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 G protein-coupled receptors (GPCRs) are involved in numerous signaling processes ranging 

from neuronal growth to immune cells tracking invaders. GPCR signaling plays a role in many 

human diseases and thus GPCRs are important drug targets. Yeast respond to mating pheromone 

using a GPCR signaling system homologous to those used in humans to polarize their cytoskeleton 

toward the pheromone source. This is accomplished by initializing a MAPK signaling cascade to 

arrest the cells in mitosis and upregulate expression of chemotropic proteins. Pathway 

desensitization is accomplished by the Regulator of G-protein Signaling (RGS). RGS abrogates 

signaling by binding to the active GPCR, accelerating hydrolysis of GTP bound to G-proteins, 

bringing them to an inactive state. Previous studies have found the yeast RGS, Sst2, undergoes 

feedback phosphorylation by the MAPK, though the effect of this modification on RGS function 

was not determined. We examined the spatiotemporal dynamics of Sst2 using fluorescent live 

cell imaging in a microfluidics gradient chamber and performed computational image analysis of 

single cells.  We have found that changes in Sst2 localization during the pheromone response are 

controlled by phosphorylation, removing Sst2 from regions of barrier proteins, known as septins. 

Furthermore, our data suggests that this phosphorylation event in turn changes the localization 



 
 

of the MAPK. We show that the formin Bni1 is the pheromone responsive formin and is required 

for endocytic rates to be maintained during chemotropic growth. Finally, we provide evidence 

that the defects observed in endocytosis may be due to the improper localization of Gα bound 

MAPK. These results provide insight into previously unknown regulatory roles of the RGS during 

the yeast pheromone response. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Cells respond to a myriad of stimuli ranging from nutrient availability to the presence of 

cells in their surroundings by using transmembrane receptors to sense the external 

environment. The largest class of receptors that enable this sensing of the environment is the 

G-protein Coupled Receptor (GPCR) family (Sriram 2018). Examples in humans range from the 

olfactory receptors (Buck and Axel 1991), giving us the ability to smell, to acetylcholine 

receptors (Berrie et al. 1979), allowing proper communication throughout the brain and body. 

The budding yeast, Saccharomyces cerevisiae, contains two GPCRs, one to sense the availability 

of glucose and the other to find a mating partner (Versele, Lemaire, and Thevelein 2001; 

Kraakman et al. 1999). When attempting to mate, yeast will polarize and grow towards the 

mating partner, tracking the external gradient of signal in a process called chemotropism 

(Alvaro and Thorner 2016). 

The study of the dynamics of G-Protein signaling is commonly performed in yeast, due 

to their conserved signaling pathways to that in humans, as well as their easy maintenance and 

manipulation (Dohlman et al. 1991). The haploid form of yeast is a useful model organism due 

to its genotype, in which only there is only one set of genes. This allows the manipulation of the 

genome, by means of fusing a fluorescent or epitope tag to the protein, or through the 

introduction of mutations with relative ease, as yeast are able to readily recombine foreign 
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DNA into their genome without the use of restriction enzymes or more complex methods such 

as CRISPR Cas9 (Gardner and Jaspersen 2014). 

Yeast can stably exist as either a haploid or diploid. In the haploid form there are two 

mating types, MATa and MATα, which mate to form the diploid yeast (Herskowitz 1988; Haber 

2012). For the haploid cells to reach the diploid form, each mating type secretes a mating 

pheromone, a short oligopeptide, which binds the opposite mating types pheromone 

responsive GPCR (Caldwell, Naider, and Becker 1995). The MATa cells, which bind α factor, are 

commonly used as the preferred mating type to work with, due to the higher solubility of α-

factor compared to that of a-factor. Upon binding the mating pheromone, the cells initiate an 

internal signaling response, promoting a reorganization of the cytoskeleton and growth 

towards the source of pheromone (Segall 1993; Arkowitz 2009; Alvaro and Thorner 2016).  In 

order for the yeast to accurately find the opposite mating type, they track a pheromone 

gradient, sensing in which direction the highest concentration of pheromone lies (Arkowitz 

2009; Dyer et al. 2014; Alvaro and Thorner 2016). Unlike mammalian cells which are 

comparatively large, ranging in the tens of micrometers, yeast cells on average measure 5 

microns in diameter. This small size means the concentration of pheromone on one side of the 

yeast to the other varies by a small amount, resulting in the difference in activation of about 1% 

of total receptors, a small number to accurately and readily determine where the higher source 

of pheromone is originating from (Segall 1993). Despite this difficulty, yeast are capable of 

tracking very shallow gradients (Dyer et al. 2014).   Regardless of the spatial character of the 

extracellular signal, yeast are able to polarize their cellular machinery to a single point on the 

periphery of the cell, known as the polar cap (Slaughter, Smith, and Li 2009; McClure et al. 
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2015). Here, both receptors and downstream effectors in the pheromone response are 

concentrated to a mobile spot that can sample the signal at different places on the surface of 

the cell and eventually find the part of the yeast experiencing the highest signal (McClure et al. 

2015, Alvaro and Thorner 2016). 

  Activation of the pheromone receptor, Ste2, is initiated by the binding of the mating 

pheromone, α-factor, which activates a heterotrimeric G-Protein (Wang and Dohlman 2004). 

The ligand bound receptor then acts as a Guanine nucleotide Exchange Factor (GEF) promoting 

exchange of GDP for GTP on the Gα subunit, Gpa1, and its dissociation from the Gβy 

heterodimer, Ste4/Ste18, resulting in two active signaling pathways (Wang and Dohlman 2004; 

Dohlman and Thorner 2001; Alvaro and Thorner 2016). Free Gβy is able to recruit scaffolding 

proteins and kinases to sites of active signaling, initiating two downstream pathways: 1) a 

Mitogen Activated Protein Kinase (MAPK) signaling cascade that results in transcription of 

mating genes and arrest of the cell cycle in the G1 phase, and 2) activation of the Rho family 

member Cdc42 that results in formation of the polar cap (Leberer et al. 1992; Nern and 

Arkowitz 1999). Active Cdc42 controls cytoskeletal reorganization and contributes to the 

initiation of the MAPK cascade(Figure 1A)  (Bi and Park 2012). 

  Cdc42 is activated by the GEF, Cdc24, which is recruited to sites of active Gβy by the 

factor arrest protein, Far1 (Shimada, Gulli, and Peter 2000; Butty et al. 2002; Nern and Arkowitz 

1999). Once activated, Cdc42 in conjunction with Gic1 recruit and polymerize septins at the 

base of the forming shmoo to form a physical and biochemical barrier for the wandering 

polarity patch (Sadian et al. 2013; Kelley et al. 2015). Proper septin deposition is controlled by 

the Rho GTPase Accelerating Proteins (GAPs), Bem3, Rga1, and Rga2, which are recruited to 
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Cdc42 to hydrolyze bound GTP to Cdc42 and terminate its signaling (Caviston et al. 2003; Smith 

et al. 2002).The final MAPK in the MAPK cascade, Fus3, alters transcriptional output in the 

nucleus by silencing inhibitors and turning on activating factors through phosphorylation (Elion, 

Satterberg, and Kranz 1993; Hao et al. 2008; Alvaro and Thorner 2016). Additionally, Fus3 is 

recruited to active Gα, phosphorylating multiple substrates at the polarity patch to allow 

proper shmoo formation and growth (Metodiev et al. 2002; Errede et al. 2015). The formin 

Bni1, an actin nucleating protein, is activated through a two-step process in which Cdc42 binds, 

abrogating autoinhibition and allowing phosphorylation by Fus3, to complete the 

activation(Matheos et al. 2004; Evangelista et al. 1997). Active Bni1 nucleates actin cables in an 

Arp2/3 independent manner, allowing filament formation and condensation of the polarisome, 

bringing active subunits in close proximity to one another allowing the maintenance of signaling 

(Buttery, Yoshida, and Pellman 2007; Moseley et al. 2004; Goode, Eskin, and Wendland 2015; 

Karpova et al. 1998).  

As the process of tracking pheromone is highly dynamic, negative regulation of the 

pheromone pathway is required to allow proper chemotropic growth toward the pheromone 

source.  The main negative regulator of G-Protein Signaling (RGS), Sst2, was discovered in yeast 

nearly 20 years ago and acts as a GAP to the GTP-bound Gα subunit(Dohlman and Thorner 

1997; Dohlman et al. 1996). Since the discovery of Sst2, the RGS family has been found to 

include homologs and orthologs across eukaryotes with varying function (Gold et al. 1997; 

Dohlman and Thorner 1997). In yeast, the RGS binds active receptor through its DEP 

(Disheveled, Egl-10, Pleckstrin) domain and quenches signaling through accelerating GTP 

hydrolysis on the Gα subunit.  The GDP bound Gα subunit re-associates with the heterotrimeric 
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G-Protein(Dohlman and Thorner 1997; Ballon et al. 2006). Interestingly, it has been found that 

Sst2 contains a proline-directed phosphorylation site at serine 539 and that it is phosphorylated 

by Fus3 during the pheromone response (Garrison, Apanovitch, and Dohlman 2002; Tanaka and 

Yi 2010; Garrison et al. 1999). Initial studies using standard biochemical techniques found 

phosphorylation of Sst2 by Fus3 stabilizes Sst2, though the cellular process affected by this 

regulation is still unknown(Garrison et al. 1999; Garrison, Apanovitch, and Dohlman 2002). 

Interestingly, these initial studies found that there is no increase in pheromone sensitivity, even 

though the phosphorylation site lies in RGS domain of Sst2. These two observations guided our 

group to hypothesize that the phosphorylation site is necessary for the proper localization of 

Sst2. Additionally, it had been shown that Sst2 and septins cooperate to promote shmooing, 

through the proper localization and deposition of septins (Kelley et al. 2015). Furthermore, it 

has been shown through yeast two hybrid assays, that Sst2 physically interacts with the formin 

Bnr1 and the kelch-repeat protein, Kel1 (Burchett et al. 2002). This led us to pursue the 

hypothesis that Sst2 possesses previously unexplored binding interactions required for gradient 

tracking. 

Kel1 has been shown to negatively regulate formins and mitotic exit, as well as associate 

with the endocytic protein, End3 (Gould et al. 2014; Whitworth et al. 2014; Hofken and Schiebel 

2002; Raths et al. 1993). Yeast possess two formins, Bni1 and Bnr1, which are necessary to 

nucleate actin cables and are thought to have a redundant function in yeast. Interestingly, each 

of these formins localizes differentially during mitosis, with Bnr1 localizing to the bud neck only, 

and Bni1 localizing to sites of polarity. Regulation of the formin, Bnr1 is accomplished through a 

trimer composed of Kel1, Kel2, and the bud site selection protein, Bud14(Gould et al. 2014). 



6 
 

Although there is no direct linkage of Kel1 controlling the polarisome associated yeast formin, 

Bni1, it has been found that the S. pombe homologue of Bni1, for3p, is regulated by the Kel1 

homologue, tea1 (Martin et al. 2005; Feierbach, Verde, and Chang 2004). Previous work that 

proved Kelch proteins and Bud14 form a large complex to negatively regulate Bnr1, noted that 

the localization of Kel1 was coincident to that of Bni1, localizing to sites of polarity (Gould et al. 

2014). This observation led us to pursue the idea that Bni1 is regulated by Kel1 and that this 

interaction may be due in part to action of Sst2. In strains that are defective in RGS activity, 

there is a shift in localization in the exocytic protein, Exo84 (Kelley et al. 2015). Furthermore, it 

has been shown that Bni1 is involved in endocytic pathways (Prosser et al. 2011).  

Yeast, much like other eukaryotes, undergo clathrin mediated endocytosis (CME). CME 

is induced through a three-step process in which clathrin binds a target area, actin is assembled 

around clathrin in an Arp2/3 dependent manner forming an invagination, which is cleaved by 

scission proteins (Kaksonen and Roux 2018; Goode, Eskin, and Wendland 2015). Recently it has 

been shown that yeast possess clathrin independent endocytic routes, dependent on the 

formin Bni1 activated by Rho1 (Prosser et al. 2011). Additionally, the Kelch proteins, Kel1 and 

Kel2, are able to bind the endocytic proteins, End3 and Pan1, respectively(Whitworth et al. 

2014). In mammalian cells it has been found that the timescales of CME and CIE are much 

different form one another, in which CME occurs on the scale of tens of seconds, while CIE may 

be as quick as hundreds of milliseconds (Goode, Eskin, and Wendland 2015). This difference in 

timescales may reflect the specific processes affected by either class of endocytosis. The use of 

CIE may be important for the yeast pheromone response in order to accurately track a 

pheromone source.  
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We hypothesized that MAPK phosphorylation of the RGS would influence its 

spatiotemporal activity during the pheromone response. Here we demonstrate that Gα bound 

MAPK regulates RGS localization, which in turn alters the localization of Gα-MAPK.  We 

determined that the post-translational modification of the RGS inhibits endocytosis through the 

formin regulating protein Kel1. Furthermore, we provide evidence that the formin Bni1 is 

preferentially used during the pheromone response and that the changes in endocytosis are 

likely happening specifically in Clathrin independent endocytosis.  These results lead us to 

conclude that endocytosis during the pheromone response is a dynamic process that is 

controlled through a Gα-MAPK feedback loop to the RGS.  
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CHAPTER 2 

METHODS 

2.1 Plasmid Construction 

The pRSII405-SST2-GFP plasmid listed in Table1 was generated by amplifying genomic 

SST2-GFP from strain SST2-GFP-c9 listed in Table 2 using primers WSM 28 and WSM 29 found in 

Table 3. pRSII405 and SST2-GFP were digested with restriction enzymes BamHI and KpnI (New 

England Biolabs) as previously described (Dixit et al. 2014). The pRSII405-sst2S539A-GFP plasmid 

listed in Table 1 was generated from pRSII405-SST2-GFP by PCR site-directed mutagenesis (New 

England Biolabs) using oligonucleotides WSM 37 and WSM 38. Sequencing verification of 

pRSII405-sst2S539A-GFP was performed using primer WSM 25. Plasmids were integrated into 

yeast strains using BlpI (New England Biolabs).   

pMAL-c5X-SST2-GFP, pMAL-c5X-TEV-sst2S539A-GFP, and pMAL-c5X-TEV-sst2S539D-GFP 

plasmids were generated by amplifying genomic regions with primers JKM 28 and JKM 30, 

digesting with NotI-HF and EcoRI-HF (New England Biolabs), and ligating into pMAL c5X (gift of 

Dorothy Croall) using T4 DNA Ligase (New England Biolabs). Verification of insertion was 

performed through restriction digest using EcoRI-HF and NotI-HF. pMAL-c5X KEL1 was 

generating by amplifying genomic KEL1 using primers JKM 31 and JKM 35. PCR product and 

vector were digested using Not1-HF and SalI-HF.  

 Digests were carried out at 37°C for 2 hours, with addition of 1uL of calf intestinal 

alkaline phosphatase (New England Biolabs) to the digested vector for the final 10 minutes to 

dephosphorylate the 5’ end. Ligation of digested vector and insert were carried out with a 3:1 
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ratio performed at room temperature for 10 minutes and heat inactivated at 65°C for 10 

minutes. The ligation reaction was allowed to cool on ice, then transformed into competent 

DH5a E. coli using standard heat shock techniques.  

2.2 Yeast Strains 

Yeast strains used in this study are shown in Table 2. Strains were constructed in the 

MATa haploid Saccharomyces cerevisiae strain, BY4741. Proteins were tagged with GFP or Ruby 

at its chromosomal locus through oligonucleotide‐directed homologous recombination with 

GFP‐spHIS5 amplified with primers listed in Table 3 from the tagging vectors listed in Table 1 

(Lee, Lim, and Thorn 2013) or the GFP collection(Huh et al. 2003). Sst2 phosphomutants were 

made by integrating the codon of interest with a PCR amplified CORE cassette(Storici and 

Resnick 2006). Deletions were performed by first amplifying the genomic locus from the Mata 

haploid deletion collection (Dharmacon) with primers listed in Table 3 and transformed using 

the standard high efficiency lithium acetate transformation. 

  Cells were grown in rich medium (YPD) or synthetic medium (SC) at 30°C unless 

otherwise indicated. PCR products were transformed into yeast strains using standard lithium 

acetate transformation procedure. Individual colonies were isolated by growth on standard 

selective media (SC leu-, SC ura-, SC his-,), selective media with 5-fluoroorotic acid, or YPD 

selective median (YPD G418+).  Transformants were verified using fluorescence microscopy, 

sequencing, and/or PCR. 
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2.3 Yeast Agarose Pad Imaging 

Yeast were imaged on an Olympus IX83 with a 60X-TIRF 1.49 NA objective, a 

Photometrics Prime95b camera, Xcite LED 120 Boost fluorescence light source (Excelitas), and 

filters for DAPI and GFP (Semrock). Cells were grown to mid‐log phase (OD600 = 0.1 to 0.8) at 

30°C in Synthetic Complete Media with 2% dextrose (SCD) and then imaged on pads made of 

2% agarose in SCD. Imaging was performed with an objective heater (Bioptechs) set to 30°C. 

Cells were pelleted and then resuspended in SC with 3uM α-factor and placed on an agarose 

pad as above. Images were deconvolved using Huygens (SVI) with the CMLE. Images were 

quantified using FIJI (Schindelin et al. 2012) and MATLAB (Mathworks). 

2.4 Microfluidics Experiments 

 Microfluidic devices were made by using a Silicone polymer poured onto a microfluidics 

device mold (gift of Scott Collins and Rosemary Smith). SYLGARD 184 Silicone Polymer was 

mixed at a ratio of 10:1, part A to part B, using a glass stirring rod to mix (Dow). Mixed polymer 

was poured onto the device mold and placed in a vacuum chamber for 1hr. After all air bubbles 

were removed, the mixture was placed in an oven at 80°C for 1hr. After cooling to room 

temperature, devices were cut out using a razor and ports were punctured using an 18g Leuer 

stub. Prepped devices and coverslips were cleaned by spraying with methanol, ethanol, then 

water, and dried using an air hose. Devices and coverslips were then placed in a Harrick Plasma 

PDC32G Cleaner for 45s. to remove remaining organic matter and allow the fusion of the device 

to the cover slip. 
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Cultures were grown in SC to an OD600 between 0.1–0.8 at 30°C. Live-cell microfluidics 

experiments were performed using an IX83 (Olympus, Waltham MA) microscope with a Prime 

95B CMOS Camera (Photometrics). Fluorescence and Differential Interference Contrast (DIC) 

images were acquired using an Olympus-APON-60X-TIRF objective. Z-stacks of GFP and RFP 

images were acquired using an Xcite 120 LEDBoost (Excelitas). Cells were imaged in a 

microfluidic device based on the Dial-a-wave design that allows for the rapid switching of media 

while holding the yeast in place (Figure A1) (Bennett 2008, Dixit 2014). Pheromone addition 

was verified using AlexaFluor 647 dye (Life Technologies) imaged with 1 Z-slice. Cells were 

imaged at 20 min intervals for 12 hours for 300nM experiments and 5 min intervals for 0-

150nM experiments. Images were deconvolved using Huygens Software (Scientific Volume 

Imaging, Hilversum, Netherlands) Classic Maximum Likelihood Estimation (CMLE) 

Deconvolution Algorithm. Masks of cells were made using ImageJ (Schindelin et al. 2012) and 

data analysis was performed using MATLAB (MathWorks, Natick, MA). Experiments probing 

endocytosis omitted AlexaFluor 647 dye and relied on diffusion of SynaptoRed (Millipore)(Vida 

and Emr 1995). SynaptoRed was used at a concentration of 0.6uM in all microfluidic 

experiments. 

2.5 Image Analysis 

To quantify the fraction of protein localization over time, MATLAB was utilized. Masks of 

cells were loaded into MATLAB and each cell was labeled over time to track individual cells over 

time. The fluorescent intensity of each fluorescent protein was extracted over time using a line 

width of 5 pixels as previously described (Kelley et al. 2015). Peak Bem1 was used as a 

reference to normalize the distribution of proteins of interest in relation to the polar cap. This 
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was done by setting peak Bem1 as the midpoint and shifting the protein of interest in the same 

manner. A diagram of this analysis is shown in Figure 1B. The normalized fluorescence intensity 

was plotted at each point along the cell periphery with shaded regions showing 95% confidence 

intervals. Statistical analysis was performed between profiles using a one-way ANOVA and 

Tukeys honest significance test (HSD) with p values <0.05 denoted as significant. 

To quantify endocytic rates over time, masks were made using FIJI to define each cell. A 

second mask was made to define the internal area of the cell, by eroding the original mask 3-4 

times, ensuring the periphery was excluded. Using MATLAB, a third mask was defined for the 

periphery by subtracting the original mask from the internal mask (Figure C1). The fluorescent 

intensity of the maximum project images at each pixel was captured and the mean intensity 

was found at each timepoint on an individual cell basis. This was done on all three masks to 

define the mean whole, peripheral, and internal fluorescence. The ratio of internal to external 

accumulation was calculated to normalize for delayed SynaptoRed diffusion into the 

microfluidics chamber, as cells internalization rate of SynaptoRed is dependent on the 

peripheral accumulation. Bar graphs of the means of internal to external fluorescence ratios are 

plotted with error bars denoting the standard error of the mean (SEM). 
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CHAPTER 3 

RESULTS 

3.1 RGS Localization is Highly Dynamic 

  The main RGS in yeast, Sst2, is known to be necessary to allow proper desensitization 

from signaling through the GPCR, Ste2 (Dohlman et al. 1996). Studies have confirmed that Sst2 

is upregulated upon exposure to pheromone, and that disruption of RGS activity, through 

deletion or mutation, causes a 10-100 fold increase in pheromone sensitivity (Apanovitch et al. 

1998; Ballon et al. 2006; Dixit et al. 2014). Additionally, it has been shown that Sst2 is regulated 

by the MAPK during the pheromone response, so we sought to understand how Sst2 localizes 

during the pheromone response, and how these localizations affect G-Protein Signaling. We 

hypothesized that the localization of Sst2 would change over time, based on the need to 

spatially shut down signaling. To understand the dynamics of RGS, we transformed cells to 

endogenously express a C-terminal GFP tagged SST2. With this fluorescently tagged strain, we 

observed the localization of Sst2-GFP over a two-hour period on agarose pads. Otherwise WT 

strains expressing Sst2-GFP were exposed to 3µM pheromone at 30°C for the specified intervals 

at 0 min., 30 min., 60 min., and 90 min before being imaged. Cultures were concentrated 

through centrifugation and resuspended in Synthetic Complete Media (SC) containing 

pheromone. The localization of Sst2-GFP is highly dynamic, with changes in localization being 

dependent on when Sst2 is observed (Figure 1C). During mitosis, Sst2 is mostly homogeneously  
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distributed through the cell, though in early time points of pheromone exposure, Sst2 can be 

seen localizing to the bud neck. This early localization of Sst2 is thought to be occurring before 

 

Figure 1. Yeast Mating Pheromone Pathway and Dynamics of the RGS. 

A) Diagram of the mechanism in the yeast pheromone pathway displaying known 

interactions and outputs of downstream effectors. B) Workflow of methods in quantitative 

image analysis. Representative masks are shown and the corresponding kymographs of an 

example localization of Bem1 and Sst2 over time. C) Representative pseudo color images of 

the dynamics of Sst2-GFP localization at single timepoints ranging from 0 min to 90 min. 
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or during mitotic exit. As the pheromone response progresses, Sst2 can be seen localizing at the 

polar cap and at septin structures.  From these experiments we were able to conclude that the 

localization of the RGS is highly dynamic and dependent on timing in the pheromone response.  

3.2 RGS Activity Allows Septin and Polar Cap Separation 

With the observation that Sst2 localization is highly dynamic, we next sought to 

determine if the localization of Sst2 is dependent on its established binding partners: the GPCR, 

Ste2, and the Gα subunit, Gpa1. Sst2 is targeted to active signaling through its DEP domain, 

promoting association with the receptor to perform its GAP activity on Gα through the RGS Sst2 

domain (Ballon et al. 2006).  In addition to this localization Sst2 has been observed in the area 

of septins (Kelley et al. 2014). In this study the authors concluded that the RGS promotes 

gradient tracking through proper septin deposition. Septins are proteins deposited to act as 

barriers, allowing separation of the mother and daughter cells during mitosis, and is proposed 

to act as a biochemical barrier during the pheromone response(Takizawa et al. 2000; Kelley et 

al. 2015). As yeast progress through the pheromone response, the polar cap grows out from the 

center of the cell and septins are deposited at the base of the shmoo (Giot and Konopka 1997; 

Longtine, Fares, and Pringle 1998). Through the pheromone response the separation between 

the polar cap and septins becomes greater and it is thought that the septins are necessary to 

contain the polar cap in one region, allowing proper growth (Kelley et al. 2015). The previous 

study utilized a strain that inhibited the ability of Sst2 to accelerate GTP hydrolysis on the Gα 

subunit, gpa1G302S, known as the UnGAPable Gα mutant, causing an inability to separate septins 

from the polar cap and leading to a defect in the ability to track the pheromone gradient 

(DiBello et al. 1998; Kelley et al. 2015). We have shown that Sst2-GFP associates in the region of 
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septins at individual time points and therefore hypothesized that Sst2 has more interactions 

that receptor and the Gα subunit. To test this hypothesis, we examined localization of Sst2-GFP 

in a gpa1G302S mutant and predicted to see a collapse in the polar cap and Sst2 separation, much 

like that seen with septins previously (Kelley et al. 2015).  

To track individual cells throughout their whole response, we used a custom 

microfluidics device that allows the delivery of fresh media for the duration of the experiment 

and pheromone in either a constant concentration, or in a gradient to examine tracking. We 

observed the localization of Sst2-GFP relative to the polar cap in the WT and gpa1G302S 

background strains. We examined Sst2-GFP in a dual tagged strain with Bem1-Ruby expressed 

under the endogenous promoter in both the WT and gpa1G302S background. Bem1 was tagged 

as it acts as a scaffold to Cdc42-GTP, serving as a readout for active Cdc42 and as a reference 

point to the polar cap for our protein of interest (Gulli et al. 2000; Ogura et al. 2009). A 

representative diagram of this analysis is shown in Figure 1B. Microfluidics experiments were 

performed with cells exposed to saturating pheromone (300nM) and imaged at 20 min intervals 

for 12hrs. To quantify the localization of Sst2-GFP over time, we measured the fluorescence 

intensity at points along the periphery of the cell. To normalize the localization of Sst2-GFP to 

the polar cap, we utilized the profile of maximum Bem1-Ruby. The peak of Bem1-Ruby’s 

localization was set as the midpoint of the graph and the profile of Sst2-GFP protein was 

aligned in the same manner. To quantify only pheromone responsive time points for all cells, 

data were quantified starting at the 160 min. time point. The normalized fluorescence intensity 

of each protein was plotted against position along the cell. Thousands of profiles across dozens 

of cells were averaged to understand the dynamics of Sst2-GFP over time.   
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We found that the localization of Sst2 is dependent on its ability to inactivate the Gα 

subunit (Figure 2A). In WT cells, Sst2 localizes to both the septin areas and the shmoo tip, 

though when RGS activity is abrogated, septin structures overlap with the polar cap and 

become less separated as the experiment progresses. In WT cells, the maximum Sst2-GFP 

intensity is peripheral to the polar cap, although some still colocalizes with the polar cap (Figure 

2B). In the gpa1G302S mutant, a larger proportion of the Sst2-GFP colocalizes with the polar cap 

 

Figure 2. RGS Localization is Dependent on its’ GTPase Activity. 

A) Representative images of WT and gpa1G302S Sst2-GFP over the course of a microfluidics 

experiment. Disruption of Sst2 function results in a collapse in the polar cap septin 

separation. B) Quantification of the spatial distribution of Sst2-GFP normalized to peak 

Bem1-Ruby (not shown) in both WT and gpa1G302S mutant. Bottom graphs display statistical 

analysis using one-way ANOVA followed by Tukey’s HSD, with statistically (<0.05) significant 

differences in localization noted by bars. Data is derived from n = 2848 (WT) and n = 3132 

(gpa1G302S) data points per position along the periphery. 
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(Figure 2B). These changes in Sst2 localization are consistent with the changes seen in septin 

localization in these strains and suggests that the localization of Sst2 is dictated by proper 

septin deposition (Kelley et al. 2015).   

3.3 RGS Localizes Differentially from Receptor 

To further understand the dynamics of the localization of Sst2, we observed the 

localization of the GPCR Ste2 to compare the localizations and determine if Sst2 association 

with septins is due to receptor being associated there as well. Having determined that the 

ability of Sst2 to interact with Gα and promote the hydrolysis of bound GTP is necessary for its 

proper localization, we wanted to test whether the localization of Sst2 was coincident with that 

of the receptor, Ste2. Previous studies have shown that Sst2 is needed in order to allow proper 

receptor localization to the polar cap (Venkatapurapu et al. 2015), suggesting that the 

localization of these proteins must be coincident if Sst2 did not possess other interactions. We 

hypothesized that Sst2 may possess different binding partners other than the receptor and Gα, 

due to fact that Sst2 follows septin localization patterns, where signaling is not thought to be 

actively occurring. To test this hypothesis, we examined the spatiotemporal dynamics of Ste2 

and Sst2 in cells responding to pheromone (300nM). Attempts were made to produce a dual 

tagged fluorescent strain with Sst2 and Ste2, though a GFP tag was the only tag tested that  

would provide WT localizations with each of these proteins. To overcome this hurdle, we 

utilized our reference protein, Bem1-Ruby, in both WT Sst2-GFP and Ste2-GFP strains.  
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 Microfluidics experiments were performed with each strain and the localization of each 

protein was quantified relative to Bem1 from data derived from two independent experiments. 

 

Figure 3. RGS Localizes Differentially from Receptor and is Dependent on Phosphorylation 

by Gα bound MAPK. 

A) Representative images of WT Sst2-GFP and Ste2-GFP over the course of a microfluidics 

experiment. B) Quantification of the spatial distribution of Sst2-GFP and Ste2-GFP with 

statistical analysis below showing statistically significant associations noted by bars. Data are 

derived from two independent experiments with n = 2848 (Sst2-GFP) and n = 3328 (Ste2-

GFP) data points per position. C) Representative images of the Sst2-GFP phosphomutants, 

sst2S539A and sst2S539D over a 12hr microfluidics experiment. D) Quantification of the 

localization of Sst2-GFP in the WT and phosphomutants with statistical analysis below. Data 

are derived from two independent experiments with n = 2816 (sst2S539A) and n = 4448 

(sst2S539D) data points per position. E) Representative images of gpa1EE Sst2-GFP over a 

microfluidics experiment. The localization of Sst2-GFP appears to be that near WT 

association. 
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Analysis of representative images of cells at different time points (Figure 3A) shows that 

throughout the time course experiment, Ste2-GFP associates to regions of the polar cap as well 

as the vacuole, as previously observed (Venkatapurapu et al. 2015; Jenness and Spatrick 1986). 

The vacuolar association is mainly due to degradation of active receptor, causing accumulation 

of the stable GFP tag in the lysosomal compartments. The non-vacuolar association of the 

receptor is seen at the growing shmoo and just behind the growing shmoo. As our interests lie 

only in receptor that may be signaling or present on the membrane, as opposed to being 

associated with the vacuole, we only quantified peripheral Ste2-GFP. To ensure we were not 

quantifying vacuolar Ste2-GFP, a script was written to remove vacuolar fluorescence (Figure 

1B). Masks were made of the vacuole and the fluorescence of the area was set equal to the 

extracellular background fluorescence. Quantification of the localizations of each of these 

proteins normalized to peak Bem1 reveals a difference in their localizations (Figure 3B). The 

receptor has strong association with the polar cap, while Sst2 has associations with both the 

polar cap and peripheral regions, thought to be septins. This difference in localization lead us to 

propose the localization of Sst2 is dependent not only on the receptor and Gα, but also through 

currently unknown binding partners.   

3.4 Phosphorylation of the RGS Controls Its Localization 

Sst2 is phosphorylated by the pheromone responsive MAPK, Fus3, at serine 539, though 

the effect of this regulation is not well understood (Garrison et al. 1999). Previous studies have 

shown that the phosphorylation state of Sst2 does not affect the yeast’s mating ability, output 

through Gβy pathways, nor sensitivity to pheromone (Garrison et al. 1999). It had been 

reported that phosphorylation of Sst2 may stabilize the protein, though the mechanism of this 
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preservation is unknown. Additionally, these parent studies examining the regulation of Sst2 

sought to use only standard biochemical approaches. As localization of proteins influences their 

function, we proposed using live cell fluorescence microscopy as a new approach to this decade 

old question. We hypothesized that the phosphorylation of Sst2 must control its ability to 

localize, as the previous studies found no differences in signaling through the pheromone 

pathway.  

We developed C-terminal tagged Sst2-GFP point mutants,  the unphosphorylatable 

sst2S539A, and the phosphomimetic sst2S539D. Using the same imaging conditions as the 

otherwise WT Sst2-GFP strain, we tracked the spatiotemporal localization of both phospho-

mutants over a 12hr period. The phosphorylation state of Sst2 influences its spatiotemporal 

localization (Figure 3C). The phosphomimetic mutants have abrogated septin association, 

though Sst2 is still able to associate with the polar cap. In its unphosphorylated state, Sst2 

appears to have near WT association with the septins and polar cap, although to a lesser 

degree. Quantification of the localization of the phosphomutants over the 12hr period reveals a 

significant difference in the localization between the WT vs. phosphomimetic strain and the 

unphosphorylatable vs. phosphomimetic strain. The WT vs. unphosphorylatable strain had 

some significant differences, particularly in the polar cap region, though these two strains had 

the most appreciable similarities in localization. Qualitatively there is septin association in these 

two strains, while the septin association is lacking in the unphosphorylatable strain. These data 

allow us to conclude that the localization of Sst2 is dependent on its phosphorylation state. 

To fully understand the dynamics of Sst2 phosphorylation, we turned our attention 

toward the MAPK, Fus3, which is responsible for the phosphorylation event (Garrison et al. 



22 
 

1999). It has been well characterized that the MAPK localizes to the nucleus, cytoplasm, and cell 

periphery throughout the pheromone response. In the nucleus it is responsible for controlling 

transcriptional output through phosphorylation of the transcriptional inhibitors, Dig1/2 and the 

transcription activator, Ste12 (Maeder et al. 2007; Chen et al. 2010; Tedford et al. 1997; 

Roberts et al. 2000; Hung et al. 1997). In the cytoplasm, MAPK is known to interact with both 

the scaffolding protein Ste5 and the Gα subunit (Metodiev et al. 2002; Elion 2001). As there has 

been no observation that Sst2 localizes to the nucleus, we did not expect this is where 

phosphorylation of Sst2 was occurring. MAPK association with Ste5 has been found to be 

necessary to activate the MAP through the MAPK signaling cascade, though it is not thought 

that Ste5 bound MAPK is responsible for phosphorylating substrates at the cell periphery during 

the pheromone response (Elion 2001). We therefore hypothesized that Gα bound MAPK is 

responsible for phosphorylating Sst2. If this association is responsible for the phosphorylation 

event, we expected a phenotype most similar to that of the unphosphorylatable mutant, as 

well as an association of Sst2 most similar to this mutant or the WT.  

To understand this interaction, we utilized a double point mutant in which the Gα 

subunit is no longer able to bind the MAPK, gpa1R21ER22E, known as gpa1EE (Metodiev et al. 

2002; Errede et al. 2015). Upon mutating this site, the strain was observed in a microfluidics 

device with saturating pheromone (300nM) and imaged every 20 min for 12 hrs. We found that 

abrogating the MAPK-Gα interaction has qualitatively little effect on the localization of Sst2 

(Figure 3E). Further analysis of the localization using standard computational methods will be 

necessary to determine if there is a quantitative difference between this mutant and the WT 

strain. Sst2-GFP is still able to interact with both the septins and the polar cap over time, 
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localizing in much the same way as WT cells, apart from the morphological changes induced by 

the gpa1EE mutation (Figure 3E). As the localization of the unphosphorylatable Sst2 is very 

similar to that of WT Sst2-GFP, it is difficult to conclude that Gα bound MAPK is responsible for 

the phosphorylation of Sst2, but the result is consistent with that hypothesis. To further 

understand the dynamics underlying Sst2 phosphorylation and what this might mean for the 

pheromone response, we sought to address whether there was feedback to the MAPK, 

influencing its’ localization and activity.  

3.5 MAPK Localization at the Polar Cap is Driven by Gα 

Fus3 is the final MAPK in the MAPK signaling cascade and is responsible for 

phosphorylating multiple substrates, both in the nucleus and in the cytoplasm. Two of the main 

cytosolic binding partners of the MAPK are the heterotrimeric Gα subunit, thought to be 

responsible for binding MAPK and allowing directed substrate phosphorylation, as well as the 

scaffold protein, Ste5, recruiting the MAPK signaling cascade components to sites of active Gβy 

(Elion 2001; Errede et al. 2015).  We hypothesized that the localization of the MAPK at the polar 

cap is largely dependent on the Gα interaction. To test this hypothesis, we produced strains 

with C-terminally tagged Fus3-GFP as well as Bem1-Ruby in a WT and gpa1EE background. These 

strains were observed in a microfluidics device exposed to 300nM pheromone and imaged 

every 20 min. for 12 hrs.  Disruption of the interaction between the Gα subunit and MAPK 

prevents the proper localization of MAPK to the polarity patch (Figure 4A & 4E).  

Quantification of the time course reveals a broadened distribution of the MAPK along 

the periphery of the polar cap in the gpa1EE strain compared to that of WT cells (Figure 4B). The  
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less focused distribution of the MAPK is consistent with the MAPK being removed from the 

polar cap. Residual association aligned with the polar cap is consistent with MAPK associating 

with the scaffolding protein, Ste5, which brings MAPK into close proximity to the other MAPK’s 

involved in the signaling cascade (Elion 2001). Additionally, quantifying the average amount of 

MAPK through the 12hr time course shows a decrease the amount of MAPK found on the 

periphery of the membrane in the gpa1EE strain compared to that of WT (data not shown). 

Disruption of the MAPK localization through mutation of the Gα subunit and the finding that 

lower levels of MAPK localize in the docking mutant shows that the Gα subunit is responsible 

for targeting the MAPK to sites of active signaling to phosphorylate multiple substrates.  

3.6 Phosphorylation State of RGS Influences MAPK Localization 

Since the localization of Sst2 is dependent on phosphorylation by MAPK, we sought to 

determine if there was a feedback mechanism in which the localization of Gα bound MAPK was 

affected as well. Fus3-GFP was tagged in both the WT, unphosphorylatable, and 

phosphomimetic Sst2 strains. As before, Bem1-Ruby was used as a reference marker. Observing 

the localization of MAPK in these three strains show that the phosphorylation state of Sst2 

affects the localization of Fus3 (Figure 4C). Although the localization of MAPK in these two 

mutants appears to be very similar when observing just MAPK-GFP, when the profiles are 

Figure 4. MAPK Localization Determined by Gα and the Phosphorylation State of the RGS. 

A) Representative images of WT and gpa1EE Fus3-GFP Bem1-Ruby. B) Quantification of the 

spatial distribution of Fus3-GFP with statistical analysis below showing statistically significant 

associations noted by bars. Data are derived from two independent experiment with n = 

2848 (WT) and n = 3328 (gpa1EE) data points per position. C) Representative images of Fus3-

GFP in Sst2 phosphomutants. D) Quantification of the localization of Fus3-GFP in the WT and 

phosphomutants with statistical analysis below. Data are derived from n = 4031 (sst2S539A) 

and n = 3741 (sst2S539D). E) 3-D kymographs of Fus3-GFP in each strain. 
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adjusted relative to active Cdc42 (Bem1-Ruby), a surprising difference is seen in which the 

phosphomimetic mutants has a stronger localization at the polarity patch (Figure 4D & 4E). 

Notably the distribution of MAPK in the phosphomimetic strain appears broader with a larger 

amplitude compared to the otherwise WT strain. To account for this difference in localization, 

we considered whether the phosphorylation of Sst2 prevents MAPK from being removed 

through recycling pathways. It is well documented that during the pheromone response, cells 

need to both deliver new membrane and pheromone responsive proteins to the membrane 

through exocytosis (Dyer et al. 2014) and need to recycle proteins and materials through 

endocytosis. In order for these vesicle trafficking processes to occur, a myriad of proteins need 

to be present at sites of active signaling. These proteins, such as the formins, Bni1 and Bnr1, are 

necessary to set up actin, while others are needed for proper regulation, such as the Kelch 

protein Kel1 (Karpova et al. 1998; Gould et al. 2014). In yeast two hybrid assays, it has been 

found that Sst2 interacts with Kel1 and Bnr1, though the outcome of these potential 

interactions is not well understood (Burchett et al. 2002). For this reason and the fact that Sst2 

localizes to the bud site, much like Bni1, Kel1, and Bnr1, we sought to better understand the 

spatiotemporal dynamics of Sst2 over time in a variety of deletion mutants, seeking to uncover 

novel interactions of Sst2 separate from the receptor and Ga.  

3.7 RGS Localization is Dependent on Formins and Kelch Proteins 

While studying the spatiotemporal localization of Sst2, we noted an early association of 

Sst2-GFP to areas of the bud neck at early time points in the pheromone response (Figure 1C). 

The association of Sst2 was observed between 20-60min., before the mother and daughter cells 

had finished mitosis and before shmoo formation had started to occur, with only one other 
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reported observation of this occurring (Dixit et al. 2014). Due to this observation and a yeast 

two hybrid showing Sst2 interacts with Kel1 and Bnr1, we wanted to determine if there were in 

vivo binding interactions to allow proper pheromone signaling and examine if these may be 

related to observed changes in MAPK. We hypothesized that Sst2 and Kel1 would interact with 

one another, to form an axis of control of the formins. 

  To understand how the spatiotemporal localization of Sst2 over time is affected by the 

formins and kelch proteins, we integrated a C-terminal GFP tag to be endogenously expressed 

Figure 5. RGS Mitotic Localization is Enabled by Kel1. 

A) Representative images of Sst2-GFP in deletion mutants bnr1Δ, bni1Δ, and kel1Δ at early 

time points during microfluidics experiments. B) Representative quantification of the spatial 

distribution of Sst2-GFP through the mother and daughter cell from the images shown in A. 

The top right diagram shows the analysis performed to measure Sst2-GFP fluorescence, 

measuring from the daughter cell to the mother cell with the midpoint located at the bud 

neck corresponding to the central black line. 
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in cells lacking either Bni1, Bnr1, or Kel1. Microfluidic experiments were performed in each one 

of these deletion strains and the localization of Sst2 was quantified compared to peak Bem1 

over the 12hr time course experiments. Representative images show Sst2s localization during 

the early time points of the microfluidics experiments (Figure 5A). As shown in this figure, 

deletion of Kel1 removed Sst2-GFP from the bud neck. Due to the fact that Sst2 does not 

localize to the bud neck in every cell, we examined all recorded images to attempt to find 

localization. In the WT, bni1Δ, and bnr1Δ strains we were able to find a number of cells with this 

localization. In the kel1Δ, the image shown was thought to have the most amount of bud neck 

localization. Qualitatively it may be difficult to say whether there is appreciable localization at 

the bud neck or not, therefore we measured the fluorescence intensity profiles (Figure 5B) for 

each of the images (Figure 5A). Equal length line profiles were drawn beginning in the daughter 

cell and ending in the mother cell. The center of the line placed directly at the bud neck, as is 

noted by the vertical black line (Figure 5B). A representative diagram of this analysis is 

displayed in the top left corner of Figure 5B. Through both qualitative and quantitative analysis, 

it is shown that association of Sst2 to the bud neck is seen in all deletion mutants, except when 

KEL1 is deleted, leading us to conclude the association of RGS with the bud neck during mitosis 

is Kel1 dependent. Conversely, deletion of the formin Bni1 or Bnr1 shows a quantitatively larger 

amount of RGS associated with the bud neck at this time, leading us to conclude removal of 

Sst2 may be formin dependent. 

  The largest changes in both morphology and the localization of Sst2 is seen in deletions 

of BNI1 and KEL1, which appear to have opposing effects. Deletion of the formin Bnr1 has little 

effect on the pheromone response, as these cells form near WT shmoos, with the ability to 
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form between 2 to 3 shmoos over a 12hr period (Figure 6A). Deletion of BNI1 results in cells 

that have much longer, broader shmoos, and the cells seem to form just one or two shmoos 

total during the 12hr. response. On the other hand, deletion of KEL1 results in the cells forming 

short, tight shmoos, with the ability to form up to six shmoos during the duration of the 

response. Looking at the localization of Sst2 in these three mutants, we find the localization of 

Sst2 is influenced by deletion of BNI1 or KEL1 (Figure 6B). Deletion of the formin BNR1, results 

 
Figure 6. RGS Localization is Affected by the Formin Bni1 and Kelch Protein Kel1. 

A) Representative images of Sst2-GFP in WT, bnr1Δ, bni1Δ, and kel1Δ at time 8hrs in a 

microfluidics experiment. The morphology of cells is greatly affected in bni1Δ and kel1Δ 

mutants. B) Quantification of the localization of Sst2-GFP in the WT and deletion mutants 

with statistical analysis below. Data are derived from two independent experiments with n = 

2581 (WT), n = 4176 (bni1Δ), n = 1189 (bnr1Δ), and n = 3161 (kel1Δ) data points per position. 
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in a distribution of Sst2 most similar to WT, though there are areas of statistically significant 

difference compared to that of the WT localization. The localization of Sst2 in both the bni1Δ 

and kel1Δ quantitatively appear very similar to one another. The stronger association of Sst2 in 

regions of the polar cap is seen most strongly qualitatively upon deletion of BNI1 (Figure 6A). 

The association of Sst2 at the polar cap in kel1Δ cells may be due to the small shmoo structures, 

in which the septins are in close proximity to the polar cap and may therefore be measured in 

regions of the polar cap.  These data suggest the formin, Bni1, and kelch protein, Kel1, may 

have less defined functions during the pheromone response in terms of their interactions with 

Sst2. The most significant change in RGS localization both qualitatively and quantitatively is 

observed by deletion of BNI1, therefore we sought to better understand the role this formin 

plays in the pheromone response, as well as how this formin behaves differently from that of 

Bnr1. 

3.8 Bni1 is the Pheromone Responsive Formin and is Necessary for Gradient Tracking 

Yeast possess two formins, Bni1 and Bnr1, thought to be functionally redundant, 

nucleating actin cables to allow filament formation (Karpova et al. 1998; Buttery, Yoshida, and 

Pellman 2007). The two formins have been shown to localize to different areas in the growing 

daughter cell during mitosis. The localization of Bnr1 is static, localizing to the bud neck until 

the end of anaphase, as here it is thought to be filling the mother cell with actin filaments 

(Buttery, Yoshida, and Pellman 2007). Bni1 on the other hand localizes to the bud neck and 

forms the polarisome with Bud6, Spa2, and Pea2 at the polar cap of the growing daughter cell ( 

Evangelista et al. 1997; Bidlingmaier and Snyder 2004; Buttery, Yoshida, and Pellman 2007) . 

These differences in localization, as well as the morphological changes seen upon deleting each 
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of the formins, led us to hypothesize that Bni1 the pheromone responsive formin, while Bnr1 

has roles in mitosis only. 

The localization of Bnr1-GFP and Bni1-GFP was assessed using live cell fluorescence 

imaging both during mitosis and when treated with saturating pheromone (3uM) (Figure 7A). 

As previously reported, we find Bni1 has a dynamic localization during mitosis, associating with 
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the bud neck and polar cap, while Bnr1 only associates with the bud neck. In response to 

pheromone treatment, Bni1-GFP localizes to the growing shmoo tip, while Bnr1-GFP has no 

apparent localization. Additionally, deletion of BNI1 results in a broadening of shmoos, while 

deletion of BNR1 has little effect on the cells ability to shmoo. This leads us to conclude the 

formin Bni1 is the pheromone responsive formin, needed primarily to nucleate actin at the 

polarity patch. Through the rest of the study we will focus on the role of Bni1, as opposed to 

Bnr1, as Bnr1 does not localize during the pheromone response, nor does it affect shmoo 

morphology.  

We hypothesized that deletion of Bni1 would result in a gradient tracking defect 

compared to that of WT cells because Bni1 has a localization during the pheromone response 

and is one of the components of the polarisome,. To understand the role Bni1 plays in gradient 

tracking, we utilized the microfluidics device to set up a pheromone gradient ranging from 0-

150nM. Dual fluorescent tagged Sst2-GFP and Bem1-Ruby strains were used in an otherwise 

WT background as well as in a bni1Δ background. Images were taken every 5 min over a 12hr 

Figure 7. Bni1 is the Pheromone Responsive Formin. 

A) Representative images of Bnr1-GFP and Bni1-GFP during mitosis and 1.5hrs in the 

pheromone response. Bnr1-GFP does not associate to the polar cap during the pheromone 

response, while Bni1-GFP does. B) Representative DICT images of WT and bni1 cells in a 0-

150nM gradient, with the higher concentration of pheromone to the right. C) Rose plots 

showing the quantification of the final angle of orientation in gradient tracking cells, with 0° 

being toward the higher levels of pheromone and 180° being away from the pheromone 

source. Data are derived from n = 95 (WT) and n = 134 (bni1Δ). D) Representative images of 

Fus3-GFP and Bem1-Ruby in WT and bni1Δ at time point 6hrs. Deletion of BNI1 results in 

mislocalization of Fus3-GFP. E) Quantification of the spatial distribution of Fus3-GFP in WT 

and bni1Δ during the course of microfluidics experiment with statistical analysis shown 

below. Data are derived from n = 2848 (WT) and n = 5394 (bniΔ) datapoints per position. 
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time course and the angle of orientation of the polar cap was measured in ImageJ for cells 

present in the central 50% of the chamber at time point 8hrs, before cells began exiting the 

pheromone response. Representative images are shown in Figure 7B, with the gradient 

represented by the triangle on top of the images, with the higher concentration of pheromone 

to the right. Figure 7C shows a rose plot with the angles of orientation at 8 hours into the 

experiment, with 0° being towards the pheromone gradient, defined as being a tracking cells, 

and 180° away from the pheromone gradient, defined as non-tracking cells. As shown, cells 

lacking the formin Bni1 have slight deficiencies in their ability to track a pheromone gradient, 

with a larger proportion of cells growing away from the pheromone source compared to that of 

WT (Figure 7C). This defect in gradient tracking allows us to conclude that the formin Bni1 is 

necessary for cells to properly track a pheromone gradient.  

  The ability of cells to track a pheromone gradient is due in part to proper endocytosis 

and exocytosis of vesicles at the growing end of the yeast. Additionally, we propose that the 

proper localization of Fus3 is affected by the ability to perform endocytosis. Since Bni1 is both 

the pheromone responsive formin and necessary to perform CIE, we hypothesized that the 

localization of the Fus3 would be disrupted upon deletion of Bni1. To test this hypothesis, we 

deleted Bni1 from a dual tagged Fus3-GFP Bem1-Ruby strain and observed the dynamics of 

Fus3-GFP over 12 hours in a microfluidic chamber. Representative images are shown in Figure 

7D of both the WT and bni1Δ background with the quantitative analysis of the time course 

shown in Figure 7E. The ability of Fus3 to form a tight localization is hampered with deletion of 

BNI1 (Figure 7D). Through most every point along the cell periphery there is a statistically 

significant difference in the MAPK localization. From this we can conclude that output through 
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the formin Bni1 is necessary to localize MAPK during the pheromone response and without the 

correct localization there is a defect in gradient tracking. In addition to Bni1 being responsible 

for nucleating actin cables at sites of polarity, it is also responsible for facilitating clathrin 

independent endocytosis. This led us to pursue the idea that there may be defects in 

endocytosis in the phosphomimetic Sst2 strain, as this strain also resulted in different 

localization of MAPK compared to that of WT cells. 

3.9 Clathrin Independent Endocytosis is Up-Regulated During the Pheromone Response 

Endocytosis allows the internalization of nutrients as well as recycling of materials on 

the membrane (Raths et al. 1993; Lang et al. 2014; Goode, Eskin, and Wendland 2015). In short, 

clathrin mediated endocytosis is accomplished through a three-step process in which clathrin 

binds a selected site, an actin network is set up around the clathrin, and the vesicle is then 

cleaved off(Goode, Eskin, and Wendland 2015).  In terms of the pheromone response, 

endocytosis of the receptor during the pheromone response regulates signaling through 

internalization of active receptor (Ballon et al. 2006). Additionally, many of the endocytic events 

in yeast originate at sites of polarity, while also being needed to maintain the polar patch 

(Goode, Eskin, and Wendland 2015). Interestingly, yeast, much like most eukaryotic cells, 

possess means of performing clathrin independent endocytosis (CIE) through the formin Bni1 

(Prosser et al. 2011). Clathrin independent endocytosis is positively affected by Rho1 through 

activation of the formin Bni1 and not Bnr1 (Prosser et al. 2011).  The study that came across 

this discovery found that an additional chemotropic protein was implicated in endocytic 

pathways, where Kel1, as well as its paralog, Kel2, form a complex with the adapter proteins 

Pan1 and End3, components that bind to Arp2/3, actin nucleating proteins that form branches 
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off linear actin, to activate CME (Whitworth et al. 2014). The implication of the proteins Kel1 

and Bni1 in affecting the localization of Sst2, as well as the finding that Bni1 is necessary to 

form tight localization of MAPK, we hypothesized that there was an axis in which the proper 

localization of Sst2 is necessary to allow clathrin independent endocytosis. Furthermore, 

phosphorylation of the protein Rvs167 by MAPK inhibits endocytosis through this pathway 

(Friesen et al. 2003), therefore activation of Bni1, which in turn activates CIE, may be a method 

to switch modes of endocytosis, depending on the needs of the cell.  

To understand the role that endocytosis plays in the pheromone response, we utilized 

the red fluorescent dye FM4-64 (SynaptoRed), a styryl dye used commonly in yeast systems to 

track endocytic and lysosomal pathways (Vida and Emr 1995). The styryl portion of the dye is 

lipophilic enough to allow strong interaction with the outer leaflet of the membrane in low 

micromolar quantities. Often, the dye is used in pulse-chase experiments, exposing the yeast to 

FM4-64, briefly washing, then tracking internalization rates and/or localization. For our 

purposes, we tracked individual cells exposed pheromone (300nM), as well as a continuous 

flow of 0.6uM FM4-64 in SC media, an order of magnitude lower than that used for single time 

points. Imaging was performed in 20 min. intervals over a 12hr period. To normalize between 

errors with abnormal flow due to the dye interacting with the device, the ratio of the amount of 

internal fluorescence to the amount of external fluorescence was calculated at each time point, 

as the amount of internalization is dependent on the amount of dye bound to the membrane. A  
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custom MATLAB script was written to define three area of the cell; the whole cell, the internal 

Figure 8. Endocytosis is Affected by the Localization and Activity of RGS 

A) Representative images of the internalization of FM4-64 over 6hrs. B) Quantification of 

endocytosis using the metric of the ratio of internal to external fluorescence over 6hrs. 

Ratios are plotted vs. strain with standard error of the mean. Data are derived from n = 167 

(WT), n = 187 (bni1Δ), n = 121 (kel1Δ), n =120 (sst2S539D), n = 130 (sst2S539A), and n = 169 

(gpa1G302S). 
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cell, and the peripheral cell found by subtracting the whole cell from the internal cell. The 

average fluorescence intensity for each of the masks was calculated on a cell by cell basis and 

the ratio of internal to external fluorescence was calculated.  

We observed that the continuous addition of the FM4-64 resulted in a subset of cells 

experiencing toxicity in the later portions of the experiments, noted by a stall in the pheromone 

response (i.e. discontinuation of all growth). Through the analysis of the ratio of internal to 

external fluorescence throughout all the time points, we found that strains reached a maximum 

ratio at about 6hrs into the experiment. For this reason, we quantified the ratios of each strain 

at time 1hr, 3hrs, and 6hrs, before toxicity in the cells became too high to prevent further  

signaling. Two independent experiments were quantified to ensure data precision. To establish 

baseline levels of endocytosis using the metric of internal fluorescence to external 

fluorescence, we utilized a WT strain with a Sst2-GFP background. As is shown, the WT strain 

had an early accumulation of FM4-64 on the plasma membrane, though as the experiment 

progressed, dye accumulated within the vacuole (Figure 8A). The quantification of the ratio of 

internal to external fluorescence plotted with standard error of the mean, reveals that the dye 

accumulates more rapidly internally than on the cell periphery, with an average maximum ratio 

of 1.38 calculated at hour 6 (Figure 8B). This was used as our baseline of normal endocytic 

processes. It was shown that Bni1 is responsible for clathrin independent endocytosis (Prosser 

et al. 2011), therefore we utilized the deletion mutant to observe how the levels of 

internalization would decrease in this mutant. Unsurprisingly, the ratio of internal to external 

dye was found to be significantly lower than WT upon deleting BNI1, averaging 1.15. 

Accumulation of FM4-64 seen within these mutant yeast is thought to be from other endocytic 
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pathways, such as CME. This was used as our negative control for endocytosis when comparing 

other mutant strains. 

As we proposed that Bni1 is regulated by the kelch protein Kel1, we sought to 

determine the levels of endocytosis in this strain. The opposite phenotypes between kel1Δ and 

bni1Δ suggested that there may be higher rates of endocytosis in the absence of Kel1, as the 

cells formed small shmoos, which may be caused by internalizing more material than is being 

sent to the membrane. Therefore, we hypothesized that without Kel1 around in the cells, the 

activity of Bni1 would increase and the endocytic rates would increase, resulting in a higher 

internal to external ratio. Surprisingly, the ratio of internalization upon deleting KEL1 resulted in 

lower endocytic rates using our metric, measuring at 1.12 at 6hrs (Figure 8B). This may be 

explained by the fact that the Kelch proteins bind End3 and Pan1, which are adapters for 

Clathrin mediated endocytosis (Whitworth et al. 2014) and so it may be that the decreased 

endocytic rates we are observing are due to a defect in the CME pathway. 

We hypothesized that the differences in localization of the MAPK seen in the 

phosphomutants may be due to a defect in endocytosis, in which there is no longer proper 

endocytosis occurring just adjacent to the polar cap. To address this hypothesis, we looked at 

the endocytic ratios of internal to external FM4-64 in the phosphomutants. The 

unphosphorylatable mutant has qualitatively more internal accumulation of the dye compared 

to that of the phosphomimetic strain (Figure 8A). Quantification of the ratios of dye reveals that 

both strains have a marked decrease in the rate of endocytosis by time 6hrs, with a ratio of 1.13 

for the phosphomimetic and 1.24 for the unphosphorylatable strain (Figure 8B). Notably in the 

unphosphorylatable strain there is a near equal amount of internalization of that compared to 
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WT at time point 1hr, with a ratio of 0.99 and 1.0 respectively, while the phosphomimetic 

mutant is consistently below the levels of the WT strain. From this we were able to conclude 

that the phosphorylation of Sst2 does decrease endocytic rates. To further tease out if the 

function and localization of Sst2 is needed to allow proper endocytosis, we observed the 

gpa1G302S mutant, which is not able to be acted upon by Sst2 and results in enhanced 

localization of Sst2 to the polar cap.  

The gpa1G302S mutant displays a qualitatively increased amount of accumulation of the 

FM464 dye (Figure 8A). Throughout each time point observed, the amount of fluorescence 

internalized was significantly greater than that of WT or any other strain examined. As shown in 

Figure 8B the maximum ratio of internal to external fluorescence achieved was 1.43 (Figure 8B). 

Although this number is not greatly different than the WT value, it was higher at all time points 

quantified. One of the hallmarks of proper chemotropic growth is the ability to control both 

endocytosis and exocytosis, to both maintain polarity and grow toward the correct source of 

signal. The hyperactive signaling from the inability of Sst2 to inactivate Gα may lead to an 

increased activation of the proteins involved in both endocytosis and exocytosis, such as Bni1. 

These data allow us to conclude that both the localization, through the phosphorylation state of 

Sst2, as well as the activity of Sst2 are necessary to allow proper endocytosis during the yeast 

pheromone response. 
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CHAPTER 4 

DISCUSSION AND FUTURE DIRECTIONS 

Here we show new consequences of regulation of the main negative regulator of G-

Protein Signaling, Sst2. Firstly, we have shown that Sst2 has more nuanced roles within the cell 

to regulate G-Protein signaling. Sst2 is found to associate dynamically throughout the 

pheromone response, as it was previously shown to only interact with the receptor and Gα 

subunit. The most surprising of these localizations was during the early time points of cells 

exposed to pheromone. During the stages of mitotic exit, it was shown that Sst2 localizes to the 

bud neck. This association may be necessary to ensure the cells finish mitosis to begin the 

pheromone response, and thus prevents improper separation of the mother and daughter cells. 

Previous studies looking at this same localization in the Cdc42 GAP’s has found that septins 

recruit the GAPs to the bud neck to turn off Cdc42 and allow proper septin deposition (Smith et 

al. 2002; Caviston et al. 2003). This mechanism may be an interesting avenue to study further 

with Sst2, to verify if it too is necessary at the bud neck to prevent premature signaling through 

the G-proteins. Evidence found in this study supporting this idea is seen with the deletion of 

KEL1, which is known to be necessary to prevent early mitotic exit. In this mutant, Sst2-GFP 

does not localize properly to the bud neck and, whether by action of Sst2 or not, these cells 

prematurely exit mitosis and begin the pheromone response.  

Essential to understanding the function of proteins is to understand their localizations. 

In this way we have characterized the source of regulation needed for the proper localization of 

Sst2. To have Sst2 localize correctly during the pheromone response, Sst2 must be able to 

perform its RGS activity. Removal of Sst2 activity through modifying the Gα subunit prevent 
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septins, and therefore Sst2-GFP, from localizing to areas peripheral to the polar cap. This 

consequently results in the cells being unable to track a pheromone gradient and have severe 

morphological defects, forming globular cells, as opposed to the standard shmooing, pear-like 

cells. We have additionally found that Sst2 does not have a localization completely coincident 

with the receptor. To attempt to understand what may be controlling the interaction of Sst2 

with both the receptor and Gα subunit, and potentially septins, we characterized a 

phosphorylation site that was not well understood. Here we showed that the phosphorylation 

state of Sst2 controls its localization, though it does so in a way that does not affect sensitivity 

to pheromone. For this reason, we hypothesized that it may affect the localization of other 

chemotropic proteins and affect pathways less involved in signaling output and more involved 

in morphology.  From this we found that phosphorylation of Sst2 creates a feedback loop that 

affects the localization for the MAPK. The increased association of the MAPK to areas adjacent 

to the polar cap in the unphosphorylatable mutant suggested that the removal of Sst2 from its 

normal binding interactions caused either a lack of removal of an increased delivery of MAPK to 

the polar cap. For this reason, we turned our attention towards proteins involved in endocytic 

and exocytic pathways that might also interact with Sst2. 

A literature investigation revealed that the formin, Bnr1, and the Kel1 have been shown 

to interact with Sst2 through a yeast two-hybrid assay. Previous studies in the model S. pombe 

have found that a Kel1 homologue regulates a Bni1 homolog, and in yeast it has been shown 

that Kel1 negatively regulates Bnr1 (Martin et al. 2005; Feierbach, Verde, and Chang 2004; 

Gould et al. 2014). These studies additionally made mention that the formin Bni1 shares a 

mitotic localization more similar to Kel1 than does Bnr1 (Gould et al. 2014), though they 
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hypothesized this was due to a stabilization of Bnr1 at the bud neck, and therefore the 

localization of Kel1 didn’t need to be coincident with Bnr1 to perform its regulatory effects. For 

this reason, we sought to understand the interaction between Kel1 and Bni1, proposing the 

hypothesis that Kel1 negatively regulate Bni1. Additionally, we sought to understand the 

interactions between Sst2, Kel1, and the formins, in which Sst2 may be acting as an axis of 

control of the others. The most obvious question to answer first was to see if deletion of the 

formins or KEL1 results in a mitotic localization change of Sst2.  

We observed the localization of Sst2 at early timepoints within a microfluidics 

experiments and saw that Kel1 was necessary to localize Sst2 to the bud neck in cells that are 

exiting mitosis and beginning the pheromone response. Here we have provided evidence that 

the defect observed in kel1Δ cells may be due to a mislocalization of Sst2. Without Sst2 being 

present, the activation of the GPCR may proceed prior to exiting mitosis. Further study of this 

interaction will be necessary to definitively prove the interaction between Sst2 and Kel1 to 

determine the role in regulating mitotic exit. A proper experiment to determine the interaction 

would be to express both Sst2 and Kel1 and perform a pulldown or halo assay. Kel1 would have 

an N-terminal MBP tag used as the bait attached to Maltose beads and Sst2-GFP would be used 

as prey to identify binding. Since the interaction may be of low affinity, a fluorescence 

microscopy halo assay would be the most affective, being able to identify high micromolar 

affinity interactions due to the fact that washing the beads and eluting would not have to be 

performed. This method may be preferable to standard pulldown assays, as in the cell these 

proteins may be brought close to one another through other effectors, thereby increasing their 

local concentration. In this endeavor we are in the process of verifying expression plasmids and 
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have demonstrated we can express MBP-RGS Domain-GFP fusion protein. Further verification is 

required to verify the proposed expression plasmids in Table 1 are working as intended, though 

restriction digests of them all has indicated there is proper insertion of our oligonucleotide of 

interest. 

 In deleting each of the formins or KEL1, we found that cell morphology and Sst2 

localization are least affected by deletion of BNR1, where cells are able to form multiple 

shmoos that are most similar to WT. Additionally, we have shown that deletion of BNI1 and 

KEL1 results in morphologies that are opposite one another, in which cells grow with few, large 

shmoos with deletion of BNI1, and with many small shmoos with deletion of KEL1. In both 

mutants the localization of Sst2 is affected and appears to be more strongly associated in 

regions of the polar cap. In the case of the kel1Δ, we believe the stronger association seen at 

the polar cap may be due to a smaller separation of the polar cap and septins, due to the 

smaller shmoo morphology. In the case of BNI1 deletion, we hypothesize that the larger polar 

cap association is real, in which it can be qualitatively seen that Sst2 associates there. This leads 

us to conclude that Bni1 may be necessary to remove Sst2, and that this is in turn is regulated 

by Kel1 acting on Bni1. Further study will be necessary to prove the direct regulation network 

between Kel1 and Bni1. Experiments using chimeric proteins of Sst2-Kel and Kel1-Bni1 may be 

useful to help tease out these interactions. As neither of these proteins are kinases, it is 

believed that the regulatory interactions may be based on these proteins ability to associate or 

not during the pheromone response, which may be affect by their phosphorylation state. In 

these experiments, observing the morphology of cells or looking for readout of the pathway, 

such as through MAPK localization, may be useful to tease out these interaction networks.  
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Having shown that Bni1 affects the localization of Sst2 and shmoo morphology, while 

Bnr1 does not, we examined the roles of Bni1 and Bnr1 in the pheromone response. Previous 

studies have shown that Bni1 and Bnr1 localize differentially during mitosis, with Bni1 

associating with the polar cap, and Bnr1 statically associating at the bud neck. We have shown 

here that Bni1 is the pheromone responsive formin, as it localizes during the pheromone 

response, while Bnr1 does not. Additionally, the formin Bni1 is found to be needed for proper 

gradient tracking, as deletion results in a decreased ability to grow toward the pheromone 

source. Consequently, the ability of MAPK to localize properly is hampered upon deleting Bni1, 

leading us to conclude that the ability of Bni1 to facilitate endocytosis is necessary to polarize 

MAPK correctly, which may be through proper endocytic events.  

Data shown here points to a mechanism in which the localization of the MAPK is 

controlled through the phosphorylation state of Sst2, the ability of MAPK to bind Gα, as well as 

activity of Bni1. We propose that Gα control of MAPK allows proper CIE by regulating the 

localization of Sst2, thereby controlling its binding interactions with proteins involved in 

endocytosis. For this reason, we examined the endocytic rates in a number of strains and found 

that phosphorylation of Sst2 reduces endocytosis compared to that of WT and was reduced to 

levels seen in a bni1Δ. Interestingly, the unphosphorylatable mutant has lower levels of 

endocytosis compared to that of WT, though the levels were still above that of the 

phosphomimetic strain. This deviation from WT behavior in the unphosphorylatable strain may 

be explained through one of our earlier hypotheses. We proposed that RGS interaction with 

Kel1 was necessary to allow the proper control of Bni1, and that this interaction was controlled 

through phosphorylation of Sst2, in which the unphosphorylatable form was able to interact 
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with Kel1 and the phosphomimetic form was not. Surprisingly, endocytosis rates in a KEL1 

deletion are seen to be low, much like that seen in bni1Δ mutants. The low kel1Δ endocytic 

rates, which were initially surprising, may be due to the interactions of Kel1 with the CME 

adapter protein, End3, which forms a complex with Arp2/3 (Whitworth et al. 2014). In this way, 

Kel1 may be found at an axis in which it shuts down CIE through Bni1, to allow CME to 

predominate. The need for this source of regulation may be due to the dynamic state of the 

yeast pheromone response. Recycling of material on the cell periphery and movement of the 

polar cap by creating a “vacuum”, may be enabled by CIE, while targeted uptake of pheromone 

responsive proteins, such as active receptor, is accomplished through Clathrin mediated 

pathways. The dynamic control of this type of system would require multiple feedback 

mechanisms and dynamic regulation to allow proper gradient tracking with a relatively small 

subset of proteins, proposed to be at an axis between MAPK, Sst2, Bni1, and Kel1. In 

conclusion, this study has provided evidence for a new and exciting regulatory role of Sst2 in 

limiting endocytosis during the yeast pheromone response. 
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Table 1. Yeast Strains 

Strain Parent Description 

BY4741  Mata leu2Δ met15Δ his3Δ ura3Δ 

SST2-GFP BY4741 SST2-GFP::HIS3 

SST2-GFP BEM1-RUBY2 BY4741 SST2-GFP::HIS3 BEM1-RUBY2::KanMX4 

SST2S539A BY4741 sst2S539A 

SST2S539A-GFP BEM1-RUBY2 BY4741 sst2S539A-GFP::URA3 BEM1-RUBY2::KanMX4 

SST2S539D-GFP BY4741 sst2S539D-GFP::HIS3 

SST2S539D-GFP BEM1-RUBY2 BY4741 sst2S539D-GFP::HIS3 BEM1-RUBY2:LEU2 

KEL1Δ SST2S539D-GFP  BY4741 kel1Δ::KanMX4 SST2S539D-GFP::HIS3  

KEL1Δ SST2-GFP  BY4741 kel1Δ::KanxMX4 SST2-GFP::HIS3  

KEL1Δ SST2-GFP BEM1-RUBY2  BY4741 kel1Δ::KanMX4 SST2-GFP::HIS3 BEM1-RUBY2::LEU2 

KEL1Δ FUS3-GFP BEM1-RUBY2 BY4741 kel1Δ::KanMX4 FUS3-GFP::HIS3 BEM1-RUBY2::LEU2 

GPA1G302S BY4741 gpa1G302S::URA3 

GPA1G302S SST2-GFP BEM1-RUBY2 BY4741 gpa1G302S::URA3 SST-GFP::HIS3 Bem1-RUBY2::LEU2 

GPA1EE SST2-GFP BEM1-RUBY2 BY4741 gpa1EE::URA3 SST-GFP::HIS3 Bem1-RUBY2::LEU2 

GPA1EE FUS3-GFP BEM1-RUBY2 BY4741 gpa1EE::URA3 FUS3-GFP::HIS3 Bem1-RUBY2::LEU2 

BEM3Δ GPA1G302S SNC2-GFP BY4741 bem3Δ::KanMX4 gpa1G302S::URA3 SNC2-GFP::HIS3 

BNI1Δ SST2-GFP BY4741 bni1Δ::KanMX4 SST2-GFP::HIS3 

BNI1Δ SST2-GFP BEM1-RUBY BY4741 bni1Δ::KanMX4 SST2-GFP::HIS3 BEM1-RUBY2::LEU2 

BNI1Δ FUS3-GFP BEM1-RUBY BY4741 bni1Δ::KanMX4 SST2-GFP::HIS3 BEM1-RUBY2::LEU2 

BNR1Δ SST2-GFP BY4741 bnr1Δ::KAnMX4 SST2-GFP::HIS3  

BNR1Δ SST2-GFP BEM1-RUBY2 BY4741 bnr1Δ::KAnMX4 SST2-GFP::HIS3 BEM1-RUBY::LEU2 

FUS3-GFP BEM1-RUBY2 BY4741 FUS3-GFP::HIS3 BEM1-RUBY2::LEU2 

SST2S539A FUS3-GFP BEM1-RUBY2 BY4741 sst2S539A FUS3-GFP::HIS3 BEM1-RUBY2::LEU2 

SST2S539A STE2-GFP BEM1-RUBY2 BY4741 sst2S539A STE2-GFP::HIS3 BEM1-RUBY2::LEU2 

SST2S539D FUS3-GFP BEM1-RUBY2 BY4741 sst2S539D FUS3-GFP::HIS3 BEM1-RUBY2:LEU2 

SST2S539D STE2-GFP BEM1-RUBY2 BY4741 sst2S539D STE2-GFP::HIS3 BEM1-RUBY2::LEU2 
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Table 2. Plasmids 

Plasmid Vector Description 

pFA6a-yomEGFP-His pFA6a Tagging of EGFP-His 

pFA6a-yomEGFP-Kan pFA6a Tagging of EGFP-Kan 

pFA6a-yomRuby2-His pFA6a Tagging of Ruby-His 

pFA6a-yomRuby2-Kan pFA6a Tagging of Ruby-Kan 

pFA6a-yomRuby2-Leu pFA6a Tagging of Ruby-Leu 

pRSII405-Bem1-Ruby2 pRSII405 Integrating BEM1-RUBY::LEU2 Vector 

pRSII406-gpa1G302S pRSII406 Integrating gpa1G302S::URA3 Vector 

pRS406-sst2-GFP pRSII406 Integrating SST2-GFP::URA3 Vector 

PRSII406-sst2S539A-GFP pRSII406 Integrating sst2S539A-GFP::URA3 Vector 

pMAL-TEV -SST2-GFP-c5X pMAL c5X Expression pMAL-TEV-SST2-GFP-c5X 

pMAL-TEV -SST2S539A-GFP-c5X pMAL c5X Expression pMAL-TEV-sst2S539A-GFP-c5X 

pMAL-TEV-SST2S539D-GFP-c5X pMAL c5X Expression pMAL-TEV-sst2S539D-GFP-c5X 

pMAL-TEV-RGS-GFP-c5X pMAL c5X Expression pMAL-TEV-RGS-GFP-c5X 

pMAL-KEL1-c5X pMAL c5X Expression pMAL-KEL1-c5X 

 

pFA6a plasmids were a gift from Wendell Lim & Kurt Thorn  
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Table 3. Primers 

OLIGONUCL-

EOTIDE NAME 

SEQUENCE GENE DESCRIPTION 

AHM-8 5' 

TTTGACGAATTCTAAGACCAAACTGAGTAG

AAGC 3' 

GPA1 FP for copying GPA1 

with EcoRI cut site 

AHM-18 5' 

gcatcagtctagaCCATCATAGACTCTAATGGAG

AAG 3' 

GPA1 RP for copying GPA1 

with XbaI cut site 

 

AHM-26 5' 

TCTACAGAACgAAgagGCCAATGATGTCATC 

3' 

GPA1 FP for mutagenesis 

for GPA1 EE, Primer 

from NEB 

AHM-27 5' AAAGGATCACTTTCGTCTC 3' GPA1 RP for mutagenesis 

for GPA1 EE, Primer 

from NEB 

AHM-28 5' GTAGGAAATAcTGGGGTGTACAG 3' GPA1 FP for mutagenesis 

of Start codon ATG to 

CTG in GPA1 

AHM-29 5' CTTAATATATCAATTTATACACCTC 3' GPA1 RP for mutagenesis 

of Start codon ATG to 

CTG in GPA1 

AHM-32 5' AAAGACTACAaGCATTACAGAAAC 3' GPA1 FP 60 bp (40 addition 

to) PCR for pCORE 

into GPA1 

AHM-33 5' ATACGGCCCTTCAAAATG 3' GPA1 RP 60 bp (40 addition 

to) PCR for pCORE 

into GPA1 

AHM-22 GATGCGGTTTTTTACAGGGC FUS3 FP for copying 

FUS3, Primer from 

Yeast Genome 

Database 

AHM-23 ATGGATCACCCCTTGTGGTTCT FUS3 RP for copying 

FUS3, Primer from 

Yeast Genome 

Database 

JKM-16 CATAATCCAAGCCAAACTGAAAATTTCCG

TTCACGATATTGGTGACGGTGCTGGTTTA 

BEM1 Forward primer 

pFA6a labeling for 

BEM1 
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Table 3. Continued 

JKM-17 CAAGTAAAGAAGAAAAATGCTTCGTCTTC

TAACACTAGATTCGATGAATTCGAGCTCG 

BEM1 Reverse primer 

pFA6a labeling for 

BEM1 

JKM-18 GTCTGCGAATTCGGTGACGGTGCTGGTTT

AAT 

yomRUBY

2 

EcoRI Ruby2 primer 

for cloning into 

pRSII405 with 

Bem1 

JKM-19 CGTAGCTCTAGATTACTTATACAATTCAT

CCA 

yomRUBY

2 

XbaI Ruby2 reverse 

primer for cloning 

into pRSII405 with 

Bem1 

JKM-20 CTGAACGGTACCGACAACTTATGTGGGAG

AGA 

BEM1 KpnI-Bem1 primer 

for cloning into 

pRSII405 

JKM-21 CGTACCGAATTCAATATCGTGAACGGAAA

TTT 

BEM1  

JKM-28 ATATGCGGCCGCGAGAATTTGTATTTTCA

GGGTGTGGATAAAAATAGGACGTT 

SST2 Not1-TEV-Sst2 5' 

(no ATG) primer for 

cloning into pMAL 

c5X 

JKM-29 ATATGCGGCCGCGAGAATTTGTATTTTCA

GGGTAATTTAAATAAACTGGACTA 

SST2 RGS 

DOMAIN 

Not1-TEV-sst2 RGS 

domain 5' primer 

for cloning into 

pMAL c5X 

JKM-30 TTGCGTTGATAGATTATGTAGGAATTCTT

ACTTGTATAATTCATCCAT 

yo-EGFP yo-eGFP 3'-EcoRI-

shuffledTEV primer 

for cloning into 

pMAL c5X 

JKM-31 ATATGCGGCCGCGCTGGATTCAGCTTCGC

CAAG 

KEL1 Not1-Kel1 5' primer 

(no ATG) for 

cloning into pMAL 

c5X 
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Table 3. Continued 

JKM-33 ATATGCGGCCGCGGTAGGAGGGCTTTTGT

AGAA 

yomRUBY

2 

NotI-Ruby 5' (no 

ATG) primer for 

cloning into pMAL 

c5X 

JKM-34 GCGCGAATTCTTACAACACTCCCTTCGTG

CT 

yomRUBY

2 

Ruby 3'- EcoRI 

primer for cloning 

into pMAL c5X 

RTM-5 CAAAGATGCTAGCGCTTTAATAGAAATCC

AAGAAAAGTGCGGTGACGGTGCTGGTTTA 

SST2 Forward primer 

pFA6a yo-tagging 

for Sst2 

RTM-6 GTGCAATTGTACCTGAAGATGAGTAAGAC

TCTCAATGAAATCGATGAATTCGAGCTCG 

SST2 Reverse primer 

pFA6a yo-tagging 

for Sst2 

SSM-1 AGAGAGAACGCATGCTATGCTGAACGATA

TTCAAAATATAGGTGACGGTGCTGGTTTA 

BNR1 amplifies pFA6a 

with homology to 

Bnr1 for labeling 

SSM-2 TTATATAAGCTCCACAACTACATAAAATA

CTAAGTCTTCATCGATGAATTCGAGCTCG 

BNR1 amplifies pFA6a 

with homology to 

Bnr1 for labeling 

SSM-3 GTGCCAAGGAAAACATTGA BNR1 for verifying tag of 

BNR 3' 

SSM-4 ACAGACACATTGCCCATCTT BNR1 for verifying tag of 

BNR 3' 

SSM-5 TGCCACAAGGGGTGTTATGAA BNI1 amplifies GFP 

SSM-6 TCAGCGAACGCGAAATACAA BNI1 amplifies GFP 

SSM-7 ACCCATCTTCCGCCAGAAA BNI1 for verifying tag of 

BNI 3' 

SSM-8 TGTTTATCCACGCTCTCGAT BNI1 for verifying tag of 

BNI 3' 

SVM-17 GAACTTTACAACTTGTACCCTTCATCACC

T 

KEL1 Deletion cassette 

(250 bp out) 
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Table 3. Continued 

SVM-18 GCACCGCCCAAATACTGCAATCGGACTAT

TCTGCG 

KEL1 Deletion cassette 

(250 bp out) 

SVM-21 ACTGGACGTACGATGGTGTT KEL1 Deletion 

verification 

cassette (500 bp) 

SVM-22 CGAACAGCTTCAACGTACCT KEL1 Deletion 

verification 

cassette (500 bp) 

SVM-25 CACCAAACAAGTTAATGAAGATGCTGACA

GCGATCTACTAGGTGACGGTGCTGGTTTA 

KEL1 Kel1 with pFA6a 

labelling 

SVM-26 TTACACATGAAAAGTGAAATTTCATTACG

CATATTGTCTTTCGATGAATTCGAGCTCG 

KEL1 Kel1 with pFA6a 

labelling 

WSM-7 GGAAGCCAGAAAGTTCTGGACTGAAGATA

ATAATAATTTAGGTGACGGTGCTGGTTTA 

STE2 Forward primer 

pFA6a yo-tagging 

for Ste2 

WSM-8 GAAGGTCACGAAATTACTTTTTCAAAGCC

GTAAATTTTGATCGATGAATTCGAGCTCG 

STE2 Forward primer 

pFA6a yo-tagging 

for Ste2 

WSM-11 GATGCTAAAAGCAGTCTCAG STE2 Forward primer 

STE2 c-terminal tag 

verification 

WSM-12 GAGAGTTCTAGATCATGGCA STE2 Reverse primer 

STE2 c-terminal tag 

verification 

WSM-13 ATCATGTTGCACCCTCATTC SST2 Forward primer 

SST2 c-terminal tag 

verification 

WSM-14 GAATGAATTTGCGTTCAATC SST2 Reverse primer 

SST2 c-terminal tag 

verification 
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Table 3. Continued 

WSM-21 TCCATCATAACTTGCGTCAGAATATTTCT

GACATCATGTTGCACCCTCATGAGCTCGT

TTTCGACACTGG 

SST2 Insert pCORE at 

sst2 s539  

WSM-22 GATGCAGGTGATGGATCGTATAGATTAGT

AGGAAAGTGTTCCGATAATGGTCCTTACC

ATTAAGTTGATC 

SST2 Insert pCORE at 

sst2 s539  

WSM-23 TGCGTCAGAATATTTCTGACATCATGTTG

CACCCTCATGCTCCATTATCGGAACACTT

TCCTACTAATCTATACGATCCA 

SST2 S539A mutagenesis 

with pCORE 

WSM-24 TGGATCGTATAGATTAGTAGGAAAGTGTT

CCGATAATGGAGCATGAGGGTGCAACATG

ATGTCAGAAATATTCTGACGCA 

SST2 S539A mutagenesis 

with pCORE 

WSM-28 ATGCATGGATCCGTGCTTATAACTTTAAG

AAAAACCAGCGTC 

SST2 With Kpn1 cut-site 

for creation of 

integrating vector 

WSM-29 ATGCATGGTACCGCCGGTAGAGGTGTGGT

CAATAA 

SST2 With BamHI cut-

site for creation of 

integrating vector 

WSM-37 GCACCCTCATGCTCCATTATCGG SST2 Creation of S539A 

with Q5 

WSM-38 AACATGATGTCAGAAATATTCTGACG SST2 Creation of S539A 

with Q5 

WSM-44 ACACTGAGATTATAGTCCAG SST2 Verify Sst2 

Integration Vector, 

Binds upstream of 

sst2 

WSM-45 TACTATACCTGAGAAAGCAA SST2 Verify Sst2 

Integration Vector,  

WSM-46 TGCGTCAGAATATTTCTGACATCATGTTG

CACCCTCATGATCCATTATCGGAACACTT

TCCTACTAATC 

SST2 Creation of Sst2 

S539D from pCORE 

KO 

 

 



53 
 

Table 3. Continued 

WSM-46 TGGATCGTATAGATTAGTAGGAAAGTGTT

CCGATAATGGATCATGAGGGTGCAACATG

ATGTCAGAA 

SST2 Creation of Sst2 

S539D from pCORE 

KO 

WSM-52 GTACTCAGAGCCACAAGAAA BNR1 amplify bnr1 del 

insert 

WSM-53 CCCGATGAACTCATTGAGAA BNR1 verify bnr1 deleted 

WSM-54 CTAGCGTTCAATTGCCTTCT BNR1 verify bnr1 deleted 

WSM-55 CTGACGGCTGTGTGTTAATT BNI1 amplify bni1 del 

insert 

WSM-56 AGCGAACGCGAAATACAAGT BNI1 amplify bni1 del 

insert 

WSM-57 CCAAATCCTTGCTCAACTCT BNI1 verify bni1 deleted 

WSM-62 ACGAAATGACACGCTTGTGA KEL2 Pairs with WSM 64 

KEL2 Del and GFP 

Tagging 

WSM-63 CGTCAAGGACGAAATTCACA KEL2 Pairs with WSM 65 

Kel2 Deletion and 

GFP tagging verify. 

WSM-64 ACAGTTTCGCTTCGTTAAGG KEL2 Pairs with WSM 62 

WSM-65 CCAACATGGTGACTGTCATT KEL2 Pairs with WSM 63 

WSM-70 TGTGGAGGAAACCATCAAGA LEU2 Verify Internal Leu2 

WSM-82 CTAGTGGTAATTATCGTTCCTATCGTCGT

CCATTTCAGCGGTGACGGTGCTGGTTTA 

SNC2 pfa6 labeling SNC2 

WSM-83 TATATATTTTTTAGAATTAGCATCGGGAA

CCGATGAGCGGAATTCGAGCTCGTTTAAA

C 

SNC2 pfa6 labeling SNC2 

WSM-84 ACGGTGGGAATAATGAGAGA SNC2 amplify genomic 

region 

WSM-85 GGCGCGAGAAACAAAATTGT SNC2 amplify genomic 

region 
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APPENDIX A. MICROFLUIDICS DEVICE 

 

Figure A1. Image of Microfluidics Device 
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APPENDIX B. MATLAB NUCLEAR/VACUOLAR SUBTRACTION 

maskcells = ‘Cell Mask.tif'; 

maskdir = Nuclear_or_Vacuolar MASK.tif'; 

gfpdir = ‘Fluorescent Protein of Interest.tif'; 

  

tmax =[]; 

tmax = 37; 

  

for i = 1:tmax; 

        preimin{i,1} = imread(maskdir,i); 

        preimingfp{i,1} = imread(gfpdir,i); 

        preiminma{i,1} = imread(maskcells,i); 

end 

  

x = size(preimin{1,1},2); 

y = size(preimin{1,1},1); 

  

for i = 1:tmax 

    

    

            maskin{i,1} = preimin{i,1}; 

            gfpin{i,1} = preimingfp{i,1}; 

            cellmaskin{i,1} = preiminma{i,1}; 

             

            maskin{i,1} = ~maskin{i,1} > 0; %mask out of imagej 

is inverted 

            cellmask{i,1} = uint16(maskin{i,1}); 

             

            cellmaskin{i,1} = cellmaskin{i,1}./255; 

             

            cellmask{i,1} = ~cellmask{i,1}; 

            cellmask2{i,1} = uint16(cellmask{i,1}); 

             

            Vacsub_gfp_im{i,1} = cellmask2{i,1}.*gfpin{i,1}; 

            Backsub_gfp_im{i,1} = 

uint16(cellmaskin{i,1}).*gfpin{i,1}; 

            

             

            backsub_val{i,1} = 

mean(mean(Backsub_gfp_im{i,1},1));  

end 

  

backmat = []; 

backmat = cell2mat(backsub_val); 
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for i = 1:tmax 

    for c = 1:x 

        for d = 1:y 

             if Vacsub_gfp_im{i,1}(d,c) ==0; 

                 Vacsub_gfp_im{i,1}(d,c)= uint16(backmat(i,1)); 

             end 

        end 

    end 

  

end 

  

  imwrite(uint16(Vacsub_gfp_im{1,1}),'GFP_Sub.tif', 'WriteMode', 

'OverWrite'); 

   

for i = 2:tmax; 

    

imwrite(uint16(Vacsub_gfp_im{i,1}),'GFP_Sub.tif','WriteMode', 

'append'); 

end 

 

 

Figure B1. MATLAB Script to Remove Nuclear or Vacuolar Fluorescence 
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APPENDIX C. MATLAB ENDOCYTOSIS ALGORITHM 

%% Find the mean endocytic rates over time looking at both the 

mean internal fluorescence and the ratio of internal to membrane 

bound 

  

maskdir = 'tracked_mask.tif'; 

maskdirint = 'internal_mask.tif'; 

prot1dir = 'MAX_C2-

Pos1_11.14.18_sst2_s539d_gfp_synaptored_200nM_12hr_20min_int.tif

'; 

prot2dir = 'MAX_GFP_Pos1_11.14.18_Decon_7SNR.tif'; 

  

strain = ('S539D ') 

prot1 = ('SynaptoRed '); 

prot2 = ('Sst2-GFP '); 

  

%% 

preimin = cell(145,1); 

  

tmin = 1; 

tmax = []; 

tmax = size(imfinfo(maskdir),1); 

times = [tmin:1:tmax]; 

  

threshper = 99; 

threshperl = 88; 

  

maskin01 = []; 

trackvar = []; 

  

%% load images in 

for c = 1:4 

    if c == 1 

        gadir = maskdir; 

    elseif c==2 

        gadir = prot1dir; 

    elseif c == 3 

        gadir = prot2dir; 

    elseif c ==4 

        gadir = maskdirint; 

         

    end 

     

         

    for i = 1:tmax 
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        preimin{i,1} = imread(gadir,i); 

    end 

  

  

    for i = 1:tmax 

        if c ==1 

            maskin{i,1} = preimin{i,1}; 

        elseif c == 2 

            prot1in{i,1}= preimin{i,1}; 

        elseif c == 3 

            prot2in{i,1}=preimin{i,1}; 

        elseif c ==4 

            maskin_int{i,1} = preimin{i,1}; 

        end 

    end 

end 

  

 figure(); 

 subplot(1,3,1), imagesc(maskin{tmax,1}); 

 subplot(1,2,1), imagesc(maskin{tmax,1}); 

 subplot(1,3,3), imagesc(prot2in{tmax,1}); 

  

tnum = tmax - tmin + 1; 

max_field = zeros(tnum,1); 

peak_thresh = cell(tmax,1); 

currmax = []; 

low_thresh_clean = cell(tnum,1); 

low_thresh_count = zeros(tnum,1); 

peak_thresh_count = zeros(tnum,1); 

labeledmask_peak = cell(tnum,1); 

labeledmask = cell(tnum,1); 

  

  

%% Convert internal mask to MATLAB mask and find perimeter mask 

for i = 1:tmax 

    matmask{i,1} = ~maskin_int{i,1}; 

    dblmatmask{i,1} = uint8(matmask{i,1}); 

    labeledintmask = []; 

    labeledintmask = dblmatmask{i,1}.*maskin{i,1}; 

    intmask{i,1} = labeledintmask; 

    permask{i,1} = maskin{i,1}-intmask{i,1}; 

end 

%% Find index of all pixels with each cell and the size of each 

cell 

cellnum = []; 

cellnum = max(max(maskin{tmax,1})); 
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for i = 1:tmax %For Whole Cell 

    for j = 1:cellnum 

        currmask = []; 

        currmask = maskin{i,1}==j; 

        [ys,xs] = find(currmask);  

        ind{i,j} = [ys,xs]; 

        cellsize(i,j) = size(ind{i,j},1); 

    end 

end 

  

for i = 1:tmax %For Internal Only 

    for j = 1:cellnum 

        currmask = []; 

        currmask = intmask{i,1}==j; 

        [ys,xs] = find(currmask);  

        indint{i,j} = [ys,xs]; 

        cellsizeint(i,j) = size(indint{i,j},1); 

    end 

end 

  

for i = 1:tmax %For External only 

    for j = 1:cellnum 

        currmask = []; 

        currmask = permask{i,1}==j; 

        [ys,xs] = find(currmask);  

        indext{i,j} = [ys,xs]; 

        cellsizeext(i,j) = size(indext{i,j},1); 

    end 

end 

%% Find the GFP intensity at all pixels in exery cell, putting 

this into a new variable 

  

for i = 1:tmax % For whole cell 

    for j = 1:cellnum 

        for t = 1:cellsize(i,j) 

            currind = []; 

            currind = ind{i,j}(t,:); 

            prot1val{i,j}(t,1) = 

prot1in{i,1}(currind(1,1),currind(1,2)); 

            prot2val{i,j}(t,1) = 

prot2in{i,1}(currind(1,1),currind(1,2)); 

        end 

    end 

end 

  

for i = 1:tmax % For Internal Only 

    for j = 1:cellnum 
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        for t = 1:cellsizeint(i,j) 

            currind = []; 

            currind = indint{i,j}(t,:); 

            prot1valint{i,j}(t,1) = 

prot1in{i,1}(currind(1,1),currind(1,2)); 

            prot2valint{i,j}(t,1) = 

prot2in{i,1}(currind(1,1),currind(1,2)); 

        end 

    end 

end 

  

for i = 1:tmax % For External Only 

    for j = 1:cellnum 

        for t = 1:cellsizeext(i,j) 

            currind = []; 

            currind = indext{i,j}(t,:); 

            prot1valext{i,j}(t,1) = 

prot1in{i,1}(currind(1,1),currind(1,2)); 

            prot2valext{i,j}(t,1) = 

prot2in{i,1}(currind(1,1),currind(1,2)); 

        end 

    end 

end 

%% Find the average value and fold change for each cell and for 

all cells at every timepoint 

meanprot1 = []; 

singlecellmeanprot1 = []; 

foldchangeprot1 = []; 

meanprot2 = []; 

singlecellmeanprot2 = []; 

foldchangeprot2 = []; 

  

for i = 1:tmax %For Whole Cell 

    for j =1:cellnum 

         

        if size(prot1val{i,j},1)>0 

            singlecellmeanprot1(i,j) = mean(prot1val{i,j},1); 

            foldchangeprot1(i,j) = 

singlecellmeanprot1(i,j)/singlecellmeanprot1(1,j); 

        else 

            singlecellmeanprot1(i,j) = NaN; 

            foldchangeprot1(i,j) = NaN; 

  

        end 

      

        if size(prot2val{i,j},1)>0 

            singlecellmeanprot2(i,j) = mean(prot2val{i,j},1); 
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            foldchangeprot2(i,j) = 

singlecellmeanprot2(i,j)/singlecellmeanprot2(1,j); 

        else 

            singlecellmeanprot2(i,j) = NaN; 

            foldchangeprot2(i,j) = NaN; 

  

        end 

    end 

end 

  

meanprot1 = meannan(singlecellmeanprot1,2); 

meanfoldchangeprot1 = meannan(foldchangeprot1,2); 

for i = 1:tmax 

    wholefoldprot1(i,1) = meanprot1(i,1)/meanprot1(1,1); 

end 

  

for i =2:tmax 

    slopewholeprot1(i,1) = meanprot1(i,1)-meanprot1(i-1,1); 

end 

  

meanprot2 = meannan(singlecellmeanprot2,2); 

meanfoldchangeprot2 = meannan(foldchangeprot2,2); 

for i = 1:tmax 

    wholefoldprot2(i,1) = meanprot2(i,1)/meanprot2(1,1); 

end 

  

for i =2:tmax 

    slopewholeprot2(i,1) = meanprot2(i,1)-meanprot2(i-1,1); 

end 

%% Internal 

meanprot1int = []; 

singlecellmeanprot1int = []; 

foldchangeprot1int = []; 

meanprot2int = []; 

singlecellmeanprot2int = []; 

foldchangeprot2int = []; 

  

for i = 1:tmax % For Internal Only 

    for j =1:cellnum 

         

        if size(prot1valint{i,j},1)>0 

            singlecellmeanprot1int(i,j) = 

mean(prot1valint{i,j},1); 

            foldchangeprot1int(i,j) = 

singlecellmeanprot1int(i,j)/singlecellmeanprot1int(1,j); 

        else 

            singlecellmeanprot1int(i,j) = NaN; 
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            foldchangeprot1int(i,j) = NaN; 

        end 

         

        if size(prot2valint{i,j},1)>0 

            singlecellmeanprot2int(i,j) = 

mean(prot2valint{i,j},1); 

            foldchangeprot2int(i,j) = 

singlecellmeanprot2int(i,j)/singlecellmeanprot2int(1,j); 

        else 

            singlecellmeanprot2int(i,j) = NaN; 

            foldchangeprot2int(i,j) = NaN; 

        end         

    end 

end 

meanprot1int = meannan(singlecellmeanprot1int,2); 

meanfoldchangeprot1int = meannan(foldchangeprot1int,2); 

for i = 1:tmax 

    wholefoldprot1int(i,1) = 

meanprot1int(i,1)/meanprot1int(1,1); 

end 

  

for i =2:tmax 

    slopeintprot1(i,1) = meanprot1int(i,1)-meanprot1int(i-1,1); 

end 

  

meanprot2int = meannan(singlecellmeanprot2int,2); 

meanfoldchangeprot2int = meannan(foldchangeprot2int,2); 

for i = 1:tmax 

    wholefoldprot2int(i,1) = 

meanprot2int(i,1)/meanprot2int(1,1); 

end 

  

for i =2:tmax 

    slopeintprot2(i,1) = meanprot2int(i,1)-meanprot2int(i-1,1); 

end 

%% External 

meanprot1ext = []; 

singlecellmeanprot1ext = []; 

foldchangeprot1ext = []; 

meanprot2ext = []; 

singlecellmeanprot2ext = []; 

foldchangeprot2ext = []; 

for i = 1:tmax %For Whole Cell 

    for j =1:cellnum 

         

        if size(prot1valext{i,j},1)>0 
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            singlecellmeanprot1ext(i,j) = 

mean(prot1valext{i,j},1); 

            foldchangeprot1ext(i,j) = 

singlecellmeanprot1ext(i,j)/singlecellmeanprot1ext(1,j); 

        else 

            singlecellmeanprot1ext(i,j) = NaN; 

            foldchangeprot1ext(i,j) = NaN; 

        end 

  

        if size(prot2valext{i,j},1)>0 

            singlecellmeanprot2ext(i,j) = 

mean(prot2valext{i,j},1); 

            foldchangeprot2ext(i,j) = 

singlecellmeanprot2ext(i,j)/singlecellmeanprot2ext(1,j); 

        else 

            singlecellmeanprot2ext(i,j) = NaN; 

            foldchangeprot2ext(i,j) = NaN; 

        end         

    end 

end 

  

meanprot1ext = meannan(singlecellmeanprot1ext,2); 

meanfoldchangeprot1ext = meannan(foldchangeprot1ext,2); 

for i = 1:tmax 

    wholefoldprot1ext(i,1) = 

meanprot1ext(i,1)/meanprot1ext(1,1); 

end 

  

for i =2:tmax 

    slopeextprot1(i,1) = meanprot1ext(i,1)-meanprot1ext(i-1,1); 

end 

  

meanprot2ext = meannan(singlecellmeanprot2ext,2); 

meanfoldchangeprot2ext = meannan(foldchangeprot2ext,2); 

for i = 1:tmax 

    wholefoldprot2ext(i,1) = 

meanprot2ext(i,1)/meanprot2ext(1,1); 

end 

  

for i =2:tmax 

    slopeextprot2(i,1) = meanprot2ext(i,1)-meanprot2ext(i-1,1); 

end 

  

%% Find the ratio of Internal to external 

  

ratiointtoextprot1 = []; 
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for i = 1:tmax 

    for j = 1:cellnum 

         

        ratiointtoextprot1(i,j) = 

singlecellmeanprot1int(i,j)/singlecellmeanprot1ext(i,j); 

         

    end 

end 

  

meanratio = meannan(ratiointtoextprot1,2); 

  

ratiointtoextprot2 = []; 

  

for i = 1:tmax 

    for j = 1:cellnum 

         

        ratiointtoextprot2(i,j) = 

singlecellmeanprot1int(i,j)/singlecellmeanprot1ext(i,j); 

         

    end 

end 

  

meanratio = meannan(ratiointtoextprot2,2); 

  

%% Graph the values of mean gfp over time 

figure() 

subplot(2,2,1) 

plot(meanprot1,'b', 'LineWidth', 3) 

hold on 

plot(meanprot2,'b:', 'LineWidth',3) 

xlabel('Timepoint 20min int') 

ylabel('Fluorescent Intensity') 

title([num2str(strain),' Whole']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,2) 

plot(meanfoldchangeprot1,'b', 'LineWidth', 3) 

hold on 

plot(meanfoldchangeprot2,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean Individual') 

title([num2str(strain),' Whole']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 
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subplot(2,2,3) 

plot(wholefoldprot1,'b', 'LineWidth', 3) 

hold on 

plot(wholefoldprot2,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean') 

title([num2str(strain),' Whole']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,4) 

plot(slopewholeprot1,'b', 'LineWidth', 3) 

hold on 

plot(slopewholeprot2,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Slope') 

title([num2str(strain),' Whole']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

%% Internal graphs 

figure() 

subplot(2,2,1) 

plot(meanprot1int,'b', 'LineWidth', 3) 

hold on 

plot(meanprot2int,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fluorescent Intensity') 

title([num2str(strain),' Internal']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,2) 

plot(meanfoldchangeprot1int,'b', 'LineWidth', 3) 

hold on 

plot(meanfoldchangeprot2int,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean Individual') 

title([num2str(strain),' Internal']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 
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subplot(2,2,3) 

plot(wholefoldprot1int,'b', 'LineWidth', 3) 

hold on 

plot(wholefoldprot2int,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean') 

title([num2str(strain),' Internal']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,4) 

plot(smooth(slopeintprot1,6),'b', 'LineWidth', 3) 

hold on 

plot(smooth(slopeintprot2,6),'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Slope') 

title([num2str(strain),' Internal']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

%% External graphs 

figure() 

subplot(2,2,1) 

plot(meanprot1ext,'b', 'LineWidth', 3) 

hold on 

plot(meanprot2ext,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fluorescent Intensity') 

title([num2str(strain),' External']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,2) 

plot(meanfoldchangeprot1ext,'b', 'LineWidth', 3) 

hold on 

plot(meanfoldchangeprot2ext,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean Individual') 

title([num2str(strain),' External']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,3) 

plot(wholefoldprot1ext,'b', 'LineWidth', 3) 
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hold on 

plot(wholefoldprot2ext,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Fold Change Mean') 

title([num2str(strain),' External']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

  

subplot(2,2,4) 

plot(slopeextprot1,'b', 'LineWidth', 3) 

hold on 

plot(slopeextprot2,'b:', 'LineWidth', 3) 

xlabel('Timepoint 20min int') 

ylabel('Slope') 

title([num2str(strain), ' External']) 

legend([num2str(strain), num2str(prot1)],[num2str(strain), 

num2str(prot2)]) 

hold off 

 

Figure C1. MATLAB Script to Analyze Endocytosis Ratio 
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