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ABSTRACT 

Levulinic acid (LA) is a platform chemical and it can be upgraded to various products like bio-oil. 

The acid hydrolysis of cellulose is a widely researched pathway to make LA. However, 

investments to produce LA commercially can be subjected to risks due to feedstock price volatility 

and high processing costs. Such risks can be reduced by expanding the feedstock portfolio to 

produce LA from feedstock beyond wood and improving the energy efficiency of the process. 

One little investigated feedstock for production of LA is macro algae (seaweed). Seaweed is 

potentially attractive because it has low content of lignin or 5 carbon carbohydrates, which 

complicate production of LA. In this study, we investigated the production of LA from sugar kelp 

(Brown Seaweed) via two-stage and three stage sulfuric acid hydrolysis in a batch process. The 

highest of yield of levulinic acid for two stage hydrolysis was noted as 30.11 mol% (theoretical 

yield on available glucan) obtained at 200 °C with 120 min retention time. Three stage hydrolysis 

produces around 28 mol% at 200 °C with 80 min retention time with 4 (% wt) H2SO4. 



LA can be upgraded to bio-oil using the Thermal Deoxygenation (TDO) pathway. The production 

of TDO oil from woody biomass derived LA is found to be an energy intensive process. So, energy 

integration is helpful to minimize overall energy consumption of the renewable fuel production, 

which eventually reduces the cost of fuel production. We performed energy integration analysis of 

the combined AHDH and TDO process using the pinch analysis methodology to determine 

potential energy savings. The combined AHDH and TDO pathway includes: evaporation loads, 

condensation heat duties, exothermic reaction duties and more efficient use of utility systems.  The 

energy integration analysis is divided into three major tasks: (i) selection of matches, (ii) minimum 

utility cost estimation, and (iii) determining minimum cost of heat exchanger network. The 

calculation of the Pinch Point done by theoretical and graphical methods yielded 107 °C and 97 

°C for hot and cold streams, respectively. The energy savings of the combined AHDH and TDO 

pathway to make renewable fuel was evaluated by using data collected from Aspen Plus. The 

potential energy saving was calculated to be 94.40 MW, which is around 59% of total steam 

demand. The installation cost of heat exchangers with energy integration is found to be higher, but 

only moderately so, compared to the process of without energy integration. Overall the total cost 

savings is estimated to be around 50% reduction of combined utility and capital costs for the heat 

exchanger network. This improves the overall economic performance of combined AHDH and 

TDO pathway to make renewable fuel. Thus, the prime objective of energy integration was 

achieved by increasing process to process heat transfer and by reducing extra utility loads.  
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CHAPTER 1 

1.1 Introduction 

Currently most fuels and chemicals are made from non-renewable fossil feedstock such as crude 

oil, natural gas or coal. The International Energy Agency reported around 81% of total energy 

production was associated with fossil fuels and 90% of total transportation fuels were derived from 

petroleum based feedstock (1). An increasing global population and continuing industrialization 

increase the global energy demand. The U.N. department of economics and affairs projects the 

global population to be around 9 billion by 2050 (16). However, fossil fuels are non-renewable 

energy sources and problems associated with petroleum based feedstock, such as greenhouse gas 

emissions (the global carbon emission was 32.5 gigatonnes in 2017), depletion of oil reserves and 

climate change give a new direction to research to find an alternative source of energy and fuels. 

The environmental impacts of fossil fuels can be reduced with the utilization of renewable biomass 

such as wood and corn Stover. Biofuels such as ethanol and biodiesel can be produced from 

biomass. Currently they are blended with gasoline and diesel to use for transportation fuels, which 

results in life cycle greenhouse gas emission reduction (3). In 2005, United States proposed the 

renewable fuel standard under the Energy Policy Act (EPA act), requiring 24 billion gallons of 

renewable fuel to be blended with gasoline, the goal of this project was to increase the volume of 

renewable fuels to 36 billion gallons by 2022 (3).   

Lignocellulosic biomass is the most abundantly available raw material, with worldwide 

availability of around 450 billion dry tones of biomass as a potential source of energy (2). There 

are several currently proposed technologies to upgrade lignocellulosic biomass to fuels and 

chemicals. These technologies are categorized as: thermochemical, catalytic, and biological 

technologies. Thermochemical technologies involve heating of biomass in the presence or in the 
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absence of a catalyst to make fuels and chemicals. Pyrolysis, combustion, and gasification, are 

examples of thermochemical pathways (4). Pyrolysis is the process to convert biomass into liquid, 

char and gases at different temperature ranges between 300 OC to 700 OC in the absence of air. 

Slow pyrolysis and fast pyrolysis are the types of pyrolysis processes. Slow pyrolysis converts 

biomass into valuable products in a slow heating rate, and the main product of this process is char 

along with small amounts of bio oil and gases (5). Fast pyrolysis takes place in a moderate to high 

temperature range to convert biomass into organic vapors, char and gases within a small residence 

time of anywhere between 2 and 10 sec. But a problem associated with the fast pyrolysis is high 

oxygen content in the resulting oil which causes the oil to be unstable. A hydro treating process 

can be used to upgrade bio-oil by removing oxygen of bio-oil to make hydrocarbon fuel. Three 

catalytic steps with severe conditions are necessary to remove the oxygen. Catalytic deactivation 

due to the formation of coke during the hydro treating process is the main concern for the 

commercialization of transportation fuel production via this process (9).   Catalytic fast pyrolysis 

is the process to produce the bio-oil in a fast pyrolysis reactor assisted with in-situ catalyst (6). 

Zeolite (ZSM-5) can be used at atmospheric pressure without hydrogen to promote the cracking 

reaction to increase the C/O ratio and aromatic concentration in bio-oil (7). Combustion is a 

burning of biomass at very high temperature (800 OC to 1000 OC) in air to convert the energy 

stored in biomass to mechanical power or electricity using various equipment. This process is 

useful for small scale household purposes such as cooking as well as generation of electricity in 

an industrial level (4). Gasification is a conversion of biomass into combustible gases or synthesis 

gases at the temperature range of 800 to 900 OC in the presence of limited amounts of air or steam. 

The resulting synthesis gases can be used to produce chemicals. Combustible gases can be useful 

to run gas turbine or gas engines.  The idea behind biomass gasification is to convert gaseous fuel 
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into electricity by using a gas turbine, which increases the efficiency of the process (4). 

Hydrothermal Liquefaction is a thermochemical route for production from dry and/or wet biomass 

in the presence of catalyst along with hydrogen at moderate temperature condition (280-370 OC) 

(10). The product in this process stream contains gases, aqueous components, and solids along 

with the main product as liquid. This process takes place at high pressure (10-25 MPa) to increase 

the heat recovery. Feeding the system at these high temperatures and the high pressure rating on 

the reactor are concerns that make this process less attractive (11).   

Ethanol can be produced from lignocellulosic biomass via the biological pathway. The biological 

pathway is characterized by slow reaction rates and lower temperature conditions, and it is suitable 

for high moisture content feedstock. The process includes bacteria, microorganisms and enzymes 

that breakdown biomass into carbohydrates and sugars, which are then further converted into fuels 

and chemicals. Anaerobic digestion and fermentation are examples of biological pathways. 

Anaerobic digestion is the degradation process to convert wet, organic waste made of 

biodegradable material such as municipal solid waste, industrial waste, and food waste into biogas. 

This process takes place in the absence of air. Biogas produced from anaerobic digestion can be 

used to produce electricity and some transportation fuels. The combined enzymatic hydrolysis and 

fermentation is an example of a biological pathway that produces fermentable sugars followed by 

ethanol from a lignocellulosic feedstock.  

A wide range of biomass feedstocks have been tested to produce liquid fuels and chemicals. In the 

US, it is predominantly corn-derived starch that is currently used to make biofuels and chemicals. 

However, the use of edible feedstock like corn- based starch impacts feed prices. Thus, inedible 

feedstocks like lignocellulosic feedstock have been explored to make chemicals and fuels. Despite 

its abundance, the cost of lignocellulosic feedstock can be limiting to the commercialization of  
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biomass upgrading technologies. To overcome the cost barriers, significant research has been 

directed at reducing the cost of the processing methods used to convert the feedstock into various 

chemicals and fuels.  

Algae is a diverse group of biomass that grow in aqueous environments. Marine algae are divided 

into two different groups based on their sizes: (1) Microalgae (unicellular) and (2) Macro algae 

(multicellular). Researchers have been driving towards the production of biofuels from algae 

because of its several advantages over lignocellulosic biomass.  One advantage is the low content 

or absence of lignin in algae, which simplifies biofuel processes that are affected by the physical 

handling and chemical interference issues associated with processing lignin. The presence of lignin 

in lignocellulosic biomass creates problems in enzymatic hydrolysis processes, so various 

pretreatment methods such as steam explosion, ammonia fiber expansion, or ionic liquid 

pretreatment have been applied to make the hydrolysis process easier. A disadvantage of seaweed 

biomass is a glucan content that is quite low compared to lignocellulosic biomass, although other 

carbohydrate chemical content such as mannitol, alginate, agar and carrageenan increase the yield 

of sugar concentrations which can be converted into various chemicals and fuels via 

thermochemical and bio-chemical pathways subject to the moisture content of biomass. The 

conversion technologies for dry algae include direct combustion, pyrolysis, gasification and 

transesterification of extracted oils to biodiesel, whereas hydrothermal treatment and other 

biochemical treatments such as anaerobic digestion and fermentation can be used to convert wet 

algae (13). The main concern with dry biomass is that it requires extra steps for drying which 

makes process more complex and energy consuming.  As discussed earlier, direct combustion of 

seaweed is a traditional method to produce heat and electricity in households or at an industrial 

level from burning. But the problem associated in this process is the presence of high amounts of 
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inorganic solid residue such as ash and alkaline content which decreases the process efficiency. 

Pyrolysis is another thermochemical technology to convert dry algae into biofuels. But in this 

process, presence of metals and ash cause catalyst deactivation. Gasification takes place at high 

temperatures, with partial oxidation so that organic materials convert into syngas, which can be 

further converted into methanol and hydrogen for transportation fuels, but the process is not cost 

effective. Anaerobic digestion is a suitable biochemical method because of higher energy content 

and lower greenhouse gas emission. Thermochemical processes are good for lignocellulosic 

feedstock like wood and biological treatment is preferred for herbaceous feedstock. Moreover, 

product selectivity also decides the type of biofuel pathway. Butanol production is more towards 

biological conversion whereas, hydrocarbon fuel production seems more selective towards 

thermochemical pathways (14). But research shows that oil derived from algae has lower oxygen 

content, lower viscosity and higher heating value compared to woody biomass; however, the yield 

of bio-oil derived from algae biomass is quite low compared to woody biomass because of the 

high ash content and presence of metal contents which tends to lower the acidity of the mixture 

(47). The problem associated with the presence of ash and inorganic compounds can be solved by 

using acid hydrolysis at higher sulfuric acid concentration which results in higher fatty acid 

components into bio-oil but the formation of large char also affects the continuous pyrolysis of 

macro algae (13). The biochemical pathway is another option for the production of biofuels from 

algae biomass. Research suggests that anaerobic digestion is more preferable than the 

thermochemical pathways at an industrial level because it can undergo in the presence of moisture 

and it has the potential to utilize the entire carbon content of macro algae (13).  One problem is 

that the metal content of algae is released into fermentation products and this could create some 
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problems in the fermentation, so pretreatment with activated charcoal and lime may be necessary 

to decrease the metal content (15)  

In this study, we are hydrolyzing the brown seaweed Saccharina latissima, also known as 

Laminaria saccharina, in a batch reactor to produce levulinic and formic acids through acid 

hydrolysis and dehydration and optimizing the process for different combinations of temperature, 

time and acid concentration. The temperature range explored for this process was 150 ºC to 200 

ºC with residence time ranging from 40 minutes to 120 minutes. The range of H2SO4 acid 

concentration was from 2% to 10 % (m/v). Two stage hydrolysis was performed to determine total 

glucose and other carbohydrate composition in the samples, with different residence times applied 

at the second stage of hydrolysis to optimize glucose yield.  Elemental analysis was done to 

determine the wt% of nitrogen and carbon. HPLC was performed for quantitative analysis of 

hydrolyzed seaweed. HPAEC was performed to compare the results of sugar analysis with HPLC 

analysis.  

1.1.1 Conversion of Biomass to Levulinic acid 

The Department of Energy reported 12 top value added platform to accelerate the growth of bio 

based economy.  Levulinic acid is one of these twelve promising value added platform chemicals 

because of its high reactive carbonyl and carboxyl groups that can convert into various value added 

chemicals by undergoing various chemical reactions (20). Some of the various applications of 

levulinic acid include: pharmaceutical, plasticizers, food and flavors, solvents, personal care, 

biodiesel, resins and coatings, herbicides, specialty chemicals, fuel extenders (18). 
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Figure 1 shows the transformation of levulinic acid into various chemicals and biofuels.  The 

common method for the production of levulinic acid is acid hydrolysis of saccharides at different 

temperature and pressure conditions via the intermediate 5-hydroxylmethylfurfural.  

 

Figure 1 Transformation of Levulinic acid into value added chemicals and biofuels (21) 

 

Figure 2 Conversion Pathways of Cellulose into Levulinic acid (19) 
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Table 1 summarizes results of different studies on conversion of carbohydrate and biomass 

feedstock to levulinic acid. All the studies presented in the table were carried out in batch process 

at laboratory scale.  

Table 1 Biomass Feedstock and Reaction Conditions for the Production of Levulinic Acid 

Feedstock Feedstock 

(wt%) 

Catalyst Ccatalyst 

(wt%)a 

T 

(°C) 

t 

(h) 

YLA 

(wt%)b 

Ref 

Wheat straw 6.4 H2SO4 3.5 210 0.63 19.8 19 

Cane sugar 28 HCl 18 100 24 15 22 

Glucose 29 HCl 6.5 162 1 24 24 

Glucose n.a. FeCl3 n.a. 180 2 30 25 

Glucose 10 HCl 6 160 0.25 41.4 26 

Glucose 10 H2SO4 n.a. 170-210 1 50.2 27 

Cellulose 10 H2SO4 3 250 2 25.2 30 

Glucose n.a. HCl n.a. 90 4 23 27 

Fructose 5-20 HCl n.a. 98 n.a. 75 27 

Fructose 5-10 H3PO4 n.a. 280 0.03 7 28 

Glucose 27 
Amberlite 

IR-120 
19 R.T. 124 5.8 29 

Glucose 12 
HY-

zeolite 
3 150 24 6 31 

Sucrose 6 HCl 9.7 125 16 43 32 

Cellulose n.a. H2SO4 5-10 150 2 60 33 

Cellulose 10 H2SO4 1-5 150-250 2-7 25.2 34 

Cellulose 10 HCl 1-5 150-250 2-7 28.8 34 

Cellulose 10 HBr 1-5 150-250 2-7 26.9 34 

Cellulose 10 H2SO4 5 150 6 57 35 

α-cellulose n.a. HCl n.a. 220 1 45.2 36 

Corn Stover n.a. HCl n.a. 80-100 3 5-9 37 

Bagasse 9 HCl 4.45 220 0.75 22.8 38 

Paddy straw n.a. HCl 4.45 220 0.75 23.7 38 
aCcatalyst= concentration of catalyst; R.T.= Refluxed temperature; bYLA= the ratio of mass of 

Levulinic acid and mass of feedstock; n.a.= data is not available 
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However, there has also been progress in larger scale processes for the production of Levulinic 

acid (LA) in a continuous process at an industrial level. In 1957, Dunlop and Wells proposed a 

continuous process for the production of LA from hexose yielding materials at atmospheric 

pressure. In this process, 21 wt% carbohydrate feedstock (residues from furfural production) was 

mixed with 3% H2SO4. The mixture was passed through a reactor at 169 OC (the temperature range: 

150 OC – 200 OC) with a residence time of 3 hours. After the reaction, the products were passed to 

a filter unit for the separation of insoluble solid residue from product stream. Following this, in a 

separation unit, methyl isobutyl ketone (selective towards LA) was used as a solvent for the 

extraction of LA from the aqueous phase. The aqueous phase and catalyst was recycled to the 

reaction zone. The extraction solvent was purified from an evaporator and LA was sent to vacuum 

distillation for further purification. With this process. The optimum yield of LA was 19.9 wt% 

based on dry feedstock (39). The process flow diagram for this method is shown in Figure 3. 
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Figure 3 Continuous process for the production of LA from hexose yielding material based on 

Dunlop et al., (1957) (39) 

 

Ghorpade and Hanna introduced the concept of extrusion for the production of Levulinic acid (1999). 

The extrusion process appears to be an efficient process thanks to high process yield combined with 

low energy and time requirements. In this process, corn starch and 5% H2SO4 are mixed in a pre-

conditioner to create the slurry of corn starch. In the following step, the slurry of corn starch passes 

through twin screw extruder with different temperature profiles, such as 80-100 OC, 120-150 OC or 

150 OC. After this reaction, the product stream containing levulinic acid passes through a filter press 

E-1: Pre mixer    E-6: LA fractionator 

E-2: Reactor    E-7: Solvent recovery 

E-3: Flash tank    E-8: Filter unit 

E-4: Solvent extraction column 

E-5: Solvent Evaporator 
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in which humins are separated from levulinic acid and the remaining mixture is sent to vacuum 

distillation to increase the purity of levulinic acid. By feeding 820 kg/h of corn starch feedstock, 40 

kg/h of 5 wt% H2SO4 and 290 kg/h of water yielded the levulinic acid about 48 wt% (40).  

The process is shown in Figure 4. 

: 

 

 

Figure 4 Process flow diagram for extrusion process based on description by Ghorpade et al., 

(1999) (40) 

 

Bio fine technology is another process for the continuous production of LA by using 

carbohydrate feedstock. The typical yield of LA from this process is about 60 wt% to 70 wt % 

of theoretical yield. In this process, dilute H2SO4 (1% to 5%) is used as a catalyst and is mixed 

with carbohydrate feedstock. The slurry of carbohydrate mixture and catalyst is sent to a Plug 

E-1: Preconditioner  E-4: Reboiler 

E-2: Vacuum distillation E-5: twin screw extruder 

E-3: Condenser   E-6: Filter press 
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Flow Reactor with 12 second residence time at temperature of 210-230 OC which converts all 

polysaccharides into monosaccharides. The product stream of monosaccharides is transferred 

into CSTR (Continuous Stirred tank reactor) at 195-215 OC for 15 minutes to 30 minutes to 

produce LA. The product stream from the CSTR contains vapors of FA (Formic acid), furfural 

and other products which can be condensed and LA is separated as a liquid from second 

reactor. Solid by products can be separated from filter press (41).  

 

 

Figure 5 Process flow diagram for Production of LA from bio fine process (41) 

 

 

E-1: Pre-mixer   E-4: CSTR 

E-2: High speed pressure pump E-5: Condenser 

E-3: Tubular reactor  E-6: Filter unit 
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1.2 Materials and Methods 

1.2.1 Apparatus and Chemicals 

1.2.1.1 Apparatus 

• Analytical balance (Mettler Toledo (AL204), Maximum capacity 21 g with ± 0.01 g) 

• Vacuum filtration setup  

• Water bath (Fischer Scientific GDP 05, with ambient to 95 °C temperature range, ± 0.02 

°C temperature uniformity, with 5L bath volume) 

• Autoclave, (HV-85, Artisan Technology group) 

• Ice bath 

• Pyrex Desiccator  

• HPLC system with Bio-Rad Aminex HPX-87 H column and Shimadzu reactive index 

column 

• HPAEC system with Dionex GP50 pump, ED40 Detector, AS50 Autosampler 

• Digital oil bath (Thermohaake DC-30, -50 °C to 200 °C temperature range with ±0.01 K 

accuracy) 

• Gravity convention drying oven (Fischer brand Isotemp general purpose heating and drying 

oven with 65 L capacity and temperature range from 50 °C to 250 °C with ± 4 °C 

uniformity) 

• Muffle furnace 

• General purpose Parr vessel with maximum temperature and pressure 300 °C and 115 bar 

accordingly (Alloy 20 carpenter 20, 22 mL with Fe- 35 %, Ni- 34%, Cr -20%, Mo-2.5%, 

Mn- 0.7%) wrench (21AC4), Bench socket (A22AC3) 
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• Swagelok 314 Stainless steel double ended cylinders (DOT -3A 1800 WITH 1800 psig 

pressure rating) 

• Fischer AccuSpin 400 Centrifuge (400 mL capacity, 30 to 13000 rpm speed range,    

1.2.1.2 Reagents 

• 72 % H2SO4 (Ricca Chemical Company (71.8-72.2% w/w), Specific gravity 1.6338 at 20 

°C) 

• High purity standards D (+) glucose, D (+) xylose, D (+) mannose, D (+) galactose, 

levulinic acid (Purchased from Sigma Aldrich with 98 % purity, density 1.134 g/mL), 

formic acid (Purchased from Sigma Aldrich with 95- 97% purity, density 1.22 g/mL at 25 

°C), acetic acid (purchased from Fischer scientific with 99.7% w/w, density 1.05 g/mL at 

25 °C), D- mannitol (98+%, purchased from Acros Organics), glucuronic acid, sugar kelp 

(Saccharina latissima) 

• Deionized water 

• Heat transfer fluid (Clearco Products Co. Inc. DPOM-400 Silicone bath fluid, temperature 

range for open system 25 °C to 250 °C, specific gravity 1.07) 

• HPLC grade Millipore water  

• Pure Chemicals for sugar analysis of individual carbohydrates such as laminarin 

(Purchased from……), Sodium Slat of Alginic Acid (Purchased from…), Fucoidan 

(Purchased from….), Carrageenan (Purchased from….) and cellulose (Purchased from…)   

1.2.1.3 Materials 

• Glass beakers (Fischer brand 100mL, 250 mL, 300 mL and 600 mL capacity) 

• Test tubes (18x150 mm, #2048-00150) 

• Teflon stir rods that fits in test tube with around 5 cm longer than test tube 
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• Pyrex Filter flasks with 1000 mL capacity and filtering crucibles 

• Adjustable pipette with range from 0.02 mL to 5 mL 

• Dow corning high vacuum grease to smooth the surface of Parr reactor tank and to decrease 

the friction 

• Autoclave wide mouth approximate 500 mL volume capacity bottles with Ezvialz seals 

• Disposable latex free Syringes with 10 mL capacity and Cell treat Scientific syringe filter 

with 0.45 µm x13 mm diameter # 229754  

• Auto sampler HPLC vials (Fischer brand 10-425 screw thread # 03-391-16) with PTFE 

closure 

• Auto sampler HPAEC vials 

1.2.2 Sample Preparation 

Sugar kelp (Saccharina latissima) was harvested during June in Saco Bay, ME, USA and were 

kindly provided by Adam St. Gelais and Carrie Byron at the University of New England. The sugar 

kelp was washed under running water to remove salts and other contaminants from the surface of 

the sugar kelp leaves. The sugar kelp samples were dried using freeze dryer at -20, -10, 0, 10, and 

25 °C for 4 h at each temperature. After drying, the sugar kelp samples were grounded into a fine 

powder using a Wiley mill into < 0.5 mm particle size and these powder samples were sieved to 

get uniform particle size. These powdered samples were stored in the refrigerator to avoid any 

light interference for compositional analysis.  

1.2.3 Physiochemical Analysis 

1.2.3.1 Moisture Content 

The moisture content of freeze dried sugar kelp was calculated by ASTM E1756-01 procedure. 

Initially, crucibles were identified by using porcelain marker and dried in a conventional oven at 
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105 ± 5 °C for 4 h until a constant weight was achieved. Around 500 ± 0.02 mg of the sugar kelp 

powder was weighed in oven dried crucible and was put into conventional oven at 105 ± 5 °C. 

After 24 h, the hot crucibles were cooled to room temperature in the desiccator for an hour. The 

moisture content of the sugar kelp was expressed in dry basis as a gram of water per 100 g of dry 

solids (42).  

1.2.3.2 Ash Content: 

The presence of inorganic materials was determined according to NREL/TP-5100-60943 

“Summative Mass Analysis of Algal Biomass- Integration of Analytical Procedure”. A 3 ±0.05 g 

sample of pre-grounded freeze-dried dry sugar kelp powder was weighed in oven dried crucible. 

A porcelain marker identified crucible was placed in the muffle furnace at 575 ± 5°C. After 12 h, 

the hot crucible was transferred into the desiccator to cool it down to the room temperature. The 

final weight of the crucible with sample was weighed. The crucible was dried in conventional oven 

until constant weight was achieved. Then dried crucible was placed in muffle furnace at 575 ± 5 

°C with seaweed powder for 24 h until constant weight was achieved.   The ash content of algae 

biomass was calculated by:  

 

% 𝐴𝑠ℎ =
(𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑎𝑠ℎ) − 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑐𝑟𝑢𝑐𝑖𝑏𝑙𝑒 + 𝑎𝑠ℎ)

𝑂𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑎𝑙𝑔𝑎𝑒 𝑏𝑖𝑜𝑚𝑎𝑠𝑠
∗ 100 

Equation 1 % Ash 
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1.2.3.3 Protein Content: 

The total nitrogen content was determined by an elemental analyzer. This analyzer provides the 

fraction of carbon, hydrogen and nitrogen in sugar kelp powder. The protein content of the algae 

biomass can be estimated from the nitrogen content, by using a nitrogen to protein conversion 

multiplier. The conversion multiplier, also known as Jones factor 5.4 (for sugar kelp), is based on 

the existence of all nitrogen in sugar kelp as protein (43). The equation for protein measurement 

is: 

% 𝑜𝑓 𝑃𝑟𝑜𝑡𝑒𝑖𝑛 = % 𝑜𝑓 𝑁𝑖𝑡𝑟𝑜𝑔𝑒𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 x 5.4 (𝑁𝑓𝑎𝑐𝑡𝑜𝑟) 

Equation 2 % of Protein 

1.2.3.4 Lipid Content and carbohydrate content: 

The lipid content was determined by AOAC method using the acid hydrolysis- hydrochloric acid 

in methanol (Sappati et al). It was found that the average fat/lipid content in sugar kelp was in the 

range of 2 to 4% based on acid hydrolysis of different sugar kelp (44). Carbohydrate content was 

determined by the difference method based on all other proximate content. It is expressed as grams 

of carbohydrate per 100 g of total dry solid.  

1.2.4 Sugar Analysis of Sugar Kelp 

Glucose content of brown sugar kelp was determined using the acid hydrolysis procedure (46). 

This acid hydrolysis was done in two stages and tested at different temperature, reaction time and 

acid concentrations. Approximately, 100 ± 5 mg of sugar kelp powder and 1 ±0.1 mL of 72% 

H2SO4 are mixed in a test tube using a stir rod. The sample was mixed until the sugar kelp powder 

particles were fully in contact with sulfuric acid. Then the test tubes were placed in water bath at 

40 ± 3 °C for 60 min. The solution was stirred every 5±1 minute using Teflon rod without taking 

test tube out of water bath. After completion of hydrolysis reaction, test tubes were transferred in 
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to the ice bath for 5 min retention time to stop the reaction. The sample was diluted using a specific 

amount of deionized water and the diluted solution was transferred into autoclave bottles, sealed, 

kept on the autoclave safe rack. The reaction condition of the autoclave was 121 °C for specific 

residence times of 1h, 2.5h, and 4h. After the completion of reaction, the autoclave was cooled 

down to 75 °C and the samples were taken out. The bottles were transferred into ice bath for 5±1 

min to stop the reaction. Then the sample was taken out by removing the cap of autoclave bottles. 

The sample was filtered and transferred into an HPLC vial for sugar analysis of hydrolyzed sample.  

 

1.2.5 Acid Hydrolysis of Sugar Kelp at High Temperature 

In two stage acid hydrolysis of sugar kelp, the first stage is the same as glucose analysis experiment 

at low temperature and high acid concentration. After digesting the sugar kelp powder in 

concentrated acid it was diluted to the desired acid concentration for the next hydrolysis step and 

filtered. Filtration was done by weighing the diluted solution and vacuum filtering the sample. The 

filtered liquid was transferred into a pre-weighted clean glass beaker and the weighed sample and 

beaker were sealed with paraffin film and kept in a refrigerator at 4 °C until further hydrolysis at 

high temperature. The filtered solid particles on the filter paper were transferred into a clean beaker 

and dried at 105 °C for 12 h.  The beaker then was cooled down in desiccator to room temperature 

and the weight of the beaker with dried solids and filter paper was taken. The weight difference 

before and after filtration was compared. The filtered liquid was used for high temperature 

hydrolysis. A general purpose Parr vessel (reactor) was washed and dried very well and the weight 

of the vessel was measured with and without filtered liquid. The next step was to evaluate the 

condition of the reactor gasket for safety purpose. A special wrench was used to firmly secure the 

reactor screw cap using the bench socket. It was necessary to check the screw cap to prevent any 

kind of leakage or accident while heating. After this, the reactor was set in an oil bath supported 
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by a stand to ensure that the tank was fully immersed in the oil bath at the predetermined 

temperature setting of oil bath. At reaction completion, the reactor was transferred to a water bath 

at 25±5 °C for 3 min to decrease the reactor temperature slowly. Then the reactor was transferred 

into an ice bath for 2 min and the reactor was dried with clean rag and paper towel to remove the 

oil and water drops. Then the reactor was opened with a wrench and weighed again to measure the 

weight difference of reactor with sample before and after the hydrolysis and the weight of the 

sample and empty tank. The sample was filtered and was transferred into HPLC vials for HPLC 

analysis.  

1.2.6 Three Stage Hydrolysis of Sugar Kelp 

Three stage hydrolysis is a combination reaction process consisting of the 2-step glucose analysis 

of sugar kelp followed by the high temperature acid hydrolysis to generate levulinic acid. In this 

process, the first step and second step were the same as previously explained in glucose analysis 

of sugar kelp. After the second step, the hydrolyzed liquid was filtered in the vacuum filter and it 

was followed by the same procedure as was explained in acid hydrolysis of sugar kelp at a high 

temperature after the vacuum filtration step.  

1.2.7 Acid Hydrolysis of Pure Individual Carbohydrates 

Acid hydrolysis of individual carbohydrates was performed to identify the chemical decomposition 

of each carbohydrate into sugar monomers by sugar analysis and high temperature acid hydrolysis. 

The chemical composition of brown seaweed varies with cultivation, harvesting time, weather and 

geographic location (44,47,53). Moreover, highly dominated hydrocarbons in brown seaweed are 

Laminarin, Mannitol, Alginate, Fucoidan and Carrageenan. Most of these carbohydrates are 

reported to be good nutritional sources for food products. However, the presence of C6 sugar 
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chains can be also useful to convert them into glucose and other sugar monomers and eventually 

into Levulinic Acid.  

The sugar analysis of pure polysaccharides was carried in a sealed pressure tube by repeating the 

same method as explained earlier in sugar analysis of sugar kelp with concentrated acid (72 wt%) 

for 60 min retention time followed by diluted acid (4 wt%) at 121 °C for residence time of 60 min 

and 240 min. The sample was taken out from autoclave bottles by removing the seal caps and 

filtered and transferred into HPLC vials for HPLC analysis  

High temperature acid hydrolysis of pure polysaccharides was performed by following the same 

procedure as explained earlier for acid hydrolysis of sugar kelp with concentrated acid (72 wt%, 

40 °C) at low temperature following by diluted acid (4 wt%) at high temperature in a general 

purpose Parr vessel at 175 °C with 80 min retention time. At the completion of reaction, the reactor 

was transferred into an ice bath and cooled down to room temperature, after which the sample was 

filtered and transferred into an HPLC vial for HPLC analysis. 

1.2.8 Analytical Methods 

 A stock solution containing all monosugars and acids was precisely prepared at the following 

target concentrations for HPLC analysis:  

• D (+) Glucose (0.5 g per 1000 mL) 

• D (+) Xylose (0.1 g per 1000 mL) 

• D (+) Mannose (0.1 g per 1000 mL) 

• D (+) Galactose (0.1 g per 1000 mL) 

• D (-) Arabinose (0.5 g per 1000 mL) 

• D Mannitol (0.5 g per 1000 mL) 

• Glucuronic acid (0.5 g per 1000 mL) 
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• Formic acid (0.5 g per 1000 mL) 

• Acetic acid (0.5 g per 1000 mL) 

• Levulinic acid (0.5 g per 1000 mL) 

To prepare the standard solutions, a stock solution was diluted in 5 different vials (C1 – C5) with 

exact amounts of:  C1 (2 mL of stock solution+ 8 mL of deionized water), C2 (4 mL of stock 

solution +6 mL of de-ionized water), C3 (6 mL of stock solution + 4 mL de-ionized water), C4 (8 

mL of stock solution + 2 mL de-ionized water) and C5 (10 mL of stock solution). Solutions were 

mixed well and transferred to HPLC vials.  

The composition of the hydrolyzed liquid mixture was determined by HPLC analysis. All samples 

were filtered with a syringe filter to prevent clogging of solids in HPLC column. The HPLC system 

(Shimadzu) was equipped with a Bio-Rad Aminex HPX-87H column (CTO-10 A), SIL-20 AC 

auto sampler, a Shimadzu refractive index detector, and LC-10 AT pump. The mobile phase 

consisting of an aqueous solution of sulfuric acid (5 mM) with 0.6 mL/min flowrate and column 

was operated at oven temperature of 45 °C. The analysis of the sample was done with retention 

time of 65 min and 120 min. The concentration of each compound was determined using a 

calibration curve of standard solutions with known concentrations. Consequently, High 

Performance Anion Exchange Chromatography with Pulsed Aerometric Detection (HPAEC-PAD) 

was used to analyze mono sugars of acid hydrolyzed solution. The column of this instrument 

consisted of Dionex CarboPac PAI (4×250 mm) with oven temperature of 30°C, Dionex Carbopac 

PAI (4 × 50 mm) guard column, Dionex IonPac NGI (4 × 35 mm) guard column, with GP50 pump, 

ED40 gold detector, AS50 auto sampler. The total flow rate of eluent was 1 mL/min (eluent A as 

degassed water at 0.7 mL/min and eluent C as 300 mM NaOH from post column with flowrate of 

0.3 mL/min).  
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1.2.9 Statistical Analysis 

Statistical analysis of each experiments was performed in triplicate. The results of analysis are 

performed in mean ± standard deviation. Multiway ANOVA (Analysis of Variance) was 

performed to evaluate the effect (p ≤ 0.05) of each independent variable such as time, temperature 

and acid concentration on each level and interaction effect on the yield of levulinic acid. Tukey’s 

honest significant difference post hoc test was performed to identify any significant differences 

between the means of comparable treatment.  

1.3 Results and Discussion 

 

Table 2 Physiochemical results of Seaweed on dry basis 

Moisture 

Content (g/100 g 

of freeze dried 

solids) 

Ash Content 

(g/100 g of 

freeze dried 

solids) 

Protein Content 

(g/100 g of 

freeze dried 

solids) 

Lipid Content 

(g/100 g of 

freeze dried 

solids) 

Carbohydrate 

Content 

(g/100 g of 

freeze dried 

solids) 

6.01±0.1% 33±0.3% 10.41±0.1% 2.08±0.1% 48.5±0.1% 

 

1.3.1 Moisture Content 

The moisture content of biomass is highly varied at different weather conditions. The major 

components affecting the moisture content of seaweed are the structural difference of the tissue, 

size, weather condition and growing environment (48). Sappati et al., showed that the moisture 

content of seaweed samples decreases as the temperature increases due to  weather or harvesting 

period (44).  

1.3.2 Ash Content 

The presence of structural (inorganic material that is attached in the physical structure of the 

seaweed) or extractable inorganic materials (that can be removed by washing) are considered as 
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the total ash composition. Research shows that the mineral content (mainly K, Na, Ca, Mg, I) of 

macro algae is higher than terrestrial plants, which are around 20% more than grains (47). High 

mineral content of seaweed is a good source of minerals for human food. But this inorganic 

material of seaweed limits the conversion of seaweed in biofuels because of its high capacity to 

reduce the acidity of acids.  

1.3.3 Fat Content 

The fat content of brown seaweed is usually in the form of saturated fatty acids, palmitic acid, 

stearic acid and polyunsaturated acid (44). The fat content of brown seaweed depends upon 

physiochemical state, life cycle, seasonal and environmental factors, nutrition availability and sun 

light (49).  

1.3.4 Protein Content 

Likewise, other chemical constituents, the protein content also varies with seasonal variation, 

geographic location, environmental condition and growth (44). The protein content is usually 

calculated by considering the Jones factor which is the ratio of protein to nitrogen as 6.25 (50).  

However, other research considered the factor as 5.38 for brown seaweed due to presence of non-

protein nitrogen content (51). The average nitrogen content is not affected by the seasonal variation 

of seaweed. In Saccharina latissima, the average nitrogen content was noted as 1.93±0.01 g per 

100g of freeze dried basis. The values of protein content are quite identical with the results from 

Sciender’s sugar kelp analysis which is around 10.65±0.53 g per 100 g of freeze dried basis (53).  

1.3.5 Carbohydrate Content 

Results shown in Table 2 present carbohydrate composition calculated as the mass difference 

remaining after other fractions are accounted for. This is in part because the variety of different 
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carbohydrates and polysaccharides found in seaweeds. The polysaccharide of seaweed varies 

based on species and environmental conditions.  Brown seaweed has been known for its rich 

carbohydrate content. The carbohydrate exists on the primary cell wall of seaweed in two forms: 

structural and storage. Structural function of macroalgae protects seaweed from dehydration, 

waves and some severe ocean conditions (52). Cellulose and alginate are an example of structural 

components, whereas, laminarin, fucoidan and mannitol are examples of storage carbohydrates. 

Alginate is a structural linear polysaccharide composed of β-D- mannuronic acid (M) and α-L-

guluronic acid (47).  Guluronic acid has a mechanism of gelation which determines gel strength. 

Figure 6 shows the structure of alginate (54).   

 

Figure 6 Alginate Structure 

D-Mannitol is a six-carbon sugar alcohol in brown algae. The content of mannitol in seaweed 

depends upon the harvesting condition and type of seaweed which could be dominated around 20-

30% by dry weight in brown seaweed (55). The extraction of mannitol in seaweed can be used as 

carbon source for ethanol production. Scheiner at al., found the highest yield of mannitol in autumn 

period which is round 24-27 % by dry weight of brown seaweed (55). Figure 7 shows the chemical 

structure of Mannitol.  
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Figure 7 Chemical structure of Mannitol 

Cellulose is a liner structural polysaccharide in brown seaweed. It is an important component of 

primary cell wall in seaweed and it linked as β (1-4) D-glucose residue. Schinder et al., found that 

the composition of cellulose also depends upon the seasonal variation and type of seaweed. 

However, the domination of cellulose in sugar kelp is up to 8% of dry weight (56). The crystalline 

structure of cellulose exists in two form: α-cellulose and β-cellulose (47).     

 

Figure 8 Linear Structure of cellulose 

Laminarin is storage carbohydrate in the plastids of each cell in brown seaweed (47). Laminarin is 

used as a carbon source for algae during winter. It is a liner polysaccharide consisting of glucose 

monosaccharides units linked with β-(1,3) D-glucose bond or β-1,6 glycosyl bonds and β-(1,2)- 

D-glycosyl units (57). The presence of M-chain and G-chain proves the existence of D-Mannitol 

and D-glucose respectively (57). The solubility of laminarin in cold water or hot water depends 

upon the number of branches. Linear branches are more soluble in cold water (57). Scheiner et al., 

report that the highest level of laminarin in brown seaweed occurs during the summer or autumn 

and the lowest level occurs in winter (53). 
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Figure 9 Possible Laminarin Structure with D-Mannitol (M-chain) Residues at the end (58) 

 

Figure 10 Possible Laminarin Structure with D-glucose (G-chain) Residues at the end (58) 

1.3.6 Sugar Analysis of Seaweed 

The purpose of pretreatment and scarification is to decompose the complex cell walls of 

Saccharina latissima into polymers and molecules, which could be further converted into 

chemicals and biofuels. The major chemical composition of Saccharina latissima is cellulose, 

laminarin, alginate, mannitol and fucoidan. Pretreatment with concentrated acid breaks down the 

rigid and insoluble cellulose into an amorphous water soluble solution. Moreover, it also breaks 

down the intermolecular bonds of laminaria saccharina and converts them into simple monomers 

which increases the accessibility for further reaction. After pretreatment with concentrated acid, 

sugar analysis experiments of Laminaria saccharina were performed with diluted sulfuric acid in 

a concentration range of 2%,4%,6%,8% and 10% wt% at three different residence times to 

determine the yield of glucose at 121 °C. The results in Table 3 Table 2 Physiochemical results of 

Seaweed on dry basisshow that the glucose yield was increased at low acid concentration with 

high retention time but at 6 wt % H2SO4 the glucose yield doesn’t show any yield difference 

between 150 min and 240 min. However, the glucose yield was decreasing at higher concentration 

with high retention time. In addition to this, for lower acid concentration, the glucose yield shows 

the function of acid concentration and retention time. The optimum yield of glucose reaches 8 wt% 
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with 150 min retention time. So, there could be a breaking down of laminarin structure at high acid 

concentration and high retention time, because intermolecular bonds of laminarin have higher 

activation energy compared to cellulose structure. In addition, the high acid concentration also 

creates problems such as corrosion of the reactor, so there is a need of expensive reactor materials 

and separation and regeneration of catalyst becomes very complicated. However, for diluted acid, 

ammonia can neutralize the acid and further solution of ammonium sulfate could be used as a 

fertilizer.  

1.3.7 AHDH of Sugar Kelp at High Temperature (two stage acid hydrolysis) 

Levulinic acid is derivation from cellulose and hexose monomers are illustrated by the mechanisms 

shown in Figure 11 and Figure 12. An objective of this process was to optimize yield of levulinic 

acid by varying three different variables of temperature (in the range of 150°C and 200°C), time 

(in the range of 40 min and 120 min) and acid concentration (in the range of 4 wt% and 8 wt%). 

Statistical analysis (Multiway analysis of variance) shows the effect of different variables on the 

yield of levulinic acid. The results show that at low acid concentration, the yield of levulinic acid 

is a function of temperature and time. Statistical analysis reveals that at temperatures from 150 °C 

to 175 °C, the yield of levulinic acid becomes the function of temperature, however, in the 

temperature range of 175 °C to 200 °C temperature  no longer  makes a big difference in the yield 

of levulinic acid, so 175 °C is the optimum for  the yield of levulinic acid (Table 3). Looking at 

time,  80 min is the best retention time for the conversion of hexose sugars into levulinic acid.  At 

lower retention time, the conversion is less and at high retention time, side reactions of cellulose 

decrease the conversion of cellulose into levulinic acid.  

There is no generally accepted pathway for the conversion of laminarin to levulinic acid. The 

hydrolysis of pure laminarin shows that the intermolecular bond requires severe conditions 
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compared to cellulose to break down the intermolecular bond of glucan. We believe that higher 

temperature and acid concentration breaks down more β (1-4) linkage of cellulose than β (1-3) and 

β (1-6) linkage of laminarin. However, low domination of hexose content in seaweed decreases 

the yield of seaweed based on mass%. The highest yield we obtained was 4.12 ± 0.05% at 200 ° 

C with 40 min retention time with 6 wt% H2SO4, though it was noted that acid concentration has 

very low effect on the yield of levulinic acid.  

 

 

 

 

Figure 11 Acid catalyzed pathway of cellulose to Levulinic acid  

1.3.8 Three Stage Hydrolysis and Dehydration of Sugar Kelp 

The purpose of three stage acid hydrolysis was to line up the glucose content of seaweed at high 

temperature and different retention time. The reason behind this study is to calculate the conversion 

of glucose into levulinic acid. However, results of glucose from sugar analysis were the strong 
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function of acid concentration. Multiway ANOVA shows the impact of temperature and retention 

time has a high impact on levulinic acid yield whereas, acid concentration has little effect. 

However, comparison between Table 5 and Table 7 shows that the yield of levulinic acid decreases 

in three stage hydrolysis compared to direct conversion of cellulose and laminarin. One reason to 

explain these data could be that glucose is degraded from repeated exposure to elevated 

temperature and is converted into humin by side reaction which decreases the conversion into 

levulinic acid (60). Moreover, at the most severe conditions, we noticed also a color change of 

hydrolyzed samples from light brown to green along with a change of color on the surface of the 

reactor.  

 

Figure 12 Acid hydrolysis pathway from conversion of glucose to levulinic acid 
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Table 3 Sugar Analysis Results of Sugar Kelp  

 2% H2SO4 4% H2SO4 6% H2SO4 8% H2SO4 10% H2SO4 

60 min 17.23±0.75% 19.38±0.56% 21.10±0.58% 25.82±0.87% 20.51±3.27% 

150 min 19.32±0.67% 21.41±0.23% 24.94±2.21% 28.66±1.04% 23.66±0.50% 

240 min 22.07±0.96% 25.74±0.27% 25.00±1.40% 23.58±0.50 % 21.68±0.55% 

(presented as mol%, by assuming total glucan content 19%, at 121 ° C) 

Table 4 Levulinic Acid as a Byproduct from Sugar Analysis of Sugar Kelp 

 2% H2SO4 4% H2SO4 6% H2SO4 8% H2SO4 10% H2SO4 

60 min N.D. N.D. N.D. 2.55±0.12% 2.28±0.34% 

150 min N.D. N.D. 2.50±0.20% 6.39±0.31% 5.94±0.14% 

240 min N.D. 0.60±0.73% 3.07±0.29% 6.58±0.26% 8.89±0.47% 

(based on mol%, assuming total glucan content 19%) 

N.D.: Not Detected  
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Table 5 Levulinic Acid Results from Two Stage Acid Hydrolysis (based on mol%) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 
5.62±0.70

% bBx 

20.64±0.83

% aBx 

28.24±1.07

% aBx 

10.50±3.24

% bAx 

27.66 

±0.63% 

aAx 

30.44±0.37

% aAx 

16.21±0.12

% bAx 

27.60±0.26

% aAx 

26.55±3.41

% aAx 

80 

min 
15.01±1.15

% bBxy 

28.13±0.83

% aBxy 

29.65±1.69

% aBxy 

18.39±0.16

% bAxy 

28.51±0.44

% aAxy 

30.09±0.88

%aAxy 

24.03±0.05

%bAxy 

28.44±0.11

% aAxy 

25.67±0.81

% aAxy 

120 

min 

19.00±0.19

% bBy 

29.30±0.04

% aBy 

30.11±0.06

% aBy 

20.83±0.04

% bAy 

28.39±0.17

% aAy 

25.03±0.33

% aAy 

26.73±0.08

% bAy 

29.15±0.03

% aAy 

22.76±0.21

% aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured 

at p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time.  
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Table 6 Levulinic Acid Results from Two Stage Acid Hydrolysis (based on mass%) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 

0.49±0.43% 

bBx 

2.79±0.11% 

aBx 

3.82±0.14% 

aBx 

1.42±0.44% 

bAx 

3.74±0.09% 

aAx 

4.12±0.05% 

aAx 

2.19±0.02% 

bAx 

3.74±0.04% 

aAx 

3.59±0.46% 

aAx 

80 

min 

2.03±0.16% 

bBxy 

3.81±0.21% 

aBxy 

4.01±0.23% 

aBxy 

2.49±0.02% 

bAxy 

3.86±0.06% 

aAxy 

4.07±0.12% 

aAxy 

3.25±0.01% 

bAxy 

3.85±0.01% 

aAxy 

3.47±0.11% 

aAxy 

120 

min 

2.57±0.03% 

bBy 

3.97±0.01% 

aBy 

4.07±0.01% 

aBy 

2.82±0.00% 

bAy 

3.84±0.02% 

aAy 

2.70±0.04% 

aAy 

3.62±0.01% 

bAy 

3.95±0.00% 

aAy 

3.08±0.03% 

aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured at 

p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time.  
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Table 7 Levulinic Acid Results for Three Stage Acid Hydrolysis (based on mol%) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 

5.79±0.40

% bBx 

21.89±1.73

% aBx 

24.89±1.21

% aBx 

6.89±0.38

% bAx 

18.07±1.48

% aAx 

21.68±3.13

% aAx 

10.76±0.77

% bAx 

21.89±1.73

% aAx 

18.56±1.02

%aAx 

80 

min 

12.81±0.67

% bBy 

24.24±1.26

% aBy 

27.01±0.42

% aBy 

14.40±1.37

%bAy 

18.78±1.81

% aAy 

19.77±1.30

% aAy 

12.02±0.28

%bAy 

21.15±4.32

%aAy 

18.24±0.92

% aAy 

120 

min 

18.67±2.6

% bBy 

24.35±3.12

% aBy 

25.17±0.80

% aBy 

15.90±1.42

% bAy 

23.01±3.84

% aAy 

19.10±0.76

% aAy 

15.19±2.36

% bAy 

18.23±1.10

% aAy 

16.88±0.64

% 

aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured 

at p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time 

.  
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Table 8 Levulinic Acid Results for Three Stage Acid Hydrolysis (base on mass%) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 

0.78±0.05% 

bBx 

2.37±0.58% 

aBx 

3.37±0.16% 

aBx 

0.93±0.05% 

bAx 

2.45±0.20% 

aAx 

2.93±0.42% 

aAx 

1.46±0.10% 

bAx 

2.96±0.23% 

aAx 

2.51±0.14% 

aAx 

80 

min 

1.95±0.19% 

bBy 

3.28±0.17% 

aBy 

3.66±0.06% 

aBy 

2.06±0.32% 

bAy 

2.54±0.25% 

aAy 

2.86±0.18% 

aAy 

2.15±0.19%  

bAy 

2.86±0.58% 

aAy 

2.47±0.13% 

aAy 

120 

min 

2.53±0.36% 

bBy 

3.30±0.42% 

aBy 

3.41±0.11% 

aBy 

1.63±0.04% 

bAy 

3.11±0.52% 

aAy 

2.58±0.10% 

aAy 

1.73±0.09% 

 bAy 

2.47±0.15% 

aAy 

2.28±0.09% 

aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured at 

p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time.  
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Table 9 Levulinic Acid Results from Two Stage Acid Hydrolysis (based on Carbohydrate 48.5%) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 
1.37±1.21

% bBx 

7.89±0.32

% aBx 

10.80±0.41

% aBx 

4.01±1.24

% bAx 

10.58 

±0.24% 

aAx 

11.64±0.14

% aAx 

6.20±0.05

% bAx 

10.55±0.10

% aAx 

10.15±1.30

% aAx 

80 

min 
5.74±0.44

% bBxy 

10.76±0.61

% aBxy 

11.34±064

% aBxy 

7.03±0.06

% bAxy 

10.90±0.17

% aAxy 

11.50±0.34

%aAxy 

9.19±0.02

%bAxy 

10.88±0.04

% aAxy 

9.81±0.31

% aAxy 

120 

min 

5.70±2.70

% bBy 

11.20±0.01

% aBy 

11.51±0.02

% aBy 

7.97±0.01

% bAy 

10.86±0.06

% aAy 

7.64±0.12

% aAy 

10.22±0.03

% bAy 

11.15±0.01

% aAy 

8.70±0.08

% aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured 

at p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time.  
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Table 10 Levulinic Acid Results for Three Stage Acid Hydrolysis (based on carbohydrate percentage) 

 4% H2SO4 6% H2SO4 8% H2SO4 

 150 °C 175 °C 200°C 150 °C 175 °C 200°C 150 °C 175 °C 200°C 

40 

min 

2.22±0.15

% bBx 

6.70±1.65

% aBx 

9.52±0.46% 

aBx 

2.63±0.14

% bAx 

6.91±0.57

% aAx 

8.29±1.20

% aAx 

4.12±0.30

% bAx 

8.37±0.66

% aAx 

7.10±0.39

% 

aAx 

80 

min 

4.90±0.26

% bBy 

9.27±0.48

% aBy 

10.33±0.16

% aBy 

5.51±0.52

% 

bAy 

7.18±0.69

% aAy 

7.56±0.50

% aAy 

4.60±0.11

% 

bAy 

8.09±1.65

% 

aAy 

6.97±0.35

% aAy 

120 

min 

7.14±1.03

% bBy 

9.31±1.19

% aBy 

9.62±0.30% 

aBy 

6.08±0.54

% bAy 

8.80±1.47

% aAy 

7.30±0.29

% aAy 

5.81±0.90

% bAy 

6.97±0.42

% aAy 

6.45±0.25

% 

aAy 

Results are mean ± standard deviation of triplicate for each sample (n = 3). Significant differences between the values are measured 

at p < 0.05. Small letters (a, b) denote row-wise comparison between treatments or with temperatures. Capital letters (A, B) denote 

comparison between acid concentration. Small letters (x,y) denote comparison between time. 
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Table 11 Acid Hydrolysis of Individual Carbohydrates 

   Mass of Analyze 

Used 

Carbohydrate 

for analysis 

Inlet wt 

(mg) 

 Sugar/ intermediate 

concentration (mg) 
Mass of final 

analyze   

(171 °C, 80 

min) 
240 min 60 min 

Laminarin 

(from Thelus 

laminarie) 

100±05 

Levulinic Acid 2.27±0.24 0.49±0.09 34.55±1.63 

Formic Acid 2.32±0.26 1.40±0.52 17.00±0.81 

Glucose 40.52±7.85 48.08±6.48 18.91±23.51 

Arabinose 0.52±0.57 N.D. 0.57±0.01 

XMG 0.26±0.03 0.11±0.01 1.53±0.10 

Mannitol 0.15±0.01 N.D. N.D. 

Glucuronic Acid 0.09±0.06 007±0.05 N.D. 

Mannitol 100±05 

Levulinic Acid N.D. N.D. 0.45±0.01 

Formic Acid N.D. N.D. N.D. 

Glucose 0.11±0.16 N.D. 0.33±0.23 

Arabinose N.D. N.D. 48.39±0.36 

XMG N.D. N.D. N.D. 

Mannitol 312±16.43 406.59±14.37 48.74±0.40 

Glucuronic Acid N.D. N.D. N.D. 

Alginate 

100±05 

Levulinic Acid N.D. N.D. 2.25±0.11 

Formic Acid 0.92±0.02 3.02±0.15 2.20±0.09 

Glucose 2.15±0.04 7.42±0.32 2.29±0.24 

Arabinose 0.38±0.00 0.43±0.02 0.48±0.01 

XMG 0.53±0.01 0.15±0.09 3.69±0.14 

Mannitol N.D. N.D. N.D. 

Glucuronic Acid N.D. N.D. 0.09±0.00 
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Table 11 Continued    

Fucoidan 50.8±05 

Levulinic Acid 0.09 ±0.12 N.D. 2.67±0.12 

Formic Acid 0.76±0.09 N.D. 5.13±0.17 

Glucose N.D. N.D. 0.26±0.03 

Arabinose N.D. N.D. N.D. 

XMG 0.86±0.09 1.04±0.07 0.35±0.02 

Mannitol 0.15±0.02 N.D. N.D. 

Glucuronic Acid 0.20±0.15 0.25±0.02 N.D. 

Carrageenan 100±05 

Levulinic Acid 13.20±1.48 10.65±0.24 28.11±0.25 

Formic Acid 5.96±0.66 5.58±0.12 12.93±0.33 

Glucose 0.04±0.01 N.D 0.82±0.02 

Arabinose 0.86±0.08 1.05±0.02 0.86±0.01 

XMG 8.97±0.99 12.16±0.24 0.19±0.00 

Mannitol N.D N.D N.D 

Glucuronic Acid N.D N.D 0.15±0.21 

Glucuronic 

Acid 
100±05 

Levulinic Acid N.D N.D 2.27±0.25 

Formic Acid 0.57±0.42 1.59±0.17 1.45±0.16 

Glucose 0.99±0.12 0.21±0.02 1.93±0.22 

Arabinose 0.09±0.01 0.08±0.01 0.43±0.01 

XMG 0.80±0.10 0.68±0.08 3.81±0.29 

Mannitol N.D N.D N.D 

Glucuronic Acid 29.50±4.52 57.81±3.58 0.13±0.02 
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1.4 Conclusion 

This study performed acid catalyzed hydrolysis of sugar kelp in to levulinic acid using two 

different routes: Two-stage acid hydrolysis and the three stage acid hydrolysis. In both cases, the 

first stage reaction was operated at a temperature of 40 °C and acid concentration of 72 wt.%. The 

following broad range of reaction conditions were considered for the two stage acid hydrolysis: 

temperature of the second reactor in the range of 150 to 200 °C, and sulfuric acid concentrations 

in the range of 4 wt% to 8 wt% for levulinic acid production and 2 wt% to 10 wt% for sugar 

production.  For the three-stage acid hydrolysis, the second stage was operated at a temperature of 

121°C and acid concentration of between 2 and 10 wt%; and the third stage was operated at a 

temperature between 150 and 200 °C and acid concentration between 4 to 8 wt.%.  The tested 

retention times of the final high temperature stage of both routes were 40 min, 80 min, and 120 

min. The effect of different reaction conditions was analyzed by Multiway ANOVA.  

The glucose production was found to be increased with the temperature and retention time for both 

the two-stage and three-stage acid hydrolysis. The highest yield of glucose was obtained at 8 wt% 

of H2SO4 concentration. The highest yield of levulinic acid with the two stage hydrolysis was 

obtained at 200 ° C and for 40 min retention time. However, the highest yield of levulinic acid was 

obtained at lower acid concentration of 4 wt% with retention time of 80 min with the three-stage 

acid hydrolysis. The highest yield of levulinic acid based on the weight of sugar kelp was found 

to be 4.12 wt % with the two-stage acid hydrolysis and 4 wt% with the three-stage acid hydrolysis. 

These yields of levulinic acid are found to be lower than that of levulinic acid made from woody 

biomass. Such lower yields can be explained by the low content of hexose presence in the sugar 

kelp. Additionally, the degradation of glucose to humins may be greater at a high concentration of 
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acid.  Future work is necessary to perform the detailed characterization of ash content of sugar 

kelp to study its influence on the production of levulinic acid. 
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CHAPTER 2 

2.1 Introduction 

Energy conservation is a primary concern for many industrial processes with respect to energy 

efficiency, product quality and environmental concern. To adjust any process stream to a desired 

temperature from an ambient condition, or vice versa, there is need for utility systems to deliver 

heating or cooling capacity to the process through heat exchangers. In big process industries, such 

as petrochemical industries, multiple streams participate in the processes and operations. This can 

require large demands of the heating and cooling utility systems to achieve the desired conditions, 

which increases energy consumption, environmental concerns, and overall economics of the 

process. Research shows that around 80% of total energy consumption in petrochemical industries 

is associated with heat transfer (67).   

Developing a heat exchanger network using pinch analysis to optimize the process design is a 

solution to decrease the overall cost of a process. This is achieved by increasing the heat recovery 

of thermodynamically active streams and by decreasing the utility load from outside. Pinch 

analysis has been an active area of research for 40 years (68). Currently many models and methods 

have been developed in an area of process integration and process optimization. Among them 

pinch technology approach is one of the widest spread and systematic techniques for process 

integration.  In the design of industrial processes, the optimum arrangement of process design can 

be seen to involve 5 different steps: type of process (batch or continuous process), input and output 

structure of the process flow diagram, recycle structure of the process, separation units and heat 

integration/process integration or development of a heat exchanger network (64). The heat 

exchanger network can be obtained by computing thermodynamically feasible targets in a series 

of heat exchangers. The concept of pinch technology for heat exchanger network was developed 
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by Bodo Linhoff and John Flower in 1977 (61). The pinch point is known as a point of zero heat 

transfer between hot and cold streams.  The pinch analysis concept works on the first and second 

laws of thermodynamics (62). Pinch analysis is a rigorous and graphical approach to determine 

the energy pockets of any chemical process. The typical savings noted for oil refining, 

petrochemicals and chemicals are 10-25 %, 15-25 % and 15-35 % respectively, which are 

expressed based on the total fuel purchase (63).  

There are constraints on the matching of surplus and deficit heat streams imposed by the first law 

(total amount heat transferred in a heat exchanger) and the second law of thermodynamics 

(direction of heat transfer between hot streams and cold streams). The composite curve is the 

temperature- enthalpy profile of the process. It is the graphical representation of potential heat 

transfer opportunities in the system. The minimum temperature difference between hot stream and 

cold stream (Pinch point) depends upon the value of ∆Tmin and this can be fixed by an economic 

trade off curve (65). Pinch analysis provides the capital and operating costs of the process based 

on mass and energy balances. The economy of any process is dependent upon the total cost of the 

process. The total cost can be determined  by the economic tradeoff curve, whereby the appropriate 

value of ΔTmin can be calculated.. A typical value for the optimum value of ΔTmin in a shell and 

tube heat exchanger is 10 °C (65). Selection of ΔTmin determines the maximum energy recovery, 

minimum number of heat exchange units and minimum number of heat exchanger networks to 

optimize the overall cost of the process.  The selection of the ΔTmin value also fixes the energy 

targets of any process. The economy of any process is a function of capital cost and operating cost 

of the process plant, and both are relevant to the design of heat exchange networks, where capital 

cost is traded off with utility cost. Based on their heat transfer properties, utilities can be divided 

into constant temperature and variable temperature utilities. The common types of cold utilities 
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are cooling water, chilled water and refrigeration systems. Likewise, hot utilities come in forms 

such as fired heater, hot oil, steam and dowtherm liquid (64). An issue to take into consideration 

for heat integration of complex chemical processes dealing with multiple chemicals with different 

physical properties and at different conditions is the use of appropriate materials of construction 

for pipes and heat exchangers necessary for safety and chemical process considerations.  

In this study, I performed pinch analysis and overall cost estimation of a process to convert biomass 

into thermal deoxygenation oil (TDO oil). The process included the combined acid hydrolysis and 

dehydration of biomass to levulinic acid and subsequent thermal deoxygenation to produce TDO 

oil. The process also included separation and recycle of solvents and catalysts. The overall process 

of developing an energy integration includes five major tasks: (i) selection of streams, (ii) 

placement of stream matching, (iii) identify the utilities, (iv) calculation of operating cost and 

capital cost and (v) comparison of cost with energy integration and without energy integration. In 

addition, the annualized cost of the heat exchangers was the sum of the annualized capital cost of 

heat exchangers and utilities.  

2.1.1 Process Description of Bio-fine process and Thermal Deoxygenation 

Combined acid hydrolysis and dehydration and thermal deoxygenation pathway is a renewable 

fuel technology to convert lignocellulosic feedstock into renewable fuels and chemicals. The TDO 

process was developed by Professor Wheeler and his research group at Department of Chemical 

and Biomedical Engineering, University of Maine. In this process, the blended woody biomass 

undergoes acid hydrolysis and dehydration at 200 °C and 16 bar by diluted sulfuric acid (3-5 wt%) 

as a catalyst. Cellulose and hemicellulose of woody biomass produces organic acids such as 

Levulinic acid (LA), formic acid (FA) and furfural (Furf) respectively. Bio-fine char is a byproduct 

derived from Lignin. The Bio-fine char from the liquid product stream (FA, LA, Furf, Water and 
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Diluted acid) can be washed and separated by using a series of centrifuges. By burning biochar as 

boiler fuel, a turbine and generator can produce electricity. Meanwhile the organic acids such as 

LA and FA can be separated from the mixed stream of water, LA, FA, Furf, and diluted acid in a 

solvent extraction step making use of 2-methyl tetra hydroxyl furan (MTHF). The solvent can be 

recovered in a solvent extraction column while the furfural can be purified using a series of 

distillation columns.  

The extracted organic acids go into a neutralization reaction with calcium oxide to form calcium 

levulinate and calcium formate. These calcium salts of LA and FA undergoes pyrolysis at 450 °C 

and ambient pressure to produce vapors of TDO oil with a low content of oxygen. Figure 13 

outlines the process flow of this system. 

 

 

Figure 13 Block Flow Diagram of Combined AHDH and TDO Oil (6) 
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In this process, the purification and separation of product streams such as LA, FA and furf are 

dilute streams. Separations require a number of distillation columns and other separation columns, 

which require a high amount of energy that increases the utility load of the process. Gunukula et 

al. developed a process model using Aspen Plus simulation. Converting 2000 metric tons of dry 

wood chips converts into 200 metric tons of TDO oil, 750 tons of biochar with the mass fraction 

of Furf, LA and FA are 0.04, 0.08, and 0.03 respectively. Aspen plus simulation predicted an 

energy requirement for the separation and purification of LA and furf are 91 MW and 20 MW 

respectively (6). The high energy requirements suggest the likely benefit of applying of final stage 

of process designing, which is known as energy integration or heat exchanger network.  

2.2 Materials and Methods 

Gunkula et al., used Aspen Plus simulation to simulate and optimize the combined Bio-fine and 

TDO processes. The material balance of process model was calculated by Aspen Plus simulation. 

Solid components such as calcium salts of organic acid and char were modeled as non-

conventional components. The ENTHGEN method was used to calculate the enthalpy of non-

conventional components; and enthalpy of char was calculated by the HCOALGEN enthalpy 

model (66).  After modeling the whole process flowsheet, including recycling and separation, the 

last step of the process design was energy integration and developing the heat exchanger network.  

2.2.1 Data Extraction or Stream Table 

Data extraction is an essential part of heat integration / process integration. The combined Bio-fine 

and TDO process was relatively large, with a total number of streams of more than 60, which could 

make energy integration very complicated. To simplify the analysis, we considered only the 15 

streams with enthalpy flows of more than 1 MW, and which could make heat integration feasible. 

Additionally, we considered only those streams that did not require any process modification. As 
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part of the data extraction, we identified all information associated with process streams such as 

temperature, sensible heat, latent heat, mass flow rate, supply temperature, target temperature and 

unit operation associated with those streams. Moreover, streams associated with condensers and 

reboilers were treated independently. Most of the streams in this process were associated with 

temperature change as well as phase change. We used ASPEN  Plus to separate these streams into 

two different parts: the isothermal stream experiencing phase change and the sensible heat stream 

going through a temperature change. To facilitate the analysis, isothermal phase change streams 

were entered into the analysis as undergoing a minor temperature change of 1 °C (increasing for 

cold streams and decreasing for hot streams). We showed the surplus energy with a negative sign 

and deficit sign with a positive sign.   

2.2.2 Composite Curve/Temperature -Enthalpy Diagram 

Composite curve is another way to illustrate the heat transfer between hot streams and cold 

streams. To produce the composite curve, we produced the shifted temperature curve (Cascade 

diagram) by considering ΔTmin as 10 °C between hot streams and cold streams. We arranged the 

temperature of all streams participating in energy integration in descending order. Then we 

calculated the net energy requirement in each interval by transferring heat from hot streams to cold 

streams by considering the first and second law of thermodynamics. The net energy balance in 

each interval was calculated by: 

𝑄𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 ∗ (
∆𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

∆𝑇𝑡𝑜𝑡𝑎𝑙
) 

Equation 3 Net energy balance in each interval 

Where, Qsensible = total heat available from the hot stream, ΔTtotal = Inlet and outlet temperature 

difference of the hot stream, ΔTinterval= temperature difference of the hot stream within the interval. 
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Moreover, the extra term Q latent was added in above equation for streams associated with latent 

heat. 

𝑄𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑄𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 ∗ (
∆𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

∆𝑇𝑡𝑜𝑡𝑎𝑙
) + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 

Equation 4 Net energy balance in each interval factoring in Qlatent 

Where, Qlatent is latent heat duty in temperature interval 

 We constructed the problem table algorithm (a table which shows net energy requirement in each 

temperature interval) by taking out an available energy from first temperature interval and the 

remainder was attributed to the next temperature interval. By doing so, the point in the table where 

heat transfer was no longer possible between process streams was considered a pinch temperature 

(4). We produced the composite curve by integrating the heat of hot streams and cold streams in 

each temperature interval and plotting them on temperature enthalpy diagram in a counter current 

flow direction. For those intervals in which there is no stream, we showed just a vertical line 

indicating a change in temperature but no enthalpy change, meaning no heat transfer is available 

over this temperature range.  We moved the hot and cold composite streams in a horizontal manner 

so as to have both streams touch at one point, which is the pinch point, and that temperature is the 

pinch temperature.  

2.3.3 Grand Composite Curve 

 A graph of net heat flow against shifted temperature interval is known as the grand composite 

curve (GCC). It is also known as a residual heat curve, which find the points at which to place an 

extra utility from outside. As shown in Figure 14, the total heat load from outside is 130.05 MW 

and the cold utility load from outside is 115.38 MW. In the GCC, the high-pressure steam was 

used for cold streams at or close to 250 °C, whereas the medium pressure steam and the low-

pressure steam took care of cold streams at 212 °C and 134 °C, respectively. Cooling water was 
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only used as a cold utility requirement because of its certain economic advantages and most 

streams doesn’t need to cool down to 25 °C.Because of different specifications of cooling water 

with geographic location and weather, we considered 17 °C with room temperature as its 

specification. For the economics of the process, the penalty for hot utilities was decreased by using 

the expensive high temperature utility for the highest required temperatures, and then reusing the 

residual heat, still at a useful temperature, to take care of streams at lower temperature. Moreover, 

the pockets in the grand composite curve could be used to recover energy for next process stream.  

 

Figure 14 Grand Composite Curve 
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Figure 15 Net Energy Requirement in Each Interval 

(the heat duty associated with process streams are expressed in the top row of the figure and vertical lines represent the temperature of 

hot streams and cold streams at left and right respectively.)
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2.2.3 Grand Composite Curve (Residual heat curve) 

The graph of net heat flow against shifted temperature interval is known as grand composite curve. 

Here, we constructed the grand composite curve by considering the net heat surplus and the net 

heat deficit calculated from the problem table algorithm. We produced the table of cumulative 

enthalpy (MW) vs average temperature in an interval (°C). For example, we considered average 

temperature 102°C for an interval in which we had 107 °C for hot the stream and 97 °C for the 

cold stream. We considered process heat transfer zero at the pinch point and the heat duty at that 

point was treated as an external hot utility. The cumulative heat duty was calculated at each 

temperature interval. The equation for cumulative heat duty for sensible heat was:  

𝑄𝑖 = [𝛴 (
𝑄ℎ𝑜𝑡

𝛥𝑇𝑡𝑜𝑡𝑎𝑙
) − 𝛴 (

𝑄𝑐𝑜𝑙𝑑

𝛥𝑇𝑡𝑜𝑡𝑎𝑙
)] 𝛥𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

Equation 5 Cumulative heat duty for sensible heat 

Qhot and Qcold are heat duties of hot streams and cold streams respectively, ΔTtotal is the initial 

and final temperature of streams and ΔTinterval is temperature difference at specific interval. 

For latent heat the cumulative heat was calculated by: 

𝑄𝑖 = [{𝛴 (
𝑄ℎ𝑜𝑡

𝛥𝑇𝑡𝑜𝑡𝑎𝑙
) − 𝛴 (

𝑄𝑐𝑜𝑙𝑑

𝛥𝑇𝑡𝑜𝑡𝑎𝑙
)} ∗ 𝛥𝑇𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙] + 𝑄𝑙𝑎𝑡𝑒𝑛𝑡 

Equation 6 Cumulative heat duty for sensible heat factoring in Qlatent 

Where Qlatent is the heat associated with the latent heat stream.  

 We considered cumulative enthalpy as an independent variable and average temperature as 

dependent variable. We also placed the hot utilities above pinch and cold utilities below pinch. We 

considered high pressure steam at (250°C and 40 bar), Medium Pressure steam (212 °C and 20 

bar) and Low-pressure steam (134 °C and 3 bar) and cold utility just a cooling water (17 °C and 

atmospheric pressure).  
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2.2.4 Placing of Heat Exchangers 

After constructing composite curve, grand composite curve and deciding the places of utilities, the 

next step was to place the matches of streams. We started matching heat surplus and heat deficient 

streams from the pinch point to make a process simple and more efficient. But we also considered 

some constraints for placing the matching as illustrated in the algorithms represented in Figure 16 

and Figure 17 for the process streams above and below pinch. In this algorithm, Nh and Nc are 

number of hot streams and cold streams respectively, Qh and Qc are heat capacities associated with 

hot streams and cold streams respectively. After placing the matches, the left-over energy demand 

was met by using an appropriate utility. For sensible heat streams, the left-over energy was 

calculated by: 

𝑄 = 𝑚 × 𝐶𝑝 × 𝛥𝑇 

Equation 7 Sensible heat streams left-over energy 

Where: m was the mass flowrate stream (tonnes/day), Cp was the specific heat (kJ/kg °C) after 

transferring the heat, and ΔT was the temperature difference (°C). For streams exchanging latent 

heat, a heat of vaporization (or condensation) term was added to any streams with an associated 

phase change. There were some cases in which we needed a stream to match with more than one 

other stream. To make this feasible, we split that stream into necessary number of streams based 

on total energy associated with that specific stream. Moreover, we also calculated what the 

temperature associated with leftover energy stream is by subtracting the heat transfer duty from 

overall heat duty of the system and temperature was calculated by sensible heat duty and latent 

heat duty equation.  
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Figure 16 Algorithm for Matching of Streams Above Pinch Region 
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Figure 17 Algorithm for Matching of Streams Below Pinch Region 
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2.2.5 Area Targeting/Heat Exchanger Network 

We constructed a balanced composite curve to calculate the area target in which the overall energy 

requirement was zero. After placing the matches between hot streams and cold streams and leftover 

heat was recovered by utilities, the next step was to determine the size of the heat exchangers. We 

assumed 1-1 shell and tube heat exchanger with pure counter current flow to make the targeted 

value close to real values of heat transfer and heat exchanger area. The overall heat transfer 

coefficient U(w/m2°C) for different streams was assumed based on Bspang’s numbers (69). So, 

the overall heat transfer area was calculated for the network by:  

𝐴 = ∑ 𝑄𝑖/𝑈𝑖∆𝑇𝐿𝑀𝑖

𝑁

𝑖=1

 

Equation 8 Overall heat transfer area 

Where, Qi is heat duty (kJ/h), U=overall heat transfer coefficient (w/m2°C), ∆𝑇𝐿𝑀𝑖= log mean 

temperature difference, defined as: 

∆𝑇𝐿𝑀𝑖=[
(𝑇ℎ𝑖𝑛−𝑇𝑐𝑜𝑢𝑡)−(𝑇ℎ𝑜𝑢𝑡−𝑇𝑐𝑖𝑛)

ln
(𝑇ℎ𝑖𝑛−𝑇𝑐𝑜𝑢𝑡)

(𝑇ℎ𝑜𝑢𝑡−𝑇𝑐𝑖𝑛)

] 

Equation 9 Log mean temperature difference 

We placed most of the matches in the Aspen plus simulation to get more precise results and 

calculates the precise duty associated with specific heat exchangers.  Moreover, we only 

considered sensible heat streams (only in aspen plus simulation) to place the matches for hot 

streams and cold streams.  
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2.2.6 Calculation of Heat Exchanger Area in ASPEN Plus 

Overall heat transfer coefficient (U) of process streams was taken from Bspang’s number (69). We 

considered hot fluid on the shell side and cold fluid on the tube side. We placed the heat exchangers 

in the flow sheet, connected streams in countercurrent flow directions and considered different 

specifications such as minimum temperature difference and specific known stream outlet 

temperature to calculate the heat transfer areas.  By using the thermal results and by conditioning 

in rating mode, we calculated the outlet temperature of streams and percentage of oversized or 

undersized systems (kept to within a limit of up to 20%) We compared the Aspen results of area 

with the results from the spreadsheet calculations to note the difference in results of heat exchanger 

area calculations.  

2.2.7 Cost Estimation 

2.2.7.1 Utility Cost Calculation 

The total annual cost of heat exchanger network predicts the nature of capital cost, operating cost 

and minimum temperature difference base on tradeoff curve. Operating cost, in other words utility 

cost, is a function of inflation and energy cost. Manufacturing cost was derived from labor cost 

and the Chemical engineering plant cost Index (CEPCI). We used a two factor utility cost equation:  

Cs, u= a(CEPCI) + b(Cs,f)  

Equation 10 Utility Cost 

where, Cs,u is the price of utility, a and b are utility cost coefficients, Cs,f is the price of fuel in 

$/GJ (10). We used Bio-fine char as our fuel and tap water as our cooling supply. Prices for these 

sources were 52.50 $/GJ (AMEC report for sustainable energy report) and $ 0.067 per 1000 kg 

($0.03 per GJ, by considering a heat of vaporization of water as 40.65 kJ/mol) (73).  
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For the steam utility, we considered factor “a” for a process module was  

a = 2.7×10-5 ms
-0.9 

where 0.06<ms<40 kg/s and factor “b” was  

b = 0.0034 p0.05 

where, the values of p lie between 1 to 46 barg (10).  

For cooling water, we calculated the price of water in $/m3. Here, factor a was calculated as:   

a = 1.0 × 10-4 + 3 × 10-6q-0.6 

Equation 11 Price of tap water 

where q was the flowrate of water for which the value lies between 0.01 and 10 m3/s and factor b 

was 0.003. The process streams and utility streams were matched in ASPEN Plus and those results 

were used to calculate an annual price of utility. Moreover, for unit R 401 on the flow sheet 

(Precipitator), the inlet and outlet temperatures of process streams were 670 °C to 50 °C, so tap 

water was used as a cold utility. The specifications for cooling water were: heat of vaporization= 

40.65 kJ/mol, mass flow of water was 957269 kg/day and the price was $ 21,165 per year by 

considering 330 operating days) taken from Pearson 4th edition. For R-402 (TDO reactor) the 

process stream goes from 250°C to 450 °C so, natural gas used as a hot utility at 460 °C, 

(Specification were density= 0.715 kg/nm3, Higher heating value= 38.01 kg/Nm3) (74) the price 

was $ 8.2 per million BTU (from US energy department). 

2.2.7.2 Installed Cost Calculation 

We calculated an installed cost of heat exchanger by calculating an area of heat exchanger and 

material of construction of specific process streams was considered from Pearson Chapter 7 (74). 

We calculated an installed cost of heat exchangers in 1990 from exchanger cost per area ($/ft2) 
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(Fixed tube heat exchanger) and different materials of construction (72) (73). We calculated an 

installed cost in 2016 by using index cost of 2016 (inflation condition) (585) and 1990 (357.6).  

The equation was: 

𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑜𝑠𝑡 𝑜𝑓 ℎ𝑒𝑎𝑡 𝑒𝑥𝑐ℎ𝑎𝑛𝑔𝑒𝑟 𝑖𝑛 2016 = 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑒𝑑 𝑐𝑜𝑠𝑡 𝑖𝑛 1990 ∗ (
𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑖𝑛 2016

𝐶𝑜𝑠𝑡 𝐼𝑛𝑑𝑒𝑥 𝑖𝑛 1990
) 

Equation 12 Installed cost of heat exchanger in 2016 

The installed cost of heat exchangers was the cost of heat exchanger multiplied by a cost factor 

(2.2, which includes labor charge, transportation, and other expanses to fix the heat exchanger). 

The CEPCI includes equipment, pipes, valves, fitting, fabrication, maintenance equipment. 

2.2.7.3 Capital Cost of Estimation 

Capital cost of heat exchangers was the sum of the direct cost and indirect cost of heat exchangers. 

The direct cost of heat exchangers included equipment cost, raw material cost, warehouse, 

additional pipes and fittings. Indirect cost included administrative cost, tax, labor expenses, and 

field expenses. Installed cost of heat exchanger was multiplied by 2.5 to give the capital cost of 

heat exchangers (75).   

2.2.7.4 Total Annualized Cost 

Total annualized cost was the sum of annualized capital cost per year and annualized cost of 

utilities. Total annualized capital cost was the function of capital cost of heat exchange and 

annualized capital cost per year. Annualized capital cost was calculated by:  

Annualized capital cost (
A

Pr
, n) = r ∗

(1 + r)n

(1 + 𝑟)𝑛 − 1
 

Equation 13 Annualized capital cost 

  

  where, r= interest rate per year= 20% and n= number of years=30 years (plant life).  
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2.3 Results and Discussion 

2.3.1 Data Extraction 

The key information of the data extraction step is to identify the temperature levels of the streams 

and amount of heat required for those process streams to reach a desired temperature level. We 

assumed that most process streams are in a single phase (by treating sensible heat duty and latent 

heat duty differently) and the energy associated with those phases was considered for further steps 

of energy integration. Furthermore, applying a small token temperature change in the outlet 

temperature for the latent heat streams doesn’t make a significant difference in the analysis. 

Specific heat is a nonlinear function of temperature.  After considering all heuristics for data 

extraction, we came up with the energy requirement for the cold streams of 250 MW and the 

energy available the hot streams were 234 MW.  So, based on the first law of thermodynamics a 

minimum of 16 MW should be supplied from the outside hot utility in the absence of any further 

constraints.  
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Table 12 Data Extraction for Energy Integration 

Unit 

Operation 

Stream 

Number 
Stream Type 

Tin 

(C) 
Tout (C) Q (MW) 

Mass Flow 

(Tonnes/day) 
Block 

Sensible 

Heat 

(MW) 

Latent Heat 

(MW) 

Heater 105-106 Cold 25 234 12.56 396.33 E101 4.37 8.21 

Flash 

Separator 

107-

108,111 
Cold 119 120.1 1.4 6040.68 E102  1.4 

Evaporator 

Sulfr, 

Sulfr1, 

Waste 

water 

Cold 46 46.6 55 4308.81 EW101  55 

Evaporator 
918-917, 

301 B 
Cold 45 45.5 113.7 8125.48 E107  113.68 

Distillation 

column 

reboiler 

112,112 B, 

Furf1- 

Waste 

water 

Cold 99 100.1  1209.91 DS-101  18.85 

Distillation 

column 

reboiler 

112 C-

Purefurf 
Cold 120.4 151.3 1 236.47 DS-102 1  

Distillation 

column 

reboiler 

912-FURD Cold 97 97.1 48 261 DS-103  48 

Condenser 111-112 Hot 120 98.2 -28.66 1184.89 E103A 0.2848 28.1452 

Condenser 917-920 Hot 45.5 40 -107.7 4118.87 E106 0.4481 107.623 

Distillation 

column 

Condenser 

112,112 B, 

FURD 1- 

112 A 

Hot 97.7 97.1 -18.79 857.52 DS-101 -1.97 16.82 

Distillation 

column 

Condenser 

112 C-112 

D 
Hot 97.7 97 -0.847 42.1 DS-102  0.93 

Distillation 

column 

Condenser 

912-916 Hot 77.5 77.4 -44 4827.28 DS-103  -44 

Condenser 

419-

420,421,42

2 

Hot 25 25 -6.21 325.51 V402  -6.21 
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2.3.2 Composite Curve 

The problem table algorithm was used to calculate the net energy in each temperature interval for 

pinch analysis. Represented results from the problem table algorithm show that after transferring 

heat in each temperature interval, the total hot utility requirement was 130.60 MW and the cold 

utility requirement was 114.21 MW (Considering heat duty requirement of 43.38 MW at the pinch 

point). The difference between two utility requirements was 16.39 MW which confirms the initial 

first law calculation. In addition, for physical interpretation of heat transfer, the cold composite 

curve should be below the hot composite curve fulfilling the second law of thermodynamics.  The 

total heat transfer at the pinch point should be zero but following the same heat duties from cascade 

diagram doesn’t follow constrains (there is 43.38 MW heat transfer at 107 °C and 97 °C between 

hot streams and cold streams respectively). To keep the cold composite curve on the right side of 

the diagram, 20 MW (heat duty at pinch temperatures of hot streams and cold streams) is the 

minimum hot utility added when considering that the change in total specific heat capacity of all 

the cold streams is constant. In addition, the overlap of hot and cold streams shows non-feasibility 

of heat transfer. The net hot utility requirement is now 37.56 MW and cold utility requirement 

remains 24.90 MW after transferring heat between hot streams and cold streams. Figure 19 shows 

the resulting balanced composite curve. It shows the places of hot utility and cold utility on 

temperature-enthalpy diagram.   
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Table 13 Cumulative Heat Duty of Hot Streams and Cold Streams in Temperature Intervals 

Heat Duty for Hot 

Streams 

(MW) 

Hot Stream 

Temperature 

(°C) 

Cold Stream 

Temperature 

(°C) 

Heat Duty for cold 

Streams 

(MW) 

0.00 24.90 - - 

6.21 25.00 - - 

6.21 35.00 - - 

6.21 40.00 30.00 37.30 

113.87 45.50 35.50 37.63 

115.16 50.00 40.00 37.90 

116.58 55.00 45.00 38.20 

116.72 55.50 45.50 151.93 

116.87 56.00 46.00 151.96 

117.04 56.60 46.60 207.00 

122.72 76.50 66.50 208.19 

167.00 77.50 67.50 208.25 

172.56 97.00 87.00 209.43 

172.71 97.10 87.10 209.43 

192.40 97.70 87.70 209.47 

193.20 98.20 88.20 209.50 

207.24 107.00 97.00 210.03 

207.40 107.10 97.10 258.03 

210.43 109.00 99.00 258.15 

212.02 110.00 100.00 277.11 

220.13 115.08 105.08 277.41 

226.91 120.00 110.00 277.71 

227.54 129.00 119.00 278.25 

227.63 130.40 120.40 279.73 

229.77 161.30 151.30 282.59 

235.48 244.00 234.00 287.56 

235.90 250.00 240.00 287.56 
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Table 14 Table for Grand Composite Curve 

Hot Utility 

Requirement  

From outside 

(MW) 

Heat Cascade 

(MW) 

Cumulative 

Duty in each 

interval (MW) 

Average 

Temperature 

Interval 

 (°C) 

Heat Transfer in 

each interval 

(MW) 

 0.41 0.41 245.00 85.77 

 1.15 0.74 239.00 85.35 

 0.43 -0.72 156.30 84.61 

0.95 0.00 -1.39 125.40 83.89 

 0.08 0.08 124.00 82.50 

 6.57 6.49 115.00 82.42 

 14.37 7.80 110.08 75.93 

3.00 0.00 -17.36 105.00 68.13 

 2.92 2.92 104.00 50.76 

44.93 0.00 -47.85 102.00 0 

 13.51 13.51 102.00 0.00 

 14.28 0.77 93.20 0.77 

 33.93 19.65 92.70 20.42 

 34.07 0.14 92.10 20.56 

 38.46 4.39 92.00 24.95 

 82.69 44.23 72.50 69.18 

 87.17 4.48 71.50 73.66 

 32.31 -54.86 51.60 128.53 

 32.42 0.11 51.00 128.64 

81.17 0.00 -113.59 50.50 242.23 

 1.13 1.13 50.00 243.35 

 2.14 1.01 45.00 244.36 

 109.47 107.33 40.50 351.70 

 109.17 -0.30 35.00 353.00 

 115.38 6.21 25.00 346.79 
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Figure 18 Composite Curve 

 

Figure 19 Balanced Composite Curve 

2.3.4 Area Targeting Network 

Figure 20 shows the complete minimum energy design of heat exchanges with matching of hot 

streams and cold streams above and below pinch. Moreover, the mixture of sensible heat and latent 

heat streams makes the process more complex, and certain pressure drops also create some 
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problems in pinch analysis. All in all, considering an appropriate heat transfer coefficient for 

process streams and matching sensible heat streams with temperature changing streams makes the 

process more feasible. We matched the sensible heat streams in Aspen plus by considering the 

pressure drop to be zero while in the heat transfer phase, however in reality under latent heat 

conditions, heat transfer between streams does create certain pressure changes. The matching of 

latent heat streams with hot utility streams caused a very small amount of pressure drop and 

temperature change of the utility streams, but this did not create any modification in process 

streams.  This could be one of the reasons for the non-identical utility requirement for the 

composite curve and the grand composite curve. The selection of a 1-1 shell and tube heat 

exchanger could need a lower surface area for heat transfer compared to a 1-2 or a 2-4 shell and 

the tube heat exchanger. The total area requirement of 1-1 shell and tube heat exchangers was 

23,808 m2. Whereas, without energy integration the area of heat exchangers was 20,728 m2. The 

results of heat exchanger area and matching of process streams and utility streams are shown in 

Table 15.  
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107 
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97.7 

77.5 

97 

25 

97 

97 
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97 

50 

97 

15.16 MW 

1.853 MW 

55 MW 

MWMn

mnmn

mnmnn

mnmn

mnMW

mmmm

MWM

WMW 

20 MW 

11.75 MW 

1.503 MW 96 OC 

45.5  

  OC   OC 

1.37 tonnes/day 

ttttggggggtonne

s/daytottttttttto

nnes/day 

10.07 tonnes/day 
8.17 tonnes/day 

0.877 MW 

-15.16 MW 

-1.503 MW 

-1.853 MW 

0.851 MW 

1.90 MW 

1.40 MW 

18.9 MW 

48 MW 

-13.47 MW 

-12.697 MW 

55 MW 20 MW 

-107.7 MW 

-12.35 MW 

-18.79 MW 

0.849 MW 

-44 MW 

-6.21 MW 

11.75 MW 

Figure 20 Complete Minimum Energy Design 
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Table 15 Stream Matching and Heat Exchanger Area 

Heat 

exchanger 

 

U 

(watt/m2°C) 

Heat 

Duty 

(MW) 

Tcin 

(°C) 

Tcout 

(°C) 

Thin 

(°C) 

Thout 

(°C) 

Type of 

Utility 

Heat 

exchanger 

area 

(m2) 

HE-01 900 15.16 97.0 100.2 120.0 107.0 - 1072 

HE-02 900 1.50 100.2 104.7 250.0 114.0 - 50 

HE-03 900 1.85 104.7 110.0 115.1 107.0 - 1470 

HE-04 300 0.88 25.0 97.0 107.0 54.0 - 4425 

HE-05 350 55.00 46.6 52.2 97.0 96.8 - 3311 

HE-06 850 20.00 45.5 45.9 97.0 96.7 - 1117 

HE-07 850 0.85 97.0 234.0 250.0 250.0 HPS 250 

HE-08 850 1.40 120.0 120.1 134.0 134.0 LPS 118 

HE-09 850 18.84 100.0 107.0 134.0 133.6 LPS 1854 

HE-10 850 1.90 120.4 151.3 212.0 212.0 MPS 840 

HE-11 850 13.47 17.0 59.0 107.0 97.0 CW 762 

HE-12 850 12.34 17.0 40.8 107.0 50.0 CW 863 

HE-13 850 0.88 17.0 17.0 54.0 50.0 CW 840 

HE-14 850 18.74 17.0 17.0 97.7 97.4 CW 775 

HE-15 850 0.80 17.0 17.0 97.7 97.0 CW 33 

HE-16 850 44.17 17.0 17.0 77.5 74.0 CW 2507 

HE-17 850 32.50 17.0 17.0 96.7 64.0 CW 1765 

HE-18 850 6.21 15.0 17.0 25.1 25.0 CW 810 

HE-19 850 29.48 97.0 97.7 134.0 134.0 LPS 946 
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2.3.5 Cost Targeting 

The goal of the heat exchanger network synthesis was to minimize to total cost of the network by 

minimizing the operating and capital costs of the heat exchangers. According to the tradeoff curve, 

there is a tradeoff between operating cost and capital cost of the heat exchangers at certain 

minimum temperature difference. So, the overall cost targeting is divided into two parts: (1) 

Capital Cost of heat exchangers and (2) Utility Cost.  

 2.3.6 Capital Cost of Heat Exchangers 

Capital cost and operating cost of heat exchangers are expressed in different term basis. Thus, it is 

necessary to be expressed in the same term basis. Annualized capital cost is an equation to convert 

the capital cost in the same unit period as utility cost. Moreover, for the different types of materials 

of construction and heat transfer coefficients also change the cost of the heat exchanger so, 

purchased cost vs Surface area graph from Peters and Timmerhaus helps to provide consistency of 

cost of heat exchangers for different materials of construction (76). Different material of 

construction for different heat exchangers was obtained from Sandler and Luckiewicz (77).  By 

considering factor 2.2 to convert heat exchanger price to installed cost (considering labor, 

suppliers, maintenance and repairs and general expenses), the installed costs of heat exchangers in 

the cases of energy integration or without energy integration were $5,103,732 and $ 4,963,372, 

respectively (the calculation of each heat exchanger is shown in Table 16). The final capital costs 

of the heat exchangers were $ 12,759,330 and $ 12,408,428 for the cases of energy integration and 

without energy integration, respectively. Table 16  shows the purchased cost and installed of heat 

exchangers.  
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Table 16 Purchased and Installed Costs of Heat Exchangers 

Heat 

exchang

er 

Tcin 

(°C) 

Tcout 

(°C) 

Thin 

(°C) 

Thout 

(°C) 

Area 

(m2) 

Area 

(ft2) 

Purchas

ed Cost 

in 1990 

($) 

Purchas

ed Cost 

in 2016 

($) 

Installed 

Cost in 

2016 ($) 

HE-01 97.0 100.2 120.0 107.0 1072 11534 67,000 109,606 241,133 

HE-02 100.2 104.7 250.0 114.0 32 339 7000 11,451 25,193 

HE-03 104.7 110.0 115.1 107.0 146.59 1578 15,400 25,193 55,424 

HE-04 25.0 97.0 107.0 54.0 4425.05 47631 248,000 405,705 892,550 

HE-05 46.6 52.2 97.0 96.8 3310.73 35636 186,000 304,279 669,413 

HE-06 45.5 45.9 97.0 96.7 1117 12025 69,000 112,878 248,331 

HE-07 97.0 234.0 250.0 250.0 14 150 4,500 7,362 16,195 

HE-08 120.0 120.1 134.0 134.0 334.52 3600.84 12,000 19,630 43,187 

HE-09 100.0 107.0 134.0 133.6 1854.33 19960 102,000 166,862 367,097 

HE-10 120.4 151.3 212.0 212.0 84.30 907 17,000 27,810 61,183 

HE-11 17.0 59.0 107.0 97.0 761.98 8202 48,000 78,523 172,752 

HE-12 17.0 40.8 107.0 50.0 862.68 9286 50,000 81,795 179,950 

HE-13 17.0 17.0 54.0 50.0 83.79 902 11,000 17,995 39,589 

HE-14 17.0 17.0 97.7 97.4 775.14 8344 41,000 67,072 147,559 

HE-15 17.0 17.0 97.7 97.0 33.09 356 6,200 10,143 22,314 

HE-16 17.0 17.0 77.5 74.0 2506.53 26980 144,000 235,570 518,255 

HE-17 17.0 17.0 96.7 64.0 1764.55 18993 102,000 166,862 367,097 

HE-18 15.0 17.0 25.1 25.0 2296 24711 134,000 219,211 482,265 

HE-19 97.0 97.7 134.0 134.0 2682 28865 154,000 251,930 554,245 
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2.3.7 Operating Cost of Heat Exchangers 

Utility costs basically depend upon on the Chemical Engineering Plant Cost index and 

fuel cost. In the utility cost calculation equation (equation 11) “a” is dependent upon plant 

size (74). If plant capacity is higher than the utility cost per product volume will be lower. 

Coefficient “b” depends upon the price of fuel and includes turbine, generator and other 

equipment used to produce hot pressurized utility systems to regenerate the utility or 

electricity. The annual utility cost of heat exchangers was $ 12,332,872 and $ 16,713,256 

for the process with energy integration and without energy integration, respectively. In 

this process, around 94.40 MW of utility duty was covered by process stream matching, 

which adds an impetus for utility savings of this process. Hence the hot and cold utility 

requirements for process integration were 52.48 MW and 129.09 MW respectively. 

However, in the case of process without integration, the utility requirements were 128 

MW and 151 MW hot utility and cold utility requirements, respectively. In both the cases, 

the cost of high-pressure steam and medium pressure steam were the same ($ 659,009 

and $ 479,375 for high pressure steam and medium pressure steam respectively), but the 

use of low-pressure steam and cooling water were higher in the case of process without 

energy integration, which made a noticeable change in the utility cost of the process (35 

% of cost saving from low pressure steam and 54 % cost savings with tap water). Table 

17 shows the annual utility cost of heat exchangers and mass flow of utility streams.  

 

 

 



 

69 
 

Table 17 Annual Utility Costs (Operating days per year:330) 

Type of Utility 
Thermodynamic 

Conditions 

Without Energy 

Integration 

With Energy 

Integration 

 
Pressure 

(bar) 

Temperature 

(°C) 

Mass flow 

(kg/h) 

Annual 

Utility 

Cost ($) 

Mass 

flow 

(kg/h) 

Annual 

Utility 

Cost 

High Pressure 

Steam 
40 250 2665 660,528 2665 660,528 

Medium Pressure 

Steam 
20 212 3624 479,375 3623 479,375 

Low Pressure 

Steam 
3 135 203505 16,848,018 83124 

11,022,

060 

Cooling Water 0.01 17 380274 369,928 188044 170,149 

Natural Gas   541.75 976,588 541.75 976,588 

2.3.8 Total Cost of Heat Exchangers 

 The total cost of the heat exchanger is the main tradeoff between utility cost and fixed cost of the 

heat exchangers. The fixed cost of heat exchangers depends upon life period of heat exchangers. 

So, both costs are added by considering the time span for a year. Total annualized cost of capital 

is $2,492,185 in the case of without energy integration. But it was 3 % higher in the case of energy 

integration.  The total annual cost of heat exchangers was $ 15 million and $ 19 million for the 

process with energy integration and the process without energy integration. Table 18 compares the 

total annual cost of heat exchangers with energy integration and without energy integration. 

Table 18 Cost Comparison of Heat Exchangers 

 Cost Without Energy 

Integration 

($MM) 

Cost with Energy Integration 

($MM) 

Installed Cost of Heat 

Exchangers 
$4.96 $5.1 

Capital Cost of Heat 

Exchangers 
$12.40 $12.76 

Cost of Capital per year $2.50 $2.56 

Total annual Cost of Utilities $16.52 $12.33 

Total Annualized Cost $19.04 $14.89 
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2.4 Conclusion 

In conclusion, pinch analysis technique was used to calculate the external utility requirements for 

the Combined Bio fine and TDO oil process, with the optimum heat exchange temperature 

difference considered as 10 °C. After placing of matches, the hot and cold utility requirements 

with energy integration are 52.48 MW and 129 MW, respectively, and 94.40 MW of heat duty can 

be covered from the matching of process streams by considering pinch analysis optimization. It 

means that 34.2 % of the total heat duty was covered by matching the process streams, resulting 

in savings of around 26% of external heat load, improving the economy of the process. However, 

the increase in capital cost doesn’t have a big effect on the total cost of the process.  The heat 

energy loss adds to the weight of energy cost by considering both the external utility consumption 

and the internal energy loss in the heat exchanger network. It benefits from heat recovery and 

energy conservation at the comparatively lower cost of higher area in the heat exchange network 

and capital investment. The tradeoff between capital and operating cost was also true for this 

process. The overall cost saving can be reached up to 22 % with pinch analysis. This overall cost 

saving is in the range of typical cost savings achieved by the petrochemical and chemical industries 

(63). It is A green process because it requires only 60% of the bio char to produce the electricity 

of hot utility. 
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APPENDIX A   MASS BALANCE CALCULATIONS 

Cellulose and Laminarin content of Sugar kelp was calculated by assuming 11 wt% cellulose and 

8 wt% Laminarin (56).  

By considering 1 mol of cellulose converts into 1 mol of glucose 

Theoretical yield of glucose (mmol)= cellulose content (in mmol) + Laminarin Content 

((in mmol) 

Equation 14 Theoretical yield of glucose (mmol) 

% 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑦𝑖𝑒𝑙𝑑 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑔𝑙𝑢𝑐𝑎𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

=
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑓𝑟𝑜𝑚 𝐻𝑃𝐿𝐶

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 (𝑖𝑛 𝑚𝑜𝑙𝑒𝑠)
∗ 100 

Equation 15 % of glucose yield (based on glucan content) 

% 𝑜𝑓 𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑔𝑙𝑢𝑐𝑎𝑛 𝑐𝑜𝑛𝑡𝑒𝑛𝑡)

=
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑  𝑝𝑟𝑜𝑑𝑢𝑐𝑒𝑑

𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑔𝑙𝑢𝑐𝑜𝑠𝑒 𝑓𝑒𝑑
∗ 100 

Equation 16 % of theoretical yield of levulinic acid (based on glucan content) 

% of levulinic acid yield (based on glucan content)

=
moles of levulinic acid from HPLC

theoretical yield of levuinic acid (in moles)
∗ 100 

Equation 17 % of levulinic acid yield (based on glucan content) 

% 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 (𝑚𝑜𝑙%) =
𝑚𝑜𝑙𝑒𝑠 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑  𝑓𝑟𝑜𝑚 𝐻𝑃𝐿𝐶

𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖 𝑎𝑐𝑖𝑑 (𝑖𝑛 𝑚𝑜𝑙𝑒𝑠)
∗ 100 

Equation 18 % yield of levulinic acid (mol%) 

% 𝑦𝑖𝑒𝑙𝑑 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑 (%𝑤𝑡) =
𝑡ℎ𝑒 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑙𝑒𝑣𝑢𝑙𝑖𝑛𝑖𝑐 𝑎𝑐𝑖𝑑  𝑓𝑟𝑜𝑚 𝐻𝑃𝐿𝐶 (𝑚𝑔)

𝑡𝑜𝑡𝑎𝑙 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 𝑓𝑒𝑑 (𝑚𝑔)
∗ 100 

Equation 19 % yield of levulinic acid (%wt) 
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APPENDIX B   SUGAR ANALYSIS AND LEVULINIC ACID 

ANALYSIS OF SUGAR KELP 
Table 19 Sugar Analysis Results of Sugar Kelp 

 

Table 20 Levulinic Acid as a Byproduct from Sugar Analysis of Sugar Kelp 

 

  

 2% H2SO4 4% H2SO4 6% H2SO4 8% H2SO4 10% H2SO4 

60 min 3.64±0.16% 4.09±0.12% 4.45±0.12% 5.45±0.18% 4.33±0.69% 

150 min 4.08±0.14% 4.52±0.05% 5.26±0.47% 6.05±0.22% 5.00±0.11% 

240 min 6.0±0.12% 5.43±0.06% 5.38±0.05% 5.0±0.01 % 4.58±0.12% 

(presented as wt %, by assuming total intel feedstock content 300 mg, at 121 ° C) 

 2% H2SO4 4% H2SO4 6% H2SO4 8% H2SO4 10% H2SO4 

60 min N.D. N.D. N.D. 0.34±0.02% 0.31±0.05% 

150 min N.D. N.D. 0.34±0.03% 0.86±0.04% 0.80±0.02% 

240 min N.D. 0.08±0.10% 0.61±0.41% 0.90±0.03 % 1.20±0.06% 

( presented as wt %, by assuming total intel feedstock content 300 mg, at 121 ° C)) 
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Table 21 Results of Levulinic acid from Two Stage Hydrolysis (with 4% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

4.88 0.66 21.37 2.89 27.10 3.67 

6.09 0.7 20.81 2.82 28.42 3.85 

6.02 0.82 19.74 2.67 29.21 3.95 

80 min 

14.66 1.98 26.30 3.56 27.94 3.78 

16.29 2.21 29.01 3.93 29.70 4.02 

14.07 1.90 29.08 3.94 31.31 4.24 

120 min 

19.05 2.58 29.34 3.97 30.18 4.08 

18.80 2.54 29.26 3.96 30.06 4.07 

19.16 2.59 29.31 3.97 30.09 4.07 

Table 22 Results of Levulinic acid from Two Stage Hydrolysis (with 6 wt% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

13.11 1.77 42.54 5.76 48.76 6.60 

14.17 1.92 44.25 5.99 48.07 6.51 

14.60 1.98 44.28 5.99 49.27 6.67 

80 min 

29.34 3.97 44.22 5.98 49.73 6.73 

29.32 3.97 45.40 6.14 47.64 6.45 

29.22 3.95 45.48 6.15 47.06 6.37 

120 min 

33.37 4.52 44.54 6.03 32.51 4.40 

33.42 4.52 45.03 6.09 31.47 4.26 

33.48 4.53 44.94 6.08 31.97 4.33 
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Table 23 Results of Levulinic Acid from Two Stage Hydrolysis (with 8 wt% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

35.08 4.75 58.79 7.96 53.07 7.18 

34.65 4.69 57.79 7.82 55.86 7.56 

34.60 4.68 58.70 7.94 56.23 7.61 

80 min 

51.66 6.99 61.75 8.36 48.78 6.60 

51.45 6.96 61.65 8.34 48.40 6.55 

51.52 6.97 61.75 8.36 49.29 6.67 

120 min 

57.16 7.74 60.07 8.13 60.92 8.24 

57.30 7.75 60.48 8.18 61.40 8.31 

57.51 7.78 60.07 8.13 48.51 6.56 

 

Table 24 Results of Levulinic Acid from Three Stage Hydrolysis (with 4 wt% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

6.76 0.92 23.13 3.13 23.54 3.19 

7.31 0.99 19.91 2.69 25.24 3.42 

6.59 0.89 22.62 3.06 25.89 3.50 

80 min 

14.58 1.97 24.72 3.35 27.43 3.71 

15.67 2.12 25.19 3.41 27.01 3.66 

12.94 1.75 22.81 3.09 26.58 3.60 

120 min 

19.96 2.70 25.99 3.52 25.41 3.44 

20.47 2.77 20.76 2.81 25.81 3.49 

15.58 2.11 26.31 3.56 24.28 3.29 
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Table 25 Results of Levulinic Acid from Three Stage Hydrolysis (with 6 wt% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

9.06 1.23 22.75 3.08 28.19 3.82 

9.64 1.30 35.02 4.74 26.53 3.59 

8.38 1.13 24.17 3.27 26.30 3.56 

80 min 

26.07 3.53 36.94 5.00 30.12 4.08 

25.57 3.46 29.43 3.98 29.94 4.05 

26.02 3.52 41.25 5.58 27.47 3.72 

120 min 

18.66 2.53 31.59 4.28 30.10 4.07 

18.33 2.48 26.13 3.54 31.10 4.21 

19.21 2.60 30.10 4.07 27.91 3.78 

 

Table 26 Results of Levulinic Acid from Three Stage Hydrolysis (with 8 wt% H2SO4) 

 150 °C 175 °C 200 °C 

 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

Yield of 

LA (% 

mol) 

Yield of 

LA (% wt) 

40 min 

20.72 2.80 36.90 4.99 52.63 7.12 

22.86 3.09 41.19 5.57 47.58 6.44 

23.88 3.23 35.16 4.76 39.32 5.32 

80 min 

27.98 3.79 40.75 5.52 39.19 5.30 

27.07 3.66 40.61 5.50 44.22 5.98 

25.24 3.42 37.40 5.06 43.77 5.92 

120 min 

29.96 4.05 35.69 4.83 42.59 5.76 

33.95 4.59 40.26 5.45 39.34 5.32 

35.76 4.84 38.32 5.19 40.96 5.54 
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APPENDIX C   UTILITY COST OF THE PROCESS WITH AND 

WITHOUT ENGERY INTEGRATION 

Table 27 Annual Cost of Utility with their Coefficients (Process with energy Integration) 

Type of 

Utility 

Mass 

Flow 

(kg/h) 

a b 
Process module 

$/kg or $/m3 

Utility Price 

$/year 

High 

Pressure 

Steam 

2665 3.54E-05 3.94E-03 0.03 65,901 

Medium 

Pressure 

Steam 

3623 2.68E-05 3.80E-03 0.03 815,050 

Low 

Pressure 

Steam 

83124 1.60E-06 3.46E-03 0.01 11,022,060 

Cooling 

Water 
188044 1.18E-04 3.00E-03 0.07 148,984 

 

Table 28 Annual Cost of Utility with their Coefficients (Process w/o energy Integration) 

Type of 

Utility 

Mass 

Flow 

(kg/h) 

a b 
Process module 

$/kg or $/m3 

Utility Price 

$/year 

High 

Pressure 

Steam 

2665 3.54E-05 3.94E-03 0.029 660,528 

Medium 

Pressure 

Steam 

3624 2.68E-05 3.80E-03 0.03 479,375 

Low 

Pressure 

Steam 

203505 7.15E-07 3.46E-03 0.001 16,848,018 

Cooling 

Water 
380274 1.13E-04 3.00E-03 0.09 369,928 
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Table 29 HPAEC Results for Sugar Analysis Results of Sugar Kelp 

 2% H2SO4 4% H2SO4 6% H2SO4 8% H2SO4 10% H2SO4 

 (%mol) (%wt) (%mol) (%wt) (%mol) (%wt) (%mol) (%wt) (%mol) (%wt) 

60 min 15.33 3.23 30.36 6.41 46.86 9.90 69.62 14.70 82.93 17.50 

150 min 15.73 3.31 31.53 6.65 40.82 9.61 63.01 13.30 64.47 13.60 

240 min 13.92 2.93 27.59 5.82 42.59 9.00 51.32 10.11 59.02 10.26 

(based on mol%, by assuming total glucan content 19%, at 121 ° C) 
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