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Barrier coating layers are important in many paper grades used in food packaging and have the 

potential to help reduce our use of plastics in some situations. Barrier layers to produce water proof 

packaging such as milk or juice cartons or coffee cups are common. Water based dispersion barrier 

coatings have the potential to be a low-cost alternative to extrusion coated layers. Water borne coatings 

are reported to be easy to recycle and break down in the environment. However, barrier properties are 

often less than what is desired and expected for these water borne coatings.  The reason for this poor 

performance is not well understood. 

Various papers are coated with a latex intended for barrier properties as well as the latex 

combined with plate-like pigments with various coating methods.  The laboratory coated samples are also 

compared to a high speed blade coater.  The water vapor transmission rate (WVTR) of these samples is 

measured.   A novel method, using cellophane, is proposed to isolate the behavior of the coating layer 

independent of the paper properties.  Latex was also stained before coating; these samples were imaged 

with a confocal laser scanning microscope (CLSM). The results are compared and normalized in terms of 

water vapor permeability.  



 
 

When coated at low speed, different application methods were found to give similar barrier 

performance. The effect of base substrate was found to be prominent. Coatings on cellophane yield 

superior barrier performance when compared to coatings on regular copy paper. The absence of pores 

and roughness on the surface of cellophane promote the formation of continuous uniform coating layer 

with little defects, important for moisture barrier performance. When typical porous paper is used, the 

addition of pigments was proven to not only to provide tortuous path of diffusion but also to help prevent 

the coating to sink into the pores.   Image from the CLSM verify this mechanism. 

The high speed blade coating resulted in barrier properties that were better than the low speed 

laboratory coating samples, especially when the pigment is used. The reason for this result may link back 

to the alignment that takes place in the high speed shear field under the blade. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Motivation of Research 

 

More than ever, the need for sustainably sourced biodegradable paper and board is increasing to 

accommodate the shift away from plastics, glass, and metal in our packaging systems. The demand for 

food products and other consumer staples packaging and containers is only going to keep rising with the 

growth of world population, the middle class and the increasing trends towards door to door last-mile 

deliveries of goods. This is happening on top of the on-going demand for better quality packaging for fast-

moving consumer goods (FMCG). Paper has many key attributes in that it can be sustainable, recycled, is 

light weight to transport, and will break down in the environment.   

Global packaging is already a US$400B industry according to a report by Ernst & Young in 2012. 

Food and beverage packaging comprise of 70% of the end markets. Paper and board category make up 

the biggest portion of all packaging materials at 34%, followed by rigid plastics at 27%. One of the key 

success factors for packaging manufacturers is the ability to reduce material and waste. Nowadays more 

customers put pressure on producers to cut basis weight of packaging or “down-gauging”. Another 

condition unique to packaging manufacturers or converters is that at times they are stuck in a position 

where large raw material suppliers could increase price when there is a shift in market price but could not 

pass the burden to consumer goods companies which have more negotiating power. Being heavily 

competitive and produce high quality products with optimized cost of goods manufacturing (COGM) is 

important for packaging companies. 

The end-of-use result of paper compared to plastic is quite different. According to data from U.S. 

Environmental Protection Agency, 77 million tons of container and packaging wastes were generated in 

2005, representing 32% of all municipal solid waste (MSW). Of all packaging waste, 39 million tons consist 

of paper and paperboard packaging such as corrugated boxes, milk cartons, bags, and wrapping papers. 
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14 million tons were made of plastic packaging such as bottles, bags, and wraps. The percentage of 

recovery by recycling and composting was 59% for paper-based packaging while only 9% for plastics. The 

low percent recovery of plastics may be attributed to the economics and market availability of recycled 

plastics. For example, recycled plastics are usually not suitable for food contact applications due to 

carryover contaminants. Neither are plastics compostable (Marsh and Bugusu, 2007).  A key issue in the 

media over the last year was the millions of tons of plastic which end up in the ocean and cannot degrade 

for hundreds of years (Parker, 2018). Not only plastics have lower recovery rate than paper-based 

packaging, it is also sourced from non-renewable fossil fuels. A move towards more forest-product based 

packaging is clearly desirable.             

In other words, with the increasing trend of packaging demands and the needs for the industry to 

innovate towards lower cost and more environmentally friendly products, any effort to contribute to the 

development of cost effective and biodegradable paper-based packaging products is imperative and could 

have a big impact for the future of the industry.  

Packaging, whether made of paper, paperboard, plastics, glass, or metals typically serve the 

following purposes: protection/preservation, containment and food waste reduction, convenience, 

marketing, and traceability (Marsh and Bugusu, 2007). Thus, the ability to prevent transport of moisture 

or gases is one of the most important quality of packaging products. Other requirements include structural 

integrity and appearance. Since paper and paperboards naturally have pores and rough surfaces, a coating 

layer is usually added to provide barrier against mass transport of moisture, gases, or grease, and to 

provide surface smoothness for better printability.   

The methods available for production of barrier coating on paper substrates include extrusion, 

lamination and dispersion coating. Currently, the most common method to produce packaging with 

reliable quality is by extrusion of polymers such as polyethylene (PE) and poly(ethylene-terephthalate) 

(PET) or natural wax, which is then applied on paper substrate (Gaikwad and Ko, 2015).  This method is 
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well established and is used to make milk and juice cartons as well as paper cups.  Lamination also uses 

polymers but involves bonding and adhesion of the polymer film onto paper substrate. With dispersion 

coating, aqueous dispersion of polymer particles is applied onto paper substrate. Typical barrier 

dispersion coatings consist of polymer particles dispersed in water, commonly called latex. Most common 

polymers used include polyacrylates, polystyrene, polybutadiene, and polyolefins. Beside water and 

polymer, formulations usually also contain fillers or pigments and additives (Kimpimaki et al, 1997).  

In the last few years only, the interest towards dispersion barrier coating has hiked. There are a 

couple reasons for this. First, dispersion coated papers can be easily recycled through repulping, 

composting, and incineration. On the other hand, plastic extruded or laminated coated papers especially 

those with multilayers of polymers do not meet the requirements for biodegradability and composting 

(Miettinen et al, 2016). They are costly to recycle and involve processes like delamination or selective 

dissolution-precipitation (Kaiser et al, 2018). Some even have to go as far as adding bio-based interlayer 

which then can be decomposed by enzymatic treatment (Cinelli et al, 2016). Figure 1.1.1 below describe 

the huge discrepancy between latex and PE coated paper in terms of compostability.   

 

Figure 1.1.1 Compostability of PE and SB-latex coated kraft paper. Degradation was estimated as 

percentage loss of the surface area. Based on Kimpimaki et al (1997). 
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Another great advantage is that paper manufacturers have the option to utilize their existing 

equipment and processes that had normally been used for paper coating for printing and writing 

purposes. Latex is already a very common substance used in paper coating which acts as binder for the 

pigments used in coating colors. Pigments is a very important material in paper coatings to improve print 

quality, gloss, brightness, and opacity (Bollstrӧm et al, 2013). The only adjustment needed is the ratio of 

latex to pigments. With barrier coatings, latex is the main substance while pigments are added to lower 

cost and improve barrier performance. Dispersion barrier coating can be applied using most current paper 

coating technologies such as roll coaters with rod (Mayer bar), blade coaters, air knife, dip or spray 

coaters, and rotogravure (Kimpimaki et al, 1997). On top of the ability to use conventional coating 

equipment, when compared to extrusion coating, barrier dispersion coating involves fewer processing 

steps and can be produced at higher application speeds (Gaikwad and Ko, 2015). Transforming these 

machines into barrier coaters rather than purchasing new equipment can provide manufacturers business 

advantages.  

All these advantages have triggered many research on dispersion barrier coatings in the last 

decade as water based barrier coatings (WBBC) is projected grow around 6% annually in terms of market 

share (Miettinen et al, 2016). Many research focused more on the development of the coating formulation 

chemistry. Some also have developed barrier coating with bio-based polymers or combined with thin 

inorganic layer. Most aimed to produce barrier coatings that are competitive to polymer extrusion 

coating. Typical water vapor transmission rate (WVTR) of LDPE film is 1 g-mil/100in2day or to 15.5 g/m2day 

for a 0.0254 mm film (Frey, 2009). With average density of 0.93 g/cm3, this film thickness equates to 24 

g/m2 of coat weight. According to Andersson (2002), typically a minimum of 3-5 g/m2 coat weight is 

necessary for satisfactory water vapor barrier. Developing comparable or better barrier properties has 

been the focus for many. In general, the performance of dispersion barrier coatings is still inferior 

compared to extruded polymer coatings at the same coat weights. 
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Several have observed the effect of latex, pigments, and base substrates properties to barrier 

performance as will be discussed more in Section 1.2. A systematic study that looks at the general 

parameters associated with dispersion barrier coatings in a more fundamental way seems to be lacking. 

In this thesis, the role of coating methods, coating formulation, base substrate, and machine speed are 

analyzed and compared. The goal is to understand the parameters and their importance to help develop 

superior dispersion barrier coatings. 

 

1.2 Past Studies 

 

Studies on dispersion barrier coating gained traction in the last couple of decades and has been 

accelerating in the last several years. Many research used specific dispersion coating materials and 

substrates of interests and aimed to create barrier system that could compete or replace traditional 

methods. Many others focused specifically on understanding the effect of pigments (typically clay or 

kaolin) or latex properties to the barrier performance, contributing to the development of coating 

formulations. Only a handful have systematically attempted to understand the importance of different 

parameters involved in dispersion barrier coatings. 

Some research focused on trialing different methods to develop competitive barrier coatings and 

not so much on analyzing the fundamentals. Kugge and Johnson (2008) developed barrier coatings using 

styrene-butadiene (SB) latex and clay on linerboard. The water vapor transmission rate (WVTR) obtained 

was 40 g/m2day for a single coat at low humidity (50% R.H, 23°C). With double coat the WVTR can be cut 

into half with coat weight of 12 g/m2. Vähä-Nissi et al (1999) did research on polymer dispersion on high 

density (HD) paper. Low WVTR below 10 g/m2day at coat weight of 5-20 g/m2 was achieved using wax 

modified SB-latex. Ryan et al (2004) used aqueous-based emulsion polymers that include PET, PVDC, and 

styrene-based emulsions coated on paper carton board. Low WVTR of 6.3 g/m2day for 100μm coating was 

obtained with 40% solids of PET aqueous emulsion. Further improvement obtained by applying primer 
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coat as pre-coating, yielding WVTR of 3.1 g/m2day. The addition of wax appears to improve barrier to 

moisture, as shown on Figure 1.2.1. 

 

Figure 1.2.1 Typical WVTR for filler modified and wax modified polymer dispersion coating. Single 

coating on paper board at 75% R.H. and 25°C. Wax modified dispersion gives lower WVTR. From 

Kimpimaki et al (1997). 

 

The fundamentals of latex film formation have been studied for many years. In general, the 

process of generating a continuous layer of material on substrate from aqueous dispersion of polymer 

particles can be broken down into three stages: evaporative drying of water, particle deformation where 

polymer particles form denser pack, and polymer interdiffusion where the individual particles become 

indistinguishable. By experiments, factors such as the ambient conditions, the presence of surfactants, 

plasticizers and pigments, and latex particle structure were found to affect film formation (Keddie, 1997). 

The presence of surfactants between polymer spheres remains in the structure and may influence the 

water vapor transmission rates of these films.  
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Schuman et al (2004) analyzed the influence of SB-latex characteristics such as the degree of 

cross-linking, glass transition temperature (Tg) and degree of carboxylation on the mechanical properties 

and water vapor permeability (WVP). It was found that the coating with high degree of cross-linking (high 

gel content) and low degree of carboxylation exhibited the lowest WVTR at 4.9 g/m2day or 6.8 g/Pa.s.m x 

10-12 in terms of WVP. 

Khosravi et al (2014) have studied latex film formation on substrate with various porosity and 

hydrophobicity. Polymers PTFE, PFA, PVDC, and Hypod were casted on both nonporous and porous 

substrates; these results do not involve paper-based substrates. Latex solid concentration in the casting 

solution was found to be the most important parameter in determining film thickness. Major conditions 

needed for latex film formation include sufficient exposure time for particle deformation and the use of 

deformable polymers. Using soft latexes and lowering drying rate facilitate film formation even when the 

solvent is rapidly drawn into the pores of substrate. However, defect-free films are harder to obtain with 

increasing substrate pore size. 

The influence of pigments, mainly clays and nanoclays to barrier properties have been studied 

quite extensively. Models have been developed to predict the performance based on pigments properties 

such as size distribution, aspect ratio, and pigment volume concentrations. Critical pigment volume 

concentrations (CPVC) for different pigment/latex systems have been studied. More pigments in coatings 

is generally beneficial up to a point where any more addition of pigment would only deteriorate the 

coating surface.  

Vähä-Nissi et al (1999) studied the effect of pigment factors. Lower WVTR can be achieved more 

significantly by increasing amount of pigments up to the CPVC at around 40-50% volume. Talc is the best 

when both grease and water vapor barrier properties are needed. Vähä-Nissi et al also studied the effect 

of drying power and pigments properties on barrier clay coatings using atomic force microscopy (AFM) 
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and scanning electron microscopy (SEM). Three commercial grades of clay with varying particle sizes were 

used. Again, the main conclusion is that adding platy fillers improves barrier properties up to CPVC.  

A research by Zhu et al (2013) focused heavily on analyzing the effect of kaolin particle size 

distribution (PSD), aspect ratio (AR) and the particle orientation and location to barrier performance. 

Models to predict relative permeability based on these factors were developed. It was found that barrier 

properties do not depend on PSD but heavily correlated with AR distribution and orientation of flakes. 

Large flakes with high AR provide largest improvement in barrier property. 

Kugge et al (2011) explored pigments with different shape factors and aspect ratio and correlated 

these properties with the rheological properties of the barrier coatings. The barrier performance in terms 

of WVTR was checked. It was concluded that WVTR performance correlate with shape factor, confirming 

the belief that formulations containing very platy clay provide more tortuous path for diffusion of water 

vapor and thus lower WVTR. Gittins et al (2008) reiterated the importance of selecting platy pigments 

such as kaolin and talc to provide tortuous path for moisture barrier. Styrene-butadiene and styrene-

acrylic latexes were used. The effect of aspect ratio and pigment loading was summarized. Greater aspect 

ratio and greater pigment loading (up to CPVC) improve moisture barrier.  

Bollstrӧm et al (2013) experimented different size, shape, and shape factor pigments blended 

with different amounts of styrene-acrylate, styrene-butadiene, or ethylene-acrylate latex for barrier 

against water vapor and organic solvents. It was found that platy kaolin pigment with highest shape factor 

improved barrier against water vapor and solvent due to increased distance of pathway for liquid to 

penetrate the coating layer. However, the improvement was greatest when styrene acrylate latex used. 

Pure ethylene acrylic latex generates very good barrier properties with WVTR lower than 40 g/m2day for 

all coat weight range and the addition of kaolin did not provide further improvement. Thus, the choice of 

latex can be considered the most important factor per this research. Regarding the amount of pigments, 
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it should not exceed the critical pigment volume concentration (CPVC) as more pigments can create pores 

on the coating surface. 

Nyflӧtt et al (2016) also concluded that kaolin concentration above 5% in formulation decreases 

oxygen permeability by increasing tortuosity for gas diffusion. Kaolin orientation must be parallel to the 

base plane for greater tortuosity. Kaolin orientation is influenced by drying temperature, thickness of 

sample, and kaolin concentration.  

Sun et al (2007) focused on the development of water-based polymer/clay nanocomposite (PCNC) 

that would yield the best barrier properties on linerboard. The concept is by increasing specific surface 

area of clay particles, the tortuous length of diffusion path of water vapor can be increased. It is important 

that nanoclay is fully exfoliated and dispersed in the polymer matrix. The best PCNC system containing 

clay called Sap-CTAB with acrylic resin emulsion was found to yield the best WVTR at 70-120 g/m2day, an 

improvement from pure polymer coating at 275-320 g/m2day. 

Gaikwad and Seonghyuk (2015) studied the importance of nanoclay versus regular clay for coating 

for packaging application. Typical clay pigments have aspect ratio of 10-30 while commercial nanoclays 

50-1000. The most important factors concerning filler addition to barrier dispersions are the adhesion of 

the binder to the pigment particles, the particle shape, and the chemical nature of the pigments. The CPVC 

value of a polymer/pigment system depends on the latex particle size and its size distribution.  

Due to the number of studies that have been done regarding influence of platy clay particles to 

barrier coating performance, articles that serve more as a literature review summary on this topic can be 

found. Tan and Thomas (2016) have reviewed and summarized all literatures regarding effect of 

nanofillers in reducing water vapor permeability (WVP) of polymer/clay and polymer/graphene barrier 

coatings. Models for predicting WVP barrier performance based on factors such as tortuosity, geometry, 

platelet stacking, orientation, polymer chain confinement and plasticization have been established. It is 

said that the model by Nielsen is the most often fitted to others’ polymer/clay data.  
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The author of this thesis observed from the literatures reviewed that most agree the reason 

pigments improve barrier performance is because the platy particles materials provide long and tortuous 

diffusion path for water or gases through the coating layer. Figure 1.2.2 shows typical analogy of the 

tortuous path concept.  

 

Figure 1.2.2 Typical visual explanation of path of tortuosity for diffusion through pigmented 

layer. From Tan (2016). 

 

Besides studies on the effect of pigments, others have found the importance of base substrates 

and pre-treatment to create more homogeneous coating layer.  According to Schuman et al (2005), water 

vapor barrier properties is impacted by the smoothness of substrate. Surface pre-treatment such as hot 

calendaring and precoating on substrate can give more homogeneous coating film. WVTR results of all 

samples are all below 41 g/m2day (normalized to a film thickness of 10μm). The best samples consist of 

60 wt.% kaolin clay and 5 wt.% wax additive, yielded WVTR of 6 g/m2day, regardless whether hot 

calendaring was done prior or after coating. Without wax addition, best performance comes from 60 wt.% 

kaolin clay with hot calendaring at 15 g/m2day (normalized), about 100% improvement from pure latex at 

28 g/m2day. Schuman et al also suggests that more parallel orientation of pigment particles in respect to 

substrate surface improves barrier properties because it increases the degree of diffusion path tortuosity. 
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In another experiment, Schuman et al (2004) specifically analyzed the impact of paper substrate 

properties. It is stated that reducing surface roughness of paper substrates by calendaring or corona 

treatment can improve homogeneity of coating and barrier properties. Calendaring reduces porosity and 

pore size of the paper and lower liquid absorption and air permeability. It can be seen, however, from the 

data presented that hot calendaring improves WVTR only slightly, by about 5%. The effect on air 

permeability (ml/min) was greater at around 25% reduction. The study was done on PVA-film coated on 

white top liner (WTL) and two-ply sack paper (SP).  

Similarly, on another experiment of carboxylated and cross-linked SB latex, Schuman et al (2004) 

emphasized the effect of hot calendaring or pre-coating to create more homogenous layer on white top 

kraftliner (WTL) paperboard substrate. Without the addition of wax, the best WVTR obtained was 41 

g/m2day with the substrate pre-coated before the dispersion coating. With calendaring and no pre-

coating, the best WVTR obtained was 71 g/m2day. Also noted that intense drying promotes film formation 

and thus homogeneity of coating film and lower WVTR. However, too high of web temperature during 

drying may also defect the polymer film.  

Kendel et al (2008) investigated the effect of pre-coat containing starch, AKD, and kaolin clay and 

substrates of different porosity. All coatings were applied to an internally sized commercial kraft 

linerboard (basis weight 200 g/m2). Uncoated linerboard has a WVTR of 2365 g/m2day at 38°C and 90% 

R.H. The addition of hydrophobic AKD to the starch improves WVTR by up to 8% only due to the presence 

of pinholes. Conventional barrier coating gives a WVTR of 203 g/m2day at a coat weight of 21 g/m2. With 

this high coat weight, the application of pre-coat of hydrophobic AKD and starch did not improve WVTR, 

but the addition of 10% kaolin clay improved WVTR by 10%. Another major observation is that increased 

refining of pulp decreased sheet porosity and thus lower WVTR by up to 22%. Interestingly, in this case 

adding 20 g/m2 of conventional barrier coating did not add any more benefit.    
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In addition, barrier properties involve other sought-after quality than just moisture or grease 

permeability. Miettinen et al (2016) dispersion coating on various base boards and analyze the barrier 

properties in terms of grease-resistance, heat sealibility, creasability, tray forming, and blocking tendency 

and developed barrier coatings with sufficient creasability that can be used for example in disposable 

packages and plates. This signifies the importance of the choice of base substrate. 

A couple more studies seem to have involved multiple parameters associated with barrier 

coatings altogether and not only focused on certain parameter such as pigments, latex, or substrate. Pal 

et al. (2008) analyzed the effects of pigment shape, baseboard, coat weight, calendaring and RH and 

temperature on barrier properties through factorial design of experiment. Modified high shaped factor 

engineered (HSFE) clays were used. The high shape factor and thinner platelet pigment on non-precoated 

baseboard gave the lowest WVTR with the best value of around 180 g/m2day for 7 g/m2 coat weight. 

Calendaring slightly improved the BP. Relative humidity and temperature had a detrimental effect on 

barrier properties.  

Kimpimaki et al (1997) provides an overview of water based barrier coatings (WBBC). Being 

emphasized is the importance of even coating thickness as opposed to even surface (see Figure 1.2.3) and 

it can be achieved more by utilizing air doctor, rod, or bar coaters instead of blade coaters. Also mentioned 

is the importance of film formation, which is promoted by multiple forces present during the process such 

as interfacial tension, capillary forces, Van der Waals attraction forces, gravity, thermodynamic, potential 

energy to surpass maximum repulsion energy. On the other hand, forces such as electrostatic repulsion 

between polymer particles and particle resistance towards deformation could prevent coalescence during 

film formation.  
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Figure 1.2.3 Even coating thickness illustration. From Kimpimaki et al (1997). 

 

Similar to statement from Kimpimaki et al (1997) regarding the importance of even coating 

thickness, Tripathi et al (2006) has suggested that curtain coating would be the solution to incomplete 

coverage, pinholes, base sheet penetration, and non-uniform coating layers issues, especially at low coat 

weights. Unlike blade or rod coaters which operate under large hydrostatic pressure that often leads to 

penetration of coating into the base sheet, curtain coating is a non-contact metering method which 

provides excellent 100% coverage at any coat weight. Although no data was presented, this would 

theoretically reduce coat weight applications, which is typically 40-60% more than required.  

As an addition, the use of hydrophobic polymers to further provide moisture barrier properties 

by the nature of the polymer itself has also been explored (Vaha-Nissi, 2006). Hydrophobic polymers such 

as lauryl methacrylate (LMA) styrene-maleic anhydride (SMA) and provide improved water barrier 

properties of coatings on folding boxboard. Low WVTR of below 50 g/m2day (normalized for thickness of 

25μm) could be obtained. Other observations worth noting include the effect of speed during pilot trial. 

For some samples, it was observed that the number of pinholes decreased as the line speed increased, 

which lower penetration into the substrate and more optimal drying. For samples with platy clay and talc 

it was suggested that the pigment particles were better oriented at higher speeds and improve barrier. 

In conclusion, numerous studies have been done on the topic of dispersion barrier coatings, 

especially within the past 15 years. The majority of established fundamental knowledge are related to the 

influence of pigments to moisture barrier coatings. Of those studies, most agree that the concept of 

tortuous path of diffusion explains the improvement in barrier performance. Some have tried to 
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understand the role of latex properties and film formation phenomena on the barrier performance. 

Others have observed the importance of surface smoothness by calendaring or pre-coating of substrate. 

In total, the number of systematic studies to clearly understand the fundamentals of dispersion barrier 

coatings still seem to be rather limited.  In this thesis, the influence of process parameters such as coating 

method and coating speed are characterized as well as comparing the latex only coating with a 

formulation that contains barrier pigments. A novel method is proposed to measure the barrier properties 

of just the coating layer using cellophane.  

 

 

1.3 Structure of Thesis 

 

Chapter 2 contains explanation on experimental methodologies of this research, which can be 

grouped into two low speed experiments and high speed experiments. Chapter 3 includes the results and 

discussions for low speed experiments which consists of the effect of coating application methods, base 

substrate, and pigments to water vapor transmission rates (WVTR) and water vapor permeability (WVP) 

of just the coating. Chapter 4 discusses the results for high speed experiments and how they compare 

with low speed experiments. In addition to the effect of speed, more discussions on the impact of 

pigments and base substrates are also included. Chapter 5 summarizes and concludes the thesis with key 

findings and further recommendations. Additional results of coatings on sized paper and linerboard are 

also available in the Appendix. 

 

 

 

 

 

 



15 
 

CHAPTER 2: EXPERIMENTAL METHODOLOGY 

 

2.1 Low Speed Experiments Procedures 

 

For all experiments, either pure latex or generic formulation was used. The formulation contains 

pigments and other additives so by experimenting both pure latex and formulation, the effect pigments 

can be analyzed. The latex Joncryl DFC 3040-E is provided by BASF and is a film-forming styrene-acrylic for 

use in water-based inks and overprint varnishes. This latex is suitable for use in paper and film coatings 

applications requiring food contacts (packaging). Table 2.1.1 below shows the typical physical 

characteristics.  

 

Table 2.1.1 Physical characteristics of SB-latex from BASF used in this study.  

 

 

The “formulation” contains pigments and other additives such as dispersant and thickener, which 

are also provided by BASF. The pigments material is called Nuclay which is delaminated grade kaolin 

mineral clay slurry with 67.5% solids. The pigment particles have aspect ratio of 25, while the pigment size 

distribution is 80% <2μm. The formulation is essentially made of 75% Joncryl latex and 25% Nuclay in 

terms of solid percentages, plus trace amounts of the other additives. To prepare the formulation, Nuclay 

must first be agitated to obtain good consistency of the clay slurry. The latex along with additives are then 
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added with good mixing. Ideal pH is 8.5 which can be adjusted with 10% NaOH. After mixing, the 

formulation should be left to sit for a few hours to allow some entrained air to dissipate. This formulation 

contains around 53% solid and has Brookfield viscosity of approximately 1500-2000 cP.  

Regular copy paper, which is a wood free bleach paper is used as a model substrate to represent 

common surface used in paper coating. It has a basis weight of 78 g/m2, 36% porosity and absorption 

coefficient of 50 cm3/m2. The non-coated regular copy paper has a measured water vapor transmission 

rate (WVTR) of 290 g/m2.  

Cellophane is also used in this study, which can be considered a novel method to analyze the 

effect of paper characteristics to barrier properties. Cellophane allows water vapor to diffuse through it, 

but it has no pores and is completely smooth. Thus, coating on both regular paper and cellophane allows 

for analysis of the impact of paper surface characteristics. Cellophane has a basis weight of 46 g/m2, has 

no measurable pore volume and without any coating has a WVTR of 223 g/m2. On a side note, some 

“cellophane” that can be purchased on the internet is actually not cellophane, but some type of plastic:  

this plastic has very low WVTR and is not helpful for this type of experiment.  

Low speed experiments were conducted using bench scale laboratory coaters, including rod draw 

down coaters (both grooved and smooth), blade coaters (both stiff and flexible). The use of multiple 

coating techniques allows comparison of the methods to barrier properties.  

Samples were prepared in a uniform manner, in which 4mL of coating of either the pure latex or 

formulation was applied at the top of the substrate using a 5mL syringe as uniformly and similarly as 

possible. The motor speed at which the rod or blade was drawn was also kept the same, at 0.07 m/s, 

except for stiff coater which had to be drawn manually by hand. For rod coater samples, coat weight can 

be adjusted by changing the gap distance between the plane and the rod, using the built-in micrometer. 

The same applies for the stiff blade coater. For the flexible coater samples, coat weights were adjusted by 
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changing the position of the blade attachment to vary the angle and thus the force onto the substrate. 

Figure 2.1.1 shows the different draw-down coating methods.  

 

Figure 2.1.1 Different laboratory draw down coating methods. From left to right: rod coater, stiff 

blade coater, and flexible blade coater. 

 

Once coating layers of the different samples were generated on the substrate, they were 

immediately put in an oven at 105oC for 5 minutes. The resulting dried films on substrates were then let 

sit overnight.  

To measure the WVTR, samples in the form of 2.7-inches diameter circles were obtained so they 

fit on jars with custom-made lid. Using this apparatus, the sample is exposed to the atmosphere but at 

the same time seals the content in the jars, which is water in this case. Figure 2.1.2 shows this set up. The 

space inside the jars represents 100% relative humidity, while the space outside the jars represents 50% 

relative humidity, as the jar was placed in a controlled humidity and temperature room (TAPPI room at 

25°C and 50% R.H.). By letting the apparatus sit in this condition for a period of time, the difference 

between the weight of water in the jar after a period of time could be measured using a weight scale, 

enabling the measurement of WVTR in g/m2day. Based on experiments, the period of time in which the 

apparatus is left in the TAPPI room does not impact the results, as long as enough time is given to saturate 

the moisture in the samples. For all experiments, at least 24 hours was used before the second weight 

measurement is taken. The rate of water diffusion through the substrates and the coated papers is 
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calculated. This method of measuring WVTR mimics the standard method ASTM E96/E96M-10. The 

repeatability of results has been confirmed. This method has also been compared with WVTR 

measurement method that uses dry desiccant (DRIERITE anhydrous calcium sulfate) and results showed 

no major discrepancy. Permeability of just the barrier coating without the substrate is also calculated as 

described in more details in Chapter 3. 

 

Figure 2.1.2 Procedure for sample forming and WVTR measurement apparatus. 

 

Confocal laser scanning microscope (CLSM) images were obtained using a method similar to that 

described by Ozaki (2006).  The excitation laser was 514 nm.  The acceptance window for florescence was 

585 to 630 nm.  The total z scan dimension was 120 m at 25 m steps.  A small amount of Rhodamine-B 

was added to the latex (0.03 wt. percent based on latex) to cause the latex to be florescent.   
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2.2 High Speed Experiments Procedures 

 

Cylindrical Laboratory Coater (CLC) model CLC-6000 manufactured by Sensor & Simulation 

Products was used to produce samples of coated papers at high speed. The speed was set at 1000 fpm 

(5.08 m/s) for generating all coatings. The pilot scale coater uses IR lamps for pre-drying and post-drying. 

Pre-drying time was set at 5 seconds while post-drying time 15 seconds, both at 50% power. The distance 

between the coating blade and the paper on the cylinder can be adjusted with the micrometer. This 

distance can be varied to generate a range coat weight. For this experiment, the gap distance was set 

between 0.19” to 0.20” to generate the desired coat weights of around 5 to 30 g/m2.  

Prior to running the coater paper was secured on the cylinder using tapes. The coating material, 

either pure latex or formulation, is filled into the coating pond of the coater. Once the substrate, coating 

material, and coater settings are in place, the coating process could be started. The cylinder reaches the 

desired speed and the slice of the coating pond opened to coat the paper. This process was repeated 

multiple times with the micrometer setting being the only parameter adjusted to vary the gap distance 

between blade and substrate, to obtain a range of coat weight. For the pure latex samples, coat weights 

generated range from 4.8 to 29.4 g/m2.   

For making the “formulation” samples 75% latex and 25% clay as described in Chapter 2 was used. 

Similar CLC coating procedure for was used and a coat weight range between 4.5 and 27.3 g/m2 was 

obtained. 
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Figure 2.2.1 Picture of cylindrical laboratory coater CLC-6000. 

 

For all experiments in this high-speed trial, a paper that is less absorbent than regular copy paper 

was used, called Low Absorbency (LA) paper. It has a porosity of 28% as opposed to copy paper at 36%. 

Bristow wheel absorption test clearly indicates that it is much less absorbent and more hydrophobic. 

Figure 2.2.2 below compare the absorptivity of both papers.   

 

 

Figure 2.2.2 Bristow wheel absorption test of regular copy paper and low absorbent paper. 
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As can be seen from the figures above, regular copy paper behaves like most papers with some 

porosity and absorptivity. From Figure 2.2.2, absorption coefficient of copy paper can be estimated to be 

at least 50 cm3/m2, indicated by the inclination of the curve. The chart also can be used to indicate the 

surface roughness coefficient, which is the intersection on the ordinate. In this case of copy paper, it is 

around 12 cm3/m2. The idea is that even if there is no absorption, some liquid could settle on the cavities 

on the surface of paper that is rough. On the other hand, LA paper has very low absorption coefficient of 

around 2 cm3/m2. The chart also show that surface roughness coefficient is really small, even though its 

porosity is not much lower than porosity of copy paper. The most plausible explanation is that the fiber 

surface has been treated with substances that makes it hydrophobic.  

For good comparison between low and high-speed coatings, the same LA paper was used to 

produce coatings at the low speed. Laboratory draw down coater was used, following the same coating 

procedure as described in Section 2.1. This time only smooth rod was used since it has been concluded 

that for low speed applications, the coating method has no impact to the performance barrier properties. 

Similar to the high-speed experiment, two sets of data were obtained, one with pure latex and another 

with the formulation. For the pure latex coatings, coat weights generated range from 5.3 to 48.4 g/m2. 

For the coatings made of formulation, coat weights generated range from 4.3 to 53.0 g/m2. WVTR is 

measured using the method described in Section 2.1. 
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CHAPTER 3: RESULTS FROM LOW SPEED EXPERIMENTS 

 

 

The WVTR of the latex only coating on the copy paper is shown in Figure 3.1 for various coating 

methods.  The different methods do cover various coat weight ranges, but when compared to each other, 

there was no clear difference or trend.  It was expected that the grooved rod may give poor results 

compared to the other coating elements that are smooth, but it gave just as good or even better results.  

The grooved or wire wound rods deposit a slight pattern in the machine direction, but this pattern seems 

to level quite well by the time the coating is dried.  

Figure 3.2 compares the WVTR for the data in Fig. 3.1, with the results with the latex is coated 

onto cellophane with different coating methods.  Two results are quite interesting: 1) the coating method 

again had little effect on the trend of the curve for cellophane and 2) the latex on cellophane performed 

much better than that on paper at low coat weights. This later result is strong evidence that the absorption 

of the coating into the pores of the paper or the filling in of irregularities makes that barrier less effective. 

Other aspects of the paper surface may also play a role such as the swelling of fibers when wet or the 

surface roughness of the paper.  
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Figure 3.1 WVTR for pure latex system on copy paper with different bench coating methods. 

 

Figure 3.2 WVTR of pure latex coatings on cellophane compared to copy paper. 

Cellophane 
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The comparison between the latex-only results with the formulations are given in Figure 3.3. It is 

quite clear that the formulation performs significantly better than the latex only cases, especially at low 

coat weights.  This could be caused by the tortuous path concept, where water vapor would have to 

diffuse a larger distance through the layer, or it could be related to how the pigments in the formulation 

help hold the coating at the top surface.  It should be noted that at the same coat weight, the formulation 

uses less polymer than the pure latex case.   

 

 

Figure 3.3 WVTR of formulation on copy paper compared to pure latex on copy paper. Lines are 

polynomial fits to help see the trends of the data. 
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The flux of a gas through a membrane can be represented in terms of permeability coefficient P as 

          (3.1) 

where J is the flux of molecules in moles per area time, P is the permeability coefficient, p1 and p2 are the 

partial pressures of water vapor and  is the thickness of the layer. Since the flux rate through the barrier 

layer has to equal the flux rate through the paper or cellophane, the expression becomes  

         (3.2) 

where Δh is the difference of humidity over the entire sample, p and c are the thicknesses of the paper 

and coating layer, respectively, and Pp and Pc are the permeabilities of the paper and coating layer 

respectively. These permeabilities are modified to be in terms of relative humidity expressed in terms of 

partial pressure of water. The molar flux is proportional to the WVTR in terms of mass per area and time. 

The permeability of the coating layer can be found in terms of the other quantities and has units of 

g/(m.Pa.day). The permeability of the paper or cellophane is known from tests without coating layers. In 

theory, a certain material should have a certain permeability to water vapor: this value should not be a 

function of thickness. The advantage of this expression is that the permeability of just the coating layer 

can be extracted from the experimental results.  

As can be seen in Equation 3.2, only permeabilities of substrate layer and barrier coating layer are 

included. In theory, with the current method of flux (WVTR) measurement, there exists also a resistance 

to diffusion due to the air space in between water surface and sample in the testing jar. However, this 

factor can be neglected as the air gap alone causes much smaller resistance to diffusion than the substrate 

and coating layers. Average WVTR of uncoated copy paper samples is 290 g/m2day or 248 x 10-7 

g/m.day.Pa in terms of permeability, calculated using Eq. 3.1. In terms of resistance to diffusion (/D), this 
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is equal to 3.4 x 10-12 s/m. On the other hand, resistance to diffusion due to air gap is only 2.2 x 10-5 s/m, 

which is smaller by a factor of thousands.  

The results of Fig. 3.2 in terms of the water vapor permeability of the coating layer are shown in 

Figure 3.4. The purpose of plotting the results in this manner is that the contribution of the barrier 

behavior from just the coating layer is seen. The key point from Fig. 3.4 is that the results for the paper 

are quite scattered until the coat weights are high, then the results are similar to that of the results on 

cellophane. High values of permeability likely come not from poor barrier properties of the coating, but 

an incomplete coating layer or cracks; the large and scattered values from the paper are a clear sign that 

the barrier layer is not continuous and that water vapor is finding easy paths through the sample, until 

the coating layer is thick enough to overcome the porosity of the paper. The coating layers on cellophane 

give a consistent result and a small value.   

Figure 3.5 shows the results of the formulation and the pure latex on cellophane. For both, the 

value is much smaller than the results on paper and show an upward trend with coat weight. Again, the 

permeability coefficient should not be a function of thickness and the upward trend may indicate the 

formation of cracks in the coating layer, as is typical of drying of colloidal systems.  

The formulation does include a plate like particle:  the classic picture of a tortuous path to 

decrease water vapor transmission rate does seem to explain this result. However, when comparing the 

difference between the formulation and the pure latex on paper, the difference is much larger than on 

cellophane. This suggests that the platy particles in the formulation help to hold the coating into a 

continuous layer. In addition, these particles may block larger pores, improving the barrier properties.   

The formulation has a clear advantage over using the pure latex in that at a given coat weight, the amount 

of polymer used is lower for the formulation compared to the pure latex.  
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Figure 3.4 The results of Fig. 3.2 in terms of water vapor permeability (WVP). It is shown that WVP is 

much improved when cellophane is used, from 126 to 21 g/m.day.Pa x 10-7. 

 

Figure 3.5 Comparison of WVP for pure latex and formulation on cellophane.  
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The behavior of the pure latex and the formulation are compared in Figure 3.6 on paper in terms 

of water vapor permeabilities.  The formulation gives quite a small and consistent value compared to the 

results of the pure latex on paper.   The average value of the permeability of the formulation is around 

5x10-7 g/(m2 day Pa).  This result suggests that the role of the plate like pigments is more than just 

providing a tortuous path for water transmission, but the pigments must help block open paths and keep 

the coating layer continuous.  This concept is important to understand in generating these barrier layers.   

 

Figure 3.6 Comparison of WVP for pure latex and formulation on paper. The average WVP is improved 

from 126 to 21 g/m.day.Pa x 10-7. 
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Figure 3.7 compares the CLSM images of the formulation and the latex-only on cellophane.  Both 

samples have some faint ridges that are likely from the rod draw down coating. The formulation has a few 

pores that are visible from the top view but no cracks are visible. From the cross-section view, that has 

some distortion due to some scattering in the microscope, the coating layer is compact with a thickness 

of around 22 m; this measurement is an average of measuring five different locations, ignoring the scatter 

in the image. The latex only also has a few pores, but fewer than the formulation.  The thickness of the 

latex only sample 8 m. These thicknesses make sense for a concentrated layer of material.   

 

                

Figure 3.7 CLSM comparison of formulation (left) and latex-only (right) coated on cellophane. The image 

in bars on the bottom and side of each image are the cross-sectional view along the line drawn in the 

main image; the total distance in the thickness direction in these side bars is 120 m. The coat weights 

for the formulation and latex-only were 24 and 7 g/m2, respectively. 

 

The comparison of the formulation and the latex only samples are quite different on paper, as 

shown in Figure 3.8.  The coat weights of these are similar, around 18 g/m2. One key issue that is clear is 

that the latex-only case has a number of cracks. It is hard to tell if these cracks in some way correlate with 

fibers or other features of the paper. Another important contrast is that the latex-only case shows material 
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all through the sample, around 60 m deep, while the formulation cross sections show the material right 

at the top of the paper, with a thickness of around 20 m. There are still defects in the formulation layer, 

but at this coat weight, the formulation forms a clear layer on the top of the paper while the latex only 

case tends to soak into the full thickness of the paper.   

 

                

Figure 3.8 CLSM comparison of formulation (left) and latex only (right) coated on paper. The images in 

bars on the bottom and side of each image are the cross-sectional view along the line drawn in the main 

image; the total distance in the thickness direction in these bars is 120 m. The coat weights for the 

formulation and latex only were 24 and 23 g/m2, respectively. 

 

These images help explain the results of the permeability results above and point out an 

important aspect of the formulation.  The plate like particles in the formulation not only act to increase 

the tortuous path for water vapor diffusion, but they also help keep the latex from soaking into the paper; 

the large plates much fill in the pores causing the latex to stay in a layer at the top of the paper.  In addition, 

the plate like particle seem to help stop crack formation.  
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In conclusion, the influence of coating application method and substrate properties were 

compared for a barrier formulation and a latex intended for barrier applications. The results are compared 

in terms of water vapor transmission rate and the water permeability of the coating layer. The laboratory 

coating method did not have a clear influence on the results. However, the barrier formulation that 

contained a platy pigment had a significant influence. The use of cellophane as a substrate demonstrated 

the influence of paper pores on the result: pore significantly reduce the effectiveness of the barrier 

coating. The use of cellophane is a nice method to obtain the water vapor permeability of the coating 

layer itself. The formulation had lower permeabilities on both cellophane and paper compared to the pure 

latex coating:  this indicates that the platy particles help block pores and helps keep the barrier layer as a 

continuous film.  
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CHAPTER 4: RESULTS FROM HIGH SPEED EXPERIMENTS 

 

 

In the previous chapter, the influence of coating method, base sheet, and pigment particles have 

been covered. All those samples were prepared using laboratory coaters, with coating speed of 0.2 m/s 

at the highest. This chapter will discuss the influence of higher machine speed to the performance of 

barrier coatings. A different substrate was also used for this set of experiments and was found to have a 

major impact on the results.    

Figure 4.1 below shows the results of the high vs. low speed coatings experiment in terms of 

WVTR. These data show that coatings produced at high speed generally perform better at any given coat 

weight, except for pure latex samples at coat weights above 15 g/m2.  

 

Figure 4.1 WVTR of coating samples made at low and high speeds. 
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Looking at the samples physically, these higher coat weight pure latex samples have more cracks 

in the middle of the coat paths. These defects at higher coat weights are more prominent on samples 

coated using the CLC than on those coated using the low speed draw down coaters. Difference in drying 

rates between the two methods may affect the latex film formation at higher coating thickness. The high-

speed movement of the cylinder may facilitate cracking of the film as well. Some studies have found that 

excessive drying power using the IR lamp can cause defects.  

Defects are not present on formulation samples. The mechanism that causes cracks or defects to 

be developed only on pure latex samples may need to be understood. In a study of dispersion barrier 

coatings on pigment-coated kraft paper, Andersson et al (2002) that high IR power for drying could cause 

more pinholes in certain cases, leading to poor barrier performance, but based on the experiment in most 

cases low or high IR power do not make much impact. Vähä-Nissi et al also stated that excessive use of 

IR-dryer at the beginning of drying can increase the number of pinholes. However, 15 seconds of drying 

time at 50% IR lamp power used in this experiment should not allow the temperature on coating surface 

to exceed much more than 100°C.  

Regardless, the use of pure latex without pigments is not the common way to create barrier 

coatings. Many studies have concluded that pigments especially those with high aspect ratios contribute 

to improving barrier properties by providing tortuous path for diffusion. Moreover, in Chapter 2 it has 

been discussed that pigments do not only provide tortuous path but more importantly aid the coating 

layer to form on top substrate instead of sinking into paper pores. In addition, manufacturers try to 

maximize the amount of pigments added to formulation in order to minimize overall cost, without 

compromising product quality. Thus, focus can be given more in development of good barrier coatings 

made of formulation and not pure latex. Pure latex samples are incorporated in this study only to help 

understand the role of pigments in formulation. 
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Without including the defective pure latex samples at higher coat weights, Figure 4.1 shows that 

high speed coated samples made of formulation perform better than low speed coated samples 

throughout most coat weight ranges.  

As indicated previously, maximizing pigments concentration in the formulation can reduce the 

cost to make formulation. The cost of pigments is trivial compared to latex, and thus Figure 4.2 was 

generated to show the barrier performance as a function of latex coat weights only. As one can see, WVTR 

of around 50 g/m2day could be achieved at coat weight range around 15 g/m2, which is not much inferior 

when compared to LDPE film performance of 15 g/m2day at 24 g/m2. 

 

Figure 4.2 WVTR of coating samples made at low and high speeds as a function of latex coat weights. 

 

Figure 4.3 shows the same data as in Figure 4.1 in terms of water vapor permeabilities, focusing 

more on comparing between low and high-speed samples and less on formulation against pure latex 

samples. The permeability of high speed samples averages at 21 g/m.day.Pa x 10-7 while the permeability 
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of low speed samples is 39 g/m.day.Pa x 10-7 on average for the whole coat weight range of 1-50 g/m2. 

Permeabilities values of high-speed samples are also more consistent (almost a flat trendline) than low 

speed coatings, indicating more uniform layers and less defects were formed at higher speed.  

 

Figure 4.3 WVP of coating samples made at low and high speeds. High speed coatings depict slightly 

lower WVP at 21 g/m.day.Pa x 10-7. 

 

This finding is in contrary to some unpublished claims that coatings made at higher speeds 

perform poorer than those prepared with draw downs. These claims partly motivated this research to 

help understand what are the driving forces that could cause poor barrier performance.  

Figure 4.4 shows the same data sets as on Figure 4.3 in terms of permeability and just comparing 

formulations and not coating speed. It appears that the data are scattered regardless of coating material 

used. The effect of high speed as shown on Figure 4.3 seems to be more prominent in determining the 

quality of barrier rather than the involvement of pigments. 
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Figure 4.4 WVP of coating samples made of pure latex and formulation at all speeds. Pigments in 

formulation help improve WVP slightly from 36 to 24 g/m.day.Pa x 10-7. 

 

When comparing only samples made at high speed, as displayed by Figure 4.5, no distinction can 

be gathered between pure latex and formulation, other than the defects on thicker pure latex samples 

above 20 g/m2 as has been discussed before.  
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Figure 4.5 Comparison of latex vs. formulation samples made at high speeds only. High coat weights of 

latex only results are not included. 

 

When comparing only samples made at low speed, as displayed by Figure 4.6, also no distinction 

can be gathered between pure latex and formulation. This observation is in contrast with the data from 

Chapter 1 on the effect of formulation to barrier performance. This data does not support the conclusion 

that formulation improves barrier performance on paper.  
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Figure 4.6 Comparison of latex vs. formulation samples made at low speeds only. Pigments do not 

improve barrier performance significantly. 

 

All these findings as indicated on Figure 4.4 to 4.6 lead to the conclusion that in this series of 

experiment, pigments in the formulation do not have as much impact to performance unlike the use of 

pigments on regular copy paper as shown in the previous series of experiments in Chapter 3. More 

importantly, the highest WVP in this series of experiment is around 115 g/m.day.Pa x 10-7 while coatings 

on regular copy paper permeabilities scattered even as high as in the 200-250 g/m.day.Pa x 10-7 ranges 

(see Figure 3.4 in Chapter 3). The big difference is the base sheet used in the two studies.   

This series of experiments use a much less absorbent paper than regular copy paper, as shown by 

the Bristow wheel test comparisons shown on Figure 2.2.2. This paper, called LA paper in this study, has 

an absorption coefficient of less than 2 cm3/m2 and porosity of 28%. On the other hand, regular copy 

paper has an absorption coefficient of 50 cm3/m2 and porosity of 36%. Even though the porosity of both 

papers are not that far apart, the hydrophobic nature of LA paper may help eliminate issues with coating 

http://m.day.pa/
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layer non-uniformity associated with papers with high porosity. Therefore, it is expected, that less 

dewatering of coatings during coating film formation leads to a better barrier layer on top of substrate.     

For paper with high porosity and high absorbency like the regular copy paper, the addition of 

pigments in formulations helps with generating more continuous layer and improved barrier performance 

by preventing the coating from sinking into paper pores. In the case of low absorbent papers, the use of 

pigments still helps with lowering WVTR and WVP, but its role is less prominent when the coating is on a 

low absorbent paper. In other words, LA paper behaves similar to cellophane on which coatings do not 

form much defects. As discussed in Chapter 3, coated cellophane has much better barrier performance 

than coatings on paper. The use of pigments on cellophane also improved the performance, but only by 

around 5-10 g/m.day.Pa x 10-7, as shown on Figure 3.5. Table 4.1 and 4.2 below summarizes the results of 

average WVTR and WVP for the different base substrates used. 

 

 

Table 4.1 Comparison of latex only coatings on different substrates applied at low speed. 

 

 

Table 4.2 Comparison of formulation samples coated on different substrates applied at low speed. 

 

Basis 

weight
Porosity

Absorption 

coefficient

Base sheet 

WVTR

Avg. WVTR 

(<20 gsm)

Avg. WVTR 

(20-40 gsm)

Stdev          

(20-40 gsm)

WVTR 

improvement

Base sheet 

WVP

Avg. WVP 

(<20 gsm)

Avg WVP 

(20-40 gsm)

Stdev          

(20-40 gsm)

WVP 

improvement

g/m2 % cm3/m2 g/m2day g/m2day g/m2day %
g/m.day.Pa 

x 107

g/m.day.Pa 

x 107

g/m.day.Pa 

x 107 %

Copy paper 78 36 50 290 234 102 76 65% 248 159 76 92 52%

Low Absorbent 

paper
48 28 2 322 196 87 38 73% 283 50 36 15 29%

Cellophane 46 0 N/A 223 96 47 8 79% 22 12 17 4 -48%

BASE SHEET PROPERTIES WVTR WITH COATING WVP WITH COATING

Basis 

weight
Porosity

Absorption 

coefficient

Base sheet 

WVTR

Avg. WVTR 

(<20 gsm)

Avg. WVTR 

(20-40 gsm)

Stdev          

(20-40 gsm)

WVTR 

improvement

Base sheet 

WVP

Avg. WVP 

(<20 gsm)

Avg WVP 

(20-40 gsm)

Stdev          

(20-40 gsm)

WVP 

improvement

g/m2 % cm3/m2 g/m2day g/m2day g/m2day %
g/m.day.Pa 

x 107

g/m.day.Pa 

x 107

g/m.day.Pa 

x 107 %

Copy paper 78 36 50 290 163 73 45 75% 248 32 24 16 24%

Low Absorbent 

paper
48 28 2 322 215 110 24 66% 283 45 33 10 26%

Cellophane 46 0 N/A 223 55 47 4 79% 22 10 13 2 -35%

BASE SHEET PROPERTIES WVTR WITH COATING WVP WITH COATING
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Both Table 4.1 and 4.2 provide a different way to emphasize the high contribution of parameters 

to barrier performance. All data presented are from low speed experiments. Average WVTR’s and WVP’s 

are calculated for two ranges of coat weights (<20 g/m2 and between 20-40 g/m2). WVTR improvements 

are based on the improvement provided by the coatings at 20-40 g/m2 in respect to WVTR of the base 

substrates. WVP improvements are based on the improvement provided by the coatings at 20-40 g/m2 in 

respect to WVP of coatings at <20 g/m2, showing the contribution of additional coating thickness.   

As shown on Table 4.1, without the contribution of pigment, the choice of substrate is really 

important in determining the WVTR and WVP improvements. WVTR improvements increase from 65% to 

79% by the use of smoother and less absorbent substrates. Standard deviation, which represents the 

consistency of coating quality is also greatly improved. By using regular copy paper, lower WVP (76 

g/m.day.Pa x 10-7) can be achieved by adding more coat weights, but still much worse than coating on 

cellophane at lower coat weights. Adding more coat weights is less impactful to performance when LA 

paper or cellophane is used, as shown by the WVP improvement data. WVP improvement is actually 

negative on cellophane, possibly due to defects that are only formed when the coating is too thick, 

affecting film formation.  

Looking at Table 4.2, WVTR improvement on regular copy paper is increased by the use of 

pigments. It now has WVTR improvement of 75% as opposed to 65% without pigment. Standard deviation 

was also improved, although still higher than those of coatings on other substrates. Interestingly, 

pigments do not show positive impact to WVTR for coatings on LA paper and cellophane (73% to 66% for 

LA paper and 79% to 79% for cellophane). Similarly, WVP of LA paper and cellophane only improve slightly 

with the addition of pigments, whereas the WVP improvement on copy paper is much higher, from 159 

to 32 g/m.day.Pa x 10-7 for coat weight range <20 g/m2. This is in contrary to the idea that pigments should 

improve barrier properties by providing tortuous path, regardless of the substrate used.  
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All of these results show that base substrate choice has the most significant impact to barrier 

performance and that pigments can eliminate issues with coating on highly porous and absorbent 

substrates. The pigments were thought to improve barrier performance by creating path of tortuosity. 

However, if that is the case, then pigments also would improve performance greatly for coatings on 

cellophane and low absorbent papers. Pigments improve barrier performance by filling in the pores, 

facilitating more uniform film formation only when latex tends to sink in into absorbent substrates and 

form pinholes in the coating layer.   

In the study by Weeks and Bousfield (2017), it was found that less filtercake is formed on the less 

absorbent coated surface when compared with uncoated surface of a substrate. Filtercake is formed when 

fluid in coating formulation penetrates into the substrate, leaving the solids on top of fibers as filtercake. 

This finding further supports previous statement about the effectiveness of non-absorbent substrate to 

hold coating layer on top of fiber surface and thus can improve barrier properties. The fast penetration of 

fluid into absorbent substrates reduces the uniformity of barrier layers. This explains why barrier 

properties of coatings on LA paper are much better than barrier properties of regular copy paper.  

A study by Johnson et al (2019) on the use of cellulose nanofibrils (CNF) to improve barrier 

performance shows similar functionalities of the CNF and pigments in barrier formulations. On top of 

being good oxygen and grease barrier, CNF is coated onto paper to generate continuous layer of barrier 

coating. The permeability of the paper can be reduced by two orders of magnitude. WVTR as low as 20 

g/m2day was achieved at 6 g/m2 coat weight when 4 g/m2 of CNF was on the top layer of the paper:  this 

top layer closes up pores and should keep the barrier layer as a uniform layer.   

Many things are quite different between coating utilizing CLC coater and draw down coaters. One 

of the most important factors is obviously the speed. Referring also to the study by Weeks and Bousfield 

(2017), when other factors such as particle size variations in formulation and base substrate properties 

are kept constant, pressure pulse that exists between the substrate and blade was found to increase as 
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speed increases. In consequence, the penetration of liquid into the substrate vary with coating speed. This 

is also proven by the increase in filtercake formation with increasing speed. In other words, as speed 

increases, more rapid dewatering occur and create less uniform layer on top of substrate. However, this 

finding on the effect of speed is also in contrary to the finding on LA paper, where high speed coated 

samples perform slightly better. The effect of substrate may overcome the effect of speed (higher 

pressure pulse) when non-absorbent substrate is used. 

On the other hand, based on a couple of literatures, higher coating speed is said to help with 

pigments particles alignment. Vähä-Nissi (2006) observed that for some samples the number of pinholes 

decreased as the line speed increased, which lower penetration into the substrate and more optimal 

drying. For samples with platy clay and talc it was suggested that the pigment particles were better 

oriented at higher speeds and improve barrier. Popil (2006) also indicates that good platelets orientation 

is parallel to substrate surface, and that it can usually be achieved by coating at high speeds, high solids 

content, and high viscosity.  

Another major difference between CLC and draw down coaters is the mechanical movement of 

the equipment. With the CLC, there exist centrifugal force associated with the rotation of the cylinder, 

which may counteract the capillary force and force from the blade, forces that contribute to the 

penetration of fluid into substrate. Similar phenomenon is utilized by Hwang et al (2011), who found a 

novel method to control wicking distance in paper by varying rotation speeds of the wheel where the 

paper is placed. The wicking distance, h, can be calculated by the following equation 

             (4.1) 

where ΔP is the net driving pressure for absorption, ΔPc is the capillary pressure, ρ is density, and ω is the 

angular velocity of the rotating device.   
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Besides speed and mechanical forces, drying mechanism is also different. At low speed 

experiments, once coating is applied on substrate, samples were transferred into oven and left for 5 

minutes at 105°C. Average time to transfer samples to the oven was about 20 seconds, when air drying at 

ambient temperature could happen. With the CLC coater, besides preheating of base substrate prior to 

coating application, the film that is formed on the substrate is also immediately heated using IR lamps, 

although with only 15 seconds at 50% power the temperature should not have exceeded much more than 

100°C based on the heating curve of 1000T3 lamp. A more thorough study on the difference in mechanism 

between oven drying or IR lamps drying may help provide some explanation.  

Overall, in this chapter the base sheet properties were found to have high contribution to the 

performance of barrier performance. The effect of pigments is not as prominent when non-absorbent 

substrate is used. Also, the use of non-absorbent substrate may help overcome any negative impact 

associated with coating at higher speed such as high pressure pulse, while mechanisms that help with 

barrier quality such as the centrifugal force and better platelet alignments still exist.   
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

 

Dispersion barrier coatings can provide a solution to environmental issues associated with 

plastics. It can also allow papermills to transition from printing to packaging products without requiring 

high capital expenditures. However, technology for dispersion barrier coatings that can compete with 

more superior products such as polymer extruded barrier coatings is still in the research and development 

stages. More studies are still needed to understand the importance of the different parameters associated 

with the making of dispersion barrier coatings.  

In this thesis, the effect of coating methods, pigments, base substrates, and machine speeds to 

barrier properties, especially water vapor transmission rates are compared. A novel method of using 

cellophane to analyze coating performance without the disturbance of surface roughness and porosity 

associated with paper was introduced. The performance of just the coating layer and the role of pigments 

in barrier coating formulations could be studied with this method. 

At low speed, different coating application methods which include various rod and blade coaters 

do not show any difference in the WVTR curve. Curtain coating method as described in one literature may 

portray a different curve. The effect of base substrate was found to be prominent, as indicated by the 

barrier performance of coating on cellophane. The smoothness and non-porous nature of cellophane help 

in generating more uniform layer of coating. When typical porous substrate such as regular copy paper 

must be used, however, the addition of pigments was proven to be imperative not only to provide 

tortuous path of diffusion but more significantly to help preventing the dispersion coating to sink into the 

pores.   
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This concept of coating hold-out provided by pigments particles was further proven. When non-

absorbent and less porous paper was used for both low and high speed coatings, the contribution of 

pigments to moisture barrier properties was not as significant as its contribution on regular copy paper. 

The role of pigments to fill in pores and help creating more complete coverage of substrate is greater than 

its role to provide tortuous path for diffusion. The importance of base substrate properties thus must be 

emphasized. The use of low absorbent paper greatly improves barrier performance, whether pigments 

are used or not in the formulation.   

Moreover, when the issue of non-uniform coating layer has been overcome either by using low 

absorbent substrate or using pigments on porous and absorbent substrates, coating at high speed may 

slightly improve the barrier quality due to the existence of centrifugal force on most cylindrical coaters 

and better pigment platelets alignments which increase tortuous path for diffusion. These theories may 

support the finding that coatings on low absorbent paper made at high speed perform slightly better than 

the low speed samples.    

 

5.2 Recommendations 

 

Further research on this topic may include analysis on performance of pure latex and formulation 

coatings at high speed on regular copy paper or any similar substrate with comparable absorbency. Having 

such data will really complete the analysis on different substrate absorbency, effect of pigments, and 

machine speed and movement. More substrates with varying surface absorbency can also be used so a 

model may be developed to predict barrier performance based on substrate properties, with and without 

pigments. Another aspect that can be investigated further is the difference between drying mechanisms 

of oven drying and CLC coater IR lamp drying. Determining the most comparable dryer settings could 

potentially eliminate any effect caused by the difference in drying mechanism between low speed versus 

high speed experiments. 
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APPENDIX I: WVTR MEASUREMENT METHOD 

 

Figure A.1 below shows that different period of time used between first weight measurement of 

jar and the second measurement do not significantly alter WVTR results after 24 hours. This test was 

done on six different samples. Thus, in this research samples were conditioned in the TAPPI controlled 

temperature and humidity room (25°C and 50% R.H.) for at least 24 hours before second weight 

measurement for WVTR determination. 

 

Figure A1.1 WVTR of five different samples measured after different periods of time. 

 

To determine repeatability of WVTR measurement method, multiple samples were measured 

for WVTR twice. No results of same sample differ more than 10% and the differences of WVTR between 

the different samples can still clearly be observed, as shown by Figure A1.2.  
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Figure A1.2 Repeatability of WVTR measurement method used in this research. 
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APPENDIX II: EXPERIMENT ON SIZED PAPER 

 

Another experiment that was done by the author was pure latex coating on sized paper. As 

shown by Figure A2.1, pure latex coatings on sized paper depicts similar WVP trend as formulation on 

cellophane coatings. The WVP values are also close and much lower than WVP of pure latex on copy 

paper. This indicates that sized paper behaves similar to cellophane and even without the addition of 

pigments can generate comparable barrier performance as formulation on cellophane.   

 

Figure A2.1 Latex on sized paper coatings compared to formulation on cellophane coatings. 
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APPENDIX III: EXPERIMENT ON LINERBOARD 

 

The author also experimented coatings on linerboard with different calipers. It was expected 

that higher caliper would generate poorer barrier coating due to lack of surface coverage. However, the 

data as shown on Figure A3.1 shows the opposite The linerboard with lowest caliper even at much 

higher coat weight gave the highest WVP. A repeat of this study should be conducted. 

 

 

Figure A3.1 WVP of pure latex on linerboards with different calipers. 
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