, 

cultured P278KY sensory axons show impaired transport, which is improved with the HDAC6 

inhibitor, Tubastatin.  In vivo administration of Tubastatin to P278KY mice slightly improves 

motor function, but effects on additional well-established measures of neuropathy are not 

reported (Mo et al. 2018). Because motor and sensory neurons have such a specialized 

morphology, with extremely long axon projections, it is easy to imagine how impaired axonal 

transport could result in axon degeneration.  It is also easy to imagine that generally increasing 

axonal transport speed through HDAC6 inhibition could result in enhanced motor function, 

whether or not impairments in transport have a primary role in disease.  

     While most aberrant interactions have been studied in relation to mutant forms of GARS, 

mutant YARS has been shown to form aberrant interactions related to its seemingly non-
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translational function within the nucleus.  Three YARS mutants were found to form stronger 

interactions with the scaffolding protein, TRIM28, compared to wild-type.  TRIM28 functions in a 

complex with HDAC1 to suppress acetylation and activity of transcription factors.  Enhanced 

interaction with mutant YARS apparently leads to the overactivation of these transcription 

factors and broad transcriptional dysregulation (Blocquel et al. 2017).   

     Clearly, the structural effects of dominant mutations in GARS and YARS are relevant to CMT 

pathology, although it remains to be seen how structural changes in MARS, AARS, or WARS 

might relate to disease.  So far, the aberrant ARS-protein interactions that have been reported 

are either cell type-, mutation-, or ARS-specific.  Thus, although each of these interactions may 

be playing a role in some tissues or some patients, and in that way may help to explain 

phenotypic diversity, they are unlikely to represent the major underlying cause of CMT 

neuropathy.  Because patients with ARS-linked CMT present similarly in the clinic, disease 

mechanisms shared by all patients, and perhaps even in all affected cell types, are thought to 

be likely.  A disease mechanism that can universally explain the large number of ARSs involved, 

the progressive nature of the disease, and the shared sensitivity of both motor and sensory 

peripheral axons is needed. 

Toxic Gain of Function Impairments in Translation 
 
     The one thing that all ARSs have in common is their participation in protein synthesis.  

Although loss of aminoacylation is not thought to be the cause of neuropathy, toxic gain of 

function impairments in translation could still be the root cause of disease.  With this hypothesis, 

a study using Drosophila models of ARS-associated CMT set out to measure translation in 

relevant cell types.  Expression of three different forms of human mutant GARS in motor and 

sensory neurons causes axon degeneration and significantly reduces translation rates, as 

measured by non-canonical amino acid-tagging.  Defects in translation cannot be attributed to 

impaired aminoacylation or mislocalization of mutant GARS and cannot be rescued by 

overexpression of Drosophila Gars, supporting translational slowdown through a toxic gain-of-
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function mechanism. In addition, genetically reducing translation in motor and sensory neurons 

is sufficient to cause similar neuropathy.  Translation defects are not limited to peripheral 

neurons, as ubiquitous overexpression of mutant GARS also reduces global translation, as 

measured by 35S-methionine incorporation.  Finally, overexpression of human mutant YARS, 

which causes Dominant Intermediated CMT Type 2C (CMTDIC), also results in reduced 

translation in peripheral neurons.  These results lend strong support to the possibility of a 

translation-related disease mechanism shared by at least two CMT-linked ARS mutants 

(Niehues et al. 2015).  A comprehensive in vivo analysis of translation in the primary tissue 

affected by the disease, the mammalian peripheral neuron, would strengthen this hypothesis.  

Because CMT2D causes an axonal neuropathy, assessment of translation specifically in the 

axonal compartment is also relevant.   

Accumulating Evidence for Axonal Translation in Neuronal Homeostasis 
 
     Toxic gain of function impairments in translation could be occurring everywhere in the 

peripheral neuron, or they could be specific to the axonal compartment.  The largest and longest 

axons are primarily affected in human and animal models of ARS-mediated peripheral 

neuropathy, and specific impairments in axonal translation could explain this trend.  The 

specialized structure of the largest peripheral neurons requires that homeostasis is sustained 

over the meter or more that may separate a cell  body from its axonal terminus.  Given this 

impressive distance and an axonal volume that is many times that of the cell body, how is such 

a compartment grown during development, re-grown after injury, and maintained throughout 

adulthood? While early answers to these questions focused on the local environment or the cell 

soma as supplying the needs of the axon, it is now well-established that the axon has some 

unique needs that can only be met from within. Decades of research have revealed local 

translation as an indispensable mechanism of axonal homeostasis during development and 

regeneration in both invertebrates and vertebrates. In contrast, the extent to which the adult, 
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mammalian axonal proteome is maintained through local translation remains unclear and 

controversial. 

Somal Provision of the Axonal Proteome. 
 
     In the early twentieth century popular opinion stated that the axon drew the majority of its 

nutrients from the local environment. Classic experiments by Weiss and Hiscoe challenged this 

idea by providing observable evidence for the directed movement of material from the neuronal 

soma to the axon terminal (Weiss and Hiscoe 1948). Rat peripheral nerves were crushed, 

ligated, and allowed to regenerate.  Within days, the axon segment just proximal to the ligation 

became swollen and enlarged. Upon removal of the ligation, the accumulated axoplasm moved 

from the soma to the axon, suggesting the presence of a dynamic communication system 

between the cell body and the axon and establishing the field of axonal transport.  

     Soon the idea that the neuronal soma supplied the axonal proteome prevailed. Radiolabeled 

amino acids systemically injected into rats were incorporated into new proteins in the soma and 

at the base of large dendrites within minutes of injection, but were observed in the axon hillock 1 

day after injection, in the ventral root 2 days after injection, and 20mm down the sciatic nerve 16 

days after injection (Droz and Leblond 1963).  It was concluded that proteins are continuously 

synthesized in the cell body and at the base of large dendritic spines, and are subsequently 

transported into distal dendrites and axons. Although background from supporting cells would 

have made it difficult to observe low signals in axons, this evidence supported the idea that 

would dominate the field for the next several decades; translation does not occur in axons. 

Axons Possess Translation Machinery. 
 
     Dendrites soon became an established site for local translation, supported by the presence 

of polyribosomes, mRNA, and the seminal finding that it is required for synaptic plasticity in the 

mammalian hippocampus (Steward and Levy 1982; Steward 1983; Caceres et al. 1988; Kang 

and Schuman 1996). Despite the biological importance of dendritic translation, the  apparent 

absence of polyribosomes and rRNA in the axon still made the possibility of axonal translation 
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seem unlikely (Lasek, Dabrowski, and Nordlander 1973). Nevertheless, a series of in vitro 

metabolic labeling studies were carried out in goldfish, squid, and rabbit.  These experiments 

established that proteins can be synthesized in invertebrate and vertebrate axons (Koenig 1967; 

Giuditta, Dettbarn, and Brzin 1968; Edstrom and Sjostrand 1969). Eventually, more sensitive 

techniques enabled the identification of rRNA, mRNA, and actively translating polysomes in 

squid giant axons (Giuditta, Cupello, and Lazzarini 1980; Giuditta, Hunt, and Santella 1986; 

Giuditta et al. 1991). In mammalian axons, ribosomes were identified at embryonic stages both 

in culture and in vivo (Tennyson 1970; Bunge 1973; Bassell et al. 1998). Polyribosomes were 

observed by electron microscopy in the axonal initial segment of mature mammalian central 

nervous system (CNS) neurons, although not in myelinated sections. Polyribosomes were 

tightly associated with synapses, suggesting that axonal translation may occur during times of 

extensive synaptic growth, such as development (Steward and Ribak 1986). 

     Electron microscopy failed to detect rough ER or golgi apparatus in vertebrate axons, raising 

the question of whether or not axons have the ability to process or secrete locally synthesized 

proteins (Tennyson 1970; Bunge 1973). However, the Twiss lab addressed this question using 

cultured rat sensory neurons. Their extensive studies have shown that (1) ER and golgi 

components needed for classical protein synthesis and secretion are present in the axon, (2) 

ER chaperone proteins can be axonally translated, and (3) axons can target locally synthesized 

proteins to the membrane (Willis et al. 2005; Merianda et al. 2009). This evidence strongly 

suggests that neurons can post-translationally modify and secrete axonally synthesized 

proteins, although the associated machinery may exist in very small quantities or adopt unique 

morphologies in the axon, perhaps explaining how the axon is able to maintain the energetic 

burden of translation machinery. 

Axonal Translation Occurs During Nervous System Development. 
 
     Given that axonal ribosomes are present in embryonic axons and preferentially associated 

with synapses, many of the earliest studies in the field of axonal translation were related to its 
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role in neuronal development. Axonal mRNA localization was revealed as a general mechanism 

of protein sorting and proteome management in the developing axon (Jung, Yoon, and Holt 

2012). In growing neurons, mRNA is sorted to neuronal processes in granules that also contain 

ribosomal subunits and translation factors (Knowles et al. 1996; Olink-Coux and Hollenbeck 

1996).  β-actin was among the first such mRNA species to be identified as enriched within 

growth cones and axonal processes of developing neurons, and the axonal synthesis of actin 

protein in embryonic neurons was established soon after (Bassell et al. 1998; Eng, Lund, and 

Campenot 1999). 

     It is now known that axonal translation is important for many aspects of neuronal 

development. Some neurotrophins can induce growth cones to turn toward their source in an 

actin-dependent manner (Zheng, Wan, and Poo 1996; Ming, Lohof, and Zheng 1997). The 

finding that β-actin mRNA is translated in the axon made this mechanism a good candidate for 

how axons can quickly and independently modulate the cytoskeleton for growth cone turning 

during development. Confirming this hypothesis, stimulation of either embryonic or adult 

neurons with neutrotrophins increases the transport of β-actin mRNA into the axon (Zhang, 

Singer, and Bassell 1999; Zhang et al. 2001; Willis et al. 2005). A directional gradient of netrin-1 

induces translation of β-actin that directly precedes attractive growth cone turning (Leung et al. 

2006). Repulsion is just as important as attraction for axonal pathfinding during development, 

and axonal translation contributes to this phenomenon as well. The guidance cue Semaphorin 

3A results in axonal translation of RhoA mRNA and subsequent collapse of the growth cone, 

preventing the axon from innervating incorrect targets (Wu et al. 2005). Overall neuronal growth 

and size-sensing is also dependent upon mRNA localization and axonal translation. In growing 

sensory neurons importin β1 mRNA is anterogradely transported to the axon, where it 

associates with ribosomes. Perturbation of this localization by 3′ UTR knockout or by 

sequestration of the importin β1-ribonucleoprotein complex to the cell body results in 

significantly longer axons (Perry et al. 2016). Finally, axonal protein synthesis is essential for 
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localized BDNF-induced synaptic potentiation in developing neurons (Zhang and Poo 2002). 

Thus, axonal translation is a mechanism by which growing neurons correctly pathfind, innervate 

target tissues, sense their own size, and modulate synaptic strength during 

development. 
 
Axonal Translation Occurs During Nervous System Regeneration. 
 
     Immunohistological studies eventually revealed that mature mammalian axons of the 

peripheral nervous system contain ribosomal proteins and rRNA, which are irregularly 

distributed and located close to the plasma membrane, possibly explaining the difficulty in 

identifying them (Koenig et al. 2000). The importance of axonal translation to neuronal growth 

during development and the identification of ribosomes in adult peripheral axons raised the 

possibility that axonal translation plays an additional role during peripheral nerve regeneration. 

Adult rat dorsal root ganglion (DRG) cells were shown to regenerate neuronal processes in vitro 

after in vivo axonal crush by regulating the translation of an existing pool of mRNAs (Twiss et al. 

2000). Moreover, translation of these mRNAs within the axon itself is required for normal 

regeneration in vitro. In vivo, rat motor axons of the sciatic nerve isolated 7 days after a crush 

injury contain translation factors, ribosomal proteins, and rRNA (Zheng et al. 2001). Whether 

translation components originate from the neuron or from glial cells is still under question. Glia-

to-axon transfer of proteins occurs in squid giant axons transected from their cell bodies (Lasek, 

Gainer, and Barker 1977). In perfused squid axons cell-to-cell transfer of RNA occurs upon 

stimulation of glial receptors by axonal neurotransmitters, indicating that signaling from active or 

injured axons can induce glial cells to provide axonal translation components (Eyman et al. 

2007). In mammals, the in vivo transfer of ribosomal components from Schwann cells to 

peripheral axons after injury suggests the presence of a dynamic collaboration between these 

cell types during regeneration (Court et al. 2008; Court et al. 2011). Independent of the origin of 

translation machinery in uninjured axons, the glia-axon collaboration during injury conditions, 

along with increased aggregation of axonal ER components, suggests an increased capacity for 
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axonal translation, processing, and secretion of newly synthesized proteins during regeneration 

(Merianda et al. 2009; Court et al. 2011). 

Conceptual Arguments for Axonal Translation in Neuronal Homeostasis. 
 
     One of the most common conceptual arguments for the role of axonal translation in neuronal 

maintenance centers around efficiency.  Mature, mammalian neurons are the largest cells in the 

body and are highly compartmentalized. Transport of mRNA to distant locations within a neuron 

followed by local translation may be more efficient than transportation and storage of proteins. 

One mRNA molecule can be translated many times, allowing for communication with the use of 

fewer resources, fewer space restrictions, and less risk of aberrant protein accumulation. In 

addition, nascent proteins may provide opportunities for unique post-translational processing 

crucial to specific functions in the mature axonal compartment (Figures 1A,C) (Jung, Yoon, and 

Holt 2012; Perry and Fainzilber 2014). 

     Axonal translation could also confer molecular flexibility at individual synapses. This could be 

especially useful during periods of high synaptic activity, providing synapse-specific, “on 

demand” adaptations to the proteome. Replenishment of proteins used for neurotransmission 

may be needed at some synapses after intense use such as during motor activity or learning. 

An example of this is found in growing axons, in which the membrane-bound receptor DCC 

physically associates with translation machinery and mediates local protein synthesis upon 

stimulation with netrin (Tcherkezian et al. 2010). In this example, the availability of extracellular 

signals coupled with the expression of presynaptic membrane receptors provides translational 

control at the level of individual synapses (Figure 1B). 

     Local translation may help axons maintain a healthy supply of functional mitochondria. 

Mutations that affect either the function or transport of axonal mitochondria result in 

neurodegeneration (Schwarz 2013; Pease and Segal 2014).  Nigrostriatal dopamine neurons 

have extensive axonal arbors, estimated to form up to 245,000 synapses (Matsuda et al. 2009; 

Bolam and Pissadaki 2012). Given that mitochondria are enriched at synapses, the cell body 
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may be unable to synthesize the complete nuclear mitochondrial proteome at a rate sufficient 

for an uninterrupted supply of axonal mitochondria (Court and Coleman 2012; Schwarz 2013). 

Proteins of the inner and outer mitochondrial membranes possess different turnover rates, thus, 

axonally translated mitochondrial proteins may also allow for finer control of mitochondrial 

replenishment (Beattie 1969). In support of axonal synthesis of nuclear encoded mitochondrial 

proteins, rat superior cervical ganglia (SCG) axons contain mRNA for several of these proteins 

and inhibition of axonal protein synthesis decreases mitochondrial membrane potential (Hillefors 

et al. 2007). SCG axons also contain the micro RNA (miR), miR-338, which is known to post-

transcriptionally modulate the expression of cytochrome c oxidase IV (COXIV), a nuclear protein 

important to oxidative phosphorylation. Overexpression ofmiR-338 in the axon reduces COXIV 

protein levels, mitochondrial oxygen consumption, and axonal ATP levels (Figure 1D) (Aschrafi 

et al. 2008). 

     Finally, axonal translation may provide a local supply of essential axon survival factors. 

Neurotrophins are important regulators of axonal survival that rely on both transported and 

locally translated proteins to exert their protective effects. For example, stimulation of axons by 

neurotrophins coordinates transcription of the antiapoptotic gene bcl-w with transport of bcl-w 

mRNA to the axon and subsequent local translation (Cosker et al. 2013). Because the inhibition 

of axonal protein synthesis with cycloheximide abolishes the protective effects of neurotrophins, 

local synthesis of other axonal survival proteins is likely (Pazyra-Murphy et al. 2009; Pease and 

Segal 2014). A possible example is nicotinamide nucleotide adenylyltransferase 2 (NMNAT2), 

an essential axon survival factor with a half-life of only 4 h (Gilley and Coleman 2010). Even if 

NMNAT2 were transported by fast axonal transport, estimated to move cargo at a speed of 400 

mm/day, the protein would only travel ∼67 mm before 50 percent degradation (Hirokawa, Niwa, 

and Tanaka 2010). This would result in vanishingly low levels of NMNAT2 in the most distal 

axons in large mammals, including humans. Distinct neuronal types may require different 

balances of transported vs. locally translated NMNAT2 (Figure 1). 



 21 

 
 
Figure 1: Conceptual Arguments for Axonal Translation in Neuronal Homeostasis 
Local translation may contribute to axonal efficiency and compartmentalization. mRNA is 
transcribed in the nucleus, packaged into mRNP granules, and transported by multiple 
molecular motors down the axon.  Granules are transported into some synapses and mRNA is 
immediately translated into polypeptides (A and B).  Nascent polypeptides may present the 
opportunity for unique post-translational modification, as in synapse A, or may be used to fulfill 
specific activity-based needs of individual synapses, as in B.  Local translation of some mRNAs 
may be controlled at the synaptic level by the interaction of local extracellular signals with 
membrane receptors (A).  Alternatively, mRNP granules can be transported into synapses and 
stored for later use (C), or excluded from other synapses (D).  Local translation of mitochondrial 
proteins could help to maintain a healthy supply of axonal mitochondria (D).  Axonal survival 
factors may also be translated locally. For example, NMNAT2 has a half-life of 4 hours, and 
even if transported via fast axonal transport, would not make it to the most distance synapses 
before significant degradation. 
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Recent Evidence for Local Translation in Adult Mammalian Axons. 
      
     Despite these arguments, the physiological significance of axonal translation in nervous 

system maintenance remains ambiguous. Asymmetrical mRNA localization is a commonly 

utilized communication strategy for many types of mature polarized cells. (Xing and Bassell 

2013). It is tempting to hypothesize that the longest axons in vivo, such as mature sensory and 

motor peripheral axons, may be the most reliant on mRNA transport and local translation for 

homeostasis. Mature sensory axons possess a complex repertoire of mRNA, and it is 

suspected that the microtubule stabilizing agent, Paclitaxel, causes sensory neuropathy at least 

in part by impairing axonal transport (Scripture, Figg, and Sparreboom 2006; Gumy et al. 2011). 

More direct evidence of neurodegeneration as a result of dysregulation of mRNA transport is 

found with mutations in the RNA binding protein, SMN1, which cause the severe motor neuron 

disease, spinal muscular atrophy (Wang et al. 2016). Mutations in at least five ARSs cause the 

specific degeneration of sensory and motor axons, supporting the idea that local translation of 

transported mRNA is crucial for axonal maintenance (Antonellis and Green 2008). 

     A challenge in establishing axonal translation in mature mammalian neurons is studying 

axons in isolation from their cell bodies and other supporting cell types in vivo. The genetic 

method, translating ribosome affinity purification (TRAP), now allows for axonally-derived 

populations of ribosomes and their associated RNA to be analyzed without fear of 

contamination from other cell types. Shigeoka, et al. used the RiboTag knockin mouse line, in 

which Cre-mediated recombination results in expression of a triple HA-tagged ribosomal 

protein, RPL22 (Sanz et al. 2009; Shigeoka et al. 2016). Ribosome-bound mRNAs in retinal 

ganglion cell (RGC) axons were isolated from their CNS targets in developing and adult mice. 

Comparison of cell somas in the retina to axons in the brain revealed distinct populations of 

ribosome-associated mRNAs in axons. Axons at all ages were enriched for the gene ontology 

(GO) terms “cellular metabolism” and “mitochondrial respiratory chain,” suggesting that 

mitochondrial proteins are indeed locally translated in developing and adult axons. Analysis of 
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developmental stages revealed that axonal translation is intimately associated with RGC circuit 

assembly. In contrast, adult axons are enriched for transcripts related to the maintenance of 

neurotransmission, including components of the trans-SNARE complex, glutamate receptors, 

and neurotrophin receptors. NMNAT2 transcript is associated with ribosomes in both developing 

and adult axons, but more highly enriched at the adult stage. Neurotrophin induced survival 

signals, including components of the CREB and STAT3 pathways, are also enriched in the adult 

axon. This study provides key evidence that axonal translation in adult RGCs supports 

metabolic function, neurotransmission, axon survival, and many other aspects of axonal 

homeostasis.  Although additional work is needed to provide a complete picture of the 

physiological relevance of translation in adult mammalian axons in vivo, it is reasonable to 

hypothesize that disruption of the intricacies of axonal translation, in whatever capacity, could 

impair neuronal homeostasis and lead to neurodegeneration. 

Moving Forward: Testing for Impairments in Translation in Mouse Models of GARS-
Mediated Peripheral Neuropathy (Charcot-Marie-Tooth Disease Type 2D) 

 
     Despite the variety of disease mechanisms that have been proposed, how dominant 

mutations in GARS cause CMT2D still remains unclear.  In light of the impairment in translation 

found in Drosophila models of CMT2D and CMTDIC, and because of the obvious connection 

between ARSs and protein synthesis, we viewed gain-of-function impairments in translation to 

be the strongest candidate as the cause of neuropathy and set out to test this in mammalian 

models of the diseases.   

     The clinical presentation of CMT2D patients combined with previous studies of mouse 

models of CMT2D first led us to investigate synaptic efficacy at the neuromuscular junction 

(NMJ) (Spaulding et al. 2016).  Patients present with progressive distal muscle weakness that is 

consistent with synaptic impairment.  We tested if abnormal synaptic transmission was a feature 

of neuromuscular junctions in two CMT2D mouse models.  Our findings clearly indicate a 

presynaptic impairment defined by decreased quantal content that correlates with disease 
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severity and worsens with age.  Although transmission machinery was intact in mutant NMJs 

and there was no single identifiable cause of impairment, a combination of smaller terminals 

with fewer acetylcholine vesicles and morphological fracturing of the nerve itself probably 

contribute to synaptic weakness.  Intriguingly, our work also identified fewer mitochondria at 

mutant NMJs.  This lack of mitochondria could be because of defects in axonal transport and/or 

because of a lack of biogenesis related to decreased axonal translation, either cytosolic or 

mitochondrial.  Nevertheless, the clear functional and morphological defects found at mutant 

axon terminals caused us to hypothesize that specific impairments in axonal translation could 

be the cause of synaptic weakness and axon degeneration.  Impaired axonal translation would 

also help to account for the cell type-specificity of the disease, as it could be easy to imagine 

that the largest and longest axons have the greatest dependence on local protein production. 

     To test the hypothesis of impaired axonal translation, an in vivo approach that afforded both 

cell type- and compartment-specific resolution was needed.  We began by assessing translation 

and transcription in motor neuron cell bodies of two mouse models of CMT2D.  In vivo, cell type-

specific, fluorescent non-canonical amino acid-tagging (FUNCAT) revealed reduced translation 

in motor neuron cell bodies of mutant Gars mice.  This early finding caused us to refine our 

hypothesis and predict impaired translation in the entire motor neuron.   

     To complement the protein analysis, in vivo ribosome-tagging from mutant Gars motor 

neuron cell bodies was used to identify mRNAs undergoing translation.  We found a distinct 

translation signature in mutant motor neurons that was reproducible among both Gars alleles.  

This signature was also present at the transcriptional level, indicating that it represents broad 

gene expression changes, and was present with the human mutation, GarsdelETAQ/+.  Using 

RNAScope in situ hybridization, we show that activation of this gene expression signature 

occurs in alpha motor neurons and does not occur in any other cell types of the spinal cord.  

The signature is also upregulated in medium-large mechanosensitive and proprioceptive dorsal 

root ganglion sensory neurons.  As a strong indicator of shared disease mechanisms between 
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CMT2D and CMTDIC, this signature is also upregulated in gamma motor neurons of mice with 

mutations in Yars.   

     Ingenuity Pathway Analsys (IPA) indicated that the signature was representative of the 

integrated stress response (ISR).  The ISR can be activated by a variety of intrinsic or extrinsic 

cell stressors, and results in a global decrease in mRNA translation and the upregulation of 

specific stress response genes.  Genetic experiments revealed that the ISR was activated 

through the protein kinase, GCN2, as its removal shut off expression of ISR genes.  Removing 

GCN2 from mutant Gars mice also significantly alleviates neuropathy, resulting in increased 

body weight, improved grip strength, less denervation at the neuromuscular junction, less motor 

axon loss, and motor nerve function closer to wild-type mice.  Thus, it is likely that some of the 

reduced translation seen with FUNCAT is a result of activation of the ISR, and removal of this 

chronic decrease in translation alleviates some, but not all, of the Gars phenotype. 

     Because GCN2 can be directly activated by stalled ribosomes, our data has led us to 

hypothesize that primary, toxic gain-of-function  impairments in translation caused by mutant 

GARS result in ribosomes stalled at glycine codons (Ishimura et al. 2016; Inglis et al. 2019).  In 

support of this hypothesis, genetic crosses between Gars mice and a known model of ribosome 

stalling result in an exacerbated phenotype (Ishimura et al. 2014).  We hypothesize that stalled 

ribosomes activate GCN2 and the ISR, causing upregulation of the disease signature and 

decreased global translation.  By preventing activation of the ISR and the associated 

translational slowdown, neuropathy is partially alleviated.  We also hypothesize that the 

remainder of the phenotype is a result of the lingering primary impairment in translation caused 

by the mutant GARS protein.   

     We have previously shown that dietary supplementation of glycine does not alleviate Gars 

neuropathy.  Besides ATP, the only other substrate of GARS is tRNA-gly, thus, we hypothesize 

that mutant GARS disrupts efficient cycling of tRNA-gly, and in this way impairs the translation 

process.  This disruption could be because of an increased affinity of mutant GARS for tRNA-
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gly, or because of sequestration of the tRNA chaperone protein, eEF1A, or a combination of 

both.  In addition, tRNA-gly cycling impairments could be present in the axon as well as in the 

cell body, and in that way disrupt local translation at nerve terminals.  Cell type-specificity of 

phenotypes could be a result of local translation defects in large axons and/or because of motor 

and sensory neuron-specific expression levels of genes directly related to the translation 

process, including tRNA-gly, GARS, ribosome recycling factors, or ISR components.  Future 

work includes investigating these potential causes of cell type-specificity, testing for tRNA-gly 

sequestration, and continuing to strengthen the connection between this potential disease 

mechanism and other forms of ARS-associated peripheral neuropathy. 
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CHAPTER 2 
 

SYNAPTIC DEFICITS AT NEUROMUSCULAR JUNCTIONS IN TWO MOUSE MODELS OF  
 

CHARCOT-MARIE-TOOTH TYPE 2D 
 

Abstract 
 

Patients with Charcot-Marie-Tooth Type 2D (CMT2D), caused by dominant mutations in Glycl 

tRNA synthetase (GARS), present with progressive weakness, consistently in the hands, but 

often in the feet also.  Electromyography shows denervation, and patients often report that early 

symptoms include cramps brought on by cold or exertion.  Based on reported clinical 

observations, and studies of mouse models of CMT2D, we sought to determine if weakened 

synaptic transmission at the neuromuscular junction (NMJ) is an aspect of CMT2D.  Quantal 

analysis of NMJs in two different mouse models of CMT2D (GarsP278KY, GarsC201R), found 

synaptic deficits that correlated with disease severity and progressed with age.  Results of 

voltage-clamp revealed presynaptic defects characterized by: 1) decreased frequency of 

spontaneous release without any change in quantal amplitude (MEPC), 2) reduced amplitude of 

evoked release (EPC) and quantal content, 3) age-dependent changes in the extent of 

depression in response to repetitive stimulation and, 4) release failures at some NMJs with 

higher frequency, longer duration stimulation.  Although further work did not reveal a primary 

mechanism that fully accounts for the reduced quantal content, smaller mutant NMJs with 

correspondingly fewer vesicles and partial denervation that reduces release sites contribute to 

the reduction at a proportion of mutant NMJs.  However, taken all together, the voltage-clamp 

data suggest other release processes, while essentially intact, are also likely operating sub-

optimally at most NMJs.  Drugs that modify synaptic efficacy were tested to see if 

neuromuscular performance improved. The presynaptic action of 3,4 diaminopyridine (3,4 DAP) 

was not beneficial, whereas postsynaptic-acting physostigmine did improve performance. 
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Introduction 
 

     Charcot-Marie-Tooth (CMT) disease was described more than a century ago (Charcot and 

Marie 1886; Tooth 1886.) and encompasses a large group of genetically and phenotypically 

heterogeneous diseases that affect the peripheral nerve at a worldwide frequency of at least 

1/2500 (Skre 1974b).  In this study we focus on CMT2D, which is a type 2 axonal CMT (Dyck 

1975) caused by autosomal dominant mutations in Glycyl tRNA synthetase (GARS) (Antonellis 

et al. 2003a).   

     CMT2D patients present with a range of “classic” CMT2 symptoms that include slowly 

progressive, distal weakness with or without sensory abnormalities.  The absence of sensory 

involvement may result in a diagnosis of distal spinal muscular atrophy type V, which is allelic to 

CMT2D (Rohkamm et al. 2007; Sivakumar et al. 2005; Antonellis et al. 2003a).  Clinical reports 

on CMT2D and other type 2 CMT patients describe electrophysiological abnormalities including 

aberrant spontaneous muscle activity, reduced compound muscle action potentials (CMAP), 

and less commonly, decreased nerve conduction velocities (NCVs) (Saporta and Shy 2013b; 

Shen et al. 2011; Sivakumar et al. 2005).  Some CMT2D patients report early symptoms that 

included cramping in hands and legs either in response to cold or upon exertion, and transient 

episodes of weakness and fatigue that slowly worsen with age (Sivakumar et al. 2005). These 

electrophysiological signatures and other symptoms of type 2 CMTs are typically attributed to 

axonal degeneration (Sivakumar et al. 2005) but, are also consistent with possible 

neuromuscular junction (NMJ) dysfunction and transmission failure.  To our knowledge, this 

possibility has not been systematically investigated for type 2 axonal CMTs.  If synaptic defects 

are indeed an unrecognized factor in type 2 CMTs, even as a secondary effect of axonal 

pathology, it would open a possible new treatment avenue for patients.  For example, patients 

with NMJ defects due to congenital myasthenias, are effectively treated with drugs that 
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modulate synaptic efficacy (Engel et al. 2015) and if myasthenia-like deficits were a component 

of type 2 CMT, drugs to improve NMJ transmission could be considered.    

     The dominantly inherited mutations in Glycyl tRNA Synthetase (GARS)(Antonellis et al. 

2003a) underlying CMT2D have been successfully modeled through mouse genetics, with the 

identification of dominant Gars alleles that recapitulate most aspects of CMT2D, including axon 

atrophy and loss, denervation, muscle weakness and consistently more severe symptoms in 

certain distal muscles than proximal ones (Achilli et al. 2009b; Motley et al. 2011a; Seburn et al. 

2006).  The severity of CMT2D varies widely among patients due, in part, to the specific GARS 

mutation that an individual carries (Antonellis et al. 2003a; Del Bo et al. 2006; Dubourg et al. 

2006; James et al. 2006), and a similar correlation exists for different mutant alleles of Gars 

mice (Achilli et al. 2009b; Seburn et al. 2006; Sleigh et al. 2014).   Here we focus on two mutant 

mouse strains, one referred to as GarsP278KY, which develops a severe peripheral neuropathy 

(Seburn et al. 2006), and the second, GarsC201R, which has a milder disease (Achilli et al. 

2009b).  Both mutant strains are weaker than age-matched wild-types and weakness correlates 

with disease severity.  Differences in muscle strength between the mild and severely affected 

CMTD2 mice is partly explained by early axon loss (~30%) in the GarsP278KY mice that is not 

seen in the GarsC201R allele.  However, motor axon number in GarsP278KY largely stabilizes after 

about five weeks of age, whereas there is no reduction in axon number in GarsC201R nerves 

(Achilli et al. 2009b; Seburn et al. 2006).  Despite essentially stable axon counts, both alleles 

have a persistent, overt tremor that worsens gradually with age (Achilli et al. 2009b; Motley et al. 

2011a; Seburn et al. 2006; Sleigh et al. 2014), which could be caused by unreliable 

neuromuscular transmission at innervated terminals.  Consistent with this idea is the previous 

finding that GarsP278KY muscle showed a more marked decrement in an integrated 

electromyogram (EMG) during tetanic contraction than wild-type (Seburn et al. 2006).  In 

addition, both Gars mutant strains show muscle atrophy and some degree of morphological 
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abnormality at the NMJ (Motley et al. 2011a; Seburn et al. 2006; Sleigh et al. 2014) that may be 

indicative of ongoing synaptic dysfunction, but it is currently unknown whether intact NMJs 

function normally in CMT2D, or any other type 2 axonal CMT. 

Results 

Proximal LAL Muscles in CMT2D Mice Show Prevalent NMJ Dysmorphology, But Most 
Terminals Retain Innervation 
 
     The proximal LAL muscle has not previously been examined in CMT2D mice, so prior to 

conducting voltage-clamp experiments we evaluated NMJ morphology and assessed 

innervation status.  Compared to wild-type terminals (Figure 2 A,B) nearly all LAL terminals, in 

both GarsP278KY (Figure 2C-I) and GarsC201R (Figire 2 J-L) muscles, have evident dysmorphology 

that includes more diffuse postsynaptic staining with less distinct guttering as well as thinner 

axons and presynaptic nerves.  As with other previously studied muscles NMJ dysmorphology 

varies with disease severity (severe GarsP278KY > mildGarsC201R) and can range from subtle, near 

normal looking NMJs to clearly fragmented junctions (compare Figure 2J vs. 2K).  At low 

magnification an innervating presynaptic axon is evident at most NMJs in LAL muscles of even 

the more severely affected GarsP278KY mice (Figure 2 C-E), but at higher magnification some of 

these junctions are found to be only partially innervated even in the mildly affected GarsC201R 

mice (Figure 2 G-I,L).  Indeed, the most striking difference in LAL NMJs between CMT2D alleles 

was the extent of partial denervation (Figure 2 F).  In GarsP278KY muscles from 2-month-old 

mice, more than half of the junctions were partially innervated, whereas in muscles of 4-month-

old GarsC201R mice only ~5% of NMJs had this status.  There were also more than three times 

as many denervated junctions in the GarsP278KY than in the GarsC201R muscles (6.5 vs. 1.9%) 

even though the latter were 2 months older.  Synaptic function is likely to be compromised at 

junctions that are not fully occupied by a presynaptic terminal if other processes cannot 

compensate.  Our analysis of the LAL predicts that innervation status could contribute to 

observed changes in synaptic function at GarsP278KY NMJs of 2-month-old mice where ~50% of 



 31 

NMJs are incompletely innervated.  In contrast, because ~95% of NMJs in the GarsC201R LAL 

are fully innervated, even at 4 months, functional changes would be independent of innervation 

status at most NMJs. 

 

 
 

Figure 2. Morphological analysis of LAL muscle in CMT2D mice:   Images shown are of 
LAL terminals in 2 month-old (A,B) wild-type, (C-I) GarsP278KY and (J-L) 4-month-old GarsC201R  
mice.  Red shows α-bungarotoxin stained postsynaptic ACh receptors, green is presynaptic 
nerve expressing YFP (see Methods).  Innervation analysis (F) included examination of ≥100 
terminals from each of 3 LAL muscles/genotype.  Control wild-type (A,B) terminals show typical 
complex pretzel-like morphology and postsynaptic receptors are entirely apposed by the 
presynaptic nerve.  GarsP278KY terminals.  At low magnification (20x) it can be seen that (C-E) 
GarsP278KY terminals retain some innervation, but when viewed at higher magnification (63x) (G-
I) nearly all terminals show some dysmorphology (upper and lower terminal G,H,I) and many 
are only partially innervated (lower terminal G,H,I).   Occupancy was analyzed, and ~ 10% of 
terminals were denervated but more than 50% showed some degree of partial denervation 
muscles.  GarsC201R terminals.  The LAL muscle in GarsC201R mice showed a similar phenotype 
to GarsP278KY muscles, with widespread dysmorphology at most terminals with severity ranging 
from (J) mild, near-normal to (K) fragmented or (L) partially denervated.  Overall, consistent with 
previous findings, GarsC201R LAL muscles had many (F) fewer denervated or partially 
denervated terminals than seen in GarsP278KY, but across both alleles at least 80-90% of NMJs 
retain at least partial innervation. 
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Quantal Analysis Reveals Abnormal Synaptic Transmission in CMT2D Mice at 2 Months 
of Age.   
     Motor  endplate current recordings were made under voltage clamp conditions to control for 

potential changes in passive properties of muscle fibers that could occur with disease-related 

changes in muscle activity (Lomo and Rosenthal 1972).  Our first set of experiments used 

muscles from 2-month-old GarsP278KY and GarsC201R mutants and respective wild-type littermate 

controls.  At this age we found qualitatively similar changes in synaptic function for both 

mutants, but as with other phenotypes, the dysfunction was more pronounced at NMJs of the 

GarsP278KY mice than at synapses of GarsC201R mutants with the milder disease.   

     At 2 months of age, both alleles show no difference in MEPC amplitude (quantal amplitude) 

(Figure 3 A,G), but the frequency of spontaneous release was consistently and significantly 

lower than wild-type (Figure 3 B,H). The finding that quantal amplitude at mutant synapses is 

not different than wild-type indicates that both postsynaptic receptor density and the amount of 

acetylcholine loaded into individual vesicles is unaffected at CMT2D terminals. 

     Evoked release was also affected at 2-month-old mutant NMJs, as both alleles showed 

significant decreases of approximately 25% in EPC amplitude (Figure 3 C,I) and quantal content 

(Figure 3 D, J).  Clinical diagnoses of NMJ dysfunction utilizes response to repetitive stimulation 

(Rich 2006), so we also examined changes in EPC amplitude in response to a 10 pulse, 50 Hz 

stimulus train.  In addition, changes in facilitation or depression with this protocol can be used to 

infer changes in release probability (Zucker and Regehr 2002; Kong et al. 2009).  Using the 

ratio of the amplitude of the 10th/1st EPC in the train we found that, on average, NMJs of 

GarsP278KY and GarsC201R mice showed significantly greater depression (Figure 3, E,K).  For 

healthy synapses greater depression correlates with higher initial probability of release (Zucker 

and Regehr 2002). 

     Finally, we examined time-course measures of both MEPCs and EPCs and found no 

significant changes between mutant and control NMJs at 2 months of age for either allele. (Time 



 33 

constants in ms: MEPC control vs. mutant – GarsP278KY:  0.79±0.24 vs. 0.74±.0.20, GarsC201R:  

0.75±0.12 vs. 0.73±0.12)(EPC control vs. mutant: GarsP278KY: 1.1±0.20 vs. 1.2±.0.24, GarsC201R: 

1.2±0.14 vs. 1.2±0.17).  Additional time course measures (time-to-peak, half-width, 10-90 rise 

time) also showed no changes at synapses in either Gars mutant at 2-months of age. 

     Together analysis of synaptic measures reveals changes in synaptic transmission in 2-

month-old CMT2D mice that are characterized by decreased spontaneous release frequency 

and evoked release amplitude and greater EPC depression in response to 50Hz stimulation.  

The absence of any change in MEPC amplitude or time-course measures points to a 

presynaptic defect.  As with other CMT2D phenotypes examined previously, synaptic changes 

in the CMT2D mice correlate with disease severity associated with different mutant alleles. 

Quantal Content is Further Reduced in GarsC201R LAL Terminals Between 2 and 4 Months.   

     Given the relationship between synaptic dysfunction and disease severity across mutant 

alleles, we were also interested in determining if synaptic measures changed with age for a 

given allele.  For these experiments we aged an additional cohort of GarsC201R mice to 4-

months. We chose the milder GarsC201R allele for this study because innervation status is near 

normal even at the older age (Figure 2F).  

     The additional two-months produced no significant changes in spontaneous release 

compared to younger mutants.  MEPC amplitude recorded at GarsC201R NMJs was still not 

different than control (Figure 3 G,G′), and MEPC frequency remained reduced to approximately 

the same extent as measured at 2 months (Figure 3 H,H’).  Since the reduction in frequency of 

spontaneous release was such a robust, consistent finding we were interested in determining if 

a mutant synapse could increase spontaneous release in response to higher extracellular 

calcium.  Raw traces show increased MEPC frequency when recorded from the same LAL 

synapse (4- month-old, GarsC201R) at two different calcium concentrations: 2mM (Figure 3 F, 

upper), and 4mM (Figure 3 F, lower).  Initial release frequency was 0.4 Hz, below the mutant 
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GarsC201R average (~0.8 Hz; Fig. 2H, H’), but doubling extracellular calcium increased release 

frequency to 1.0 Hz, within normal range for a wild-type synapse, a comparable relative 

increase to that reported previously for wild-type mice (e.g.(Plomp et al. 2000)).  Average MEPC 

amplitude also increased from 1.9 to 2.3 mA.  

     Evoked release at GarsC201R synapses showed a further decline, as mean EPC amplitude 

and quantal content were significantly lower at 4 months compared to 2-month and age-

matched wild-type values (Figure 3 I,I’,J,J’).  Interestingly, the extent of depression in response 

to 50Hz trains at the older mutant NMJs was significantly less (i.e. >10th/1st ratio) compared to 2-

month mutant values, and higher than 4-month wild-type control values (Figure 3 K,K’), 

indicating a decrease in the probability of release between 2 and 4 months.  Examination of 

time-course measures (MEPC and EPC, not shown) revealed neither an age-related effect of 

the GarsC201R mutation nor any difference from age-matched controls.   
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Figure 3. Quantal analysis.  Voltage clamp experiments were performed using LAL muscles 
from 2-month-old GarsP278KY, (upper panels) and both 2- and 4-month-old GarsC201R mice (lower 
panel).  All recordings were made at a holding potential of -50mV.    At 2-months of age, mutant 
NMJs in both GarsP278KY and GarsC201R mice showed: no change in MEPC amplitude, (A, G) 
lower frequency of spontaneous release, (B,H) reduced EPC amplitude and quantal content 
(C,I,J), and significantly greater depression (10th/1st) in response to 50 Hz stimulation (E,K).  At 
4 months of age GarsC201R NMJs show no additional changes in spontaneous release (G’,H’) but 
a further reduction in EPC amplitude and quantal content (I’,J’) while repetitive stimulation 
produced less depression compared to 2-month mutant NMJs (K’).  (F) Increased extracellular 
calcium successfully increased spontaneous release frequency at 4-month-old mutant GarsC201R 
NMJ.  LAL muscles of 6 different mice for each genotype/age were used.  In each muscle 
recordings were made on 3-12 synapses (mean and mode=8) for a total of between 47-58 
synapses for each genotype/age.  Comparisons made using nested ANOVA.   * = p<0.05 – 
mutant vs. wild-type; **= p<0.05 – 2 vs. 4 months GarsC201R. 
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Dynamic Frequency-Related Changes in Evoked Release Show Atypical Response at 
Mutant NMJs.   
     Observations during the delivery of 50 Hz stimulus trains prompted a more detailed analysis 

of dynamics during the 10-pulse train.  EPC amplitude was measured for each pulse of the train 

and expressed relative to the amplitude of the first EPC.  The typical pattern of the 50 Hz 

frequency response averaged across wild-type littermate NMJs was similar regardless of age or 

strain (Figure 4) and is characterized by potentiation of initial EPCs (2-4th response, ~105% 

initial ) followed by moderate depression (85-90% initial).  However, this pattern differed 

between mutant alleles and changed between 2 and 4 months in GarsC201R muscles.   

     At NMJs of 2-month-old CMT2D mice, both GarsP278KY (Figure 4 A) and GarsC201R, (Figure 4 

B) showed near complete absence of potentiation, barely evident only for the second response 

at NMJs of GarsC201R mice.  In addition, EPCs at NMJs for both mutant alleles showed a slightly 

steeper depression relative to respective wild-type (Figure 4 A,B), and the effect is again more 

marked at GarsP278KY NMJs than at GarsC201R NMJs (Figure 4 A,B).  

     Given the additional reduction in quantal content at GarsC201R NMJs between 2 and 4 

months, we expected the response pattern of 4-month mutant NMJs to appear more like that 

observed at GarsP278KY terminals.  To our surprise, the typical early potentiation was now 

evident and the overall pattern was more similar to wild-type, but with even slightly greater initial 

potentiation and somewhat less marked depression (decreased probability of release) in later 

responses (Figure 4 C). 

     We were also interested in the ability of mutant NMJs to sustain release for periods longer 

than the 200ms duration of the 10-pulse 50Hz trains.  Thus, at NMJs where a sufficiently stable 

penetration was established we also recorded EPCs in response to 10 consecutive stimulus 

trains of 1 second duration (70 pulses@70 Hz) delivered once every 2 seconds.  Successful 

recordings, of at least 10 stimulus trains per NMJ, were made in several muscles at 16 different 

NMJs including 5 wild-type and 11 mutants (2 GarsP278KY and 9 GarsC201R, 3 and 6 from 2- and 
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4-month old muscles respectively).  Overall, qualitative examinations of 70 Hz raw traces reveal 

that mutant NMJs do not sustain release during the repeated 1 second stimulus as well as wild-

type (Figure 4 D-G).  If the response to the 1st train in a series is compared across genotype/age 

(top panel, D-G) a marked difference is only clearly evident for the severe GarsP278KY NMJ, but 

effects on each mutant NMJ becomes more marked with successive trains such that by the 10th 

train (bottom panel, D-G) release is clearly more severely reduced at mutant NMJs.  In traces 

shown, release failures occur in the 2nd train at the GarsP278KY NMJ (arrows in middle panel E,) 

and during the 10th train for both GarsP278KY and 2-month-old GarsC201R NMJs shown (arrows in 

bottom panels, E, F).  We examined all individual 70Hz traces for each NMJ to better evaluate 

the extent of the failures.  Failures never occurred at wild-type NMJs, but at least one failure 

occurred during at least one stimulus train at 5 of 11 mutant NMJs.  Of these 5 two were from 

GarsP278KY muscles and three were recorded in 2-month-old old GarsC201R muscles.  Failures for 

both GarsP278KY NMJs occurred as early as the second stimulus train and failures also occurred 

during the initial 10 stimuli of the train, whereas for GarsC201R NMJs (2-month), failures did not 

appear until the 4th train or later and failures were not seen during the initial 10 stimuli of any 

train.   The 50 Hz analysis above suggested a compensatory response between 2 and 4 months 

for GarsC201R NMJs, and in keeping with this, examination of traces for 4-month-old GarsC201R 

NMJs revealed no clear failures, but traces included intermittent, very small EPCs (5-15 nA), not 

present in any wild-type traces, and these were more common towards the end of individual 

traces and in later (4-10th) trains.   

     We also calculated quantal content using the EPC averaged across trains (n=10/NMJ) of the 

70th EPC in the trains and compared mutant and wild-type values.  Final quantal content at the 

end of the 70 Hz trains ranged between 21 and 49 for the five wild-type NMJs and between 5 

and 22 for the 11 mutant synapses.  Including all mutant data, the average mutant quantal 

content of the final 70Hz EPC (mean 13.2±5) was significantly lower than wild-type (mean 
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31.4±12) (t(14)=4.4, p=0.01) and this difference was also significant if the comparison was 

restricted to 4-month-old GarsC201R (mean 13.5±3) and wild-type (t(9)=3.5, p=0.01).   

     As a final assessment of the severity of defects at Gars NMJs, we reviewed all of our 

experiments seeking fibers where we were able to record MEPCs (i.e. innervated), but were 

unable to evoke an EPC (N.B. data not included in Figure 2).   This scenario was found in 17 of 

179 NMJs (7,6,4 GarsP278KY and GarsC201R, 2 and 4 month respectively) including 1 or more 

occurrence (max. = 4) in 9 of the18 mutant muscles (6-12 NMJs recorded per muscle).  In 

contrast, for wild-type this situation arose at only 4 of 184 NMJs in 4 of 18 muscles and never 

occurred more than once in any experiment (6-11 NMJs/experiment). 
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Figure 4. Evoked response to repetitive stimulation.   A,B&C show plots of averaged 
normalized EPC amplitude (± s.e.) for each stimulus of a 10 pulse, 50hz stimulus train (average 
of 20 trains@0.5Hz for each NMJ).  In contrast to wild-type synapses, mutant NMJs in 2-month-
old animals showed reduced or absent potentiation of initial EPCs and somewhat steeper 
depression.  At 4-months of age, initial EPCs showed potentiation similar to wild-type.  EPC 
amplitude was measured for each stimulus and plotted relative to the amplitude of the first 
pulse.  Numbers of animals/synapses are the same as for data shown in Fig. 2.  Plots in 
D,E,F&G show the 1st,2nd and 10th raw traces from a series of ten EPC trains recorded in 
response to a 70 pulse,70hz stimulus (1sec duration), delivered every 2 seconds.  Starting 
quantal content (m) is shown for each of the four NMJs.  Mutant NMJs showed marked steadily 
progressive decrements from the 1st to 10th train while the wild-type decreased and stabilized.  
The mutant NMJs are easily identified by comparing response to the 10th stimulus train (lower 
traces) to wild-type.  In addition, clear failures of release were evident (arrows) for NMJs from 
severe and 2-month-old mild GarsC201R muscles.  Failures were present in at least one train for 5 
of 11 mutant NMJs, but were never observed in wild-type. The 1 second duration, 70Hz trains 
were recorded in 9 different muscles/experiments (n= 5,6,3 and 2 NMJs from 4-month-old wild-
type, 4M-GarsC201R, 2M-GarsC201R and 2M-GarsP278KY respectively). 
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Is the Observed Reduction in Quantal Content Associated with Fewer Active Release 
Sites?    
     Voltage-clamp data reveal apparent presynaptic changes that cause a reduced quantal 

content as well as a reduced capacity for sustained release for mice carrying either Gars mutant 

allele.  To investigate whether a reduced number of release sites could account for the lower 

quantal content and MEPC frequency at mutant NMJs, we stained LAL terminals for Bassoon, a 

presynaptic protein present at NMJ release sites (tom Dieck et al. 1998) (see Methods for 

details based on (Nishimune, Sanes, and Carlson 2004)). We used only LAL muscles from 2-

month-old GarsP278KY mice with the rationale that, if release sites were contributing, it would be 

clearly evident at synapses of the most severely affected muscles.    Wild-type terminals 

showed complete apposition of YFP-positive presynaptic terminals with postsynaptic receptors 

and bassoon-stained puncta in association with the presynaptic nerve (Figure 5 A-D).  

Consistent with the smaller size of the mutant mice/muscles,(Seburn et al. 2006; Achilli et al. 

2009b) the mean area of LAL end plates in GarsP278KY mice was significantly smaller (compare 

solid and dashed vertical lines, Figure 5 I).  However, the range in counts of the bassoon-

stained puncta was similar for wild-type and GarsP278KY terminals (solid vs. open, Figure 5 I) and 

there was no significant change (p=0.4) in either the average absolute number (solid and 

dashed horizontal lines, Fig.4I) or density of release sites (p≥0.17)(Figure 5 J) compared to wild-

type terminals.  As expected from the initial morphological analysis of mutant NMJs (Figure 2) 

10 of the 34 terminals that were sampled from GarsP278KY muscles for this analysis had a portion 

of postsynaptic receptors not apposed by the presynaptic nerve and without bassoon-puncta.  

Although these terminals clearly lacked bassoon-stained puncta in the partially denervated 

regions, the relative proportion of the junction affected was not large (≤15%)(e.g. Figure 5 H,K) 

so the effect on puncta counts was small.  Counts for the 10 partially denervated junctions had a 

similar mean, median and range as those without any evident loss of presynaptic nerve 

(mean=689 vs. 720, median=616 vs. 632, range=233-2049 vs. 134-1840).  Taken together 
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these data show that release sites in GarsP278KY muscles are retained so long as the presynaptic 

terminal persists.  Therefore, at partially denervated LAL junctions release sites could be 

reduced in proportion to the extent of partial denervation.  However, other factors must also 

contribute because half of the NMJs in 2-month-old GarsP278KY, and ~85% in GarsC201R LAL 

muscles, retain complete innervation (Figure 2). 
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Figure 5. Quantification of bassoon-stained release sites in 2-month-old GarsP278KY LAL 
muscles.   Process of visualization and quantification of bassoon-stained release sites is shown 
for a wild-type LAL terminal (A-D).  Analysis included assessment of: (A) the postsynaptic 
receptor area, (B) presence of presynaptic nerve and (C) bassoon-stained puncta.   Puncta 
were identified using a three-step process to render a 3-D image (D) for automated counting of 
release sites (Imaris, see Methods for details).  Typical GarsP278KY NMJ (E-H) have more diffuse 
postsynaptic staining (E), apposed by a thinned presynaptic nerve (F), that nonetheless retains 
bassoon-stained puncta (G) at innervated locations (N.B. the areas where YFP appears to not 
overlie bassoon labeling due to the faint YFP signal in portions of the axon and the thresholding 
of the image; at higher gain YFP was detectable in the vicinity of all bassoon-stained puncta).  
However, as expected, when a portion of the presynaptic nerve vacates, bassoon-stained 
release sites are no longer evident (arrow in merged image H, expanded in K).   GarsP278KY 
sample included a total of 34 synapses that included 10 terminals with small areas of evident 
partial denervation. (I) Scatterplot shows NMJ area and counts of bassoon-positive puncta at  
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Figure 5 Continued: 
individual synapses of GarsP278KY (solid) and wild-type (open) NMJs. Vertical and horizontal lines 
indicate sample means (GarsP278KY and wild-type, solid and dashed respectively).    Mean area 
of LAL NMJs was significantly smaller (p<0.002) compared to wild-type (solid vs. dashed 
vertical line).  Individual puncta counts covered a similar range and neither mean counts 
(dashed and solid horizontal lines) nor density (J) were significantly different between genotypes 
(p=0.4 and 0.17, respectively).  Analysis included 5-10 (mean=7) terminals from each of 5 LAL 
muscles of each genotype (n=34 & 35, GarsP278KY and wild-type respectively).  Comparisons 
with nested ANOVA. 
 
Vesicle Number and Localization   

     Given that a change in the number of release sites was insufficient to account for changes 

observed in evoked release, we next used electron microscopy to compare vesicle parameters 

at wild-type (Figure 6 A) and NMJs from the severely affected GarsP278KY mice (Figure 6 B).  We 

analyzed electron micrographs of portions of 5-10 NMJs (median 8) from each of five animals 

per genotype.  Consistent with the lack of difference in MEPC amplitude, vesicle size was 

similar for mutant and wild-type terminals (50 ± 0.71 vs. 54 ± 1.2, respectively).   Average 

vesicles counts tended to be lower at GarsP278KY NMJs compared to wild-type, but due to large 

inter-animal variation, for both genotypes, the difference did not quite reach our statistical cutoff 

for significance (p=0.08) (Figure 6 C, inset).  However, consistent with light microscopy results 

above (Figure 6 I) and other work (Sleigh et al. 2014) GarsP278KY mutant synapses are smaller 

than wild-type and therefore, the areas of captured portions of mutant NMJs in our electron 

micrographs also tended to be smaller (mean = 14 vs. 28 µm2, respectively, p=0.04).   When 

vesicle number is plotted against area (Figure 6 C) it is evident that mutant muscle had fewer 

terminals with areas > 20 µm2 and vesicle counts > 250 (ellipse, Figure 6 C), and a 

preponderance of small (<20 µm2) terminals with vesicle counts of less than 150 (inset, Figure 6 

C).  In general, mutant vesicle numbers still scaled with terminal area, as the density of the 

vesicles (# per µm2) was not different than wild-type (Table, Figure 6 D). However, there are 

several examples of mutant terminals with vesicle counts below any found at wild-type terminals 

(ellipse inset, Figure 6 C).  Thus, despite the fact that the comparison of average wild-type and 
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mutant vesicle counts did not reach our statistical cutoff, we contend that quantal content is 

likely limited by vesicle number for at least some terminals among the generally smaller 

GarsP278KY mutant terminals.  Note, however, that the micrograph in 5B is an example from 

among those terminal portions that were clearly “depleted” in the GarsP278KY muscles.  In a 

preliminary study we also examined 2 mutant muscles (5 NMJs each) from the distal plantaris 

muscle, which has more severe NMJ dysmorphology than the proximal LAL, and terminals such 

as shown in Figure 6 B were not found.  Thus, such terminals should be considered worst-case, 

and if present at all, are not widespread in even in the more severely affected distal plantaris of 

the mild GarsC201R allele. 

     To complete our electron microscopy analysis of vesicles we evaluated their location relative 

to the presynaptic membrane.  We counted the number of vesicles within 200 nm of the 

presynaptic membrane and the number of docked vesicles (within 20nm) and found no 

significant changes at mutant terminals for either absolute counts or counts normalized per 

micron of presynaptic membrane (Table, Figure 6 D).     

     Finally, we also counted the number of identifiable mitochondria visible in electron 

micrographs.  Interestingly, on average, there were significantly fewer mitochondria observed at 

GarsP278KY terminals compared to wild-type (Figure 6 E).  However, there was wide variation in 

counts from terminal to terminal for both genotypes, but the median was also shifted (14 vs. 6, 

GarsP278KY and wild-type respectively) suggesting the reduction in the mean number of 

mitochondria observed at NMJs of CMT2D mice was not due to a small number of mutant 

terminals with very few or no mitochondria.  

     Taken together electron microscopy analysis of NMJs suggests that smaller terminals with 

fewer vesicles likely contributes to lower quantal content for at least a portion of NMJs in 

muscles of the severe GarsP278KY mice.  Vesicles at mutant terminals were of normal size and 
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were localized to the presynaptic membrane similar to wild-type, suggesting vesicle 

processing/trafficking is operating normally at CMT2D NMJs.   

 
 
Figure 6. Electron microscopic analysis of NMJs.  Electron micrographs of NMJs from LAL 
muscles of 2- month-old (A) wild-type and (B) GarsP278KY mice were captured (5 animals per 
genotype, 5-10 NMJs (median 8) per muscle).  Mutant NMJ shown is representative of a 
“severely” affected NMJ with a low-vesicle count.  Note junctional folds and other synaptic 
specializations are still evident at mutant synapses.  Analysis showed vesicle size was similar 
for mutant and wild-type terminals (50 vs. 54 nm, respectively) (not shown).  (C) Scatterplot 
shows that the area of terminal portions analyzed scale with vesicle counts for both genotypes.  
Note the relative absence of large, high vesicle count terminals (ellipse) and the preponderance 
of small, low vesicle count NMJs in the mutant (lower quadrant in C, expanded in inset).  Counts 
at some mutant NMJs were lower than values recorded at any wild-type NMJ (ellipse, inset).  
However, due to large inter-animal variability for both genotypes differences in average vesicle 
counts for wild-type, GarsP278KY NMJs (p=0.08) did not reach our statistical cutoff (see Results).  
(D) The density of the vesicles present in GarsP278KY terminals was not different than wild-type.  
Detailed analysis of vesicle location revealed no differences in the number of docked vesicles 
(within 20nm), or within 200 nm for either absolute or normalized counts (per micron of 
membrane).  (E) Average counts of mitochondria (e.g. arrows in A,B) were significantly lower at 
GarsP278KY terminals (median14 vs. 6, wild-type and GarsP278KY respectively).  
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Enhancing Synaptic Function Improves Wire Hang Performance of CMT2D Mice  

     Prior work has shown that CMT2D mice have significant muscle weakness.(Achilli et al. 

2009b; Motley et al. 2011a; Seburn et al. 2006)  Our data reveal significant synaptic dysfunction 

that could contribute to weakness in the CMT2D mice, so we next tested whether enhancing 

synaptic function could improve in vivo performance of the Gars mutants in a task requiring 

strength.  We first confirmed that mutant synapses were capable of responding to the two test 

drugs in vitro: 3,4-DAP (amifampridine), which acts pre-synaptically to increase quantal content 

(Thomsen and Wilson 1983) and physostigmine (eserine) which acts postsynaptically to 

enhance current duration at postsynaptic receptors (Shaw et al. 1985).   In vitro recordings 

confirmed that both drugs acted as predicted to increase EPC amplitude at 4-month GarsC201R  

NMJs (n≥18 NMJs) (data not shown).  We next evaluated whether the enhanced synaptic 

currents could translate to better whole animal performance on the wire-hang test.   Mice first 

performed an initial wire-hang and then were injected with 3,4-DAP, physostigmine or saline 

vehicle and re-tested sixty minutes later.   We first tested the more mildly affected GarsC201R 

mice and found that administration of physostigmine significantly improved wire-hang times, 

while 3,4-DAP caused a significant decrease (Figure 7 A,1 month) or no change (Figure 7 B, 4 

month) in performance.  GarsP278KY mice also showed improved wire-hang times after 

physostigmine administration (Figure 7 B).  However, because the more severe disease causes 

them to perform so poorly in general, (latency to fall ≤ 8 seconds) we did not test 3,4-DAP to 

see if it decreased performance in the GarsP278KY mice.   

     The improved performance of CMT2D mice after administration of physostigmine, the lack of 

improved performance in the presence of 3,4-DAP, and the existence of evident failures in 

evoked release with 1 second long trains, are consistent with a presynaptic defect that can be 

counteracted by enhanced activation of postsynaptic receptors, but limited capacity for 

increasing or maintaining quantal content. 
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Figure 7.  Wire-hang performance of CMT2D mice.  Performance is expressed as the 
percentage change in wire-hang time after treatment ((post-pre)/post)/100) (see Methods for 
protocol details).  (A) GarsC201R mice (1-month-old) were able to perform better with 
physostigmine (postsynaptic), but showed a decrease in performance after administration of 
3,4-DAP (presynaptic) or (B) no change to 3,4 DAP injection at 4 months of age.  (C) GarsP278KY 
mice showed a similar response to physostigmine, but were not tested with 3,4 DAP.  Mice were 
30-40 days old for testing (GarsC201R, n=6 and +/+, n=5) (GarsP278KY, n=5 and +/+, n=4).  Wild-
type (+/+) mice typically perform the task to completion (60 s max.) and showed no drug-related 
change in performance at the dosages used (physostigmine 0.1 mg/kg; 3,4 DAP 2.5 mg/kg), so 
data are not shown.  Pairwise comparisons drug-treated vs. NaCl with Student’s T-test: 
**(t(9)=4.2,p<0.01); *(t(8)≥2.3, p≤0.047). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 48 

Quantal Analysis in the Presence of 3,4 DAP 

     To assess the capacity of mutant NMJs to increase quantal release, we performed an 

additional set of voltage-clamp experiments using muscles from GarsC201R to assess NMJ 

function in the presence 20µM 3,4 DAP.  The data presented in Figure 8 show that mutant 

NMJs in 2- and 4-month-old LAL muscles are able to respond to the 3,4 DAP in a manner that is 

qualitatively similar to wild-type NMJs (N.B. Control values are replotted from Fig. 3).  

Lengthening the presynaptic depolarization increased EPC amplitude at mutant NMJs to values 

similar to control (Figure 8 C).  However, mean quantal content at mutant 2-month-old NMJs 

remained significantly lower than the respective wild-type mean (Figure 8 D) and though it was 

still visibly reduced at 4-month old mutant NMJs, it was not statistically different.  Thus, in 

response to a single stimulus, mutant NMJs have the capacity to respond to 3,4 DAP and 

normalize EPC amplitude and increase quantal content to values at or near control.  So why 

was wire-hang performance not improved by in vivo administration of 3,4 DAP?  By the end of 

the the 200ms 50 Hz stimulation, the 20 µM  3,4 DAP reduced EPC amplitude to only 20% of 

initial values for both mutant and wild-type NMJs (Figure 8 E).  To improve the wire-hang 

performance of the mutants would require an improvement in sustained release for up to a 

minute, so an equivalent in vivo dose would be expected to worsen performance.  To examine 

this further we also calculated the quantal content of the last EPC (10th) in the 50Hz train (Figure 

8 F).  Under non-drug control conditions quantal content of the 10th EPC is significantly lower at 

mutant NMJs than wild-type (compare Control mutant vs. wild-type in Figure 8 F).  Importantly, 

introduction of 3,4 DAP reduces quantal content even further at mutant NMJs and even reduces 

wild-type quantal content to values similar to those seen at mutant NMJs.  Thus, despite the 

capacity of mutant and wild-type NMJs to increase their quantal release in the presence of 3,4  
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DAP (Figure 8 C), release is not well sustained for even 200ms of 50 Hz stimulation and, at 

least at the dose tested, would not be effective in the treatment of the presynaptic defect in the 

Gars mutant mice. 

 
Figure 8. Quantal analysis in the presence of 3,4 DAP.  Voltage clamp experiments were 
conducted on cohorts of 2- and 4-month-old GarsC201R and wild-type mice with 3,4 DAP added 
to the bath (20uM).  Dashed lines are wild-type, solid lines are GarsC201R and 2 and 4 month 
data are shown with circles and triangles respectively.  Control values without DAP are re-
plotted from Figure 2.  The addition of 3,4 DAP to prolong presynaptic depolarization caused 
qualitatively similar changes at mutant and wild-type NMJs.  Differences that existed between 
mutant and wild-type measures without 3,4 DAP (Figure 2) were eliminated at 4-month old 
mutant NMJs when 3,4 DAP was present, although quantal content was still somewhat lower.  
At 2-month-old mutant NMJs, quantal content remained significantly lower (p=0.01) compared 
to wild-type. 
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Discussion 
 
     The objective of this study was to determine if NMJ dysfunction is a previously unrecognized 

aspect of CMT2D and could therefore present a novel treatment avenue using drugs available 

for treatment of neuromuscular disorders characterized by reduced presynaptic release.  Overall 

our data confirm the presence of a presynaptic defect at the mutant NMJs that likely contributes 

to muscle weakness and can be overcome by administration of the cholinesterase inhibitor 

physostigmine.  To our knowledge this is the first detailed examination of NMJ function in a type 

2 axonal CMT.   

     We studied the relatively mildly affected proximal LAL muscle from animals carrying two 

different Gars mutations that produce disease phenotypes in mice that vary, as does CMT2D, 

from mild (GarsC201R) to severe (GarsP278KY).  These new data describing synaptic defects are 

consistent with other previously described phenotypes (Achilli et al. 2009b; Motley et al. 2011a; 

Seburn et al. 2006; Sleigh et al. 2014; Stum et al. 2011) insofar as the different mutations did 

not produce distinct NMJ phenotypes, but rather produced changes that vary along a continuum 

both within and across genotype/age.  As such, we propose these data represent at least a 

portion of a spectrum of NMJ dysfunction that, if present in patients, could present differently in 

each patient and to varying degrees at different times.  The spectrum is evident within the LAL 

and would likely be expanded if examined across muscles because morphological data for the 

NMJ in CMT2D mice has consistently shown that distal muscles (lumbricals, tibialis 

anterior,plantaris) have more marked degeneration than NMJs in more proximal muscles 

(transversus abdominis, levator auris longus) (Achilli et al. 2009b; Motley et al. 2011a; Seburn et 

al. 2006; Sleigh et al. 2014).  On the basis of the more prevalent distal partial denervation alone, 

it is reasonable to assume that NMJ dysfunction in our mice is likely worse in distal muscles, a 

notion that is also consistent with disease presentation in humans (Saporta and Shy 2013b).   



 51 

     Taken together these data indicate that the mutant GARS has a broad effect that leaves the 

fundamental release machinery intact but “weakens” NMJ function in the CMT2D mice.  Overall, 

the results point clearly to a presynaptic problem that reduces quantal content, but examination 

of key determinants of quantal content did not reveal a primary mechanism.  Instead, our data 

suggest that release processes overall are not functioning optimally and that dysfunction 

includes a spectrum of effects that for a given NMJ could include: i) reduced terminal areas that 

may contain fewer total vesicles (inset Figure 6 C) and, ii) morphological breakdown of the 

presynaptic nerve including some loss of associated release sites (Figure 5 ).  For example, 

despite statistical differences in average vesicle number not reaching the 5% statistical cutoff, it 

seems clear that reduced vesicle number could contribute at some NMJs, at least in the severe 

GarsP278KY allele (Figure 6 C).  However, if reduced vesicle number was the sole disease 

mechanism for mutant Gars, we would also have expected administration of 3,4 DAP to cause 

greater relative depression at GarsC201R NMJs than at wild-type with 50 Hz stimulation.  Instead 

the relative depression induced by the 3,4 DAP was nearly identical (Figure 8 E).  Similarly, 

while NMJ area is significantly smaller in distal GarsP278KY muscles, in GarsC201R muscles NMJ 

areas are not different than wild-type and do not change between 1 and 3 months of age (see 

Fig. 3,(Sleigh et al. 2014)), yet in these experiments quantal content is reduced between 2 and 

4 months.  Thus, reduced NMJ area likely contributes, but is also insufficient as a primary 

mechanism.  Finally, although we found partially denervated NMJs where a reduction in the 

number of release sites could contribute to reduced quantal content, this too seems insufficient 

to account entirely for the observed dysfunction in both alleles.  While approximately 50% of 

NMJs in the LAL of the severe GarsP278KY allele are partially denervated, only ~10% partial 

denervation is present in LAL of the mild GarsC201R allele at 4 months of age.    

     The paucity of mitochondria in mutant nerve terminals in our electron micrographs is also 

potentially interesting.  Reduced mitochondria in terminals may influence synaptic transmission 
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through a variety of mechanisms, including deficits in ATP production or changes in intracellular 

calcium dynamics.(Stowers et al. 2002)  The mitochondria that were present in GarsP278KY 

terminals were not vacuolated or otherwise obviously degenerating.  Their reduced number may 

reflect a failure in axonal transport, biogenesis or turnover, but the association of MFN2 with 

CMT2A makes it clear that defects in neuronal mitochondria can directly lead to axonal 

neuropathy.(Zuchner et al. 2004)  The Gars gene in mammals encodes both the mitochondrial 

and cytosolic forms of the protein through alternative start codon usage.(Mudge et al. 1998; 

Shiba et al. 1994; Williams et al. 1995)  All mutations associated with CMT2D and neuropathy in 

humans and mice are in the common, downstream domains of the GARS protein that are 

shared by both isoforms.  For most other tRNA synthetases, separate nuclear genes encode the 

mitochondrial and cytosolic enzymes and overall the genetics of tRNA synthetase-associated 

CMTs (Scheper et al. 2007; Tolkunova et al. 2000) (Isohanni et al. 2010; McLaughlin et al. 

2010; Scheper et al. 2007) does not clearly indicate a mitochondrial basis for the neuropathies.   

Nonetheless, mitochondrial dysfunction, whether primary or secondary, also cannot be ruled out 

as a contributing to the synaptic dysfunction we observed. 

     Our data also indicate ongoing, apparently compensatory changes in synaptic transmission 

at the NMJ.  A variety of mechanisms could compensate for reduced synaptic currents to help 

maintain muscle function.  The finding that the 4-month mutant NMJs again show some initial 

potentiation in response to 50Hz activation, may be an example of such compensation, but 

other changes may occur outside the synapse as well.  We know that changes in muscle activity 

can modify passive properties of muscle (Lomo and Rosenthal 1972) and such changes may 

occur in the CMT2D mice.  Voltage-clamp measures are unaffected by changes in specific 

membrane resistance and capacitance or other changes (e.g. Na+ channels) that could alter 

muscle excitability.  Thus, while our voltage-clamp data definitively establish the presence of 

synaptic defects in the CMT2D mice, it is possible that muscle fiber characteristics or other 
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processes might increase or decrease the likelihood of transmission failures that could lead to 

weakness.    

     Based on the combined results presented here, we propose that CMT2D, and perhaps other 

type 2 axonal CMTs, display synaptic dysfunction that could contribute both variably and 

intermittently to weakness or fatigue.  In wild type mice, NMJs operate in a “failsafe” manner, 

such that firing the nerve produces sufficient depolarization in the muscle to cause an action 

potential without fail.  This requires a “safety factor” of excess synaptic current to insure reliable 

muscle contraction (Paton and Waud 1967; Rich 2006)  In the CMT2D mice, we show that 

average quantal content of mutant NMJs is significantly lower than wild-type (Figure 3), and 

based on examination of distributions of mutant quantal content values, we propose a model of 

CMT2D synaptic transmission (Figure 9) where disease processes diminish presynaptic release 

to a variable extent at most, if not all, NMJs.  Distributions of quantal content at mutant NMJs 

each show a distinct leftward shift relative to wild-type, including between 15-30% of NMJs 

(depending on age and genotype) with a quantal content lower than any recorded at wild-type 

NMJs (Fig. 8A, left of vertical dashed line).  We suggest currents at these severely affected 

NMJs could regularly fail to initiate muscle action potentials.  At the other end of the range, fully 

40% of wild-type NMJs have quantal contents ≥50 while only ~20% of values are in this range 

for NMJs in muscles of 2-month old GarsC201R mutants, and for the NMJs in muscles of severe 

GarsP278KY and 4-month GarsC201R mice, exactly 2 NMJs fall in this range.  The extent to which 

the population of mutant NMJs with quantal contents within normal range contributes to 

transmission failures and therefore weakness is unknown.  However, based on the failures 

observed at some 2-month old GarsC201R mutant NMJs during sustained 1 second stimulation at 

70 Hz (Figure 4) and previously reported EMG decrements during in-situ tetanic muscle 

contractions with 700 ms 80 Hz stimulation (Fig. 3B in (Seburn et al. 2006)), it seems likely such 

failure is substantial.   The cartoon in Figure 8B demonstrates how NMJs with severely reduced 
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quantal content (e.g. GarsP278KY or 4 month GarsC201R) may not reach threshold for initiation of 

an action potential, even in the absence of failures.  Actual raw traces from relatively mildly 

affected mutant NMJs in Figure 9X (see Fig. 3 also), demonstrate how depression during 

repetitive activation could reduce release below the safety factor and cause failure of muscle 

activation. 
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Figure 9. NMJ dysfunction in CMT2D mice.  (A) Plot of individual values for quantal content 
calculated for NMJs of each of the four experimental groups reveal CMT2D distributions are 
shifted to lower values compared  to combined wild-type sample (white).  Release at a 
proportion of terminals is severely reduced (≤20, left of dashed vertical line), while the majority 
is mildly or moderately affected with quantal content values shifted to the left of the wild-type 
mean (~50), while the highest wild-type values (60-90) are largely absent for mutant NMJs.  
Note also, the 2 to 4 month progression at GarsC201R NMJs (yellow vs. red) with the latter 
overlapping the distribution for severe GarsP278KY.  In (B) we show a hypothetical model of how 
the widespread NMJ dysfunction could produce variable and intermittent muscle weakness in 
CMT2D.  Normal wild-type NMJs have a significant safety factor such that EPCs reliably 
depolarize the muscle above the threshold for an action potential (AP).  In the CMT2D mice, 
terminals with a mild/moderate reduction in release (mild) would have a reduced safety factor 
and EPCs may intermittently fail to initiate an AP, while EPCs at severely affected terminals 
(severe) consistently do not reach the AP threshold.  Note also, that because EPCs at affected 
terminals would initiate APs closer to their peak, APs would be slightly delayed (dotted action 
potential) and EMG recordings of an affected muscle would be expected to display significant 
“jitter”, a clinical measure used to identify transmission failure.  (C)  Repetitive activation 
increases the extent and variability of transmission failure (Fig. 3). This scenario is depicted by 
example raw EPC traces of the 50 Hz response of moderately affected mutant terminals and 
typical wild-type.  The horizontal dashed line through these traces indicates the EPC amplitude 
equivalent to a quantal content of 20 for the wild-type NMJ (equivalent to vertical dashed line in 
A).  This cutoff was selected because all values measured at wild-type NMJs exceeded it, while 
~20% of the values for each mutant population were below it.  For the 50Hz trains shown wild-
type the amplitude of final EPCs persists well above this level, but depression at mutant NMJs is 
sufficient to approach this value for the 4-5 final EPCs. 
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CHAPTER 3 
 

THE INTEGRATED STRESS RESPONSE CONTRIBUTES TO TRNA SYNTHETASE- 
 

MEDIATED PERIPHERAL NEUROPATHY IN MICE 
 

Abstract 
 

Dominant mutations in glycyl-tRNA synthetase (GARS) cause CMT type 2D (CMT2D). How 

mutations in GARS cause neurodegeneration is unclear, but impaired translation has emerged 

as a potential toxic gain-of-function mechanism based on work with Drosophila.   To test this 

mechanism in mice, we have profiled translation in motor neurons of mice with mutations in 

Gars that are validated as CMT2D models. In vivo, cell type-specific, fluorescent non-canonical 

amino acid-tagging (FUNCAT) has revealed reduced translation in motor neuron cell bodies of 

mutant Gars mice. To complement the protein analysis, in vivo ribosome-tagging from mutant 

Gars motor neuron cell bodies was used to identify mRNAs undergoing translation. This 

revealed an upregulation of transcripts associated with the integrated stress response, including 

ATF4 and several of its gene targets.  Using RNAScope in situ hybridization, we show that (1) 

activation of the stress response occurs in approximately 70% of mutant motor neurons, (2) 

most gamma motor neurons do not show this response, (3) large-medium fiber 

mechanosensitive and proprioceptive sensory neurons in dorsal root ganglia also upregulate the 

stress response, and (4) no other cell types in the spinal cord or dorsal root ganglia activate this 

response.  The stress response is also activated in alpha motor neurons of mutant Yars-E196K 

mice, a model of dominant intermediate CMT type C.  Genetic experiments reveal that removing 

GCN2, a kinase that activates the stress response, from mutant Gars mice prevents expression 

shuts off expression of the stress response and ATF4 gene targets.  Removing GCN2 also 

significantly alleviates neuropathy, resulting in increased body weight, improved grip strength, 

less denervation at the neuromuscular junction, increased nerve conduction velocity, and less  
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motor axon loss.  Because chronic stress response activation is detrimental to motor neurons in 

this disease context, inhibiting GCN2 in human patients with mutations in tRNA synthetase 

genes may be beneficial. 

Introduction 
 

     Charcot-Marie-Tooth disease (CMT) is a debilitating inherited peripheral neuropathy resulting 

in progressive distal muscle weakness, atrophy, and loss of sensation (Saporta and Shy 

2013a).  CMT is genetically heterogeneous, with thousands of mutations in over 80 different 

genes leading to demyelinating or axonal forms (Timmerman, Strickland, and Zuchner 2014).  

There are genetically similar subgroups, including the largest protein family implicated in the 

disease, the tRNA synthetases (ARSs).  ARSs are the enzymes responsible for aminoacylation 

of tRNAs during translation and are therefore ubiquitously expressed and essential proteins.  

Dominant mutations in at least five ARSs cause axonal forms of CMT, including glycyl ARS 

(GARS), tyrosyl ARS (YARS), histidyl ARS (HARS), tryptophanyl ARS (WARS), and alanyl ARS 

(AARS) (Antonellis and Green 2008).  How mutations in ARSs cause CMT is unclear, however, 

the overall similar clinical presentation of patients suggests shared disease mechanisms (Wei, 

Zhang, and Yang 2019). 

     Disruption of the canonical aminoacylation function of ARSs is an obvious candidate.  

However, while some CMT-associated mutations do impair aminoacylation, some do not (Griffin 

et al. 2014; Xie et al. 2007; Froelich and First 2011).  In humans, only dominant mutations in 

ARSs cause CMT, whereas recessive or bi-allelic loss-of-function mutations cause multi-system 

syndromes that may or may not include peripheral neuropathy (Boczonadi, Jennings, and 

Horvath 2018).  Work in mice also argues against loss of aminoacylation function as the cause 

of CMT.  Mice with a heterozygous gene-trap allele in the Gars gene, resulting in mRNA 

expression levels around 50% of wild-type, show no signs of neuropathy, suggesting that one 

loss-of-function allele is not sufficient to cause CMT (Seburn et al. 2006).  In two well-

established mouse models of CMT type 2D (CMT2D) , overexpression of wild-type Gars at 
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levels resulting in a greater than 10-fold increase in aminoacylation activity fail to rescue 

neuropathy (Motley et al. 2011b).  Perhaps most convincingly, allele-specific knockdown of 

mutant Gars using RNAi almost completely prevents onset of neuropathy in multiple mouse 

models (Morelli, et al., submitted).  Thus, a toxic gain-of-function mechanism is most consistent 

with human clinical data and mouse genetic experiments. 

     Two notable gain-of-function mechanisms have been proposed: (1) He, et al shows that 

binding of some mutant human and mouse forms of GARS to Neuropilin 1 and corresponding 

antagonism of VEGF signaling contributes to CMT2D neuropathy (He et al. 2015). (2) Gain-of-

function impairments in translation are supported by work in Drosophila, in which 

overexpressing human mutant GARS over and above normal expression of wild-type 

drosophila-gars in motor and sensory neurons causes a peripheral neuropathy that correlates 

with decreased translation rates.  Overexpression of human mutant YARS also reduces 

translation in peripheral neurons.  In addition, genetic reduction of translation in sensory and 

motor neurons is sufficient to cause neuropathy (Niehues et al. 2015).   

     Because all ARSs participate in translation, impairment in this process is an attractive 

disease mechanism to test in mammalian models of tRNA synthetase-associated CMT.  To this 

end, we have performed in vivo, cell type-specific translational and transcriptional profiling in 

motor neurons of three well-established mouse models of CMT2D (Seburn et al. 2006; Achilli et 

al. 2009a) (Morelli, et al., submitted).  This profiling reveals impaired translation in mutant Gars 

motor neurons and the selective activation of the integrated stress response (ISR) in the largest 

motor and sensory peripheral neurons.  Activation of the ISR occurs through the translational 

homeostasis-sensing kinase, GCN2, indicating that GCN2 could be responding to impairments 

in translation.  Genetic removal of GCN2 kinase significantly alleviates mutant Gars neuropathy, 

suggesting that chronic activation of the ISR contributes to CMT2D.  The ISR is also activated in 

motor neurons of mice with mutations in Yars, a model of dominant intermediate CMT type C.  
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Together, these data support impairments in translation as a toxic gain-of-function disease 

mechanism in mice with dominant mutations in Gars and Yars. 

Results 

Translation is Impaired in Mutant Gars Motor Neurons 
 
     We performed our first translational profiling experiments in two well-established CMT2D 

mouse models, the relatively mild GarsC201R/+, and the more severe GarsP278KY/+ (Achilli et al. 

2009a; Seburn et al. 2006).  To evaluate translation in motor neurons in vivo, we performed 

fluorescent non-canonical amino acid-tagging (FUNCAT), a technique which allows for the 

visualization and quantification of newly synthesized protein.  A mouse engineered to express a 

Cre-inducible form of bacterial methionyl-ARS (MARSL274G), which loads the methionine analog, 

azidonorleucine (ANL), onto cognate tRNA was crossed to the choline acetyltransferase-Cre 

(ChAT-Cre) driver mouse line to induce transgene expression in motor neurons (Alvarez-

Castelao et al. 2017).  Unlike methionine, ANL contains an azide group which undergoes 

copper catalyzed azide-alkyne cycloaddition in the presence of an alkyne-conjugated substrate.  

ANL was delivered as an intraperitoneal injection of 400mg/kg body weight in MARSL274G;ChAT-

Cre mice on a Gars+/+, GarsP278KY/+, or GarsC201R/+ background.  Following 8 hours of ANL 

incorporation into proteins, the copper-catalyzed cycloaddition reaction was performed using an 

alkyne-conjugated fluorophore directly on spinal cord sections, and intensity of fluorescence 

quantitatively measures abundance of newly translated protein in motor neurons (Figure 10 A). 

     ANL incorporation in Gars+/+ spinal cord is specific to motor neurons of the ventral horn 

(Figure 10 B), with the exception of ChAT-expressing pre-sympathetic ganglionic neurons in 

thoracic sections that can be easily distinguished from motor neurons (not shown).  Thus, 

abundance of newly translated protein can be measured reliably in motor neuron populations of 

cervical, thoracic, lumbar, and sacral spinal cord.  At 8 weeks of age, well past disease onset in 

both CMT2D models, GarsC201R/+ and GarsP278KY/+ motor neurons show reduced fluorescence 

compared to Gars+/+ in all regions of the spinal cord (Figure 10 C-E).  The milder GarsC201R/+  
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mouse model showed a ~55-60% reduction in all motor neuron populations (Figure 10 F).  The 

more severe GarsP278KY/+ showed a ~60% reduction in cervical, thoracic, and lumbar motor 

neurons, and a ~70% reduction in sacral motor neurons (Figure 10 G).  These results indicate 

that translation is severely impaired in GarsC201R/+ and GarsP278KY/+ motor neurons. 
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Figure 10. In vivo fluorescent non-canonical amino acid-tagging reveals impaired 
translation in mutant Gars motor neurons.  (A)  Overview of FUNCAT protocol.  
MARSL274G;ChAT-Cre mice are injected with 400mg/kg body weight ANL and metabolic labeling 
occurs for 8 hours.  Cervical, thoracic, lumbar, and sacral regions of the spinal cord are then 
cryo-sectioned and copper-catalyzed click chemistry is performed directly on the slide.  Proteins 
tagged with ANL react with alkyne-conjugated Alexa594 and are fluorescently labeled. (B) 
Within the spinal cord FUNCAT labeling is specific to motor neurons of the ventral horn. 10x 
image. (C) Newly synthesized protein in Gars+/+, (D) GarsC201R/+, and (E) GarsP278KY/+ sacral 
motor neurons. 20x images. (F) Translation, as represented by intensity of fluorescence, is 
decreased in GarsC201R/+ motor neurons by approximately 55-60% compared to Gars+/+. (G) 
Translation is decreased by approximately 60% in GarsP278KY/+ cervical, thoracic, and lumbar 
motor neurons, and by approximately 70% in sacral motor neurons.  Analysis was performed on 
3 females and 3 males per genotype at 8 weeks of age. Values in F and G are the sum of 
fluorescence for all 6 animals per genotype ± SD. *****=p<.0001. Scale bar in E also applies to 
C and D. 
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    To determine if translation is also impaired pre-disease onset, we performed FUNCAT in 2 

week-old GarsC201R/+ mice, a time just before any overt signs of neuropathy are evident.  

Although there are trends of reduced fluorescence in all GarsC201R/+ motor neuron populations, 

none has a reduction that amounts to a  statistical difference from Gars+/+ (Supplemental Figure 

1 A-C).  These data indicate that impairments in translation are just starting to manifest at this 

early timepoint, and could correlate with disease onset. 

     Because mutant Gars is expressed in every cell type of the body, we asked if translation is 

impaired in other tissue types unaffected by disease.  To measure translation in the liver and 

heart we turned to puromycin labeling.  Puromycin is a bacterial metabolite that structurally 

resembles an aminoacylated tRNA.  Incorporation into nascent polypeptide chains causes 

translation termination, and blotting with a puromycin antibody provides a quantitative measure 

of translation.  We injected mice with 60mg/kg body weight puromycin and allowed it to 

incorporate into nascent polypeptides for 1 hour.  Mice treated with puromycin show a smear of 

anti-puromycin-labeled protein in tissues, while untreated mice show no smear (Supplemental 

Figure 2 A).  We were unable to find evidence of impaired translation in liver or heart tissue of 

GarsP278KY/+ or GarsC201R/+  mice, or in GarsdelETAQ/+ mice that contain a mutation found in a young 

CMT2D patient (Supplemental Figure 2 B,C) (Morelli, et al; submitted 2019).  These 

experiments indicate that in mice, impairments in translation are restricted to cell types affected 

by disease. 

Motor Neuron Translational and Transcriptional Gene Expression Signatures are Shared 
Among Multiple Gars Alleles, Including the Human Mutation, GarsdelETAQ/+ 

 
     To determine which mRNA species are undergoing differential translation in mutant Gars 

motor neurons we performed in vivo ribosome-tagging (RiboTagging).  RiboTag mice contain a 

transgene consisting of a loxP-flanked, triple HA-tagged ribosomal protein, RPL22 (Sanz et al. 

2009).  When used in combination with ChAT-Cre, HA-RPL22 can be immunoprecipitated from 

motor neurons with anti-HA antibody and the mRNA presumably undergoing active translation at 
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the ribosome is eluted and sequenced.  When mRNA immunoprecipitated from Gars+/+;HA-

RPL22;ChAT-Cre spinal cords is compared to nonspecific mRNA immunoprecipitated from no-

Cre controls, motor neuron-enriched mRNA encompassed 1,907 transcripts, including the well-

known markers ChAT (enriched ~15-fold) and chondrolectin (Chodl) (enriched ~33 fold), as well 

as additional markers of projection neurons including neurofilament heavy, medium, and light 

chains (Nefh, Nefm, Nefl) (enriched ~6, 8, and 9-fold, respectively).  In contrast, the 3,725 

transcripts more abundant in nonspecific spinal cord pulldowns are correspondingly de-enriched 

in motor neurons, and include the astrocytic marker glial fibrillary acid protein (GFAP) (de-

enriched ~4-fold) and the oligodendrocytic markers myelin oligodendrocyte protein (mog) (de-

enriched ~3-fold) and myelin associated protein (mag) (de-enriched ~4-fold) (Figure 11 A).   

     As an additional test of the reliability of RiboTagging, as well as to provide a disease-relevant 

comparison to mutant Gars motor neurons, we sequenced ribosome associated mRNA from 

Gars+/+ motor neurons of the spinal cord 4 days after unilateral sciatic nerve crush.  144 transcripts 

were upregulated and 68 downregulated in Gars+/+ motor neurons after nerve crush compared to 

those from Gars+/+ mice that had not undergone the crush surgery (Figure 11 B).  Among the top 

10 upregulated transcripts after crush were small proline-rich repeat protein 1A (Sprr1a), 

activating transcription factor 3 (Atf3), and neuropeptide tyrosine (Npy), all known to be markers 

of regeneration in peripheral neurons after injury (Starkey et al. 2009; Linda, Skold, and 

Ochsmann 2011; Zhang et al. 1993).  These experiments confirm reliability of the RiboTagging 

technique, as well as create a complete catalog of motor neuron ribosome-associated mRNA 

following sciatic nerve crush for comparison against mutant Gars. 

     We next compared ribosome-associated mRNA immunoprecipitated from Gars+/+ motor 

neurons to that from GarsC201R/+ or GarsP278KY/+ motor neurons at 8 weeks of age, the same age at 

which we performed FUNCAT.  Compared to Gars+/+, GarsC201R/+ motor neurons showed 1,978 

upregulated and 126 downregulated transcripts with an absolute log FC of 1.5 or greater and a 

FDR and p value of less than .05 (Figure 11 C).  GarsP278KY/+ motor neurons contained 633 
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upregulated and 237 downregulated transcripts that also met these requirements (Figure 11 D).  

The top upregulated transcripts in GarsC201R/+ and GarsP278KY/+ motor neurons represent a distinct 

and reproducible disease signature, as none are in common with the top upregulated transcripts 

following sciatic nerve crush, but over half are shared between the two mutant Gars alleles (Figure 

11 E).  We also performed RiboTagging in 2 week-old, pre-disease onset GarsC201R/+ motor 

neurons, and confirmed early upregulation of six of the top upregulated transcripts identified at 8 

weeks (Supplemental Figure 2 A).  Thus, before neuropathy is detectable, gene expression 

changes are already taking place. 

     To determine if the translational changes seen in mutant Gars motor neurons are also 

occurring at the transcriptional level, we performed whole spinal cord RNA sequencing on 8 week 

old GarsC201R/+ and GarsP278KY/+ mice, as well as the additional GarsdelETAQ/+ model.  We observed 

a striking similarity among the top 10 upregulated transcripts from both RiboTagging and RNA 

sequencing experiments, and among all three mouse models (Figure 11 E).  These data suggest 

that gene expression changes are present at both translational and transcriptional levels, and that 

the same disease mechanism is likely occurring with all three mutations in Gars, including the 

human mutation, delETAQ. 
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Figure 11: In vivo characterization of ribosome-associated mRNA in motor neurons using 
RiboTagging. (A) Ribosome-associated mRNA enriched in Gars+/+ motor neurons vs whole 
spinal cord. Genes plotted have a log FC³ |1.5|, FDR<.05 and p value <.05. There are 1907 
enriched genes in motor neurons (log FC<-1.5; p value<.05) and 3725 genes enriched in non-
motor neuron cell types of the spinal cord (log FC>1.5; p value<.05). Analysis was performed on 
4-5 animals per genotype at 8 weeks of age. (B) Ribosome-associated mRNA up- or 
downregulated in Gars+/+ motor neurons 4 days after unilateral sciatic nerve crush. 144 genes 
are upregulated (log FC>1.5; p value<.05) and 68 are downregulated (log FC<-1.5; p 
value<.05). Analysis was performed on 2 animals per condition at 8 weeks of age. (C) 
Ribosome-associated mRNA up- or downregulated in GarsC201R/+ motor neurons compared to 
Gars+/+.  1978 genes are upregulated (log FC>1.5; p value<.05) and 126 are downregulated (log 
FC<-1.5; p value<.05). Analysis was performed on 5-6 animals per genotype at 8 weeks of age. 
(D) Ribosome-associated mRNA up- (log FC>1.5; p value<.05) or downregulated (log FC<-1.5; 
p value<.05) in GarsP278KY/+ motor neurons compared to Gars+/+.  633 genes are upregulated 
and 237 are downregulated. Analysis was performed on 4-5 animals per genotype at 8 weeks of 
age. (E) Table of the top 10 upregulated transcripts based on p value significance. All 
transcripts in red are present in at least 2 datasets. 3 males and 3 females per genotype at 8 
weeks of age were used for each RNA sequencing experiment. 
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Alpha Motor Neurons are the Only Cell Type to Express Disease Signature Within the 
Spinal Cord 
 
     To validate our gene expression data, as well as to address questions of cell type-specificity 

within the spinal cord, we used RNAscope in situ hybridization.  All motor neurons were labelled 

with ChAT and probed for expression of five of the top upregulated transcripts from 

RiboTagging and RNA sequencing data that were in common among multiple Gars models.  

These transcripts were fibroblast growth factor 21 (Fgf21), growth differentiation factor 15 

(Gdf15), adrenomedullin 2 (Adm2), corneodesmosin (Cdsn), and Beta-1,4-N-Acetyl-

Galactosaminyltransferase 2 (B4galnt2).  No or very little expression of the five transcripts were 

seen in any cell types within Gars+/+ spinal cord (Figure 12 A,B).  In contrast, robust upregulation 

of all five transcripts was confirmed in GarsP278KY/+ motor neurons, but in no other cell type of the 

spinal cord (Figure 12 A,B).  Fgf21 is a metabolic regulator most highly expressed by the liver, 

but also expressed from skeletal muscle and central nervous system neurons upon 

mitochondrial dysfunction (Fisher and Maratos-Flier 2016).  Together with Fgf21, Gdf15 is also 

known to signal mitochondrial dysfunction, but neither has ever been shown to be expressed 

from motor neurons.  We also show Cdsn expression from motor neurons for the first time.  

Cdsn is a component of tight junctions in the skin, but is also highly upregulated in GarsP278KY/+ 

motor neurons.   

     Interestingly, only about 70% of GarsP278KY/+ motor neurons express the disease signature 

(Figure 12 C).  Spinal cord motor neurons can be divided into gamma and alpha populations.  

Gamma motor neurons are smaller, provide sensitivity to muscle stretch, and comprise about 

30% of the total population.  Alpha motor neurons are larger, provide muscle force, and make up 

the resulting 70% (Stifani 2014).  Because approximately 70% of mutant Gars motor neurons 

express the disease signature and because in GarsP278KY/+ mice the largest motor axons are 

preferentially lost, we hypothesized that alpha motor neurons were the population showing these 

gene expression changes and that gamma motor neurons were correspondingly resistant (Seburn 
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et al. 2006).  To test this hypothesis we labeled all motor neurons with ChAT, used Fgf21 as our 

marker of the disease signature, and labeled gamma motor neurons with Err3 (Friese et al. 2009).  

In every case where a ChAT-positive motor neuron showed no expression of Fgf21 (28.9% ± 4.6) 

of the total motor neuron population), it was clearly labeled with Err3, indicating that gamma motor 

neurons are resistant to expressing the disease signature and that alpha motor neurons are the 

population most susceptible (Figure 12 D,E). 
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Figure 12: Transcriptional signature is specific to alpha motor neurons within the spinal 
cord. (A) Representative images of RNAscope in situ hybridization using probes for 5 of the 
upregulated transcripts identified from Ribotagging and RNA sequencing experiments.  Gars+/+ 
motor neurons are labeled with ChAT (red) but show no expression of disease-related 
transcripts, Gdf15 (green) or Fgf21 (yellow). GarsP278KY/+ motor neurons labeled with ChAT (red) 
show robust upregulation of Gdf15 (green) and Fgf21 (yellow) in a subset of motor neurons.  
Some ChAT-labelled motor neurons do not show expression of disease-related transcripts 
(white arrows) (B) Quantification of fluorescence in Gars+/+ and GarsP278KY/+ motor neurons. (C) 
Approximately 70% of GarsP278KY/+  motor neurons expressed the 5 disease-associated 
transcripts.  (D) All GarsP278KY/+ motor neurons labeled with ChAT that did not express Fgf21 
were labeled with the gamma motor neuron marker, Err3 (white arrows). (E) Quantification of E. 
Note that some Err3 labeled motor neurons do express Fgf21, probably indicating that Err3 is 
also expressed in some alpha motor neurons. Analysis was performed using 4 animals per 
genotype at 8 weeks of age. Values in B are the sum of fluorescence intensity in all 4 animals 
per genotype ± SD. Values in C and E are mean ± SD. *** = p<.001, **** = p<.0001. 
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Medium-large Fiber Sensory Neurons Within Dorsal Root Ganglia Express Disease 
Signature 
 
     Because GarsP278KY/+ mice experience sensory axon degeneration we wondered if the same 

disease mechanism could be occurring in this neuronal population as in motor neurons.  We 

reasoned that if this was true, sensory neurons would express a similar gene expression signature 

to motor neurons.  To test this we probed for the same five disease-associated transcripts in 

dorsal root ganglia as in the spinal cord.  Again, all five transcripts showed no expression in 

Gars+/+ sensory neurons, but a robust upregulation only in a subset of GarsP278KY/+ sensory 

neurons (Figure 13 A,B).   

     In light of our findings in the spinal cord, we tested if expression of the disease signature was 

associated with neuronal size.  Small fiber sensory neurons were labeled with peripherin (Prph) 

(red), medium-large fiber sensory neurons were labeled with neurofilament heavy chain (Nefh) 

(green), and Ffg21 was used as the disease marker (Ferri et al. 1990).  Only Nefh-positive sensory 

neurons express Fgf21, indicating that larger sensory neurons are more susceptible to these 

disease-associated gene expression changes and smaller sensory neurons are resistant (Figure 

13 C,D).  Because not all Nefh-positive sensory neurons showed expression of Fgf21, we next 

tested if there was any functional correlation.  Mechanosensitive and proprioceptive sensory 

neurons both express Nefh, but proprioceptive neurons can be distinguished by the additional 

expression of parvalbumin (Pvalb) (Le Pichon and Chesler 2014).  In GarsP278KY/+ dorsal root 

ganglia, both mechanosensitive and proprioceptive sensory neurons express Fgf21 (Figure 13 

E,F) .  Thus, as in the spinal cord, within the dorsal root ganglion, expression of the disease 

signature is exclusive to sensory neurons and correlates with neuron size. 
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Figure 13: Transcriptional signature is upregulated in medium-large fiber 
mechanosensitive and proprioceptive sensory neurons in GarsP278KY/+ lumbar dorsal root 
ganglia.  (A) No expression of disease-associated transcripts in Gars+/+ dorsal root ganglia. 
Expression of Fgf21 (red) and Gdf15 (green) in a subset of GarsP278KY/+ dorsal root ganglia.  (B) 
All five transcripts upregulated in GarsP278KY/+ motor neurons are also upregulated in sensory 
neurons.  Quantification of A and B. (C) Peripherin (Prph) labels small fiber sensory neurons 
(red) and Neurofilament-heavy chain (Nefh) labels medium-large fiber neurons (green). Fgf21 
expression is only seen in Nefh-expressing neurons (white arrow), although not in all (pink 
arrow). (D) Quantification of D. (E) Mechanosensitive sensory neurons are labeled solely with 
Nefh (green), while proprioceptive neurons are labeled with Nefh and parvalbumin (Pvalb) 
(green and red). Fgf21 expression is seen in mechanosensitive (white arrow) and proprioceptive 
(pink arrow) sensory neurons. (F) Quantification of F. Analysis used 4 animals per genotype at 8 
weeks of age. Values in B are the sum of fluorescence in all 4 animals per genotype ± SD. 
Values in D and F are mean ± SD. **** = p<.0001. 
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The Integrated Stress Response is Activated Through GCN2 Kinase in Mutant Gars Motor 
Neurons 
 
     To obtain a more global perspective of the mutant Gars gene expression signature, we 

performed Ingenuity Pathway Analysis (IPA) using upregulated genes with a log FC of 1.5 or 

greater and a p value of .05 or less from the GarsP278KY/+ RiboTagging dataset.  Among the top 

predicted upstream pathways was the integrated stress response (ISR) (Figure 14 A).  The ISR 

is a highly conserved cell stress pathway found in all eukaryotic cells that can be triggered by a 

variety of intrinsic and extrinsic cell stressors, each through a distinct protein kinase.  PERK is 

activated by ER stress, GCN2 by amino acid deprivation, PKR by viral infection, and HRI by 

heme deprivation (Pakos-Zebrucka et al. 2016).  Activation of any one of these four kinases 

results in phosphorylation of the translation initiation factor, eIF2a, a subsequent reduction in 

cap-dependent mRNA translation, and upregulation of specific stress response genes through 

the transcription factor ATF4.  We determined that many of the top upregulated transcripts in 

mutant Gars motor and sensory neurons are direct targets of ATF4, including Fgf21, Gdf15, 

Cdsn, Adm2, and B4galnt2, among others.  Thus, the ISR is activated in mutant Gars motor and 

sensory neurons, and we next wanted to test which kinase was responsible for its activation. 

     Because the IPA also suggested amino acid deprivation as a predicted upstream pathway, 

we hypothesized that the ISR was being activated by GCN2 kinase.  We tested this genetically 

by crossing GCN2 knockout mice (Gcn2KO/KO) with GarsP278KY/+ mice.  We again probed for 

expression of the same five ATF4 target genes in the spinal cords of 8 week old mice.  Gars+/+ 

mice with GCN2 (Gcn2+/+;Gars+/+) showed no expression of ATF4 target genes and GarsP278KY/+ 

mice with GCN2 (Gcn2+/+;GarsP278KY/+) showed robust upregulation in motor neurons (Figure 14 

B,C). Genetic removal of GCN2 from GarsP278KY/+ mice (Gcn2KO/KO ;GarsP278KY/+) completely shut 

off expression of all five ATF4 target genes in motor neurons (Figure 14 B,C).  This was  
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confirmed with whole spinal cord RNA sequencing, which revealed that upon removal of GCN2 

there are only 9 differentially expressed protein coding genes with established names between 

Gars+/+ and GarsP278KY/+ mice (Gcn2KO/KO;Gars+/+ vs Gcn2KO/KO;GarsP278KY/+) (Table 1). 
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Figure 14: The integrated stress response is activated in GarsP278KY/+ motor neurons 
through GCN2 kinase. (A) Ingenuity Pathway Analysis of upregulated ribosome-associated 
mRNA with log FC³ 1.5 and FDR<.05 in GarsP278KY/+ motor neurons. (B) Genetic removal of 
GCN2 kinase from GarsP278KY/+ mice shuts off expression of ATF4 target genes in motor 
neurons. (C) Gcn2+/+;Gars+/+motor neurons show no expression of ATF4 target genes, while 
Gcn2+/+;GarsP278KY/+ motor neurons show robust upregulation. Gcn2KO/KO;GarsP278KY/+ motor 
neurons show no expression of ATF4 target genes.  Analysis performed with 3 animals per 
genotype at 8 weeks of age. Values in B are mean ± SD. **= p<.01; ***= p<.001; ****= p<.0001. 
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Gene Name logFC P Value 
Hmga1-rs1 11.48 1.8E-74 
Lypd3 5.59 1.2E-21 
Amd2 3.79 1.1E-40 
Lad1 2.93 9.6E-14 
Ect2l 2.46 3.4E-11 
Myh3 1.67 6.7E-6 
Tmsb15b2 1.55 6.9E-9 
Calca -2.0 7.15E-19 
Tspan10 -2.4 2.13E-25 

 
Table 1. Differentially Expressed Genes in Gcn2KO/KO;GarsP278KY/+ spinal cord 
versus Gcn2KO/KO;Gars+/+:  There are only 7 upregulated and 6 downregulated 
established protein coding genes in Gcn2KO/KO;GarsP278KY/+ spinal cord compared to 
Gcn2KO/KO;Gars+/+.  Analysis performed using 3-5 mice per genotype. 

 
 
Genetic Removal of GCN2 Kinase Alleviates Gars Neuropathy 
 
     Whether activation of the ISR is helpful or harmful to cells is highly dependent upon cell type, 

disease context, and the length of activation of the response.  For example, genetic removal of 

GCN2 kinase and subsequent shutdown of the ISR in a mouse model of rapid cerebellar ataxia 

exacerbates neurodegeneration (Ishimura et al. 2016).  In contrast, genetic removal of GCN2 or 

PERK from APP/PS1 Alzheimer’s disease mice prevents impairments in spatial memory and 

synaptic plasticity, indicating that long-lasting imbalances in translation contribute to chronic 

neurodegenerative diseases (Ma et al. 2013).   

     We found that homozygous genetic removal of GCN2 kinase significantly improves CMT2D 

neuropathy in mice. Both male (Figure 15 A) and female (not shown) Gcn2KO/KO;GarsP278KY/+ 

mice have body weights nearly restored to Gars+/+ levels.  Motor performance of mice is 

improved as measured by the wire hang test.  Gars+/+ mice with or without GCN2 (Gcn2+/+,+/KO, or 

KO/KO;Gars+/+) can hang on to an inverted wire grid for the duration of the test, 60 seconds, while 

GarsP278KY/+ mice with GCN2 (Gcn2+/+or+/KO;GarsP278KY/+) struggle to hang on for even a few 

seconds.  Gcn2KO/KO;GarsP278KY/+ mice have an increased latency to fall that approaches that of 

Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice by 16 weeks of age (Figure 15 B).   
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     Gcn2KO/KO;GarsP278KY/+ mice also have improved peripheral nerve function.  At 8 weeks of age 

Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice have an average sciatic nerve conduction velocity of 35.7m/s ± 

6.6, Gcn2+/+or+/KO;GarsP278KY/+ have an average of 10.7 m/s ± 2.7, and Gcn2KO/KO;GarsP278KY/+ 

mice have an average of 23.9 m/s ± 1.3 (Figure 15 C). Improvements in conduction velocity 

persist through at least 16 weeks of age.  At 16 weeks of age there is no longer a statistical 

difference between Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice and Gcn2KO/KO;GarsP278KY/+ mice, as almost 

all Gcn2KO/KO;GarsP278KY/+ mice have conduction velocities well within the Gcn2+/+,+/KO, or 

KO/KO;Gars+/+ range (Supplemental Figure 4 A).   

     A degree of motor axon loss was also prevented by removing GCN2 from GarsP278KY/+ mice.  

The motor branch of the femoral nerve contained more axons in Gcn2KO/KO;GarsP278KY/+ mice 

(448 ± 55) than in Gcn2+/+or+/KO;GarsP278KY/+ mice (398 ± 23) at 8 weeks of age (Figure 15 D,E), 

and by 16 weeks of age there was no longer a statistical difference between 

Gcn2KO/KO;GarsP278KY/+ and Gcn2+/+,+/KO, or KO/KO;Gars+/+ (Supplemental Figure 4B).  Reduction in 

motor axon diameter was also partially rescued by removal of GCN2 at 8 weeks of age, and this 

effect persisted through at least 16 weeks of age (Figure 15 F and Supplemental Fig 4C).   

     GarsP278KY/+ mice typically contain a large percentage of partially innervated or denervated 

neuromuscular junctions (NMJs) in the gastrocnemius muscle.  NMJs were scored as fully 

innervated if the axon terminal (green) completely overlapped the post-synaptic muscle (red) 

(Figure 15 G), partially innervated if some of the muscle was without axon coverage (Figure 15 

H), and denervated if the axon was entirely absent from the muscle (Figure 15 I).  

Morphologically, Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice have NMJs with sharp staining in the classic 

“pretzel” shape.  Fully innervated NMJs in Gcn+/+ or +/KO;GarsP278KY/+ mice tend to be fragmented 

and often do not display the pretzel morphology. In contrast, fully innervated NMJs in 

Gcn2KO/KO;GarsP278KY/+ mice largely retained the pretzel morphology (Figure 15 J).  Moreover, 

Gcn2KO/KO;GarsP278KY/+  mice had a larger percentage of fully innervated NMJs (66.7% ± 12.3) 
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and a smaller percentage of partially innervated (23.5% ± 9.7) and denervated (9.8% ± 8.2) 

NMJs compared to Gcn+/+ or +/KO;GarsP278KY/+ (31.3% ± 19.9 fully innervated, 38.8% ± 11.3 

partially innervated, and 29.9% ± 17.2 denervated)   (Figure 15 K).  This return to Gcn2+/+,+/KO, or 

KO/KO;Gars+/+ innervation status continues at least through 16 weeks of age (Supplemental Figure 

4D). 

     These data demonstrate that chronic activation of the ISR through GCN2 is detrimental to 

motor neurons.  Partial rescue of CMT2D neuropathy is achieved by genetic removal of GCN2 

as analyzed at 8 weeks of age.  This rescue does not appear to be a delay in the development 

of neuropathy, as neuropathy is still alleviated at 16 weeks of age.  Because removal of GCN2 

and deactivation of the ISR provides long-term alleviation of CMT2D neuropathy in mice, GCN2 

may be a promising drug target for future therapeutics in humans.   
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Figure 15: Genetic removal of GCN2 kinase alleviates GarsP278KY/+ neuropathy. (A) Body 
weight of male Gcn2KO/KO;GarsP278KY/+ mice is significantly increased over Gcn2+/+ or +/-

;GarsP278KY/+.  (B) Gcn2KO/KO;GarsP278KY/+ mice have improved motor function as measured by the 
wire hang test. Mice are place on an inverted grid and latency to fall is timed. The test is 
stopped after 60 seconds and the mean of 3 trials is reported for each day. Analysis performed 
with 18-22 mice per grouped genotype.  (C) Gcn2KO/KO;GarsP278KY/+ mice have increased nerve 
conduction velocity of the sciatic nerve (23.9m/s ± 1.3) compared to Gcn2+/+ or +/KO;GarsP278KY/+ 
(10.7m/s ± 2.7), although not completely restored to  Gcn2+/+,+/KO, or KO/KO;Gars+/+ (35.7m/s ± 6.6). 
Analysis performed with 8-14 mice per grouped genotype.  (D) The motor branch of the femoral 
nerve in Gcn2KO/KO;GarsP278KY/+ mice is intermediate in size compared to Gcn2+/+,+/KO, or 

KO/KO;Gars+/+ and Gcn2+/+ or +/-;GarsP278KY/+. (E) Motor axon loss in the femoral nerve is partially 
rescued in Gcn2KO/KO;GarsP278KY/+ mice. Gcn2KO/KO;GarsP278KY/+ mice have an average of 448 ± 
55 motor axons, compared to 523 ± 15 in Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice and 398 ± 23 in 
Gcn2+/+ or +/KO;GarsP278KY/+ mice. Analysis performed with 13-14 mice per grouped genotype.  (F) 
The diameter of all motor axons in the femoral nerve was measured. There is a higher 
frequency of smaller diameter axons in Gcn2+/+ or +/KO;GarsP278KY/+ mice compared to Gcn2+/+,+/KO, 

or KO/KO;Gars+/+, which is partially corrected in Gcn2KO/KO;GarsP278KY/+ mice.  Analysis performed  
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Figure 15 Continued: 
with at least 6 mice per grouped genotype. (G) Examples of fully innervated neuromuscular 
junctions (NMJs) in the gastrocnemius muscle of Gcn2+/+,+/KO, or KO/KO;Gars+/+ mice.  The nerve 
terminal, labeled in green, fully covers the post-synaptic acetylcholine receptors in red. (H) 
Example of two partially innervated NMJs (white arrows) in Gcn2+/+ or +/KO;GarsP278KY/+ mice.  
There are several regions of the post-synapse not covered by nerve. The pink arrow shows an 
example of a fully innervated, but morphologically abnormal, NMJ.  Most fully innervated NMJs 
in Gcn2+/+ or +/KO;GarsP278KY/+ mice do not show the classic “pretzel” shape. (I) Example of a 
completely denervated NMJ in Gcn2+/+ or +/KO;GarsP278KY/+ mice, where the post-synapse has no 
contact with the nerve. (J)  Fully innervated NMJs in Gcn2KO/KO;GarsP278KY/+ mice.  Most fully 
innervated NMJs look morphologically normal with the classic “pretzel” shape. (K) Quantification 
of fully innervated, partially innervated, and denervated NMJs by genotype. In Gcn2+/+,+/KO, or 

KO/KO;Gars+/+ mice the vast majority of NMJS are fully innervated (98.2% ± 2.1), with a very small 
minority of partially innervated (1.2% ± 1.2) or denervated (.2% ± .6) NMJs identified.  
Gcn2KO/KO;GarsP278KY/+ mice have an increased percentage of fully innervated NMJs (66.8% ± 
12.3) compared to Gcn2+/+ or +/KO;GarsP278KY/+ (31.3% ± 19.9), and a decreased percentage of 
partially innervated (23.5% ± 9.7 vs 38.8% ± 11.3) and denervated (9.9% ± 8.3 vs 29.9% ± 17.2) 
NMJs.  Analysis performed with 8-15 mice per grouped genotype.  Values in A, B, E, and K are 
mean ± SD.  Prior to grouping genotypes, all individual genotypes tested negatively for 
differences with one another. **= p<.01, ***= p<.001; ****= p<.0001. 
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The Integrated Stress Response is Activated in Alpha Motor Neurons of Mice with 
Dominant Mutations in Tyrosyl tRNA-Synthetase (YarsE196K/E196K) 
 
     We have recently characterized a mouse model of Dominant Intermediate CMT Type C 

(CMTDIC) with a human mutation in tryosyl tRNA-synthetase (YARS-E196K).  By 7 months of 

age YarsE196K/+ mice have no discernable neuropathy, but YarsE196K/E196K mice have reduced 

sciatic nerve conduction velocity and impaired performance on the wire hang test (Supplemental 

Figure 5) (manuscript in preparation).  To test for possible similarities in gene expression 

signatures between mutant Yars and Gars motor neurons, we performed RNAscope in 

YarsE196K/+ and YarsE196K/E196K spinal cords at 7 months of age, probing for the same five ATF4 

target genes profiled in mutant Gars motor neurons.  No expression of ATF4 target genes was 

seen in 7 month old Yars+/+ mice (Figure 16 A,B).  In contrast, all 5 genes were upregulated in 7 

month old YarsE196K/+ and YarsE196K/E196K motor neurons (Figure 16 A,B).  Fgf21 and B4galnt2 

showed higher expression in YarsE196K/E196K motor neurons compared to YarsE196K/+, whereas 

Gdf15, Adm2, and Cdsn showed similar expression levels in both genotypes.  As in Gars spinal 

cords, only a subset of motor neurons expressed ATF4 target genes (Figure 16 A).  A higher 

subset of motor neurons showed ATF4 target gene expression in YarsE196K/E196K spinal cord 

compared to YarsE196K/+, ranging from approximately 46-67% and 11-44%, respectively.  In 

YarsE196K/E196K spinal cord, all motor neurons that were resistant to ATF4 target gene expression 

were positive for the gamma motor neuron marker, Err3, indicating that alpha motor neurons are 

the subtype of motor neuron expressing the disease signature in YarsE196K/E196K spinal cord, as 

in the GarsP278KY/+ spinal cord (Figure 16 D,E).  The presence of gene expression changes in 

YarsE196K/+ motor neurons precedes overt neuropathy, which is also the case in the Gars mice.  

In addition, the percentage of motor neurons showing gene expression changes correlates with 

onset of overt neuropathy, as a greater subset of motor neurons in symptomatic YarsE196K/E196K 

mice express ATF4 target genes compared to asymptomatic YarsE196K/+ mice at 7 months of 

age.  The percentage of motor neurons showing gene expression changes also correlates with 
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disease severity, as the very severe GarsP278KY/+ mice show gene expression changes of all five 

ATF4 target genes in 70% of motor neurons, but the milder YarsE196K/E196K mice only show 

expression in 46-67% of motor neurons, depending on the gene.  In the cases of B4galnt2 and 

Fgf21, the level of gene expression also correlates with onset of neuropathy, as higher 

expression is observed in YarsE196K/E196K mice compared to YarsE196K/+. These correlations 

suggest that ATF4 target gene expression is strongly associated with the central disease 

mechanism.  In addition, the striking similarities in mutant Gars and Yars gene expression 

signatures and in the patterns of cell type-specificity provide strong molecular and cellular 

evidence of a related disease mechanism in mouse models of two different ARS-associated 

forms of CMT.   
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Figure 16: ATF4 target genes expressed in alpha motor neurons of YarsE196K/E196K post-
disease onset and YarsE196K/+ pre-disease onset mice.  (A) Yars+/+ motor neurons of the 
spinal cord labeled with ChAT (red) show now expression of the ATF4 target, Fgf21 (yellow).  A 
subset of YarsE196K/+ motor neurons labeled with ChAT (red) express Fgf21 (yellow) at the pre-
disease onset age of 7 months. A larger subset of YarsE196K/E196K motor neurons labeled with 
ChAT (red) express Fgf21 (yellow) at 7 months of age. Chat-labeled YarsE196K/+ and 
YarsE196K/E196K motor neurons that do not express Fgf21 are marked with white arrows. (B) 
Quantification of ATF4 target gene expression. YarsE196K/+ and YarsE196K/E196K  motor neurons 
express all 5 ATF4 target genes probed compared to little or no expression in Yars+/+ motor 
neurons. B4galnt2 and Fgf21 show greater expression levels in YarsE196K/E196K motor neurons 
compared to YarsE196K/+.  Gdf15, Adm2, and Cdsn show approximately the same expression 
levels between YarsE196K/E196K and YarsE196K/+.  (C) Between 11-44% of YarsE196K/+ motor neurons 
express any one of the 5 ATF4 target genes.   Between 46-67% of YarsE196K/E196K motor neurons 
express any one of the 5 ATF4 target genes.  (D) YarsE196K/E196K motor neurons that do not 
express Fgf21 are always labeled with the gamma motor neuron marker, Err3 (white arrows). 
(E) Quantification of experiment shown in E. Analysis was performed using 3 mice per genotype 
at 7 months of age.  Values in B are the sum of average fluorescence per mouse per genotype 
± SD. Values in C and E are mean ± SD. **= p<.01, ***= p<.001; ****= p<.0001. 
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Discussion 
 

     We have taken an in vivo, cell type-specific approach to profile translation and transcription 

in multiple mouse models of CMT2D.  Our study has revealed that translation is impaired in 

motor neurons of mice with dominant mutations in Gars.  Mutant Gars motor neurons in three 

CMT2D mouse models, including a human allele, show upregulation of ATF4 target genes in a 

pattern that reveals striking cell type-specificity.  Only the largest motor neurons of the spinal 

cord and largest sensory neurons in dorsal root ganglia display these gene expression changes, 

which point to activation of the ISR.  The ISR is activated in mutant Gars motor neurons by the 

translational homeostasis-sensing kinase, GCN2.  Genetic removal of GCN2 alleviates CMT2D 

neuropathy, indicating that chronic activation of the ISR is intrinsically toxic to motor neurons.  

Finally, we have shown that motor neurons of mice with a human mutation in Yars, E196K, also 

upregulate the ISR with the same cell type-specificity seen in Gars spinal cord. 

     Activation of the ISR through GCN2 implies either excess uncharged tRNAGly or stalled 

ribosomes, or both.  Although activation of GCN2 has traditionally thought to be primarily 

through uncharged tRNA, recent work has shown much more potent direct activation by stalled 

ribosomes, a mechanism that was first suggested based on mouse genetic experiments (Inglis 

et al. 2019; Ishimura et al. 2016).  Although the C201R and P278KY mutations in Gars may 

confer some decrease in aminoacylation efficiency, previous mouse studies make it clear that 

this is not the cause of neuropathy (Morelli, et al., 2019 submitted) (Seburn et al. 2006; Motley 

et al. 2011b).  Thus, while we cannot rule out that GCN2 is in part activated by uncharged 

tRNAGly, we hypothesize that dominant mutations in Gars lead to primary impairments in 

translation and stalled ribosomes at glycine codons.  These stalled ribosomes directly activate 

GCN2 and trigger the ISR, resulting in an additional dampening of translation and ATF4 target 

gene expression (Figure 17 B).   

 

 



 83 

 



 84 

 

Figure 17: Model of how dominant mutations in Gars cause neuropathy through primary 
impairments in translation and stalled ribosomes.  (A) The wild-type GARS enzyme binds 
glycine and ATP, forms an aminoacyl adenylate, and then transfers this moiety to the 3’ 
acceptor end of tRNAGly.  The chaperone protein, eEF1A, binds the aminoacylated tRNAGly and 
presents it to the A site of the ribosome where the tRNAGly anticodon binds a glycine codon on 
the mRNA.  tRNAGly is shifted to the P site where it glycine is added to the growing polypeptide 
chain.  The uncharged tRNAGly then moves to the E site, is released by the ribosome and 
rebound by GARS where it can be aminoacylated again, completing the tRNA cycle.  (B) We 
propose that mutations in GARS result in a higher affinity of mutant GARS for tRNAGly and a 
slower release rate of aminoacylated tRNA-gly to eEF1A.  The lack of aminoacylated tRNAGly at 
the ribosome causes stalling at glycine codons.  Stalled ribosomes activate GCN2 kinase, which 
then results in phosphorylation of eIF2a, a further reduction in translation, and ATF4 target gene 
upregulation.  (C) Genetic removal of GCN2 kinase from GarsP278KY/+ prevents ATF4 target gene 
upregulation and presumably also stops eIF2a phosphorylation and any dampening of 
translation.  We hypothesize that this allows translation to rebound slightly in mutant motor 
neurons, alleviating a portion of the neuropathy phenotype.  However, translation in mutant 
Gars motor neurons is still impaired because of the primary GARS insult, and stalled ribosomes 
are still present, explaining the remainder of the neuropathy phenotype. 
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     There is currently no way to perform ribosome footprinting in vivo in a cell type-specific 

manner, which would be essential to show stalled ribosomes at glycine codons in only a subset 

of an already small neuronal population (~70% of the 50,000-100,000 motor neurons in the 

spinal cord).  To genetically test for the involvement of stalled ribosomes in the primary disease 

mechanism, crosses between GarsC201R/+ mice and mice with homozygous loss-of-function 

mutations in the ribosome recycling factor, Gtpbp2, were created.  Importantly, GarsC201R/+ mice 

ordinarily express a central nervous system-specific C57BL/6J-derived mutant tRNAArg, which in 

combination with homozygous mutations in Gtpbp2 result in cerebellar ataxia between 4-6 

weeks of age and could confound the study.  To remove this variable, mice were bred to the 

congenic nTr20 strain, which contains a wild-type B6N-derived tRNAArg (nTr20+/-) that shows no 

genetic interaction with mutant Gtpbp2.  In support of the involvement of stalled ribosomes in 

the primary disease mechanism, genetic crosses between GarsC201R/+ mice and mice with 

homozygous loss-of-function mutations in the ribosome recycling factor, Gtpbp2, have 

exacerbated peripheral neuropathy.  Gtpbp2-/-;nTr20+/-;GarsC201R/+ mice have decreased body 

weight (Supplemental Figure 6A), nerve conduction velocity (Supplemental Figure 6B), and 

motor function (Supplemental Figure 6C) compared to Gtpbp2+/+;GarsC201R/+.  This study is still 

ongoing, and all control genotypes will be filled in, as well as a more complete analysis of 

peripheral neuropathy including motor axon counts and diameter and NMJ innervation status. 

     Activation of the ISR through GCN2 results in ATF4 target upregulation, but will also lead to 

a global decrease in mRNA translation.  Removing GCN2 presumably alleviates this chronic 

decrease in translation, correspondingly alleviating neuropathy phenotypes.  However, although 

complete shutdown of the ISR does improve Gars phenotypes, it does not restore them to 

normal.  We hypothesize the lingering phenotype is due to the primary impairment in translation 

conferred by mutant GARS (Figure 17 C).  It will be important to test in the future if impairments 

in translation are still present in motor neurons after removal of GCN2.   



 86 

     How is mutant GARS causing these putative stalled ribosomes?  The wild-type GARS 

protein binds glycine and ATP, forms an aminoacyl adenylate, and then transfers this moiety to 

the 3’ acceptor end of the tRNAGly.  The chaperone protein, eEF1A, binds the aminoacylated 

tRNAGly and presents it to the A site of the ribosome.  After the amino acid is added to the 

growing polypeptide chain, the uncharged tRNAGly is rebound by GARS, and the tRNA cycle can 

continue (Figure 17 A). The constant supervision of tRNA molecules by translation factors 

strongly suggests that the efficient cycling of tRNA is critical to translational homeostasis.  In 

alignment with mouse genetic studies that suggest impaired aminoacylation is not the cause of 

neuropathy, we have previously shown that dietary supplementation of glycine does nothing to 

alleviate CMT2D neuropathy. Because the only other substrate of GARS is tRNAGly, we 

hypothesize that dominant mutations in Gars cause disruption of tRNAGly cycling. 

     At physiological pH, the association of ARSs with tRNAs is much weaker than most protein-

DNA interactions, with dissociation constants several orders of magnitude larger.  This feature 

of the ARS-tRNA physical interaction allows for the rapid turnover of the aminoacylation reaction 

which feeds the translational burden of a cell (Schimmel and Soll 1979).  Therefore, equally 

important as the accurate creation of the aminoacylated tRNA is its timely release from the 

ARS.  Because the majority of CMT-associated mutations in ARSs confer a net positive charge 

to the mutant enzyme in regions that might be expected to contact the tRNA, we hypothesize 

that dominant mutations in Gars result in an increased affinity of mutant GARS for tRNAGly and a 

corresponding slowdown of tRNA cycling (Figure 17 B).    The best way to test this hypothesis is 

to overexpress tRNAGly and look for phenotypic rescue.  If uncharged tRNAGly is primarily 

responsible for activating the ISR, increasing its levels should worsen the phenotype.  If instead, 

mutant GARS is sequestering tRNAGly, increasing its levels should alleviate neuropathy 

phenotypes.  It is also possible that some mutations could slow down the tRNA cycle through 

sequestration of eEF1A or a combination of tRNAGly and eEF1A sequestration. 
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     The striking cell type-specificity of ATF4 target upregulation calls into question how a disease 

mechanism based just on the biochemistry of an increased affinity of mutant GARS for tRNAGly 

or eEF1A could create such a specific pattern of phenotypes.  We suggest that expression 

levels of genes directly related to translation elongation, ribosome recycling, or stress response 

activation could impact cell type phenotypes.  The best precedent for such an explanation 

comes from mouse genetics experiments.  Expression levels of a central nervous system-

specific tRNAArg modulate neurodegeneration in Gtpbp2-/- mice and tissue-specific expression 

levels of an AARS editing co-factor influence neurodegeneration in Aarssti/sti mice (Ishimura et al. 

2014; Vo et al. 2018).  Thus, we could envision a precise gene expression state in mature motor 

and sensory neurons that predisposes them to sensitivity to dominant mutations in certain 

ARSs.  The size of the neuron may also play a role in the level of sensitivity to impairments in 

translation. 

     In conclusion, our work demonstrates that activation of the ISR through GCN2 is central to 

CMT2D pathology in mice.  Inhibition of GCN2 represents a new potential therapeutic target for 

human patients with CMT2D.  We propose that toxic gain-of-function disruption of tRNAGly 

cycling by mutant GARS causes impairments in translation, stalled ribosomes, and activation of 

GCN2 and the downstream stress response.  We also hypothesize that the same mechanism 

occurs with dominant mutations in Yars, broadening impairments in translation as a potential 

feature of at least two forms of ARS-associated CMT.   
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CHAPTER 4 
 

IMPAIRMENTS IN TRANSLATION AS THE CENTRAL DISEASE MECHANISM OF TRNA  
 

SYNTHETASE-MEDIATED PERIPHERAL NEUROPATHY 
 

Impaired Translation in Neurological Disease 
 

     The translation of mRNA into protein is essential for every cell type of the body, yet neurons 

show a special sensitivity to even minor disruptions in this process.  A striking number of 

neurological diseases are linked to impairments in almost every major step of translation.  A 

large body of work has highlighted the roles of translation initiation and elongation, expression 

and post-transcriptional modification of tRNA, and ribosome quality control as important 

contributors to neuronal homeostasis (Kapur, Monaghan, and Ackerman 2017; Kapur and 

Ackerman 2018). 

Dysregulation of Translation Initiation in Neurodegenerative Disease 
 
The Mammalian Target of Rapamycin (mTOR) Signaling Pathway. 
 
     Regulation of translation initiation is a complex process with many players that is highly 

dependent upon the state of the cell, and ultimately of the entire organism.  The mammalian 

target of rapamycin (mTOR) signaling pathway integrates extrinsic and intrinsic cellular signals 

to act as a central regulator of cell metabolism, growth, proliferation, and survival. mTORC1, 

one of the two multi-protein complexes at the center of the pathway, positively regulates 

translation by (1) phosphorylating the eukaryotic initiation factor 4E (eIF4E)-binding protein 1 

(4E-BP1), which prevents binding to eIF4E, freeing eIF4E to stimulate cap-dependent mRNA 

translation, (2) phosphorylating the initiation factors, eIF4G and eIF4B, which leads to promotion 

of cap-dependent mRNA translation, (3) phosphorylation of the p70 ribosomal kinase S6 kinase 

1 (S6K1), which results in increased mRNA biogenesis, cap-dependent translation, and the 

translation of ribosomal proteins, and (4) ribosome biogenesis (Leon et al. 2014; Holz et al. 

2005; Haghighat et al. 1995; Ma and Blenis 2009; Mayer et al. 2004). Although mTOR 



 89 

involvement in neurodegenerative disease is complex, an overall upregulation of mTOR 

signaling has been observed in brains of Alzheimer’s disease (AD) patients and in AD mouse 

models.  Included in this aberrant activation is increased levels of phosphorylated 4E-BP1 in the 

brains of AD patients, which positively correlates with tau levels (Li et al. 2005).  Although the 

correlation between increased translation and neurodegeneration may seem counterintuitive,  it 

has been suggested that upregulation of translation in AD pathology results in the accumulation 

of proteins that form toxic aggregates, such as tau (Perluigi, Di Domenico, and Butterfield 2015). 

The Integrated Stress Response. 
 
     Translation initiation is also highly sensitive to cell stress through the conserved pathway, the 

integrated stress response.  Four kinases are responsive to a variety of cell stressors: PKR 

(protein kinase R) responds to double stranded RNA during viral infection, PERK (PKR-like 

endoplasmic reticulum kinase) responds either directly or indirectly to unfolded proteins 

associated with ER stress, HRI (heme-regulated inhibitor) responds to heme deprivation, and 

GCN2 (general control nonderepressible 2) responds to amino acid deprivation.  The activation 

of any one of these four kinases results in phosphorylation of the alpha subunit of the translation 

initiation factor, eIF2.  Upon phosphorylation at serine 51, eIF2a cannot undergo GDPàGTP 

exchange by the eIF2 guanine exchange factor, eIF2B, thereby reducing the amount of eIF2 

available to form the initiator ternary complex (eIF2-GTP-Met-tRNAi).  This limits the global 

translation of capped mRNA, instead shunting cellular resources towards managing the stress.  

Shutdown of translation is also beneficial in preventing further buildup of unfolded proteins in the 

case of ER stress, preventing the translation of viral RNA in the case of infection, and reducing 

the need for amino acids and heme in the cases of deprivation of either resource (Pakos-

Zebrucka et al. 2016). 

     In contrast to the shutdown of cap-dependent translation, the translation of stress response 

genes is upregulated, including a central mediator of the ISR, activating transcription factor 4 

(ATF4).  The expression of ATF4 and other stress genes is normally limited by the presence of 
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upstream open reading frames (uORFs).  uORFs are located in the 5’ UTR of many mRNAs.  

Under normal conditions translation is initiated at the uORF instead of the main ORF, preventing 

translation of the full protein.  Under stress conditions the ternary complex is limited, reducing 

translation initiation at the uORF and increasing translation from the primary ORF (Barbosa, 

Peixeiro, and Romao 2013).  Some of the stress genes induced by ATF4 promote autophagy, 

which frees up potentially limited cellular resources for immediate use.  Other ATF4 targets 

specifically inhibit apoptosis, thereby promoting cell survival.  The role of many ATF4 targets in 

the stress response is unknown. 

     As a transcription factor that mediates the expression of potentially hundreds of stress 

related genes, ATF4 is central to the overall outcome of the ISR.  ATF4 has many protein 

binding partners, including other transcription factors such as C/EBP homologous protein 

(CHOP), that influence its regulation of gene expression.  ATF4 also undergoes extensive 

regulation at the transcriptional, translational, and post-translational levels.  Thus, the cellular 

outcome of the ISR is highly dependent upon which binding partners are available to ATF4 and 

the precise balance of its functional regulation within the cell.  This means that the ISR is not a 

“one size fits all” pathway, instead creating a response that is tailored to both the stress 

triggering its activation and the cellular context in which it occurs (Pakos-Zebrucka et al. 2016).   

     It is broadly accepted that appropriate activation of the ISR is beneficial to cells under stress.  

However, timely ISR termination is necessary in order to ultimately bring the cell back into 

homeostatic balance and restore normal translational activity.  When the stress is resolved, the 

ISR is terminated when protein phosphatase I (PP1) complex recruits a catalytic unit and 

regulatory subunit to eIF2.  In mammals either growth arrest and DNA-damage inducible protein 

(GADD34) or constitutive repressor of eIF2a phosphorylation (CReP) targets the phosphatase 

to eIF2a.  While CReP is constitutively expressed in cells, GADD34 is part of a negative 



 91 

feedback loop, whose cap-independent translation is induced by ATF4 during the later stages of 

the stress response (Trinh and Klann 2013).   

     There are several examples of how failure to turn off the ISR and the resulting long-term 

depression of translation initiation contribute to neurodegenerative diseases such as 

amyotrophic lateral sclerosis, Parkinson’s disease, prion disease, and Huntington’s disease 

(Kapur, Monaghan, and Ackerman 2017).  However, the earliest association between global 

reductions in translation and neurodegeneration was made in the context of AD. Given that de 

novo protein synthesis has long been linked to synaptic plasticity, learning, and memory, it may 

not be surprising that reduced translation is associated with Alzheimer’s disease (AD) (Trinh 

and Klann 2013).  Increased levels of phosphorylated eIF2a have been found in the brains of 

AD patients and mouse models (Chang, Wong, et al. 2002; Kim et al. 2007).  There is evidence 

for the involvement of PKR, PERK, and GCN2 in causing the increased levels of 

phosphorylated eIF2a observed in AD.  Removal of PKR is protective in neurons exposed to 

beta-amyloid peptides and reduction of PERK rescues memory deficits and cholinergic 

neurodegeneration in AD mice (Chang, Suen, et al. 2002; Devi and Ohno 2014).  Genetic 

removal of GCN2 from amyloid precurser protein/presinilin 1 (APP/PS1) AD mice prevented 

defects in synaptic plasticity and memory, but in the 5x Familial AD (5xFAD) AD model its 

removal caused increases in activated PERK, phosphorylated eIF2a, and beta-amyloid plaque 

burden and failed to rescue memory deficits (Ma et al. 2013; Devi and Ohno 2013).  These 

seemingly contrasting results may point to the extreme dependence of ISR outcomes on precise 

disease context, suggesting that a “one size fits all” therapeutic strategy to mediating the ISR in 

neurogenerative disease will not be effective. 

Dysregulation of Translation Elongation in Neurodegenerative Disease 
 
Accurate and timely translation elongation depends on a robust supply of correctly 

aminoacylated tRNA, the correct matching of the cognate tRNA anticodon to the mRNA codon, 
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and the highly coordinated movement of the ribosome to the next codon.  The elongation factors 

eEF1A and eEF2 are essential in this process.  eEF1A is the molecular chaperone that brings 

the aminoacylated tRNA from the ARS to the ribosome A site for matching to the mRNA, and 

eEF2 stabilizes the ribosome as it undergoes translocation; the structural shift that allows for the 

tRNA to move stepwise from the A site to the P site.  Both of these factors have been implicated 

in neurodegenerative disease in humans and/or animal models.  In vertebrates two distinct 

eEF1A genes are present: eEF1A1, which is expressed ubiquitously during development but 

downregulated in adult neurons and muscle, and eEF1A2, which is expressed only in neurons 

and muscle (Lee, Wolfraim, and Wang 1993; Lee et al. 1995).  In mice, a recessive loss-of-

function mutation in eef1a2 results in motor neuron degeneration and muscle wasting 

(Chambers, Peters, and Abbott 1998).  In humans, missense mutations in eEF1A2 have been 

associated with epilepsy, intellectual disability, and progressive microcephaly (Lam et al. 2016; 

Veeramah et al. 2013).  A mutation in eEF2 that is predicted to interfere with ribosome 

translocation is linked to dominant spinocerebellar ataxia (Hekman et al. 2012). 

tRNA Expression and Processing in Neurodegenerative Disease 
 
     The world of tRNA biology shows a vast complexity that is only beginning to be understood.  

Despite the fact that there are only 20 amino acids, humans have, on average, 500 tRNA 

genes, although this varies from person to person.  Each tRNA family is comprised of 

isoacceptors (different anticodon, different body) and isodecoders (same anticodon, different 

body).  tRNA molecules can potentially undergo more than 90 different post-transcriptional base 

modifications.  The average human tRNA contains 11-13 of these modifications and has the 

potential for many protein binding partners.  tRNA fragments are also active in many biological 

processes, including stress responses, tumorigenesis, and hematopoiesis (Schimmel 2018).  

There are still many unknowns regarding tRNA biology and neuronal homeostasis, but the link 

between tRNAs and neurodegeneration is clear. 
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     Mutations in proteins that comprise RNA polymerase III, the enzyme complex responsible for 

tRNA transcription, result in reduced tRNA production and cause a group of disorders called 

leukodystrophies that are characterized by cerebellar degeneration (Saitsu et al. 2011).  The 

brain-specific phenotype is hypothesized to be related to decreases in expression of tRNA 

species that are especially important for CNS neurons (Kapur, Monaghan, and Ackerman 

2017).  These tissue specific sensitivities to tRNA processing defects are supported by the 

previously mentioned mutation in a CNS-specific mouse tRNAArg gene that decreases the 

amount of mature tRNA produced and causes ribosome stalling in the CNS (Ishimura et al. 

2014). 

     Nuleoside modification of tRNA influences the affinity of anticodon-codon interactions, 

therefore regulating translation efficiency and accuracy while tailoring the specific repertoire of 

proteins that are synthesized in a given cell.  These modifications are also known to influence 

aminoacylation and the structure and stability of the tRNA itself (Bednarova et al. 2017).  

Defects in tRNA modification due to mutations in modification machinery have been linked to 

several neurological conditions including intellectual disability, epilepsy, and ALS (Najmabadi et 

al. 2011; Alazami et al. 2013; Landers et al. 2009; Reinthaler et al. 2014).    

Ribosome-associated Protein Quality Control and Neurodegeneration 

The ribosome has emerged as a point of intersection for mRNA and protein quality control.  The 

truncated polypeptides that reside on a paused ribosome due to defective mRNA or other 

factors that impair translation elongation are immediately targeted for degradation to prevent 

potentially negative downstream consequences.  The mechanisms involved in this type of 

protein degradation sense the state of the ribosome itself, rather than the specific folding state 

of individual proteins, making this approach global and unbiased to the actual protein it 

degrades.  By monitoring the ribosome, as opposed to the protein or the mRNA, the cell takes a 

“heavy handed” approach in degrading any mRNA or protein associated with a stall. 
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     Ribosome stalling can be induced by several different types of defects in mRNA sequence or 

structure.  Stalling reporters that encode fluorescent proteins before and after a potential stall 

sequence provide a quantitative readout of translation arrest.  These tools have been 

instrumental in determining stalls due to several features present in mRNA species, including 

lack of a stop codon, stretches of basic residues, truncating mutations within the coding region, 

rare codons, or strong secondary structure (Brandman and Hegde 2016). 

     Many of the studies that have identified the factors involved in ribosome-associated quality 

control and the sequential steps of the process have been done using yeast genetics.  These 

experiments have helped to delineate the complex process into four major steps: (1) recognition 

of the stalled ribosome (2) splitting of the stalled ribosome, (3) nascent polypeptide chain 

ubiquitination, and (4) nascent polypeptide chain extraction and degradation.  Recognition of the 

stalled ribosome occurs by the ubiquitin ligase, ZNF598. Collision of two ribosomes opens a 

40S-40S interface at which ZNF598 ubiquitination targets reside.  The recognition by ZNF598 is 

independent of the cause of the stall, as the 60S rotation state does not affect ZNF target 

ubiquitination (Juszkiewicz et al. 2018).  Splitting of the stalled ribosome occurs by ribosome 

recycling factors, including Pelota (Dom34 in yeast), Hbs1, and ABCE1 (Rli1 in yeast).  After 

binding of the GTP-Hbs1-Dom34 complex to a stalled ribosome, Hbs1 dissociates, Dom34 

moves into the empty A site, and both Dom34 and Rli1 catalyze subunit separation 

(Shoemaker, Eyler, and Green 2010).  Removal of the small subunit from the nascent chain-

80S complex exposes the intersubunit face of the nascent chain-60S complex.  The subsequent 

exposure of the P site tRNA has been hypothesized to be involved in recruitment of the ubiquitin 

ligase responsible for nascent chain ubiquitination, listerin (LTN1) (Bengtson and Joazeiro 

2010).  Nuclear export mediator factor (NEMF, or Rqc2 in yeast) is an important cofactor that 

stabilizes the association between LTN1 and the 60S complex (Shao et al. 2015).  The 

mechanism of nascent chain degradation and recycling of the 60S-ubiquitination complex has 
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not been fully worked out, but in yeast a protein complex called Cdc48 could potentially use 

ATP to force the nascent chain away from the ribosome (Stolz et al. 2011). 

     Several factors involved in ribosome-associated quality control have been linked to 

neurodegenerative disease.  Recessive hypomorphic mutations in the mouse gene, Ltn1, cause 

motor and sensory neuron degeneration (Chu et al. 2009).  As previously mentioned, the 

ribosome rescue factor, GTPBP2, resolves stalls which are due to a loss of function mutation in 

a mouse CNS-specific tRNAArg gene.  Homozygous loss of GTPB2 results in unresolved 

ribosome stalls at cognate AGA codons and severe neurodegeneration and ataxia (Ishimura et 

al. 2014).  GTPBP2 is also relevant to human disease, as loss-of-function mutations in the gene 

have been found in a family with neurodegeneration in the brain and retina (Jaberi et al. 2016).  

Due to the apparent importance of ribosome-associated quality control in neuronal homeostasis, 

it would not be surprising if additional factors in this process were soon linked to other human 

neurological diseases.   

How Dominant Mutations in tRNA Synthetase Genes Might Cause Impaired Translation 
 
There are only three substrates of ARSs: ATP, amino acids, and tRNA.  Keeping in mind the 

gain-of-function conclusion from animal model experiments, if dominant mutations in ARSs are 

impairing translation, it seems most likely that it would be through a gain-of-function 

sequestration of one of these substrates.  Dietary supplementation of amino acids has not been 

effective at alleviating neuropathy (Bais et al. 2016).  Although ATP replacement has not been 

tested in animal models, some CMT-causing mutations do not impair aminoacylation, so ATP 

availability and function at the ARS is most likely unaffected.  That leaves the tRNA as the only 

remaining substrate that might be affected by mutations in ARSs.  Because of the exquisite 

complexity of tRNA biology and its tight regulation in translation, it is reasonable to suggest that 

sequestration of the tRNA substrate and disruption of its cycling to the ribosome could cause 

neurodegenerative disease.   
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     Almost all CMT-causing mutations in ARSs are predicted to result in a net positive charge on 

the protein within a region that could come into contact with the tRNA (Wei, Zhang, and Yang 

2019).  The normal interaction between an ARS and its cognate tRNA is weaker than most 

protein-nucleic acid interactions, allowing for the rapid turnover of the aminoacylated tRNA to 

eEF1A.  An increased affinity for the tRNA could result in a slowing down of this turnover and a 

paucity of aminoacylated tRNAs at the ribosome.   

     GARS represents the only bi-functional ARS linked to CMT.  Especially in light of the 

reduced number of mitochondria available at the motor terminal in mutant Gars mice, defects in 

mitochondrial translation could also be a feature of CMT2D (Spaulding et al. 2016).  It is 

expected that mitochondrial translation would be impaired because of the same mechanism in 

the cytosol: sequestration of the tRNA by the mitochondrially-localized form of mutant GARS.  It 

should be noted that two of the ATF4 target genes expressed by mutant Gars motor neurons, 

Fgf21 and Gdf15, are well-known markers of mitochondrial translation impairments in skeletal 

muscle.  However, because removal of GCN2 shuts off expression of these genes in mutant 

Gars motor neurons, they are most likely a feature of the ISR in this disease context, as 

opposed to a direct signal of mitochondrial translation impairment.   

Testing for Sequestration of tRNA by Mutant ARSs 
 
One way to test for an increased affinity of mutant ARSs for their cognate tRNA is through 

surface plasmon resonance (SPR).  SPR is a powerful technique used to determine the affinity 

of two ligands by comparing the dissociation rate to the association rate.  A “bait” ligand is 

attached to the surface of the SPR sensor and a solution containing a known concentration of 

the “prey” ligand is washed over the surface.  As the two ligands bind, an increase in resonance 

signal is observed which corresponds to the association rate.  Next, a solution lacking the “prey” 

ligand is washed over the surface that disassociates the bound complex.  The observed 

decrease in resonance signal corresponds to the dissociation rate.  From the association and 

dissociation rates, the equilibrium dissociation constant can be calculated (Myszka, Jonsen, and 



 97 

Graves 1998).  Some of the primary advantages of SPR are its measurement of reaction 

kinetics in real time, its label-free approach, and the small quantity of material needed (Vo et al. 

2019).  This technique has been used for the study of protein-RNA interactions for almost two 

decades and has also been used to study binding affinities of tRNAs with ARSs and other 

proteins (Park et al. 2000; Kushwaha, Bange, and Bhavesh 2019; Crnkovic et al. 2018).  By 

using the ARSs as the bait and the cognate tRNA as the prey, the binding affinities of wild-type 

and mutant ARSs to the tRNA can be compared.   

     One advantage of this approach is that it can be used to test for the involvement of post-

transcriptional modifications in aberrant binding affinity.  tRNA in vitro transcribed will not 

contain these modifications, but tRNA purified from in vivo will.  The binding affinity of mutant 

ARSs for individual tRNA isoacceptors and decoders can also be determined to test if aberrant 

sequestration is global to all cognate tRNA species or specific to certain tRNA sequences.  

     The idea that an increase in positive charge near the ARS-tRNA interaction site will slow 

down reaction kinetics would predict that inducing additional positively-charged residues on the 

mutant ARSs would slow down the reaction even more.  These experimental mutations may 

also predict future neuropathy-causing alleles.  Correspondingly, introducing negatively-charged 

residues directly adjacent to mutation sites may reverse the defect in reaction kinetics.  All of 

these scenarios could be tested using the SPR technique and would strengthen the idea of 

increased ARSs-tRNA affinity as the cause of translational impairment in vivo. 

Cellular Consequences of tRNA Sequestration by Mutant tRNA Synthetases 
 
     Sequestration of aminoacylated tRNA at mutant tRNA synthetases would result in a lack of 

GTP-eEF1A-aminoacylated tRNA at the ribosome during translation elongation.  This lack 

would be expected to result in stalled ribosomes at cognate codons, similar to what may happen 

under conditions of nutrient deprivation and amino acid starvation.  These stalled ribosomes 

would most likely be resolved by the cell, but the chronic lack of aminoacylated tRNA would 

result in a continuous cycle of stalled and resolved ribosomes.  These conditions should mimic 
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amino acid starvation and would be expected to activate the ISR through GCN2 kinase, 

resulting in eIF2a phosphorylation, global shutdown of translation, and activation of ATF4 gene 

targets.  We have confirmed activation of the ISR through GCN2, impaired translation, and 

ATF4 target upregulation in motor neurons of multiple mouse models of CMT2D.   

     Some of the mutations in Gars used in our study may have decreased aminoacylation 

efficiency, therefore the method of GCN2 kinase activation is still unclear.  Traditionally GCN2 

kinase is activated by uncharged tRNA, but strong evidence now suggests that it is more 

potently activated by stalled ribosomes (Ishimura et al. 2016; Inglis et al. 2019).  To 

unequivocally identify stalled ribosomes in mutant motor neurons we would ideally perform 

ribosome footprinting.  However, without an in vivo, cell type-specific approach to ribosome 

footprinting, detecting stalled ribosomes in the small percentage of affected motor neurons 

within the entire spinal cord seems unlikely.   

     Our first attempt at associating stalled ribosomes with CMT2D was to cross mutant Gars 

mice with Gtpbp2-/- mice.  We hypothesized that if stalled ribosomes are a feature of CMT2D, 

inhibiting the cell’s ability to resolve these stalls would exacerbate neuropathy.  Indeed, 

neuropathy is exacerbated in GarsC201R/+ mice lacking GTPBP2.  Neuropathy is evident at an 

earlier timepoint (based on clasping and body weight), and double mutant mice have decreased 

nerve conduction velocity and motor function.  This study is ongoing, and it will be important to 

verify that Gtpbp2-/-;Gars+/+ do not have peripheral neuropathy at least through early adulthood.  

It is also important to determine the potential role of the C57BL/6J mutant tRNAArg to the 

development of peripheral neuropathy.  Preliminary data suggests that the tRNAArg mutation 

does influence body weight and wire hang performance, as mice experience severe ataxia and 

have difficulty obtaining food, but does not influence primary measures of neuropathy, such as 

nerve conduction velocity.  Although this tRNAArg gene is expressed in the spinal cord, northern 

blots suggest lower levels of expression compared to the brain and higher levels of the rest of 

the isodecoder family (Ishimura et al. 2014).  Expression levels specifically in motor neurons are 
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not known.  Because of the preliminary lack of correlation between neuropathy measures and 

the tRNAArg mutation, expression of this particular tRNAArg gene may not be as critical for motor 

neurons as it is for neurons in the brain and retina. 

     There is always a tradeoff between the reduced complexity and increased feasibility of in 

vitro studies and the obvious disease relevance of in vivo studies.  CMT-causing mutations in 

Gars do not cause a disease-relevant phenotype in cultured motor neurons, probably because 

they never reach a state of full maturation.  However, because our hypothesis of increased 

affinity of mutant ARS for tRNA is simply based on biochemistry, we expect that expressing a 

high enough level of mutant ARS in any cell type would result in ribosome stalling.  Thus, we 

can directly test for ribosome stalling in vitro by overexpressing mutant ARS in the context of a 

stalling reporter.  As mentioned previously, these reporters code for one fluorescent protein 

before a stall-inducing sequence, and for another fluorescent protein after the sequence.  By 

placing a series of cognate amino acid codons between the two fluorescent reporters, we could 

quantitatively measure ribosome stalling in cells that express mutant ARSs.  The makeup of 

cognate codons could be modified to test for differences in ribosome stalling due to the 

sequestration of specific isoacceptors.  Upon verification and characterization of ribosome 

stalling, individual ARS substrates could be added to the medium to attempt to rescue stalling, 

including the tRNA, the amino acid, or ATP.  We predict that tRNA replacement would reduce 

stalling with most mutant forms of ARS.  However, it is possible that mutations that also reduce 

aminoacylation efficiency may show rescued stalling with amino acid replacement. 

Why Impairments in Translation and Chronic Activation of the Integrated Stress 
Response are Harmful to Motor and Sensory Neurons 
 
     Our data supports a double hit on translation in mutant Gars motor and sensory neurons.  

The first hit comes directly from the mutant GARS protein: sequestering tRNAGly results in 

impaired translation elongation, stalled ribosomes, and truncated nascent polypeptides.  The 

fact that the ISR is activated through GCN2 and not PERK in mutant motor neurons suggests 
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that a build-up of unfolded protein is not the primary insult resulting from elongation impairment.  

Instead, it may be that a lack of successful translation of proteins critical for cell function 

underlies the axon dieback.  The huge distance between the cell body and the nerve terminal 

requires a constant transport of proteins, and any slowdown in the supply chain would likely be 

detrimental to the sites furthest from the source.  This is an especially attractive explanation, 

given that the largest and longest axons tend to be preferentially affected in CMT2D mouse 

models and CMT patients as a group.  However, slowed translation elongation may also 

increase the error rate of amino acid incorporation into proteins.  Perhaps errors in proteins 

crucial for motor neuron health also contribute to motor neuron sensitivity to impairments in 

translation. 

     Activation of the ISR potentially through stalled ribosomes provides the second hit on 

translation.  An additional dampening of translation through inhibited initiation is clearly 

detrimental to motor neurons in the context of CMT2D, probably because of the same reasons 

discussed above.  Removing the ISR through GCN2 presumably allows global translation 

initiation to resume and may relieve some of the protein supply deficit in the axon, preventing 

degeneration.   

     Determining the extent to which translation recovers, but is still impaired, in mutant Gars 

motor neurons lacking GCN2 will be critical to estimating the contribution of each translational 

insult to the phenotype and in supporting the presence of primary impairments in translation due 

to mutant GARS.  We are currently attempting to do this using intracerebroventricular (ICV) 

administration of puromycin.  Ideally, we could also perform biorthogonal non-canonical amino 

acid-tagging (BONCAT), a sister approach to FUNCAT that allows for the identification and 

quantification of nascent proteins.  BONCAT in Gcn2KO/KO;GarsP278KY/+ motor neurons would 

identify exactly how the proteome changes due to mutations in Gars, without the confounding 

translational changes due to activation of the ISR.  However, the extremely small amount of 
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material expected to be recovered from such a small affected cell population, and the 

complicated mouse breeding required, makes this experiment not feasible at this time.  

     Interestingly, the chronic dampening of translation initiation through the ISR seems at least 

as toxic to motor neurons as the original GARS insult, as its removal relieves around 50% of the 

neuropathy phenotype.  Although we have not performed global motor neuron-specific gene 

expression analysis beyond a few ATF4 target genes in mutant Gars mice lacking GCN2, whole 

spinal cord RNA sequencing reveals surprisingly few changes compared to wild-type Gars mice 

lacking GCN2.  This again supports the chronic activation of the ISR as a major contributor of 

the CMT2D phenotype.   

     This conclusion is in direct contrast to the protective role of ISR activation through GCN2 in 

mice with a loss-of-function tRNAArg mutation that lack GTPBP2 (nmf205-/-).  In these mice, 

genetic removal of GCN2 accelerates neurodegeneration (Ishimura et al. 2016).  Why would the 

ISR be protective to CNS neurons in one model of ribosome stalling and not in another?   

     The cerebellar ataxia that develops in nmf205-/- mice is a fast moving form of 

neurodegeneration.  Mice progress from indistinguishable from wild-type at 3 weeks of age to 

death at 8-9 weeks.  The rapid phenotype progression in nmf205-/- mice is likely due to the 

widespread ribosome stalling at AGA codons.  These cells are under such stress due to the 

widespread stalling that the ISR helps to alleviate some of this stress by reducing translation 

initiation (which presumably decreases ribosome stalling and the amount of truncated protein 

produced).  The ISR also may induce expression of stress response genes that prevent cell 

death programs from being turned on earlier.  In this model, the inability to resolve stalled 

ribosomes at AGA codons due to the loss of GTPBP2 is the major insult to the cell. 

     In comparison to nmf205-/- mice, mutant Gars mice have an earlier onset of 

neurodegeneration between 1-2 weeks of age that “levels off” by 6-8 weeks of age and does not 

progress further (although synaptic dysfunction does get worse at least through 4 months of 

age) (Spaulding et al. 2016).  Mutant Gars mice routinely live to at least 1 year of age.  Mutant 
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Gars motor neurons may be under a much lower amount of stress compared to nmf205-/- mice, 

given that degeneration progresses fairly slowly and does not proceed to cell death or even get 

worse after early adulthood.   This implies a lower amount of ribosome stalling.  In these mice, 

sequestration of tRNA by GARS, and potentially impaired translation elongation, is 

hypothesized to be the major insult to the cell, not a failure to resolve stalled ribosomes.  The 

lower level of stalled ribosomes induced by mutant GARS is enough to cause axon 

degeneration, but not enough to kill the cell. The ISR is activated by these stalled ribosomes, 

which then represents a “double hit” on translation.  Because mutant Gars motor neurons are 

under a lower level, but longer-term stress, the ISR remains on throughout the life of the motor 

neuron.  Thus, this chronic “double hit” to translation elongation and initiation is toxic rather than 

helpful to motor neurons.   

     The genetic experiments with Gars and Gtpbp2 suggest that a failure to resolve stalled 

ribosomes does add an additional insult to the cell.  This insult may lie in the paucity of recycled 

translation machinery available and/or in increased accumulation of truncated protein.  Future 

gene expression analysis on Gtpbp2-/-;GarsC201R/+ spinal cord will help to illuminate the state of 

motor neurons with what is potentially a triple insult to translation: elongation slowdown due to 

mutant GARS, initiation inhibition via the ISR, and failure to resolve stalled ribosomes with the 

loss of GTPBP2.   

Cell Type-Specificity of Translational Impairments 
 
     We have attempted to determine the cell type-specificity of translation impairment in 

unaffected tissues using puromycin labeling.  However, because puromycin does not cross the 

blood-brain barrier, we have thus far been limited to tissues such as the liver and heart muscle.  

Ideally, we could use puromycin labeling to verify impairments in translation in motor neurons 

found with FUNCAT as well as compare to other neuronal types in the spinal cord.  As 

mentioned earlier, we are attempting to measure translation in motor neurons and other cell 

types of the spinal cord using ICV administration of puromycin and immunohistochemical 
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analysis of puromycin incorporation.  We would predict that motor neurons will be the only cell 

type with a severe translation impairment, both because CMT2D is a purely motor and sensory 

neuropathy and because of the striking restriction of ATF4 target gene expression to motor 

neurons in the spinal cord.  While it is possible that other cell types of the spinal cord do 

undergo translation impairment and upregulate a different set of ATF4 target genes than the five 

we probed for using RNAscope, it seems surprising that these ATF4 target genes were not 

identified with whole spinal cord sequencing.  Every ATF4 target gene identified in whole spinal 

cord was expressed in motor neurons based on RiboTagging.  Levels of phosphorylated eIF2a 

could also be used to determine ISR activation in other cell types of the spinal cord.  It is 

possible that impairments in translation are present in other cell types of the spinal cord but do 

not lead to activation of the ISR. However, the ATF4 target gene expression signal in whole 

spinal cord RNA sequencing is so strong, despite the relatively small population of cells 

expressing it, that it is hard to reconcile how major changes in other cell types wouldn’t be 

evident in the gene expression signature. 

     Thus, the question remains, how could impairments in translation due to the sequestration of 

tRNA by a ubiquitously expressed ARS cause such striking cell type and subtype specificity?  

Whether because of the sheer scope of metabolic requirement of neurons, or because of the 

requirement for precisely coordinated translation at the synapse, the large size and highly 

polarized structure of neurons is often used as an explanation for the low tolerance neurons 

show towards translation dysregulation.  This suggestion may be at least a partial explanation 

for the restriction of ATF4 target gene expression to mutant Gars alpha motor neurons and the 

largest sensory neurons.  A mechanism by which mutant ARSs sequester tRNA is also unlikely 

to perturb non-canonical functions of ARSs, which may explain why dominant mutations that 

only impair translation do not cause multi-system syndromes seen in recessive loss-of-function 

patients. 
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     Recent work has highlighted cell type-specific gene expression patterns of factors related to 

translation.  Thus, cell type-specific differences in gene expression may contribute to motor and 

sensory neuron sensitivity to gain-of-function impairments in translation related to dominant 

mutations in ARSs.  For example, low expression levels of certain tRNA genes in motor and 

sensory neurons might cause these tRNAs to become limiting in these neuronal subtypes.  It is 

especially attractive to think that expression levels of specific isodecoders, which could vary 

from individual to individual, might underlie some of the phenotypic heterogeneity seen in 

human patients.  As an indirect attempt to profile tRNA expression in sorted wild-type motor 

neurons at 7 weeks of age, a time just when neuropathy develops in the severe GarsP278KY/+ 

model, we have performed Assay for Transposable Accessible Chromatin-sequencing 

(ATACseq).  In these preliminary experiments we see open chromatin surrounding 

approximately 50% of all tRNA genes in motor neurons.  Mice have 29 tRNAGly genes and in 

hematopoietic stem/progenitor cell types 26 out of those 29 were in areas of open chromatin.  In 

contrast, in 1 week old motor neurons, only 13 out of 29 were in areas of open chromatin.  

Although these results are extremely preliminary, and were limited by the difficulty in sorting 

heavily myelinated motor neurons, this does support the idea that motor neurons could have a 

unique tRNA gene expression pattern.  To ultimately determine if tRNA expression is a factor in 

determining the cell type-specificity of phenotypes in humans, laser capture of human spinal 

cord motor neurons and tRNA sequencing or qPCR would be necessary.  With this approach 

tRNA expression could be precisely correlated with the innervation pattern of the motor neuron 

and mapped to different muscles of the body.  This is especially intriguing in GARS patients, as 

they tend to show a curious tendency towards hand involvement. 

     In addition to expression levels of the tRNA, expression of the ARS itself could be higher in 

motor and sensory neurons, causing a greater sequestration of the tRNA.  It is also possible 

that some mutant forms of ARS aberrantly sequester eEF1A during the handoff of 

aminoacylated tRNA.  Higher levels of eEF1A expression in some cell types might counteract 
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this potential aberrant interaction.  This mechanism could be specific for the isoform of eEF1A 

expressed in motor neurons and muscle, eEF1A2.  However, past experiments suggest that 

muscle is not a primary affected tissue in Gars mice, and a translation impairment related to 

eEF1A2 would be expected to involve both tissue types. 

     Differences in ribosome recycling efficiency may also contribute to the sensitivity of motor 

and sensory neurons to dominant mutations in ARSs.  Other cell types may be better at 

resolving stalled ribosomes due to impaired translation, preventing ISR activation.  These 

differences might be due to gene expression of ribosome recycling factors, like GTPBP2.  In 

future studies regarding the cell type-specificity of sensitivity to mutant GARS, it could be 

interesting to examine other cell types in Gtpbp2-/-;GarsC201R/+ mice.  Perhaps removing a cell’s 

ability to resolve stalled ribosomes not only worsens the state of motor neurons, but also causes 

dysfunction in other previously unaffected cell types.  This is the case in mice with mutations in 

Aars that cause deficient editing (Aarssti/sti).  Removing a co-editing factor, ANKRD16, from 

Purkinje cells results in more widespread neurodegeneration.  Completely removing ANKRD16 

causes dysfunction in other cell types that results in embryonic lethality (Vo et al. 2018).  In the 

case of GarsC201R/+ mice, if unaffected cells have impaired translation, but simply do a better job 

at resolving stalled ribosomes, removal of GTPBP2 might bring that to light. 

     It is also possible that cell type-specificity arises because the motor and sensory neuron 

translatome is enriched for proteins abundant in the codons cognate to CMT-associated ARSs, 

making stalled ribosomes more abundant in these cell types.  To test this we queried transcripts 

enriched in 1 week old and 8 week old Gars+/+ motor neurons compared to whole spinal cord as 

identified in our RiboTagging data to determine if a potential enrichment for glycine codons 

exists.  Abundance of transcripts enriched in motor neurons is weighted to transcript abundance 

taken from RNA sequencing data from C57BL/6J liver, a relatively homogenous tissue.  We 

found no evidence for glycine codon enrichment in motor neurons of 1 week or 8 week old mice, 

indicating that codon bias is not a factor in determining cell type-specificity.  Interestingly, a bias 
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for tryptophan codons was identified.  Perhaps codon bias could be involved in the development 

of CMT associated with dominant mutations in WARS (analysis performed by Cedric Gobet). 

     Expression levels of ISR-activation genes may also differ between affected and unaffected 

cell types.  For example, eIF2B may show higher expression in unaffected cell types, thereby 

reducing the effect of eIF2a phosphorylation on translation inhibition.  Expression levels of 

eIF2a phosphatases could also be higher in other cell types, shutting of the ISR early and 

preventing chronic dampening of translation initiation.   

Options for Treating Impairments in Translation 

     Identifying ISR activation through GCN2 as a major contributor to the CMT2D phenotype 

implies that inhibiting this activation could be therapeutically beneficial for patients.  Directly 

inhibiting GCN2 would be the cleanest way of controlling aberrant activation of the ISR in motor 

neurons, and would have the least potential of unwanted effects on other tissues.  Because 

Gcn2KO/KO mice are completely healthy, negative side effects are unlikely, as long as dietary 

nutrients and amino acids are in good supply.  We are currently having GCN2 inhibitors 

synthesized for testing in mutant Gars mice.  In the meantime, we are also treating mice with 

Integrated Stress Response Inhibitor (ISRIB), which enhances eIF2B’s activity and renders the 

cell insensitive to eIF2a phosphorylation (Sidrauski et al. 2015). 

     In addition to targeting the ISR, directly targeting the tRNA sequestration mechanism is a 

possibility.  Overexpression of cognate tRNA genes using AAV9 delivery should rescue 

phenotypes if the tRNA sequestration hypothesis is correct.  Extensive studies in mammalian 

models regarding how much overexpression is required to rescue phenotypes without triggering 

more activation of the ISR through uncharged tRNA will be crucial.  It is also possible that with 

some ARS mutations the sequestration is anticodon specific, although replacing all codons for a 

given tRNA family could be a safe approach.  Morelli et al., (submitted) has shown good efficacy 

of selective mutant Gars knockdown, which is also a possibility in humans but would need to be 
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mutation-specific.  With viral administration of gene therapy vectors, not all motor and sensory 

neurons are guaranteed to be infected.  Thus, while gene therapy approaches hold great 

promise, a pharmacological, “one-size-fits-all” treatment approach to dominant mutations in 

ARSs, such as GCN2 inhibition, is also attractive.  Ultimately, a combination of the two 

treatments may be the most effective at treating neuropathy. 

Conclusion 

Our first study, Spaulding et al., 2016, extensively characterized progressive synaptic 

dysfunction in two CMT2D mouse models and identified mitochondrial abnormalities at the 

synapse.  The goal of our second study was to determine how dominant mutations in GARS 

cause CMT2D peripheral neuropathy.  To this end, we profiled translation and transcription in 

motor neurons of three CMT2D mouse models to test for impairments in translation.  This study 

has identified impaired translation in mutant Gars motor neurons and has identified the 

activation of the ISR through GCN2 in alpha motor neurons and the largest sensory neurons.  

We have also shown activation of the ISR in motor neurons of mice with dominant human 

mutations in Yars.  We have yet to determine the exact mechanism by which mutant ARSs 

trigger GCN2 activation, but it is clear that ISR activation is a large contributor to peripheral 

neuropathy.  We hypothesize that impaired translation, whether through ISR activation, primary 

mechanisms of mutant ARS, or both, represents a common contributor to disease in mice with 

mutations in Gars and Yars.  Not all CMT-associated ARSs or all mutations in a given ARSs 

necessarily cause translational impairment through the same biochemical means.  It will be 

important in the future to determine how translation is impaired on a mutation by mutation basis.  

It will also be crucial to look for signs of activation of the ISR through GCN2 in motor neurons of 

human patients, either through blood biomarker analysis or analysis of post-mortem spinal cord.  

If this mechanism can be extended to humans, our study will provide multiple new avenues for 

treatment, including regulation of the ISR and genetic replacement of translation factors, such 

as tRNAs.  
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CHAPTER 5 
 

ADDITIONAL CONTRIBUTIONS TO THE FIELD 
 

Severity of Demyelinating and Axonal Neuropathy Mouse Models is Modified by Genes 
Affecting Structure and Function of Peripheral Nodes. (2016), Cell Reports. Morelli, KH, 

Seburn KL, Schroeder DG, Spaulding EL, Dionne LA, Cox GA, Burgess RW. 
 

Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous group of 

inherited polyneuropathies. Mutations in 80 genetic loci can cause forms of CMT, resulting in 

demyelination and axonal dysfunction. The clinical presentation, including sensory deficits, 

distal muscle weakness, and atrophy, can vary greatly in severity and progression. Here, we 

used mouse models of CMT to demonstrate genetic interactions that result in a more severe 

neuropathy phenotype. The cell adhesion molecule NRCAM and the Na+ channel SCN8A 

(NaV1.6) are important components of nodes. Homozygous Nrcam and heterozygous Scn8a 

mutations synergized with both an Sh3tc2 mutation, modeling recessive demyelinating Charcot-

Marie-Tooth type 4C, and mutations in Gars, modeling dominant axonal Charcot-Marie-Tooth 

type 2D. We conclude that genetic variants perturbing the structure and function of nodes 

interact with mutations affecting the cable properties of axons by thinning myelin or reducing 

axon diameter. Therefore, genes integral to peripheral nodes are candidate modifiers of 

peripheral neuropathy.  My role in this project was to image the femoral motor branches using 

electron microscopy and measure myelin packing around individual axons.   

Trk Receptor Signaling and Sensory Neuron Fate are Perturbed in Human Neuropathy 
Caused by Gars mutations. (2017), PNAS. Sleigh JN, Dawes JM, West SJ, Wei N, Spaulding 

EL, Gomez-Martin A, Zhang Q, Burgess RW, Cader MZ, Talbot K, Yang XL, Bennett DL, 
Schiavo G. 

 
Charcot-Marie-Tooth disease type 2D (CMT2D) is a peripheral nerve disorder caused by 

dominant, toxic, gain-of-function mutations in the widely expressed, housekeeping gene, GARS 

The mechanisms underlying selective nerve pathology in CMT2D remain unresolved, as does 

the cause of the mild-to-moderate sensory involvement that distinguishes CMT2D from the 

allelic disorder distal spinal muscular atrophy type V. To elucidate the mechanism responsible 
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for the underlying afferent nerve pathology, we examined the sensory nervous system of 

CMT2D mice. We show that the equilibrium between functional subtypes of sensory neuron in 

dorsal root ganglia is distorted by Gars mutations, leading to sensory defects in peripheral 

tissues and correlating with overall disease severity. CMT2D mice display changes in sensory 

behavior concordant with the afferent imbalance, which is present at birth and nonprogressive, 

indicating that sensory neuron identity is prenatally perturbed and that a critical developmental 

insult is key to the afferent pathology. Through in vitro experiments, mutant, but not wild-type, 

GlyRS was shown to aberrantly interact with the Trk receptors and cause misactivation of Trk 

signaling, which is essential for sensory neuron differentiation and development. Together, this 

work suggests that both neurodevelopmental and neurodegenerative mechanisms contribute to 

CMT2D pathogenesis, and thus has profound implications for the timing of future therapeutic 

treatments.  My role in this project was to remove lumbar dorsal root ganglia from GarsP278KY/+ 

mice for immunohistochemical analysis. 

Paclitaxel-induced Epithelial Damage and Ectopic MMP-13 Expression Promotes 
Neurotoxicity in Zebrafish. (2016), PNAS. Lisse TS, Middleton LJ, Pellegrini AD, Martin PB, 

Spaulding EL, Lopes O, Brochu EA, Carter EV, Waldron A, Rieger S. 
 
Paclitaxel is a microtubule-stabilizing chemotherapeutic agent that is widely used in cancer 

treatment and in a number of curative and palliative regimens. Despite its beneficial effects on 

cancer, paclitaxel also damages healthy tissues, most prominently the peripheral sensory 

nervous system. The mechanisms leading to paclitaxel-induced peripheral neuropathy remain 

elusive, and therapies that prevent or alleviate this condition are not available. We established a 

zebrafish in vivo model to study the underlying mechanisms and to identify pharmacological 

agents that may be developed into therapeutics. Both adult and larval zebrafish displayed signs 

of paclitaxel neurotoxicity, including sensory axon degeneration and the loss of touch response 

in the distal caudal fin. Intriguingly, studies in zebrafish larvae showed that paclitaxel rapidly 

promotes epithelial damage and decreased mechanical stress resistance of the skin before 

induction of axon degeneration. Moreover, injured paclitaxel-treated zebrafish skin and scratch-
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wounded human keratinocytes (HEK001) display reduced healing capacity. Epithelial damage 

correlated with rapid accumulation of fluorescein-conjugated paclitaxel in epidermal basal 

keratinocytes, but not axons, and up-regulation of matrix-metalloproteinase 13 (MMP-13, 

collagenase 3) in the skin. Pharmacological inhibition of MMP-13, in contrast, largely rescued 

paclitaxel-induced epithelial damage and neurotoxicity, whereas MMP-13 overexpression in 

zebrafish embryos rendered the skin vulnerable to injury under mechanical stress conditions. 

Thus, our studies provide evidence that the epidermis plays a critical role in this condition, and 

we provide a previously unidentified candidate for therapeutic interventions.  My role in this 

project was to help establish the initial in vivo larval and adult zebrafish models of paclitaxel-

induced peripheral neuropathy by piloting delivery method of paclitaxel, motor function outcome 

measures, live imaging parameters, and quantification of axon degeneration. 
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APPENDIX A: CHAPTER 2: MATERIALS & METHODS 
 

Mice:  The mice used in these experiments were obtained from research colonies maintained at 

The Jackson Laboratory (Bar Harbor, ME).  The two strains of Gars mutant mice are 

established models of CMT2D and are described in several previous publications (Achilli et al. 

2009b; Motley et al. 2011a; Seburn et al. 2006; Stum et al.).  Briefly, one strain of mice 

(CAST;B6-GarsNmf249/JRwb; Stock# 17540 (Seburn et al. 2006) carry a spontaneous dominant 

mutation (insertion) that results in a P to KY substitutions at amino acid 278 of the GlyRS 

protein.  These mice hereafter referred to as GarsP278KY; develop overt disease symptoms by 2-3 

weeks of age.  A second strain of mice (C3H.C-GarsC201R/H) (Achilli et al. 2009b) carry an ENU-

induced dominant point mutation that causes a cysteine to arginine substitution at residue 201 

of the GlyRS protein.  These mice (hereafter GarsC201R) have a qualitatively similar, but 

generally milder CMT2D phenotype.  Both GarsP278KY and GarsC201R mutant strains are routinely 

maintained by mating heterozygous male mutant mice to female wild-type mice.  For these 

experiments additional matings were set up using female mice homozygous for a transgene 

expressing yellow fluorescent protein (B6.Cg-Tg(Thy1-YFP)16Jrs/J; Stock# 3709, hereafter 

YFP16) (Feng et al. 2000).  Litters from these matings produced the necessary controls 

(YFP16;Gars+/+) as well as either YFP16;GarsP278KY or YFP16;GarsC201R.  Colonies of Gars mice 

also carrying the YFP transgene have been maintained for several years and neither the onset 

nor lifespan of either strain has changed.  In addition, results of analyses performed on these 

mice are in good agreement with our previous results on mutants that did not carry the YFP 

transgene.  All mice were maintained in the same vivarium on a 12:12 light/dark cycle and were 

provided food and water ad libitum.  Care and procedures were reviewed for compliance and 

approved by the Animal Care and Use Committee of The Jackson Laboratory. 

NMJ immunohistochemistry and analysis of innervation status:   CMT2D mice had been 

crossed to mice carrying the transgene for yellow fluorescent protein that allowed visualization 
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of the presynaptic nerve (see Mice above for details).  Thus, for analysis, the LAL muscle was 

removed and placed in 2% paraformaldehyde for 15 minutes and then rinsed three times in 

PBS.  Finally, to visualize postsynaptic acetylcholine receptors (AChRs) on the muscle cell 

surface, muscles were incubated with α-bungarotoxin conjugated with Alexa Fluor 594 (NMJ 

only) or 647 (NMJ costaining with Bassoon, see below) (1/2000)(Molecular Probes) in cold PBS 

containing 2% BSA, 2% normal goat serum, and 0.1% Triton for 20 minutes.  Muscles were 

then examined by fluorescent microscopy (Nikon E6000) at a magnification of 63X.  In each 

muscle 100 NMJs were randomly viewed and classified as described previously (e.g (Seburn et 

al. 2006)).  Junctions where the nerve completely overlapped the AChRs on the muscle were 

defined as fully occupied, those with a portion of receptors clearly vacated by the presynaptic 

nerve were defined as partially occupied, and those with AChR plaques that had no associated 

nerve were defined as denervated. 

Bassoon staining and quantification of release sites:  Muscles were prepared, and pre- and 

postsynaptic components of the NMJ were visualized, as described above.  

Immunohistochemistry followed a published protocol (Nishimune 2012). In addition, muscles 

were incubated overnight with a mouse primary antibody against the active zone protein 

Bassoon (1/1000) (SAP7F407; Enzo Life Sciences) and fluorescently conjugated secondary 

(Zenon® Alexa Fluor® 568 Mouse IgG2a, Life Technol. Cat#Z2506).   Images were collected as 

Z-series using a Leica SP5 confocal microscope.  Bassoon-stained active zones were quantified 

using 3D reconstructions (Imaris v. 7.4.2, Bitplane) of NMJs.  Using this software each NMJ was 

reconstructed and then evaluated empirically by rotating and examining the 3-D image from pre- 

and postsynaptic perspectives to determine that the reconstruction matched the actual staining.  

Briefly, for each image, the postsynaptic receptor area was rendered by smoothing and 

thresholding using background subtraction based on local contrast.  The result was then filtered 

based on a minimal voxel size to eliminate any artifactual staining not associated with the 
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terminal area.  The volume and surface area of the rendered volume were determined by the 

software.  Puncta stained with bassoon were identified and counted in a three step process.  

First, it was determined on wild-type NMJs that a background subtraction that eliminated “spots” 

with a diameter greater than 0.250µm eliminated the majority of extra-junctional “puncta”.  For 

each image this result was then filtered to include only spots above a fixed intensity at the 

center of the spot.  Finally, the spots needed to associate with the pre-synaptic side, within the 

perimeter defined by postsynaptic staining.   The intensities used for filtering were determined 

empirically for each image by thresholding the appropriate channel and noting the value giving 

the best representation of visible staining. 

Muscle preparation and voltage-clamp:  Mice were anesthetized with isoflurane (2%, 300 

ml/min) to remove intact the LAL muscle.  This flat muscle controls the movement of the ear and 

is a well-characterized mixed fiber type muscle (Angaut-Petit et al. 1987).  Muscles were placed 

immediately in a specially designed recording chamber and pinned onto the silastic such that 

solution could flow freely across the tissue on both sides.  The recording chamber was perfused 

continuously with Ringer’s solution comprised of (in mmol/l): 118 NaCl, 3.5 KCl, 2 CaCl2, 0.7 

MgSO4, 26.2 NaHCO3, 1.7 NaH2PO4, and 5.5 glucose, and equilibrated with 95%O2/5%CO2 

to maintain a pH of 7.3–7.4.  The solution was at room temperature (20–22°C) for all 

experiments.  Voltage clamp experiments followed previously described methods (Rich et al. 

2002; Wang et al. 2004; Wang et al. 2005).  Once the muscle was pinned the tissue was 

stained by the addition of  4-(4-diethylaminostyryl)-N-methylpyridinium iodide (4-Di-2ASP) 

(Magrassi, Purves, and Lichtman 1987) at a concentration of ~2µM for 2.5 minutes. This 

method provides staining sufficient for visualization of the superficial nerve terminals and the 

surface of the muscle fibers.  A concentric bipolar electrode (FHC, Bowdoin, ME, USA) was 

placed in contact with the nerve and connected to the stimulator (WPI A360, Sarasota, Fla., 

USA). Stimulator output was capacitively coupled  to the electrode to avoid potential damage 
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from DC polarizing currents (Guyton and Hambrecht 1974). The preparation was then placed 

under an upright epifluorescence microscope (Leica DMLFSA).  Electrodes (5-10 MΩ) were 

filled with 3M KCL and 10 ng/ml of sulforhodamine so that the electrode tip could be seen under 

the microscope.  Synapses were located and fibers were impaled within 100 µm of the terminal 

and voltage clamped to -50 mV.  In initial experiments muscle fibers were crushed away from 

the endplate band to avoid movement induced by nerve stimulation (Glavinovic 1979; Wang et 

al. 2004; Wang et al. 2005), but in most experiments the muscle-specific sodium-channel 

blocker ( µ-Conotoxin GIIIB, Alomone, Israel )(Cruz et al. 1985; Robitaille and Charlton 1992) 

was introduced (~1 µM) to eliminate muscle action potentials and contraction. 

Wire-hang test:  A variation on the wire-hang test (Gomez et al. 1997; Rafael et al. 2000) was 

used to assess the response to drugs that enhance synaptic function via either pre- or post-

synaptic mechanisms.  Briefly, mice were placed on a 6”x 9” piece of wire mesh and then the 

mesh was inverted and held ~6” above the countertop.  The latency (seconds) to a fall was 

timed and recorded, up to a maximum of 1 minute.  Tests were performed at approximately the 

same time each day.  Each mouse performed 3 trials in a given session and a rest period of at 

least 30 s was given between individual trials.  To allow the mice time to adjust to the wire hang 

test and learn how to perform, animals were given at least three consecutive daily practice 

sessions before drug administration and testing trials.  

In drug/vehicle trials, drugs were prepared fresh from frozen stock on each day (in sterile PBS, 

0.1mg/kg - physostigmine; 2.5 mg/kg - 3,4 diamino pyridine (DAP) (Sigma, MO, USA).  Each 

mouse performed a pre-injection trial, then was injected intraperitoneally and re-tested 60 

minutes later.  Mice were dosed three independent times in five days with intervening practice 

days.  The best wire hang score in three trials is reported for that day (three trials/day on three 

test days).  Performance was calculated as pre-injection/post-injection latency-to-fall, expressed 
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as a percentage.  The average percentage difference is calculated from the three independent 

days of injections. 

Data collection and analysis:  Custom software was used for collection and analysis of 

synaptic currents.  At each NMJ, spontaneous miniature endplate currents (MEPC) were 

collected for 1 min.  The nerve was then stimulated (0.5 Hz) and 15-20 individual evoked 

endplate currents (EPC) were recorded.  Quantal content was directly calculated by dividing the 

EPC amplitude by the average MEPC amplitude recorded for each synapse.  We used the 

extent of EPC facilitation/depression during evoked trains(Zucker and Regehr 2002) to indirectly 

evaluate probability of release following a protocol previously used at the mouse NMJ.(Wang et 

al. 2010; Kong et al. 2009)  We recorded 15-20 responses to a 10-pulse, 50 Hz train delivered 

to the nerve and 20 responses were recorded. The extent of depression/potentiation was 

calculated by dividing the averaged amplitude of the 10th pulse by the 1st pulse.   

Electron microscopy: For electron microscopy, muscles were processed as 

described.(Burgess, Cox, and Seburn 2010)  In brief, muscles were fixed in 2% 

paraformaldehyde, 2% glutaraldehyde in 0.1M cacodylate buffer.  The endplate-containing 

region was isolated and embedded and sectioned for transmission electromicroscopy.  Seventy-

five nm plastic sections were mounted on grids and viewed using a Jeol 1230 electron 

microscope equipped with a Hamamatsu digital camera system for image collection.   

Statistics:  Unless otherwise noted averaged numbers are reported as mean ± standard error 

(s.e.).  We used a nested ANOVA (using animal as a random factor) for genotype/age 

comparisons of electrophysiology, active zones and vesicle data. This statistic controls for 

animal-to-animal variation and the effect of taking small samples to represent a larger 

population.  We also evaluated interactions for 2 and 4 month electrophysiology data using a 

standard 2-way ANOVA (genotype by age), but the results did not modify any conclusions so 

results derived from the more appropriate nested design are reported.  A Students t-test was 
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used for comparison of wire-hang and quantal content comparison of 70 Hz voltage clamp data.  

In all cases the statistical cutoff for declaring a significant difference was p<0.05.  
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APPENDIX B: Chapter 3: Supplemental Data 

 

Figure 18: Translation in pre-disease onset GarsC201R/+ motor neurons.  (A) Gars+/+ and (B) 
GarsC201R/+ motor neurons of the cervical spinal cord labeled with ANL. (C) Translation is slightly 
reduced in all GarsC201R/+ motor neuron populations compared to Gars+/+, but does not reach 
statistical significance.  Analysis was performed on 3 males per genotype at 2 weeks of age.  
Values in C are a sum of fluorescence intensity from all 3 animals per genotype ± SD. 

 

Figure 19. Puromycin labeling in unaffected tissues does not show impaired translation.  
(A) Representative anti-puromycin blot from liver tissue of Gars+/+, GarsC201R/+, GarsP278KY/+, and 
GarsdelETAQ/+ mice.  (B-C) Intensity of puromycin-labeled protein smear is scaled to GAPDH 
loading control and compared to Gars+/+.  Puromycin incorporation is not decreased in the liver 
(B) or heart (C) of any mutant Gars models.  Analysis was performed on 3 animals per genotype 
at 8 weeks of age. Values in B and C are mean ± SD. 
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Figure 20: Disease signature is present in GarsC201R/+ motor neurons pre-disease onset. 
Ribosome-associated mRNA in GarsC201R/+ motor neurons compared to Gars+/+. 643 genes were 
upregulated (log FC>1.5; p value<.05) and 107 were downregulated (log FC<-1.5; p value<.05).  
Analysis was performed on 5-6 animals per genotype at 2 weeks of age. 
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Figure 21: Genetic removal of GCN2 kinase continues to alleviate CMT2D neuropathy 
through 16 weeks of age. (A) Conduction velocity of the sciatic nerve is increased in 
Gcn2KO/KO;GarsP278KY/+ mice (29.7m/s ± 4.9) compared to Gcn2+/+ or +/KO;GarsP278KY/+ (13.6m/s ± 
2.4), and no longer statistically different from Gcn2+/+,+/KO, or KO/KO;Gars+/+ (36m/s ± 7.6).  (B) The 
average number of motor axons in the femoral nerve of 16 week old Gcn2KO/KO;GarsP278KY/+ mice 
is greater (530 ± 15 axons) compared to Gcn2+/+ or +/KO;GarsP278KY/+ (456 ± 22 axons).  
Gcn2KO/KO;GarsP278KY/+ axon counts are no longer statistically significant from Gcn2+/+,+/KO, or 

KO/KO;Gars+/+ mice (550 ± 24 axons).  (C) The relative frequency of larger fiber axons is 
increased in 16 week old Gcn2KO/KO;GarsP278KY/+ mice compared to Gcn2+/+ or +/KO;GarsP278KY/+, as 
shown by the shift of the red trace towards the right of the blue trace.  (D) A greater percentage 
of NMJs are fully innervated in 16 week old Gcn2KO/KO;GarsP278KY/+ (75.2% ± 14.2) mice 
compared to (33.6% ± 11.4) Gcn2+/+ or +/KO;GarsP278KY/+.  A smaller percentage of partially 
innervated (20.2% ± 12.7) and denervated (4.7% ± 2.9) NMJs are observed in 
Gcn2KO/KO;GarsP278KY/+ mice compared to Gcn2+/+ or +/KO;GarsP278KY/+ (43.4% ± 9.1 and 23% ± 
15.4). 
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Figure 22: YarsE196K/YarsE196K mice show signs of neuropathy at 7 months of age.  (A) At 7 
months of age Yars+/+ mice have a sciatic nerve conduction velocity of 36.6 ± 4.2m/s.  
YarsE196K/+ mice have a conduction velocity well in the wild-type range at 40.3 ± 1.9 m/s, but 
YarsE196K/YarsE196K mice have a reduced conduction velocity of 28.7 ± 1.7m/s. (B)  YarsE196K/E196K 
have impaired motor function at 7 months of age, as demonstrated by decreased latency to fall 
on the wire hang test. Yars+/+ mice hang on to an inverted grid for an average of 55.3 ± 8.5 
seconds, YarsE196K/+ for an average of 54.7 ± 5.0 seconds, and YarsE196K/YarsE196K  for an average 
of 38.6 ± 13.3 seconds.  Nerve conduction analysis was performed with 6-10 animals per 
genotype.  Wire hang analysis was performed with 3-9 animals per genotype. Values in A and B 
are mean ± SD. *= p<.05; ****=p<.0001. 
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Figure 23: Mutations in the ribosome recycling factor, Gtpbp2, exacerbate GarsC201R/+ 
neuropathy.  (A) Gtpbp2-/-;nTr20+/-;GarsC201R/+ mice have reduced body weight compared to 
Gtpbp2+/+ or +/-;nTr20+/-;GarsC201R/+ mice starting at 3 weeks of age. Preliminary measurements in 
Gtpbp2-/-;nTr20+/+;GarsC201R/+ mice suggest that body weight will be further decreased by the 
developing cerebellar ataxia around 6 weeks of age.  Analysis performed with 1-22 mice per 
genotype. (B) Conduction velocity of the sciatic nerve is decreased in Gtpbp2+/+ or +/-;nTr20+/-

;GarsC201R/+ (10.92 m/s ± 1.7) mice at 8 weeks of age compared to Gtpbp2-/-;nTr20+/-;GarsC201R/+ 
(31.44m/s ± 4.88), but not further reduced in Gtpbp2-/-;nTr20+/+;GarsC201R/+ mice (10.2m/s ± 2.4). 
Analysis performed with 3-14 mice per genotype. (C) Gtpbp2-/-;nTr20+/-;GarsC201R/+  and Gtpbp2-/-

;nTr20+/+;GarsC201R/+ mice have decreased latency to fall compared to Gtpbp2+/+ or +/-;nTr20+/-

;GarsC201R/+. Analysis performed with 1-22 mice per genotype. Values in A and C are mean ± 
SD. *= p<.05; ****= p<.0001. 
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APPENDIX C: CHAPTER 3: MATERIALS & METHODS 
 

Mice:  The mice used in these experiments were obtained from research colonies maintained at 

The Jackson Laboratory (Bar Harbor, ME).  The two strains of Gars mutant mice are 

established models of CMT2D and are described in several previous publications (Achilli et al. 

2009b; Motley et al. 2011a; Seburn et al. 2006; Stum et al.).  Briefly, one strain of mice 

(CAST;B6-GarsNmf249/JRwb; Stock# 17540 (Seburn et al. 2006) carry a spontaneous dominant 

mutation (insertion) that results in a P to KY substitutions at amino acid 278 of the GlyRS 

protein.  These mice hereafter referred to as GarsP278KY; develop overt disease symptoms by 2-3 

weeks of age.  A second strain of mice (C3H.C-GarsC201R/H) (Achilli et al. 2009b, 2009a) carry 

an ENU-induced dominant point mutation that causes a cysteine to arginine substitution at 

residue 201 of the GlyRS protein.  These mice (hereafter GarsC201R) have a qualitatively similar, 

but generally milder CMT2D phenotype.  Both GarsP278KY and GarsC201R mutant strains are 

routinely maintained by mating heterozygous male mutant mice to female wild-type mice.  

GarsdelETAQ mice contain a 12 base pair deletion in exon 8 of the Gars gene that results in a 

four amino acid deletion.  The phenotype of these mice is similar the the previously described 

Gars models and intermediate in severity.  Other mice used include the ChAT-IRES-Cre knock-

in mice (B6;129S6-Chat<tm2(cre)Lowl>/J;Stock# 006410), the RiboTag mice (B6N.129-

Rpl22<tm1.1Psam>/J;Stock# 011029), the FUNCAT mice (C57BL/6-

Gt(ROSA)26Sor<tm1(CAG-GFP,-Mars*L274G)Esm/J;Stock# 028071, the nmf205 mutant 

mouse (C57BL/6J-Gtpbp2<nmf205>/J; Stock#004823) (Ishimura et al. 2014), the nTr20 

congenic mouse (B6J.B6N-n-Trtct5<C57BL/6N/SlacCx; private colony) (Ishimura et al. 2014), 

GCN2 knockout mice (B6.129S6-Eif2ak4<tm1.2Dron>/J; Stock# 008240), and YarsE196K mice 

(private colony; submitted manuscript).  All mice were maintained in the same vivarium on a 

12:12 light/dark cycle and were provided food and water ad libitum.  Care and procedures were 

reviewed for compliance and approved by the Animal Care and Use Committee of The Jackson 

Laboratory 
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Fluorescent non-canonical amino acid-tagging (FUNCAT):  Mice were injected 

intraperitoneally with 400mg/kg body weight ANL (Jena Bioscience) dissolved in deionized 

water and made fresh on the day of use.  After 8 hours mice were anesthetized and perfused 

with cold 4% paraformaldehyde-4% sucrose.  The entire spinal column was removed and post-

fixed on ice for 1 hour.  Columns were moved to phosphate buffered saline (PBS) and kept at 

4oC until dissection.  Spinal cords were dissected free from vertebrae, embedded in optimum 

cutting temperature (OCT) (VWR), frozen in cold 2-methyl butane, and kept at -80oC until 

sectioning.  12um cryosections were dried for 1 hour and blocked in B Block (Tom Dieck et al. 

2012) for 1.5 hours at room temperature.  After washing with the slides PBS, the FUNCAT 

reaction was assembled (5ml freshly diluted PBS, pH7.8; 5ul 200uM Tris[(1-benzyl-1H-1,2,3 

triazol-4-yl) methyl] amine (TBTA) (Sigma); 5ul 500mM Tris (2-carboxyethyl) phosphine 

hydrochloride (TCEP) (Sigma); 1ul 2mM alkyne-conjugated Alexa 594 (Thermo Fisher); and 5ul 

200mM CuSO4 (Sigma)) and quickly applied to the slides.  Slides were incubated in the reaction 

mix overnight at room temperature with gentle agitation and protection from light.  Slides were 

washed with FUNCAT wash buffer (Tom Dieck et al. 2012) and then PBS, and cover slips were 

mounted using DAKO fluorescent media (Agilent).  Single plane images of both ventral horns 

from at least 3 sections of each region of the spinal cord per mouse were taken at 20x 

magnification on either a Leica SP5 confocal microscope or a Nikon Eclipse 600 with DIC- 

Nomarski optics. Fluorescence intensity was measured in Fiji/ImageJ.  Using a circle of 

constant area that would fit within all sizes of motor neurons, intensity of every motor neuron per 

section was measured and the background fluorescence from 3 adjacent spots was subtracted.  

The average fluorescence intensity of each region of the spinal cord per mouse was calculated.  

To avoid arbitrary pair-wise comparisons, total fluorescence from all mice was summed for each 

region of the spinal cord. 
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Puromycin labeling: Mice were injected intraperitoneally with freshly opened Puromycin 

dihydrochoride (Life Technologies) at a dose of 60mg/kg body weight.  Untreated controls were 

injected with HEPES buffer.  After 1 hour mice were euthanized and tissues were snap frozen in 

liquid nitrogen.  Tissues were homogenized in PBS;1% NP40 with Complete protease inhibitor 

(Sigma).  Samples were sonicated for 20 seconds at 18 Watts, spun down at 15,000g for 10 

minutes at 4oC, and the resulting supernatant was diluted 1:1 in Laemmli buffer.  Samples were 

gently boiled for 30 seconds to denature native IgG.  After electrophoretic protein separation 

using 4-15% Mini-Protean TGX Precast Gels (Bio-Rad) and transfer to an Invitrolon & 

Immobilon-P PVDF membrane, the membrane was blocked in Tris Buffered Saline with Tween 

20 (TBST) containing 5% nonfat dry milk for 30 minutes at room temperature.  Mouse anti-

puromycin clone 12D10 (Millipore MABE343) was applied at a concentration of 1:5000 in milk 

overnight at 4oC.  The membrane was washed in 3 times for 10 minutes each in TBST and anti-

mouse IgG Veriblot HRP (Abcam, ab131368) secondary anitbody was applied at a 

concentration of 1:1000 in milk for 1 hour at room temperature.  The membrane was washed in 

3 times for 10 minutes each in TBST and developed using Pierce ECL Western Blotting 

Substrate (Thermo Scientific).  Blots were then stripped and re-probed with 1:1000 rabbit anti-

mouse GAPDH (Sigma).  Relative intensities of puromycin-labeled protein smears were 

measured in Fiji/ImageJ and scaled to GAPDH.  Because some untreated animals showed 

significant non-specific signals at 100kDa and above, only the portion of the smear below 

100kDa was used for the analysis. 

 
Ribosome-tagging:  Our protocol was adapted from the University of Washington McKnight 

Lab Protocol (http://depts.washington.edu/mcklab/RiboTag.html).  All buffer recipes can be 

found here and were made fresh on the day of use.  All equipment used was made RNAse-free 

by spraying with RNase-Zap RNase decontamination solution (Thermo Fisher) and  rinsing with 

diethyl pyrocarbonate (DEPC) (Sigma)-treated water.  All reagents were made RNAse-free by 
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treating with 1:1000 DEPC overnight and autoclaving.  Mice were euthanized and spinal cords 

were removed within 1-2 minutes and snap frozen in liquid nitrogen.  Samples were stored at -

80oC until use.  Spinal cords were homogenized on dry ice using the Cryogrinder (POS 

Diagnostics) until a fine powder.  Powder was then transferred to a 2ml dounce homogenizer on 

ice and homogenized further in 1ml supplemented homogenization buffer.  Sample was 

transferred to a 1.5ml tube, sonicated for 20 seconds at 18 Watts, and centrifuged at 4oC at 

10,000 g for 10 minutes. Supernatant was transferred to a new 1.5ml tube and 50ul of washed 

Protein G Sepharose 4 Fast Flow beads (GE Life Sciences) were added and incubated for 1 

hour at 4oC with continuous mixing.  Samples were centrifuged at 5,000 g for 30 seconds at 

room temperature to pellet beads.  Supernatant was removed and added to 50ul of 

supplemented homogenization buffer containing 2ul Rabbit anti-HA antibody (4ul if first diluted 

in glycerol) (Sigma H6908).  Samples were continuously mixed at 4oC for 4 hours.  Magnetic 

Protein G Dynabeads (Thermo Fisher) were washed in supplemented homogenization buffer for 

15 minutes at 4oC with continuous mixing.  Wash was removed and antibody-tissue 

homogenates were added to the Dynabeads and allowed to incubate at 4oC overnight with 

continuous mixing.  The following day beads are washed with 800ul of high salt buffer 3 times 

for 10 minutes each at 4oC with continuous mixing.  350ul lysis buffer was added to the samples 

immediately after the final high salt wash and vortexed for 30 seconds. Samples were placed on 

a magnetic rack and supernatant transferred to a new tube.  Directions in the RNeasy Micro kit 

(Qiagen) were then followed exactly, starting with adding 350ul 70% ethanol to each sample. 

RNA was eluted in 14ul RNase-free water and stored at -80oC until sequencing.  

     Sequencing was analyzed using our standard Mouse Paired End RNASeq Analysis pipeline. 

The pipeline uses RSEM which aligns input reads against a reference transcriptome with Bowtie 

and calculates expression values using the alignments and summarizes the alignment metrics 

along with gene names and normalization values.  We then loaded the short reads into R using 

the Rsamtools package and counted the number of reads overlapping an annotated collection 
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of genes. Once transformed, the number of reads were counted that overlap genes, in each 

experimental condition, for each replicate. Next we combined them into a table of counts.  We 

then chose to use the scaling factor normalization method in edgeR as it preserves the count 

nature of the data and has been shown to be an effective means of improving DE detection.  

We calculated the normalization factors using the TMM method and then created a DGE object 

used by edgeR.  The scaling factor calculated using the TMM method is incorporated into the 

statistical test by weighting the library sizes by the normalization factors (which are then used as 

an offset in the statistical model).  To perform the statistical test for significance, we first 

estimated the common dispersion parameter.  Finally, we calculated the p-values for genes 

being DE tested=exactTest(disp). Constrained Regression Recalibration (ConReg-R) was used 

to recalibrate the empirical p-values by modeling their distribution to improve the FDR 

estimates. 

 
Unilateral sciatic nerve crush surgeries:  Mice were anesthetized with isofluorane and placed 

on a heating pad to maintain body temperature.  Opthalmic ointment was placed over the eyes 

and .5mg/ml carprofen was administered through subcutaneous injection at a dose of .1ul/10g 

body weight.  Hair was removed from the leg and the mouse was moved to a sterile surgical 

area.  The area of skin to be cut was cleaned with 70% ethanol and chlorhexidine diluted 1:256 

in water.  A 1-2mm incision was made in the skin directly below the femur.  Connective tissue is 

gently cleared away with forceps and the sciatic nerve is identified.  The nerve was crushed with 

forceps for 10 seconds, released, and crushed once more for 10 seconds.  The incision site is 

sutured and 1-2 drops of 2.5 mg/ml bupivacaine is administered to the wound site. Mouse is 

placed in a warmed cage and monitored until it returns to consciousness.   

 
RNA sequencing:  Mice were euthanized and spinal cords were immediately removed and 

snap frozen in liquid nitrogen.  See RiboTagging protocol for analysis methods. 
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RNAscope in situ hybridization:  Spinal cord: Mice were euthanized with CO2 and 

decapitated. Spinal cords were removed immediately with hydraulic extrusion.  Spinal cords 

were trimmed and a few millimeters of lumbar spinal cord was frozen on aluminum foil on dry 

ice. Dorsal root ganglia: Mice were euthanized using cervical dislocation and the entire vertebral 

column was excised.  The column was cut open and lumbar ganglia were removed and 

immediately frozen on aluminum foil on dry ice.   Spinal cord pieces or dorsal root ganglia were 

placed in a cryomold filled with OCT and frozen on dry ice.  Blocks were kept in an air-tight 

plastic bag at -80oC until sectioning.  12um cryosections were taken using a new box of 

Colorfrost Plus Slides (Fisher Scientific) and kept in an air tight bag at -80oC until further use.  

From this point, instructions in the RNAscope user manual for fresh frozen tissue (document 

number 320513) and then for the Fluorescent Multiplex Reagent Kit (document number 320291) 

were followed exactly.  As many as three transcripts were multiplexed at one time, and probe 

sequences were designed by RNAscope.  Single plane images were taken on a Zeiss 2 

Axioimager at 20x magnification and fluorescence was quantified as described above for 

FUNCAT experiments. 

 
NMJ immunohistochemistry and analysis of innervation status:   The entire gastrocnemius  

muscle was removed and placed in 4% paraformaldehyde for 1 hour and then rinsed once in 

PBS.  The soleus and plantaris muscles were then dissected free, flattened between two slides 

for 30 minutes in blocking solution (2% BSA in PBST), and blocked for an additional hour at 

room temperature.  To visualize postsynaptic acetylcholine receptors (AChRs) on the muscle 

cell surface, muscles were incubated with α-bungarotoxin conjugated with Alexa Fluor 594 (NMJ 

only) (1: 1000) (Molecular Probes) in blocking solution for 1 hour at room temperature. To 

visualize the nerves, the tissue was treated with a cocktail of the following antibodies: 1:500 

mouse anti-neurofilament (Sigma) and 1:250 mouse anti-SV2 (DSHB) in block overnight at 4oC.  

Muscles were then viewed at 40x magnification on a Nikon Eclipse 600 with DIC- Nomarski 
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optics.   In each muscle 100 NMJs were randomly viewed and classified as described previously 

(e.g (Seburn et al. 2006)).  Junctions where the nerve completely overlapped the AChRs on the 

muscle were defined as fully occupied, those with a portion of receptors clearly vacated by the 

presynaptic nerve were defined as partially occupied, and those with AChR plaques that had no 

associated nerve were defined as denervated. 

 
Axon Histology: The femoral nerves, which include both a motor and sensory branch (Scherer 

et al., 2005) were dissected free and fixed by immersion in 2% paraformaldehyde, 2% 

glutaraldehyde in 0.1M cacodylate buffer for 12 hours. Nerves were then plastic embedded, 

sectioned at 0.5 microns thickness, and stained with Toluidine Blue. Images were collected at 

40X magnification on a Nikon Eclipse 600 microscope with DIC- Nomarski optics. Images were 

analyzed for axon number using an automated method in Fiji/ImageJ that was manually 

confirmed by visual inspection of images for mis- identified axons. Axon diameter and myelin 

thickness were measured in Fiji/ImageJ with the Measure & Label Plug-in. 

 
Nerve conduction velocity: Nerve conduction velocity of motor and sensory axons of the 

sciatic nerve was measured. Mice were anaesthetized with 2% isofluorane and placed on a 

thermostatically regulated heating pad to maintain body temperature. Action potentials were 

produced by placing stimuli proximally at the sciatic notch and a pair distally at the ankle. When 

the proximal node was stimulated, the impulse traveled down the motor branch to the muscle. 

Compound motor action potential (CMAP), which is the summation of action potentials from a 

group of stimulated muscle fibers, was measured, as well as latency for the impulse to reach 

both proximal and distal stimuli. NCV was calculated as [conduction distance/(proximal latency-

distal latency)] (Seburn et al., 2006). 

 
Wire Hang Test:  A variation on the wire-hang test (Gomez et al. 1997; Rafael et al. 2000) was 

used to assess motor function starting at 4 weeks of age.  Briefly, mice were placed on a 6”x 9” 
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piece of wire mesh and then the mesh was inverted and held ~6” above a box filled with 

shavings.  The latency (seconds) to a fall was timed and recorded, up to a maximum of 1 

minute.  Each mouse performed 3 trials in a given session and a rest period of at least 30 s was 

given between individual trials.   

 
Statistics: All averaged numbers are reported at mean ± standard deviation (SD).  For all 

experiments except for RiboTagging or RNA sequencing, all pairs of genotypes were tested 

using a Students t-test. In all cases the statistical cutoff for declaring a significant difference was 

p<.05. 
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