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Congenital muscular dystrophy with megaconial myopathy (MDCMC) is an autosomal 

recessive disorder characterized by progressive muscle weakness and wasting. 

Megamitochondria in skeletal muscle biopsies and cognitive impairments in MDCMC patients 

are observations exclusive to this type of muscular dystrophy. The disease is caused by loss of 

function mutations in the choline kinase beta (CHKB) gene which results in dysfunction of the 

Kennedy pathway for the synthesis of phosphatidylcholine (PC). A rostro-caudal muscular 

dystrophy (rmd) mouse with a deletion in the Chkb gene resulting in MDCMC-like symptoms 

has been reported by our lab. In order to test if the rmd mice show signs of cognitive 

impairments as observed in MDCMC patients, I engineered a transgenic rmd mouse model (Tg-

rmd) which I used for MS/MSALL mass spectrometry analysis of brain tissue and to test for 

working memory and learning impairments. These tests show us that even though Tg-rmd mice 



showed significantly different lipid profiles in brain, these changes were not translated in the 

behavioral assays conducted. 

I have worked on the development of and tested gene therapy strategies for the rescue 

and alleviation of dystrophy symptoms using the rmd mouse model. I have observed that 

introduction of a muscle-specific Chkb transgene completely rescues motor and behavioral 

function in the rmd mouse model, confirming the cell-autonomous nature of the disease. 

Intramuscular gene therapy, post-disease onset, using an AAV6 vector carrying a functional copy 

of Chkb gene is capable of rescuing the dystrophy phenotype in rmd mice. In addition, 

upregulating choline kinase alpha (Chka), a gene paralog of Chkb, via a similar AAV6 viral 

vector showed increased muscle regeneration and alleviation of muscular dystrophy symptoms 

as was observed with Chkb AAV injections.  

Together, my results suggest rmd mice do not model the cognitive impairments observed 

in MDCMC patients and that replacement of the Chkb gene or upregulation of endogenous Chka 

could serve as potential lines of therapy for MDCMC patients. 
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CHAPTER 1 

A REVIEW OF CONGENITAL MUSCULAR DYSTROPHY WITH MEGACONIAL 

MYOPATHY (MDCMC) 

 

“Sometimes my body wakes me up and says 

‘Hey, you haven’t had pain in a while. HOW ABOUT PAIN?’ 

And sometimes 

I can’t breathe, 

And that’s hard to live with. 

But I still celebrate life and 

DON’T GIVE UP” 

- Mattie Stepanek, poet, philosopher, victim of muscular dystrophy. 

 

An Introduction To Congenital Muscular Dystrophy (CMD) 

The Muscular Dystrophy Association (MDA) defines muscular dystrophy (MD) as a group of 

diseases characterized by progressive muscle weakness or hypotonia and loss of muscle mass 

(www.mda.org). Muscular dystrophy is caused by inherited and occasionally spontaneous 

genetic mutations, the symptoms of which, are identified at a different time points in individuals 

depending on the gene involved and type of mutation. Muscular dystrophies can be classified 

into 55 different genetic forms which can affect both males and females, leading to skeletal 

muscle degeneration and loss of motor strength that affecting walking, breathing, swallowing 

and may also include cardiomyopathy (www.mda.org, www.ninds.nih.gov). Many of these 

dystrophies present themselves at birth with rapidly progressing symptoms. These early-onset 
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muscular dystrophies, more specifically defined as a heterogenous group of disorders 

characterized by disease onset at birth with rapidly progressing symptoms are termed as 

Congenital Muscular Dystrophies (CMD) (S. E. Sparks & Escolar, 2011) . To date, there are 

approximately 30 different types of CMD reported, each based on the gene or protein affected. 

Most CMD’s reported so far arise as a result of an autosomal recessive mutation in the gene that 

codes for a member of the group of extracellular matrix proteins like collagen, laminin, 

dystroglycan and integrin. According to statistics provided by the National Organization of Rare 

Disorders, the exact incidence and prevalence of CMD in the world is not known. A study of the 

population of Italy reported an incidence of 1 in 125,000 whereas another study based on the 

population in western Sweden based the prevalence of CMD at 1 in 16,000.  CMD is estimated 

to affect about 250,000 Americans with the Italian population in particular shows an incidence 

and prevalence of 1 in 4.65 X 105 and 8 X 106 in the North East (Mercuri, Sewry, Brown, & 

Muntoni, 2002). Some forms of CMD are highly prevalent in certain parts of the world with 

Laminin alpha-2 deficiency and collagen VI-deficient CMDs being the most common subtypes 

in many countries with populations of European origin. However, due to failure in diagnosis of 

primary muscle disease in individuals with mild muscles weakness, with or without intellectual 

disability may continue to result in underestimation of the prevalence of CMD (S. Sparks et al., 

2012). 

 

Congenital Muscular Dystrophy with Megaconial Myopathy (MDCMC) 

In the year 1998, a group of Japanese doctors reported 4 patients suffering from an unusual form 

of muscular dystrophy that displayed the presence of giant mitochondria or megamitochondria in 

muscle biopsies (Nishino et al., 1998). These patients had unaffected parents and siblings, 
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indicating that this was an autosomal recessive genetic disorder. Since the phenotype of 

megamitochondria had not been observed in the spectrum of MD diseases, these patients were 

not classified into any MD subtype and the genetic cause was unknown. Histologic examination 

of muscle biopsies showed that the megamitochondria were situated at the periphery of muscle 

fibers just under the sarcolemma and mitochondria were absent from the central regions of the 

sarcoplasm. A second biopsy from one of the 4 patients taken at 13 years (after a 12 year interval 

from the first biopsy) showed that the peripheral location of the megamitochondria did not 

change with time. All patients showed elevated serum creatinine kinase (CK) levels and an 

increased proportion of necrotic and regenerating fibers with age, indicating an increase in the 

progression of dystrophy. Since megamitochondria was a prominent phenotype, patient 

mitochondrial DNA was analyzed for the presence of mutations. None of the patients showed 

deletion or duplication mutations in mitochondrial DNA, indicating that the mitochondrial 

phenotype was likely caused by mutation of a nuclear gene. In addition to this, serum lactate 

levels and respiratory chain enzyme activities were normal, providing further indication that the 

dystrophic phenotype was not due to alterations in mitochondrial DNA (mtDNA) sequence. 

Together, this suggested that the disease was unlike any of the previously reported merosin 

positive or dystrophin-glycoprotein complex dystrophies. 

 In 2006, a spontaneous recessive mouse mutation leading to a progressive muscular 

dystrophy with a rostral-to-caudal gradient of severity and a neonatal bone deformity was 

identified by the Cox lab at The Jackson Laboratory. This mouse was termed as rmd, to indicate 

the increasing gradient of severity of the muscular dystrophy in a rostral to caudal fashion (Sher 

et al., 2006). Positional cloning identified a 1663 bp genomic deletion encompassing exon 3 to 

intron 9 in mouse choline kinase beta (Chkb) gene on chromosome 15.  Transcription of the gene 
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would encode a truncated CHKB protein in which the choline binding and active sites were 

removed. Choline kinase beta is an important enzyme in the Kennedy pathway of skeletal 

muscles, playing an important role in the first-step conversion of choline to phosphocholine and 

subsequently into phosphatidylcholine (PC) (Gibellini & Smith, 2010). The rmd mutant mice lost 

significant control of hindlimb motor activity as indicated by dragging of hindlimbs at 2-3 

months of age. Histological examination of quadricep muscles from mice aged 6, 14, 26 and 59 

days, revealed presence of megamitochondria and significantly increased number of centralized 

nuclei in the hindlimb muscles of rmd mice. Interestingly, forelimb muscles showed sparse but 

not significant numbers of megamitochondria and no significant number of centralized nuclei on 

comparison with unaffected C57BL/6J littermates (WT mice). Membrane integrity testing using 

Evans Blue Dye, suggested that the muscular dystrophy was not likely the result of impaired 

sarcolemmal integrity. Testing for amounts of phosphatidylcholine and 

phosphatidylethanolamine (PE) levels in muscle tissue from fore and hindlimbs showed no 

significant changes in PE levels but a 38% decrease in PC levels in the forelimbs and 31% in the 

hindlimbs, suggesting that absolute levels of PC, alteration in the distribution of PC species or 

changes in PC:PE ratio are crucial to the progression of dystrophy symptoms in rmd mice. The 

gradient in the severity of dystrophy symptoms was thought to result from a differential ability of 

tissues to compensate for a loss of choline kinase beta protein. This observation was further 

corroborated by Wu. et. al. in 2009 and 2010 where they showed that there exists a tissue-

specific distribution of enzymes like citidyltransferease (CT), the rate limiting enzyme in the 

Kennedy pathway. When CT activity is significantly reduced in hindlimbs of rmd mice it impairs 

PC synthesis resulting in a decrease in PC levels in hindlimbs of rmd mice. This decrease can 

also be explained by a >2 fold increase in PC catabolism and turnover in the hindlimb skeletal 
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muscles. There is a greater percent contribution of mitochondrial PC to total muscle PC in the 

hindlimb skeletal muscles, which may result in the mitochondria diverting PC from the 

sarcolemma and contributing it to the muscular dystrophy, thus also adding to the increased 

mitochondrial dimensions (Wu, Sher, Cox, & Vance, 2009). This adds to impaired mitochondrial 

function in rmd mice where a 40% lower mitochondrial inner membrane potential is observed 

indicating compromised mitochondrial function.  Together, these results indicate that a 

deficiency in PC results in muscular dystrophy phenotype in rmd mice. In WT mice, 

megamitochondria may form in response to an increase in intracellular reactive oxygen species 

(ROS), where the mitochondria try to decrease this increase in ROS levels by decreasing 

consumption of oxygen by formation of megamitochondria. Megamitochondria can also lead to 

apoptotic signals in unfavorable cellular environments, thus protecting the organism 

(Wakabayashi, 2002). Thus, in short-term, megamitochondria are considered protective to the 

organism. However,  in the longer-term megamitochondria formation compromises 

mitochondrial function (Wu et al., 2009). These studies accelerated MDCMC research by 

characterizing the biochemical influences that lead to muscular dystrophy symptoms and 

phenotype in rmd mice.  

Muscles of the forelimbs of the rmd mice did not show as many megamitochondria and 

had relatively normal fiber structure and architecture compared to hindlimb skeletal muscles. 

The mechanism by which the severity of muscular dystrophy phenotype was greater in the 

skeletal muscles of the hindlimbs of rmd mice whereas the forelimbs remained relatively less 

affected remained unclear until 2010, when it was reported that Chkb deficiency did not impair 

PC synthesis in the forelimb of rmd mice (Sher et al., 2006)(Wu, Sher, Cox, & Vance, 2010). 

This is because choline kinase alpha (Chka), a gene paralog of choline kinase beta gene, can 
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compensate for lack of choline kinase beta. Chka and Chkb have evolved from a process of 

duplication and divergence from a common ancestral gene (Aoyama, Liao, & Ishidate, 2004). 

Western and northern blot analysis showed that both Chka and Chkb mRNA’s and proteins are 

expressed ubiquitously and concurrently in most mouse tissues. Subsequent immunoprecipitation 

showed that CHKA and CHKB proteins may function as homodimers or heterodimers but the 

predominant part of choline kinase (CK) activity is as a a-b heterodimer. In vitro studies with 

COS-7 cells co-transfected with HA-tagged CHKA or CHKB along with a Myc-tagged 

counterpart suggested that the activity of CK in each cell type is regulated by the level of each 

isoform along with the combination of each isoform subunit to generate the active dimer 

complexes (Aoyama et al., 2004). Approximately 70% of the total CK activity in the skeletal 

muscles of forelimb of mice is governed by CHKA whereas 80% of the total CK activity in the 

hindlimb skeletal muscles is governed by Chkb (Wu et al., 2010b). This explains why in the 

absence of Chkb, the forelimbs of rmd mice are less affected and why there is a gradient of 

severity of muscular dystrophy phenotype in these mice. Immunoblots of muscles from fore and 

hindlimbs of WT mice at 1, 3 and 8 weeks of age suggests that with an increase in age of the 

mouse, Chka expression increases in the forelimbs and decreases in the hindlimbs. In contrast, 

Chkb expression increases significantly in the hindlimb skeletal muscles of WT mice (Wu et al., 

2010). The residual expression of CHKA could explain why the muscular dystrophy is less 

evident in forelimbs of rmd mutant mice. Together, these results indicate that there is a 

rostrocaudally defined developmental heterogeneity in a number of factors responsible for the 

development of vertebrate skeletal muscle and that these factors also play an important role in 

defining the pattern and severity of muscular dystrophy symptoms in rmd mice.  
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 Post identification of the rmd mouse, the patients identified by Nishino et al. in 1998 

were sequenced and it was found that all of them showed mutation in the CHKB gene that lead to 

muscular dystrophy, megamitochondria and severe cognitive impairments. These patients were 

classified as congenital muscular dystrophy with megaconial myopathy (MDCMC) (Mitsuhashi, 

Ohkuma, et al., 2011). Following this, many more cases of MDCMC were reported. These 

results suggest that the rmd mouse is a good model for the study of MDCMC in humans, 

providing an excellent starting point for my experiments towards further characterization of the 

disease and towards designing strategies of functional rescue.  

 

The Kennedy pathway and its implications in MDCMC 

The Kennedy pathway elucidated in 1956 by Kennedy Weiss describes the pathway for the de 

novo synthesis of PE and PC. There are two branches of the Kennedy pathway based upon the 

formation of characteristic high-energy intermediates-CDP-ethanolamine, for the synthesis of PE 

and CDP-choline, for the synthesis of PC. Hence, the two branches of the Kennedy pathway are 

often referred to as CDP-ethanolamine and CDP-choline pathway (Gibellini & Smith, 2010).  

 In the CDP-ethanolamine Pathway, the first step is initiated by the ATP-dependent 

phosphorylation of ethanolamine to phosphoethanolamine. The second step, also the rate-

limiting step, involves CTP:phosphoethanolamine cytidyltransferase (ECT) using 

phosphoethanolamine and CTP to form high-energy donor CDP-ethanolamine with the release of 

pyrophosphate. The third and final steps involves CDP-ethanolamine:1,2-diacylgycerol 

ethanolaminephosphotransferase using CDP-ethanolamine and a lipid anchor like Diacylglycerol 

(DAG) to form PE and CMP as byproducts. Analogous CDP-choline pathway is also a 3 step 

pathway, using a series of similar reactions to form PC. In the CDP-choline pathway, choline 
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kinase instead of ethanolamine kinase catalyzes the first step phosphorylation of choline to 

phosphocholine. Similarly, cytidine-diphosphate and CDP-choline cholinephosphotransferase are 

the enzymes that catalyze the second and third step of the CDP-choline pathway (Gibellini & 

Smith, 2010). In mammals, there are three isoforms of choline kinase-choline kinase alpha 1 and 

choline kinase alpha 2 synthesiszed by the same gene and choline kinase beta synthesized by a 

gene paralog. Ethanolamine kinase has two isoforms- ethanolamine kinase 1 and ethanolamine 

kinase 2 (Hong et al., 2010)(Gibellini & Smith, 2010).  

 The enzymes of the Kennedy pathway can overlap in substrate usage. In mammals, 

choline kinase isoforms that are able to phosphorylate enthanolamine have been identified 

(Gibellini & Smith, 2010). In mammals, CDP-choline pathway is predominant for the synthesis 

of PC in all tissues except the liver where significant amount of PC is made by methylation of 

PE. It has been reported that phospholipid methytransferase activity in non-hepatic tissues is 

extremely low relative to CDP-choline pathway activity (Kent, 1995). This in-turn indicates that 

synthesis of PC in skeletal muscles is predominantly dependent on the CDP-choline branch of 

the Kennedy pathway. 
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FIG 1: The CDP-choline branch of the Kennedy pathway. 
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CHAPTER 2 

FUNCTIONAL RESCUE OF CONGENITAL MUSCULAR DYSTROPHY WITH 

MEGACONIAL MYOPATHY IN A MOUSE MODEL OF THE DISEASE. 

 
 

Abstract: 

Congenital muscular dystrophy with megaconial myopathy (MDCMC) is an autosomal recessive 

disorder characterized by progressive muscle weakness and wasting. The observation of 

megamitochondria in skeletal muscle biopsies is exclusive to this type of muscular dystrophy. 

The disease is caused by loss of function mutations in the choline kinase beta (CHKB) gene 

which results in dysfunction of the Kennedy pathway for the synthesis of phosphatidylcholine 

(PC). We have previously reported a rostro-caudal muscular dystrophy (rmd) mouse with a 

deletion in the Chkb gene resulting in MDCMC-like symptoms, and we used this mouse to test 

gene therapy strategies for the rescue and alleviation of dystrophic symptoms. Introduction of a 

muscle-specific Chkb transgene completely rescues motor and behavioral function in the rmd 

mouse model, confirming the cell-autonomous nature of the disease. Intramuscular gene therapy 

post-disease onset using an AAV6 vector carrying a functional copy of Chkb is also capable of 

rescuing the dystrophy phenotype. In addition, we examined the ability of choline kinase alpha 

(Chka), a gene paralog of Chkb, to improve dystrophic symptoms when upregulated in skeletal 

muscles of rmd mutant mice using a similar AAV6 vector. The sum of our results in a preclinical 

model of disease suggest that replacement of the Chkb gene or upregulation of endogenous Chka 

could serve as potential lines of therapy for MDCMC patients.   
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Introduction: 
Congenital muscular dystrophies (CMDs) are a group of autosomal recessive disorders 

exhibiting muscle weakness, wasting and hypotonia at or soon after birth with progressively 

increasing symptoms (Mercuri et al., 2002). There are currently at least 30 different types of 

CMD. In 2006, we reported a spontaneous mouse mutation displaying muscular dystrophy in a 

rostral to caudal gradient, with its hindlimbs being more affected than its forelimbs coupled with 

the presence of giant/mega mitochondria, leading us to name it rostrocaudal muscular dystrophy 

(rmd)(Sher et al., 2006b). The rmd mouse carries a 1.6kb deletion in the choline kinase beta 

(Chkb) gene, resulting in complete loss of CHKB activity. Choline kinase beta is an important 

enzyme in the Kennedy pathway, required for de-novo synthesis of phosphatidylcholine. In 

mammals, choline kinase is the enzyme in the first step conversion of choline to phospho-choline 

which is ultimately converted to phosphatidylcholine (PC), one of the four major biolipids in all 

cellular membranes (Gibellini & Smith, 2010). In mammals, choline kinase activity is encoded 

by two separate paralogous genes, choline kinase alpha (Chka) and choline kinase beta (Chkb), 

which function either as homo- or hetero-dimers. Both of these genes have wide tissue 

expression profiles and both encoded enzymes phosphorylate choline to phosphocholine. 

Following the publication of the rmd mouse model, a group of 15 patients with 

congenital muscular dystrophy and mega mitochondria were sequenced and found to contain loss 

of function mutations in the CHKB gene. The disease was classified as Congenital Muscular 

Dystrophy with Megaconial Myopathy (MDCMC), OMIM: 602541 (Mitsuhashi, Hatakeyama, et 

al., 2011). Both MDCMC patients and mice have loss of function mutations in the CHKB or 

Chkb gene and develop progressive muscular dystrophy indicates that the rmd mice have good 

face and construct validity as models of MDCMC. To date, there are at least 48 reported cases of 

MDCMC worldwide. These were children born of unaffected parents and having none or one 
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affected sibling, indicating an autosomal recessive inheritance. In all reported cases, patients 

showed generalized muscle weakness starting at about 5 years of age. Some patients were 

reported as early as 22 months of age. These patients missed all major motor milestones and 

showed speech defects, with initial speech occurring at about 5 years of age and pronounced 

cognitive impairments at about 12 years of age. Many of these patients were first reported due to 

floppiness and increased tendencies to fall while walking or running and /or due to the presence 

of diffuse skin disorders like mild ichthyosis (Nishino et al., 1998)(Mitsuhashi, Ohkuma, et al., 

2011)(Quinlivan et al., 2013)(Castro-Gago et al., 2014)(Oliveira et al., 2015)(Castro-Gago et al., 

2016)(Brady, Giri, Provias, Hoffman, & Tarnopolsky, 2016)(Gutiérrez Ríos et al., 

2012)(Cabrera-Serrano et al., 2015)(Haliloglu, Talim, Sel, & Topaloglu, 2015).  

Here we test several methods of functional rescue of dystrophy using the rmd mouse 

model. These tests included examining the effects of dietary intervention with CDP-choline, a 

downstream compound of the Kennedy pathway, in an effort to circumvent the defects in the 

pathway. We also tested pre- and post-disease onset upregulation of CHKB in the rescue of 

muscular dystrophy phenotype in the rmd mutant mice. Pre-disease onset rescue of rmd was 

tested by overexpression of the Chkb gene in an engineered muscle-specific transgenic mouse 

where Chkb expression was driven by the Titin (Ttn) gene promoter in the skeletal and cardiac 

muscles. These Tg-rmd mice also allowed us to examine the cell-type specificity required for 

rescue of muscular dystrophy. Post-disease onset rescue was tested by intramuscular injections 

of adeno-associated viral (AAV) vectors expressing either the Chka or Chkb genes in rmd mutant 

mice. Expression of the Chka gene normally shuts down during postnatal muscle differentiation 

(Wu, Sher, Cox, & Vance, 2010a) and our previous work suggested that residual CHKA activity 

in anterior muscle groups of the rmd mouse correlated with reduced severity of dystrophic 
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symptoms (Wu et al., 2010a). Thus, we sought to determine if CHKA could compensate for the 

lack of choline kinase beta as an alternative rescue mechanism in rmd mice. We found that viral 

delivery of Chka was also efficacious with comparable potency to rescue with the Chkb gene.   

 

Results 

Muscle-specific expression of Chkb transgene prevents muscular dystrophy: We engineered 

a full-length cDNA of the mouse Chkb gene under the control of the muscle-specific titin 

promoter and created a line of transgenic rmd (Tg-rmd) mice (Fig 2A) (Maddatu et al., 2005a). 

The Ttn-Chkb transgene was also carried on a wild-type background. The Tg-rmd and Tg-WT 

mice were physically indistinguishable from their wild-type littermates at birth and through 

adulthood (Fig 2B and 2E). Real-time PCR assays on tissue from gastrocnemius muscle of Tg-

rmd, Tg-WT, rmd and +/rmd mice was performed to assess the levels of Chkb cDNA expression. 

We observed 18-fold higher expression of Chkb mRNA levels in the Tg-rmd muscles, compared 

to C57BL/6J controls, with no detectable levels in mutant rmd muscle, a 0.21 fold expression in 

heterozygous +/rmd muscles and  14-fold higher expression of Chkb in the Tg-WT mice (Fig 

2C). Body weights of Tg-+/rmd mice were not significantly different from Tg-rmd and +/rmd, 

indicating absence of a detrimental effect of Chkb overexpression (Fig 2D). It was also observed 

that Tg-rmd and Tg-WT mice were physically indistinguishable from each other (Fig 2E). 
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FIG 2. Chkb-transgene construct, related phenotype and expression levels in mice.  

(A) demonstrates the Chkb transgene construct with a functional copy of Chkb cDNA 

inserted downstream of a complete exon 1 and partial exon 2 structure followed by a 

SV40Poly A site downstream of the Chkb cDNA. (B) shows a WT (+/+), Tg-rmd and rmd 

(rmd/rmd) mouse from top to bottom with the Tg-rmd mouse being physically comparable 

to the WT. Chkb gene expression in muscle is 18-fold higher in Tg-rmd and 14-fold higher 

in Tg-WT mice as seen from real time PCR analysis, whereas expression in rmd mice was 

not detectable and that in +/rmd mice was 0.21 times higher than in rmd mice (C).  Tg-rmd, 

+/rmd (unaffected littermates) and Tg+/rmd mice do not show significant differences in 

their body weights when measured starting at 3 weeks of age (post wean) (D). The Tg-rmd 

and Tg-WT mice are physically indistinguishable from each other (E). N=4 

mice/sex/genotype. 

 

 
 To determine if our transgene functionally rescued motor performance, we tested for 

rescue of motor performance in 8-10 week old Tg-rmd mice (n=10 mice/sex/genotype) using 

behavioral assays including open field, rotarod, grip strength and the Erasmus ladder tests. 

Mutant rmd mice showed megamitochondria with decreased mitochondrial numbers and 

increased mitochondrial areas at 2 weeks of age (Supplementary Fig 3 A-D) accompanied by 

significant motor deficits at 4-5 weeks of age, rendering them unsuitable for testing at 8-10 

weeks as with the Tg-rmd mice. (Supplementary Fig 3 E-K).   

The open field test was used to assess basic locomotor function (ambulation) (Paumier, 

Rizzo, 2013, Bailey, Crawley, 2009). Tg-rmd male and female mice travelled an equal distance  

(Fig 3 A-B) and showed similar vertical activity (Fig 3 C-D) as the control male and female 
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mice, suggesting normal ambulation and rearing ability.  

The accelerating rotarod is a forced performance test used to examine motor impairments 

(Paumier et al., 2013)(van der Vaart, van Woerden, Elgersma, de Zeeuw, & Schonewille, 2011). 

When tested for their ability to perform on the rotarod, our Tg-rmd mice were not different from 

their control littermates, indicating normal motor endurance and performance levels (Fig 3 E-F).  

We tested muscle function using a grip strength assay (Brooks, Simon, 2009). Grip 

strength of fore paws and all paws were tested and normalized to body weight in order to gauge 

the severity of the dystrophy phenotype. The Tg-rmd males and females showed a grip strength 

similar to their control littermates indicating normal fore paw and all paw grip strength (Fig 3 G-

H).  

Fine motor coordination and balance were tested using the Erasmus ladder, which 

specifically tests cerebellar motor coordination related to the precision and accurate timing of 

movement. The Erasmus ladder assay is sensitive to perturbations or disorders in fine movement, 

equilibrium, posture and fine learning and can distinguish between motor learning and motor 

coordination problems more accurately than other tests, making it a suitable device to test for 

subtle motor coordination disabilities in rodents (van der Vaart et al., 2011)(M. F. Vinueza Veloz 

et al., 2012)(Mara Fernanda Vinueza Veloz et al., 2014). A greater percentage of missteps and 

back steps on the ladder rungs indicate motor balance and coordination deficiencies. Our Tg-rmd 

males and females were not significantly different from the controls in percent backsteps and 

percent missteps during the assay. Both, control and Tg-rmd mice had a similar reaction to the 

addition of a sound cue on day 5 and showed similar increases (but not significantly different 

from each other) in the percent back steps in both male and female mice (Fig 3 I-L).  
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FIG 3. Test of muscle strength in Tg-rmd mice. Open field results for spontaneous 

locomotion, suggests normal ambulation in the Tg-rmd mice, with distance travelled not 

significantly different from that of the controls tested in males (p=0.96) and females 

(p=0.66) (A)(B).  Tg-rmd male (p=0.31) and female (p=0.67) mice show no significant 

differences in their vertical activity (C)(D). Latency to fall from 3 individual trials on the 

rotarod assay show normal motor strength in the Tg-rmd male (p=0.41) and female 

(p=0.74) mice (E)(F). Grip strength assay results suggests normal forepaw and all paw 

normalized grip strength, respectively, in the Tg-rmd mice compared to the unaffected 

controls tested. Where males showed a p=0.07 and females showed p=0.25 in forepaw grip 

strength (G), whereas males showed a p=0.37 and females, a p=0.09 in all paw grip strength 

(H). Erasmus assay for fine motor balance and co-ordination in Tg-rmd mice shows no 

significant difference in percent backsteps (males, p=0.59 and females, p=0.54) (I)(J) and 

percent missteps (males, p=14 and females, p=0.56) (K)(L), suggesting no perturbance in 

motor coordination when compared to controls. N=10 mice/sex/genotype, aged 8-10 weeks. 

Error bars represent mean with SD. 

 

Mitochondrial area measurements (n=4 mice/sex/genotype) from sections of the 

gastrocnemius muscle analyzed by transmission electron microscopy showed that while rmd 

mutant mice had mitochondria that averaged 5 times larger than those of wild type mice (p < 10-

4), mitochondrial size was restored to normal in Tg-rmd mice (p = 0.1355; Fig 4 A-D). This can 

also be seen in the frequency distribution of mitochondrial areas where Tg-rmd mice restore the 

percentage of small mitochondria while reducing the frequency of mitochondria exceeding 1 

nm2, whereas the rmd mice showed few mitochondria as large as 6 nm2 (Fig 4E). Mitochondrial 
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numbers are reduced by half in the affected rmd mice whereas, Tg-rmd mice show similar 

mitochondrial numbers to their wild type littermates (Fig 4F). Therefore, restoration of Chkb 

gene expression in skeletal muscle provides a cell-type specific rescue of Chkb expression and 

rescues the mutant rmd phenotype. 

 

FIG 4. Mitochondrial phenotype in Tg-rmd mice. Demonstration of megamitochondria in 

rmd mice (A) normal sized mitochondria in WT  littermates (B) and rescued, normal sized 

mitochondria in Tg-rmd mice (C). Mitochondrial areas are rescued in Tg-rmd (rescue) 

mice as compared to WT (control) and rmd (affected) littermates with Tg-rmd mice having 

mitochondrial areas closer in value to control mice (D). Tg-rmd mice show a higher percent 

of larger fibers (area of fibers) when compared to rmd mice (E). Mitochondrial numbers 

are restored in Tg-rmd mice compared to the decreased numbers in rmd mice, p<0.0001 

(D). N=4 mice/sex/genotype aged 4 weeks. Error bars represent mean with SD. 
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Together, these results indicate restoration of muscle strength and coordination in Tg-rmd 

mice and hence a prevention of the rmd disease phenotype. No aberrant mouse behavior or 

deaths were observed in any transgenic mice indicating an absence of toxic effects from 

overexpression of the Chkb transgene. However, in order to test this in a more thorough manner, 

we examined wild-type C57BL/6J mice carrying the Ttn-Chkb transgene (Tg-WT) and assessed 

levels of Chkb expression and motor strength.  

The Tg-WT mice were tested on the open field, rotarod and grip strength assays to 

confirm absence of any detrimental effects of transgene overexpression on motor performance. 

Open field tests performed on n=10 mice/sex/genotype, showed distance travelled by Tg-

WT is similar to that of WT mice (Fig 5 A-B). The Tg-WT male and female mice showed a 

similar latency to fall compared to the WT controls on the rotarod assay (Fig 5 C-D). In the grip 

strength assay, the Tg-WT males are not significantly different from WT male controls in their 

fore paw and all paw grip strength normalized to body weight. While the Tg-WT females did not 

show any difference in their fore paw grip strength, they showed a slightly significant increase in 

their all paw grip strength compared to WT controls (p=0.01) (Fig 5 E-F). These results confirm 

that overexpression of Chkb gene does not result in any immediate detrimental effects in mice.  
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FIG 5. Effects of Chkb transgene expression in a WT mouse. When tested for detrimental 

effects of over-expression of Chkb transgene in a WT mouse, it was observed that Tg-WT 

mice did not show significant differences in locomotor activity in both male (p=0.45) and 

female (p=0.10) groups when compared to WT mice on the open field assay (A)(B).  

Latency to fall on the rotarod assay in males, p=0.25, (C) and females, p=0.25 (D) and fore 

paw and all paw grip strength in male (p=0.13 and p=0.39) (E) Tg-WT mice were not 

significantly different compared to WT controls. The female Tg-WT mice did not show 

difference in fore paw grip strength (p=0.86) but showed slight difference in all paw grip 

strength (p=0.01), when compared to WT controls. These tests indicate lack of immediate 

toxic effects in transgene expression. N=10 mice/sex/genotype aged 8-10 weeks. Error bars 

represent mean and SD. 
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Dietary circumvention of defects in Kennedy pathway fail to rescue rmd phenotype:  

While the restoration of Chkb gene expression with a muscle-specific transgene was capable of 

preventing the onset and progression of dystrophic symptoms, we also sought to test whether we 

could bypass the biochemical defect by providing a downstream metabolic product of the 

Kennedy pathway via dietary supplementation. Previous studies have shown that intravenous 

injections of CDP-choline, a metabolite in the Kennedy pathway that is downstream of the action 

of CHKB, can help to prevent acute muscle damage in rmd mutant mice (Wu et al., 2009). We 

tested whether dietary supplementation with CDP-choline could also decrease dystrophy in the 

absence of Chkb. For the study, 500mg/kg/day of CDP-choline was provided in the diet for a 

period of 3 months beginning at 3 weeks of age (Secades JJ, 1995)(Agut J., 1983)(Bachmanov, 

Reed, Beauchamp, & Tordoff, 2002). Mutant rmd mice (n=8 mice/sex) on dietary 

supplementation were weighed daily for changes in growth rate and effects of supplementation 

of the overt dystrophic symptoms compared to their non-supplemented controls (n=4 mice/sex) 

and supplemented WT mice (n=4 mice/sex). However, no improvements were observed in the 

growth rate or behavior of treated mice over the study duration (Supplemental Fig 1 A-B).  At 

the end of this study, 2 mice/sex/genotype were randomly selected to perform mass spectrometry 

analysis for components of the Kennedy pathway in muscle tissues of the treated mice and body 

weights were analyzed. Mass spectrometry analyses showed no significant differences in the 

levels of CDP-choline in the gastrocnemius muscle between the control and test groups 

(Supplemental Fig1C).  These results indicate that a dietary supplementation of CDP-choline 

does not lead to improvement of muscular dystrophy in adult rmd mice.   
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Introduction of Chkb post-disease onset improves dystrophy phenotype in rmd mice:  

The mutant rmd disease phenotype is observed as early as 2 weeks of age, with the mice showing 

giant mitochondria with decreased mitochondrial numbers and decreased muscle strength 

(Supplemental fig 2 A-D). Hence, in order to test the effects of up-regulation of Chkb expression 

in post-disease onset adult skeletal muscle, we performed intramuscular injections of rmd mutant 

mice at 3 weeks of age with an adeno-associated viral vector-6 carrying a 3X Flag-Tagged 

functional copy of the mouse Chkb cDNA and a self-cleaving p2A peptide-EGFP reporter gene 

into the gastrocnemius muscle. Each rmd mouse served as its own control with the left leg being 

injected with the AAV vector and the right leg being sham injected with an equal volume of 

saline. Seven weeks post-injection, their gastrocnemius muscles were analyzed for changes in 

muscle weight, fiber area and percent of centralized nuclei. Gross observation showed an 

increase in muscle size in the AAV-injected muscle (Fig 6A). In vivo fluorescence images of 

injected rmd and unaffected WT mice showed that EGFP fluorescence was localized to the site of 

injection indicating localized muscle transduction. No EGFP fluorescence was detected in the 

saline injected leg (Fig 6B). Gross H&E-stained histological sections (Supplemental Fig 3 A-B) 

revealed a significant improvement in muscle fiber morphology in the AAV-Chkb injected 

muscles compared with the saline injected muscles. Montage images of the medial and lateral 

gastrocnemius muscle show a rescue of muscle fiber morphology in AAV-Chkb injected muscles 

(Fig 6C) when compared to the saline injected muscle (Fig 6D). We describe this as a partial 

rescue with the majority of muscle fibers in the injected rmd leg having cross-sectional fiber 

areas comparable to that of unaffected muscle fibers and show no centralized nuclei. However, 

there remain a percentage of muscle fibers with significantly smaller cross-sectional areas 

comparable to those of rmd mutant muscle and that show centralized nuclei. The partial nature of 



 25 

rescue can be attributed to the fact that not all fibers may have been transduced when injected at 

3 weeks of age. The AAV-injected muscles of rmd mice showed a significant increase in muscle 

weight in both males (p=0.004) and females(p=0.006) compared to the saline injected muscles, 

whereas,  the AAV-injected muscles of the unaffected WT mice showed no difference in muscle 

weight (p>0.99 in males and p=0.65 in females) suggesting that overexpression of CHKB 

rescues muscle in dystrophic mice but does not induce muscle hypertrophy in control mice (Fig 7 

A-B). AAV-injected rmd muscles showed a reduced percent of centralized nuclei compared to 

saline injected muscles (p=0.001 in males and p=0.06 in females), while those from AAV-

injected WT muscles did not show any significant differences when compared to the saline 

injected contralateral muscles (p=0.35 and 0.29 in males and females respectively) (Fig 7 C-D), 

reflective of the specificity of rescue of the disease phenotype without alteration of normal 

muscle. Analysis of cross-sectional myofiber areas showed a significant increase (p=0.0001) in 

the average fiber areas of AAV-Chkb injected rmd muscles. Classifying fiber areas in 4 quartiles 

into small (S=0-307 nm2), medium 1 (M1=307.01-795 nm2), medium (M2= 795.01-1391 nm2) 

and large (L=1391.01-14093 nm2) showed a significant increase in the percent of M1, M2 and L 

fiber sizes and a significant decrease in the percent of S fiber sizes in the AAV-injected rmd 

muscle compared with the saline injected muscle (Fig 7 E-F). 
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FIG 6. Effects of AAV-Chkb injection on rmd muscle phenotype. Gross anatomical 

observations show comparatively larger size of the injected muscle compared to saline 

injected muscle (A). In vitro fluorescence imaging show fluorescence localized to the 

injected muscle and no fluorescence in the saline injected muscle (B). Cross sections of 

whole gastrocnemius muscle at 1.25X on the nanozoomer show comparatively larger size of 

the injected muscle (C) compared to the saline injected muscle (D). Inset figures at 20X 

magnification represent partial restoration of muscle fiber in AAV-injected muscles as 

opposed to saline injected muscle. 
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FIG 7. Effects of AAV-Chkb injections on rmd muscle weights, centralized nuclei and fiber 

size. AAV-Chkb injected gastrocnemius muscles in males (A) and females (B) show 

significantly higher and restored muscle weights compared to sham injected muscles, 

whereas there is no difference in the AAV-Chkb and sham injected gastrocnemius muscles 

of unaffected mice. Percent of centralized nuclei, an indicator of poor muscle health, was 

observed to be significantly reduced in AAV-Chkb injected rmd muscles compared to the 

sham injected muscles in both males (C) and females (D). Injected unaffected muscles did 

not show any significant differences when compared to sham injected unaffected muscles in 

both males and females (C-D). Injected rmd muscles show a significant ( p=0.0001) increase 

in average fiber areas, in males and females,  compared to sham injected rmd muscle with 

a significant increase in percentage of large (L) and medium (M1, M2) fibers and a 

decrease in the percent of small (S) muscle fibers (E-F). N= 8 mice/sex/genotype. Mice were 

injected at 3 weeks of age and their gastrocnemius muscles harvested at 7 weeks of age. 

Error bars represent mean and SD. 
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Chka can compensate for lack of Chkb in rmd mutant mice.  The normal developmental loss 

of Chka gene expression in mouse caudal muscles during postnatal muscle differentiation makes 

skeletal muscles of the hindlimb particularly susceptible to disease in the case of Chkb gene 

mutations in mice. In order to test the hypothesis that the paralogous CHKA protein can 

functionally compensate for CHKB deficiency in rmd mice, we injected rmd muscles with an 

AAV vector expressing a human CHKA cDNA. The AAV-injected muscles were observed to be 

larger than the saline injected muscles seven weeks post-injection (Supplemental Fig 3 C). In 

vivo fluorescence imaging of rmd mice showed that EGFP florescence was localized to the site 

of injection whereas the saline injected site did not display any fluorescence (Supplemental Fig 3 

D). Like the Chkb gene therapy experiment, H&E staining of AAV injected muscles showed 

major regions of restored muscle structure (Supplemental Fig 3 E-F). Montage images stained 

with Gordon and Sweet’s to highlight the circumference of each myofiber showed significant 

regions with normal morphology and regions of partial rescue in the AAV-CHKA injected rmd 

muscles (Supplemental Fig 4 E-F). The AAV-injected muscles of rmd mice weighed 

significantly more than the saline-injected contralateral muscles with a p=0.008 and p=0.006 in 

males and females respectively. The difference in muscle weights between the AAV and sham 

injected WT control mice was not significant (p=0.31 in both males and females) (Fig 8 A-B).  

AAV-injected rmd muscles showed a decrease in the percent of centralized nuclei in comparison 

to saline injected rmd muscle (p=0.16 and p=0.008 in males and females respectively), while the 

AAV-injected control muscles were not significantly different from the saline-injected control 

muscles (p=0.06 and p=0.16 in males and females respectively) (Fig 8 C-D). Similar to our 

AAV-Chkb injections, treatment with the AAV-CHKA virus rescues the disease phenotype in 

dystrophic muscles without inducing hypertrophy of normal muscle in WT mice. AAV-injected 
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muscles showed a significant increase (p<0.0001) in average muscle fiber area in males and 

females. Fiber areas were classified into 4 quartiles, as in case of Chkb injections, into small 

(S=0-209 nm2), medium (M1=209.01-630 nm2), medium (M2=630.01-1159 nm2) and large 

(L=1159.01-8387 nm2). AAV-injected rmd muscles showed a significant increase in the percent 

of M1, M2 and L fiber sizes and a significant decrease in the percent of S fiber sizes (Fig 8 E-F). 
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FIG 8. Effects of AAV-Chka injections on rmd muscle weights, centralized nuclei and fiber 

size. AAV-Chka injected gastrocnemius muscles in males (A) and females (B) show 

significantly higher and restored muscle weights compared to sham injected muscles, 

whereas there is no difference in the AAV-Chkb and sham injected gastrocnemius muscles 

of unaffected mice. Percent of centralized nuclei was observed to be significantly reduced in 

AAV-Chka injected rmd muscles compared to the sham injected muscles in both males (C) 

and females (D). Injected unaffected muscles did not show any significant differences when 

compared to sham injected unaffected muscles in both males and females (C-D). Injected 

rmd muscles show a significant ( p<0.0001) increase in average fiber areas, in males and 

females,  compared to sham injected rmd muscle with a significant increase in percentage 

of large (L) and medium (M1, M2) fibers and a decrease in the percent of small (S) muscle 

fibers (E-F). N= 8 mice/sex/genotype. Mice were injected at 3 weeks of age and their 

gastrocnemius muscles harvested at 7 weeks of age. Error bars represent mean and SD. 
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Discussion: 

The discovery and characterization of the spontaneous rmd mutant mouse led to the discovery of 

CHKB as the gene underlying MDCMC (Sher et al., 2006b)(Mitsuhashi, Hatakeyama, et al., 

2011), establishing the validity of the rmd mouse as a model of the human disease and opening 

up avenues for mechanistic and preclinical studies. MDCMC is caused by recessive loss of 

function mutations in the choline kinase beta gene. We have shown that the ubiquitous loss of 

Chkb in rmd mutant mice leads to a cell and tissue-specific disease which can be restored by 

upregulating expression of Chkb in skeletal muscle tissues only, indicating that regeneration of 

skeletal muscles in a Chkb-deficient environment is cell-autonomous. Intramuscular AAV 

injections of Chkb and Chka gene also help restore muscle morphology in rmd mutant mice, 

while dietary supplementation of Kennedy pathway intermediates does not have a regenerative 

or rescue effect. 

 Gene replacement of Chkb by transgenesis or by AAV6 delivery rescues the muscular 

dystrophy phenotype of the rmd mouse. Introduction of a functional copy of the Chkb transgene 

under a muscle-specific promoter prevented disease onset, with the Tg-rmd mice showing 

normal mitochondrial dimensions and muscle strength. This indicates that although the Chkb 

gene is ubiquitously expressed, the enzyme deficiency results in a muscle-specific defect in 

phosphatidylcholine biosynthesis that can only be rescued by a cell-autonomous increase of 

CHKB activity within muscle cells themselves. Overexpression of the Chkb gene up to a 14-fold 

magnitude does not cause a negative impact on the Tg-WT animals, with mice showing 

behavioral and muscle strength phenotypes comparable to their non-transgenic littermates. 

Further, introduction of the Chkb gene using AAV6 post-disease onset in young adult rmd mice 

can help reverse the degenerative muscle disease. Intramuscular AAV6 vector injections 
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containing a functional copy of Chkb gene in adult skeletal muscle resulted in improved muscle 

regeneration capacity and subsequent increased muscle weights and fiber areas with a decreased 

number of centralized nuclei compared to untreated rmd muscles (Hollinger & Chamberlain, 

2015)(Zincarelli, Soltys, Rengo, & Rabinowitz, 2008)(Ramos, Chamberlain, & Muscular, 2015). 

A detailed analysis of fiber areas shows an increase in the percent of large and medium sized 

fibers in AAV injected muscles with a significant decrease in the percent of small sized fibers. 

The presence of different fiber sizes pre and post AAV-Chkb injections illustrate the partial 

nature of fiber rescue. It can be inferred that the transduced rmd muscle fibers regenerated to a 

healthier phenotype whereas, the rmd muscle fibers that were already atrophied and wasted or 

that were not transduced remained unhealthy, showing a dystrophic phenotype. These results 

suggest that replacing Chkb gene, post disease-onset and in adult mice helps reverse muscular 

dystrophy by increasing muscle regeneration in a cell-autonomous manner in dystrophic rmd 

mice. Injecting and thus upregulating Chkb expression in unaffected muscles did not have any 

detrimental effects as indicated by lack of hypertrophy in AAV-Chkb injected skeletal muscles, 

indicating that upregulation of the CHKB gene in MDCMC patients via AAV mediated gene 

therapy can be a possible therapeutic measure. We have also shown that up-regulation of CHKA 

by localized AAV-CHKA injections helps to restore muscle regeneration and alleviate the 

dystrophic phenotype in rmd muscles, similar to AAV-Chkb injections, making this another 

potential therapy for MDCMC.  

 Biochemical studies suggest that choline kinase alpha and beta can function either 

as homodimers or heterodimers in the phosphorylation of choline to phosphocholine for the 

production of phosphatidylcholine (Aoyama et al., 2004). In rmd mice, total choline kinase 

activity in the hindlimbs is absent whereas in the forelimbs, choline kinase activity is attenuated 
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by only 50% (Wu et al., 2010a). These results led to the hypothesis that there must be an age-

dependent reliance on the activity of CHKB in WT hindlimb skeletal muscles of mice as Chka 

gene expression decreases. The partial retention of choline kinase activity in the forelimbs of 

adult rmd mice (due to residual Chka expression) provides a possible explanation for the 

decreased severity of disease in forelimb muscles versus the much more severe and progressive 

dystrophy in hindlimb muscles. This led us to test the possibility that CHKA can functionally 

compensate for CHKB deficiency in the severely affected hindlimb muscles of the rmd mutant 

mouse. The mechanism by which the expression of Chka shuts down in adult mouse skeletal 

muscles is still unclear. A study of CHKA expression in human skeletal muscle over time has not 

been tested, however, GTEx expression data across 53 adult tissues shows that CHKA transcript 

levels are the lowest in adult skeletal muscles (GETx Portal Version V7). Our data indicated that 

increasing the expression of CHKA in post-disease onset, adult skeletal muscles results in 

improved muscle regeneration, increased muscle weights and fiber areas and a decrease in the 

percent of centralized nuclei with no immediate observable toxic effects. This suggests that even 

though CHKA expression is normally shut down in adult skeletal muscles, upregulation of its 

expression can compensate for lack of CHKB activity.  

Increase expression of choline kinase alpha, but not beta, has been implicated in 

tumorigenesis, with CHKA overexpression detected in 40-60% of human tumors (Chang, Few, 

Konrad, & See Too, 2016). Transfecting human (Hek293T) cells with Chka resulted in 

anchorage independent growth activity similar to that demonstrated by Rho-A activation 

(Ramírez De Molina et al., 2005). It can be inferred that, CHKA upregulation via AAV injections 

can potentially cause non-cancer cells to take on a cancerous phenotype, while siRNA 

downregulation can lead to death of cancer cells. Immediate evidence (7 weeks post-injection) 
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for this was not found in our experiments of localized intramuscular injections of CHKA in rmd 

skeletal muscles. CHKA injected mice will need to be aged and studied for potential tumorigenic 

effects of gene upregulation in order to determine whether the association between CHKA and 

cancer is directly causative of disease or whether it is instead a biomarker of the cancerous state.  

 Chkb deficiency causes muscular dystrophy in a rostral to caudal gradient in mice as 

Chka expression is shut down in caudal adult skeletal muscles. One might expect that there is a 

functional reason for the observed decrease in normal Chka gene expression in adult skeletal 

muscles, however our data suggests that overexpression of CHKA via an AAV gene therapy 

approach is not deleterious in skeletal muscles. In the CHKB-deficient condition, CHKA can 

compensate for the lack of choline kinase beta to form functional a-a homodimers for the 

phosphorylation of choline to phosphocholine in skeletal muscles. Our results support that both 

the upregulation of either CHKB or CHKA can be used as a potential therapy for the rescue of 

MDCMC symptoms. As gene therapy may not be appropriate for all patients, strategies to 

upregulate the endogenous CHKA  locus might also prove effective for the alleviation of 

MDCMC symptoms. Interestingly, the upregulation of CHKB or CHKA also reduces the 

presence of megamitochondria, indicating that the two phenotypes are related and cannot be 

rescued independent of each other. Megamitochondria are thought to result in a disruption of 

normal myofiber structure, with altered cellular architecture including disordered sarcomeric and 

muscle triad structures that are necessary for the orderly distribution of energy-producing 

mitochondria. Whether the generation of megamitochondria in skeletal muscle directly causes 

the muscular dystrophy or is just a biomarker of the disease remains to be tested.  
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Materials and Methods 

Mouse colonies: All mice were bred and maintained at the Jackson Laboratory following 

procedures and protocols approved by our institutional animal care and use committee (IACUC). 

For breeding, mice were kept in humidity and temperature controlled rooms with a 12:12 

dark:light cycle. They were given an NIH-mouse diet with 6% fat (PMI Feeds, Inc., St. Louis, 

MO) ad libitum with free access to water (HCl-acidified, pH 2.8–3.2). For all motor and 

behavioral tests, the mice were moved to a separate room and singly housed where they were 

maintained under IACUC approved conditions until completion of the test procedures. In this 

facility, the mice were kept on a 4% extruded grain diet and were provided with clean acid water 

unless mentioned otherwise.  

Generation of transgenic (rescue) mouse: Expression of Chkb transgene in transgenic mice, 

for the generation of rescues was achieved by using the titin (Ttn) promoter to express the Chkb 

cDNA transgene specifically in skeletal and cardiac muscles (Maddatu et al., 2005a). This 

promoter reproduces the endogenous pattern of titin expression in muscles prior to the onset of 

the rmd disease symptoms. The Ttn promoter includes 3.5 kb of sequence upstream of the non-

coding Ttn exon 1, the entire 2.1 kb of intron 1 and exon 2 is truncated just before the start 

codon. The inclusion of an intron in the construct is beneficial for proper long term expression in 

transgenic mice and to take advantage of any possible control elements that might be located in 

the first intron. The polyadenylation signal is a 200 bp fragment derived from the SV40 viral 

genome that we have successfully used in numerous transgenic lines. A 1589bp Chkb cDNA 

fragment, including 234bp upstream from the exon 1 ATG start codon (Ch15 reverse strand, 

89,429,834bp, Ensembl GRCm38) to 145 bp downstream from the exon 11 TGA stop codon 

(89,426,584bp) was PCR cloned and blunt-ligated into the Ttn plasmid backbone immediately 
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after the truncated exon 2. The completed pTtn-Chkb constructs were injected into fertilized 

C57BL/6J eggs by the microinjection. Transgenic founders were bred to C57BL/6J mice to 

generate a stable colony and maintain the transgene on an inbred background. Transgenic mice 

were identified through PCR of tail DNA with a forward primer in the 3’ end of the TTN 

promotor sequences, TTN100F (5’-TCTCCACCAAGAAGACGCTG-3’) together with a reverse 

primer in the 3rd exon of Chkb, Chkb-e3R (5’-CTTTCTAATACCAAGGAGTCTACACC-3’). 

 

Mitochondrial area 

Specimen preparation: For Transmission Electron (TE) microscopy, 4 mice per genotype (rmd, 

WT and Tg-rmd) were used to analyze mitochondrial structure. The medial and lateral 

gastrocnemius muscle were isolated and fixed in a solution of 2% paraformaldehyde, 2% 

glutaraldehyde, in 0.1 M cacodylate buffer (pH 7.2) at 4°C overnight. Tissues were then washed, 

dehydrated in graded series of ethanol and processed for 812 resin embedding. Samples were 

then cured at 70°C for 48 hours followed by thin sectioning (90nm) with a Leica EM UC6 

ultramicrotome (Leica Microsystems, Buffalo Grove, IL) on a diamond knife. The sections were 

then placed on 300 mesh copper grids and stained using 2% uranyl acetate and Reynolds lead 

citrate. Samples were evaluated at 80 kV using a JEOL JM-1230 transmission electron 

microscope (JEOL, Tokyo, Japan) and images collected with an AMT 2K digital camera 

(Advanced Microscopy Techniques, Woburn, MA).  

Mitochondrial area calculations: 10 pictures per sample (n=4) were taken using the TE 

microscope. Mitochondrial areas were measured using FiJi and analysis of variance calulations 

were performed on Prism software (version 7.0c for Mac OS X).  
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Behavioral and motor assays: Adult mice (n=10 per sex, per genotype) were put through a 

battery of behavioral tests for motor function. The tester was blinded for the duration of the 

entire battery of assays. The time of the day at which each test was performed was kept constant 

for each assay performed. The mice were allowed a minimum resting period of 2 days between 

every test. All equipment was sprayed down and wiped with 70% ethanol before and in between 

testing mice. The test animals were habituated for 60 mins in the testing room before each test. 

The order of testing was as follows; open filed, rotarod, grip strength and Erasmus ladder. 

Open field test: Post habituation in testing room, mice were individually placed in standard 

Verasamax chambers, under standard lighting conditions of ~500 lux and with standard 

background noise levels of about 62 -65 dB. The mice were tested for 60 mins with data 

collection in 5 min bins. Analysis was performed for total distance travelled (cm), (Paumier et 

al., 2013)(Seibenhener & Wooten, 2015)(Asinof et al., 2015)(Crawley, 2000)(Tatem et al., 

2014)(Sukoff Rizzo et al., 2018).  

Rotarod test: The Ugo Basile rotarod was used to analyze motor co-ordination and balance in 

mice. The rotarod drum was steadily accelerated from 4 to 40 rpm over a 300 sec duration. Each 

animal was put through 3 consecutive trials and the average latency to fall was recorded. Mean 

of combined latency to fall of the entire group was also calculated (Paumier et al., 2013)(van der 

Vaart et al., 2011). 

Grip strength test: Animals were individually tested using the force gauge by BIOSEB. Each 

animal was tested for three forepaw trials and three all paw trials (6 total trials). A force 

transducer is  used to measure maximum force generated which is then normalized to body 

weight and analyzed analyzed using the BIO-CIS software (Brooks & Dunnett, 2009)(van der 

Vaart et al., 2011).  



 38 

Erasmus Ladder: Fully automated Erasmus ladder was used to study locomotion and motor 

coordination in mice. Noldus equipment with software Version 1.1 as described by R Van Der 

Giessen, et al, 2008 and Vinueza et al, 2012, were used for the testing procedure. Each animal 

was run through 42 trials per day for 5 consecutive days. For all the trials there was perturbation 

but no tone cue used. Tone cue was added to the trials on day 5 of the testing. (Van Der Giessen 

et al., 2008)(M. F. Vinueza Veloz et al., 2012). During data acquisition, the mice were kept in 

the pexiglass chamber of the goal box. Data for percent missed steps and percent backsteps, were 

recorded and later analyzed (Mara Fernanda Vinueza Veloz et al., 2014). 

 

 

CDP-choline diet supplementation: For this study, 4 WT mice/sex and 8 rmd mice/sex were 

provided with CDP-choline supplemented 76A lab diet gel from Clear H2O and 4 rmd mice/sex 

were used as controls and were fed plain diet gel. Same sex mice were housed in doublets in 

each side of a duplex mouse cage. 87.5mg of CDP-choline was mixed in 56gms of standard 76A 

lab diet gel cups. On an average a mouse eats 8gms of diet gel per day giving them a dose of 

500mg/Kg/day. Diet gel cups were changed 3 times a week (Bachmanov et al., 2002). The WT 

mice were administered diet gel cups spiked with CDP-choline to assess to possibility of toxic 

effects due to increased consumption of CDP-choline. 8 rmd mice/sex were administered CDP-

choline spiked diet gel cups, these are referred to as Test mice and the remaining 4 rmd mice/sex 

were administered standard diet gel cups with no CDP-choline added, these are referred to as 

control mice. The total length of this study was 3 months. Mice were weighed and assessed for 

general health every week (Wu et al., 2012)(Secades JJ, 1995)(Wurtman, Regan, Ulus, & Yu, 

2000).  
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Adeno-Associated Viral vector design: Adeno-Associated Viral vector design: An AAV 

subtype 6 was selected as it shows higher gene expression and tropism in skeletal muscles 

(Zincarelli et al., 2008)(Hollinger & Chamberlain, 2015). AAV vector plasmid AAV-Chkb was 

derived from AAV-CAG-GFP plasmid (Addgene #28014). This plasmid contains mouse Chkb 

cDNA tagged by a 3X Flag Tag (5-

GACTACAAAGACCATGACGGTGATTATAAAGATCATGACATCGACTACAAGGATGA

CGATGACAAG-3’) at the 5’ end in order to distinguish transduced Chkb expression from 

endogenous expression, all under the control of a CAG (CMV early enhancer/chicken beta actin) 

promoter. The plasmid also contains EGFP as a gene expression reporter protein, the expression 

of which is driven by the CAG promoter through P2A ribosomal skipping sequence downstream 

of the Chkb coding sequence (Y. Wang, Wang, Wang, Zhao, & Xia, 2015). Recombinant AAV6 

vectors were produced by triple transfection of HEK293T/17 cells with Chkb plasmid DNA, 

pAAV2/6 packaging plasmid, and pAd delta F6 helper plasmid (Penn Vector Core) using linear 

polyethylenimine (PEI). Transfected cells were incubated at 37°C, 5% CO2 in DMEM 

supplemented with 2.5% fetal bovine serum. Three days after transfection, the crude vector 

fraction was obtained by combining the precipitated products from culture medium with final 8% 

polyethylene glycol and the cell extracts lysed by repeated freeze–thaw cycles. The crude vectors 

were then purified by iodixanol density-gradient ultracentrifugation. Purified AAV6 vector was 

dialyzed against 1× PBS with 5% sorbitol. Viral titer was measured using real time PCR with 

primers for the ITR region (5'-GGAACCCCTAGTGATGGAGTT-3' and 5'-

CGGCCTCAGTGAGCGA-3'). A final volume of 300µl with a concentration of 1.84 X 1013 

vg/ml was obtained for AAV-Chkb injections and 150µl of 2 X 1014 vg/ml of AAV-Chka.  
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Transduction of muscle fibers and tissue processing: The left gastrocnemius muscle of 3 

week old rmd mice and unaffected controls were injected locally with 2 X 1010vg of AAV vector 

solution in 25µl PBS. The right gastrocnemius muscle was treated as control and injected with 

25µl of sterile PBS solution only (Lu et al., 2003)(Liu, Yue, Harper, Grange, & Jeffrey, 2008). 

The injected animals were aged on shelf for 7 weeks post-injection and the gastrocnemius 

muscles were harvested at 10 weeks of age and fixed in 10% neutral buffered formalin for 24hrs 

before embedding in paraffin.  

 

Muscle fiber staining: 

Gordon and Sweets stain for reticular fibers: Injected gastrocnemius muscles were harvested 7 

weeks post injection and fixed in 10% Neutral buffered Formalin (NBF). Samples were then 

oxidized in 1% potassium permanganate solution, bleached in oxalic acid, sensitized in 2.5% 

ferric ammonium sulfate and impregnated with ammoniacal silver solution. Following a rinse 

and a 2 min fix in formalin, the samples are toned in 0.2% gold chloride solution and washed 

with 5% sodium thiosulphate. Samples are rinsed, dehydrated and clear mounted for microscopy 

analysis. 

Hematoxylin and Eosin staining: Injected muscle fibers were fixed in 10% NBF and embedded. 

Post embedding, the samples were processed in a Leica automated stainer by Histology core 

services at the Jackson Laboratory. 
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Statistical analysis: All the experiments were performed at the Jackson Laboratory, Bar Harbor. 

All mouse handling, testing, and analysis were performed blinded for mouse genotype. Where 

appropriate, statistical significance was calculated using Student’s t-test or 2-way ANOVA with 

post-hoc Bonferroni corrections unless otherwise noted. Calculations were performed using 

Prism 7.0c software for Mac OS X and any significant differences (p<0.05) between test and 

control strains are denoted by an asterisk symbol. 
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CHAPTER 3 

SIGNIFICANT DIFFERENCES IN BRAIN LIPID PROFILES DO NOT TRANSLATE 

TO BEHAVIORAL DIFFERENCES IN TRANSGENIC RMD MICE. 

 

Abstract: 

 Congenital muscular dystrophy with megaconial myopathy (MDCMC) is characterized 

by an early onset of muscle degeneration and wasting, megamitochondria and severe cognitive 

impairments. As reported earlier, we have identified a spontaneous mutant mouse- rmd, with a 

1.5kb deletion in choline kinase beta gene (Chkb) that shows muscular dystrophy in a rostral to 

caudal gradient and megamitochondria. The rmd mouse has been characterized for muscle 

strength, function and enzyme biochemistry, all of which match the phenotype seen in MDCMC 

patients. Here we tested whether the rmd mice can also be used to model the cognitive 

impairments seen in MDCMC patients. We have used a muscle-specific Chkb transgene to 

rescue the muscular dystrophy in rmd mutant mice in order to conduct behavioral assays for the 

determination of working memory and learning in Chkb deficient conditions. Along with this, we 

have also conducted a detailed MS/MSALL mass spectrometry analysis on rmd and Tg-rmd mice 

in comparison to WT mice to test for differences in brain lipid profiles as has been observed in 

cases of cognitive impairment. We observed that even though there are significant differences in 

the lipid profiles of brain tissue from rmd and Tg-rmd mice compared to WT mice, these 

changes do not translate to significant differences in behavioral analysis of the same mouse 

models.  Our data contributes to the characterization of cognitive impairments in a mouse model 

of MDCMC and defines lipidomic changes in the brain of Chkb-deficient mice. 
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Introduction: 

Congenital muscular dystrophy with megaconial myopathy (MDCMC) is a rare form of 

muscular dystrophy in which patients suffer from muscle wasting and have giant mitochondria. 

In addition, in all reported cases of MDCMC, patients were found to have cognitive 

impairments, demonstrated by an IQ lower than the general average of 90 on the Stanford-Binet 

scale, speech defects and slow learning (Nishino et al., 1998)(Mitsuhashi, Ohkuma, et al., 2011).  

As reported in chapter 1, we have discovered a mutant mouse (rmd) carrying a spontaneous 

deletion in the Chkb gene and display an early onset progressive muscular dystrophy with 

prominent megamitochondria. Mutant rmd mice show two out of three phenotypes observed in 

MDCMC patients and here we determined whether rmd mice could also model the cognitive 

impairments observed in the MDCMC patients, thus making it a model for all of the major 

aspects in MDCMC phenotype. 

 Cognitive impairment in a mouse can be tested by running a battery of behavioral assays 

that include tests for working and short-term memory and learning potential in the mice. These 

assays require the mice to perform tasks that require a certain level of physical activity. The rmd 

mice start dragging their hindlimbs at about 8 weeks of age, making this level of physical 

activity near impossible for some of the tests that continue even after the mice are about 6 

months of age. As a result, the rmd mice could not be used to assess cognitive impairments.  

As reported in chapter 2, the Tg-rmd mice have been engineered to carry a functional copy of the 

Chkb gene under the control of a skeletal muscle specific promoter-Titin, this gives them a 

rescued phenotype in the skeletal muscles but a retains the CHKB-null phenotype in brain 

tissues, making them a good model for the testing of cognitive impairments.  
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Choline and phosphatidylcholine in normal brain development: 

It has been shown that the deficiency of CDP-choline, a downstream metabolic product 

of phosphorylation of choline can detrimentally affect neuronal cells and more specifically the 

glial cells of the hippocampus (Zweigner et al., 2004)(Sanders & Zeisel, 2007). Lack of choline 

impairs PC production, an important compound for normal brain development. Administration of 

PC in mice with dementia have a neuroprotective effect and improves memory by increasing 

brain acetylcholine concentration (S. Chung, et al., 1994). Single nucleotide polymorphisms 

(SNPs) close to the choline kinase beta gene influences neurobehavior and can cause 

susceptibility to narcolepsy (Miyagawa et al., 2008). Previous literature suggests that 

deficiencies in PC production influences neuronal and neuro-behavioral phenotypes.  

 Choline is an essential nutrient with an average intake for men being around 600 mg/day 

and that for women at about 450 mg/day. It is required to make phospholipids, especially 

phosphatidylcholine, and is an important precursor for the biosynthesis of neurotransmitter 

acetylcholine. Choline deficiency has been reported to cause disorders in the muscle, liver, 

kidney, pancreas, developing brain and nervous system. Though choline can be synthesized de 

novo, the minute quantities synthesized are not sufficient to carry out synthesis of phospholipids 

and neurotransmitters and hence de novo synthesis of choline is supplemented with dietary 

intake by absorption from food like organ meats, milk, eggs and peanuts. (Zeisel SH, 

1992)(Sanders & Zeisel, 2007). De novo synthesis of choline is carried out by the sequential 

methylation of phosphatidylethanolamine (PE) to PC, catalyzed by phosphatidylethanolamine N-

methyltransferase (PEMT) using S-adenosylmethionine (AdoMet) as a methyl-group donor. 

Choline can also be generated de novo by the metabolism of PC via phospholipases.  
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 (Lin & Gant, 2014). Choline synthesized or absorbed from food can then pass though the 

intercellular tight junctions in the brain, where it is phosphorylated to form phosphocholine and 

later PC. It has been suggested that deficiency of choline and hence that of PC triggers apoptosis 

in the brain (Zweigner et al., 2004). PC deficiency also results in muscular dystrophy as reported 

by Sher et al. and outlined in chapter 2 (Sher et al., 2006)(Wu et al., 2009)(Zeisel, 1992). PC 

cannot be transported through the blood brain barrier and hence neuronal tissue is dependent on 

the synthesis of PC from transported choline.  

 

Differences in brain lipid profile in normal and cognitively impaired humans and rodents. 

The human brain is about 60% lipid, making lipids important regulators of brain function. 

Studies on post mortem brain tissue from Alzheimer’s disease (AD) patients show that patients 

with late onset Alzheimer’s disease (LOAD) have a distinctly different lipid profile than 

unaffected humans. After free cholesterol, phospholipids form the second major lipid component 

in brain with PC and phosphatidylethanolamine (PE) being the most abundant components 

within the phospholipid group. It has been shown that LOAD patients show a 1.8 fold increase in 

diacylglycerols (DAGs) in the prefrontal cortex (PFC) with a significant decrease of about 25% 

in PE species. LOAD patients also show significant changes in sphingolipid metabolism, 

monoacylglyceryl phosphate and sphingomyelins, with higher plasma levels of sphingomyelins 

being predictors of slower disease progression in AD patients. The concentration of free fatty 

acids in plasma was 43% lower in persons with mild cognitive impairments (MCI) and 52% 

lower in AD patients. AD patients showed significant lower levels of DHA. Analysis of familial 

Alzheimer’s disease (FAD) on three different transgenic mouse models showed fatty acyl long 

chain remodeling with a decrease in long-chain phospholipid and long-chain sphingolipids 
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balanced by increases in short and long medium length species. Selective accumulation of 

medium-chain length SM was observed. Even though similar trends in changes in brain lipid 

profiles were observed in humans and mice, these changes were not identical within different 

regions of the brain in humans and mice exemplifying changes in different lipid species (R. B. 

Chan et al., 2012)(Cunnane et al., 2012)(Wood, 2012). 

 

Results: 

rmd mutant mice have lower muscle strength than WT littermates: rmd mice begin dragging 

their feet at about 8 weeks of age. Since behavioral assays for memory and learning are validated 

for mice aged 8-10 weeks and require considerable physical activity like mobility in a Y-maze 

and rearing activity for touchscreen, it was imperative to test for muscle strength and function in 

rmd mice at an earlier age. Testing at wean age of 4 weeks was selected as the earliest time point 

at which the mice can be tested and run on all the behavioral assays. The rmd mice were tested 

against aged-matched WT littermates for muscle strength using open field, rotarod and grip 

strength assays.  The rmd males and females showed a small but significant difference from their 

WT littermates (p = 0.02 and 0.04, respectively) in the total distance travelled (Fig 9 A- B). 

Males and females also showed a significant difference compared to the WT in the vertical 

activity with p=0.001 and 0.003, respectively (Fig 9 C-D). The rmd mice show decreased fore-

paw (males and females, p < 0.0001) and all-paw (males and females, p < 0.0001) grip strength 

(Fig 10 A-D).  In the rotarod assay, the rmd mice showed a significant latency to fall on an 

average and in between trails with a P value less than 0.0001 in both males and females (Fig 11 

A-B). As observed from these tests, muscle function is impaired at 4-5 weeks, making it 
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impossible to use rmd mice for testing in behavioral assays like paired associates learning or 

dPAL assay as these assays may continue for a period of  > 3months.   

 

 

 

 

FIG 9. Measurement of open field activity in rmd mice. The rmd males and females showed a 

significant difference compared to the WT in the total distance travelled (p=0.02 in males 

and 0.04 in females) and in the vertically activity shown (p-0.001 in males and 0.003 in 

females). N= 5 mice/sex/genotype aged 4-5 weeks. Error bars represent SD. 
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FIG 10. Measurement of grip strength in rmd mice. rmd mice show significantly decreased 

fore-paw and all-paw grip strength when compared to their unaffected (WT) littermates 

with males and females showing p values less than 0.0001 in each of the tests (A-D), 

suggesting lower grip and hence muscle strength. N= 5 mice/sex/genotype aged 4-5 weeks. 

Error bars represent SD. 
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FIG 11. Measurement of rotarod activity in rmd mice.  rmd mice show a significant 

difference from WT in latency across trials in the rotarod test with p<0.0001 (A) and a 

significant difference of p<0.0001 in the average latency to fall (B) in a grouped analysis of 

males and females. N= 5 mice/sex/genotype aged 4-5 weeks. Error bars represent SD. 

 

rmd mutant mice show significant changes in lipid profile: Tissue from the cerebellum, cortex 

and Mid + Hind brain region of rmd mice (N=2 mice/sex) were compared with those of WT 

mice (N=2 mice/sex) in order to test for any changes in the lipid profile as observed in LOAD 

and MCI patients. These mice were aged and were 56-58 weeks old at the time of brain tissue 

harvest. MS/MSALL employs a sequential stepping through a user pre-defined mass range that 

isolates and fragments all ions within that mass range, resulting in the collection of more than a 

thousand MS/MS spectra that covers every precursor in the mass range of each cycle. MS/MSALL 

is hence, more robust and efficient form of collection of mass spectra data. Lipid profiling with 

MS/MSALL mass spectra suggests significant differences in the major lipid molecules like 

triacylglycerols (TAGs), sphingomyelins (SMs), diacylglycerols (DAGs), monoalk(en)yl 

BA
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diacylglycerol (MADAGs) and glycerophospholipids (GPLs). Changes within species of lipid 

molecules are reflected via changes in number of branches, branch length and in saturation.   

 

 

FIG 12. PCA of TAGs in brain. Principal component analysis with Pareto scaling on 

MS/MSALL Triacylglycerol (TAGs) in the brain region, showing significant differences 

across genotype. 

 
 

A PCA analysis of the TAG molecules in the cortex, cerebellum and mid-hind brain 

region shows a significantly different clustering in rmd and WT cortex and mid-hind brain 

region. The cerebellum too shows a slightly different clustering in the PCA (Fig 12). Table (1.1-

1.3) represents the ten most significantly altered TAG molecules in the above-mentioned brain 

regions. It can be seen that there alterations in long chain, unsaturated MDAG (54:9/54:10) 

A
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molecules which is balanced by an increase in the number of medium-chain MDAG (46:2/48:1) 

molecules. The same can be found true for TAG (56:7 and 46:7) and DAG (38:5 and 36:1) 

molecules. 

 

FIG 13. PCA of SMs in brain. Principal component analysis with Pareto scaling on 

MS/MSALL Sphingomyelins (SMs) in the brain region, showing significant differences 

across genotype. 

 

SMs in the cerebellum, cortex and mid-hind brain region of rmd and WT mice show significantly 

separate clustering as observed for DAG molecules (Fig 13). Upon sorting the delta values of the 

different species identified using MS/MSALL, from highest to lowest, it can be seen that ten most 

significantly differing SM molecules differ in their number of side chain/ chain branches (Table 

1.4 -1.6).  

B
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FIG 14. PCA of DAGs in brain. Principal component analysis with Pareto scaling on 

MS/MSALL diacylglycerol (DAGs) and monoalk(en)yl diacylglycerol (MADAGs) in the 

brain region, showing significant differences across genotype. 

 
 
DAGs analyzed in the cortex of the brain show a clear separation in the PCA for rmd and WT 

mice (Fig 14). The cortex showed higher number of long and medium chain molecules with 

fewer branches whereas the mid-hind brain region showed an increased number of molecules 

with small to medium chain length and higher number of chain branches (Table 2.1-2.3). 

  

C
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FIG 15. PCA of glycerophospholipids in the brain. Principal component analysis with Pareto 

scaling on MS/MSALL glycerophospholipids in the brain region, showing significant 

differences across genotype. 

 

A PCA of GPLs in the brain region of rmd and WT mice showed clear separation in all three 

analyzed regions with maximum separation in the mid-hind brain region (Fig 15). Major 

differences were noted in the PE and phosphatidylserine (PS) molecules, with most differences 

within these molecules lying in the fatty acid chains (Table 2.4-2.6).  

Together with previous literature, our data suggests there is a biochemical basis for 

anticipating cognitive impairments in the rmd mice, similar to the spectrum of cognitive 

impairments demonstrated by MDCMC patients.  

D
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Table 1: Top10 significantly altered TAG (1-3) and SM (4-6) lipid species in the 

cerebellum, cortex and Mid-Hind brain region of rmd mice. 

 

Top 10 most significantly different
TAG species in cerebellum p value
TAG 54:6+NH4 (-FA 22:6 (NH4)) 0.99924
MADAG 48:7+NH4 (-FA 19:3 (NH4)) 0.98857
MADAG 48:0+NH4 (-FA 15:0 (NH4)) 0.97427
MADAG 44:5+NH4 (-FA 20:4 (NH4)) 0.9724
DAG 36:4+NH4 (-FA 16:0 (NH4)) 0.96115
MGDG 38:12+NH4 (-MGDG (NH4)) 0.94583
DAG 34:1+NH4 (-FA 16:1 (NH4)) 0.94491
MADAG 54:8+NH4 (-FA 18:1 (NH4)) 0.94436
MADAG 48:0+NH4 (-FA 15:0 (NH4)) 0.94347
MADAG 52:10+NH4 (-FA 14:1 (NH4)) 0.93988

Top 10 most significantly different
TAG species in cortex p value
DAG 34:1+NH4 (-FA 16:1 (NH4)) 0.98907
MADAG 52:10+NH4 (-FA 14:0 (NH4)) 0.98092
MADAG 48:7+NH4 (-FA 16:0 (NH4)) 0.97418
TAG 48:8+NH4 (-FA 14:0 (NH4)) 0.96965
TAG 46:3+NH4 (-FA 17:2 (NH4)) 0.95001
TAG 54:5+NH4 (-FA 18:3 (NH4)) 0.94092
TAG 54:6+NH4 (-FA 16:0 (NH4)) 0.91744
MADAG 36:1+NH4 (-FA 16:1 (NH4)) 0.91506
MADAG 48:8+NH4 (-FA 12:0 (NH4)) 0.91495
MADAG 52:11+NH4 (-FA 14:0 (NH4)) 0.90907

Top 10 most significantly different
TAG species in Mid-Hind brain p-value
MADAG 50:5+NH4 (-FA 12:3 (NH4)) 5.27E-08
MGDG 38:3+NH4 (-MGDG (NH4)) 2.01E-06
MADAG 50:2+NH4 (-FA 20:1 (NH4)) 2.86E-06
MADAG 52:10+NH4 (-FA 12:1 (NH4)) 4.75E-06
MADAG 54:11+NH4 (-FA 20:4 (NH4)) 2.08E-05
MADAG 52:8+NH4 (-FA 16:1 (NH4)) 2.62E-05
MADAG 46:2+NH4 (-FA 19:2 (NH4)) 2.77E-05
TAG 54:4+NH4 (-FA 18:2 (NH4)) 2.80E-05
TAG 54:4+NH4 (-FA 18:1 (NH4)) 4.72E-05
TAG 54:6+NH4 (-FA 14:0 (NH4)) 6.35E-05

1

2

3

Top 10 most significantly different
SM species in cerebellum p-value

HexCer 40:2;4 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 9.47E-06

HexCer 40:2;4 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 5.80E-05
SM 44:1;3 (SM) 0.0001
SM 44:4;2 (SM) 0.00011
SM 44:0;4 (SM) 0.00019
SM 34:2;3 (SM) 0.00022
SM 38:2;3 (SM) 0.00029
SM 44:2;2 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 0.00033
SM 42:3;2 (SM) 0.00034

Top 10 most significantly different
SM species in cortex p-value

HexCer 42:2;3 (LCB 18:2;2-2H20,LCB 18:1;3-3H2O) 3.16E-06
SM 34:0;2 (SM) 8.54E-06
SM 38:3;2 (SM) 1.50E-05
Hex2Cer 26:1;3 (LCB 18:0;2-2H2O) 2.25E-05

HexCer 40:3;3 (LCB 18:2;2-2H20,LCB 18:1;3-3H2O) 2.96E-05
SM 38:3;2 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 3.80E-05

HexCer 40:3;4 (LCB 18:2;2-2H20,LCB 18:1;3-3H2O) 5.40E-05
SM 38:4;3 (SM) 9.17E-05

HexCer 40:2;4 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 0.00013
Cer 34:4;4 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 0.00013

Top 10  most significant different SM species 
in Mid-Hind brain region p-value
SM 41:4;2 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 5.27E-08
SM 41:4;2 (LCB 18:2;2-2H20,LCB 18:1;3-3H2O) 2.01E-06
SM 40:4;3 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 2.86E-06
SM 40:4;3 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 4.75E-06
SM 42:4;2 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 2.08E-05
SM 40:1;3 (SM) 2.62E-05
SM 38:2;2 (SM) 2.77E-05
SM 42:4;3 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 2.80E-05
SM 42:4;3 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 4.72E-05
HexCer 40:2;4 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 6.35E-05

4

5

6
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Table 2: Top10 significantly altered DAG, MDAG (1-3) and GPL (4-6) lipid species in the 

cerebellum, cortex and Mid-Hind brain region of rmd mice.  

 

Tg-rmd mice as test models for cognitive impairments in rmd mutant mice: As described in 

chapter 2, the Tg-rmd mice are engineered to express a functional copy of the Chkb gene under a 

muscle specific promoter-Titin. These Tg-rmd mice, as shown in chapter 2, have muscle strength 

similar to those of the WT mice. Hence, the Tg-rmd mice can be used to test for cognitive 

impairments in the CHKB-deficient mice.  

Top 10 most significantly different

MDAG species in cerebellum p-value

MADAG 46:3+NH4 (-FA 24:0 (NH4)) 0.00033

MADAG 46:4+NH4 (-FA 20:4 (NH4)) 0.0205

MADAG 44:4+NH4 (-FA 12:3 (NH4)) 0.02207

MADAG 44:4+NH4 (-FA 20:4 (NH4)) 0.02326

DGDG 24:1+NH4 (-FA 12:1 (NH4)) 0.03178

MGDG 36:3+NH4 (-MGDG (NH4)) 0.04507

MADAG 42:0+NH4 (-FA 17:0 (NH4)) 0.04554

MGDG 36:5+NH4 (-FA 16:3 (NH4)) 0.04852

MADAG 46:0+NH4 (-FA 13:0 (NH4)) 0.05581

MADAG 38:2+NH4 (-FA 16:0 (NH4)) 0.06819

Top 10 most significantly different 

MDAG species in cortex p-value

MADAG 46:5+NH4 (-FA 17:2 (NH4)) 0.02421

MGDG 36:4+NH4 (-FA 19:3 (NH4)) 0.03798

MGDG 36:4+NH4 (-FA 16:0 (NH4)) 0.04239

MGDG 36:4+NH4 (-MGDG (NH4)) 0.04267

MADAG 46:5+NH4 (-FA 18:3 (NH4)) 0.04425

MGDG 34:2+NH4 (-FA 17:1 (NH4)) 0.05998

MADAG 46:2+NH4 (-FA 20:0 (NH4)) 0.07857

MADAG 46:2+NH4 (-FA 19:1 (NH4)) 0.07962

MADAG 38:1+NH4 (-FA 18:1 (NH4)) 0.0814

MADAG 48:7+NH4 (-FA 19:1 (NH4)) 0.08166

Top 10 most significantly different 

MDAG species in Mid-Hind brain p-value

MGDG 36:3+NH4 (-MGDG (NH4)) 1.89E-06

MGDG 36:4+NH4 (-MGDG (NH4)) 5.88E-06

MGDG 36:6+NH4 (-MGDG (NH4)) 0.00161

MGDG 36:6+NH4 (-FA 14:0 (NH4)) 0.00214

MGDG 36:10+NH4 (-MGDG (NH4)) 0.00236

MGDG 34:2+NH4 (-MGDG (NH4)) 0.00244

MGDG 36:8+NH4 (-MGDG (NH4)) 0.00284

MGDG 32:2+NH4 (-MGDG (NH4)) 0.00386

DGDG 22:7+NH4 (-DGDG (NH4)) 0.0039

MGDG 34:4+NH4 (-FA 14:2 (NH4)) 0.00687

Top 10 most significantly different 

GPL species in cerebellum p-value

PE 35:2 (FA 17:1) 1.39E-07

PE 40:4 (FA 22:4) 1.40E-07

PE 40:4 (FA 18:0) 3.02E-07

CL 72:3 (FA 18:1) 7.34E-07

CL 78:7 (FA 22:4) 3.24E-06

PE 40:3 (FA 22:3) 6.49E-06

PS 44:8 (FA 22:4) 1.97E-05

PS 42:4 (FA 22:0) 2.16E-05

PE 44:8 (FA 22:4) 3.11E-05

PE 38:4 (FA 16:0) 3.20E-05

Top 10 most significantly different

GPl species in cortex p-value

PS 42:4 (FA 20:3) 6.73E-08

PE 36:2 (PE) 3.08E-06

PC 32:2;1+HCOO (LPC pe) 7.83E-06

PC 37:0+HCOO (FA 19:0) 9.02E-06

PS 42:4 (FA 22:1) 1.36E-05

PS 42:4 (FA 20:4) 2.67E-05

PE 38:4 (FA 16:1) 3.05E-05

PC 32:0+HCOO (FA 14:0) 4.92E-05

CL 88:5 (FA 16:1) 6.80E-05

PS 42:4 (-PS) 6.80E-05

Top 10 most significantly different

GPL species in Mid-Hind brain p-value

PC 38:6;1+HCOO (LPC pe) 2.44E-07

PS 42:4 (FA 20:4) 1.52E-06

CL 78:5 (FA 21:1) 2.08E-06

PE 36:2 (FA 19:1) 6.10E-06

OAHFA_18:0/ 34:1 (18:0 FA) 9.06E-06

PS 42:5 (-PS) 9.24E-06

PS 43:3 (-PS) 1.70E-05

PE 34:1 (FA 18:0) 1.70E-05

PC 38:6;1+HCOO (LPC pe) 1.91E-05

PS 42:4 (FA 22:0) 3.58E-05
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Tg-rmd mice show significantly different lipid profile when compared to controls: Tissue 

from the cortex and Mid + Hind brain region of rmd mice were compared with those of rmd+/- 

control mice in order to test for any changes in the lipid profile. Since lipidomic analysis of rmd 

mice showed maximum differences in the cortex and mid-hind brain region, we selected these 

two brain regions for a detailed lipid profiling using the MS/MSALL technique. Lipid profiling 

with MS/MSALL mass spectra suggests significant differences in the major lipid molecules like 

TAGs, PE, cardiolipin (CL), phosphatidic acid (PA), SM and MDAG in both positive and 

negative mode. Principal component analysis with Pareto scaling shows a distinct separation of 

lipid profiles in the test (Tg-rmd) and control (rmd+/-) mice (Fig 16 A-B and 17 A-B). Table 

number 3 shows the 10 most significantly altered lipid molecule species with differences in 

molecular chain length, branching and saturation.  

 

 

A
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FIG 16.  Lipid differences in the cerebral cortex across genotypes. Principal component 

analysis with Pareto scaling in positive (A) and negative (B) ion mode showing significant 

differences across genotype of test (Tg-rmd) and control (rmd+/-) mice in cortex region of 

brain. 
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FIG 17. Lipid differences in the Mid and Hind brain region across genotypes. Principal 

component analysis with Pareto scaling in positive (A) and negative (B) ion mode showing 

significant differences across genotype of test (Tg-rmd) and control (rmd+/-) mice in 

Mid+Hind brain region. 
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Table 3: Top 10 significantly altered lipid species in the cortex and Mid-Hind brain region 

of test (rmd) and control (rmd+/-) mice, demonstrating changes in branch length, side chains 

and saturation. 

 

Absence of cognitive defects in Tg-rmd mice: Mass spectrometry MS/MSALL analysis shows 

significant differences in the lipid profiles of Tg-rmd when compared to the test (rmd+/-) mice. 

To test the possible impact of these changes on cognitive performance, we ran the Tg-rmd mice 

on assays including spontaneous alternation, spontaneous alternation with delay and on paired 

associates learning to test them for working and short-term memory and learning. When placed 

in a maze with multiple arms, mice tend to alternate arm entry and not re-enter an arm. Hence, 

this Y-maze set-up can be used to asses working memory dependent primarily on the intact 

hippocampus (Sukoff Rizzo et al., 2018). Spontaneous alternation, as a test for working memory, 

in Tg-rmd mice showed no significant differences in percent alternation between the arms 

Top 10 most significantly different lipid species
identified in positive ion mode in cortex p-value
MADAG 44:5+NH4 (-FA 18:1 (NH4)) 0.00054
TAG 54:5+NH4 (-FA 20:4 (NH4)) 0.00075
MADAG 46:2+NH4 (-FA 20:0 (NH4)) 0.00883
SM 42:4;2 (SM) 0.00884
TAG 56:7+NH4 (-FA 16:0 (NH4)) 0.01264
TAG 52:2+NH4 (-FA 16:0 (NH4)) 0.01733
HexCer 41:3;2 (LCB 18:2;2-2H20,LCB 18:1;3-3H2O) 0.01775
MADAG 46:4+NH4 (-FA 19:0 (NH4)) 0.01845
GM1 28:1;2 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 0.01924
TAG 54:4+NH4 (-FA 16:0 (NH4)) 0.02124

Top 10 most significantly different lipid species
identified in positive ion mode in Mid-Hind brain p-value
Cer 36:1;2 (LCB 18:0;2-H2O) 3.25E-06
GM1 28:1;2 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 3.61E-06
Cer 36:1;2 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 6.47E-06
SM 36:1;2 (SM) 6.58E-06
SM 38:0;4 (SM) 1.09E-05
TAG 54:4+NH4 (-FA 18:2 (NH4)) 1.51E-05
Cer 36:1;2 (LCB 18:1;2-H2O,LCB 18:0;3-2H2O) 1.64E-05
GM1 48:1;4 (LCB 18:1;2-2H2O,LCB 18:0;3-3H2O) 1.84E-05
TAG 52:4+NH4 (-FA 18:2 (NH4)) 2.37E-05
SM 36:1;4 (SM) 2.90E-05

Top 10 most significantly different lipid species 
identified in negative ion mode in cortex p-value
LPIP 25:5 (PI,PS,CL,PIP,PIP2,PIP3) 0.00058
PS 44:8 (FA 22:2) 0.00125
CL 78:7 (FA 17:1) 0.00248
PE 34:1 (FA 20:1) 0.00285
PE 38:6;1 (PE) 0.00433
PC 36:5;1+HCOO (LPC pe) 0.00468
PS 44:8 (FA 22:6) 0.00506
PE 38:1;2 (PE) 0.00768
PE 34:1 (FA 18:0) 0.00849
PA 36:2 (PA,PG,PI,CL,PIP,PIP2) 0.00861

Top 10 most significantly different lipid species
identified by negative ion mode in Mid-Hind brain p-value
LPIP2 20:2 (PA,PG,PI,CL,PIP,PIP2,PIP3) 5.52E-11
PE 37:1 (FA 17:0) 9.34E-11
PS 42:0 (-PS) 3.58E-10
PS 40:2 (FA 18:0) 4.15E-10
PE 37:1 (FA 18:0) 4.47E-10
CL 84:5 (FA 20:1) 8.16E-10
CL 84:4 (FA 20:1) 1.95E-09
PE 37:1 (FA 20:0) 2.65E-08
PS 34:2 (FA 18:1) 4.45E-08
PE 37:1 (FA 19:1) 5.15E-08
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(males, p=0.59 and females, p=0.80) (Fig 18 A-B) and no significant differences in the total arm 

entries (males, p=0.21 and females, p=0.90) (Fig 18 C-D).  

 

 

 

FIG 18. Testing working memory in Tg-rmd mice. Spontaneous alternation to test working 

memory in Tg-rmd mice shows no significant differences between Tg-rmd and control 

(rmd+/-)  mice. Percent alternation between arms in males (p=0.59) and females (p=0.80) is 

not significantly different between Tg-rmd and control mice (A-B). Total arm entries in 

males (p=0.21) and females (0.90) are not significantly different between Tg-rmd and 

control mice (C-D). 
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Short-term recognition memory in mice is assessed using novel spatial recognition using the Y-

maze with visual cues at the end of each arm. In this test, mice tend to prefer exploring the 

“novel” arm after the 10 min break in the test as opposed to the two arms it was previously 

allowed to explore. In the spontaneous alternation with delay test, the percent duration of time 

spent in each arm after the 10 min break was not significantly different between the two groups 

in males (p>0.99) and females (p=0.98) (Fig 19 A-B). The Tg-rmd males (p=0.88) and females 

(p=0.22) did not show significant differences in the total arm entries when compared to the 

control mice (Fig 19 C-D).   

 

19. Testing for short-term memory in Tg-rmd mice. Tg-rmd mice do not show significant 

differences when compared to the controls in the percent duration of time spent in each 

arm with the males showing p>0.99 and females showing p=0.98 (A-B). The total arm 

entries for males (p=0.88) and females (p=0.22) were also not significantly different 

between the two groups (C-D). 
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Both the Y-maze tests suggest that there is an absence of impairments in working memory and 

short-term memory in the Tg-rmd mice. 

 Paired associates learning test was used to test for learning impairments in Tg-rmd mice. 

In this test, the mice are required to learn to associate a given object with a particular location. 

The mice were trained until they attained an 85% correct criterion over three consecutive 

sessions. Post the pre-training period, the mice are required to complete all trials of the test with 

80% accuracy over three consecutive days.  

 

 

FIG 20. Learning curves of Tg-rmd mice in the PI and dPAL tasks. Tg-rmd males show a 

significant difference from the controls in the first 10 days of learning on the PI task with a 

p of 0.0010 (A) while the females have a learning curve similar to that of the controls with a 

p value of 0.72 (B). In the dPAL task the Tg-rmd males were slightly different (p=0.037) 

from the controls, whereas the females did not perform differently from the controls 

(p=0.53).  
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FIG 21. Testing for learning impairments in Tg-rmd mice. Tg-rmd males did not show any 

significant differences from controls in the PI task, p=0.66 and in the dPAL task, p=0.24. 

Tg-rmd females show slower response with a significant difference in the PI task, p=0.029 

and no significant differences in the dPAL task, p=0.65. 

 

Days to criteria for the punish incorrect (PI) task and the paired associates analysis (dPAL) were 

analyzed post the pre-training period, in order to test for cognitive impairments (Bartko, 

Vendrell, Saksida, & Bussey, 2011)(Bussey, Dias, Amin, Muir, & Aggleton, 2001). The Punish 

incorrect task was used as a pre-dPAL assessment, in which mice were trained to select a square 

that was lit. Failure to do so resulted in no reward and a period of ‘light out’. An 85% correct 

selection in the punish incorrect task for three consecutive days resulted in progressing to the 
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paired associates learning (dPAL) task where the mice tasked to choose a particular object at a 

particular location on the screen. A rate of 80% correct choices for three consecutive days 

resulting in completion of the task. It was observed that the Tg-rmd males were not significantly 

different from the controls in the PI (p=0.66) and dPAL (p=0.24) task (Fig 21 A-C). The Tg-rmd 

females on the other hand, completed the PI task in a slightly shorter span of time (p=0.029) (Fig 

22 B) but did not perform any different in the dPAL task (p=0.65) (Fig 21 D). This was further 

confirmed by the learning curve demonstrated in the first 10 days of the PI and dPAL tasks. The 

males showed a difference in rate of learning in both the PI and dPAL task learning curves in the 

first 10 days but this did not affect the outcome of the two assays(Fig 20 A-D). 

 These behavioral tests suggest that the Tg-rmd mice do not show any signs of cognitive 

impairments.  

 

Aging does not lead to memory deficits in Tg-rmd mice. 

The initial testing for memory deficits were performed with mice aged 8-10 weeks. In order to 

test whether Tg-rmd mice show spatial awareness deficits or memory deficits with aging, we 

repeated the spontaneous alternation and spontaneous alternation with delay assays on them, post 

completion of the dPAL test at around 9 months of age.   
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Fig 22. Testing working memory in aged Tg-rmd mice. Aged Tg-rmd males and females did 

not show any significant differences from controls in total arm entries (p=0.51 and p=0.12, 

respectively) and in the percent alternation between arms (p=0.72 and p=0.69, 

respectively). 

 

Spontaneous alternation test results showed no significant differences in total arm entries 

between Tg-rmd males or females and their respective controls with males showing a p=0.51 and 

females that of 0.12, respectively (Fig 22 A). In percent alternation males showed a P value of 

0.72 and females that of 0.69 respectively, suggesting no significant differences from control 

group (Fig 22 B). 

For spontaneous alternation with delay, the delay time for re-introduction into the Y-

maze was reduced from 10 min to 5 min, to take into consideration delay dependent effects in 

aged mice. 
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FIG 23. Testing short-term memory in aged Tg-rmd mice. Aged Tg-rmd males and females 

did not show any significant differences in the percent duration spent in the arms (males, 

p=0.64 and females, p=0.62) (A-B) and in the total arm entries (males, p=0.47 and females, 

p=0.28) (C-D).  

 

Spontaneous alternation performed on aged Tg-rmd and control mice showed no significant 

differences in the percent duration spent in each arm of the Y-maze (p=0.64) (Fig 23 A) and in 

the total arm entries (p=0.62) (Fig 23 C). The Tg-rmd females too showed no significant 

differences when compared to the aged matched controls in the percent duration spent in each 

arm of the Y-maze (p=0.47) (Fig 23 B) and in the total arm entries (p=0.28) (Fig 23 D). In the 

spontaneous alternation with delay, the control females do not show preference for the novel 

arm, thus failing the assay and hence cannot be used to draw conclusions with certainty. 
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 The males used in these assays suggest that even in >6 months aged Tg-rmd mice, there 

are no working or short-term memory deficits observed from these tests conducted. Together, the 

results indicate that from these particular behavioral tests, no spatial awareness, memory deficits 

or cognitive impairment could be modelled in the Tg-rmd mice.  

 

Expression of Chkb transgene does not influence spatial awareness and memory in mice. 

Addition of a transgene may result in impairments in cognition and memory which are apparent 

in the spontaneous alternation and delayed spontaneous alternations tests 

(https://med.stanford.edu). In order to test this, the Tg-WT mice were tested for spatial 

awareness on the Y-maize through the spontaneous alternation and spontaneous alternation with 

delay tests. 

For this test, Tg-Wt and WT mice (N=10 mice/sex/genotype) were acclimatized and tested for 

spontaneous alternation on the y-maze as previously described. The Tg-WT mice did not 

perform any differently than the WT controls with the total number of arm entries and percent 

spontaneous alternation between the two groups being similar (Fig 24 A-D).  
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Fig 24. Testing of spatial awareness in Tg-WT mice. The Tg-WT mice when tested on the y-

maze for spontaneous alternation were not significantly different from the control WT 

mice in the total number of arm entries with p vales of 0.43 and 0.56 in males (A) and 

females (B) respectively. The Tg-WT mice were not significantly different from the controls 

in the percent spontaneous alternation with p values of 0.25 and 0.63 in males (C) and 

females (D) respectively. N=10 mice/sex/genotype aged 8-10 weeks. Error bars represent 

SD. 
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Young rmd mice do not show impairments in spatial awareness and memory 

 When tested for short-term memory on the y-maze using the spontaneous alternation with 

delay assay, the male and female controls did not show preference for the novel arm and hence 

did not pass the test. In this test, too an N of 10 mice/sex/genotype aged 8-10 weeks were used 

and were acclimatized as per the testing protocol previously described (Fig 25 A-D). 

 

 

Fig 25. Testing for short-term memory in Tg-WT mice. The Tg-WT mice when tested for 

short-term memory on the y-maze test did not show any difference from the controls. The 

Tg-WT mice had similar arm entries, when compared to WT controls with p=0.14 in males 

(A) and p=0.38 in females (B). Tg-WT mice did not show any preference to the novel arm 

with p > 1 in both males (C) and females (D). N=10 mice/sex/genotype aged 8-10 weeks. 

Error bars represent  
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The spontaneous alternation assay and the percent spontaneous alternation in the spontaneous 

alternation with delay test suggest the transgene has no detrimental effect on the spatial 

awareness and short-term memory of the mice. 

Since Tg-rmd and Tg-WT mice do not show any differences in their spatial awareness 

and memory when compared to control mice, we decided to test rmd mutant mice directly for 

differences in these abilities. However, since the rmd mice become physically impaired due to 

their hindlimb dragging at 8 weeks of age, we tested for the presence of these impairments at 4-5 

weeks of age.  

 

FIG 26. Testing working memory in young rmd mice. rmd mutant mice are not significantly 

different from their WT controls in total arm entries (males, p=0.07) and (females, p=0.09) 

(A-B) and in the percent of spontaneous alternation (males, p=0.33 and females, p=0.96) 

(C-D).  
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Spontaneous alternation showed rmd are not significantly different from their age-matched 

controls (WT mice). The males and females showed a P value of 0.07and 0.09 respectively in the 

total number of arm entries (Fig 26 A-B). The percent alternation between arms of the Y-maze 

were also not significantly different in the rmd males and females with a P value of 0.33 and 0.96 

respectively (Fig 26 C-D).  

 

 

FIG 27. Testing short-term memory in young rmd mice. rmd mice when tested for 

spontaneous alternation with delay did not show preference for the novel arm greater than 

chance percent in both males and females with no significant differences between the rmd 

and control groups (males, p=0.62 and females, p=0.61) (A-B). rmd mutant mice did not 

show significant differences in the total number of arm entries when compared to controls 

(males, p=0.43 and females, p=0.59) (C-D). 

C
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The rmd mutant mice were tested for deficits in memory using the spontaneous alternation with 

delay test on the Y-maze. The rmd mice did show a preference to spend greater time in the novel 

arm. The control mice, on the other hand, showed a greater preference for the familiar arm. Both 

the rmd and the control mice did not any significant differences to each other (males, p=0.62 and 

females, p=0.61) (Fig 27 A-B). The rmd mice did not show any significant differences in the 

total arm entries when compared to their aged-matched controls (males, p=0.43 and females, 

p=0.59) (Fig 27 C-D).  

 This suggests that the rmd mice do not model cognitive impairments at a very young age 

(immediately post-wean). 

 

Discussion:  

Changes in brain lipid composition has been indicated in cognitive impairments, anxiety and 

depression (Müller et al., 2015)(Vitali, Wellington, & Calabresi, 2014). Previous literature shows 

that there lies a direct correlation between the lipid composition of brain tissue and cognitive 

impairments, with persons suffered from brain trauma and diseases like Alzheimer’s, mild 

cognitive impairments and dementia showing a greater percent of short chain, unsaturated fatty 

acids in their brain tissue when compared to brain tissue from unaffected population (R. B. Chan 

et al., 2012)(Wood, 2012)(Cunnane et al., 2012). It has been shown that choline and hence PC 

are important molecules in normal brain development(G. B. ANSELL, 1971)(Zeisel SH, 

1992)(Zweigner et al., 2004)(Sanders & Zeisel, 2007). Not much is known about the lipid 

profiles in the brain of C57BL/6J mice or in that of AD mouse models and additional insights in 

this filed are necessitated by the recent progress in Alzheimer’s and mild cognitive impairment 

research. 
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 We have shown that significant lipid profile differences exist in brain tissue from rmd 

and Tg-rmd mice when compared to unaffected mice, justifying the use of these mice in order to 

model the cognitive impairments seen in MDCMC patients in these mouse models. We have 

shown that since the rmd mice lack muscle strength required for performing certain basic 

behavioral tasks, the Tg-rmd mice were used as test subjects for behavioral tests including 

spontaneous alternation, spontaneous alternation with delay and dPAL, all of which require 

considerable physical activity.  Besides this, tests like the dPAL can continue for more than 6 

months by the time of which the rmd mice would be unable to perform at the same level as at 4-5 

weeks of age, further justifying the use of Tg-rmd mice as test subjects. Behavioral testing for 

spatial awareness, memory and associated learning in the Tg-rmd mice did not show any 

significant differences from their controls. Tests for spatial awareness and short-term memory 

failed to show significant differences between >6 months aged Tg-rmd and aged-matched 

controls. A repeat of the spatial awareness and short-term memory tests on young rmd mice did 

not show cognitive impairments at 4-5 weeks of age. Together, it has been shown that across 

different genotypes and at different ages, the differences in brain lipid profiles could not be 

translated behaviorally using the specified methods of analysis and testing. The Cortex and in 

particular the hippocampus plays an important part in memory, speech and spatial awareness. 

The hippocampus and the lipids within has been shown to be affected with increasing age and in 

conditions like AD (Delion et al., 1997). The y-maze assay, mainly tests the hippocampal region 

of the brain and has been used to correlate changes in hippocampus with memory, spatial 

awareness and aging (Ira et al., 1999).   

 Our research has helped bridge the gap in knowledge pertaining to lipid profiles of brain 

in B6 mouse models. Additionally, we have also profiled the rmd mouse model that lacks Chkb 
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gene necessary for production of PC, an important lipid molecule required for normal brain 

function and development. Our data used the MS/MSALL technique to meticulously identify all 

the different lipid molecules at different chain lengths and saturation levels, contributing to the 

building repository of information pertaining to lipid profiles in mouse models of cognitive 

impairments. This can help correlate information from aging, drug use and diet and obesity 

studies in order to gain more perspective on treatment methods and effects on human population.  

 Cognitive impairments demonstrated by MDCMC patients fall in a broad spectrum 

ranging from low IQ, speech deficits, memory loss, inability to learn and lack of social cues 

resulting in failure to interact and integrate in a social environment (Gutiérrez Ríos et al., 

2012)(Castro-Gago et al., 2014)(Oliveira et al., 2015)(Cabrera-Serrano et al., 2015)(S. Sparks & 

Harper, 2001). The assays I used tested only a few aspects within this spectrum. We have shown 

that the rmd and Tg-rmd mice do not demonstrate deficits in spatial awareness or memory and 

learning, however, this covers only a part of the cognitive spectrum observed in MDCMC 

patients and hence does not imply a lack of speech and social interaction difficulties.  

 It has been shown that background strains of mice influence their performance in 

cognitive tasks thus impacting their phenotype. C57BL/6J mice perform better in the Morris 

water maze task but have a greater predominance of approach towards a DBA/2J females 

whereas DBA mice perform worse than C57BL/6J on the Morris water maize but have a greater 

predominance of avoidance towards a DBA/2J female. Different strains like Friend Virus B NIH 

Jackson (FVB),  DBX, 129, DBA SJL, each has a different effect over cognitive functions of the 

mouse (Hall & Roberson, 2012)(Brodkin, Hagemann, Nemetski, & Silver, 2004)(Lassalle, 

Halley, Daumas, Verret, & Francés, 2008). Our rmd and Tg-rmd mice have been bred on a 

C57BL/6J background and it may be possible that changing this background could result in 



 76 

changes in the outcome of the behavioral assays performed above. These background strains also 

influence the effects of aging on the mice, thus indirectly influencing cognitive functions.   

 In summary we conclude that there are significant differences in lipid profiles in the brain 

of rmd and Tg-rmd mice compared to WT and rmd+/- mice and that these differences do not 

translate to observable differences in the behavioral assays for learning and memory. This study 

is impactful since it is one of the first that compares dynamic and detailed lipid profiles amongst 

different ages and phenotypes of mice in a CHKB deficient environment, providing the first of 

its kind study for further characterization of MDCMC patients.  

 

Materials and Methods: 

Lipidomic analysis: Brain and liver from Tg-rmd, rmd, WT and rmd+/- were harvested (N=4 

mice/sex/genotype). The brain was separated into cortex, cerebellum and mid+hind brain region. 

The samples were homogenized and process as described by Liaw et al. Unbiased MS/MSALL 

lipidomic shotgun analysis was performed on these samples using the method described by Liaw 

et al.(Liaw et al., 2016). 

 

Behavioral Assays for cognition: Spontaneous alternation, Novel spatial recognition and Paired 

Associates Learning (dPAL) were used to assess working memory, short-term memory and 

learning. 

Spontaneous alternation: Spontaneous alternation tests the working memory of mice and 

depends on their intact hippocampus. For this test 5-10 mice/sex/genotype were used. The mice 

were placed in a three-armed Y-shaped maze with no visual cues inside the maze and a perimeter 

curtain to minimize extra maze cues (Sukoff Rizzo et al., 2018). An 8 min trial was run on each 
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mouse under a 50 lux environmental lighting conditions. Behavioral tracking software was used 

to track the movement of the mouse based on its center point, thus recording its entry into each 

arm. Total arm entries and time spent in each arm are calculated. 

Novel spatial recognition/ Spontaneous alternation with delay: This test assesses short-term 

memory in mice. 10 mice/sex/genotype were used for this assay. The mice were tested in a three-

armed Y-shaped maze with dimensions as specified by Rizzo et al. (Sukoff Rizzo et al., 2018). 

The three arms are designated as start arm, familiar arm and novel arm. The novel arm is closed 

off using a black polycarbonate wall and the mice are allowed to explore in the start and familiar 

arm for 10 minutes. After this the mice are removed and allowed a delay time of 10 minutes post 

which they are re-introduced in the maze with access to the novel arm, thus giving access to all 

three arms of the maze, and are allowed to explore for 5 minutes. Behavioral tracking software is 

used to track the movements of the mice with their center point as reference point and is used to 

calculate total arm entries, total time spent in each arm in the first 10 minutes and during the 5 

minutes of re-introduction in the maze. For calculations of learning curve, first 10 days were 

calculated as during this period only one mouse finished the test, the data from this mouse was 

impugned form day 7 to day 10 in order to maintain consistency.   

Paired associates learning (dPAL): The dPAL assay was used to assess learning in mice (N= 8 

mice/sex/genotype). The mice were food restricted and their body weights reduced prior to the 

test and then maintained at about 80%-85% free feeding throughout the testing period (Bussey et 

al., 2001). The testing chamber consists of a black opaque plastic triangular space with the 

touchscreen placed at the base of the triangle. An opaque plastic screen with three windows is 

placed ahead of the touchscreen, facilitating three options that the animal can nose-poke and 

choose from. A pellet chamber is present at the apex of the triangle. This chamber is attached to 
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a vacuum pump that dispenses about 20µl of strawberry milk into the chamber as a reward. For 

selection, three novel stimuli (picture) were presented to the animal, one per window. The animal 

has to select the correct stimuli at the correct location (window) in order to receive the reward 

(Brigman et al., 2008). Correct choice would lead to a cue and dispensing of strawberry milk in 

the pellet chamber while an incorrect choice would lead. The mice were trained until they 

attained an 80% correct criterion over three consecutive sessions. Post the pre-training period, 

the mice are required to complete all trials of the test with 80% accuracy over three consecutive 

days. The tracking software is used to measure time taken to complete each trial, percent correct 

and many other values. For calculations of learning curve, first 10 days were calculated as during 

this period only one mouse finished the test, the data from this mouse was impugned form day 7 

to day 10 in order to maintain consistency.   

 

Statistical analysis: All the experiments were performed at the Jackson Laboratory, Bar Harbor. 

All mouse handling, testing, and analysis were performed blinded for mouse genotype. Where 

appropriate, statistical significance was calculated using Student’s t-test or 2-way ANOVA with 

post-hoc Bonferroni corrections unless otherwise noted. Calculations were performed using 

Prism 7.0c software for Mac OS X and any significant differences (p<0.05) between test and 

control strains are denoted by an asterisk symbol. For behavioral assays, each mouse is treated as 

a biological control and each test has a different number of statistical control experiments run on 

one mouse.  

 

Protocols for open field, rotarod, spontaneous alternation, spontaneous alternation with 

delay were conducted as described in chapter 2. 
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CHAPTER 4 

GENETIC AND THERAPEUTIC MECHANISMS TARGETED TOWARDS THE 

RESCUE OF RMD MUTANT PHENOTYPE 

 

1. Mitofusin as a modifier gene for the rescue of rmd muscular dystrophy 

In WT mice, many muscle cells or myofibers come together forming a bundle that forms an 

entire muscle. Each muscle fiber is bound by a plasma membrane called sarcolemma. The 

sarcolemma forms invaginations called Transverse tubules (T-tubules) that penetrate the muscle 

fiber and tightly associate with the sarcoplasmic reticulim (SR), forming the junctional SR (Al-

Qusairi & Laporte, 2011). A T-tubule associated with a terminal cisternae on each side forms a 

structure called the triad (Fig 28 A-B). In a muscle fiber, the excitation-contraction (EC) 

coupling is mediated by Ca2+ ions that are stored and provided by the SR. These Ca2+ form the 

secondary messengers and play an important role in the contraction of muscle fibers. Due to its 

structure and close contact with the SR, the muscle triad plays a principle role in EC coupling 

and hence in muscle contraction (Al-Qusairi & Laporte, 2011). In a rmd mouse, the triad 

structure is destroyed due to the sheer size of the mitochondria (Fig 29). All the other proteins 

involved in EC coupling are shifted thus negatively impacting Ca2+ ion storage and exchange and 

thus abilities of the muscle to contract (Fig 30 A-B).  
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FIG 28. TEM images of muscle triad structure. (A) Shows the muscle triad structure 

which plays a principle role in EC coupling and hence in muscle contraction. (B) 

Represents a birds eye view of a general muscle structure with intact muscle triads at 

10000X. 

 

 

FIG 29. Representational image of WT and rmd muscle structure. A representation of the 

difference in muscle structure of an unaffected and rmd mouse. 
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FIG 30. TEM images of gastrocnemius muscle from WT and rmd mice. (A) Represents 

skeletal muscle from an unaffected WT mouse, showing normal mitochondrial phenotype 

and distribution (B) Represents skeletal muscle from a rmd mutant mouse, showing 

megamitochondria and disrupted muscle architecture as a result of the megamitochondria. 

N= 4 mice/sex/genotype aged 4-6 weeks. 

 

As seen in chapter 2, rmd mutant mice show an increase in mitochondrial area but a 

decrease in mitochondrial numbers. We hypothesize that this phenomenon directly correlates to a 

defect in mitochondrial fission or fusion, the correction of which, may enable normal sized 

mitochondria, which will in turn normalize the disrupted muscle architecture and will thus enable 

regular Ca2+ ion exchange and muscle contraction, thus rescuing the rmd phenotype.  

In mammals, both mitochondrial fission and fusion are important events in maintaining 

mitochondrial morphology, mitochondrial DNA (mtDNA) stability, respiratory capacity, 

response to cellular stress and apoptosis. In mammals, there are three important fusion proteins- 

mitofusin 1 (Mfn1), mitofusin 2 (Mfn2) and optic atrophy 1 (OPA1) that facilitate proper 

A B
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mitochondrial fusion. Mfn 1 and 2 are transmembrane GTPases embedded in the mitochondrial 

outer membrane , whereas OPA1 is a dynamin related GTPase associated with the mitochondrial 

inner membrane or intermembrane space (D. C. Chan, 2012).  

Depletion of any one of the three fusion proteins results in a decrease in mitochondrial 

fusion (D. C. Chan, 2012). Previous literature shows that Mfn 1 and 2 can exist as both 

homotypic and heterotypic oligomers and can cooperate as well as act individually to promote 

mitochondrial fusion (H. Chen et al., 2003). Mice heterozygous for Mfn1 or Mfn2 null mutations 

demonstrate full viability and fertility but homozygous mutants for either gene are embryonically 

lethal. Preliminary studies by Chen, et al. indicate that double homozygous embryos show 

greater developmental delay and die earlier than either single mutant. Hybrid cell fusion assays 

(PEG fusion assays) determined that Mfn1 or Mfn2 deficient cells have severely fragmented 

mitochondria with deficient mobility. This fragmentation is caused by a reduction in fusion 

caused by loss of Mfn1 or Mfn2. Additionally, it was noted that in 10%  of fused Mfn1 mutant 

cells, the mitochondria did not spread readily throughout the cytoplasm but instead remained in 

distinct sectors of red and green fluorescence showing a ‘sectoring effect’ (H. Chen et al., 2003). 

Hence, in order to test our hypothesis, that reducing the size of megamitochondria in our 

rmd mice would have a positive effect on muscle morphology and function, we engineered a 

muscle-specific Mfn1 null mouse and a separate muscle-specific Mfn2 mouse that we bred 

separately to our rmd strain resulting in a Mfn1-/-HSA.Cre.Tg+/-rmd/rmd and a Mfn2-/-

HSA.Cre.Tg+/-rmd/rmd strain respectively.  The HSA.Cre transgenic mouse has a Human Alpha-

Skeletal Actin promoter driven Cre recombinase. This when bred to a loxp flanked sequence of 

interest, will result in a Cre mediated deletion of the sequence of interest in the skeletal muscle 

only. We hypothesized that the megamitochondria of rmd mice when coupled with the 
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fragmented mitochondria of the Mfn1/2-/-HSA.CreTg+/- mouse will result in normal (WT) sized 

mitochondria which would restore muscle architecture and hence the dystrophic phenotype in the 

rmd mutant mice. This strategy would serve as a proof of concept for the possible strategy for the 

knockdown of Mfn1 and 2 genes in MDCMC patients for a restoration of their muscle fiber 

structure and hence disease phenotype. 

 

Results: 

Partial rescue of mitochondrial dimensions in Mfn1-/-HSA.CreTg+/-rmd/rmd and Mfn2-/-

HSA.CreTg+/-rmd/rmd mice: Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice were generated using the 

breeding scheme represented in Fig 30. 

 

FIG 31. Breeding scheme to obtain Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice. 
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Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mitofusin mice were analyzed for mitochondrial areas to 

test for histological changes in cellular phenotype. Gastrocnemius skeletal muscles were 

harvested and stained for TEM analysis (4 mice/sex/genotype aged 4-6 weeks). It can be seen 

that the mitochondria in Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice have area in between that of 

Mfn1/2-/-HSA.Cre.Tg+/-rmd+/+ and rmd mice (Fig 32 A-C) and (Fig 33 A-C). Quantitative 

analysis shows that the mitochondrial areas of Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd are significantly 

greater (p<0.0001) than those from Mfn1/2-/-HSA.Cre.Tg+/-rmd+/+ mice and significantly smaller 

than those from rmd mutant mice (p<0.0001) (Fig 34 A-B). 

 

 

FIG 32. Mitochondrial dimensions across Mfn1 genotypes. (A) represents skeletal muscle 

from Mfn1-/-HSA.Cre.Tg+/-  mouse with highly fragmented mitochondria and (B) 

represents skeletal muscle from Mfn1-/-HSA.Cre.Tg+/- rmd+/+ mice with mitochondria in 

between that of Mfn1-/-HSA.Cre.Tg+/- and rmd mice. (C) represents skeletal muscle from a 

rmd mouse showing megamitochondria. N=4 mice/sex/genotype aged 4-6 weeks.  
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FIG 33. Mitochondrial dimensions across Mfn2 genotype. (A) represents skeletal muscle 

from Mfn2-/-HSA.Cre.Tg+/-  mouse with highly fragmented mitochondria and (B) 

represents skeletal muscle from Mfn2-/-HSA.Cre.Tg+/- rmd+/+ mice with mitochondria in 

between that of Mfn2-/-HSA.Cre.Tg+/- and rmd mice. (C) represents skeletal muscle from a 

rmd mouse showing megamitochondria. N=4 mice/sex/genotype aged 4-6 weeks. 
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FIG 34. Mitochondrial areas across Mfn1 and Mfn2 genotypes. (A-B) show a statistical 

analysis for mitochondrial areas in the different genotypes of analyzed mice. In summary, 

Mfn1/2-/-HSA.Cre.Tg+/- rmd+/+ mice show mitochondrial area significantly larger than 

those of Mfn1/2-/-HSA.Cre.Tg+/-  mice but smaller than those of rmd mice, indicating a 

partial rescue in mitochondrial dimensions. N=4 mice/sex/genotype aged 4-6 weeks. Error 

bars represent mean with SD.  

 

Mitochondrial area analysis (performed as described in chapter 2) indicated a partial rescue in 

the areas of Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice compared to the rmd and Mfn1/2-/-

HSA.Cre.Tg+/-rmd+/+ mice. 
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Changes in mitochondrial dimensions do not rescue body weights and grip strength: Mfn1-/-

HSA.CreTg+/-rmd/rmd and Mfn2-/-HSA.Cre.Tg+/-rmd/rmd mice were weaned at 3 weeks of age 

and then weighed and tested for wire hang abilities for a period of 7 weeks post wean. Body 

weight curves show that Mfn1-/-HSA.Cre.Tg+/-rmd/rmd or Mfn2-/-HSA.Cre.Tg+/-rmd/rmd mice 

were not significantly different from the rmd mice (Fig 35, 36) and showed no gross 

improvements in overt phenotype (Table 4, 5). Testing for grip strength on the wire hang 

apparatus showed no significant differences in the hang time between Mfn1-/-HSA.Cre.Tg+/-

rmd/rmd or Mfn2-/-HSA.Cre.Tg+/-rmd/rmd and rmd mice indicating that a muscle specific 

deletion of Mfn 1 or Mfn2 gene in a rmd mouse did nor rescue muscle strength phenotype (Fig 

37, 38) (Table 6,7). A muscle specific deletion of mitofusin did not rescue the forelimb 

deformity seen in the rmd mice, affecting their ability to perform on the hanging wire assay.  

 

 

FIG 35. Growth curve across Mfn1 genotypes. Mfn1-/-HSA.Cre.Tg+/-rmd/rmd weights curve 

There are no significant differences in the weights of Mfn1-/-HSA.Cre.Tg+/-rmd/rmd and 

rmd mutant mice. N= 4 mice/sex/genotype. 
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Table 4: Tukey’s multiple comparisons test for weights on different Mfn1 genotypes. 

This table shows that there are no significant differences in the weights of Mfn1-/-

HSA.Cre.Tg+/-rmd/rmd and rmd mice showing no improvements in the wire hang / grip 

strength by a muscle specific deletion of Mfn1 gene in rmd mice. 

 

 

FIG 36. Growth curves across Mfn2 genotypes. Mfn2-/-HSA.Cre.Tg+/-rmd/rmd weights curve 

There are no significant differences in the weights of Mfn2-/-HSA.Cre.Tg+/-rmd/rmd and 

mutant rmd mice. N= 4 mice/sex/genotype. 

Tukey's multiple comparisons test Mean Diff.
95.00% CI of 

diff. Significant? Summary
Adjusted P 

Value

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn1-/-HSA.Cre.Tg+/-
rmd+/- 3.103

0.5921 to 
5.614 Yes ** 0.0081

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn1-/-HSA.Cre.Tg+/-
rmd/rmd 11.55

9.039 to 
14.06 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd 9.984
7.748 to 

12.22 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd +/- 3.296
0.7854 to 

5.807 Yes ** 0.0042
Mfn1-/-HSA.Cre.Tg+/-rmd+/- vs. Mfn1-/-HSA.Cre.Tg+/-
rmd/rmd 8.447 5.896 to 11 Yes **** <0.0001
Mfn1-/-HSA.Cre.Tg+/-rmd+/- vs. rmd 6.881 4.6 to 9.163 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd+/- vs. rmd +/- 0.1933
-2.358 to 

2.744 No ns 0.9995

Mfn1-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd -1.565
-3.847 to 

0.7164 No ns 0.3136

Mfn1-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd +/- -8.253
-10.8 to -

5.702 Yes **** <0.0001

rmd vs. rmd +/- -6.688
-8.97 to -

4.406 Yes **** <0.0001
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Table 5: Tukey’s multiple comparisons test for weights on different Mfn2 genotypes. 

This table shows that there are no significant differences in the weights of Mfn2-/-

HSA.CreTg+/-rmd/rmd and rmd mice showing no improvements in the wire hang / grip 

strength by a muscle specific deletion of Mfn2 gene in mutant rmd mice. 

 

 

 

 

Tukey's multiple comparisons test

Mean 

Diff.

95.00% CI of 

diff. Significant? Summary

Adjusted P 

Value

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn2-/-HSA.Cre.Tg+/-rmd+/- -2.41

-5.385 to 

0.5654 No ns 0.1671

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn2-/-HSA.Cre.Tg+/-rmd/rmd 7.95 4.975 to 10.93 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd 6.058 3.445 to 8.671 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd+/- -0.63

-3.605 to 

2.345 No ns 0.9755

Mfn2-/-HSA.Cre.Tg+/-rmd+/- vs. Mfn2-/-HSA.Cre.Tg+/-rmd/rmd 10.36 7.179 to 13.54 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/- vs. rmd 8.468 5.623 to 11.31 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/- vs. rmd+/- 1.78

-1.401 to 

4.961 No ns 0.5216

Mfn2-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd -1.892

-4.737 to 

0.953 No ns 0.3459

Mfn2-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd+/- -8.58

-11.76 to -

5.399 Yes **** <0.0001

rmd vs. rmd+/- -6.688

-9.533 to -

3.843 Yes **** <0.0001
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FIG 37. Wire hang assay on Mfn1-/-HSA.Cre.Tg+/-rmd/rmd mice. Wire hang assay in Mfn1-/-

HSA.Cre.Tg+/-rmd/rmd mice. Wire hangs show no significant differences in hang time of 

Mfn1-/-HSA.Cre.Tg+/-rmd/rmd and rmd mice. Mfn1-/-HSA.Cre.Tg+/-rmd+/- mice show 

hanging times in between those of WT (B6) mice and Mfn1-/-HSA.Cre.Tg+/-rmd/rmd mice 

indicating probable partial effect of muscle specific deletion of Mfn1 gene in WT mice. N= 

4 mice/sex/genotype. 

 

 

Table 6: Tukey’s multiple comparisons test for Mfn1-/-HSA.Cre.Tg+/-rmd/rmd mice on wire 

hang assay.  

The table summarizes the statistical significance between the different genotypes for Mfn1 

gene tested. There are no significant differences between the wire hang time of Mfn1-/-

HSA.Cre.Tg+/-rmd/rmd and rmd mice, indicating the muscle specific deletion of Mfn1 gene 

in rmd mutant mice does not recue muscle strength phenotype. 

 

 

Tukey's multiple comparisons test Mean Diff.
95.00% CI of 

diff. Significant? Summary
Adjusted P 

Value

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn1-/-

HSA.Cre.Tg+/-rmd/rmd 34.19
22.24 to 

46.14 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd 34.19
23.04 to 

45.34 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd+/+ vs. B6 -25.81
-37.76 to -

13.86 Yes **** <0.0001

Mfn1-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd 0
-11.36 to 

11.36 No ns >0.9999

Mfn1-/-HSA.Cre.Tg+/-rmd/rmd vs. B6 -60
-72.14 to -

47.86 Yes **** <0.0001

rmd vs. B6 -60
-71.36 to -

48.64 Yes **** <0.0001
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FIG 38. Wire hang assay on Mfn2-/-HSA.Cre.Tg+/-rmd/rmd mice. Wire hang assay in Mfn2-/-

HSA.Cre.Tg+/-rmd/rmd mice. Wire hangs show no significant differences in hang time of 

Mfn2-/-HSA.Cre.Tg+/-rmd/rmd and rmd mice. Mfn2-/-HSA.Cre.Tg+/-rmd+/- mice show 

hanging times in between those of WT (B6) mice and Mfn2-/-HSA.Cre.Tg+/-rmd/rmd mice 

indicating probable partial effect of muscle specific deletion of Mfn2 gene in WT mice. N= 

4 mice/sex/genotype. 

 

 

 

Table 7: Tukey’s multiple comparisons test for Mfn2-/-HSA.Cre.Tg+/-rmd/rmd mice on wire 

hang assay.  

Tukey's multiple comparisons test Mean Diff.
95.00% CI of 

diff. Significant? Summary
Adjusted P 

Value

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. Mfn2-/-

HSA.Cre.Tg+/-rmd/rmd 30.2
20.63 to 

39.77 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. B6 -29.8
-39.37 to -

20.23 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd+/+ vs. rmd 30.2
20.63 to 

39.77 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd/rmd vs. B6 -60
-69.57 to -

50.43 Yes **** <0.0001

Mfn2-/-HSA.Cre.Tg+/-rmd/rmd vs. rmd 0
-9.567 to 

9.567 No ns >0.9999

B6 vs. rmd 60
50.43 to 

69.57 Yes **** <0.0001
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The table summarizes the statistical significance between the different genotypes for Mfn2 

gene tested. There are no significant differences between the wire hang time of Mfn2-/-

HSA.Cre.Tg+/-rmd/rmd and mutant rmd mice, indicating the muscle specific deletion of 

Mfn2 gene in mutant rmd mice does not recue muscle strength phenotype. 

 

2.  S107 compound for the treatment of muscular dystrophy 

Ryanodine receptor 1 (RyR1) is the calcium release channel in the sarcoplasm of the skeletal 

muscle required for muscle contraction. Calstabin1 is a sub-unit that stabilized this RyR1 and has 

been shown to decrease with age, making RyR1 unstable and hence leaky. It has been shown that 

S107 preserves RyR1-calstabin1 binding, stabilizing RyR1, reducing Ca2+ sparks and hence 

restoring muscle specific force for improved exercise capacity in aged WT mice (Andersson et 

al., 2011)(Mei et al., 2013). Similar RyR1-calstabin1 binding instability has been observed in the 

mdx mouse model for Duchenne muscular dystrophy and is predicted to be a major reason for 

decreased muscle function in this disease. When mdx mice were supplied 25mg/100ml of S107 

compound through drinking water for 7-9 days they showed increased running speed and 

duration on the running wheel (Andersson et al., 2012). In a separate study, mdx mice 

administered S107 were found to have increased muscle function, voluntary activity and 

improved muscle histopathology (Blat & Blat, 2015).  

 Previous literature provides strong evidence of the involvement in RyR1-calstabin1 

binding integrity in prevention of muscular dystrophy and provides evidence for the effect of 

S107 in preserving RyR1 and calstabin1 binding. Hence, we decided to test the effects of 

supplementation of S107 to our rmd mice via diet. The experimental set-up was similar to that of 

the CDP-choline and 50mg/Kg/day of S107 was administered to rmd mice via Clear H2O diet 



 93 

gel. Diet gel spiked with the same amount of S107 was also fed to WT mice to test for toxic 

effects of S107 in healthy conditions.  

 

Results: 

S107 administration did not improve body weight and growth curve of rmd mutant mice 

3 weak mice were administered 50 mg/Kg/day of S107 compound  by mixing 8.75 mg of S107 

compound in 56gms of Clear H2O diet gel and available to the mice for ab libitum consumption. 

Clear H2O diet gel was prepared fresh and administered daily. Mice were weighed every week 

from the start of the study at 3 weeks and up to 5 weeks of age. No significant improvements in 

growth rate were observed in the rmd (MUT) S107 treated mice when compared with historic 

data from rmd mice on plain Clear H2O diet gel (p=0.10, 0.26 and 0.56 at 3, 4 and 5 weeks 

respectively). rmd S107 administered mice showed a significantly decreased (p<0.0001) growth 

curve when compared WT mice administered S107 compound. No significant differences were 

observed between the S107 administered WT mice and WT mice on Clear H2O diet gel (historic 

data) indicating no toxic effects of supplementation of S107 in healthy conditions (Fig 39). 
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FIG 39. Growth curve or rmd mice on S107 supplement: Growth curve of rmd mice on S107 

supplementation. No significant improvements in growth curve was observed in the 

Mfn1/2-/-HAS.Cre.Tg+/-rmd/rmd S107 treated mice when compared with historic data from 

rmd mice on plain Clear H2O diet gel (p=0.10, 0.26 and 0.56 at 3, 4 and 5 weeks 

respectively). Mfn1/2-/-HAS.Cre.Tg+/-rmd/rmd S107 administered mice showed a 

significantly decreased (p<0.0001) growth curve when compared with Mfn1/2-/-

HAS.Cre.Tg+/-rmd+/+  (WT) mice administered S107 compound. The Mfn1/2-/-

HAS.Cre.Tg+/-rmd+/+  mice were not significantly different from the WT mice on plain diet 

gel, as seen from historic data. Where; MUT=mutant, WT=wild type. N= 4 

mice/sex/genotype.  
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Discussion: 

It can be seen that even though the use of mitofusin as a genetic modifier helps partially restore 

mitochondrial area and hence mitochondrial phenotype, this does not have any effect on the life-

span / growth curve and wire hang abilities of the Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice. A major 

reason for the inability to perform the wire hang tests is the forelimb deformities in the Mfn1/2-/-

HSA.Cre.Tg+/-rmd/rmd mice that do not seem to be corrected, resulting in inability to grip and 

hang on to the wire grid in the test. rmd mice show defects in membrane integrity as seen from 

Evans Blue Fluorescent staining and JC-1 florescence assay (Sher et al., 2006)(Wu et al., 2010). 

The mitochondria in the Mfn1/2-/-HSA.Cre.Tg+/-rmd/rmd mice have not been tested for 

membrane integrity. Rescue of mitochondrial size could rescue membrane function and integrity, 

which remains to be tested using the above-mentioned assays or the Seahorse cell analysis 

technology.  

This forelimb deformity was not corrected after the administration of S107 and hence these mice 

were not tested for wire hang. S107 when administered to rmd mice did not seem to improve 

growth curves as previously reported with the mdx mice, suggesting that oral supplementation of 

S107 through Clear H2O diet gel did not show any improvement in rmd phenotype. An alteration 

to the supplementation strategy via introducing the drug earlier in gestation to the pregnant 

mothers in order to target muscular dystrophy of their mutant rmd offspring before its onset 

might show a better response.  
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Materials and Methods: 

Growth Curve: In order to measure the body weight and hence the growth curve of mice an N 

of 4 mice/sex/genotype were used for the experiments. The mice were weighed one at a time at 

approximately the same time once a week. For weighing, an empty Lilly tub was pre-weighed 

and used as a holder for mice in the weighing scale. The mice were then weighed and the weight 

of the Lilly tub was subtracted to give the weight of the mice.  

 

Wire hang: The wire hang assay was performed once a week at around the same time of day. 

For this assay, the mice were placed on a wire mesh and the mesh then inverted. The stop watch 

was started at the time when the wire mesh was inverted. The number of seconds for which a 

mouse could hold on the mesh was recorded. An N of 4 mice/sex/genotype was used for each 

experiment.   

 

Mitochondria area analysis: For analysis of mitochondrial area, n=4 mice/sex/genotype were 

used. Gastrocnemius muscles from the mice were prepared for TEM analysis as described in 

chapter 2. About 5 pictures from each mouse were analyzed for mitochondrial areas. All the 

mitochondrial areas analyzed from each group were pooled together and student’s t-test was used 

to assess differences between mitochondrial areas between groups.  

 

Transmission electron microscopic sample preparation, image analysis, were performed as 

described in chapter 2. 
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CHAPTER 5 

CONCLUSION AND FUTURE DIRECTIONS 

 

Medical management of muscular dystrophy 

MD continues to affect many Americans (1 in 250,000) (Mercuri et al., 2002) 

(www.mda.org, www.ninds.nih.gov). However, no cure exists. Medical management techniques 

like cardiac care, provision of self-feeding support, implementation of techniques for safe 

swallowing, physical therapy and other palliative care can be provided. Treatments are generally 

tailored specific to patient needs by a team of physicians and they include occupational therapy 

to improve muscle strength and function and speech therapy (National Organization of Rare 

Disorders). Depending on the type and stage of MD, corrective surgery like cataract removal or 

adding a pacemaker in cases of cardiac failure can be performed. Current medications used to 

slow down the progression of MD symptoms are glucocorticoids like prednisone and Emflaza 

that helps increase muscle strength, agility and slows down the progression of MD, 

anticonvulsants to help with muscle spasms, immunosuppressants to help slow down the death of 

muscle cells and antibiotics to treat respiratory infections, drugs like angiotensin converting 

enzyme (ACE) inhibitors and beta blockers (www.nichd.nih.gov, 

www.musculardystrophynews.com). Intraperitoneal injections of protease inhibitor leupeptin in 

dy/dy mouse model for dystrophy prevented the development of any histological features of 

muscular dystrophy (Tsuji & Matsushita, 1986).However, no further research has been 

conducted in this therapeutic area. Myoblast transfer as a technique to replace dystrophin in 

Duchenne’s muscular dystrophy  patients showed no significant difference in muscle strength 

and a low percentage of donor-derived dystrophin (Mendell et al., 1995). In the past decade, 
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gene therapy as a method of treatment of muscular dystrophy has gained momentum. Many 

efforts have been made in the treatment of Duchenne muscular dystrophy (DMD) one of the 

most common types of MD. Efforts for delivery of the mini or micro-dystrophin gene in DMD 

patients are being made using vectors like adenoviruses, retroviruses plasmids and adeno-

associated viruses with AAV vector mediated gene delivery being the most feasible with many 

positive results in pre-clinical trials (Chamberlain, 2002) (Hollinger & Chamberlain, 

2015)(Ramos et al., 2015). In another effort to help cure Duchenne muscular dystrophy, Serepta 

therapeutics has been working on increasing expression of GALGT2 gene by AAV mediated 

injections (www.musculardystrophynews.com). GALGT2 encodes for the protein GalNAc 

transferase (beta 1,4 N-acetylgalactosamine galactosyltransferase) that transfers a complex sugar 

molecule on to dystroglycan. In an mdx mouse, upregulation of GALGt2 gene via AAV vector 

upregulates utrophin, which in turn prevents dystrophy (www.parentprojectmd.org)(Hirst, 

McCullagh, & Davies, 2005). However, none of these therapies are FDA approved yet.  

 

AAV mediated gene therapy for MDCMC 

 AAV is increasingly being used as a vector of choice for gene therapy in the alleviation 

of MD symptoms. Retroviruses effectively integrate into the host genome but are difficult to 

grow in large quantities thus inhibiting their use in gene therapy. Use of  retroviruses for gene 

therapy can be problematic in cases where retroviruses have been known to integrate into 

promoter regions of oncogenic genes and cause tumorigenesis (RS, BF, SRW, P, & Chen H, 

2004). Adenoviruses and plasmids have poor transduction properties when compared to AAV 

vectors, making AAV vectors one of the most suitable forms of gene transfer systems. On the 

other hand, AAV vectors can be used to carry genes up to 4.7Kb in size and can transduce post-
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mitotic cells, thus gaining specific importance in the field of MD therapy. Although not 

common, studies have reported the generation of cellular immune response against protein 

delivered by AAV. These immune responses can be limited by using muscle specific promoters 

in case of muscular dystrophy patients (Cordier et al., 2001). For each case, a tissue specific 

promoter can be inserted upstream of the AAV vector so as to have tissue specific effects and 

lower host immune responses (Zeng et al., 2008)(B. Wang et al., 2008). Each AAV vector is 

designed to carry a specific gene that the patient lacks making each vector specialized and 

specific for the treatment of that particular MD (Chamberlain, 2002). 

 

Therapeutic rescue of dystrophy in rmd mice 

While our data contributes immensely to the current knowledge in the field of MDCMC, 

many questions still remain unanswered. Deficiency of CHKB gene results in MDCMC as was 

discovered from the study of the rmd mice. The rmd mice form a good model for MDCMC, 

demonstrating most of the features of this disorder as seen from biochemical (Sher et al., 2006), 

histology and muscle strength analysis. It is not known as to why deletion of a ubiquitously 

present gene like choline kinase beta affects the mitochondria of the skeletal muscles 

exclusively. Choline kinase beta deficiency should have effects on the membranes of all cellular 

organelles but this is not apparent from histology of tissues like brain and heart of rmd mice, 

whereas the skeletal muscles of the forelimbs show a less severe dystrophic phenotype. Levels of 

PC in the hind limb skeletal muscles of rmd mutant mice are not depleted but severely reduced 

(Sher et al., 2006), indicating that the hindlimb skeletal muscle tissues possibly derive PC via 

some other pathway like the PE pathway in the liver. It will be interesting to know which 

pathway compensates in choline kinase beta deficient conditions. Components of that pathway 
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can then be regulated using drugs to increase PC levels in MDCMC patients. As part of my 

thesis, I have worked on the therapeutic rescue of rmd phenotype using mitofusin1 and 2 as 

genetic modifier, using CDP-choline as a dietary supplement to bypass the defects in the 

Kennedy pathway for PC synthesis, Using S107 as a dietary supplement to stabilize RyR1-

calstabin binding and thus improve rmd phenotype and by using gene therapy for the up-

regulation of choline kinase alpha and choline kinase beta in rmd muscle. 

 

 Therapeutic intervention using CDP-choline and S107 as oral supplements.  Therapeutic 

intervention in the form of oral supplementation of a Kennedy pathway intermediate like CDP-

choline and that of a known RyR1-calstabin1 binding stabilizer-S107, failed to prevent 

dystrophy in rmd mice. CDP-choline did not benefit life span of rmd mice and failed to rescue 

rmd phenotype. Previous studies have shown that CDP-choline helps decrease creatinine kinase 

levels in skeletal muscles of rmd mice (Wu et al., 2010). The pharmacokinetics of absorption of 

CDP-choline in different tissues and testing of serum creatinine kinase levels in rmd mice 

supplemented with CDP-choline will help determine improvements in muscle condition that 

were not visible through gross phenotype studies. Analysis of muscle force of contraction in fast-

twitch muscle groups like the EDL can sensitively determine improvements in muscle force and 

contraction which are not visible in tests like wire hang.  

 S107 has been shown to help improve muscle excitation and contraction force in mouse 

models of Duchenne muscular dystrophy (Andersson et al., 2011)(Andersson et al., 2012)(Blat & 

Blat, 2015). Supplementation of S107 compound in diet did not lead to improvements in gross 

wire hang abilities or weights of the rmd mice. Like with the CDP-choline supplemented mice, it 

will be beneficial to assess the muscle force of contraction in fast-twitch muscle groups like the 
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EDL muscle. These tests will help determine if improvements in muscle force and contraction 

abilities will help translate to better quality life in MDCMC patients.  

 

Use of Mitofusin 1 and Mitofusin 2 as genetic modifiers in rmd: Use of Mfn1/2 as a gene 

modifier, led to partial rescue of the mitochondria, with mitochondrial areas in between that of 

rmd and WT mice but failed to rescue dystrophy and increase life span of rmd mice. 

Mitochondria in rmd mice show decreased membrane potential and are not as efficient as 

mitochondria in WT mice (Sher et al., 2006)(Wu et al., 2010). The partially rescued 

mitochondria in Mfn1/2HSA.Cre+/-rmd/rmd mice have not been tested for membrane integrity or 

function. Performing these tests on the Seahorse cell analysis machine can help understand if the 

partial mitochondria showed a rescue in function. Improvements in membrane function would 

lead to further confirmation of our findings; that, megamitochondria, by itself does not rescue 

rmd but may contribute to other characteristics of the disorder arising due to choline kinase beta 

and hence PC deficiency.  

 

Gene therapy by up-regulation of Chkb: The Tg-rmd showed muscle strength, mitochondrial 

phenotype and life span comparable to that of WT mice. A 14-fold increased expression of Chkb 

gene does not cause cellular damage and hence, systemic overexpression of Chkb can be targeted 

as a possible gene therapy. This led to testing of AAV mediated gene therapy for the rescue of 

dystrophy in rmd mice. For treating rmd in our mouse models, I have not used a muscle specific 

promoter but have conducted intra-muscular injections, in order to circumvent the construct size 

restrictions, since our Ttn promoter along with our Chka or Chkb gene far exceeds the 4.7 kb 

carrying capacity of the AAV vector (Maddatu et al., 2005b). AAV-Chkb gene therapy, 
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intramuscular injections in the gastrocnemius muscles of rmd mice improved muscle fiber 

regeneration, leading to increased fiber area, decrease in the number of centralized nuclei and 

increased muscle weight. This indicates that upregulation of AAV-Chkb in MDCMC can be 

targeted as a potential therapy, however, in order to design a therapy that can be FDA approved, 

testing of a few more factors is necessary. It is essential to test for effects of systemic injections 

in rmd mice. Even though, my experiments indicate that over-expression of Chkb gene in Chkb 

deficient rmd mice does not cause immediate toxic effects, it is essential to perform an aging 

study on systemically injected mice, in order to test for long-term toxic or immunogenic effects 

that may occur. Along with this study, it will be interesting to note whether, AAV-Chkb 

injections in 8 week rmd mice would result in similar improvements in muscle health and 

phenotype. This experiment can test for percent regeneration of muscle fibers compared to 3-

week injected mice and help understand if injection of adult MDCMC patients can be beneficial 

for delaying progression of dystrophy and can help with increased muscle strength.  

 

Gene therapy by up-regulation of CHKA: AAV mediated injections of CHKA gene resulted in 

similar improved muscle regeneration, decreased number of centralized nuclei and increased 

muscle weight as with the AAV-Chkb injections, indicating that Chka can also be a potential 

target for the rescue of dystrophy. Since MDCMC is caused due to deficiency in choline kinase 

beta gene, upregulation of choline kinase beta will be the preferred mode of therapy in MDCMC 

patients. AAV-Chka injections can be administered in the rare possibility of development of an 

immune reaction to AAV-Chkb injections or in the event, that a second injection is required after 

a few years of administering the first injection with AAV-Chkb. For use as a gene therapy 
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vector, it is necessary to test for long-term effects of systemic injections of Chka in rmd and 

unaffected mice. 

In order to minimize off-target transduction, AAV vectors carrying Chka or Chkb gene of 

interest under a muscle specific promoter, other than Ttn can be used. Thus, the vector can be 

made specific for treatment of muscular dystrophy caused as a result of Chkb deficiency. Muscle 

creatinine kinase (MCK) has been shown to have success as a muscle specific promoter in gene 

therapy for Duchenne muscular dystrophy (Cordier et al., 2001)(B. Wang et al., 2008). 

 

Implication of choline kinase alpha in cancer: Choline kinase alpha gene has been studied more 

extensively than choline kinase beta gene due to its implication in cancer. CHKA expression is 

the lowest in adult human skeletal muscle (GETx Portal Version V7). Interestingly, in mice, 

Chka expression in skeletal muscle tissues decreases in a rostro-caudal gradient with an increase 

in mouse age (Wu et al., 2010) (Gallego-Ortega et al., 2009). Decrease in choline kinase alpha 

expression in adult skeletal muscle tissues implies that choline kinase alpha is detrimental to 

healthy skeletal muscle tissues. Choline kinase alpha is overexpressed in 40-60% of human 

tumors (X. Chen et al., 2017). Transfecting Hek293T with choline kinase alpha leads to 

anchorage independence similar to that obtained with Rho-A induction. However, up-regulating 

CHKA expression in adult skeletal muscle tissues using AAV mediated gene therapy does not 

show any immediate toxic effects in the rmd or unaffected mice. This implies that choline kinase 

alpha may not be the causative agent in tumorigenesis but a possible indicator of the same. 

Hence, up-regulation of Choline kinase alpha to rescue can be a potential therapeutic strategy for 

the rescue of rmd phenotype. 
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The mechanism behind decrease in CHKA expression in adult skeletal muscles of 

humans and a complete shut-down of Chka expression in adult skeletal muscles of mice is not 

known. Epigenetic changes like DNA methylation can bring about a decrease in gene expression. 

De novo methylation of CpG islands has been known to contribute to gene silencing (Jaenisch & 

Bird, 2003). Many diverse classes of RNA have been shown to recruit histone and DNA 

methyltransferases, thus silencing DNA/gene expression (Holoch & Moazed, 2015). Methylation 

of choline kinase alpha gene sequence can be determined with array of bead hybridization 

followed by a higher resolution method like HPLC and mass spectrometry to determine the exact 

percentage of sequence methylated. These assays can be performed at 1, 2, 4, 6 and 8 week old 

mice on order to determine the period when these epigenetic changes begin to occur in mice 

(Kurdyukov & Bullock, 2016). DNA methylation has been shown to be inhibited in vitro in cell 

culture using chemical compounds like 5-Aza-2’-deoxycytidine, caffeic acid and chlorogenic 

acid. It will be interesting to see whether these compounds can help inhibit DNA methylation of 

choline kinase alpha, preventing it’s shut down and thus rescuing rmd phenotype in choline 

kinase beta deficiency. This strategy can also be applied to MDCMC patients in order to 

decrease shut down of CHKA expression, prevent drastic decrease in PC levels and hence 

prevent or reverse muscular dystrophy caused as a result of CHKB deficiency.  

 

Differential function of Chka and Chkb: enzymatic properties of Choline kinase alpha and beta 

have shown that choline kinase beta has a Michaelis constant (Km) for choline 2.8 times higher 

than choline kinase alpha 1. The Km of choline kinase beta is lower than that of choline kinase 

alpha 1 for ethanolamine. This suggests that in cell free systems, choline is a better substrate for 

choline kinase alpha 1 and ethanolamine is a better substrate for choline kinase beta (Gallego-
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Ortega et al., 2009). This is different for different tissues. In mice, we know that choline kinase 

beta is responsible for the phosphorylation of choline since choline kinase alpha is shut down 

(Wu et al., 2010b). The activity of choline kinase in a given cell type is regulated not by its 

amounts but by the combination of each isoform subunit to form functional homodimers or 

heterodimers (Aoyama et al., 2004).  It has been speculated that the alpha/beta heterodimer may 

have a specific activity in between that of the two respective homodimers. A common conclusion 

from in vitro and in vivo studies suggests that the main fate of choline is the synthesis of PC via 

the Kennedy pathway, accounting for the use of 95% of total choline pool in most tissues 

(Gibellini & Smith, 2010). 

 

Expression patterns of Chka and Chkb in different tissues: Though research on the 

expression levels of different homo and heterodimers of choline kinase alpha and beta need to be 

performed, it can be implied that alpha and beta paralogs can compensate for each other. Thus, in 

the skeletal muscles of mice, where there is shut down of choline kinase alpha expression, 

complete lack of choline kinase beta results in extremely low levels of PC and hence muscular 

dystrophy. The forelimb shows low/remnant levels of choline kinase alpha expression and hence 

are less affected in choline kinase beta deficient conditions. In rmd mice, the cortex and mid-

hind brain tissues shows undetectable levels of Chkb expression but show minute levels of Chka 

expression in comparison to C57BL/6 mice (0.24 and 0.0005 fold, respectively) (Supplemental 

fig 5-6) .  Tg-rmd mice show 0.23 fold and 0.8 fold expression of Chka compared to C57BL/6 

mice in the Mid-Hind brain region. Chkb expression levels for the Mid-Hindbrain region are 0 

and 0.38 for rmd and Tg-rmd mice. This data indicates that different regions of the brain have a 

specific pattern of Chka and Chkb expression which influence cognition, membrane fluidity and 
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structure. This data along with the cognitive analysis on the Tg-rmd and rmd mice suggests that 

in Chkb deficient conditions, there remains expression of Chka in regions of the brain and while 

it has not been identified whether this Chka expression is from neural cells or vasculature, it can 

be suggested that this expression influences development of cognitive phenotype in these mice.  

  

Absence of cognitive impairments in rmd mice 

Based on my thesis research, the rmd mutant mice do not show signs of cognitive impairment in 

any of the behavioral assays I examined them on. This could be because these mice were tested 

at a very early age, not having developed working memory or learning problems. However, 

children at the age of about 5 years were shown to have a lower performance on certain learning 

tests and tests for IQ (Mitsuhashi, Ohkuma, et al., 2011)(S. Sparks et al., 2012). MDCMC 

patients showed prominent speech defects which were not tested for in rmd mice. Going further, 

we could test the Tg-rmd mice for other disorders within the spectrum of cognitive impairments 

observed in MDCMC patients such as speech impairments and interaction with a strange mouse 

or object in order to gain a better understanding of social interaction and hence, of the presence 

of multiple aspects within the cognitive impairment spectrum. As mentioned in chapter 3, 

background strains have a significant influence over behavioral assays. Using a different 

background strain like FVB or DBX could significantly alter the results of the spontaneous 

alternation, spontaneous alternation with delay and paired associates learning tests (Hall & 

Roberson, 2012)(Brodkin et al., 2004)(Lassalle et al., 2008). Real time PCR analysis on the 

cortex and mid-hind brain tissue showed a 0.4 fold expression of Chkb gene in the cortex and a 

0.8 fold expression in the mid-hind brain region in the Tg-rmd mice when compared to 

C57BL/6J (Supplemental Fig 5). This expression is absent in the rmd mice. Further tests need to 
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be performed in order to determine if this expression of transgenic Chkb gene is within a certain 

population of neuronal cells or in the glial, endothelial or vascular smooth muscle cells of the 

brain. Culturing neurons from Tg-rmd mice and testing them for the expression of Chkb gene 

would help determine expression in that cell population alone. PCR markers specific to 

transgenic Chkb and endogenous Chkb will help distinguish between the two expressed genes in 

the cells. Presence of reliable antibodies for Chka and Chkb can enable immunostaining of cross 

sections of the brain in order to determine the regions of expression of the two respective genes. 

Another method of determining the regional specific expression of Chka and Chkb is by using 

techniques like RNA in situ hybridization in which, single stranded RNA probes which bind to 

complementary nucleic acid sequences are used to help detect the genes or mRNA of interest. 

This can enable visual detection of Chka and Chkb in various tissue cross sections.   

 

Summary of contributions to the field 

Choline kinase beta deficiency causes lack of PC synthesis which results in muscular dystrophy. 

The rmd mouse discovered in our lab, has a spontaneous 1.5 kb deletion in the choline kinase 

beta gene, develops muscular dystrophy in a rostro-caudal gradient and shows megamitochondria 

like the MDCMC patients, providing an excellent model organism for the further study of 

MDCMC. In the various attempts to rescue rmd phenotype in mice, it was observed that, even 

though oral supplements and compounds do not seem to rescue dystrophy, further analysis can 

confirm if these compounds can be used for increasing muscle strength and hence the quality of 

life in MDCMC patients. Rescuing mitochondrial area does not rescue dystrophy in rmd mice, 

providing further confirmation that the dystrophy results due to deficiency in choline kinase beta 

gene and hence, in, PC synthesis and not as a result of the megamitochondria disrupting normal 
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muscle architecture. Thus, muscular dystrophy in rmd and hence MDCMC can be rescued using 

gene therapy by upregulating choline kinase beta expression levels for the production of the 

necessary PC molecule. Even though there is a decrease in the expression of gene paralog Chka 

in adult murine skeletal muscles, there appears no immediate toxic effects of the upregulation of 

choline kinase alpha in mouse adult skeletal muscles via AAV mediated gene therapy. It appears 

that choline kinase alpha homodimers can compensate for PC production in Chkb deficient 

conditions.  rmd mice show brain lipid changes consistent with those observed in Alzheimer’s 

Disease patients, patients with mild cognitive impairments and brain trauma victims, however, 

these lipid changes do not translate to behavioral differences when tested on a battery of 

behavioral assays, indicating a secondary mechanism of PC synthesis in rmd brain tissue or 

mouse background strain influence. Correcting for background strain influence can make the 

rmd mouse a complete model for the study of MDCMC. Together, my research has added to the 

field of knowledge pertaining to MDCMC by way of creating a database of lipid changes 

occurring in choline kinase beta deficient conditions and by way of engineering and testing a 

gene therapy for the rescue of muscular dystrophy as a result of choline kinase beta deficiency. 

This gene therapy study can be further expanded upon for translation into MDCMC patients.  
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Appendix A: Chapter 2 Supplemental data 

 

 

 

SUPPLEMENTAL FIG 1. Dietary supplementation of CDP-choline for the rescue of rmd 

phenotype: Dietary supplementation of CDP-choline rmd mice did not show a significant 

increase in body weights of male or female mice tested (A)(B). Mass spectrometric analysis 

of the amount of CDP-choline in the muscle of the rmd mice post CDP-choline 

supplementation for a period of 71 days did not show significant differences between the 

groups analyzed (C) indicating that there were no beneficial effects of CDP-choline 

supplementation, where WT indicates +/+ littermates on CDP-choline diet, Control 

indicates rmd/rmd mice on normal diet and Test indicates rmd/rmd mice on CDP-choline 

supplemented diet. N = 4 mice/sex in WT, 4 mice/sex in control and 8 mice/sex in test. Diet 

supplementation was initialized at 3 weeks of age and continued for a total of 12 weeks.  
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SUPPLEMENTAL FIG 2: Evidence of rmd phenotype at 2 and 4 weeks: 

At 2 weeks: rmd mice show disturbed muscle fiber architecture with megamitochondria (A) 

compared to WT mice (B). Number of mitochondria are significantly lower with p<0.0001 

(C). Mitochondrial areas are significantly larger in rmd mice at 2 weeks with p<0.0001 (D). 

N= 4 mice/sex/genotype. Error bars represent mean and SD. 

At 4-5 weeks: The rmd males (E) and females (F) showed a significant difference compared 

to the WT in the total distance travelled (p=0.02 in males and 0.04 in females) and in the 

vertically activity shown (p-0.001 in males and 0.003 in females) (G-H). On the rotarod 
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assay, rmd mice show a significant difference from WT in latency to fall with p<0.0001 (I) 

in a grouped analysis of males and females. rmd mice show significantly decreased fore-paw 

and all-paw grip strength when compared to their unaffected (WT) littermates with males 

and females showing p values less than 0.0001 in each of the tests (J-K), suggesting lower 

grip and hence muscle strength. N= 4-6 mice /sex/genotype. Error bars represent mean and 

SD.  

SUPPLEMENTAL FIG 3: Effects of gene therapy on rmd muscle: H&E staining of AAV-

Chkb injected gastrocnemius muscle in rmd mice shows restoration of muscle structure in 

injected leg (A) vs in the uninjected leg (B). As seen in AAV-Chkb injected gastrocnemius 

muscle, AAV-Chka injected gastrocnemius muscle of rmd mice also look bigger and 

bulkier when compared to saline injected rmd muscle (C). AAV-Chka injected rmd 

muscles shows presence of fluorescent EGFP reporter, whereas no fluorescence is observed 

in saline injected rmd muscle (D). Autofluorescence can be detected in the feet and bladder 

region but is not significant to the study. H&E staining further provides evidence of 

restoration of muscle phenotype in the AAV-Chka injected muscle (E) compared to the 

sham injected muscle (F). 
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SUPPLEMENTAL FIG 4: Montaged image of AAV-Chka injected rmd muscle: Cross 

section of gastrocnemius muscles from AAV-Chka injected rmd mouse shows significant 

and partial restoration of muscle structure and phenotype in AAV-Chka injected muscle 

(E) compared to the dystrophic muscle architecture of sham injected muscle (F). Both E 

and F represent Fiji stitched images whereas, inset pictures are at 20X magnification and 

indicate the nature of partial restoration of muscle phenotype in AAV-Chka injected rmd 

muscle. 
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Appendix B: Chapter 3 Supplemental data : 

 

 

 

 

 

 

Chkb gene expression levels in cortex

1

0.2937852
0.417905879

0

0.88086941760
4406

0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

B6 Het Res rmd Tg-WT

Fold Change

A

1

0.385730877

0

0.382690529

1.947446176

0

0.5

1

1.5

2

2.5

B6 Het rmd Tg-rmd Tg-WT

Fold Change

Chkb gene expression levels in 
Mid+Hind brain region

B



 114 

Supplemental Fig 5. Realtime PCR for detection of Chkb levels in brain tissue: Real time 

PCR in the cortical tissue of rmd mice showed a no expression of Chkb, whereas, tissue 

from rmd/+, Tg-rmd and Tg-WT mice showed levels of 0.29, 0.42 and 0.89 respectively, on 

comparison to C57BL/6J mice. In the mid+hind brain tissue rmd mice showed no 

expression of Chkb gene whereas, tissue from rmd/+, Tg-rmd and Tg-WT mice showed 

levels of 0.39, 0.38 and 1.95 respectively, on comparison to C57BL/6J mice.  
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Appendix C: Chapter 5 Supplemental data: 
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Supplemental Fig 6. Realtime PCR for detection of Chka levels in brain tissue:  

Real time PCR in the cortical tissue of C57B/6J, rmd/+ (Het), Tg-rmd, rmd and Tg-WT 

mice showed a 0.45-fold expression in Tg-rmd mice and a 0.23-fold expression in rmd mice. 

Rmd/+ and Tg-WT mice showed expression levels of 0.32 and 0.67 respectively. In the Mid-

Hind brain region Tg-rmd mice showed a 0.81-fold expression of Chka and rmd mice 

showed negligible expression levels of 0.00052. The rmd/+ and Tg-WT mice showed 

expression levels of 0.52 and 1.22 respectively.  This shows that in Chkb deficient 

conditions, rmd mice show expression of Chka in some regions of the brain, which may 

influence cognition, membrane fluidity and structure in the brain.  
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