Spring 5-10-2019

A Multi-Proxy Paleoecological Reconstruction of Holocene Climate, Vegetation, Fire and Human Activity in Jamaica, West Indies

Mario A. Williams
University of Maine, mario.williams@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd
Part of the Climate Commons, and the Paleobiology Commons

Recommended Citation
https://digitalcommons.library.umaine.edu/etd/3044
A MULTI-PROXY PALEOECOLOGICAL RECONSTRUCTION OF HOLOCENE CLIMATE, VEGETATION, FIRE AND HUMAN ACTIVITY IN JAMAICA, WEST INDIES

By

Mario A. Williams

B.A. Franklin and Marshall College, 2016

A THESIS
Submitted in Partial Fulfillment of the Requirements for the Degree of
Master of Science
(in Ecology and Environmental Sciences)

The Graduate School
The University of Maine
May 2019

Advisory Committee:

Jacquelyn Gill, Assistant Professor of Paleoecology and Plant Ecology, Advisor

Jasmine Saros, Professor of Paleoecology

Kirk Maasch, Professor of Earth Sciences
A MULTI-PROXY PALEOECOLOGICAL RECONSTRUCTION OF HOLOCENE CLIMATE, VEGETATION, FIRE AND HUMAN ACTIVITY IN JAMAICA, WEST INDIES

By Mario A. Williams

Thesis Advisor: Dr. Jacquelyn L. Gill

An Abstract of the Thesis Presented
In Partial Fulfillment of the Requirements for the Degree of Master of Science (in Ecology and Environmental Sciences)
May 2019

Jamaica is located in the Caribbean biodiversity hotspot and has a rich flora and fauna, most notably characterized by exceptional levels of plant endemism. These natural resources are imperiled by climate change and increasing anthropogenic pressures, therefore highlighting the importance of implementing effective conservation programs to mitigate ecosystem degradation. Paleocological studies that investigate the diversity and distributions of organisms and their habitats over millennial timescales provide critical long-term spatial and temporal context for the assessment of contemporary environmental problems. Lake sediments are a highly useful archive for the study of prehistoric climate and ecological changes, as biological, chemical and geophysical remnants of ancient environments sequentially accumulate on lake bottoms over time, thus providing an integrated record of past environmental variability. Jamaica’s prehistory is not well known from both an ecological and human perspective, therefore providing a special opportunity to apply paleoecological methods to the investigation of the past environments of an understudied area. This thesis investigates the paleoecological history of Jamaica within the context of millennial-scale relationships among humans, climate and the environment throughout
the Holocene. Chapter 1 provides a review of the utility of lake sediment coring and paleoecological data for reconstructing past environments and climates, paleoenvironmental research in low-latitude environments and relationships among climate, biodiversity, and human populations in the tropics, and the history of climate, vegetation, fire and human activities in the Caribbean Basin as illuminated by prior paleoecological research. In sum, Chapter 1 provides a broader spatial context for understanding the timing and magnitude of paleoecological changes in Jamaica and allows for the framing of past changes in climate and human activities in Jamaica within a regional model of prehistoric environmental variability. Chapter 2 examines the paleoenvironments, paleoclimates and prehistoric human populations of Jamaica. A novel multi-proxy paleoecological reconstruction that records prehistoric changes in climate, fire, vegetation and human activities in Jamaica from the mid-Holocene to modern times is presented. Four successive waves of human colonization were documented in the lake sedimentary record, including the arrival of the Ostionoid peoples, the first group to colonize the island. Initial colonization of the island was coeval with a period of increased fire regimes and large vegetation shifts, including the loss of a swamp mangrove-fern community which failed to re-establish after disturbance. Subsequent waves of colonization by the Meillacan peoples, Taino, and Europeans were associated with increases in fire activity above background levels. The paleoecological record revealed that the Maya Drought (AD 750-AD 950) was represented by arid conditions in Jamaica, while the Medieval Warm Period (AD 800-AD 1300) and Little Ice Age (AD 1400-AD 1800) were represented by wet and dry climates respectively.
ACKNOWLEDGEMENTS

I would like to thank my family for the unending love and support they gave me throughout my time in graduate school. You have always motivated me to keep striving forward and your positive words of encouragement have made a world of difference for me. I am incredibly grateful to my best friend in life and fiancé, Emily Durocher. Your visits to Maine and the fun adventures that we have shared over the years have contributed to making this process more enjoyable.

I would like to thank my advisor, Dr. Jacquelyn Gill, for her guidance and mentorship over the years. I appreciate your willingness to always review my work, have conversations about my project, write letters of recommendation for me, train me in the lab, and advocate for me. I am very grateful to have had such an enthusiastic and positive motivator as an advisor.

I would like to thank my graduate committee members, Dr. Kirk Maasch and Dr. Jasmine Saros for their thoughtful review of my work. I am deeply thankful to Dr. Saros for her time and effort in writing letters of support for me.

I would like to thank Andrea Nurse for traveling with me to Jamaica to conduct fieldwork. Your hard work and leadership in the field was integral to my project, and I am grateful to have had the opportunity to work with you.

I would like to thank the School of Biology & Ecology for providing me with the opportunity to be a graduate teaching assistant. I have thoroughly enjoyed my time in the classroom, and the skills that I have learned will continue to enrich my professional life far after leaving the University of Maine.

I would like to thank Matthew Goldsmith, Abigail Poirier and Zachary LePage for all the time and effort that they have dedicated to working on my project. I am fortunate to have had the
opportunity to get to know you all and serve as a mentor to you. You all were an incredible team and I am forever thankful for your help.

I would like to thank Dr. Michael Burn, Romario Anderson, Kadane Coates and Patrick Lewis from the University of the West Indies in Jamaica. Your help with logistics and planning for my fieldwork in Jamaica was invaluable, and I deeply appreciate your interest, time and effort.

I am deeply grateful for the generous monetary support I have received from the Dan and Betty Churchill Exploration Fund, the National Lacustrine Core Facility through their Visiting Graduate Student Grant Program, and over 190 donors on Experiment.com. This work would not have been possible without your financial support, and I express my sincere gratitude to you.
TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... iii

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

PALEOECOLOGICAL PERSPECTIVES ON CLIMATE AND ENVIRONMENTAL
CHANGES IN THE TROPICAL CARIBBEAN BASIN ... 1

Article scope and objectives ... 1

Multi-proxy paleoecological approaches: applications and insights 1

The tropics: geography, climate, biodiversity and human history 3

The Caribbean: geography, biodiversity and climate .. 6

Paleoecological proxies: stable oxygen isotopes, pollen, Sporormiella and charcoal 10

Caribbean paleoenvironments and paleoclimates: insights from sedimentary records 14

References ... 20

A MULTI-PROXY RECONSTRUCTION OF HOLOCENE CLIMATE AND
ENVIRONMENTAL CHANGES IN JAMAICA, WEST INDIES .. 37

Introduction ... 37

Materials and Methods ... 43

Site Description ... 43

Vegetation ... 45

Core collection, initial description and sampling ... 46

Chronology ... 48
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pollen and charcoal analyses</td>
<td>48</td>
</tr>
<tr>
<td>Ostracods and stable isotope analyses</td>
<td>50</td>
</tr>
<tr>
<td>Results</td>
<td>51</td>
</tr>
<tr>
<td>Lithology</td>
<td>51</td>
</tr>
<tr>
<td>Pollen and spores</td>
<td>51</td>
</tr>
<tr>
<td>Charcoal analysis</td>
<td>56</td>
</tr>
<tr>
<td>Stable isotope results</td>
<td>57</td>
</tr>
<tr>
<td>Discussion</td>
<td>60</td>
</tr>
<tr>
<td>Conclusions</td>
<td>65</td>
</tr>
<tr>
<td>References</td>
<td>66</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>90</td>
</tr>
<tr>
<td>BIOGRAPHY OF THE AUTHOR</td>
<td>115</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Chapter 2

Table 2.1 Wallywash Pond vegetation survey data. ...78

Table 2.2 Radiocarbon dates obtained for WALL18..83
LIST OF FIGURES

Chapter 1

Figure 1.1 Representative pollen grains extracted from prehistoric lake sediments35
Figure 1.2 The Caribbean region highlighting paleoecological study sites from text36

Chapter 2

Figure 2.1 Annual and seasonal precipitation patterns of Jamaica ...84
Figure 2.2 Study location and coring site ..85
Figure 2.3 Bayesian age-depth model made using Bacon software86
Figure 2.4 Fossil pollen diagram for WALL18 and lithology ..87
Figure 2.5 Fire reconstruction for WALL18 ...88
Figure 2.6 Stable isotope curves for WALL18 ...89
CHAPTER 1

PALEOECOLOGICAL PERSPECTIVES ON CLIMATE AND ENVIRONMENTAL CHANGES IN THE TROPICAL CARIBBEAN BASIN

Article scope and objectives

This review primarily considers the: 1) application of lake sediment coring methods and sedimentary proxy data to paleoecological and paleoclimatic reconstructions, 2) status of tropical paleoenvironmental research and linkages between biodiversity, climate, economy, and prehistoric human activities in low-latitude areas, and 3) the history of vegetation, climate, fire and human activities in the Caribbean region as illuminated by existing paleoecological archives.

Multi-proxy paleoecological approaches: applications and insights

The analysis of organic and inorganic proxies found in lake sediments is a highly useful tool for reconstructing past climate and environmental variability beyond the scope of temporally-limited instrumental records. For example, biotic and abiotic proxies from lake sediments collected from sites distributed across the circumpolar North indicate that Arctic lake ecosystems are experiencing physical and ecological regime shifts that are unprecedented over centuries to millennia (Smol et al., 2005; Smol and Douglas, 2007); and coastal lake sediment records have yielded millennial-scale reconstructions of hurricane frequency and intensity in the northern Gulf of Mexico (Liu and Fearn, 2000; Lambert et al., 2008). Furthermore, data from lake sediments have been used to investigate past abrupt climate events in order to better
contextualize modern rates of temperature change and the ecological consequences of recent anthropogenic warming (Stivrins et al., 2016; Ammann et al., 2000; Birks and Birks, 2008).

Lake sediments contain a broad diversity of biological and biogeochemical proxies that provide detailed information about different aspects of past changing environments. Environmental proxies commonly used in paleoecological and paleoclimatological research include: pollen (Seppä and Bennett, 2003), chironomids (Brooks, 2006), diatoms (Bigler and Hall, 2002), stable isotopes (Leng and Marshall, 2004), percent loss-on-ignition (Heiri et al., 2001), charcoal (Ali et al., 2009), and magnetic susceptibility (Thompson et al., 1975), among several others. Environmental materials from the surrounding catchment, such as pollen and charcoal, are either aerially deposited or washed into lakes, and accumulate in a sequential manner on the lake bottom over time. These lacustrine sedimentary sequences frequently provide high-resolution proxy records, which may be sampled at decadal or sub-decadal time intervals—and in the case of varved lake deposits, provide annual to seasonal resolution (Zolitschka et al., 2015).

The simultaneous use of multiple proxies in single studies provides several lines of evidence that can be independently validated for accuracy, and strengthens the overall conclusions made from such studies as researchers obtain a more comprehensive understanding of the paleoenvironmental changes being assessed (Birks and Birks, 2006; Lotter, 2003). The relatively recent emergence of multi-proxy analyses in paleolimnological research in conjunction with the development of novel proxies, such as environmental DNA (eDNA; Parducci et al., 2017, 2013) and a wide range of molecular organic markers; such as long-chain alkenones (LCAs), plant-derived n-alkanes, levoglucosan and polycyclic aromatic hydrocarbons (PAHs) (Castañeda and Schouten, 2011; Elias et al., 2001; Denis et al., 2012), ensure the advancement of
paleoclimatology and paleoecology as researchers now possess the tools to rigorously address previously unanswerable questions.

Most of what we currently know about millennial-scale global climate change is based on ice core records collected from polar environments (Johnsen et al., 2001; Masson et al., 2000), and paleoecological reconstructions conducted in high-latitude regions such as North America and Europe (Jones and Mann, 2004; Schoonmaker and Foster, 1991). Despite the existence of tropical paleoclimate reconstructions based on corals (Gagan et al., 2000), marine sediment cores (Haug et al., 2001; Maslin and Burns, 2000), speleothems (Lachniet et al., 2004; Yadava and Ramesh, 2005), and ice cores retrieved from high-altitude ice fields (Thompson et al., 2000), low-latitude paleoclimate reconstructions remain relatively sparse compared to high-latitude regions, therefore leaving a persistent research gap in our understanding of long-term climate variability in the tropics.

The tropics: geography, climate, biodiversity and human history

The tropics are geographically defined as the regions of Earth that lie between the Tropic of Cancer (23.5°N) and the Tropic of Capricorn (23.5°S). Unlike the temperate zone, the tropics experience minimal seasonal variation in temperature, with yearly average temperatures at sea level rarely falling below 18 °C (64 °F). However, tropical precipitation patterns exhibit high seasonality due to the strong influence of the Intertropical Convergence Zone (ITCZ) on regional rainfall. The ITCZ is a horizontal band of low atmospheric pressure located roughly at the equator. It is characterized by high convection, cloudiness and thunderstorms. The ITCZ migrates northward during boreal summer (austral winter, June to August) and southward during austral summer (boreal winter, November to January) in response to latitudinal variation in solar
insolation. Consequently, tropical areas experience a seasonal cycle of precipitation maxima that is tightly linked to the annual movement of the ITCZ (Osborne, 2000).

Tropical terrestrial ecosystems typically support diverse assemblages of plant and animal taxa, with particularly elevated levels of species richness and endemism (Myers, 1988; Mittermeier et al., 1998). In a seminal paper, Myers et al. (2000) investigated the global distribution of ‘biodiversity hotspots’—regions that exhibit high levels of species endemism and experience acute habitat loss—and identified 25 hotspots that are the last remaining refuge for over 40% of all global plant species and more than a third of all global vertebrate species. Of the 25 identified biodiversity hotspots, tropical forests were present in 15, and virtually all tropical islands were located in a hotspot (Myers et al., 2000). The total area of the 25 biodiversity hotspots represents less than 2% of the Earth’s terrestrial surface and has already experienced a greater than 85% reduction in primary vegetation (Myers et al., 2000). More than 1 billion people inhabit biodiversity hotspots, and these populations are increasing at a faster rate than the global average—1.8% per year in hotspots versus the global population growth rate, 1.3% per year (Cincotta et al., 2000). In addition to the risks posed by climate change (Corlett, 2012), tropical ecosystems will likely continue to be threatened by a broad range of potentially detrimental human activities—such as land conversion for agriculture (Laurance et al., 2014), road incursion (Laurance et al., 2009), over-hunting for bush meat and illegal trade (Harrison et al., 2016; Milner-Gulland et al., 2003), and urban expansion (Seto et al., 2012).

Climate change is projected to have a wide range of impacts on tropical ecosystems and human populations. The tropics are expected to develop no-analog climates by the year 2100, which may increase the probability of reorganization of tropical ecological communities. Furthermore, tropical species will face heightened extinction risk if they are unable to effectively
track their climate niches as they shift, or if their suitable climate conditions disappear altogether (Williams and Jackson, 2007; Williams et al., 2007). Tropical species may also be more vulnerable to future climate changes than their temperate counterparts due to their lower temperature tolerance and acclimation ability (Tewksbury et al., 2003; Deutsch et al., 2008). Climate-driven sea level rise poses a considerable threat to tropical biodiversity. Conservative estimates indicate that a 1-6 m increase in sea level would inundate large areas of land on tropical islands, resulting in significant habitat reduction and endangerment of up to hundreds of endemic species (Bellard et al., 2014; Menon et al., 2010; Wetzel et al., 2012). The issue of environmental migration has gained increasing attention in the literature, particularly with regards to the role of sea-level rise in the displacement of human populations in the tropical islands of the Pacific and Indian Oceans (Yamamoto and Esteban, 2017; Constable, 2017; Berchin et al., 2017). Additionally, future climate warming will likely increase tropical cyclone intensity which, in conjunction with projected sea-level rise and the risk of enhanced storm surges, poses a serious threat to ecosystems, human lives and infrastructure (Sobel et al., 2016; Walsh et al., 2016; Knutson et al., 2010; Grinsted et al., 2013).

The tropics were also the site of some of the world’s most developed ancient civilizations, with complex societies that practiced large-scale agriculture, conducted long-distance trade, built immense urban centers, engaged in organized warfare against neighboring city states, and conceived mathematical and astronomical models for understanding both the natural and spiritual underpinnings of their cultural existence. These civilizations include, but are not limited to: the Classic Mayan Empire (AD 250- AD 900) which stretched from the Yucatan Peninsula in the north to the Guatemalan Highlands and northern Honduras in the south (Dunning and Beach, 2010; McNeil, 2012; Webster, 2000; Thompson, 1974), the Aztec Empire
(12th-early 16th centuries) which occupied vast tracts of land in central Mexico (Smith and Berdan, 1992; Santley, 1985; Werner, 1992; Isaac, 1983), and the Khmer Empire (9th-early 15th centuries) which covered much of modern-day Thailand, Cambodia, Laos and Vietnam (Hendrickson, 2010; Evans et al., 2007; Evans et al., 2013). Researchers from a broad array of academic disciplines have debated the underlying causes of societal collapse for these ancient tropical civilizations, with a longstanding focus on the extent to which climate and environmental changes are implicated as major drivers of past societal failures (Haug et al., 2003; Kennett et al., 2012; Medina-Elizalde and Rohling, 2012; Diamond et al., 2009; Turner and Sabloff, 2012; Buckley et al., 2010; Dunning et al., 2012).

The Caribbean: geography, biodiversity and climate

The Caribbean geographical area lies approximately between 10 to 27°N latitude and 57 to 87°W longitude. The region includes the islands of the Caribbean Sea, a large partially enclosed basin of the mid-western Atlantic Ocean, and is bordered in the west by the Gulf of Mexico and eastern Central American coastline, in the north by the Bahamian archipelago, in the east by the Lesser Antilles island arc, and in the south by the northern South American coastline. The Lesser Antillean islands extend from the US and British Virgin Islands in the north to Grenada and Trinidad and Tobago in the south. The Greater Antilles are located south of the Bahamian archipelago and include the comparatively larger islands of Cuba, Jamaica, Hispaniola, and Puerto Rico. Hispaniola is comprised of the nations of Haiti on its western end and the Dominican Republic on its eastern end. The mainland Central and South American countries of Belize, Guyana and Suriname are frequently considered to be part of the Caribbean region based on cultural and historical similarities, as well as strong political and economic ties.
For example, all three nations are members of the Caribbean Community (CARICOM), a multinational organization that aims to advance the development of its member states through economic collaboration, foreign policy cooperation, and the promotion of trade, among other activities (O’Brien, 2011).

The Caribbean is recognized as one of the world’s biodiversity hotspots based on endemicity and species vulnerability due to habitat loss (Myers et al., 2000; Brooks et al., 2002; Mittermeier et al., 2004). European explorers recorded descriptions of the Caribbean’s floral diversity as early as the 15th century, and the region has an extensive history of botanical collecting (Santiago-Valentin and Olmstead, 2004). Myers et al. (2000) estimated that the Caribbean has approximately 12,000 vascular plant species, of which more than 50% are endemic—that is, over 2% of global plant species. The Caribbean vertebrate fauna is also characterized by exceptional endemism with several extant taxonomic groups, including amphibians, reptiles and freshwater fishes, consisting almost entirely of species found nowhere else on the planet (Hedges, 1996).

Approximately 85% of non-flying Caribbean mammals have gone extinct since the late Pleistocene and as a consequence, the present-day mammalian fauna of the region is a depauperate remnant of a once diverse assemblage of species (Morgan and Woods, 1986; Dávalos and Turvey, 2012). Previous studies indicate that climate and sea-level changes during the late Pleistocene-Holocene transition likely had a major role in Caribbean vertebrate extinctions and range contractions (Dávalos and Russell, 2012; Pregill and Olson, 1981). However, radiocarbon-dated fossil evidence indicates that several now-extinct vertebrate taxa persisted well into the Holocene, which suggests that anthropogenic activities (e.g. overhunting, habitat destruction, and exotic species introductions) were an important driver of regional late
Quaternary species extinctions (Soto-Centeno and Steadman, 2015; Steadman et al., 2005; Steadman et al., 1984). Notable extinct vertebrate taxa that have received interest from researchers, as well as the non-scientific community, include the Jamaican flightless ibis (*Xenicibis xympithecus*) which scholars believe to have used its wings as club-like weapons (Longrich and Olson, 2011), and the Caribbean monk seal (*Monachus tropicalis*) which went extinct as recently as 1952 (McClenachan and Cooper, 2008).

The tourism and agricultural sectors are critical to Caribbean economies, in terms of both their contributions to regional gross domestic product and employment (Taylor et al., 2012; Pulwarty et al., 2010; Barker, 2012). This socioeconomic reality makes Caribbean populations particularly susceptible to the negative effects of projected climate changes, as the growth and sustainability of these industries are closely linked to climate variations (Uyarra et al., 2005; Scott et al., 2012; Lewsey et al., 2004). Modeling studies generally predict a 10-50% decrease in annual precipitation for the majority of the Caribbean by the approximate period 2070-2100, although the simulation results vary spatially (Campbell et al., 2011; Hall et al., 2013). Over a similar time period, a 2-3 °C temperature rise is projected for the entire Caribbean (Campbell et al., 2011; Hall et al., 2013). Furthermore, climate change and the resultant increase in North Atlantic sea surface temperatures may cause an increase in Atlantic hurricane intensity, which has significant consequences for individuals, property, infrastructure and ecosystems in the Caribbean (Elsner, 2006; Moore et al., 2017).

The Caribbean has a hot climate with average monthly temperatures in excess of 18 °C (Peel et al., 2007). The annual precipitation in the region exhibits a bimodal pattern, with an early rainfall season from May to July and a late rainfall season from August to November—the latter of which coincides with the Atlantic hurricane season, and has higher precipitation levels.
Precipitation maxima in the Caribbean Basin coincide with northern displacement of the ITCZ during boreal summer (Hastenrath and Polzin, 2013). The ITCZ migrates latitudinally in response to differences in inter-hemispheric heat, with movement towards the warmer hemisphere and increased energy flux towards the colder hemisphere a stabilizing feature of the global climate system (Mantsis and Clement, 2009; Donohoe et al., 2013). Consequently, ITCZ migration can occur over several timescales—from seasonal (Wu et al., 2003) to millennial (Russell and Johnson, 2005)—and in response to different climate forcings, including variations in high-latitude ice extent (Chiang and Bitz, 2005; Chiang et al., 2003), and changes in the oceanic thermohaline circulation (Wu et al., 2008; Stouffer et al., 2006). Hodell et al. (1991) showed that Holocene wet and dry periods in the Caribbean can be explained by millennial-scale variation in solar insolation, where a more northerly ITCZ delivered increased precipitation to the region during periods with enhanced Northern Hemisphere summer insolation. Over shorter timescales, Caribbean precipitation is also influenced by the North Atlantic high pressure system (Giannini et al., 2000; Gamble et al., 2008), the El Niño–Southern Oscillation (Chen and Taylor, 2002; Jury et al., 2007), the Caribbean low-level jet (Cook and Vizy, 2010), and the Madden-Julian oscillation (Martin and Schumacher, 2011).

Several lake sediment cores have been collected previously from the Caribbean Basin, in order to investigate paleoclimatic and paleoenvironmental changes that occurred in the region. In the past, researchers have aimed to better understand the spatial and temporal variability of climate within the region, the primary drivers of landscape-level changes, and the role of extreme climate events in shaping the trajectories of various prehistoric societies. Lacustrine sediment-based proxies that are commonly used to address these broad areas of inquiry include pollen,
charcoal, and stable isotopes—however, novel proxies, such as *Sporormiella*, have the potential to provide valuable insights into the human and environmental histories of the Caribbean region.

Paleoecological proxies: stable oxygen isotopes, pollen, *Sporormiella* and charcoal

The source area for biological materials—such as pollen, charcoal and *Sporormiella* fungal spores—deposited into a lake varies depending on the specific environmental proxy being considered. Previous empirical and modeling studies have provided valuable insights into the relationships between the source area for various environmental indicators and lake size, which enables improved spatial interpretation of proxy records contained in lake sediment cores. For pollen preserved in lake sediments, the general relationship is that smaller lakes reflect local vegetation communities while larger lakes reflect broader-scale, regional vegetation communities (Davis, 2000). For example, the Prentice-Sugita model—which links pollen abundances in lake sediments to vegetation structure in the surrounding catchment—showed that pollen assemblages in forest hollows (radius, $R = 2$ m), small lakes ($R = 50$ m), and medium-sized lakes ($R = 250$ m) are representative of local vegetation from source areas of ~ 75 m, ~ 350 m, and ~ 750 m from the lake edge respectively, for a patchy landscape. The same model indicated that pollen assemblages in large lakes ($R = 750$ m) are unsuitable for reconstructing local plant communities as they tend to represent a homogenous regional vegetation signal, as opposed to capturing adequately the site-to-site variation present in small, heterogenous patches (Sugita, 1994).

Among other factors, the amount of charcoal deposited into a lake during a fire event is a function of fire intensity and frequency, the distance of the fire from the basin, charcoal particle size, the material being burnt and wind speeds. Microscopic charcoal ($< 50 \mu$m) is generally dispersed over longer distances (1–100 km) than macroscopic charcoal ($> 50 \mu$m; < 1 km);
therefore, sedimentary microscopic charcoal records are a proxy for regional fire regimes while macroscopic charcoal records represent local fire regimes (Clark, 1988; Peters and Higuera, 2007). Modern calibration studies indicate that *Sporormiella* is dispersed over short distances (<100 m), and thus, is a suitable proxy for local herbivore abundances or herbivore presence (Gill et al., 2013; Raper and Bush, 2009). Consequently, lake sediments record landscape changes over a broad range of spatial scales, and in conjunction with paleoclimate data, they represent a powerful tool for reconstructing environmental responses to climate variability through time.

$\delta^{18}O$ values measured from ostracod shells reflect the evaporation-precipitation (E/P) regime of shallow lakes; as the lighter oxygen isotope (^{16}O) preferentially evaporates during arid climatic periods, thus increasing the levels of the heavier isotope (^{18}O) in lake water. Ostracods incorporate oxygen into their calcite shells from their host lake water during growth; therefore, changes in the E/P balance of the lake are recorded by the isotopic composition of ostracod shells preserved in lake sediments (Hodell et al., 1991; 1995). For example, using $\delta^{18}O$ measurements from fossil ostracods and authigenic carbonate collected from high-altitude lakes, Schwalb et al. (1999) found that the mid- to late Holocene transition in the Chilean Altiplano was marked by a regionally coherent series of abrupt climate changes. Similarly, Lister et al. (1991) assessed fossil ostracod $\delta^{18}O$ values to reconstruct lake levels of the Lake Qinghai basin in China, and specifically, to investigate the role of late Quaternary monsoon variability in controlling the past climate and hydrology of the region. However, care should be exercised when inferring paleoclimatic patterns from ostracod records, as ostracod $\delta^{18}O$ values are affected not only by E/P changes, but are also influenced by the isotopic signature of rainfall in the catchment, lake mixing, and lake size—as well as species-specific differences in isotopic fractionation that arise
from interspecific variation in calcification rates and habitat use, among other factors (Leng and Marshall, 2004; Keatings et al., 2002; von Grafenstein et al., 1999).

Preserved pollen (Figure 1.1) identified taxonomically and quantified using a microscope indicates changes in the vegetation of a region over time (Bennett and Willis, 2002; Faegri et al., 1989). For example, a shift of pollen from moisture-adapted species to drought-tolerant species would indicate a transition from mesic to more arid climatic conditions (Hodell et al., 1991). Deforestation for agriculture is indicated by an abrupt decline in tree pollen and increases in pollen from crops (e.g. *Zea mays*, *Cucurbita*, and *Helianthus annuus*), grasses (*Poaceae*) and weedy species (e.g. *Asteraceae*, *Amaranthaceae*, and *Plantago*) (Sanford Jr and Horn, 2000; Dubois et al., 2018; Mcandrews, 1988). Fossil pollen data from Massachusetts, USA demonstrated that 18th and 19th century European settlement in New England was associated with a shift in forest composition from late successional species, such as sugar maple, hemlock and beech, to disturbance-tolerant species, such as white pine, red maple and birch (Fuller et al., 1998). Furthermore, fossil pollen data can be applied to the study of the distributional responses of plant species to past climate changes. For example, Davis and Shaw (2001) used fossil pollen data to illustrate the responses of North American tree species to climate changes at the end of the last glaciation—some taxa, such as spruce (*Picea*), shifted their entire range, while other taxa, such as oak (*Quercus*), continued to grow near glacial refugia, therefore highlighting that species respond individualistically to environmental changes based on underlying adaptations to different climate factors (e.g. temperature, rainfall, seasonality).

Sporormiella is a fungus that only inhabits herbivore dung and produces characteristic spores that remain identifiable in prehistoric sediments (Gill et al., 2013). Previous studies have showed that *Sporormiella* abundances are a reliable proxy for herbivore density and can be
interpreted within the contexts of both megafauna and historical livestock populations (Davis, 1987; Raczka et al., 2016). Raper and Bush (2009) demonstrated that *Sporormiella* spores preserved in lake sediments can be used to estimate past grazing intensity, and that within-lake *Sporormiella* abundances decline with increased distance from the shoreline—thus highlighting that *Sporormiella* concentrations in lake sediments are sensitive to lake level variations.

Similarly, Wood et al. (2016) found that sedimentary *Sporormiella* concentrations closely tracked the recorded history of herbivore introductions and consequent vegetation shifts on Enderby Island, New Zealand. *Sporormiella* fungal spores are easily observed on microscope slides prepared for pollen analysis (Burney et al., 2003), and statistical analyses indicate that a count of 300-350 markers per slide (e.g. *Lycopodium* spores, or plastic or ceramic microspheres) is adequate for accurately estimating *Sporormiella* abundance (Etienne and Jouffroy-Bapicot, 2014).

Sharp increases in charcoal particles in sediment cores have been used to detect landscape burning associated with human arrival on islands (Burney, 1997; Burney and Burney, 2003). Charcoal abundances estimated from lake sediment records can illuminate the magnitude, frequency and variability of landscape burning over various spatial scales, in order to better understand human use of fire through time and relationships between fire, climate and vegetation (Iglesias et al. 2015). For example, charcoal paleorecords indicated that despite contemporary increases in anthropogenic burning associated with land clearance and agriculture in northeastern Cambodia monsoon forests, modern charcoal production is relatively very low within the context of the past 9,000 years, therefore calling into question the efficacy of fire suppression schemes currently used to manage the forests (Maxwell, 2004). Over a much longer timescale, analysis of charcoal in a marine sediment core from offshore southwestern Africa demonstrated that
grassland burning in southern Africa over the past 170,000 years was driven by shifts in the position of the ITCZ, which in turn was controlled by changes in the Earth’s precessional cycles (Daniau et al., 2013).

Caribbean paleoenvironments and paleoclimates: insights from sedimentary records

Despite a recent surge of interest in using paleoecological data to inform contemporary ecosystem management and conservation (Nogué et al., 2017; Wingard et al., 2017; Spencer et al., 2017; Whitlock et al., 2017; Chambers et al., 2017; Cohen, 2017), the circum-Caribbean remains one of the least understood regions from a paleoecological perspective. Our current knowledge of millennial-scale linkages between Caribbean climate, vegetation, fire and human activities is derived from a relatively sparse collection of sediment cores, retrieved mostly from sites in the Greater Antilles and Mesoamerica (Figure 1.2).

Kennedy et al. (2006) collected a sediment core from a high-elevation site in the Dominican Republic and generated a 4,000 year-long multi-proxy record characterized by a persistent relationship between monotypic pine (*Pinus occidentalis*) forests and fire occurrence. *Pinus occidentalis* is endemic to Hispaniola and exhibits numerous adaptations to fire, including the development of a thick bark and high post-fire seedling recruitment (Darrow and Zanoni, 1990). Kennedy et al. (2006) noted that a regional shift toward more mesic conditions around 4,000 cal yr BP was associated with bog formation in their environmental record, and that periods of elevated aridity were marked by bog desiccation around 3,700 and 1,200 cal yr BP. A δ18O and pollen record from Lake Miragoane, Haiti documented climate and environmental changes extending to >10,000 14C yr BP (Higuera-Gundy et al., 1999). The Haitian paleoenvironmental record suggested that climate was cool and dry as environments transitioned from the last glacial cycle and into the Holocene (Higuera-Gundy et al., 1999). Similar to
Kennedy et al. (2006), the authors found that wetter climates were present during the mid-Holocene, as recorded by forest expansion, and that there was a general trend of increasing aridity from Late Holocene to modern times (Higuera-Gundy et al., 1999).

Lane et al. (2009) presented multi-proxy sediment records retrieved from the Las Lagunas area of the Dominican Republic, documenting climate and environmental trends over the past ~3,000 years. The Las Lagunas records provided support for the notion that shifts in the mean position of the ITCZ had a strong influence on past Holocene precipitation variability in the Caribbean Basin (Hodell et al., 1991), in addition to improving understanding about the timing and magnitude of key climate events in the circum-Caribbean region. For example, the authors highlighted that decreased lake levels and increased ostracod δ18O enrichment at ~1,200 cal yr BP in the Las Lagunas records could have been related to previously documented regionwide droughts, which researchers have postulated to have contributed to the TerminalCollapse of the Mayan civilization (Lane et al., 2009; Gill et al., 2007; Brenner et al., 2001).

Despite the large body of evidence pointing to an environmentally deterministic model for rationalization of the Mayan collapse (i.e. an emphasis on climate and environmental changes leading to resource scarcity), other schools of thought advocate for alternative and/or more nuanced explanations, such as: political and economic restructuring and shifting trade patterns (Turner and Sabloff, 2012); human and agricultural diseases (Wilkinson, 1994; Brewbaker, 1979); and movement from generalizations about civilizational collapse to acknowledgement of societal resilience and sustainability (Graham, 2000; Aimers, 2007). Lane et al. (2009) also provided paleoecological evidence of a wet Medieval Warm Period (~950-650 cal yr BP) and dry Little Ice Age (~450-150 cal yr BP) in the Greater Antillean region.
Burney et al. (1994) analyzed a 7,000 year-long charcoal record from Laguna Tortuguero, Puerto Rico, and found that charcoal concentrations increased abruptly after ~5,300 cal yr BP, marking the start of a period of high fire activity, before declining at ~3,200 cal yr BP. The period of increased fire events was interpreted as a signal of early human arrival on the island and subsequent landscape burning, as the timing of the interval did not align with any known climate or environmental changes that offered a probable explanation for the increase in fire regimes (Burney et al., 1994). Similarly, Kjellmark (1996) identified an abrupt rise in charcoal levels and concomitant increase in pyrophitic pine (Pinus caribaea) woodlands at ~740 radiocarbon yr BP in a sediment core collected from Andros Island, Bahamas. However, it was inconclusive as to whether the observed charcoal and vegetation changes resulted from climate variability or prehistoric human activities due to dating uncertainties associated with the sediment core (Kjellmark, 1996).

Pollen and δ¹⁸O isotopic values in a sediment core from Quintana Roo, Mexico suggested that climate became increasingly arid between 6,500 and 4,700 cal yr BP, with intensification of this drying trend at ~3,500 cal yr BP (Carrillo-Bastos et al., 2010). Similar to Lane et al. (2009), severe drought identified at ~1,200 cal yr BP was linked to regional aridity that was coeval with the Terminal Collapse of the Mayan empire, and δ¹⁸O values indicated that the Medieval Warm Period was wet (Carrillo-Bastos et al., 2010). High ostracod δ¹⁸O values indicated that lake levels declined in Petén, Guatemala, a major prehistoric Maya population center, at about AD 150, AD 550, and AD 850, coeval with various societal and population shifts throughout ancient Maya civilization history (Rosenmeier et al., 2002). Rosenmeier et al. (2002) noted that the observed δ¹⁸O increases could be due to either enhanced evaporation or decreased freshwater
inflow as a result of vegetation regrowth, however their proxy data helps establish a pattern of repeated past connections between climate changes and the fate of Mayan civilization.

Correa-Metrio et al. (2012) examined the impacts of abrupt climate changes on the vegetation of the Yucatan Peninsula over much longer timescales than previously highlighted in the current review. Their sedimentary pollen record collected from Lake Petén-Itza, Guatemala extended back to 65,000 years ago, thus capturing the climate shifts associated with the Last Glacial Maximum (LGM) and several Heinrich events (Correa-Metrio et al., 2012). Heinrich events were associated with the proliferation of dry-adapted plant species, indicating arid climatic conditions, while the LGM was associated with a more muted vegetation response, thus demonstrating that very cold LGM climates in this region were relatively mesic compared to those of Heinrich events (Correa-Metrio et al., 2012). A shorter sedimentary record spanning the last ~3,800 years from the Yucatan Peninsula suggested that there was a shift from wet to arid climate conditions at ~3,500 cal yr BP as indicated by a decline in the pollen of mesic forest taxa (Aragón-Moreno et al., 2012). Furthermore, Aragón-Moreno et al. (2012) highlighted that the driest interval in their record at ~950 cal yr BP coincided temporally with the decline of the Classic Maya civilization, and that later increases in the pollen of tropical forest species at ~770 cal yr BP indicated a return to moist climate conditions during the Medieval Warm Period.

Schüpbach et al. (2015) assessed a suite of fire proxies—that is, both charcoal particles and the molecular biomarkers, levoglucosan, mannosan and galactosan—in a sediment core collected from Lake Petén-Itza to investigate linkages between fire, vegetation and anthropogenic activities over the course of the Holocene. The authors identified three peaks in fire activity: 1) 9,500-6,000 cal yr BP, 2) 3,700 cal yr BP, and 3) 2,700 cal yr BP (Schüpbach et al., 2015). The first period of increased fire activity (9,500-6,000 cal yr BP) was attributed to
enhanced fuel availability due to warmer and wetter climatic conditions, while the most recent peak in fire activity (2,700 cal yr BP) was attributed to Mayan use of fire for land clearance and farming (Schüpbach et al., 2015). The relative roles of Mayan agriculture and regional climate drying could not be determined with regards to the cause of the increase in fire activity at 3,700 cal yr BP (Schüpbach et al., 2015). Since the study by Schüpbach et al. (2015), the fire biomarker, levoglucosan, has been shown to accumulate on surficial seafloor sediments in the tropical Atlantic, therefore making marine sediment core investigations of linkages between biomass burning and climate and human activity viable; in conjunction with broadening the toolkit for analyzing fire histories (Schreuder et al., 2018).

The Little Ice Age was a period of abrupt climate cooling between ~ AD 1400 and ~ AD 1800, following the comparatively hotter Medieval Warm Period, which occurred between ~AD 800 and ~ AD 1300 (Mann et al., 2009; Grove, 2001; Hughes and Diaz, 1994). This review of paleoenvironmental records suggests that the Little Ice Age was marked by arid conditions, decreased lake levels, and declining tropical forest vegetation in the circum-Caribbean region. Contrastingly, the Medieval Warm Period was characterized by wet and humid conditions, increased lake levels, and expansion of tropical forest vegetation in the Caribbean. Furthermore, the paleoecological evidence suggests that the Caribbean Basin experienced arid conditions at approximately 1,200 cal yr BP to 1,000 cal yr BP and 3,500 cal yr BP to 3,200 cal yr BP, the former of which manifested as severe droughts that impacted major ancient civilizations within the region. These paleoclimatic inferences are corroborated by marine sediment core records collected from offshore northern South America (Haug et al., 2001; Peterson and Haug, 2006; Haug et al 2003), and indicates that Caribbean climate and environments have a strong dependency on large-scale Northern Hemisphere climate forcings, and are sensitive to variability.
in the mean position of the ITCZ over millennial timescales—thus resulting in the expression of coherent, regional climate signals.
References

Corlett, R.T. 2012. Climate change in the tropics: the end of the world as we know it?. *Biological Conservation* 151(1): 22-25.

Hendrickson, M. 2010. Historic routes to Angkor: development of the Khmer road system (ninth to thirteenth centuries AD) in mainland Southeast Asia. *Antiquity* 84(324): 480-496.

M. C. Peel, B. L. Finlayson, T. A. Mcmahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4 (2): 439-473. <hal-00298818>

Figure 1.1 Representative pollen grains extracted from prehistoric lake sediments. The pollen grains displayed are from species in the family Pinaceae, including A) Eastern white pine (*Pinus strobus*), B) Balsam fir (*Abies balsamea*), and C) White spruce (*Picea glauca*) (scale bars=50 µm). Images taken by Mario Williams using a Nikon Eclipse Ci series light microscope at 40 × magnification fitted with a SPOT digital imaging camera.
Figure 1. 2 The Caribbean region highlighting paleoecological study sites from text.

1) Kennedy et al. (2006), Valle de Bao, Dominican Republic (19° N, 71° W); 2) Higuera-Gundy et al. (1999), Lake Miragoane, Haiti (18° N, 73° W); 3) Lane et al. (2009), Las Lagunas, Dominican Republic (18° N, 70° W); 4) Burney et al. (1994), Laguna Tortugero, Puerto Rico (18° N, 66° W); 5) Kjellmark (1996), Church’s Blue Hole, Bahamas (25° N, 78° W); 6) Carrillo-Bastos et al. (2010), Lake Tzib, Mexico (19° N, 88° W); 7) Rosenmeier et al. (2002), Lake Salpetén, Guatemala (16° N, 89° W); 8) Correa-Metrio et al. (2012), Lake Petén-Itza, Guatemala (16° N, 89° W); 9) Aragón-Moreno et al. (2012), Ría Lagartos Biosphere Reserve, Mexico (21° N, 88° W); 10) Schüpbach et al. (2015), Lake Petén-Itza, Guatemala (16° N, 89° W).
CHAPTER 2

A MULTI-PROXY RECONSTRUCTION OF HOLOCENE CLIMATE AND ENVIRONMENTAL CHANGES IN JAMAICA, WEST INDIES

Introduction

Climate variability and extreme climate events, such as droughts and hurricanes, pose major challenges to the economic security and welfare of Jamaican peoples, with the potential for particularly significant impacts in key commercial sectors, such as agriculture and tourism (Selvaraju et al., 2013; Gamble et al., 2010; Hyman, 2014). While the emergence of climate adaptation strategies among local groups that will be significantly affected by future climate shifts is promising (Beckford et al., 2007; Campbell et al., 2011; Dhar and Khirfan, 2016), the uncertainty and potential severity associated with the global climate problem enjoins us to leverage science-based knowledge to help improve possible climate mitigation outcomes. For example, the frequency of high-magnitude North Atlantic hurricanes (category four and five) is projected to increase with future climate changes (Knutson et al., 2010; Bender et al., 2010), and Jamaica’s agricultural sector experienced economic losses totaling ~14.4 billion JMD due to extreme climate events (e.g. hurricanes, heavy winds, landslides etc.) between 1994 and 2010 (Selvaraju et al., 2013)—thus highlighting the potential socioeconomic costs associated with mismanagement of future climate risks. Average temperature over Jamaica has increased by ~0.6 °C since the mid-20th century, and increases of 0.47 °C to 1.17 °C and 0.6 °C to 2.3 °C are expected by the years 2030 and 2060, respectively (McSweeney et al., 2008). General circulation model projections also point to decreasing precipitation for Jamaica by the year 2100.
(McSweeney et al., 2008), while sea level within the Caribbean is expected to rise by 0.5-0.6 m over a similar timeframe (Nurse et al., 2014).

The native flora of Jamaica consists of ~3,003 species, of which ~26% are endemic to the island (Colon, 1996). Furthermore, Jamaica’s vegetation has the fifth highest percentage of endemic species among islands globally (Davis et al., 1997). The island also has biodiverse wildlife communities, which include 505 endemic terrestrial snails, 22 endemic amphibians, 33 endemic reptiles, 31 endemic birds and 4 endemic mammals (NEPA, 2010). Jamaican Quaternary deposits have produced fossils of 49 vertebrate species, including 3 amphibians, 18 reptiles, 9 birds, and 19 mammals (Morgan, 1993). Of the 49 species represented in this fossil vertebrate fauna, 15 are either globally extinct or locally extirpated, including the burrowing owl (*Speotyto cunicularia*), Jamaican flightless ibis (*Xenicibus xypithecus*), the Jamaican rice rat (*Oryzomys antillarum*), and the Jamaican monkey (*Xenothrix mcgregori*) (Morgan, 1993). A reanalysis of last appearance dates in the fossil record of West Indian mammals indicated that the abrupt climate changes of the Last Glacial Maximum and last glacial-interglacial transition were not associated with major extinctions (MacPhee, 2009). Instead, the observed pattern of extinctions suggested that most West Indian mammalian losses occurred between prehistoric settlement of the Caribbean (~6,000 years ago) and the European colonial period (~AD 1500 to AD 1850) and was a consequence of a plethora of long-term human impacts, such as habitat modification and the introduction of exotic competitors (e.g. Old World rats) and predators (e.g. the Indian mongoose, *Herpestes auropunctatus*) (MacPhee, 2009).

Few paleoenvironmental studies have been conducted in Jamaica, indicating that there is a particularly urgent need for research that investigates the climatic and ecological history of the island, and can be utilized to guide and enhance future management of the country’s natural
McFarlane et al. (2002) analyzed a suite of bioarcheological materials and calcite deposits from the Jackson Bay cave system in central-southern Jamaica, and found that climates were dry during the last glacial-interglacial transition (~16,500-10,000 14C YBP), cycled between dry and wet conditions from ~10,000-2,000 14C YBP, wet from 2,000-700 14C YBP, and dry from 700 14C YBP to modern times. Similar to McFarlane et al. (2002), a sediment core collected from Wallywash Pond, located close to the southwestern coast of Jamaica, suggested that the island was dry and cool during the late Pleistocene-Holocene transition up to 9,500 yr BP, after which climates cycled through alternating phases of mesic and arid conditions throughout the Holocene (Street-Perrott et al., 1993). The specific timing of these Holocene climatic fluctuations was not determined in their study due to core dating issues associated with ancient carbon contamination (Street-Perrott et al., 1993). Nonetheless, Street-Perrott et al.’s (1993) paleoclimatic inferences were later corroborated by geochemical and ostracod faunal analyses (Holmes, 1998; Holmes et al. 1995) conducted using the same Wallywash Pond sediment core from the 1993 study. Geochemical analysis of coastal lake sediments collected from southeastern Jamaica indicated that the Little Ice Age was associated with drought conditions and coincided with reduced solar forcing and a southern shift of the Intertropical Convergence Zone (ITCZ) (Burn and Palmer, 2014).

Archaeological records suggest that Jamaica was first colonized after AD 600 by the Ostionoid peoples (Rouse, 1992). The coastal disposition of most Ostionoid archaeological sites as well as the discovery of associated deposits that contain marine faunal remains (e.g. large fishes, sea turtles and shellfish, such as queen conch, *Strombus gigas*) indicates a diet that was heavily reliant on marine resources (Atkinson, 2006). The Meillacan peoples colonized the island approximately 300 years later (~AD 900) and established both coastal and interior settlements,
therefore exhibiting a weaker dependence on the marine environment than their Ostionoid counterparts (Atkinson, 2006). The Taino culture developed on the island around AD 1200 (Atkinson, 2006), and persisted until European arrival in 1494. The Tainos practiced a broad diversity of subsistence strategies, including fishing, hunting and foraging for wild plants (Parry, 1955); however, their dietary needs were primarily met through small-scale agriculture. The Tainos cultivated cassava (*Manihot utilissima*), sweet potato (*Ipomoea batatas*) (Parry, 1955), maize (*Zea mays*), marunguey (*Zamia* sp.), cocoyam (*Xanthosoma* sp.), common bean (*Phaseolus vulgaris*), yampi (*Dioscorea trifida*), squashes (*Cucurbita* sp.), and pineapple (*Ananas comosus*), among other crops (Mickleburgh and Pagán-Jiménez, 2012; Rashford, 1993). The prehistoric peoples that occupied Jamaica were known to use slash-and-burn methods for agricultural land clearance (Waters et al., 1993). Caribbean prehistoric peoples used the Jamaican hutia (*Geocapromys brownii*) and rice rat (*Oryzomys* sp.) as terrestrial dietary protein sources (Henry, 2018). The percentage of Jamaican hutia (*Geocapromys brownii*) and rice rat (*Oryzomys* sp.) faunal remains exhibited an increase at inland sites relative to coastal sites for Jamaica, and St. Martin and St. Kitts, respectively (Wing, 2008). Consequently, small land mammals may have been an important dietary component for Caribbean prehistoric peoples, particularly if access to coastal food resources was limited or if securing those resources was otherwise time- or energy-intensive (Wing, 2008).

The established date of first human arrival for Jamaica (~1300 cal yr BP) greatly diverges from dates for the nearby Greater Antillean islands of Cuba, Hispaniola and Puerto Rico. The available evidence offers several candidate regions for the potential geographic origin of the earliest settlers of the Greater Antilles, including the Yucatan Peninsula, northeastern South America, the Panamanian Isthmus and its surrounding lands, and the southeastern United States
(Keegan et al., 2013). The earliest archeological date for human settlement of Cuba has a radiocarbon age of ~5,140 14C yr BP (Kozlowski, 1974). The earliest date of first human settlement for Hispaniola, ~5,580 14C yr BP (Moore, 1991), was obtained from radiocarbon dating of marine shells, and application of a correction factor to account for marine reservoir effects yields the age, 5,780 cal yr BP (MacPhee, 2009). Based on a series of eight radiocarbon dates, Puerto Rico’s earliest accepted archaeological site, Maruca, was estimated to have been occupied between 4,840 cal yr BP and 3,895 cal yr BP (Rodríguez, 1999). Burney et al. (1994) proposed that an abrupt increase in charcoal fragments recorded in a sediment core from Laguna Tortuguero, Puerto Rico at ~5,300 cal yr BP was indicative of first human impacts associated with colonization of the island. However, a coeval charcoal spike recorded in a sediment core collected from the neighboring island of Hispaniola was speculated to have been caused by regional climate changes—that is, wetter conditions leading to increased fuel loads coupled with enhanced seasonality—rather than human burning of the landscape (Higuera-Gundy et al., 1999). Given the closeness and large sizes of these islands, and the maritime capabilities of prehistoric Caribbean explorers (i.e. “very capable seafarers”) (Fitzpatrick, 2013), the relatively late date of first human arrival in Jamaica appears anomalous in the broader context of Greater Antillean settlement. This discrepancy may reflect the need for increased allocation of resources towards archaeological sampling effort in Jamaica, the loss of archaeological sites due to Holocene sea level rise (Digerfeldt and Hendry, 1987) or destructive human activities, or a relative difficulty in locating Jamaican archaeological sites as a result of the occurrence of small prehistoric populations organized in highly dispersed habitation patterns.

Jamaica is estimated to have been inhabited by ~600,000 Tainos when Christopher Columbus landed on the island in 1494 (Duerden, 1895). By the time of English conquest of the
island in 1655, it is thought that the Taino were extirpated due to forced labor by the Spanish, and the introduction of infectious Old World diseases such as smallpox, measles, typhus, and yellow fever (Duerden, 1895; Renny, 1807; Montenegro and Stephens, 2006). Sugar cane (Saccharum officinarum) agriculture was introduced to the Caribbean in 1494, however the sugar industry did not become firmly established in Jamaica until the early 1500s (Woodward, 2006). By 1805, Jamaica was the world’s foremost sugar exporter, with more than 800 sugar estates operating on the island (Higman, 2001). Livestock agriculture—primarily cattle, but also pigs and sheep—also thrived during the late 18th to mid-19th century, such that by 1881 there were over 600 livestock pens on the island (Higman, 2001). In contrast to the period between the 16th and 18th centuries, which was marked by widespread forest clearance for the establishment of sugar plantations (Eyre, 1996, 1986, 1987), the mid to late 19th century was a period of forest expansion in Jamaica, as slaves were granted full emancipation in 1838 and the sugar economy deteriorated shortly thereafter (Eyre, 1987; Higman, 2001; Satchell, 1990). The number of sugar plantations peaked at 859 in 1804, and then declined to 646 in 1834, 266 in 1869, and by 1910 only 74 sugar plantations were active on the island (Sheridan, 1989). More recent drivers of land cover change in Jamaica include bauxite mining and urban expansion (Álvarez-Berrios, 2013). Estimates of annual deforestation rates range from 0.1% from 1989-1998 (Evelyn and Camirand, 2003) and 3.9% from 1987-1992 (Tole, 2002) to 5.3% from 1980-1990 (Ehrhardt-Martinez, 1998). The degree to which prehistoric to modern land use and land cover modifications are reflected in the sedimentary record of Jamaica is unknown.

The following study is the first multi-proxy analysis of its kind done in Jamaica as a result of the novel range of environmental proxies used. I examine the sedimentary record of pollen, charcoal, ostracod δ^{18}O and δ^{13}C, and dung fungal spores in a lake sediment core, to
develop an integrated paleoecological framework for understanding Holocene climate and environmental changes on the island. Assessment of the timing of appearance and abundances of the proxies in lake sediments provides critical insights into past environmental responses to climate fluctuations and a variety of anthropogenic events—including prehistoric human settlement by early Amerindians and the implementation of colonial plantation agriculture. This study contributes to a growing body of literature that provides the spatial and temporal context necessary for developing a framework for understanding the evolution of human-environment dynamics in the Caribbean (Mueller et al., 2018; Hooghiemstra et al., 2018; Castilla-Beltrán et al., 2018; Bain et al., 2018; Royer et al., 2017; LeBlanc et al., 2017); and provides baselines of past climate and ecological states (e.g. variability, responses, rates, and amplitudes etc.) to aid targeted, data-driven biodiversity conservation in tropical island environments (Nogué et al., 2017).

Materials and Methods

Site Description

Jamaica (18° N, 77° W) is located in the northwestern Caribbean Sea and is the third largest island (10,900 km²) in the Greater Antilles, behind Cuba (110,860 km²) and Hispaniola (76,192 km²). The island is situated south of Cuba, west-southwest of Haiti, north of Panama, and east of the Yucatán Peninsula. Jamaica has a population of ~2.9 million people and a GDP of ~14.03 billion USD (World Bank, 2017). Jamaica has a subtropical climate with a summer wet season and winter dry season, which aligns with general patterns of Caribbean precipitation—however, rainfall is significantly modified on local scales by orography and elevation (Chen and Taylor, 2008). The moisture-laden north-east trade winds rise as they encounter the island’s
central range of mountains and high plateaus. As they ascend, the air masses cool and heavy precipitation occurs over the windward slopes of the high-elevation areas. The consequent effects of this orographic rainfall pattern are an up to fourfold difference in average annual rainfall between the wet mountainous interior portions of the island (e.g. northeastern Blue Mountains region, > 5000 feet) and the arid northern and southern coastal strips, and a particularly pronounced rain shadow effect on the southern and southwestern plains of the island (Nkemdirim, 1979; Guernsey, 1941) (Figure 2.1). Jamaica experiences tropical cyclones that are associated with the annual North Atlantic hurricane season, which reaches peak intensity from August to October (Landsea, 1993). Consequently, precipitation maxima on the island coincide with peak rainfall accumulation during the hurricane season (Figure 2.1).

Wallywash Pond (Figure 2.2) (Saint Elizabeth, Jamaica, 17° N, 77° W, area=0.76 km², 7 m ASL) is a shallow freshwater lake (max. depth, 5 m; avg. depth, 2.8 m) that is situated in a low-elevation depression constrained by the bifurcated upward and downward thrust zones of the Pondside fault (Benford et al., 2015). The lake is surrounded by alluvium and is underlain and bordered to the east by the limestones of the Miocene age Newport Formation of the White Limestone Group—Jamaica’s most extensive lithological unit (Benford et al., 2015). The lake basin is bordered by the town of Black River to the north-west, the Black River Lower Morass Ramsar-protected wetland to the west and north, and the Pedro Plains to the east and south-east, which extend coastward from the foot of the Santa Cruz Mountains.

Precipitation across the parish of Saint Elizabeth varies greatly with northern areas close to the west-central interior uplands (e.g. Cockpit Country region) receiving more rainfall annually (~80-100 inches) than southern coastal areas (~40-60 inches)—and in particular, coastal regions that lie in the rain shadow of the Santa Cruz Mountains (Nkemdirim, 1979; Campbell et
al., 2011). The average annual rainfall for the town of Black River, Saint Elizabeth is ~50 inches (1263 mm) (Jamaica Meteorological Service, 2019b), while the average annual temperature for the Sangster International Airport, Saint James is ~82 °F (27.6 °C) (Jamaica Meteorological Service, 2019a). Meteorological information is presented for Black River and Sangster International Airport due to a paucity of more geographically specific climate data for the Wallywash Pond area. Nonetheless, the close proximity of those sites to Wallywash Pond relative to the expected variability of the climate data over the given spatial area provides confidence in the representativity of the presented information. A small man-made outlet channel flows from Wallywash Pond’s larger northern basin to Parottee Pond, a saline waterbody that abuts the coast to the north-west of Wallywash Pond. Wallywash Pond is spring-fed at a rate of ~0.04 m3 s$^{-1}$ (US Army Corps of Engineers, 2001).

Vegetation

We conducted a vegetation survey on February 6, 2018 to document the plant community composition and structure of the Wallywash Pond basin. Initial plant observations were made along a low sloping ridge overlooking the western shoreline of the lake, before traversing a section of the lake perimeter to characterize the littoral and aquatic plant communities. Plant identification was conducted to the species level, or to the lowest taxonomic level possible, for all cases. In total, 111 individual plant taxa were recorded from the upland, lowland, littoral and aquatic environments of the Wallywash Pond basin (Table 2.1). Relative abundances of the identified plants were qualitatively determined based on the estimated number of individuals encountered on the day of the vegetation survey. Plants characteristic of dry limestone forests in Jamaica were specially identified to support scientific investigation of this globally threatened forest ecosystem, and in recognition of its high conservation value (Janzen, 1988; Miles et al.,
2006; Portillo-Quintero and Sánchez-Azofeifa, 2010; Dirzo et al., 2011). The cultivation and endemic status of each plant taxa was also recorded.

The upland slope adjacent to the lake was dominated by dense thickets of *Croton humilis* (Pepper Rod), and the tree species, *Haematoxylum campechianum* (Logwood), *Bursera simaruba* (Red Birch), and *Samanea saman* (Guango). The lowlands were dominated by *Sida acuta* (Broom Weed), *Vernonia cinerea*, *Malvastrum americanum*, *Malvastrum coromandelianum*, *Prosopis juliflora* (Mesquite), and grasses, including *Andropogon pertusus* (Seymour Grass) and *Andropogon bicornis* (Foxtail Grass). Dense stands of *Typha domingensis* (Reedmace) dominated the littoral zone, along with *Eleocharis elegans* and *Centella asiatica*. *Potamogeton nodosus* was the dominant aquatic vegetation.

The flora of the Black River Lower Morass wetland area, which borders Wallywash Pond, includes the emergents, *Cladium jamaicense* (Sawgrass), *Schoenoplectus americanus*, and *Sagittaria lancifolia* (Arrowhead). The mangrove species, *Conocarpus erectus* (Buttonwood) and *Rhizophora mangle* (Red Mangrove) are also well-represented. Common tree species include the palms, *Sabal jamaicensis* (Bull Thatch), *Roystonea princeps*, and *Calyptromona occidentalis*, in addition to *Grias cauliflora* (Anchovy Pear), *Symphonia globulifera* (Boar Gum), and *Ficus*. Other commonly encountered taxa include, the herbs, *Dieffenbachia* and *Ludwigia*, and human cultivars such as the fruit tree, *Mangifera indica* (Mango), and *Cannabis sativa* (Ganja) (Garrick, 1986).

Core collection, initial description and sampling

We collected a sediment core (WALL18) on February 5, 2018 from close to the middle-western shore of Wallywash Pond (17°58.057’ N, 077°48.379 W; 3.1 m depth) (Figure 2.2), using a 5.08 cm modified Livingstone piston corer deployed from an anchored coring platform.
The coring platform consisted of two inflatable kayaks secured with ratchet straps to an overlaid sheet of plywood. The sediment-water interface was obtained using a Bolivia adapter fitted with ~7 cm-diameter polycarbonate tubing (0-52 cm; Drive #1). Subsequent drives (52-392 cm) using only the 5.08 cm modified Livingstone piston corer included: Drive #2 (52-142 cm), Drive #3 (142-242 cm), Drive #4 (242-322 cm), and Drive #5 (322-392 cm). The total length of WALL18 was 3.92 m. Average sediment recovery for each 1 m drive was 88%. Sediment losses of 10% and 20% were recorded for the bases of Drive #2 and Drive #4 respectively, as a result of piston slippage during core extrusion. The lower 30% of basal Drive #5 was not retrieved as it terminated in a previously documented thin stratigraphic layer of coarse marl (Street-Perrott et al., 1993) that was difficult to penetrate. Core material from each drive was measured in the field, and then wrapped in plastic cling wrap, encased in halved polyvinyl chloride tubes, and secured with vinyl adhesive tape.

Each core segment was split lengthwise into two halves at the National Lacustrine Core Facility (University of Minnesota, Minneapolis, MN). Halved core segments were then imaged using a Geotek Geoscan high-resolution digital photography system, and initial core description—including documentation of sediment color and composition, and the presence/absence of plant macrofossils and shells—was facilitated by using PSICAT 0.9.8 and CoreWall/Corelyzer 2.0.4. Half of each core segment was stored at the National Lacustrine Core Facility in the Lacustrine Core Repository and each corresponding half was shipped to the University of Maine (Orono, Maine) for further study (‘working half’). All collected sediment was stored at ~4 °C to inhibit sediment microbial activity and suppress bacterial and fungal growth. The working half of each core segment was sliced transversely into 0.5 cm thick discs, which were stored individually in sealed, plastic Whirl-Pak bags for subsequent subsampling.
Chronology

We submitted three samples containing concentrated macrocharcoal fragments to the University of Georgia-Center for Applied Isotope Studies facility for AMS 14C radiocarbon dating (Table 2.2). The three radiocarbon dates were calibrated using the IntCal09 radiocarbon calibration curve (Reimer et al. 2009) to account for atmospheric variations in 14C production over time due to changes in solar activity (Stuiver and Quay, 1980). The Bacon software, which uses Bayesian statistics to calculate age-depth relationships for sediment cores (Blaauw and Christen, 2011), was used to generate an age-depth model in R (R Development Core Team, 2013) (Figure 2.3). One of the dates (198.25 cm, Lab # 39644; Table 2.2) was not included in the age-depth model because the Bacon program rejects age reversals based on the assumption that dates should appear in stratigraphic order. The age reversal may have been caused by reworking of younger materials to depth due to post-depositional disruption as a result of bioturbation in the lake sediments or high-intensity fluvial processes, such as flooding. An additional date (8,250 yr BP±100, 392 cm, Lab # Ors-2789; Table 2.2) based on previous radiometric dating of the white marl layer (Street-Perrott et al., 1993) at the base of WALL18 was included in our age-depth model, thus facilitating establishment of a basal age constraint for the sediment core. Ages are reported in calendar years before present (cal yr BP)—unless specified otherwise—with ‘present’ defined as AD 1950 to account for the spike in atmospheric radiocarbon levels due to the use of atomic weapons in the mid-20th century (De Vries, 1958; Rafter and Fergusson, 1957).

Pollen and charcoal analyses

1 cm3 subsamples were used for pollen analysis at 8 cm intervals for WALL18. Subsamples were obtained using a calibrated 1 cm3 brass volumetric sampler. Samples were processed at the University of Maine using a modified version of the protocol for fossil pollen
concentration developed by Faegri and Iverson (1989). A 1 cm3 solution containing a known quantity of plastic microspheres (5×10^4 microspheres/ml) developed by the National Lacustrine Core Facility was added to each sample to enable calculation of pollen concentrations (number of pollen grains/cm3). Humic acids and carbonates were removed from each sample using 10% potassium hydroxide and 10% hydrochloric acid respectively. Samples were then screened through 160 μm mesh to remove large organic particles and sand grains. The 10% hydrochloric acid treatment was repeated for samples with excess carbonates. Glacial acetic acid was used to remove water from each sample before treatment with acetic anhydride and concentrated sulfuric acid to remove organic materials. Samples were then rinsed with 95% ethanol, dehydrated with tert-butyl alcohol, and then suspended in silicone oil for storage and mounting on glass slides for microscopy. Pollen grains and fern and fungal spores were identified using a Nikon Labophot-2 microscope. A minimum of 300 terrestrial pollen grains were counted for each sample. Pollen and spore identification were facilitated by the use of published keys (e.g. Roubik and Moreno, 1991; Willard et al., 2004; Sivaram, 2013; Gelorini et al., 2011; Cugny et al., 2010), online databases and reference materials. PolyCounter software (Nakagawa, 2007) version 3.1.4 was used to record pollen and spore counts, and to generate rarefaction curves to determine the degree to which pollen counts estimated the palynological richness of each sample—that is, rarefaction curves level off when additional counting effort fails to identify new taxa. Pollen abundances are represented as a percentage of the terrestrial and aquatic pollen sum. Fungal spores were not included in the pollen sums for percentage calculations and are represented as abundance counts. A stratigraphically constrained incremental sum-of-squares analysis (CONISS) was performed using Tilia (Grimm, 1987) version 2.1.1 to delineate major ecological zones based on compositional changes in the plant and fungal communities.
1 cm³ subsamples were used for charcoal analysis at continuous 0.5 cm intervals for WALL18. Subsamples were obtained using a calibrated 1 cm³ brass volumetric sampler. Charcoal samples were processed using a modified version of the methodology outlined by Whitlock and Larson (2001). ~25 ml of 15% hydrogen peroxide and ~5 ml of 70% ethanol were added to each sample. Ethanol prevented charcoal pieces from moving up the sides of the flasks and clinging during heating. Samples were placed in the drying oven at 50 °C for 24 hours to disaggregate and bleach the sediment. Samples were wet sieved through a 250 µm mesh and then transferred into a plastic petri dish for counting. All charcoal pieces in each sample were counted using a stereoscope to determine charcoal concentrations (number of charcoal pieces/cm³). CharAnalysis (Higuera et al., 2009 and 2010) version 1.1 for Matlab software was used to convert charcoal concentrations into charcoal accumulation rates (CHAR, number of charcoal pieces/cm²/year). Low frequency background CHAR was estimated using a Lowess smoother with a 500-year smoothing window. CHAR values that exceed background CHAR levels are interpreted as representing periods of increased fire activity.

Ostracods and stable isotope analyses

1 cm³ subsamples were obtained at ~4 cm intervals in WALL18 from layers that had sufficient ostracod concentrations to yield the required quantity (≥ 50 µg of carbonate) for analysis. Samples were treated with 7% hydrogen peroxide to disaggregate sediments and then wet sieved through a 125 µm mesh. Samples were transferred into a plastic petri dish and ostracods of the species Cypretta brevisaepta were identified, cleaned and picked under a stereoscope using a fine paintbrush. We used Cypretta brevisaepta only because of its high abundances throughout WALL18 and to avoid inconsistencies associated with interspecific differences in isotopic fractionation (von Grafenstein et al., 1999). A minimum of 10 ostracod
valves or 5 intact ostracods were picked for each sample. Ostracod identification was facilitated by the use of published keys (Pérez et al., 2010; Furtos, 1936). Picked ostracods were transferred with distilled water into microcentrifuge tubes and then dried at 25 °C. We submitted 47 samples to the University of Arizona Environmental Isotope Laboratory for stable oxygen and carbon isotope analysis. Stable oxygen and carbon isotope measurements are represented as the ratio of 18O/16O (± 0.10, 1σ SD) and 13C/12C (± 0.08, 1σ SD) respectively, relative to the VPDB standard.

Results

Lithology

WALL18 is characterized by a layer of white marl from 0-179 cm, dark brown carbonate mud from 179-242 cm, and black organic mud from 242-388 cm and 390-392 cm. A thin bed of white marl lies between the black organic mud layers from 388-390 cm (Figure 2.4). Both fragmented and intact gastropod and mollusk shells were abundant from 0-242 cm. There was a conspicuous absence of shelly material at core depths lower than 242 cm. The black organic mud layers were densely interspersed with plant material.

Pollen and spores

Zone WP-1 (1,594 cal yr BP-1,378 cal yr BP/ AD 356-AD 572): Vascular cryptogam spores were present in relatively high abundances (~30%) in this basal zone, with *Polypodiaceae* (common ferns) reaching abundances of ≥ 20% and *Achrostichum aureum* (mangrove fern) present at comparatively low abundances (< 5%). Mangrove values ranged from ~15-45% and were represented primarily by *Conocarpus erectus* (~10-45%) and *Rhizophora mangle* at lower abundances (< 5%). Trees and shrubs and upland herbs were represented equally with each having values that ranged between ~10-20%. *Myrtaceae* was present with abundances of ~10%, and this zone was the only one where *Hieronyma* was present in the vegetation record (< 5%).
Aquatic vascular plants had very low abundances (< 5%), while emergent taxa (primarily *Cyperaceae*) had high abundances (~35%) at the base of the zone but declined sharply to < 5% near the transition to the adjacent zone. *Poaceae* had low abundances (~5%), while *Amaranthaceae* was not initially represented but increased slightly towards the end of the zone to ~5%. Fungal spores were absent from this zone. Pollen and spore abundances indicate mangrove-fern swamp vegetation dominated by *Conocarpus erectus*, common ferns, and sedges (Figure 2.4). High abundances of swamp and emergent taxa indicate low lake levels (Figure 2.4).

Zone WP-2 (1,378 cal yr BP-982 cal yr BP/ AD 572-AD 968): *Amaranthaceae* dominated this zone with abundances ranging between 45-75%. Trees and shrubs were at their lowest abundances for the whole vegetation record (< 5%), while upland herbs were highly abundant and ranged from ~50-85%. *Asteraceae* abundances increased (≤ 10%) relative to those observed in basal zone WP-1 (< 1%). The abundance of aquatic vascular plants also increased sharply (~10-50%) and was driven by a large increase in *Potamogeton nodosus*, which ranged from ~10-50%. In contrast, emergents had low abundances (≤ 10%) and declined gradually throughout this zone. Low *Cyperaceae* abundances of ≤ 10% parallel this trend. *Conocarpus erectus* abundances declined sharply to ~5% and ferns were absent. Fungal spores were absent from this zone. The decline of *Conocarpus erectus*, ferns, and sedges and coeval spike in abundances of *Amaranthaceae* and *Asteraceae*, in conjunction with increased abundances of the aquatic species *Potamogeton nodosus*, indicate a rise in lake levels and shift from a mangrove-fern swamp community to a disturbed forbland ecosystem (Figure 2.4). The pioneering ruderal taxa *Amaranthaceae* and *Asteraceae* are considered strong indicators of disturbance, and ceteris paribus, their abundances respond positively to land clearance and denudation (Clement and Horn, 2001; Mcandrews, 1988; Dull, 2007; Wahl et al., 2007; Rosenmeier et al., 2002).
Zone WP-3 (982 cal yr BP-938 cal yr BP/ AD 968-AD 1012): Trees and shrubs increased in abundance to ~75%. *Trema* and *Cecropia* had abundances of ~55% and ~10% respectively. Upland herbs had relatively low abundances (~15%), and *Amaranthaceae* and *Poaceae* were represented equally with each having values of ~5%. Aquatic vascular plants were not detected in this zone and emergent taxa had low abundances (~5%). *Conocarpus erectus* was present in low abundances (~5%) while *Rhizophora mangle* and ferns were absent. *Bursera simaruba*, *Prosopis juliflora*, *Grias cauliflora*, *Urtica*, *Cassia*, *Crotalaria verrucosa*, *Solanum* and *Fabaceae* were all present in low abundances (≤ 5%). *Sporormiella* spores appeared in low abundances (~2 spores) in this ecological zone, while *Cercophora* spores were comparatively abundant (~13 spores). *Trema* and *Cecropia* are shade-intolerant, gap-colonizing pioneer species (Brokaw, 1987; Pearson et al., 2003; Fujisaka et al., 2000). The presence of *Trema* and *Cecropia* in high abundances coupled with the presence of dry limestone forest taxa, such as *Bursera simaruba* and *Cassia* (Table 2.1), in low abundances, indicates an open, early successional dry forest community and post-disturbance recovery (Figure 2.4). Low abundances or absences of emergent taxa, aquatic vascular plants, and mangroves suggest decreased lake levels (Figure 2.4).

Zone WP-4 (433 cal yr BP-114 cal yr BP/ AD 1517-AD 1836): Trees and shrubs gradually declined from ~30% at the base of this zone to ~10%. *Trema* declined from ~15% to < 2%, while *Prosopis juliflora* was present at low abundances (≤ 2%) throughout the zone. *Haematoxylum campechianum* (Logwood) first appeared in this zone at low abundances (< 2%) at ~276 cal yr BP (AD 1674). *Haematoxylum campechianum* was introduced to Jamaica in AD 1715 primarily for cultivation for the production of dyes and construction of fences (Allison, 1999; Kahr et al., 1998; Higman, 2001), consequently our age model (Figure 2.3) estimates the
date of introduction of the species to the island accurately to within ~40 years. Upland herbs were present at abundances of ~35% throughout the zone. *Mimosa, Amaranthaceae*, and *Desmodium incanum* were each present at low abundances (< 2%) throughout the zone, while *Asteraceae* had abundances of ~2-5%. The herbs *Mimosa* and *Desmodium* are indicative of disturbance (Lozano-García et al., 2007 and 2010). *Poaceae* gradually increased in abundance from ~10% at the base of the zone to ~25%. The cultivars *Saccharum officinarum* (Sugar cane) and *Cannabis sativa* (hemp) first appeared in this zone at low abundances (< 2%). Vascular cryptogams were present at low abundances < 2%. Aquatic vascular plants increased in abundance from ~20% at the base of the zone to ~50%. *Potamogeton nodosus* (Longleaf pondweed) increased sharply from < 2% at the base of the zone to ~50%, while *Nymphaea ampla* (Dotleaf waterlily) declined from ~15% to less than < 2%. *Potamogeton nodosus* is commonly found in nutrient-rich waters (Robach et al., 1996; Kuhar et al., 2011; Bakker et al., 2013), while *Nymphaea ampla* is intolerant of eutrophication (Lucero, 2018; Lucero et al., 2015; Pelaez et al., 2014); therefore the observed increase in *Potamogeton nodosus* abundances and concomitant decline of *Nymphaea ampla* may be reflective of changes in water quality, and is consistent with an increase in trophic status of Wallywash Pond during this interval. Emergents were present at abundances of ≤ 10% throughout the zone. *Sporormiella* and *Cercophora* fungal spores were present throughout this interval and peaked in their abundances in the middle of the zone with ~30 spores and ~25 spores respectively. *Sordaria* first appeared in the zone with low abundances (~2 spores) throughout the interval. The gradual decline of arboreal pollen, consistent presence of herbaceous disturbance taxa (e.g. *Asteraceae, Amaranthaceae, Desmodium* and *Mimosa*), increased abundances of *Poaceae*, appearance of cultivated species (i.e. *Haematoxylum campechianum, Saccharum officinarum* and *Cannabis sativa*), increased
abundances of *Potamogeton nodosus* and decline of *Nymphaea ampla*, and increased abundances of dung fungal spores indicate an open, pastoral landscape under the influence of anthropogenic pressures, such as land clearance, and livestock and crop agriculture (Figure 2.4).

Zone WP-5 (114 cal yr BP-Present/ AD 1836-Present): Upland herbs dominate with abundances of ~60% throughout the zone. *Poaceae* had high abundances of 30-50%, while *Urtica, Asteraceae, Amaranthaceae, Solanum* and *Croton humilis* were present in low abundances (~2%). Trees and shrubs were present in relatively low abundances (~15%) throughout the zone. *Haematoxylum campechianum, Prosopis juliflora* and *Pinus caribaea* had low abundances (~2%). *Pinus caribaea* first appeared in this zone at ~28 cal yr BP (AD 1922). *Pinus caribaea* is native to Central America, western Cuba and the Bahamas (Birks and Barnes, 1990), and was introduced to Jamaica in AD 1945 for the establishment of commercial plantations for timber and pulpwood (Liegel, 1991). Appearance of *Pinus caribaea* in our vegetation record approximates the timing of the mid-20th century introduction of the species to Jamaica and its subsequent proliferation as a commercial timber crop. Aquatic vascular plants declined from ~15% at the base of the zone to ~5%. *Potamogeton nodosus* declined from ~10% to < 2%, *Nymphaea ampla* was absent in this zone. Emergent taxa increased from ~10% to ~15% with *Cyperaceae* and *Typha* present at low abundances (~2%) throughout the zone. The mangrove species *Conocarpus erectus* and *Rhizophora mangle* were absent from this zone. Recent declines in mangrove abundances may be linked to the overharvesting of mangrove timber for charcoal production, construction of beach huts, and other artisanal uses (FAO, 2007). *Sporormiella* and *Cercophora* had high abundances with maximum counts of ~45 spores and ~30 spores respectively. *Sordaria* was also present at lower abundances (~2 spores). The dominance of upland herbs, increased abundances of *Poaceae*, relatively low abundances of
arboreal taxa, and high abundances of dung fungal spores indicate an open landscape under the influence of pastoral activities, such as land clearance and livestock grazing (Figure 2.4). High \textit{Poaceae} abundances in conjunction with a decline in aquatic vascular plants (e.g. \textit{Potamogeton nodosus}) and consistent representation of emergent taxa (e.g. \textit{Cyperaceae} and \textit{Typha}) point to an increase in aridity and declining lake levels (Figure 2.4).

\textit{Charcoal analysis}

Fire activity was low with no charcoal accumulation rates (CHAR) above background CHAR between \(\sim4,850\) cal yr BP (\(\sim2,900\) BC/\(\sim351\) cm) and \(\sim1,370\) cal yr BP (\(\simAD\ 580/\sim206\) cm) (Figure 2.5). An increase in CHAR (\(\sim22\) # pieces/cm\(^2\)/yr) above background CHAR at \(\sim1,370\) cal yr BP (\(\simAD\ 580/\sim206\) cm) indicated the earliest surge in fire activity (Figure 2.5). This rise in fire activity directly preceded the start of ecological zone WP-2 (Figure 2.4). The period between \(\sim1290\) cal yr BP (\(\simAD\ 660/\sim201\) cm) and \(\sim1160\) cal yr BP (\(\simAD\ 790/\sim190\) cm) marked an interval of sustained CHAR above background CHAR, and included the highest recorded CHAR levels (\(\sim96\) # pieces/cm\(^2\)/yr) in our fire reconstruction at \(\sim1,240\) cal yr BP (\(\simAD\ 710/\sim197\) cm) (Figure 2.5). This period coincided with an abrupt vegetation shift at the base of ecological zone WP-2 (Figure 2.4). A sharp increase in CHAR (\(\sim78\) # pieces/cm\(^2\)/yr) above background CHAR at \(\sim1050\) cal yr BP (\(\simAD\ 900/\sim178\) cm) indicated a surge in fire activity (Figure 2.5) and occurred at the end of ecological zone WP-2 (Figure 2.4). The period of intensified fire regimes (i.e. enhanced and persistent fire activity) between \(\sim1290\) cal yr BP (\(\simAD\ 660/\sim201\) cm) and \(\sim1050\) cal yr BP (\(\simAD\ 900/\sim178\) cm) (Figure 2.5) approximated the boundaries of ecological zone WP-2 (Figure 2.4). CHAR declined below background CHAR between \(\sim1050\) cal yr BP (\(\simAD\ 900/\sim178\) cm) and \(\sim740\) cal yr BP (\(\simAD\ 1210/\sim129\) cm), which indicated a period of decreased fire activity. A comparatively smaller increase in CHAR (\(\sim4\) #
pieces/cm²/yr) above background CHAR was recorded at ~740 cal yr BP (~AD 1210/~129 cm), which marked a rise in fire activity but at a magnitude below that of the period between ~1290 cal yr BP (~AD 660/~201 cm) and ~1050 cal yr BP (~AD 900/~178 cm) (Figure 2.5). CHAR declined below background CHAR between ~700 cal yr BP (~AD 1250/~123 cm) and ~460 cal yr BP (~AD 1490/~85 cm), which indicated a decrease in fire activity (Figure 2.5). A relatively small increase in CHAR (~5 # pieces/cm²/yr) above background CHAR was recorded at ~460 cal yr BP (~AD 1490/~85 cm) (Figure 2.5), which marked a rise in fire activity and directly preceded the base of ecological zone WP-4 (Figure 2.4). CHAR declined below background CHAR for the remainder of the fire reconstruction, with the exception of small increases at ~300 cal yr BP (~AD 1650/~59 cm), ~140 cal yr BP (~AD 1810/~34 cm) at the end of ecological zone WP-4 (Figure 2.4), and at ~60 cal yr BP (~AD 1890/~21 cm). These three most recent increases in fire activity each had CHAR values of ≤~3 # pieces/cm²/yr (Figure 2.5).

Stable isotope results

A heavy δ¹⁸O value (~2.5 ‰) was recorded at ~4,831 cal yr BP (~2,881 BC/~350 cm), which suggested high evaporation-precipitation ratios (E/P) and increased aridity (Figure 2.6). Periods of high aridity result in the preferential evaporation of the lighter oxygen isotope, ¹⁶O, therefore enriching lake waters in heavy oxygen (¹⁸O). Ostracods incorporate oxygen from their host lake waters into their calcite shells, and as a consequence, geochemical analyses of ostracod carapaces preserved in lake sediments provide insight into shifts in the E/P balance of shallow lakes (Hodell et al., 1991 and 1995). δ¹⁸O subsequently declined to lighter values between ~ -3 ‰ and ~ -3.2 ‰ from ~1,276 cal yr BP (~AD 674/~200 cm) to ~1,063 cal yr BP (~AD 887/~180 cm), with the exception of a brief rise in δ¹⁸O to ~ -0.6 ‰ at ~1,153 cal yr BP (~AD 797/~190 cm) (Figure 2.6). Despite the intervening increase in δ¹⁸O at ~1,153 cal yr BP, the period from
~1,276 cal yr BP to ~1,063 cal yr BP marked the interval with the lightest δ^{18}O values in our record, which indicated that E/P ratios were lower, and aridity decreased during that period. δ^{18}O increased abruptly between ~1,063 cal yr BP and ~933 cal yr BP (~AD 1017/~160 cm) to a value of ~2.4 ‰, which indicated an increase in E/P ratios and more arid climates (Figure 2.6). δ^{18}O values then declined sharply between ~933 cal yr BP and ~743 cal yr BP (~AD 1207/~130 cm) to ~ -1.7 ‰, which suggested the development of more mesic climates with lower E/P ratios (Figure 2.6). δ^{18}O subsequently increased between ~743 cal yr BP and ~615 cal yr BP (~AD 1335/~110 cm) to ~0.1 ‰, which suggested increasing E/P ratios and a relative rise in aridity (Figure 2.6). δ^{18}O exhibited less variability between ~615 cal yr BP and the core top (modern), as values fluctuated between ~0.9 ‰ and ~ -0.8 ‰ (Figure 2.6). Nonetheless, the majority of the δ^{18}O values in this interval (~615 cal yr BP-modern) were positive, which indicated that the late Holocene was characterized by relatively dry climates with a high E/P ratio (Figure 2.6). There were two exceptions to the observed pattern of late Holocene climatic stability—a sharp increase in δ^{18}O to ~2.1 ‰ at ~303 cal yr BP (~AD 1647/~60 cm), which indicated an increase in E/P ratios and high aridity, and a decline in δ^{18}O to ~ -1.2 ‰ at 115 cal yr BP (~AD 1835/~30 cm), which suggested that climates were wetter with lower E/P ratios (Figure 2.6).

The δ^{13}C isotopic curve largely parallels the patterns observed in the δ^{18}O isotopic curve (Figure 2.6), therefore suggesting a relationship between both isotopic systems.

Photosynthesizing organisms inhabiting lakes preferentially uptake the lighter carbon isotope, 12C, for use in biochemical processes, thus enriching lake waters in heavy carbon (13C) (Caporaletti, 2011; Leng and Marshall, 2004). Consequently, increased periods of productivity result in enhanced uptake of 12C and higher 13C values (Caporaletti, 2011; Leng and Marshall, 2004). High aridity leads to an increase in E/P ratios and lake level decline. This hydrologic
scenario also results in the enrichment of lake waters in heavy oxygen (18O) as light oxygen (16O) preferentially evaporates. Ceteris paribus, shallow lakes are more productive than deeper lakes (Nixdorf and Denke, 1997; Hupfer et al., 2008; Kilham and Kilham, 1990). It is therefore expected that as lake levels decline under high evaporation conditions, increases in measured ostracod 18O values will be mirrored by increases in ostracod 13C values, due to enhanced primary productivity and assimilation of 12C (Li and Ku, 1997; Heaton et al., 1995). A high (positive) δ^{13}C value (~0.7 ‰) was recorded at ~4,831 cal yr BP (~2,881 BC/~350 cm), which suggested lake level decline and an increase in photosynthetic uptake of 12C (Figure 2.6). δ^{13}C subsequently declined to between ~-7.5 ‰ and ~-9 ‰ from ~1,276 cal yr BP (~AD 674/~200 cm) to ~1,063 cal yr BP (~AD 887/~180 cm), which indicated that lake levels increased, and primary production fell (Figure 2.6). δ^{13}C then increased sharply to ~1.5 ‰ between ~1,063 cal yr BP and ~933 cal yr BP (~AD 1017/~160 cm), and then declined to ~-2.7 ‰ between ~933 cal yr BP and ~743 cal yr BP (~AD 1207/~130 cm) (Figure 2.6). This observed abrupt increase and subsequent decline in δ^{13}C values indicated a rapid shift from shallow eutrophic lake conditions to a deeper, less productive lake environment. δ^{13}C subsequently increased to the highest value in the record (~2.5 ‰) between ~743 cal yr BP (~AD 1207/~130 cm) and ~491 cal yr BP (~AD 1459/~90 cm), which suggested lake level decline and an increase in primary productivity (Figure 2.6). δ^{13}C values then decreased gradually towards the core top (modern) to a value of ~-2.5 ‰, which indicated an increase in lake levels and decline in primary productivity (Figure 2.6). Uncoupling between the observed timing or magnitude of shifts between the δ^{18}O and δ^{13}C records could be due to several factors. The release of 12C-enriched carbon due to respiration and the decomposition of high quantities of organic material can lower δ^{13}C values (Heaton et al., 1995; Oana and Deevey, 1960). Similarly, groundwater inputs influenced by exchanges with
soils that have a high ^{12}C content due to the breakdown of soil organic matter can cause a decrease in lake $\delta^{13}C$ values (Leng and Marshall, 2004)—however, our coring site (Figure 2.2) was not located close to the springs that feed Wallywash Pond (Street-Perrott et al., 1993).

Discussion

Our study provides the first multi-proxy paleoecological record for Jamaica, W.I. that investigates millennial-scale environmental variability in the context of both human occupation and climate changes. Furthermore, the suite of biological and geochemical proxies used—pollen, charcoal, dung fungal spores ($Sporormiella$, $Cercophora$ and $Sordaria$), and stable oxygen and carbon isotopes—enable us to make rigorous inferences about the island’s environmental history that could not be drawn with the use of a single proxy. Successive periods of human occupation of Jamaica ranging from prehistoric to modern times were associated with vegetation changes and shifts in fire activity in our paleoecological reconstruction. Consequently, we provide sedimentary evidence of human-landscape interactions that pre-date historical archives and add valuable ecological and climatic context to previous archaeological investigations. Our paleoecological record also illuminates environmental conditions in Jamaica during past abrupt climate change events, including the Maya drought, which is widely hypothesized to have resulted in the collapse of the ancient Maya civilization (Peterson and Haug, 2005; Douglas et al., 2016), Medieval Warm Period and the Little Ice Age.

The first increase in fire activity in our charcoal record at \sim1,370 cal yr BP (\simAD 580) (Figure 2.5) approximates the established date of first human arrival in Jamaica. Archaeological records indicate that the Ostionoid peoples first settled on the island at \sim1,300 cal yr BP (\simAD 650) (Rouse, 1992). This initial surge in fire activity was followed by a period of sustained and intense landscape burning between \sim1290 cal yr BP (\simAD 660) and \sim1160 cal yr BP (\simAD 790).
This period of enhanced fire regimes coincided with a decline in trees and shrubs and an increase in ruderal plant taxa, such as *Amaranthaceae* and *Asteraceae* (Zone WP-2, Figure 2.4), which are indicators of disturbance and are frequently associated with land clearance, agricultural intensification and human fire use (Clement and Horn, 2001; Mcandrews, 1988). Stratigraphic indicators of anthropogenic activity have been used to probe and revise histories of human settlement in a variety of geographic contexts, and the colonization of tropical islands has been a subject of particular interest (Burney, 1997; Kirch and Ellison, 1994; Siegel et al., 2015). The identified shifts in fire activity and vegetation associated with arrival of the Ostionoid peoples were coeval with a period of wetter climates between ~1,276 cal yr BP (~AD 674/~200 cm) to ~1,063 cal yr BP (~AD 887/~180 cm); however, this mesic interval was bisected by a period of relatively dry climate at ~1,153 cal yr BP (~AD 797/~190 cm) (Figure 2.6). Wetter climates could have contributed to a rise in fire activity by increasing available fuel loads for burning during seasonal dry periods, while more arid climates would have desiccated vegetation, thus making the landscape more prone to ignition. It is likely that both prehistoric human activity and prevailing climatic conditions were responsible for the observed increases in fire regimes during the interval between ~1290 cal yr BP (~AD 660) and ~1160 cal yr BP (~AD 790), however further study is warranted to determine the relative roles of natural versus human forcing. Nonetheless, the detection of a large increase in sedimentary charcoal fragments coupled with a decline in arboreal pollen and increase in the pollen of ruderal species is consistent with the impacts associated with first human colonization of a region (Dubois et al., 2018; Burney, 1997).

Basal ecological zone, WP-1 (1,594 cal yr BP-1,378 cal yr BP) (Figure 2.4), was dominated by mangrove-fern swamp vegetation, and *Conocarpus erectus* (Buttonwood
mangrove), *Polypodiaceae* (common ferns), *Cyperaceae, Acrostichum aureum* (Mangrove fern), *Rhizophora mangle* (Red mangrove), and *Grias cauliflora* (Anchovy pear) were characteristic of this ecological community. After the period of increased fire activity (~1290 cal yr BP - ~1160 cal yr BP) coinciding with ecological zone, WP-2 (Figure 2.4), vegetation shifted from dominance by herbaceous disturbance taxa to an open, early successional forest characterized primarily by the pioneer trees *Trema* and *Cecropia*. The mangrove-fern vegetation community did not return directly after the high-intensity disturbance event, and for the remainder of the vegetation record, the characteristic group of taxa never reassembled at the abundances observed in ecological zone, WP-1. The period directly after the interval of enhanced fire regimes was increasingly arid and may have been unfavorable for re-establishment of the mangrove-fern vegetation community. Failure of the mangrove-fern vegetation community to reorganize could have also been linked to the human presence on the landscape and exploitation. Regardless of the underlying factors that caused the mangrove-fern vegetation community to fail to re-establish, this observation highlights the sensitivity of these communities to ecological disturbance.

Mangroves provide a diversity of ecosystem goods and services to humans, including coastal protection, carbon sequestration, and the provision of habitat for juvenile fish and shellfish (Lee et al., 2014; Ewel et al., 1998; Donato et al., 2011). Paleoecological data can provide valuable insight into the ecological resilience of plant taxa, including information about their responses to environmental stressors of varying magnitudes, and their population abundances over space and time.

Sedimentary evidence associated with the occupation of Jamaica by the Meillacan peoples, Taino culture, and European colonists was recorded in our paleoecological reconstruction. The Meillacan peoples colonized Jamaica at ~1,050 cal yr BP (~AD 900)
There was a sharp increase in fire activity at \(\sim 1050 \) cal yr BP (Figure 2.5) that coincided with the arrival of the Meillacan peoples to the island. The Taino culture developed on the island at \(\sim 750 \) cal yr BP (~AD 1200) (Atkinson, 2006), and persisted until the arrival of Spanish colonists at \(\sim 456 \) cal yr BP (~AD 1494) (Atkinson, 2006). Increases in fire activity above background levels were recorded at \(\sim 740 \) cal yr BP (~AD 1210) and \(\sim 460 \) cal yr BP (~AD 1490) (Figure 2.5). These increases in fire activity were comparatively modest in size relative to the earlier surges associated with the arrival of the Ostionoid and Meillacan peoples; nonetheless, they are attributed to arrival of the Taino peoples and Spanish colonists to the island.

Consequently, our sedimentary charcoal record documents the arrival of four successive groups to Jamaica, including the prehistoric cultural transitions of the Ostionoid, Meillacan and Taino peoples and the late 15th century colonization by the Spanish.

Of particular interest is the differences in magnitude between the earlier increases in fire activity associated with the Ostionoid and Meillacan peoples and the latter modest surges that coincide with arrival of the Taino peoples and Europeans. This observation can also be extended to analysis of the modern period of the charcoal record, where contemporary populations on the island undoubtedly use fire in the present-day, yet there is a conspicuous absence of large rises in fire activity during this interval. Burney et al. (1994) noted a similar trend in their charcoal reconstruction from Puerto Rico and other available records from Madagascar (Burney, 1987; Burney, 1993), where there appears to be no fire activity, then a very large increase in sustained fire activity associated with first human arrival, which is subsequently followed by a decline to levels which suggests a near absence of fire incidence. Burney et al. (1994) postulated that this trend may be due to changes in human population densities and organization on the landscape, in conjunction with shifts in resource exploitation patterns and land use. The arrival of Europeans
on the island coincided with the base of ecological zone, WP-4 (Figure 2.4). This ecological zone was characterized by the gradual decline of trees and shrubs, proliferation of grasses, consistent presence of ruderal plant species, appearance of cultivated species—most notably, *Saccharum officinarum* (Sugarcane), the primary export crop grown during the colonial period—and high abundances of *Sporormiella*, *Cercophora* and *Sordaria*. These palynological observations are consistent with the historical record of the Jamaican colonial period, which was marked by widespread land clearance for the establishment of up to hundreds of plantations, and intensification of crop and livestock agriculture (Higman, 2001).

Our paleoecological reconstruction provides insight into environmental conditions in Jamaica during past major abrupt climate events. The Maya Drought (~1,200 cal yr BP to ~1,000 cal yr BP) (Gill et al., 2007) was associated with a large spike in $\delta^{18}O$ and $\delta^{13}C$ values in our stable isotope record (194 cm to 170 cm), which indicated high aridity and lake level declines (Figure 2.6). The Medieval Warm Period (~1150 cal yr BP to ~650 cal yr BP) was associated with a large increase in $\delta^{18}O$ and $\delta^{13}C$ values in our stable isotope record, and then a subsequent gradual decline in $\delta^{18}O$ and $\delta^{13}C$ values for most of its extent (190 cm to 115 cm) (Figure 2.6). These shifts indicated that the period was first characterized by arid climates but became increasingly wet for the majority of the interval. Several circum-Caribbean records indicate that the Medieval Warm Period was wet and humid in the Caribbean (Lane et al., 2009; Carrillo-Bastos et al., 2010; Aragón-Moreno et al., 2012), therefore the prevailing trend towards mesic climates in our record further suggests regional coherence. The Little Ice Age (~550 cal yr BP to ~150 cal yr BP) was marked by positive $\delta^{18}O$ values and a conspicuous spike in $\delta^{18}O$ towards the end of the interval, which indicated arid climates (100 cm to 36 cm). $\delta^{13}C$ was slightly uncoupled from $\delta^{18}O$ during the recent Holocene and showed a negative trend towards the core top, which
indicated lake level increases. However, the highest value in the δ^{13}C record was recorded during this interval (~90 cm), which indicated lake level decline and dry climatic conditions (Figure 2.6). Taken together, both records indicated that the Little Ice Age was marked by arid climates in Jamaica, which is in agreement with other regional climate records (Lane et al., 2009; Burn and Palmer, 2014).

Conclusions

Our novel multi-proxy paleoecological reconstruction documents climate, ecological, and anthropogenic changes in Jamaica, West Indies from the mid-Holocene (~5,800 cal yr BP) to recent times. Four successive periods of human colonization and cultural shifts were documented in our sedimentary record, including the arrival of the Ostionoid peoples, the first group to colonize the island. First human arrival was coeval with a period of intensified fire activity and large vegetation changes, including the loss of a swamp mangrove-fern community which failed to re-establish after disturbance. Subsequent waves of colonization by the Meillacan peoples, Taino, and Europeans were associated with increases in fire activity above background levels. The period of European settlement was associated with declines in arboreal taxa, the appearance of cultivated species, high abundances of ruderal herbaceous taxa and an increase in dung fungal spores; thus reflecting historical documentation of extensive human landscape impacts during this interval. The Maya Drought coincided with arid conditions in Jamaica, while the Medieval Warm Period and Little Ice Age were represented by wet and dry climates respectively. These local observations are in agreement with previous circum-Caribbean studies, therefore supporting the notion of regional climate coherence during these periods of abrupt climate change.
References

Henry, C.S. 2018. Late pre-contact era Taíno subsistence economy and diet: Zooarchaeological perspectives from Maima (Doctoral dissertation, Environment: Department of Archaeology).

Renny, R. 1807. An History of Jamaica: With Observations on the Climate, Scenery, Trade, Productions, Negores, Slave Trade, Diseases of Europeans, Customs, Manners, And Dispositions of the Inhabitants: to which is Added, an Illustration of the Advantages which are Likely to Result from the Abolition of the Slave Trade. J. Cawthorn.

Selvaraju, R., Trapido, P.J., Santos, N., Del Mar Polo Lacasa, M. and Hayman, A.A. 2013. Climate change and agriculture in Jamaica: Agricultural sector support analysis. FAO.

Wing, E.S. 2008. Pets and camp followers in the West Indies. In Case studies in environmental archaeology (pp. 405-425). Springer, New York, NY.

Table 2.1 Wallywash Pond vegetation survey data.

Identified plant taxa from the upland, lowland, littoral and aquatic environments of Wallywash Pond. Plant taxa are characterized based on their cultivation (C=Cultivated, NC=Not cultivated) and endemic status (E=Endemic, NE=Not endemic), relative abundance as qualitatively estimated based on occurrences for individual taxa on the day of the vegetation survey (D=Dominant, A=Abundant, F=Frequent, O=Occasional, R=Rare), and affinity for dry limestone forest ecosystems (L=Characteristic of dry limestone forest ecosystems, NL=Not characteristic of dry limestone forest ecosystems).

<table>
<thead>
<tr>
<th>Botanical Name</th>
<th>Common Name</th>
<th>Family</th>
<th>Cultivated</th>
<th>Endemic</th>
<th>Relative Abundance</th>
<th>Dry Limestone Forest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abrus precatorius</td>
<td>John Crow Bead</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Acacia farnesiana</td>
<td>-</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
</tr>
<tr>
<td>Achyranthes indica</td>
<td>Devil’s Horsewhip</td>
<td>Amaranthaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
</tr>
<tr>
<td>Amaranthus dubius</td>
<td>Wild Callaloo</td>
<td>Amaranthaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Ammannia sp.</td>
<td>-</td>
<td>Lythraceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
</tr>
<tr>
<td>Amyris plumieri</td>
<td>Candlewood</td>
<td>Rutaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Anacardium occidentalis</td>
<td>Cashew</td>
<td>Anacardiaceae</td>
<td>C</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Andropogon bicornis</td>
<td>Foxtail Grass</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
</tr>
<tr>
<td>Andropogon pertusus</td>
<td>Seymour Grass</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>A</td>
<td>NL</td>
</tr>
<tr>
<td>Annona squamosa</td>
<td>Sweet Sop</td>
<td>Annonaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Aristolochia littoralis</td>
<td>-</td>
<td>Aristolochiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Asplenium sp.</td>
<td>-</td>
<td>Polyplodiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Azolla caroliniana</td>
<td>Mosquito Fern</td>
<td>Azollaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
<tr>
<td>Bourreria baccata</td>
<td>-</td>
<td>Boraginaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
</tr>
<tr>
<td>Bryophyllum pinnatum</td>
<td>Leaf-of-Life</td>
<td>Crassulaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
</tr>
</tbody>
</table>
Table 2.1. Continued.

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Scientific Name</th>
<th>Family</th>
<th>Status in NC</th>
<th>Status in NE</th>
<th>Status in O</th>
<th>Status in L</th>
<th>Status in NL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucida buceras</td>
<td>Black Olive</td>
<td>Combretaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Bumelia salicifolia</td>
<td>White Bullet</td>
<td>Sapotaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bunchosia media</td>
<td></td>
<td>Malpighiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Bursera simaruba</td>
<td>Red Birch</td>
<td>Burseraceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Calotropis procera</td>
<td>Dumb Cotton</td>
<td>Asclepiadaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Capsicum baccatum</td>
<td>Bird Pepper</td>
<td>Solanaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Casearia guianensis</td>
<td>Wild Coffee</td>
<td>Flacourtiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Casearia hirsuta</td>
<td>Cloven Berries</td>
<td>Flacourtiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Cassia emarginata</td>
<td>Senna Tree</td>
<td>Caesalpinaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Centella asiatica</td>
<td></td>
<td>Ammiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Centrosema virginianum</td>
<td></td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Chiococca alba</td>
<td>David’s Root</td>
<td>Rubiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Chloris inflata</td>
<td></td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Cladium jamaicensis</td>
<td>Saw Grass</td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Coccocolba sp.</td>
<td></td>
<td>Polygonaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Colubrina asiatica</td>
<td>Hoop Withe</td>
<td>Rhamnaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Commelina sp.</td>
<td>Water Grass</td>
<td>Commelinaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Cordia globosa</td>
<td>Wild Sage</td>
<td>Boraginaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Crotalaria verrucosa</td>
<td>Blue Rattleweed</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Croton humilis</td>
<td>Pepper Rod</td>
<td>Euphorbiaceae</td>
<td>NC</td>
<td>NE</td>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Croton linearis</td>
<td>Wild Rosemary</td>
<td>Euphorbiaceae</td>
<td>NC</td>
<td>NE</td>
<td>A</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Cyperus ligularis</td>
<td></td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Cyperus oxylepis</td>
<td></td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Cyperus peruvianus</td>
<td></td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Common Name</td>
<td>Family</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td>Code</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Dendrophthora opuntoides</td>
<td>God Bush</td>
<td>Loranthaceae</td>
<td>NC</td>
<td>E</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Desmanthes sp.</td>
<td>Ground Tamarind</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Desmodium canum</td>
<td>Sweetheart</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Eleocharis elegans</td>
<td>-</td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Euphorbia heterophylla</td>
<td>-</td>
<td>Euphorbiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Guazuma ulmifolia</td>
<td>Bastard Cedar</td>
<td>Sterculiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Haematoxylum campechianum</td>
<td>Logwood</td>
<td>Caesalpinaceae</td>
<td>C</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Heliotropium angiospermum</td>
<td>Dog’s Tail</td>
<td>Boraginaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Indigofera suffruticosa</td>
<td>Wild Indigo</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Ipomoea aquatica</td>
<td>-</td>
<td>Convolvulaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Ipomoea sp.</td>
<td>-</td>
<td>Convolvulaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Jacaima costata</td>
<td>-</td>
<td>Asclepiadaceae</td>
<td>NC</td>
<td>E</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Jatropha gossypiifolia</td>
<td>Bellyache Bush</td>
<td>Euphorbiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Laetia thamnia</td>
<td>Scarlet Seed</td>
<td>Flacourtiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lantana camara</td>
<td>Wild Sage</td>
<td>Verbenaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lasicacis divaricata</td>
<td>-</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Lemna sp.</td>
<td>Duck Weed</td>
<td>Lemnaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Leptochloa domingensis</td>
<td>-</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Ludwigia peploides</td>
<td>-</td>
<td>Onagraceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Malpighia glabra</td>
<td>Wild Cherry</td>
<td>Malpighiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Malvastrum americanum</td>
<td>-</td>
<td>Malvaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Malvastrum coromandelianum</td>
<td>-</td>
<td>Malvaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Melioccus bijugatus</td>
<td>Guinep</td>
<td>Sapindaceae</td>
<td>C</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Melochia nodiflora</td>
<td>-</td>
<td>Sterculiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Table 2.1. Continued.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimosa pudica</td>
<td>Shame Weed</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Morinda royoc</td>
<td>Strongback</td>
<td>Rubiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Nymphaea ampla</td>
<td>Water Lily</td>
<td>Nymphaeaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Ocimum gratissimum</td>
<td>African Tea Bush</td>
<td>Lamiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Oeceoclades maculata</td>
<td>African Orchid</td>
<td>Orchidaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Paspalum distichum</td>
<td>-</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Paullinia sp.</td>
<td>-</td>
<td>Sapindaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Phragmites australis</td>
<td>Reed</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Piscidia piscipula</td>
<td>Dogwood</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Pisonia aculeata</td>
<td>Wait-a-bit</td>
<td>Nyctaginaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Pithecellobium unguis-cati</td>
<td>Bread–and-Cheese</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Pluchea odorata</td>
<td>Bitter Tobacco</td>
<td>Asteraceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Plumbago scandens</td>
<td>Wild Plumbago</td>
<td>Plumbaginaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Potamogeton nodosus</td>
<td>-</td>
<td>Potamogetaceae</td>
<td>NC</td>
<td>NE</td>
<td>F</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Priva lappulacea</td>
<td>Fasten-pon-Coat</td>
<td>Verbenaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Prosopis juliflora</td>
<td>Cashew, Mesquite</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Randia aculeata</td>
<td>Box Briar</td>
<td>Rubiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Rhyncheletrum repens</td>
<td>Natal Grass</td>
<td>Poaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Rhynchosis phaseoloides</td>
<td>-</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Rivina humilis</td>
<td>Dogberry</td>
<td>Phytolaccaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Ruellia tuberosa</td>
<td>Duppy Gun</td>
<td>Acanthaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Sabal jamaicensis</td>
<td>Big/Bull Thatch</td>
<td>Arecales</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Sagittaria guayanensis</td>
<td>-</td>
<td>Alismataceae</td>
<td>NC</td>
<td>NE</td>
<td>F</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Table 2.1. Continued.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>-------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Samanea saman</td>
<td>Guango</td>
<td>Mimosaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Scleria lithosperma</td>
<td>-</td>
<td>Cyperaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Sida acuta</td>
<td>Broom Weed</td>
<td>Malvaceae</td>
<td>NC</td>
<td>NE</td>
<td>F</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Sida procumbens</td>
<td>-</td>
<td>Malvaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Simaruba glauca</td>
<td>Bitter Damson</td>
<td>Simaroubaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Solanum erianthum</td>
<td>Wild Susumber</td>
<td>Solanaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Solanum mammosum</td>
<td>Cockroach Poison</td>
<td>Solanaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Solanum torvum</td>
<td>Susumber</td>
<td>Solanaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Spermacoce confusa</td>
<td>-</td>
<td>Rubiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Spilanthes urens</td>
<td>Pigeon Coop</td>
<td>Asteraceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Stachyphartha jamaicensis</td>
<td>Vervaine</td>
<td>Verbenaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Stylosanthes hamata</td>
<td>Donkey Weed</td>
<td>Papilionaceae</td>
<td>NC</td>
<td>NE</td>
<td>F</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Tabernaemontana laurifolia</td>
<td>-</td>
<td>Apocynaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Tamarindus indica</td>
<td>Tamarind</td>
<td>Caesalpiniaceae</td>
<td>C</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Tecoma stans</td>
<td>Yellow Elder</td>
<td>Bignoniaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Tragia volubilis</td>
<td>Twining Cowitch</td>
<td>Euphorbiaceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Tridax procumbens</td>
<td>-</td>
<td>Asteraceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Trophis racemosae</td>
<td>-</td>
<td>Moraceae</td>
<td>NC</td>
<td>NE</td>
<td>R</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Typha domingensis</td>
<td>Reedmace</td>
<td>Typhaceae</td>
<td>NC</td>
<td>NE</td>
<td>A</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Urechites lutea</td>
<td>Nightshade</td>
<td>Apocynaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Vernonia cinerea</td>
<td>-</td>
<td>Asteraceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Waltheria indica</td>
<td>Raichi</td>
<td>Sterculiaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Wissadula sp.</td>
<td>-</td>
<td>Malvaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>NL</td>
<td></td>
</tr>
<tr>
<td>Zanthoxylum martinicense</td>
<td>Prickly Yellow</td>
<td>Rutaceae</td>
<td>NC</td>
<td>NE</td>
<td>O</td>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>
Table 2.2 Radiocarbon dates obtained for WALL18.

Mean calibrated ages were generated using the Bacon program and the IntCal09 calibration curve (Blaauw and Christen, 2011).

<table>
<thead>
<tr>
<th>Lab #</th>
<th>Depth (cm)</th>
<th>14C age</th>
<th>1-σ</th>
<th>Mean calibrated age</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>39643</td>
<td>182.75</td>
<td>800</td>
<td>25</td>
<td>1078</td>
<td>Macrocharcoal fragments</td>
</tr>
<tr>
<td>39644</td>
<td>198.25</td>
<td>510</td>
<td>25</td>
<td>1254^a</td>
<td>Macrocharcoal fragments</td>
</tr>
<tr>
<td>39645</td>
<td>205.75</td>
<td>1300</td>
<td>30</td>
<td>1370</td>
<td>Macrocharcoal fragments</td>
</tr>
</tbody>
</table>

* This reported mean calibrated age was generated by the Bacon program for the associated sediment depth (198.25 cm) after omission of the related 14C age. The 14C age was omitted as a result of age reversal, which the Bacon program rejects when calculating age-depth models.
Figure 2.1 Annual and seasonal precipitation patterns of Jamaica.

Average monthly precipitation for Jamaica for the period 1971-2000: A) Annual, B) January, C) June and D) October. The annual precipitation distribution (A) reflects the rain shadow effect of the central mountainous region, which results in high rainfall in the northeastern portion of the island and low rainfall in the leeward southern coastal plains. The seasonal precipitation distribution (B-D) reflects the annual cycle of rainfall on the island, where precipitation maxima coincide with northern displacement of the Intertropical Convergence Zone during boreal summer and peak activity of the North Atlantic hurricane season (August-October) (Copyright © 2019, PRISM Climate Group, Oregon State University, http://prism.oregonstate.edu, Map created April 24, 2019).
Figure 2. Study location and coring site.

(L) Image of the island, Jamaica, indicating the geographical location of Wallywash Pond close to the southwestern coast (★). (R) Image of Wallywash Pond and the surrounding landscape, indicating the coring site close to the western shore of the lake (▲). Images collected from Google Earth (L: SIO, NOAA, U.S. Navy, NGA, GEBCO, Landsat/Copernicus 2019; R: CNES/Airbus 2019).
Figure 2.3 Bayesian age-depth model made using Bacon software.

Upper panel: L) Markov Chain Monte Carlo iterations that calculate sedimentation rates, M) prior (lines) and post-analysis (area fills) estimates for sedimentation rates, and R) prior and post-analysis estimates for autocorrelation of sedimentation rates. The bottom panel shows the age-depth model with 95% CIs (dotted lines), probability distribution of calculated calibrated 14C ages (gray fill, likelihood increases with darker color), and the calibrated dates used to construct the age-depth model (floating markers) (Blaauw and Christen, 2011).
Figure 2.4 Fossil pollen diagram for WALL18 and lithology.

Pollen abundances are represented as a percentage (%) of the terrestrial and aquatic pollen sum. Fungal spores were omitted from pollen sums for percentage calculations and are represented as abundance counts. CONISS analysis (far right) was performed using Tilia (Grimm, 1987) version 2.1.1 and ecological zonations (WP-1 to WP-5) are indicated by unbroken horizontal lines. WALL18 lithology (far left) was also compiled using Tilia software.
Figure 2.5 Fire reconstruction for WALL18.

Fire activity represented as interpolated charcoal accumulation rates (Interpolated CHAR, gray fill) (number of charcoal pieces/cm²/year). Low frequency background CHAR was estimated using a Lowess smoother with a 500-year smoothing window (solid line). Interpolated CHAR values greater than background CHAR levels indicate periods of increased fire activity. Interpolated CHAR and background CHAR values were calculated in Matlab using the CharAnalysis program version 1.1 (Higuera et al., 2009 and 2010).
Figure 2.6 Stable isotope curves for WALL18.

Stable isotope data were obtained from ≥ 10 ostracod valves or 5 intact ostracods of the species *Cypretta brevisaepta*. (L) Stable oxygen isotope values (Δ^18O) represented as the ratio of ^18O/^16O (± 0.10, 1σ SD) relative to the VPDB standard. (R) Stable carbon isotope values (Δ^13C) represented as the ratio of ^13C/^12C (± 0.08, 1σ SD) relative to the VPDB standard. Geochemical analyses were conducted at the University of Arizona Environmental Isotope Laboratory.
REFERENCES

Corlett, R.T. 2012. Climate change in the tropics: the end of the world as we know it?. *Biological Conservation* 151(1): 22-25.

Hendrickson, M. 2010. Historic routes to Angkor: development of the Khmer road system (ninth to thirteenth centuries AD) in mainland Southeast Asia. *Antiquity* 84(324): 480-496.

Henry, C.S. 2018. Late pre-contact era Taíno subsistence economy and diet: Zooarchaeological perspectives from Maima (Doctoral dissertation, Environment: Department of Archaeology).

LeBlanc, A.R., Kennedy, L.M., Liu, K.B. and Lane, C.S. 2017. Linking hurricane landfalls, precipitation variability, fires, and vegetation response over the past millennium from

Lozano-García, S., Caballero, M., Ortega, B., Sosa, S., Rodríguez, A. and Schaaf, P. 2010. Late Holocene palaeoecology of Lago Verde: evidence of human impact and climate
change in the northern limit of the neotropics during the late formative and classic periods. *Vegetation History and Archaeobotany* 19(3): 177-190.

M. C. Peel, B. L. Finlayson, T. A. Mcmahon. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, European Geosciences Union 4 (2): 439-473. <hal-00298818>

Renny, R. 1807. An History of Jamaica: With Observations on the Climate, Scenery, Trade, Productions, Negroes, Slave Trade, Diseases of Europeans, Customs, Manners, And Dispositions of the Inhabitants: to which is Added, an Illustration of the Advantages which are Likely to Result from the Abolition of the Slave Trade. J. Cawthorn.

Selvaraju, R., Trapido, P.J., Santos, N., Del Mar Polo Lacasa, M. and Hayman, A.A. 2013. Climate change and agriculture in Jamaica: Agricultural sector support analysis. FAO.

Wing, E.S. 2008. Pets and camp followers in the West Indies. In Case studies in environmental archaeology (pp. 405-425). Springer, New York, NY.

BIOGRAPHY OF THE AUTHOR

Mario Williams was born in Jamaica in 1992 to the parents of Godfrey and Camille Williams. The son of two high school teacher-coaches, M. Williams grew up fascinated with reading, playing soccer, and exploring the outdoors. M. Williams would often attend field trips with his father’s biology class, where his interest in the natural world deepened. A standout student-athlete at Glenmuir High School in May Pen, Jamaica, M. Williams earned a scholarship to attend the Hotchkiss School in Lakeville, Connecticut. M. Williams immersed himself in his new environment and excelled as the president of the Black and Hispanic Student Alliance and captain of the varsity soccer team his senior year. After graduating from the Hotchkiss School in 2012, M. Williams attended Franklin & Marshall College in Lancaster, Pennsylvania. M. Williams played varsity soccer for two years and was an active member of the campus community. M. Williams conducted three different student research projects at Franklin & Marshall College, with his senior project enabling him to travel to the Gulf of Mexico to study the historical ecology of marine bivalves. M. Williams earned a B.A. in Environmental Science from Franklin & Marshall College in 2016 and received the Environmental Science award. M. Williams returned to the Hotchkiss School during the summer of 2016 to work as a Resident Teaching Fellow in Environmental Science in the Summer Portals Program. M. Williams started his academic career at the University of Maine in fall 2016. He worked as a teaching assistant in the School of Biology & Ecology and taught Human Anatomy, Vertebrate Biology and Introductory Biology. He is a candidate for the Master of Science degree in Ecology and Environmental Sciences from the University of Maine in May 2019.