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Degree of Master of Science
(in Chemical Engineering)

May 2019

On the surface, paper appears simple, but closer inspection yields a rich collection of

chaotic dynamics and random variables. Predictive simulation of paper product properties

is desirable for screening candidate experiments and optimizing recipes but existing models

are inadequate for practical use. We present a novel structure simulation and generation

system designed to narrow the gap between mathematical model and practical prediction.

Realistic inputs to the system are preserved as randomly distributed variables. Rapid �ber

placement ( 1 second/�ber) is achieved with probabilistic approximation of chaotic �uid

dynamics and minimization of potential energy to determine �exible �ber conformations.

Resulting digital packed structures, storable in common formats, return basic properties

and provide a �exible platform for subsequent analysis and prediction. Simulated results

are validated through comparison with experimental handsheet measurements. Good

agreement with thickness measurements are obtained and possible uses of simulated

structures for more enhanced property prediction are discussed.
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CHAPTER 1

INTRODUCTION

In the mature industries like papermaking, incremental improvements lead to large

advantages. Manufacturers compete to improve or maintain product performance and

pro�t margins. A growing selection of �bers, additives, and coatings leads to unlimited

potential recipes. Access to greater volumes of higher resolution information is a

competitive advantage.

Experimentation in a lab can be costly, time consuming, and messy. Furthermore many

experiments or measurements often require consistent human attention. This problem only

compounds with scale. While manufacturing facilities are at least mostly automated, in

depth experimentation with process conditions is rare. With these constraints it's not

usually feasible to fully explore the space of all input combinations. This makes

optimization by direct observation of process and property variables di�cult.

One mitigating approach to this challenge is to develop simulations capable of

predicting the relevant variables and optimize them directly. Where considerable time and

individual attention is required to collect large sets of lab data, simulation allows for

automatic generation of data limited only by the duration of the simulation and the

computational resources available. Simulations also allow for exploration of a wider range

of conditions than is feasible at manufacturing scale.

Technology provides a growing ensemble of instrumentation and techniques to probe

and predict the natural world. However, the internal mechanisms of many natural

processes are still not possible or practical to directly observe. Modeling and simulation

emerge as cost e�ective tools to unravel otherwise invisible connections. From observation,

�rst principles, and intuition, we can synthesize rules that extend to the unobservable. We

consider our models useful abstractions of real systems if they allow us to predict outcomes

in new situations, optimize inputs, or improve understanding.
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While accurate process scale simulation of gas and liquid chemical systems has been

e�ective for decades [1] [2], simulations involving solids remain problematic. In addition to

heterogeneity of possible structures and conformations, solid materials interact with each

other in complex and intractable ways. The formation of paper, for example, is a complex,

chaotic process in which a collection of randomly shaped and oriented �bers are separated

by �ltration from a liquid slurry. Fully simulating every �uid and particle dynamic during

the formation is almost inconceivably complex, however it happens in the real world in a

matter of seconds. Even if this system could be simulated for a meaningful area in a

human time scale it's highly chaotic and would exhibit a large degree of sensitive

dependence to inputs that are already randomly distributed by natural processes.

We describe a versatile framework to simulate the placement of particles and �exible

�bers. Random samples of �bers are generated from measured particle size distributions.

Chaotic �uid dynamics controlling particle placement are approximated using a �ux based

probability measure. The �nal conformation of the �exible �bers is determined by

optimizing a balance between the �ber curvature and distance from the forming surface.

We conclude by discussing strategies to connect simulation and physical property

predictions.

2



CHAPTER 2

BACKGROUND

Without providing a comprehensive review of particle packing literature, we highlight

simulation types across the spectrum of realism, introduce the concept of chaos and

probabalistic representations thereof, and provide a description of the open source

platforms used in the development of this work. A summary of simulation types is given in

Table 2.1.

2.1 Dynamic Packing Simulation

One possible approach to the study of paper structure formation is to collect detailed

mathematical descriptions of all relevant forces acting on all particles in the system and

solve the resulting equations of motion of the system through time.

2.1.1 Stokesian Dynamics

Stokesian Dynamics is an established technique to simulate the motion of multiparticle

systems subject to deterministic and stochastic forces. Particles are treated as rigid spheres

subject to hydrodynamic, interparticle, single particle, and brownian motion forces. Due to

the realistic treatment of forces, di�erent chemical, hydrodynamic, and even magnetic

e�ects can be studied in detail. Sand et al. [3] share a model using this technique to

describe the mobility and consolidation of small particles during the drying of a paper

coating and study the in�uence of various interactions on the drainage rate and packing

density. Although extremely detailed, the computation is costly, even for small systems.

Furthermore, reported results are limited to uniform or mixed size spherical particles and

use of the technique to place non-spherical particles is not clear at present. As a result the

method is not suitable for the study of paper sheet formation.

3



2.1.2 Flexible Fiber Consolidation

Lavrykov et al. [4] describe a detailed model for the rigorous simulation of sheet

formation and wet pressing. In the formation stage, �uid �ow around the �bers is governed

by the Navier-Stokes equations. Fibers are represented in this stage as chains of rigid,

cylindrical segments, subject to deterministic forces from the �uid and each other.

Di�erent sections of the forming machine are incorporated through the use of time varying

boundary conditions. Following formation, the jointed beams are replaced by realistic �ber

geometries de�ned by a �nite element mesh and the deformation of the �ber network

subject to mechanical forces is simulated. While the simulation is detailed and allows the

direct prediction of tensile strength using the same FEM analysis as the wet pressing,

computation time is costly. The author reports that the generation of a representative

sheet is completed in approximately six hours.

2.2 Chaos

As a motivation for the next class of models described, it is helpful to develop an

intuition for the mathematical connection between deterministic dynamical systems and

stochastic systems. The quickest path is to demonstrate the large e�ect small changes in

initial conditions can have on the trajectories of even simple dynamical systems. The most

famous example is the deceptively simple, recursive, discrete, dynamical system known as

the logistic map.

xk+1 = 4 xk (1− xk) (2.1)

Given an initial condition, X0, an in�nite sequence of points can be produced by

substituting the outcome on the left side of the equation into the map on the right.

Although equilibrium points and multi-period orbits exist, such rational numbers are not

possible to express in a �oating point decimal system. As a result, even when such initial

conditions are speci�ed, tiny errors propagate into an easily observable manifestation of

4



(a) Logistic Map Orbits xk Vs k (b) Histogram of Iterates and the Beta Distribution

Figure 2.1. The Logistic Map and Beta Distribution

chaos. This outcome is shown in Figure 2.1 for initial conditions of 0.50, analytically a

�xed point in blue, and 0.5001 in orange. The di�erence between the two orbits is plotted

in green. Despite the inherent unpredictability of individual orbits beyond the horizon of

chaos, chaotic attractors are bounded. In fact, any attractor can be represented using a

probability measure in that each point has a well de�ned probability of mapping arbitrarily

close to any other point in the interval. For this example, orbits of the logistic map are

shown to be beta distributed with parameters a = b = 0.5 [5].

While chaos is not present in every dynamical system, and although we present no

formal proof, it's presence in the formation of packed structures is easily apparent. Chaotic

�uid dynamics means exact replication of structures in the lab is impossible. However,

generation of exact structures is unnecessary if instead the distribution of possible

outcomes can be obtained. While the advantage of simulations described above lies in their

detailed representation of �uid and particle interactions, their computational complexity

prohibits their use in the exploration of a large experimental space. Additionally, sensitive

dependence on initial conditions and random inputs means a representative distribution of

outcomes is unlikely to be obtained in this way, motivating a more probabilistic approach.
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2.3 Random Packing

Simulations described in previous sections form packings through determination of the

trajectories of all particles in the system throughout formation. Motivated by a simple

example of chaos, we can instead consider the �nal resting place of each particle as a

random sample from the set of possible locations over the structure. The most naive of

such approximations assuming each particle has an equal chance of landing at any point in

the horizontal xy plane.

2.3.1 Voxel Methods

Byholm et al. [6] describe a volumetric pixel, voxel, based technique to generate

packings of particles with complex geometries. Their simulation is in a sense dynamic in

that it evolves through time in �xed length steps. Unlike previous simulations, particle

motion is entirely random. Particles are periodically introduced at the rising top boundary

of the simulation and allowed to translate and rotate a small random amount, subject to

collision detection, each time step. Particles who have not moved for some period are

frozen and no longer simulated to mitigate memory consumption. The computational cost,

both in time and memory, of voxel methods scales with the resolution of the 3-d simulation

grid. The authors report packing times of two hours for a grid size of 8003 although this

varies based on the number of particles to be simulated and their complexity. This class of

simulation, although most robust for complex particle geometries, is not suited to non-rigid

particles, and thus insu�cient for the simulation of paper �bers.

2.3.2 Analytical Models of Random Fiber Networks

An excellent review of analytical packing models, approached through statistical

geometry is given in [7]. Several results are shared for 3-d random networks, however the

theory for 2-d networks is substantially more developed. Many exact results for pore size,
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density, and �ber to �ber contacts are shared in terms of named probability distributions

for planar networks.

2.3.3 KCL-PAKKA

The KCL-PAKKA model, �rst described in 1994 [8] and in greater detail in 1997 [9]

and 1998 [10], has earned a reputation in literature for its e�cient generation of

representative paper structures. While dynamic, mechanistic simulations previously

described take hours, a PAKKA simulation was designed to take minutes, in the 1990's.

The PAKKA simulation's e�ciency stems from its simpli�ed forming rules and

representation of the �ber and sheet structure. The height pro�le of the sheet is

represented as a topographical surface and discretized into a grid. Instead of simulating the

entire network during formation, �bers, also discretized, are placed one at a time, with

uniform probability over the entire grid and with uniform, or otherwise distributed,

probability of in plane rotation. Given a �bers location, a slice from the topography is

extracted and the sheet height is updated at each element in the slice. The �nal height of

the elements of each �ber are determined by restricting the maximum di�erence between

adjacent elements and then allowing the height of each element of the �ber to decrease

until it reaches the height of the existing topography or reaches the maximum

displacement. Fines and �llers are incorporated by placing single elements on the grid such

that their mass fractions are consistent with real pulp. Once placed, �bers are �xed, and

dynamics beneath the surface of the forming structure are not considered.

Conceição et al. [11] present a cellular automata formulation of the PAKKA model

implemented in MatLab. A smoothing mechanism is included to simulate drainage. The

mechanism functions by rejecting, with a user de�ned probability, the location of a �ber if

its �nal height is greater than its neighbors.

There are numerous references to the usage of PAKKA structures for further simulation

as well. Bakhta et al. [12] study the seepage of ink into PAKKA structures using the
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Table 2.1. Summary of Simulation Types

Placement Strategy Realism Fibers

Stokesian Dynamics Dynamical Simulation High No
Finite Element Consolidation Dynamical Simulation High Yes
Analytical Methods Random Low Yes
Voxel Methods Random High No
KCL-PAKKA Random Moderate Yes

Complex Shapes Computation Speed

Stokesian Dynamics No Slow
Finite Element Consolidation Yes Slow
Analytical Methods No Fast for 2-d
Voxel Methods Yes Moderate
KCL-PAKKA No Fast

Lattice Boltzmann method. Aurela et al. [13] simulate transport of volatile compounds

through paper using representative structures generated by the PAKKA model.

While e�ective, the PAKKA model has several signi�cant drawbacks. First, no attempt

is made to incorporate the e�ect of drainage on the structure. Second, limiting the

displacement of adjacent �ber elements means the slope is limited and curvature is not

considered at all. If the �bers are supposed to be perfectly sti�, then the displacement is

limited to zero which means the �bers would be perfectly �at. In real systems, these �bers,

although in�exible would tip. This highlights an additional non-ideality. The assumed

length of the �bers placed is that of the horizontal �ber. When adjacent elements are

allowed to be displaced, even by a limited amount, the length of the placed �ber will be

longer than assumed.

The simulation described in the following chapters of this thesis most closely resembles

the PAKKA model. We maintain the process of evolving a 2-d topography to generate

detailed 3-d structures but the similarities end there. We derive a novel probability

measure to represent chaotic �uid dynamics and develop new bending rules that more

realistically represent the curvature of the �bers, displays more realistic behavior as

sti�ness increases in�nitely, and mitigates the elongation problem.
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2.4 Python and Open Source Scienti�c Computing Framework

The implementation platforms of previously described simulations span a wide

spectrum from FORTRAN to Commercial Finite Element Modeling Software. Integral to

the implementation of the new work described in the following sections is the scienti�c

computing stack. Requirements considered when choosing the simulation environment fall

under three categories, computation speed, implementation speed, open source access. This

requires the platform is stable, has an established, comprehensive support structure and

community for trouble shooting, and implements most necessary functionality.

The system described in this thesis was built from the ground up using only two open

source python packages, NumPy [14] and SciPy [15] [16] plus the Python language for core

computation, one open source Python package for two dimensional visualization and

analysis, MatPlotLib [17], and another open source software package, ParaView [18] for

rendering in detail the three dimensional �ber structures.

2.4.1 Python

Although languages like C++ or Fortran have a performance advantage compared to

Python, due to being a compiled language, projects can be implemented, and concepts

iterated, more rapidly in Python. Additionally, the Python language bene�ts from a large,

enthusiastic, open source community. Many performance advantages of compiled languages

disappear when Python's utility as a "glue" language is considered as well. Functions

requiring high performance can be implemented in lower level, more e�cient languages,

compiled and executed through Python allowing for both performance and implementation

speed. Many useful packages have been developed, tested, and vetted by the community

and are available for open source use with broad, if any license for derivative use. The

concepts developed in this thesis are implemented using Python and two such open source

packages.
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2.4.2 NumPy

NumPy provides a stable, e�cient, array structure and various functions for computing

with arrays. In addition to standard arithmetic element-wise and matrix operations,

NumPy includes an assortment of linear algebra, array creation and manipulation, random

number generation, and convenience functions. This simulation relies heavily on the array

structure, and breadth of available functionality to implement both the individual steps

and connecting framework described in the following chapters.

2.4.3 SciPy

While NumPy is su�cient, and more e�cient for most array operations, the SciPy

package provides a large set of scienti�c computing functionality including N-d

interpolation, root-�nding, numerical optimization, and statistical routines not

implemented by NumPy. Most established scienti�c computing algorithms, excluding

machine learning and neural network, are implemented in SciPy or are otherwise easily

implemented using SciPy functions. While NumPy provides the structure for the

simulation, e�cient optimization and interpolation are performed with SciPy functions.
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CHAPTER 3

PROBABILISTIC REPRESENTATION OF CHAOTIC FLUID DYNAMICS

While substantial insight is found through deterministic models, the mathematical

machinery describing particle �uid interaction inherently leads to sensitive dependence and

chaotic dynamics. Furthermore, the input �bers cannot be described except in terms of

randomly distributed variables. That is, the results of any one simulation represent a single

sample from a much richer underlying distribution. This is problematic for deterministic

simulations because it requires substantial repetition of potentially computationally

expensive experiments to elucidate the true diversity of the output space. Rather than

duplicate the dynamic process we seek to create a representation of the probability

measure of the �nal placements.

3.1 Derivation of Probability Measure

Consider a particle suspended in a �uid above an evenly spaced N ×N grid, depicted in

Figure 3.1. Let the particle be located randomly with equal probability anywhere in the

�uid. Now imagine that the initial volume of �uid is allowed to �ow through the grid.

Then the probability, pi,j, that the particle will pass through grid element i, j is

proportional to the �ow through that element. The probability the particle will pass

through one of the elements on the grid is given by:

Ni∑
i

Nj∑
j

pi,j = 1 (3.1)

Denote the �ow of �uid through the element i, j by Ji,j. Then the probability a particle

is found in a given grid element is:

pi,j =
Ji,j∑N

n=1

∑N
m=1 Jn,m

(3.2)

11



Figure 3.1. Particles Suspended Uniformly Above a Grid

This construction implies that the distribution of placement locations follows the

multinomial distribution with density function:

P (x|n,p) =
n!∏N

n=1

∏N
m=1 xn,m

N∏
n=1

N∏
m=1

pxn,m
n,m (3.3)

With the probabilities p as de�ned above. For a single particle n = 1 and the result is

extended to multiple independent particles by allowing n ≥ 1.

The result is used to simulate packed particle structure formation by assigning each

grid element a height Hi,j and allowing each particle to add to the height at their

respective elements. The �ow at each element is approximated by Darcy's Law:

Flux =
Driving Force

Resistance
= Ji,j =

∆P

α Hi,j

(3.4)
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Figure 3.2. Example Packed Particle Structure

Where Ji,j is the �ux, Ri,j is the resistance, and the driving force is pressure change,

∆Pi,j. Resistance is approximated as Ri,j = α Hi,j where α is cake resistance. Substituting

the expression for Ji,j into the expression for pi,j yields:

pi,j =
1

Hi,j

∑N
n=1

∑N
m=1

1
Hn,m

(3.5)

With the heights of the topography initialized to any positive number to avoid

unde�ned probabilities when Hi,j = 0. For simplicity let H0
i,j = 1. Figures 3.2 depicts an

example of a packed particle topography and Figure 3.3 shows the corresponding

placement probabilities computed by equation 3.5.

For large particles, covering many grid elements, the placement location of the center of

the particle is determined by sampling the above distribution with n = 1.

While this representation is not dynamic in the continuous sense; the placement of

�bers one at a time determines a "�ber clock", and the evolution of the topography is a

recursive, discrete, stochastic system.
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Figure 3.3. Placement Probability Topography

3.2 Simultaneous Placement of Many Small Particles

As mentioned in the previous section, the multinomial distribution can be used to

determine the placement location of many small (all dimensions less than the grid size),

independent particles. If there is an average of λ small particles per large particle, then the

number of small particles, n, placed between each large change to the topography, and

corresponding probabilities, can be approximated by the Poisson distribution with

parameter λ. That is, for each large particle placed n small particles may also be placed,

where n is a random, Poisson distributed, integer. Then, the multinomial distribution can

be used to determine the placement of each of the n small particles simultaneously. The

Poisson density function is given by:

P (n | λ) =
λn e−λ

n!
(3.6)

Particles assigned to the same element are treated as being locally continuous so that

the height change at the element is given by the sum of the volume contributions of the
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small particles divided by the area of the element. If the volume contributions of the small

particles are exponentially distributed with mean particle volume, v̄, then the particle

volume density function is given by:

f(vp) =
1

v̄
e

vp
v̄ (3.7)

The sum of identically exponentially distributed variables is gamma distributed, with

shape parameter equal to the number of exponential variables, n, in the sum and scale

equal to v̄ with the density function:

f
(∑

vp

)
=

1

Γ(n)v̄n

(∑
vp

)n−1
e

∑
vp
v̄ (3.8)

By treating small particles as locally continuous and calculating their placement

contributions, thousands or millions of small particles can be incorporated into the

structure with minimal additional computation.
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CHAPTER 4

MINIMIZATION OF FIBER POTENTIAL ENERGY

In this model the �nal conformation of the �ber to the existing structure topography is

determined, for a given placement location, by minimizing the potential energy of the �ber

at that location.

4.1 Derivation of Minimization Problem

In the xz plane, where x, z correspond to the �ber's axial dimension and the vertical

dimension, consider a twice di�erentiable function z(x) representing the pro�le of the

maximum height of the bottom surface of the �ber and a piece-wise function h(x)

representing the height pro�le of the existing structure's surface (in the �ber's frame of

reference) where z(x) ≥ h(x).

Let the �ber be represented by a sequence N of elastically connected point masses

equally spaced in x with height pro�le z(x) suspended above a topography with height

pro�le h(x).

Then the potential energy of each point i = 1, 2, ...N is the sum of the gravitational and

elastic potential energies at the point.

Gravitational potential energy, PEG
i , of each point relative to the topography surface is:

PEG
i = ρ g (zi − hi) (4.1)

Where ρ is the density of the �ber and g is the gravitational acceleration constant.

Additional potentials (Such as pressure) can be applied similarly.

Elastic Potential Energy at each point, PEE
i , is proportional to the squared curvature

of the height pro�le at that point. The �nite di�erence method to approximate curvature is

given by:
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Figure 4.1. Schematic of Model Fiber

z′′i =
2zi − zi−1 − zi+1

∆x2
(4.2)

Then the elastic potential energy at each point of the �ber is:

PEE
i =

k

2 ∆x4
(2zi − zi−1 − zi+1)

2 (4.3)

Boundary conditions are handled by specifying z0 = 2z1 − z2 and zN+1 = 2zN − zN+1

where the points z0 and zN+1 are only invoked to compute the curvature at z1 and zN and

do not represent elements of the �ber.

Then the total potential energy of a �ber:

PET ∝
N∑
i=1

(PEG
i + PEE

i ) = ρ g

N∑
i=1

zi − ρ g
N∑
i=1

hi +
k

2∆x4

N∑
i=1

(2zi − zi−1 − zi+1)
2 (4.4)

=⇒ PET ∝ f(z) =
N∑
i=1

zi +
σ

∆x4

N∑
i=1

(2zi − zi−1 − zi+1)
2 (4.5)

Where f(z) is the objective function for minimization and σ = k
2 ρ g

represents the

sti�ness of the �ber.
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Figure 4.2. Optimized Fibers of Various, Increasing Sti�ness (Green, Red, and Black)
Suspended Over a Slice of the Topography (Blue).

To summarize, �ber placement is the minimization of f(z) where z is bounded from

below by h. The vector z represents the true height pro�le z(x) evaluated at x where x is a

vector of N equally spaced elements along the particle axis. Similarly, h = h(x), where

h(x) is the extant topography below the �ber.

The cost function f(z) is the sum of only convex terms so is convex. Furthermore,

because each element zi can be any value greater than or equal to hi for all elements i, the

feasible set is also convex, so any minimum is the global minimum.

Practically, the bounded minimization is performed in the Python SciPy package [16]

using the minimize function with the 'L-BFGS-B' [19] method. Providing the Jacobian of

the cost function, ∇f(z), rather than relying on internal approximations, substantially

improves performance and guarantees convergence to the global minimum. Figure 4.2

shows the optimization solution for three di�erent, increasing, sti�ness green, red, and

black, placed onto a slice of the topography in blue.
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The jth element of the Jacobian is given by:

∂

∂zj
f(z) =

∂

∂zj

N∑
i=1

zi +
∂

∂zj

σ

∆x4

N∑
i=1

(2zi − zi−1 − zi+1)
2 (4.6)

For j = 3, 4, ...N − 2

= 1 +
σ

∆x4
∂

∂zj

j+1∑
j−1

(2zi − zi−1 − zi+1)
2

= 1 +
σ

∆x4
∂

∂zj

(
(2zj−1 − zj−2 − zj)2 + (2zj − zj−1 − zj+1)

2 + (2zj+1 − zj − zj+2)
2
)

∂

∂zj
f(z) = 1 +

σ

∆x4
(2zj−2 − 8zj−1 + 12zj − 8zj+1 + 2zj+1) (4.7)

Similarly, applying the boundary conditions, z0 = 2z1 − z2 and zN+1 = 2zN − zN−1,

yields:

∂f(z)

∂z1
= 1 +

σ

∆x4
(2z1 − 4z2 + 2z3) (4.8)

∂f(z)

∂z2
= 1 +

σ

∆x4
(−4z1 + 10z2 − 8z3 + 2z4) (4.9)

and,

∂f(z)

∂zN
= 1 +

σ

∆x4
(2zN−2 − 4zN−1 + 2zN) (4.10)

∂f(z)

∂zN−1
= 1 +

σ

∆x4
(2zN−3 − 8zN−2 + 10zN−1 − 4zN) (4.11)

Expressing the problem in matrix form to reduce computational cost:

f(z) =
∑

(z) +
σ

∆x4

∑
(A z)2 (4.12)

and
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∇f(z) = 1 +
σ

∆x4
B z (4.13)

With:

A =



0 0 0 0 0 . . . 0

−1 2 −1 0 0 . . . 0

0 −1 2 −1 0 . . . 0

. . . . . . . . . . . .

. . . 0 −1 2 −1 0 . . .

. . . . . . . . . . . .

0 . . . 0 −1 2 −1 0

0 . . . 0 0 −1 2 −1

0 . . . 0 0 0 0 0



(4.14)

and:

B =



2 −4 2 0 0 0 0 . . . 0

−4 10 −8 2 0 0 0 . . . 0

2 −8 12 −8 2 0 0 . . . 0

. . . . . . . . . . . .

. . . 0 2 −8 12 −8 2 0 . . .

. . . . . . . . . . . .

0 . . . 0 0 2 −8 12 −8 2

0 . . . 0 0 0 2 −8 10 −4

0 . . . 0 0 0 0 2 −4 2



(4.15)

4.2 Limiting Behavior as Sti�ness Increases

Let zmin be the solution to the optimization problem described previously, and let

zmin(x) be the corresponding height pro�le of the bottom of the �ber.
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As sti�ness increases in�nitely the curvature term of the cost function must tend to

zero in order to maintain balance with the height term:

σ →∞ =⇒
∑

(A zmin)2 → 0 (4.16)

Since

A zmin ≈ z′′min(x) =⇒ z′min(x) = constant (4.17)

At the limit, where the �ber is perfectly sti�, the slope is constant and the line z(x) is

speci�ed for all points in x with only two degrees of freedom representing the slope and

intercept.

Let z1 = z(x1) and let zN = z(xN)

Then

z(x) =
zN − z1
xN − x1

(x− x1) + z1 (4.18)

=⇒ f(z) =
∑

z =
zN − z1
xN − x1

∑
(x− x1) +

∑
z1 (4.19)

let x̄ = 1
N

∑
x and let z̄ = 1

N

∑
z

=⇒ z̄ =
zN − z1
xN − x1

(x̄− x1) + z1 =
1

2
(zN + z1) (4.20)

Minimizing
∑
z is then equivalent to minimizing z̄, which is equivalent to minimizing

g(z1, zN) = z1 + zN .

Since the inequality z ≥ h must still be satis�ed, the problem becomes a constrained

optimization problem. Constraints are expressed in matrix form:

X

zN
z1

− h ≥ 0 (4.21)

Where:
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Figure 4.3. Fibers of Increasing Sti�ness (Blue) and Perfectly Sti� Fiber (Red)

X =



0 1

x2−x1

xN−x1

(
1− x2−x1

xN−x1

)
. . . . . .

xi−x1

xN−x1

(
1− xi−x1

xN−x1

)
. . . . . .

xN−1−x1

xN−x1

(
1− xN−1−x1

xN−x1

)
1 0



(4.22)

The problem is solved in Python with the minimize function from SciPy optimization

package using the "SLSQP" method [20]. The limiting case is depicted in Figure 4.3.
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Figure 4.4. Schematic of Fixed Length Model Fiber

4.3 Sti� Fibers of Fixed Length

While the potential energy minimization method and limiting behavior described in the

previous sections are convenient abstractions of real particles, they are not entirely realistic.

Consider the perfectly sti� case; as Zn − Z1 is increased the �ber becomes elongated with

the magnitude of elongation dependent on the random topography beneath the �ber. The

elongation increases without convergence as more �bers are added to the structure. By the

previous construction the �ber spans all x points of the below topography. In order to

mitigate the elongation, the length of the �ber is �xed at b. The changes in z and x from

one end to the other of a �ber rotated θ degrees relative to the topography plane are then:

∆Z = b sin θ (4.23)

∆X = b cos θ (4.24)

Let (X1, Z1), (XN , ZN) represent the coordinates of each end of the �ber related by:
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ZN = Z1 + ∆Z (4.25)

XN = X1 + ∆X (4.26)

The previous cost function in terms of Z1 and θ is then:

g(Z1, θ) = Z1 + ZN(Z1, θ) = 2 Z1 + b sin θ (4.27)

The height pro�le of the bottom of the �ber is de�ned for all elements in x by:

Zbot (x) =

 tan(θ)(x−X1) + Z1 X1 ≤ x ≤ XN ,

h(x) Elsewhere
(4.28)

Where Zbot(x)− h(x) ≥ 0. For X1 ≤ x ≤ XN , the piecewise height pro�le represents the

particle's bottom surface. Otherwise Zbot(x) is set equal to h(x) to satisfy constraints at

points that do not represent the particle.

Fixing the �ber length means that, as the �ber is rotated from horizontal to vertical,

it's image onto the topography below is changed. This changes the constraints of the

problem in random way, consistent with the random topography below. When the �ber is

horizontal more points are included in the speci�cation of constraints, when the �ber is

vertical, less points are included. Because the topography can be multimodal,

circumstances arise where the feasible set of placements of an initially vertical �ber is

disjoint from the feasible set of placements of an initially horizontal �ber. For example,

consider a hole large enough for a vertically oriented �ber to pass through but small

enough block horizontally orient �bers. As a result, the solution space to the minimization

problem is no longer convex. Furthermore, if the particle is rotated 90◦ in either direction

the bottom surface of the particle is de�ned by a single point (xbot, Zbot(xbot)). If xbot /∈ x,

then g is unbounded from below. Introducing height pro�les for all sides of the particle and

setting the grid size less than the smallest dimension particle size ensures the �nal

placement is realistically constrained by the topography. The top, left, and, right height
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Figure 4.5. Z Pro�les for Each Side of the Fiber Used for Constrained Optimization

pro�les are given below. An depiction of the height pro�les of all four sides plus the

underlying topography is shown in Figure 4.5.

Ztop (x) =

 tan(θ)(x−X1 −∆x) + Z1 + ∆z X1 + ∆x ≤ x ≤ XN + ∆x,

h(x) Elsewhere
(4.29)

Zleft (x) =


−1

tan(θ)
(x−X1) + Z1 min(X1, X1 + ∆x) ≤ x ≤ max(X1, X1 + ∆x),

h(x) Elsewhere

(4.30)
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Zright (x) =


−1

tan(θ)
(x−XN) + ZN min(XN , XN + ∆x) ≤ x ≤ max(XN , XN + ∆x),

h(x) Elsewhere

(4.31)

Where:

∆z = a cos
(π

2
+ θ
)

(4.32)

∆x = a sin
(π

2
+ θ
)

(4.33)

And:

(Ztop(x), Zleft(x), Zright(x))− h(x) ≥ 0 (4.34)

Additionally, X1 is allowed to vary and the following constraints are applied:

X1 ≥ 0, (4.35)

xmax ≥ XN , (4.36)

X1 + ∆x ≥ 0, (4.37)

xmax ≥ XN + ∆x (4.38)

Since the problem is no longer convex, a local solution is obtained, again using the

SciPy "SLSQP" method, with an initial guess determined by centering the �ber along the

line de�ned by the solution to the sti�-convex problem de�ned in the previous section.
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CHAPTER 5

DESCRIPTION OF PACKING ALGORITHM

The probability measure and optimization techniques described in previous chapters

allows for the rapid determination of �ber placement location subject to chaotic �uid

dynamics and optimization of the �nal �ber conformation for individual �bers given an

existing topography. This chapter describes the connecting framework used to evolve the

topography from an initial state to the �nal structure.

5.1 De�nition of Topography

The �rst step to the simulation is to de�ne an empty topography. For simplicity

consider only square topographies. Given a side length and number of elements per side L

and N , a topography is generated represented by 3 N ×N matrices for the coordinates

(X, Y,H), representing a grid of N ×N points on the surface of the simulated paper. That

is each i corresponds to a value Xi,j=1...N , and j corresponds to a value Yi=1..N,j, and Hi,j

represents the height at each i, j =⇒ X, Y pair. Each Hi,j is initialized to 1. The

topography is updated with the placement of each macro-�ber and the placement of �bers

is dependent only on the topography in its most current state. A depiction of the

topography grid is shown in Figure 5.1.
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Figure 5.1. Topography Mesh Grid

5.2 De�nition of Filtration Media

Although an empty initial topography is compatible with the simulation methodology,

it may occasionally (for example in a study of the retention of �ne particles or screen

fouling) be desirable to study the e�ect of di�erent �ltration substrates on sheet or

processing properties. In these cases, the topography is initialized with H set to an initial

thickness greater than 1 at corresponding elements. For example, a simple screen geometry

is shown in Figure 5.2. Given any initial topography, �ber placement proceeds as normal.

28



x-axis

y
-a
x
is

Figure 5.2. Simple Screen Geometry

5.3 Selection and Extraction of Slice

Following the speci�cation of an initial topography, the algorithm proceeds placing

�bers one at a time by selecting the placement location of a �ber, determining its �nal

conformation, updating the topography, and repeating with a new �ber until the desired

number of �bers is placed. The topography of a packed �ber structure is depicted in

Figure �g:�ltercake-1.
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Figure 5.3. Example Packed Structure Topography

For each �ber, the next step is to locate and extract a slice on which to place a �ber.

Like the topography a �ber is represented by 3 matrices for the coordinates of the bottom

surface of the particle. However, each i, j pair represent points in the particle frame of

reference Xp, Yp. The coordinates are transformed into the topography frame of reference

using an a�ne transformation by:

A× (vec(Xp), vec(Yp), vec(Zp))

With Zp initialized to 1 where A is the matrix representing the a�ne transformation

implied by the grid element sampled from the probability measure de�ned in chapter 2

and, for simplicity, a normally distributed angle of rotation, φ.

A =


cosφ −sinφ ∆x

sinφ cosφ ∆y

0 0 1


Figure 5.4 and Figure 5.5 depict the image of the �ber in the topography frame of

reference and the corresponding slice of topography heights.
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Figure 5.4. Fiber Points in the Topography Frame of Reference

Figure 5.5. Extracted Slice

5.4 Placement of Particle

Once a slice is extracted the conformation of the �ber is determined by taking the

maximum along the short axis of the slice and optimizing the placement of a �ber along

the slice using a combination of the methods described above, depicted in Figure 5.6. First,
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the solution to the limiting problem is found (thin blue line). This solution is used as a

guess for the �xed length problem (orange points). Finally, the solution to the �xed length

problem (green points) de�nes the domain used in the original minimization problem

described for curved �bers (thin red lines). The �rst problem provides very good guess for

a realistic solution to a local minimization of the �xed length problem. The �xed length

problem is used to bound the elongation of �bers in the structure to an acceptable level.
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is

Figure 5.6. Optimization Process for Fiber Placement

After the solving for the curvature of the �ber at each point along its long axis the

height along the short axis is set equal at each point. In order to place the �ber onto the

current topography, the coordinates computed during the slice selection and extraction
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step need to be digitized back to corresponding elements i, j in the topography grid. While

this step seems trivial it results in nuisance perforations due to rounding errors that are

di�cult to remove with simple arithmetic and otherwise require an unacceptable increase

in grid elements. Fortunately, the SciPy Package contains an implementation of the grey

closing algorithm, as implemented in SciPy [16], which is used as a �nal step to �ll in

elements. The result of the operation for an example �ber is shown in Figure 5.7. Once the

perforations are removed, the height of the topography is updated at corresponding points.

(a) Perforated Fiber (b) Fiber after Grey Closing

Figure 5.7. Before and After Grey Closing Operation
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Exploring Single Structure Results

Simulated structures are handled in two di�erent ways, as a topography matrix, and as

a list of points de�ning the �bers. Descriptive statistics and other quantities are computed

from both as post processing steps. The topography can be visualized as a bitmap and the

list of points can be rendered in a 3-d plotting software.

As described in previous chapters, the placement of each additional �ber is dependent

on the existing structure only through the topography matrix. The topography is a

collection of jointly randomly distributed surface heights. This is a natural and e�cient

representation of the structure and yields many useful results for direct analysis. The

median height of the non-zero elements approximates the thickness of a corresponding

lab-made handsheet, which can be used to approximate the bulk or density of the

structure. The total area of topography elements with height equal to zero can be

computed for later relation to permeability. The standard deviation of the height can be

related to roughness and gloss. Generated topographies are visually realistic as seen in the

topographies for low and high basis weights and �exible and sti� �bers shown in Figure 6.1.

Corresponding histograms of the topography surface heights are shown in Figure 6.2.
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(a) Flexible Fibers Low Basis Weight (b) Flexible Fibers High Basis Weight

(c) Sti� Fibers Low Basis Weight (d) Sti� Fibers High Basis Weight

Figure 6.1. Varying Basis Weight and Flexibility: Topographies
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(a) Flexible Fibers Low Basis Weight (b) Flexible Fibers High Basis Weight

(c) Sti� Fibers Low Basis Weight (d) Sti� Fibers High Basis Weight

Figure 6.2. Varying Basis Weight and Flexibility: Surface Height Histograms

The topography matrix, though informative, is incomplete and many quantities need to

be computed from a more complete structural representation. The height pro�le of the

bottom and top surfaces, determined through the process described in chapters 3 and 4, is

stored for each �ber, along with the height of the underlying topography, the curvature of

the point. The detailed data allows for more descriptive analysis and visualization of the

structure. As described in the original paper [9], pores, and associated pore size

distributions, are di�cult to de�ne in closed form. Some work exists to de�ne and quantify

pore geometry of digital porous structures but such an analysis was not attempted during

the completion of this project. Instead, each pore is de�ned as the vertical space between

two �bers and is computed for each element of each �ber placed by taking the di�erence

between the height of the bottom of the �ber and the height of the topography at each
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�ber element. The spatial distribution of �ber to �ber connections for a low basis weight

structure and the and spatial pore size distribution of a high basis weight structure are

depicted in Figure 6.3.

(a)Low BW Fiber-Fiber Contacts, Top (b)Low BW Fiber-Fiber Contacts, Side

(c) High BW Pore Distribution, Top (d) High BW Pore Distribution, Side

Figure 6.3. 2-Dimensional Depiction of 3-Dimensional Fiber Connection Network and Pore

Network

6.2 Exploration of a Simple Fiber Space

Although visualization enhances intuition, which is necessary for model development, it

cannot be used as a standalone prediction technique. Although the input space is designed

to process a much wider range of �ber property distributions and mixtures, here, we

restrict our attention to �bers with single valued properties and explore the baseline e�ect

of basis weight, �exibility, �ber density, �ber length, and grid resolution. Similarly,
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although the resulting structures are designed to provide broad perspective for future use

in property prediction, we restrict our attention to the thickness of the structure since it is

easily computed and can be directly compared with experimental measurements for

calibration. Given the size of the available experimental space, more work is necessary to

understand the full range of structures, available in the output space and their

corresponding properties. Here, we share an informal calibration of the model to

experimental thickness data.

Experimental data was collected over the summer of 2018 by Bangor High School

STEM students Maddie Ahola and Reya Singh. Over one hundred handsheets of various

compositions and basis weights were created based on the TAPPI procedure and tested for

relevant properties, including thickness, tensile, gurley, mass, opacity, and color. Mixtures

were composed of variable compositions of 2 of each of disintegrated bleached softwood

pulp, disintegrated paper towels, and calcium carbonate.

The goal of this calibration is to determine the property range of a single

pseudo-component that can provide good agreement with experimental results. As the

composition of the handsheet is changed, the mean density, �exibility, and �ber length

changes, as well as the �nes composition. Fiber and �ne size distributions and

compositions as well as coarsity for the pulp and paper towel �bers were measured using a

MorFi instrument. Although these measurements are generally representative of the source

from which they were sampled, numerous challenges exist when sampling solid liquid

systems. Primarily, due to the randomness of solids liquid systems, the sources sampled are

not necessarily homogenous. When samples for MorFi analysis are prepared they are

diluted several orders of magnitude to enable counting and analysis of each individual �ber.

Particularly problematic during sample preparation is the settling of denser particles. For

example, a sample might undergo 3 consecutive dilutions where 100 mL of pulp slurry at

1.2 percent solids is diluted to about 1 L, a 100 mL sample is taken, and the process

repeated until a solids concentration of 0.002 percent is achieved, with the resulting solids
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concentration at each step an order of magnitude lower than the �rst. Each time the

sample is diluted to 1000 mL and the subsequent 100 mL sample is drawn from the top.

This means that the most rapidly settling �bers will not end up in the sample measured by

the MorFi. This is problematic as the MorFi yields an arti�cially low estimate of density.

Given the likely presence of errors in the measurements, �ber properties should not be

taken as �xed values and are varied within the range of measurements observed to best �t

the data.

At this time, to avoid confounding results with many changing variables, we exclude

�ne particles, and the particle size distribution and simulate a single �ber with single

valued properties. Unless otherwise speci�ed, model input parameters are as follows. For

all simulations a side length of 1 mm was used. Mean length weighted length, width and

height, of �bers were determined using a MorFi instrument as 0.633mm and 0.02mm

respectively. Fiber density was assumed similar to cellulose, 1.25 10−3, which lies in the

middle of the range of densities measured by the MorFi. The number of grid elements was

held constant at 200 elements implying a resolution of 1/200. The �exibility is not

measured experimentally and must be determined by adjusting the model parameters so

that results best �t the data. Flexibility is scaled by resolution so it can be compared

consistently across grid sizes. A �exibility of (1000mm2)(Resolution4mm−4) yields a

reasonable estimate of the lower limit of experimental data given the other parameters

speci�ed in this paragraph.

Four sets of simulated experiments are performed, varying basis weight and �exibility,

varying basis weight and density, varying basis weight and �ber length, and varying basis

weight and grid resolution, with the remaining variables speci�ed as above. For each

experiment 4 di�erent basis weights, (mass per unit area) are considered,

(2.5, 6.67, 10.83, 15)× 10−5 gm
mm2 . For each basis weight, four conditions are simulated for

each experiment as follows:
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Flexibility : (1000, 214000, 427000, 640000)mm2 ×Resolution4mm−4

Density : (0.00035, 0.00095, 0.0015, 0.002)
gm

mm3

FiberLength : (0.1, 0.4, 0.7, 1.)mm

Resolution : (1/200, 1/400, 1/600, 1/800)mm

(a) Varying Flexibility (b) Varying Density

(c)Varying Fiber Length (d) Varying Grid Resolution

Figure 6.4. Median Thickness of Structure (mm) Vs Basis Weight (10−5× gm
mm2 ), Colored

by Secondary Variables
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(a) Varying Flexibility (b) Varying Density

(c)Varying Fiber Length (d) Varying Grid Resolution

Figure 6.5. Structure Simulation Times (Seconds) Vs Basis Weight (10−5× gm
mm2 ), Colored

by Secondary Variables

From Figure 6.4, experimental thickness results fall within the range of the simulated

results, using ranges estimated by MorFi and adjusting only the �exibility, demonstrating

�ber input parameters can be calibrated for prediction purposes. Notable is the simulation

speed. Richly detailed structures are generated on the order of a minute or less. Simulation

times for the conditions represented in Figure 6.4 are shown in Figure 6.5.

Not surprisingly, basis weight, �exibility and density play large roles in determining the

thickness of a sheet. The relationship with basis weight appears mostly linear, with
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thickness approaching zero as basis weight approaches zero. Although not rigorously

quanti�ed here, the limiting behavior, when a single �ber remains is determined by the

density of the �ber. Fibers with lower density occupy larger volume and therefore

contributing more to the sheet thickness per basis weight than less dense �bers. Similar to

basis weight, sheet thickness appears to vary linearly with �ber density. Flexibility changes

the curvature of the change in basis weight versus sheet thickness. More analysis is

necessary to understand this relationship.

Results show simulated structures are a�ected only modestly by the grid resolution.

This means many screening studies can be performed at a coarse resolution, then, the most

promising recipes can be studied in greater detail with �ner resolution.

6.3 Repeatability

Using a �ber density of 0.00095 gm
mm3 , �exibility of 1000mm2 ×Resolution4mm−4, Fiber

length of 0.663mm, resolution of 1/200mm, 1000 simulations were executed at both

10−5× 40gm/m2, and 10−5× 120gm/m2. Histograms of the results are shown in

Figure 6.6 with the high basis weight in blue and the low in orange. Notice that the

variance increases as well as the mean with most quantities as basis weight is increased.
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Figure 6.6. Repeated Simulations at the Same Conditions for High Basis Weight (Blue)

and Low Basis Weight (Orange).

6.4 Elongation

As mentioned in chapter 4, one unrealistic e�ect of the model is the elongation

experienced by each curved �ber. The elongation e�ect is e�ectively a map where the

length of the placed �ber is determined by the input length, underlying topography, and

sti�ness.

bact = f (binput | h, σ) (6.1)
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If the function mapping the desired length to the actual length could be determined, or at

least approximated, then the relationship could be inverted allowing for the direct

determination of the input length that yields the desired target length. Although we

concede that the elongation e�ect is unrealistic, results show the elongation e�ect is

minimal when the �ber is sti� and tolerable when �exible. Figure 6.7 and Figure 6.8 depict

results for the elongation of �exible and sti� �bers respectively. The x-axis represents the

length of a perfectly �exible �ber were it to be placed on the same slice, and the y-axis

represents the length of the �ber actually place.d
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Figure 6.7. Elongation of Flexible Fibers in a Single Structure
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Figure 6.8. Elongation of Sti� Fibers in a Single Structure
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6.5 E�ect of Probability Measure on Packing

As discussed in chapter 3, a novel probability measure is implemented to simulate the

e�ect of �ltration �uid dynamics during sheet formation. Initializing the height of the

topography to di�erent values changes the placement probability measure. When the initial

heights are very low, close to the machine precision, the probability of a particle being

placed on an empty grid cell is substantially higher than if the heights are initialized at one.

As the initial height is increased, the probability measure governing particle placement

becomes the uniform distribution. Figure 6.9 shows the e�ect of the initial height, and thus

uniformity of the placements, on the sheet thickness. Although the median thickness of the

structure changes little, the open area of the topography varies more substantially. Sheet

open area versus log of initial height is shown in Figure 6.10. This suggests the e�ect on

sheet formation is more subtle and likely a�ects the �ber and pore networks themselves.

Although not studied here, it seems that changing the uniformity of the probability

measure would most heavily in�uence the placement of small particles as large particles

cross many elements of the sheet, negating an e�ect of changing probabilities.
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Figure 6.9. Median Sheet Thickness Vs Log of Initial Height
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Figure 6.10. Sheet Open Area Vs Log of Initial Height

The probability measure derived in chapter 3 represents a simple methodology by which

to encode the result of a chaotic dynamical system in a compact form. Despite the

simplicity of application, yet powerful descriptive capability, the model is an idealization of

a real process. While we assume the �ux through each element is dependent only on height,

reality is more complex. While the model only considers �ux orthogonal to the topography,

the true �ow characteristics are far more an-isotropic. That is, planar as well as orthogonal

�ows occur in the structure, and �uid moves through a tortuous path from the top of the

sheet to the bottom. Consideration of such �ows would add an order of magnitude of

complexity to the model. One of the primary advantages and computational features is the

storage of the entire process history using only the topography matrix. Because each step

is only dependent on the surface heights, planar �ows are not considered.

An additional non-ideality is the treatment of each element as essentially independent

of its neighbors. Although the probability at each height is in�uenced by the rest of the

structure through its relative proportion, it is not directly in�uenced by its neighbors. In

real systems, �ow at a point would be in�uenced by the height at its own element as well

as neighboring elements. For example, consider an element with height 1 surrounded by

points each with height H > 1 and a point with height 1 surrounded by points each with
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height H = 1. In this situation, the element surrounded by neighbors with greater height

represents a more restricted ori�ce for �uid �ow than the open pore with open neighbors.

If the total normalizing term is the same in both situations then, realistically, the �ow

should be higher at the open pore than at the restricted pore. To this end, numerous

probability constructions could be derived that make use of neighboring information. The

simplest strategy being the use of a uniform �lter that takes the average of neighboring

points. Despite the simplicity of this strategy it adds a new �tting parameter, the window

size, to the model.

6.6 Demonstration of Model Capabilities

Although not fully explored at present, the simulation framework was designed to

handle the full range of variability found in real paper inputs. Capabilities developed but

not experimented with are shared here. Figures 6.11 to 6.15 depict in full three

dimensional detail the proof of concept results for various simulated conditions

representative of real paper.
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Figure 6.11. Random Fiber Dimensions. Real paper �bers do not have single valued
properties and instead each �ber comes from a distribution of possible properties. The
simulation allows for the placement of �bers with a large range of potential properties.
Each individual �ber is stored as a row in a table and placed one at a time by the

simulation. Any reasonable list of �bers can be provided, such as a random sample from a
known probability distribution. A normal distribution is used to generate the sample of

�bers pictured above.
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Figure 6.12. Mixed Fiber Types (Mixed Flexibilities Shown). Similar to randomly
distributed �ber properties, �bers of di�erent types can be mixed. This includes �bers with

single valued properties, or two �ber types with di�erent random physical property
distributions. It is also possible to build di�erent layers by using a previously generated

topography as the starting point for a new structure.
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Figure 6.13. Fines, Top View. As described in chapter 3, the placement of many small
particles, �nes, can be accomplished simultaneously.
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Figure 6.14. Fines Bottom View. This �gure demonstrates how the system might be used
to simulate �ne retention through sieving.
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Figure 6.15. Fines With Fibers Removed. This �gure shows the spatial distribution of �ne
particles retained by the structure.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

This work makes several notable advancements. The probabalistic representation of

�ltration and the multinomial model for the simultaneous placement of many �nes

described in chapter three have not previously been used to describe paper sheet formation.

The technique adds realism to random particle placement simulations by representing the

chaotic dynamics and realism to inputs by providing an e�cient way to incorporate

thousands of small particles into the structure simultaneously. The curvature minimization

method for �ber placement is previously undescribed and enhances the realism of the

PAKKA model with small additional computation. The additional realism yields good

agreement with lab measured thicknesses suggesting additional property prediction is

promising. Furthermore, the implementation described here achieves a balances of speed

and realism heretofore unseen in the �ber packing literature.

Most generally, results show that a collection of simple rules can lead to large varieties

of rich structures resembling those found in nature. This suggests complex models may be

unnecessary to make useful predictions about the distribution of outcomes of chaotic

systems if the right rules can be determined. Time spent developing and upgrading a

model needs to be weighed against bene�t relative to other activities like experimentation.

Although more realism is desirable it may not appreciably enhance prediction. Addition of

many capabilities allows for �ne tuned di�erentiation between structures but unraveling

many interconnected relationships inhibits timely practical prediction. Given some mild

calibration capability, as long as the simulations yield distinct structures when their real

world counterparts exhibit distinct properties it is not critical, but still desirable, for

simulation to identically replicate experiment.

Possibly the primary constraint on realism is computation time. Many �uid and

particle dynamics can be explained through �rst principles but this requires already
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complicated partial di�erential equations of �uid �ow to interact with dynamic complex

boundary geometries of the particles. However such systems are generally intractable on

relevant time or length scales. Fundamental to the e�ciency of this model are the

simpli�cation of the problem into a probability measure of the �nal particle placement and

minimization of the particles potential energy. Many simpli�cations made in the

construction of the model �ber for the optimization problem are made to preserve the

convexity of the cost function and solution space. However, the placement of a �ber of

�xed length onto a random topography is inherently not convex. As the center of the �ber

is moved relative to the random topography below, the cost function does not change but

the constraint function changes in a non-linear fashion. Unfortunately, the issue of

elongation, although minimized by the addition of a non-convex optimization step, still

persists. The full e�ect it has on realism is unknown, but by construction, the volume of

the �ber is conserved. So, elongation has the e�ect of decreasing the apparent thickness of

a �ber, decreasing the the thickness as slope deviates from zero.

Even if the model can never provide an exact replication of the inspiring natural

mechanics, it can still be calibrated to give useful results by tuning available parameters.

Sheet thickness is easily observed, both experimentally, and through simulation, and is

therefore a good starting point for model calibration. The simulated result space has good

agreement with experimental space, suggesting the simulation could be easily calibrated for

prediction. Notably, the adjustment of input parameters to the �bers can be adjusted to

simulate the results of di�erent processing steps. For example, the formation step might be

simulated using sti�er �bers of equal height and width. Independently, the result of the

combined formation and wet pressing steps can be obtained by increasing the width of the

�ber, decreasing the height, so as to conserve �ber volume, and decreasing the sti�ness of

the �ber to represent additional force during pressing.

Rigorous calibration of model to experimental data is non-trivial and out of scope but

should be considered a priority if the end modeling goal is practical property prediction.
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Subtle di�erences in the natural density and �exibility distributions and their relationships

need to be understood. While present simulation results have demonstrated good

agreement with experimental observations and can explain a substantial amount of

variation, more work is necessary to determine if single valued �ber properties provide

good predictions or if the full distribution needs to be encoded. Although �ber length

appears to have only a minor e�ect on thickness, its relationship to downstream properties

like tensile strength means the full detail of the �ber dimension distribution should be

described. Characterization of input distributions is incomplete at this time and model

validation will require more carefully tuned experiments in the lab.

Currently, only the thickness of the structures is considered. While thickness is

signi�cant, enhancing other properties like sti�ness, tensile or air permeability adds more

value to the product. These properties are generally, computationally di�cult to predict,

however, one goal of this project is the generation of representative structures for use in

future analysis. Given web structures generated using this simulation as a substrate,

techniques like lattice Boltzmann simulation for coating studies or discrete element method

for tensile strength and bending sti�ness prediction can be used.

Furthermore, the richness of information stored within the structures has not been fully

explored. While results can be summarized in terms of descriptive statistics or other easily

computed quantities, they also contain a description of the �ber network and the pore

network. From the list of points, the �ber, and pore connection networks can be

determined. Developing techniques to process and quantify this information should

enhance downstream property predictions. Understanding how these networks a�ect

relevant physical properties and understanding how the networks might be tuned through

mixing di�erent particle and �ber types can lead to more optimized recipes.

We share several quantities of interest, relative bonded area, total curvature, a proxy

for pore size estimates, total uncovered topography area. This is only a handful of possibly

computable quantities. A super�cial literature review of computational geometry and
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image analysis yields many more interesting analysis designed for 3-d and bitmap data.

Prediction of real world properties from simulated structures can likely be further enhanced

by exploring the value of such derived quantities as predictors of hard to compute

properties.

Finally, in addition to optimizing the application value of Maine's most abundant and

sustainable natural resource, this project can have other impacts. Randomness and

complex three-dimensional structures, both characteristics of paper, are common in many

other natural phenomena. While paper is cheap and easy to make and test, other systems,

like tissue growth, may not be. Techniques developed to deal with these challenges on a

simple platform like paper can pave the way for more complex applications.
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