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Learning how to reason productively is an essential goal of an 

undergraduate education in any STEM-related discipline. Many non-physics 

STEM majors are required to take introductory physics as part of their 

undergraduate programs. While certain physics concepts and principles may 

be of use to these students in their future academic careers and beyond, 

many will not. Rather, it is often expected that the most valuable and long-

lasting learning outcomes from a physics course will be a repertoire of 

problem-solving strategies, a familiarity with mathematizing real-world 

situations, and the development of a strong set of qualitative inferential 

reasoning skills.  

For more than 40 years, the physics education research community has 

produced many research-based instructional materials that have been shown 

to improve student conceptual understanding and other targeted learning 

outcomes (e.g., problem solving). It is often tacitly assumed that such 



   

 

 

 

materials also improve students’ qualitative reasoning skills, but there is no 

documented evidence of this, to date, in the literature. Furthermore, a 

growing body of research has revealed that a focus on conceptual 

understanding does not always result in the anticipated performance 

outcomes. Indeed, students may demonstrate solid conceptual understanding 

on one physics question but fail to demonstrate that same understanding on 

a closely related question. This body of research suggests that reasoning 

processes general to all humans (i.e., domain-general processes) may impact 

how students understand and reason with physics concepts. Methodologies 

that separate (to the degree possible) the reasoning involved in a physics 

problem from the conceptual understanding necessary to correctly answer 

that problem are necessary for gaining insight into how conceptual 

understanding and domain-general reasoning processes interact. 

In order to explore such research questions, new research tools and 

analysis methodologies are required. Physics education researchers pursuing 

these questions have begun to embrace data-collection methodologies outside 

of the written free-response questions and think-aloud interviews that are 

ubiquitous in discipline-based education research. Some of these researchers 

have also begun to utilize dual-process theories of reasoning (DPToR) as an 

analysis framework. Dual-process theories arise from findings in cognitive 

science, social psychology, and the psychology of reasoning. These theories 

tend to be mechanistic in nature; as such, they provide a framework that can 



   

 

 

 

be prescriptive rather than solely descriptive, thereby providing a theoretical 

basis for examining the interplay of domain-general and domain-specific 

reasoning. 

In the work described in this thesis, we sought to gain greater insight 

into the nature of student reasoning in physics and the extent to which it is 

impacted by the domain-general phenomena explored by cognitive science. 

This was accomplished by developing and implementing new methodologies 

to examine qualitative inferential reasoning that separate reasoning skills 

from understanding of a particular physics concept. In this work we present 

two such methodologies:  reasoning chain construction tasks, in which 

students are provided with correct reasoning elements (i.e., true statements 

about the physical situation as well as correct concepts and mathematical 

relationships) and are asked to assemble them into an argument in order to 

answer a physics question; and possibility exploration tasks, which are 

designed to measure student ability to consider multiple possibilities when 

answering a physics problem.  The overarching goal of these novel tasks is to 

explore mechanistic processes related to the generation of qualitative 

inferential reasoning chains and to uncover insight into the nature of student 

reasoning more generally. 

The work reported in this dissertation has yielded a variety of 

important results. In concert with reasoning-chain construction tasks, the 

dual-process framework has been leveraged to provide testable hypotheses 



   

 

 

 

about student reasoning and to inform the design of an instructional 

intervention to support student reasoning. By applying network analysis 

approaches to data produced by reasoning chain construction tasks with 

network analysis, insights were uncovered regarding the structure of student 

reasoning in different contexts, and the development of a coherent reasoning 

structure over the course of a two-semester physics course was documented. 

Finally, students’ tendency to explore possibilities has been, both in the 

literature and in this dissertation, found to impact performance on physics 

questions. This tendency is examined and a possible mechanism controlling 

this tendency has been proposed. Taken together, these investigations and 

findings constitute substantive advances in how student reasoning is studied 

and serve to open new doors for future research. 
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1 INTRODUCTION 

Learning how to reason is essential to a STEM education (National 

Research Council, 2013; N.G.S.S. Lead States, 2013). Without practice 

reasoning productively with science concepts, students taking a science 

course often struggle to develop a functional understanding of those concepts 

(McDermott, 2001). In addition to definitions, procedures, and strategies 

related to each concept, students are also often expected to learn how to apply 

their knowledge on new and difficult problems. 

Many students take a physics course in the service of a non-physics 

STEM major (Conference on Introductory Physics for the Life Sciences 

Report, 2015; Redish & Hammer, 2009). While certain physics concepts and 

principles will be of use in these students’ future academic careers, many will 

not. Instead, it is often expected that the lasting takeaways from a physics 

course will be a repertoire of problem-solving strategies, a familiarity with 

mathematizing real-world situations, and a strong set of qualitative 

inferential reasoning skills. These takeaways are of course important to all 

students taking a physics course, even those who go on to be physics majors 

and physicists. 

Physics education research has produced many instructional materials 

that have been shown to bolster conceptual understanding and learning 

outcomes (Finkelstein & Pollock, 2005; Crouch & Mazur, 2001; Beichner R. , 

2007; Saul & Redish, 1997; Sokoloff & Thornton, 1997). Many of these 
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materials are scaffolded and step students through a qualitative chain of 

inferences via a series of questions (McDermott & Shaffer, 2001; McDermott, 

1995; Wittmann, Steinberg, & Redish, 2004). It is often tacitly assumed that 

such materials also improve qualitative reasoning skills, but there is no 

documented evidence of this, to date, in the physics education research 

literature. Furthermore, a growing body of research demonstrates that 

attending solely to conceptual understanding may not produce satisfactory 

outcomes (Heckler, 2011; Heckler & Scaife, 2014; Kryjevskaia, Stetzer, & 

Grosz, 2014; Heron, 2017). Instead, these studies suggest that reasoning 

processes general to all humans (i.e., domain-general processes) may impact 

how students understand and reason with physics concepts. As a result, 

many researchers have begun to investigate the domain-general cognitive 

mechanisms that influence human reasoning and how these affect student 

reasoning on qualitative physics questions (Heckler & Scaife, 2014; Heckler 

& Bogdan, 2018; Gette, Kryjevskaia, Stetzer, & Heron, 2018; Wood, 

Galloway, & Hardy, 2016). 

Part of the emphasis on domain-general cognitive mechanisms is 

driven by the observation that students often will demonstrate functional 

understanding on one physics question but fail to demonstrate the same 

understanding on a closely related question (Heckler, 2011; Kryjevskaia, 

Stetzer, & Le, 2015). This phenomenon highlights that conceptual 

understanding alone is not necessarily predictive of performance on any 
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given task. Instead, domain-general processes may interfere with the 

application of conceptual understanding on specific tasks. For this reason, it 

is important to try to separate the reasoning about a physics problem from 

the conceptual understanding necessary to correctly answer the problem. 

Methodologies that enable this will aid in understanding how conceptual 

understanding and domain-general reasoning processes interact. 

Understanding this interplay between domain-general reasoning skills 

and reasoning in a physics context is especially important to the study of how 

students generate qualitative inferential reasoning chains. A qualitative 

inferential reasoning chain is a series of inferences where the consequence of 

one inference becomes the premise for the next. An example would be “My 

dog is scratching therefore she has fleas. If my dog has fleas it needs a flea 

collar. These are sold at the pet store, so I need to go the pet store.” 

To make progress understanding the interplay between domain-

general reasoning skills and the formation of qualitative inferential chains of 

reasoning in physics, new research tools and analysis methodologies are 

required. Physics education researchers have started to use methodologies 

that generate data outside of the written free-response questions and think-

aloud interviews that are ubiquitous in discipline-based education research. 

For example, physics education researchers have begun to investigate 

cognitive processes more directly using alternative methods such as eye 

tracking (Rosiek & Sajka, 2016; Madsen et. al., 2013; Susac et. al., 2017), 
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timing data (Heckler & Scaife, 2014), gesture analysis (Scherr, 2008), and 

even fMRI scans of brain functioning (Brewe, et al., 2018). These 

methodologies have given insight into the root causes of some well-known 

phenomena. For instance, it has long been established in the literature that 

students often answer according to the height of a point on a graph even 

when the when asked to find the slope of that point (McDermott, Rosenquist, 

& Zee, 1987; Beichner, 1994; Christensen & Thompson, 2012). Timing data 

has recently suggested that this may be due to the perceptual system taking 

longer to process the slope than it takes to process the height (Heckler & 

Scaife, 2014; Heckler, 2011). 

Dual process theories of reasoning (DPToR) have played a key role in a 

renewed effort to understand the mechanisms behind student reasoning in 

physics. These theories arise from findings in cognitive science, social 

psychology, and the psychology of reasoning. Popularized by the book 

Thinking, Fast and Slow (Kahneman, 2013), dual-process theories model 

human reasoning with two types of processing: an unconscious, fast, and 

associative process 1; and a conscious, effortful, and typically slower process 

2. These theories tend to be mechanistic in nature; as such, they provide a 

framework that can be prescriptive rather than solely descriptive, thereby 

providing a theoretical basis for the development of successful instructional 

interventions. 
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In the work described in this thesis, we sought to gain greater insight 

into the nature of student reasoning in physics and the extent to which it is 

impacted by the domain-general phenomena explored by cognitive science.  

Critical for this investigation were methodologies that could disentangle, to 

the degree possible, reasoning skills from conceptual understanding. The 

work presented in this dissertation was aimed at providing new 

methodologies to examine qualitative inferential reasoning that separate 

reasoning skills from understanding of a particular physics concept. 

Accordingly, in this work we present two such methodologies, the overarching 

goal of which is to explore mechanistic processes related to the generation of 

qualitative inferential reasoning chains and to uncover insight into the 

nature of student reasoning generally. In particular, we sought to answer the 

following research question:  To what extent can additional insight into the 

nature of student reasoning in physics be obtained by applying results from 

cognitive science about the mechanisms behind human reasoning to the 

analysis of data from novel physics task formats or methodologies? 

The first methodology, implemented in the form of reasoning chain 

construction tasks, aims to create knowledge surrounding how students 

construct linear chains of inferences in response to qualitative physics 

questions. Chapter 3 of this dissertation uses reasoning chain construction 

tasks to investigate the extent to which dual-process theories of reasoning 

can account for the observed reasoning phenomena mentioned above as well 
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as the extent to which these theories can provide mechanistic predictions for 

how to improve performance on challenging physics questions. Chapter 4 

describes the use of network analysis techniques to gain insight into the 

structure of student reasoning using the data afforded by the novel reasoning 

chain construction format.  

The second methodology aims to examine student tendency to explore 

alternate possibilities and is implemented via the possibilities tasks.  The 

tendency to explore alternate possibilities is associated with more productive 

reasoning (Johnson-Laird, 2009; Evans, 2007; Lawson, 2004; Tishman, Jay, 

& Perkins, 1993); indeed, in some frameworks for human reasoning, that 

tendency is foundational to the reasoning in general (see, for example, 

Johnson-Laird, 2009). Motivated by a desire to understand how this domain-

general tendency might impact reasoning in physics, Chapter 4 details the 

possibilities tasks and compares data relating to the tendency to construct 

specific cognitive models with the ability to recognize these models as 

consistent with physics principles.  

The core of this dissertation consists of three individual papers (in 

preparation for journal submission), included in Chapters 3, 4 and 5. To unify 

the work presented in those papers, Chapter 2 presents a literature review 

that establishes the narrative connecting the work described in this 

dissertation and the existing literature. Chapter 6 summarizes the work 
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done, highlights the coherence of investigations documented in the three 

papers, and describes plans for future work.  
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2 REVIEW OF RELEVANT LITERATURE 

In this chapter, we draw upon literature from multiple fields in order to 

motivate, contextualize, and establish the common threads that run through 

the research described in this dissertation. In physics education research, 

conceptual understanding and reasoning are often treated as a single thing.  

Moreover, little distinction is made between domain-specific and domain-

general reasoning approaches.  As such, this chapter first aims to clearly 

delineate conceptual understanding, domain-specific reasoning, and domain-

general reasoning. Once these important distinctions have been established, 

key concepts and theories from the psychology of reasoning and decision-

making that have been particularly influential on recent physics education 

research exploring student reasoning are discussed. The chapter then shows 

how the work presented in this dissertation aims to make further progress on 

the threads of research established in the literature through the development 

of new methodologies and the implementation of new analysis techniques to 

better understand the nature of student reasoning in physics. 

 

2.1 Conceptual understanding, domain-specific reasoning, and 

domain-general reasoning 

The work presented in this dissertation focuses on reasoning skills 

related to the development of a qualitative inferential chain of reasoning in 
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response to a physics task. When discussing such reasoning, it is helpful to 

draw distinctions between different phenomena. As such, it is important to 

operationalize and distinguish between conceptual understanding, domain-

specific reasoning, and domain-general reasoning. 

Conceptual understanding and domain-specific reasoning are closely 

related, but this work assumes a distinction between the two on a structural 

level. Concepts are cognitive constructs with which one can reason. Domain-

specific reasoning processes are closely tied to these constructs and comprise 

procedures, strategies, and rules dictating the use of specific concepts. This 

distinction is similar to the distinction drawn in the idea of a “coordination 

class” (diSessa & Sherin, 1998), in which a concept is paired with “readout 

strategies” and other instructions for the use of that concept in the 

“coordination class.” Indeed, it is hard to separate conceptual knowledge from 

the reasoning processes most closely associated with that knowledge. 

McDermott and Shaffer (1992) argued that these associations are 

fundamental; they stressed that “a concept cannot be isolated from the 

reasoning process inherent in its definition and application […].” Thus, 

knowledge of a concept in some cases depends on the reasoning that 

establishes the concept. Stanovich (2011) also places these two on a similar 

level with the concept of mindware, which includes “rules, knowledge, 

procedures, and strategies that a person can retrieve from memory in order to 
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aid decision making and problem solving.” It may be hard either theoretically 

or empirically to distinguish between a concept and the reasoning associated 

with that concept, but given the nature of the current investigation, it is 

imperative to consider the two as separate constructs that are closely 

associated (in the tradition of diSessa and Sherin (1998)) rather than as a 

single construct. By doing so, progress can be made in attempting to isolate 

reasoning skills (to the degree possible) for further study. 

Contrasted with domain-specific reasoning is domain-general 

reasoning, with the latter relying on reasoning mechanisms that may occur in 

any context. Examples of domain-general reasoning mechanisms are 

mechanisms that control the allocation of attention, the framing of a problem 

or task, and/or the generation of intuitive responses. Such mechanisms 

include the perceptual salience of a task feature and the effects of semantic 

priming or other priming effects (Heckler, 2011; Hammer, Elby, Scherr, & 

Redish, 2005, Higgins, 1996). (Section 2.3.2 describes many of these 

mechanisms in greater detail.) The mechanisms along with the associated 

reasoning can apply in any context, but they necessarily operate within a 

specific context (e.g., the context of a physics task) and therefore can produce 

different results based on that context. Thus, domain-general reasoning can 

occur in any context and can heavily influence the domain-specific reasoning 

that occurs in any given context.  
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As a note, in the remainder of this dissertation, domain-specific 

reasoning is referred to as “context-specific”, “content-specific”, or “physics-

specific” reasoning in order to contrast it with domain-general reasoning 

 

2.2 Conceptual understanding and domain-specific reasoning in 

Physics Education Research (PER) 

Most of the reasoning-related work conducted in the context of PER 

has primarily focused on student understanding of specific physics concepts 

and the domain-specific reasoning related to those concepts. One may 

consider the large body of work conducted using the framework of specific 

difficulties (see, for example, McDermott, 2001; McDermott, 1991; Heron, 

2004) in order to gain productive insight into student thinking about physics 

topics using multiple tasks. In this research framework, conceptual and 

reasoning difficulties are identified, and research-based instructional 

materials are created to address them. No claims are made about the 

theoretical or cognitive structure of the difficulties identified; instead, the 

difficulties are described and their relative prevalence before and after 

instruction are noted. Difficulties are operationalized in a pragmatic fashion 

to create actionable data that may guide instructional interventions. The 

interventions, in turn, can be pre- and post-tested to assess their 

effectiveness and inform their subsequent refinement.  
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As a specific example of the use of the difficulties framework, it has 

been observed that students tend to treat momentum as a scalar quantity 

rather than a vector quantity when combining momenta (Close & Heron, 

2010; Graham & Berry, 1996). This is typically considered to be a conceptual 

difficulty because it relates to a momentum knowledge construct (i.e., the 

classification of momentum as either a vector or a scalar quantity), but it 

could also be seen as a “reasoning difficulty” because it may be that a student 

has available in memory the knowledge of momentum as a vector but has 

difficulty determining how vector quantities should be combined. Regardless 

of the exact cognitive structure of the difficulty, the insights gained informed 

the development of a tutorial that addressed this specific difficulty (Close & 

Heron, 2010). Performance on a task that probed the prevalence of this 

difficulty improved significantly, with the percentage of correct responses 

with correct reasoning increasing from 35% to 60% after tutorial instruction, 

indicating that the tutorial successfully addressed and resolved the difficulty 

for many students.  

While the pragmatic specific difficulties framework makes no 

assumptions about the underlying structure of students’ knowledge, other 

research paradigms expressly focus on the nature of that structure.  In the 

misconceptions paradigm (McCloskey, 1983; Posner, Strike, Hewson, & 

Gertzog, 1982), which is extremely pervasive in the early discipline-based 
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education research literature, once knowledge about physics is constructed, it 

is thought to be stable and robust. Accordingly, the same knowledge 

structure is used each time that a particular concept is needed for a task. 

From this paradigm, one would predict that student performance and 

reasoning should be consistent on tasks targeting the same concept. In the 

knowledge in pieces paradigm (diSessa, 1993), however, concepts are thought 

to be built from finer-grained and fragmentary knowledge that combine in 

the context of a task to produce a conception. These conceptions are 

inherently unstable and may change from task to task depending on how the 

fragments are cued and arranged. As an example of a knowledge fragment, 

consider a primitive conceptual construct possibly born out of experience 

observing the real world: “dying away”. (For instance, the wind dies down 

after a storm and a water puddle slowly shrinks until it is gone.) This 

primitive construct, by itself, is somewhat meaningless, but when combined 

with specific contexts, it produces emergent knowledge. For example, in a 

task about energy conservation regarding a gong that has been struck, “dying 

away” could combine with “the energy” to say that the energy in the gong 

slowly dies away (as does the sound) and vanishes. However, for an expert, 

“dying away” would be correctly combined with “kinetic energy”, and the 

associated construct of dissipation could be cued. 
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The knowledge in pieces paradigm was subsequently extended into the 

resources framework, which allows one to identify and observe the use of 

student resources for reasoning (Hammer, Elby, Scherr, & Redish, 2005; 

Hammer, 2000). Resources refer to finer-grained cognitive structure (i.e., 

general rules, epistemological stances, the phenomenological primitives from 

the knowledge in pieces framework, etc.) that make up larger-grained 

cognitive structures such as concepts or skills. It is posited by this framework 

that the act of reasoning is an act of cognitively selecting and coordinating 

the use of a subset of available resources. The framework is helpful but tends 

to fall short of making specific predictions about which resources are 

activated, when/why they are activated, and how they subsequently impact 

reasoning. Instead, the resources framework yields compelling post-hoc 

explanations for reasoning phenomena. 

Before moving on, it is worth mentioning that a body of literature has 

developed in mathematics education research that examines how students 

construct qualitative inferential “proofs” of mathematical principles (Selden 

& Selden, 2008). In a typical undergraduate mathematics program, there are 

specific courses that aim to teach students how to create mathematical 

proofs. These proofs tend to take the form of a series of deductive, qualitative 

inferences that are linked together as an argument in support of a specific 

conclusion. The research regarding student skill at constructing proofs is 

reminiscent of many research endeavors in physics education research. 
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Often, students' responses to a particular proof task are examined through 

various epistemological and conceptual lenses, with the emphasis placed on 

identifying student difficulties with constructing proofs. The data sources are 

similar: student written work, interviews, etc. Therefore, the methodologies 

used to study chains of reasoning in a mathematical proof are similar to those 

already employed in PER. Given that the goal of the work described in this 

dissertation is develop and apply new methodologies that yield greater 

insight into the interplay of domain-specific and domain-general reasoning, 

the specific strategies employed in the proofs literature will not be discussed 

in detail in this overview. 

The three frameworks outlined above have been helpful in creating 

new knowledge around conceptual understanding and domain-specific 

reasoning, but recent research is revealing more about their limitations. It is 

often observed that students may demonstrate functional understanding on 

one physics question but fail to demonstrate that same understanding on a 

closely related question (e.g., Kryjevskaia, Stetzer, & Grosz, 2015, 

Kryjevskaia, Stetzer, & Le, 2015; Heckler, 2011; Kryjevskaia, Stetzer, & 

Heron, 2012; Close & Heron, 2010; Loverude, Kautz, & Heron, 2002). 

Further, even after research-based instruction and a documented 

improvement in conceptual understanding, some physics questions remain 

difficult for students to answer. Additionally, the existing frameworks may 

provide some explanatory power in regards to describing what happens when 
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students reason and perhaps why, but they lack predictive power regarding 

student behavior on novel tasks. These observations present a new challenge 

for all of these existing frameworks. In particular, the observations highlight 

that conceptual understanding alone may not be predictive of performance on 

any given task. Instead, domain-general processes may interfere with the 

application of conceptual understanding on specific tasks. For this reason, it 

is important to try to separate the reasoning about a physics problem from 

the conceptual understanding necessary to correctly answer the problem.  

The work in this dissertation aims to separate, to the degree possible, 

reasoning skills from conceptual understanding for the reasons outlined in 

the previous paragraph. A method for doing so, which involves paired 

questions, has been reported previously in the literature (Kryjevskaia, 

Stetzer, & Grosz, 2014; Kryjevskaia, Stetzer, & Le, 2015). The paired-

question methodology uses a screening question that requires that students 

generate a specific line of reasoning followed by a target question that 

effectively requires the same line of reasoning in a slightly different context. 

This then allows researchers to study the responses of those students who 

answer the screening question correctly but opt for other, perhaps more 

salient, lines of reasoning on the target question; such students have 

demonstrated the ability to correctly draw upon relevant concepts in the 

correct line of reasoning at least once, and so their opting for other lines of 
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reasoning on the target question is likely not due solely to difficulties in 

conceptual understanding. This methodology is similar to the pairs of 

questions – developed by Elby (Elby, 2001) and known as “Elby pairs” (see 

Redish, 2004) – that elicit intuitive answers that are in conflict with each 

other. While working through an Elby pair, students are tasked with 

reconciling their intuition with formal physics models, ultimately aiming to 

refine intuition about those models. The difference in the methodologies is 

that the goal of the latter was to create an educational outcome while the goal 

of the former was to isolate and study a reasoning phenomenon. However, 

both essentially exploit a separation between an intuitive reasoning 

phenomenon and the conceptual construct associated with it on any given 

particular task. 

 

2.3 Domain-general reasoning 

This section provides an overview of relevant frameworks from the 

fields of psychology and cognitive science, and then describes PER 

investigations that have employed these frameworks to date. The PER work 

is organized around domain-general reasoning mechanisms as a way to 

establish greater ties between the research presented in this dissertation and 

the broader work occurring in the PER community. 
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2.3.1 Research from the fields of psychology and cognitive science 

Psychologists have been studying general reasoning processes since 

the foundation of the field. Modern research regarding the psychology of 

reasoning began with an intense focus on logical reasoning, primarily with 

deductive tasks (e.g., syllogisms (Johnson-Laird, 1983) or the Wason selection 

task (Wason, 1968)). This research gave rise to two competing models of 

human reasoning. Both theories posit domain-general frameworks for all of 

human reasoning, meaning that the mechanisms of reasoning are proposed to 

be the same for each person, in every context. One, the mental logic theory, 

posited formal but abstract schema for all human reasoning in any context 

(Braine & O'Brien, 1998), such as “p or q; not p; therefore q” for reasoning 

about logical disjunctions. The other, the mental models theory (Johnson-

Laird, 2009), contends that all human reasoning is done by mentally 

representing the relationships between entities in the mind and then reading 

judgments and conclusions directly from this representation. The mental 

model is abstract but iconic, meaning that it represents information spatially 

and symbolically, even if no actual image is formed in the mind. For example, 

the phrases “the duck is directly above the dog” and “the dog is somewhere 

below the fish” would create a mental representation, such as 
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Fish 

 

 

Duck 

Dog, 

from which one could immediately deduce that the fish is above the duck. The 

proponents of both theories were engaged in ongoing debates, while amassing 

evidence for both perspectives, for quite some time. However, it has since 

been pointed out that both theories, even though they disagree on 

fundamental mechanisms for reasoning, could be true in that reasoners may 

pick and choose which strategy to use when. “The question of what people 

‘really do’ is probably the wrong one to ask,” writes Sternberg (2004), “The 

question to ask is who does what under what circumstances?” As such, the 

different theories are suited for different types of analysis. The mental models 

theory is particularly helpful in studying student exploration of alternate 

possibilities, which is the topic of Chapter 5. Accordingly, more will be said of 

the mental models theory in that chapter. 

The context-independent nature of the two previous models of 

reasoning can be juxtaposed with another class of theories. These theories 

posit that reasoning is highly context dependent and is not derived from a 

single mechanism but rather a collection of processes and heuristics built into 
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an “adaptive toolbox” (Gigerenzer, 2008), wherein one can select the best 

process or heuristic for the job at hand.  

Dual-process theories of reasoning and decision-making fall into this 

view (Kahneman, 2013; Evans & Stanovich, 2013). These theories propose 

two separate processes in the mind by which reasoning and decision-making 

occur: process 1; an automatic, subconscious, and generally fast process; and 

process 2; an effortful, explicit, and generally slow process. Process 1 is 

primarily at play in decisions such as how to manipulate a steering wheel to 

keep a car in the center of a lane or judging someone’s emotions from a glance 

at that person’s face. Process 1 guides much of adult decision-making 

throughout the course of a day because it is optimized to reduce cognitive 

load and free up working memory for more important tasks (i.e., we tend to 

be misers with respect to cognitive resources). When there is a reason to 

expend effort, process 2 recruits working memory to run simulations, test 

hypotheses, or execute an algorithm. This process is helpful with problems 

such as long division, deducing a result from first principles, or deciding 

which tax cut to take. 

Among the general theories of reasoning that fall under the umbrella 

of dual-process theories, we have found the heuristic-analytic theory (Evans, 

2006) to be particularly helpful in analyzing student responses to our physics 

tasks. While it is general to any process of reasoning, the heuristic-analytic 
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theory was developed in the context of the psychology of logical reasoning, 

wherein participants were asked to make judgments about syllogisms or 

solve logic puzzles such as the Wason selection task (Wason, 1968). The 

heuristic-analytic theory, shown diagrammatically in Figure 2-1, is therefore 

particularly suitable for providing detailed roles for process 1 and process 2 in 

the context of physics. The heuristic-analytic theory of reasoning is especially 

helpful because it rests on three main principles that describe the 

mechanisms by which models are selected and/or abandoned. These 

principles are the relevance principle, the singularity principle, and the 

satisficing principle (Evans, 2006), and are described below along with the 

theory itself. 

 

Figure 2-1. Diagram showing the separate roles of the heuristic (type 1) and 

analytic (type 2) processes, taken from Evans (2006). 

In the heuristic-analytic theory, process 1, the heuristic process, is 

responsible for generating a mental model that is perceived to be the most 



   

 

22 

 

plausible or relevant given the task features, the goals of the task, and the 

reasoner’s prior knowledge. In this context, a mental model is a hypothetical 

mental representation of the structure or relationships between given 

entities. For instance, it may be a schematic of a car engine, a proposition 

such as “the bigger the coefficient of friction, the bigger the frictional force”, 

or indeed a judgment such as “that person is happy”. The singularity 

principle states that only one mental model is considered at a time. Which 

model is chosen for consideration is based on the perceived relevance of the 

model to the current task, which is a statement of the relevance principle. 

One key aspect of this default model is that it is accompanied with a value 

judgment about how plausible the model is. This is referred to elsewhere in 

the literature as a “feeling of rightness” (Thompson, 2009), a measure of how 

confident a reasoner is that the model is the correct and appropriate one for 

the task at hand. If the feeling of rightness is strong, process 2 may only be 

engaged superficially, if at all, before a final judgment is made. If the feeling 

of rightness is not strong, however, an analytic intervention is triggered and 

only then does process 2 comes into play in a non-superficial way. 

Process 2, the analytic process, is responsible for running mental 

simulations (explicit reasoning) using the model, and it primarily attempts to 

ascertain whether the model truly is satisfactory for the task at hand. This 

point is called the satisficing principle. Thus, process 2 becomes mostly a 
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hypothetical or reflective process with an aim of validating, if possible, the 

process 1 model. As a result, reasoning biases such as confirmation bias 

(Nickerson, 1998) can enter into the reasoner’s thinking and decision-making. 

Because process 2 utilizes working memory and is effortful, it is also 

susceptible to errors in reasoning such as performing an algorithm 

incorrectly. If the analytic process determines that the initial model is 

insufficient to the task, the process searches for alternate models and 

possibilities, and the process is repeated. 

Evan’s original heuristic-analytic theory (among the first dual-process 

theories put forward in modern times) had the motivation “to show why 

reasoning errors are both common and inconsistent across situations” (Evans, 

1984). Thus, the intent was to produce a model of reasoning such that the 

general process described would be able to adapt to context sufficiently to 

make reasoning itself context-specific. That is, the procedure by which type 1 

processes construct a model can differ based on the context, and the type 2 

processes employed can also differ from task to task. Thus, the heuristic-

analytic theory ensures that there is no need to restrict analysis to a single 

framework of mental modeling or mental logic. Instead, a wide variety of 

reasoning phenomena can occur within the basic flow of the heuristic-analytic 

theory.  
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Alongside the development of dual-process theories is research 

regarding “fast and frugal” heuristics for reasoning (Gigerenzer, 2008). It is 

important to note that Evans’ “heuristic” refers to the process that selects 

models for reasoning, while the “fast and frugal” heuristics explicitly refer to 

“rules of thumb” for reasoning. These heuristics are thought to have emerged 

evolutionarily out of a need for reasoners to create good conclusions despite 

the impossibly complex problems presented by the real world. For instance, 

the “gaze heuristic” (McLeod, Reed, & Dienes, 2003; see also Shaffer, 

Krauchunas, Eddy, & McBeath, 2004) is a cognitive heuristic that allows a 

baseball player to position him- or herself directly under a ball undergoing 

projectile motion without having to compute differential equations or gather 

data about initial velocity, wind speed, and other complexities. Instead, the 

players, utilizing the gaze heuristic, maintain eye contact with the ball and 

positions themselves such that the angle of their gaze is always constant. 

Using heuristics, computationally intractable problems (for humans and for 

computers) can become solvable with a high degree of accuracy.  

Heuristics also cause systemic errors, however. For instance, one 

heuristic proposed by Kahneman and Tversky (1973) is the “availability 

heuristic”, which substitutes an unanswerable question pertaining to the 

frequency of an event with an answerable question pertaining to the 

availability of examples of the event. The classic example of this heuristic is 
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to ask the question: “Are there more words that start with ‘K’ or that have ‘K’ 

as the third letter?” The common (incorrect) answer is that there are more 

words that begin with “K”, even though there are, in fact, more words with 

“K” as the third letter. Kahneman and Tversky demonstrated that because a 

search of memory likely produces more examples of words that begin with 

“K” and that these examples come more readily to mind, we assume that the 

“availability” of examples is proportional to the frequency of the occurrence. 

While this may be true in many cases, in some cases, it is not, and yet 

reasoners still make the same error. 

Heuristics provide a variety of domain-general reasoning mechanisms 

that can interact with and interfere with domain-specific reasoning processes. 

They also fit cleanly into the dual-process perspective but are somewhat 

incompatible with the two views of mental models and mental logic.  

In the following section, we describe how recent research in physics 

education has utilized these findings from cognitive science and the 

psychology of reasoning to advance the community’s understanding of how 

students’ reason in a physics context. 
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2.3.2 Research in field of physics education 

While, as discussed in Section 2.2, the reasoning-focused work in PER 

historically was integrated into topical, concept-focused investigations, the 

focus of this section is on more recent research on domain-general reasoning 

in the context of physics education. First, the studies that motivated much of 

the recent research on domain-general reasoning in physics education are 

summarized. Then, research regarding known domain-general reasoning 

mechanisms are detailed, organized by mechanism. The purpose of this 

section is to introduce and outline what has been done in a physics context so 

far, illustrating the context and motivation for the current work. 

As has been said before, students may demonstrate functional 

conceptual understanding in one setting and fail to demonstrate it in another 

setting (Loverude, Kautz, & Heron, 2002; Close & Heron, 2010; Kryjevskaia, 

Stetzer, & Heron, 2012). Heckler, applying a dual-process framework, argued  

that patterns of incorrect responses could be explained without referencing 

an incorrect concept at all; instead, he illustrated how observed patterns 

could be due to lower-level cognitive factors alone, upon which process 1 

draws (Heckler, 2011). Once an answer is obtained, the student might 

perhaps justify using higher-level conceptions and type 2 processes. Thus, the 

student may answer not from an incorrect physics conception but from no 

conception at all.  In this paper, Heckler also called for new methodologies 
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that use domain-general mechanisms to make and test predictions about 

answering patterns.  In particular, he proposed two such these mechanisms: 

the time it takes to cognitively process task features and the allocation of 

attention given to salient distracting cues. The current work documented in 

this dissertation is in large part a direct response to that call. 

The rest of the section is organized around specific reasoning 

mechanisms and the work that has been done surrounding these 

mechanisms. This discussion is important because it sets up the context in 

which the current work is taking place and serves as an introduction to some 

of the mechanisms that will be in play in the tasks described later in this 

dissertation. 

2.3.2.1 Processing time 

In order for a task feature to cue a specific resource in the course of 

reasoning, it must be processed by the brain. Thus, the time it takes to 

process a certain feature represents a control mechanism that may predict 

which resources are cued and when. To show the impact of processing time on 

answering patterns, Heckler and Scaife measured the approximate 

processing time of finding either the slope or the height of a particular point 

on a graph and determined that processing the slope took a longer time than 

processing the height (Heckler & Scaife, 2014). The researchers then 

demonstrated that applying a time delay on answering in order to guarantee 
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that the brain had time to process the slope improved performance on graph-

based questions in which the slope and the height were in competition. They 

framed this mechanism as a version of the fluency heuristic (Schooler & 

Hertwig, 2005) wherein process 1 gathers information about the two 

dimensions available in the question (height and slope) and responds based 

on the dimension processed first (i.e., the height) or most fluently. 

2.3.2.2 Allocation of Attention 

Heckler (2011) proposed1 that salient features (Elby, 2000; Heckler, 

2011; Kryjevskaia, Stetzer, & Le, 2015; Le, 2017) control the allocation of 

attention and can be used to make predictions about student behavior. 

Salient distracting features (SDFs) are features of a task that draw 

immediate attention away from other task features, are processed easily, and 

cue incorrect lines of reasoning. The salience of a feature can be empirically 

measured by using eye-tracking techniques to determine where attention is 

being placed. For questions in which high-salience information is irrelevant 

and low-salience information is relevant, it can be expected that the 

competition between these relevant and irrelevant features will lead to most 

students generating an incorrect default model based on the high-salience of 

                                                 
1 It should be mentioned that a similar argument was put forward by Elby in 2000 

(Elby, 2000). 
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the irrelevant feature. Thus, in salient distracting features, we have a 

predictive factor that can provide insight into student answering patterns.    

Heckler demonstrated the impact of salient distracting features on 

physics questions by providing students with a plot of two position vs. time 

graphs representing the motion of two cars, shown in Figure 2-2. In each 

question, the students were asked to find the time at which the cars have the 

same speed. In one question (shown in Figure 2-2.a), the two graphs were 

parallel lines, and 90% of students chose the correct answer (“At all times”). 

In another question (shown in Figure 2-2.b), the two graphs intersected at 

time B while the slopes of the graphs were the same at time A; in this 

question, the intersection serves as the salient distracting feature. Sixty 

percent of students answered correctly (time A), while 40% answered 

incorrectly by picking the intersection (time B). This tendency to focus on and 

incorrectly interpret intersections on graphs is reported extensively in the 

literature (McDermott, Rosenquist, & Zee, 1987; Beichner, 1994; Christensen 

& Thompson, 2012; Elby, 2000; Heckler, 2011; Speirs, Ferm Jr., Stetzer, & 

Lindsey, 2016). Notably, students may utilize physics concepts in order to 

rationalize an incorrect time B answer, highlighting the interplay between 

low-level factors and higher-level reasoning structures, as discussed by 

Heckler (see Heckler, 2011).  
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Figure 2-2. Diagrams given to students as part of a study reported in 

(Heckler, 2011). The graph shown in (b) was used in the kinematics 

graph task (Experiments 1A and 1B) for the current work. 

The effect of non-science-graph related salient distracting features on 

inconsistencies in student reasoning was also explored using the paired 

question methodology. Kryjevskaia et. al. (2015) studied a physical context in 

which a box remains at rest when a known force is applied, and the student 

must reason with Newton’s 2nd Law to infer the magnitude of the static 

friction force.  In the screening question (see Figure 2-3.a), a single box is 

shown, and students are told that the box remains at rest when an applied 

force of 30 N is acting on the box. Students are asked to compare the 

magnitude of the applied force with the magnitude of the friction force. The 

correct line of reasoning is that the box remains at rest and, by Newton’s 2nd 

Law, this requires that the net force on the box must be zero and therefore 

the magnitudes of the two forces must be equal to each other. In the target 

question, students are asked to compare the forces of friction on two identical 

boxes on two different surfaces with identical applied forces exerted on both 

boxes (Fig. 2b). In the diagram, the coefficient of static friction for each box-
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surface pair is shown next to each box. These coefficients appear to elicit a 

common but incorrect comparison that the friction force on box A is less than 

the friction force on box B because the coefficient for box A is less than the 

coefficient for box B. Typically, 50% of students will answer this way, and 

50% will answer correctly (Kryjevskaia, Stetzer, & Le, 2015). 

 

Figure 2-3. Diagrams given to students for (a) the screening question and (b) 

the target question of the two-box friction task. 

If, instead, one was to reason from Newton’s second law and the 

observation that both boxes remained at rest, the (correct) conclusion would 

be that the friction force on box A is equal to the friction force on box B. Of 

those who answered the screening question correctly (demonstrating the 

relevant conceptual understanding) 35% employed an incorrect line of 

reasoning on the target question (Kryjevskaia, Stetzer, & Le, 2015). This 

result was interpreted as a failure to engage the analytical process 2 in a 

productive manner due to the salient distracting features. Instead, students 

appeared to rely on process 1 first impressions for reasoning; despite the fact 

that they demonstrated the ability to step through a correct line of reasoning, 
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they abruptly abandoned that line of reasoning on the target question. This 

abrupt abandonment was further supported in Kryjevskaia, Stetzer, & Le 

(2015) using a transcript from an interview in which a pair of students 

worked through both parts of the static friction task consecutively. This study 

provided additional evidence that low-level cognitive influences can have an 

impact on the use of higher-level mental structures, but it was unclear as to 

how exactly this impact could be mitigated. The work described in Chapter 3 

makes progress on cognitive-science based efforts to mitigate such effects. 

2.3.2.3 Reasoning Heuristics: Compensation Reasoning 

A related study is of note because it utilizes dual-process theory as well 

as the paired-question methodology to study a commonly cued incorrect line 

of reasoning not necessarily associated with a salient distracting feature. 

Kryjevskaia et al. (2014) reported on a physics task that was known to cue a 

common incorrect line of reasoning involving compensation reasoning. In the 

capacitor question (diagram shown in Figure 2-4), two identical capacitors 

are each fully charged across an identical battery and then placed in series 

such that they didn’t discharge. The left capacitor is then modified by 

increasing the distance between its plates. The screening questions asks 

students to determine whether, for the modified (left) capacitor, the charge on 

the plates and the potential difference between the plates increases, 

decreases, or remains the same after the modification. The target question 
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asks the student to determine if the potential difference across the right 

(unmodified) capacitor increases, decreases, or remains the same after the 

modification. 

The correct answer to the first screening question is that because 

charge is conserved and the capacitors are not connected to a battery, the 

charge remains the same on all plates. Then, the distance has increased 

between the left capacitor plates, so the capacitance has decreased (𝐶 =
𝜀𝐴

𝑑
, 

where 𝑑 is the plate separation), in turn causing the potential difference 

between the plates of the left capacitor to increase, because Δ𝑉 =
𝑄

𝐶
. Since the 

charge on the plates and the capacitance of the right capacitor remain the 

same, the potential difference across the plates of the right capacitor also 

remains the same.  

On the target question, about half of students are reported to have 

answered incorrectly that since the potential difference across the left 

capacitor has increased, the potential difference across the right capacitor 

must decrease to keep the total potential difference constant. This reasoning 

was identified as “compensation reasoning”, which has been reported in the 

literature in a variety of contexts (Lindsey, Heron, & Shaffer, 2009; Kautz, 

Heron, Shaffer, & McDermott, 2005; Loverude, Kautz, & Heron, 2003). It was 

suspected by Kryjevskaia, Stetzer and Grosz (2014) that the frequent use of 

“equilibrium” and “conservation” ideas in the physics classroom made those 
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ideas more readily accessible to students on this task, and thus the default 

model selected by process 1 would be related to conserving the total potential 

difference. Because process 2 only considers other alternatives when the 

default model is rendered unsatisfactory for some reason, students would not 

tend to consider the reasoning they used on the screening questions, they 

surmised. Approximately 50% of students who answered both screening 

questions correctly used compensation reasoning on the target question, 

thereby arriving at an incorrect response. 

 

Figure 2-4. Diagram given to students on a capacitor task administered by 

Kryjevskaia et. al. (Kryjevskaia, Stetzer, & Grosz, 2014). 

 

In a second experiment, students were given an alternate version of 

the target question that asked them to justify why the potential difference 

across the right capacitor remained the same. Of those who answered both 
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screening questions correctly, almost all (86%) answered this alternate 

version with correct reasoning. 

The results from the second experiment were also interpreted from a 

dual-process theory perspective. When given the correct answer, students 

were able to reason effectively either because (1) being cued by the correct 

answer, process 1 was used to construct a correct model or (2) process 2 was 

effectively engaged to aid the student in abandoning an incorrect default 

model because it was not satisfactory in arriving at the stated answer. In 

either case, it was clear that students did, in fact, have correct and relevant 

mindware (in the sense used in Section 2.3.1) available to them, even if they 

did not use it when the target question was posed originally. 

2.3.2.4 Cognitive Accessibility 

The cognitive accessibility of an initial idea can impact a student's 

tendency to explore alternate possibilities if the accessibility of the initial 

idea is much higher than the other possibilities (Quinn & Markovits, 1998). 

Cognitive accessibility is a measure of how easily a concept or model is 

retrieved from memory (Higgins, 1996). Heckler and Bogdan (2018) 

investigated the effects of accessibility on physics questions. They first 

measured the relative cognitive accessibility of causal factors associated with 

different physics contexts, such as how the length and mass affect the period 

of a pendulum. They then found that when a highly accessible factor was 
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offered in a problem statement, students tended not to explore alternate 

factors, even when the factor offered was causally irrelevant to the physics 

scenario (e.g., the mass of a pendulum). Furthermore, when the less 

accessible factor was offered students did explore alternate factors, namely 

the highly accessible factor. They surmised that accessibility could thus 

represent a “soft contour” (i.e., a control mechanism) that influences the 

trajectory of a reasoning process.  

Importantly, the general effects of relative cognitive accessibility were 

demonstrated in the contexts of forces/friction, simple harmonic motion, 

kinematics, potential energy, and mass density (Heckler & Bogdan, 2018). 

This is particularly relevant to the current work in that their findings 

demonstrate how low-level factors such as how closely two ideas are 

associated can be domain-general in that they impact performance in 

predictable ways across context. 

2.3.2.5 Cognitive Reflection 

When a question has a strong intuitive but incorrect response (for 

instance, “Which weighs more? A pound of feathers or a pound of rocks?”), a 

reasoner must suppress or otherwise reason through that strong intuitive 

response in order to arrive at a correct answer.  Frederick (2005) introduced a 

test, known as the “cognitive reflection test” or CRT, to measure this 

tendency to suppress such incorrect responses. The CRT consists of seven 
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questions, each of which cues a strong intuitive yet incorrect answer, but 

which are relatively easy to solve otherwise. For instance, one question poses 

the following problem, “A bat and a ball cost $1.10 in total. The bat costs 

$1.00 more than the ball. How much does the ball cost?” The intuitive answer 

is “ten cents”, but a quick calculation shows that this would imply that the 

bat costs $1.10 for a total of $1.20 for both the ball and bat. Therefore, the 

ball must cost five cents. Performance on this and similar questions serves as 

a proxy for the skill of reasoning past an intuitive response. 

A recent study (Wood, Galloway, & Hardy, 2016) in a physics context 

examined the relationship between students’ scores on the Cognitive 

Reflection Test and their performance on the Force Concept Inventory, a 

survey designed to assess student understanding of Newtonian concepts of 

force and motion. Wood et al. report that students who scored higher on the 

CRT have higher scores on the FCI, both pre- and post-instruction. An 

unstated implication of Wood et al.’s work is that the skill of productively 

navigating intuitive responses is required to answer FCI questions correctly. 

Indeed, with distractors built into many FCI questions, this would be 

expected since intuitive responses are in part based on distracting features. 

However, their findings also highlight that a domain-general reasoning skill 

(that of productively navigating intuitive responses) may also have an impact 

into the formation of correct physics concepts for students. One implication of 
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such work is that attending to these domain-general skills may lead to better 

outcomes for students. 

2.3.2.6 Summary of work in PER 

The low-level, domain-general influences described in the previous 

subsections represent mechanisms from which predictions about student 

performance patterns can be made; as such, understanding their impact on 

reasoning can provide guides and leverage for improving student 

performance and reasoning skills overall. Some early efforts have been made 

to draw upon these mechanisms in order to improve student performance, 

(see, for example, (Gette, Kryjevskaia, Stetzer, & Heron, 2018)), and the 

closely related investigations described in Chapter 3 of this dissertation 

represent another attempt to leverage the ongoing research on cognitive 

mechanisms to improve student performance. 

 

2.4 Connections to the current work 

The work documented in this dissertation attempts to explore the 

impact of domain-general reasoning phenomena on student reasoning and 

performance in physics.  This research was motivated by the emerging body 

of work in PER that draws upon the findings of cognitive science, particularly 

the recent work that investigated student reasoning inconsistencies in detail 
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and highlighted mechanistic pathways for progress (via dual-process theories 

and domain-general reasoning mechanisms).  

The research described in this dissertation capitalizes on and leverages 

the current literature to gain deeper insight into the nature of student 

reasoning in physics.  The existing research base has not provided an 

actionable position from which we can use our current understanding of 

student reasoning to help improve student performance. Instead, it provides 

primarily descriptive, post hoc accounts of student reasoning. The 

methodologies presented in this work are a direct response to the call in 

Heckler (2011), and others, for mechanistic theories of student inconsistency.  

In particular, the reasoning chain construction tasks and alternate 

means of analyzing data generated from such tasks (Chapters 3 and 4) serve 

as the foundation for a comprehensive new methodology that can be used to 

examine the structure of student qualitative inferential reasoning chains and 

has the ability to study concept-specific reasoning as well as the effect of 

cognitive mechanisms on that content-specific reasoning. The effectiveness of 

this methodology stems from the disentangling of conceptual understanding 

and reasoning skills that is expressly built into the reasoning chain 

construction task format (as highlighted in Chapter 3). 

 The possibilities tasks (Chapter 5) provide the basis of another 

methodology that examines the tendency of students to search for alternate 

possibilities and is directly related to the domain-general mechanism of 
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knowledge accessibility (in contrast to knowledge availability). This 

methodology allows the researcher to examine the impact of knowledge 

accessibility on reasoning in the context of a physics problem. 

The experiments described in the following chapters were designed 

expressly through the lenses of cognitive science frameworks of reasoning 

and decision-making.  Dual-process theories of reasoning (highlighted in 

Section 2.3.1) guided the majority of the research and research design, but 

Johnson Laird’s mental models framework was also used in order to explore 

the accessibility and availability of knowledge via the possibilities tasks. 

Because of the foundations of the theories of reasoning utilized, the 

current work stands to advance our field’s understanding of the interplay 

between domain-general reasoning and physics content-specific reasoning 

and to leverage that increased understanding to establish a foundation for 

future research-based instructional materials capable of improving student 

performance in physics more broadly. 
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3 EXPLORING AND SUPPORTING STUDENT REASONING IN 

PHYSICS BY LEVERAGING DUAL-PROCESS THEORIES OF 

REASONING AND DECISION-MAKING 

3.1 Abstract 

A major goal of a typical physics course is to improve student 

reasoning skills. As such, there has been attention placed on developing 

theoretical frameworks in a physics context for how students reason through 

physics problems. Many theories of student reasoning focus on the cueing and 

structure of the mental model(s) the student uses when reasoning through a 

physics question but are vague with regards to questions about why a 

particular model is cued instead of another or the circumstances under which 

one is abandoned in favor of another.  In other words, they tend to be 

explanatory rather than predictive. Dual-process theories of human 

reasoning, established outside of a physics context in the fields of cognitive 

science and psychology, have recently been applied in a physics context and 

allow for more mechanistic predictions of student reasoning. However, new 

methodologies are needed to study in greater detail the effects predicted by 

dual-process theories of reasoning, and to study reasoning in a physics 

context from other frameworks as well. Here, we present a novel 

methodology, the reasoning chain construction task, for studying student 

inferential reasoning in a physics context. In a reasoning chain construction 

task, or simply chaining task, a student is given a list of reasoning elements 
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(such as statements of physics concepts) and is asked to assemble a chain of 

reasoning leading to an answer from the elements. In this paper, we draw 

upon dual-process theories specifically to make predictions for student 

behavior on chaining tasks and demonstrate a successful intervention based 

on these theories. Our findings support the mechanisms put forward by many 

dual-process theories, namely that reasoners consider only one model at a 

time, that the first model considered is selected based on salient problem 

features, and that students only abandon a first-impression model if that 

model is directly challenged by new information. 

3.2 Introduction 

Many students take introductory physics courses in service of other 

majors in a variety of different STEM fields. It is often expected that these 

students will take the knowledge gained and, perhaps more importantly, the 

reasoning skills acquired in the course for use in their respective fields of 

study. Research-based instructional materials and approaches have been 

demonstrated to increase student conceptual understanding of core physics 

concepts (Finkelstein & Pollock, 2005; Freeman, et al., 2014), but little of this 

work attends to the process of reasoning itself. Additionally, even after 

instruction using these approaches it remains difficult to increase student 

performance on certain qualitative physics questions (Kryjevskaia, Stetzer, & 

Grosz, 2014; Kryjevskaia, Stetzer, & Le, 2015). More detailed research into 

these questions has led physics education researchers to believe that 



   

 

43 

 

processes generic to all human reasoning – not necessarily associated with 

physics content - may be impacting the way students answer these questions 

(Kryjevskaia, Stetzer, & Grosz, 2014; Kryjevskaia, Stetzer, & Le, 2015; 

Heckler, 2011). As a result, many researchers have begun to investigate the 

cognitive mechanisms that influence human reasoning and how these affect 

student reasoning on qualitative physics questions (Heckler & Scaife, 2014; 

Heckler & Bogdan, 2018; Gette, Kryjevskaia, Stetzer, & Heron, 2018; Wood, 

Galloway, & Hardy, 2016). 

For example, physics education researchers have begun using 

alternative methods such as eye tracking (Rosiek & Sajka, 2016; Madsen, 

Rouinfar, Larson, Loschky, & Rebello, 2013; Susac, Bubic, Martinjak, 

Planinic, & Palmovic, 2017), timing data (Heckler & Scaife, 2014), gesture 

analysis (Scherr, 2008) and even fMRI scans of brain functioning (Brewe, et 

al., 2018) to investigate cognitive processes directly. These methodologies 

have given insight into the root causes of some well-known phenomena. For 

instance, it is established in the literature that students often answer 

according to the height of a point on a graph even when the when asked to 

find the slope of that point. Timing data suggested that this may be due to 

the perceptual system taking longer to process the slope than it takes to 

process the height. 

Dual process theories of reasoning (DPToR) have played a key role in a 

renewed effort to understand the mechanisms behind student reasoning. 
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These theories arise from findings in cognitive science, social psychology, and 

the psychology of reasoning. Popularized by Daniel Kahneman’s book 

Thinking, Fast and Slow (Kahneman, 2013), DPToR models human 

reasoning with two types of processing: an unconscious, fast, and associative 

process 1; and a conscious, effortful, and typically slower process 2. These 

theories tend to be mechanistic in nature; as such, they provide a framework 

that can be prescriptive rather than solely descriptive and therefore provide a 

basis for progress in developing successful instructional interventions. 

While dual-process theories are useful for understanding domain-

general cognitive mechanisms and their impact on student use of conceptual 

understanding on a given physics problem, new research methodologies that 

can disentangle student reasoning skills from conceptual understanding are 

also needed. Our collaboration has sought to develop and refine such 

methodologies, and this paper presents one of these novel methodologies, the 

reasoning chain construction task. This methodology has been useful in 

studying explicit process 2 reasoning, especially the formation and structure 

of student’s qualitative inferential reasoning chains. However, it has also 

proven useful in investigating the extent to which DPToR can account for 

observed patterns in student reasoning. Accordingly, in this paper, we draw 

upon dual-process theories to make predictions for student behavior on 

chaining tasks and demonstrate a successful intervention based on these 

theories. This provides additional support for the mechanisms put forward by 
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many dual-process theories and has implications for future curricular 

materials. 

 

3.3 Background/Motivation 

When a student answers a qualitative physics question incorrectly, it 

is often assumed that the student did not possess a robust conception of the 

accurate physics involved. Instead, the student presumably reasoned from an 

incorrect or incomplete conception of the physics. There are differing 

perspectives as to the structure of these conceptions. One perspective is that 

physics (mis)conceptions, once learned, are stable and robust and the same 

conception would be applied in every instance in which they are needed 

(McCloskey, 1983; Posner, Strike, Hewson, & Gertzog, 1982), much like a 

tractor, once manufactured, is used whenever one perceives that a tractor is 

needed. Another perspective (diSessa, 1993; Hammer, Elby, Scherr, & & 

Redish, 2005; Hammer, 2000) holds that physics conceptions are built from 

fragmentary knowledge and resources assembled at the time the task is 

being performed, much like a toy tractor assembled from toy construction 

bricks; as such, each conception is inherently unstable and can appear 

different based on the task. The former is generally referred to as the 

“misconceptions” framework, while the latter is referred to as the “resources” 

perspective. A third, alternate way of modeling student reasoning is to search 

for student “difficulties”; in this perspective, the emphasis is not on the 
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structure of the knowledge or its stability, but rather the frequency of its 

occurrence among a population of students (Heron, 2004; McDermott, 1991; 

McDermott, 2001). 

In both of the misconceptions and resources perspectives, it is assumed 

(Heckler, 2011) that some form of higher-level cognitive construct, such as a 

concept or a particular type of mental model (e.g., Gentner & Stevens, 1983), 

is being used to answer physics questions even if the model was constructed 

from lower-level knowledge pieces. A growing body of recent research is 

challenging this view. Much of this research utilizes dual-process theories of 

reasoning (Evans, 2006; Evans & Stanovich, 2013; Kahneman, 2013) which 

posit two types of reasoning processes in the mind; one is automatic, 

subconscious (intuitive), and generally fast; the other is effortful, reflective, 

and generally comparatively slower. These two processes are referred to as 

process 1 and process 2, respectively2. Process 1 is responsible for giving a 

first impression response that process 2 then follows up on (if necessary) 

using explicit reasoning, most commonly in the form of mental simulation 

and hypothetical thinking. From a dual-process theory perspective, Heckler 

argued in 2011 that incorrect responses could be explained without reference 

                                                 
2 There has been an evolution of terms in the literature regarding dual-process 

theories. In some cases, the terms “system 1” and “system 2” are used, as in Kahneman 

(2013); wishing to not implicate specific biological or neurological systems in dual-process 

theory, the terminology now preferred by Evans and Stanovich (Evans & Stanovich, 2013) is 

“type 1 processes” and “type 2 processes”. This manuscript uses primarily uses “process x” to 

refer to “type x processes”. 
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to an incorrect conception; instead, the pattern could be due to lower-level 

cognitive factors alone, which process 1 uses to determine an answer that the 

student might – perhaps - justify using the higher-level conceptions and type 

2 processes. Thus, the student may be answering not from an incorrect 

physics conception but from no conception at all. 

Heckler’s argument brings into focus the need for research regarding 

the reasoning processes that might be impacting how students think about 

and answer qualitative physics questions. More specifically, the interplay 

between the lower-level factors and the higher-level mental constructs needs 

to be understood in greater detail. Along these lines, recent research has 

investigated the role of processing time in questions where there are two 

competing dimensions (such as the slope and the height of a point on a graph) 

(Heckler & Scaife, 2014),  the impact of perception-based bias in determining 

the center-of-mass (Heron, 2017), how the relative cognitive accessibility of 

certain ideas can influence student’s performance on a wide range of tasks 

(Heckler & Bogdan, 2018), and how the cognitive skill of suppressing an 

intuitive, process 1 response impacts student performance in the course 

overall (Wood, Galloway, & Hardy, 2016). 

The presence of a salient distracting feature (SDF) (Elby, 2000; 

Heckler, 2011; Kryjevskaia, Stetzer, & Le, 2015; Le, 2017) is another of these 

factors. They have special relevance to the current work and will therefore be 

explained in greater detail. Salient distracting features are features of a task 
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that draw immediate attention away from other task features, are processed 

easily, and cue incorrect lines of reasoning. The salience of a feature can be 

operationalized by using eye tracking techniques to determine where 

attention is being placed. For questions in which high-salience information is 

irrelevant and low-salience information is relevant, it can be expected that 

the competition between these relevant and irrelevant features will lead to 

most students generating an incorrect default model based on the high-

salience of the irrelevant feature. Thus, in salient distracting features we 

have a predictive factor that, if harnessed, can provide insight into student 

answering patterns.    

Heckler demonstrated the impact of salient distracting features on 

physics questions by providing students with a plot of two position vs. time 

graphs representing the motion of two cars, shown in Figure 3-1. In each 

question, the students were asked to find the time where the cars had the 

same speed. In one question (shown in Figure 3-1.a), the two graphs were 

parallel lines, and 90% of students chose the correct answer (“At all times”). 

In another question (shown in Figure 3-1.b), the two graphs intersected at 

time B while the slopes of the graphs were the same at a time labelled “A”; 

60% of students answered time A (correct), and 40% answered time B. This 

difficulty with intersection points on graphs is also reported in other studies 

(McDermott, Rosenquist, & Zee, 1987; Beichner R. J., 1994; Elby, 2000; 

Heckler, 2011; Christensen & Thompson, 2012; Speirs, Ferm Jr., Stetzer, & 
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Lindsey, 2016). Notably, students may utilize physics concepts in defense of a 

time B answer, highlighting the interplay between low-level factors and 

higher-level reasoning structures.  

 

Figure 3-1. Diagrams given to students as part of a study reported in 

(Heckler, 2011). The graph shown in (b) was used in the kinematics 

graph task (Experiments 1A and 1B) for the current work. 

 

To better understand these factors and their interplay with higher-

level knowledge, there is a need for methodologies that separate, to the 

degree possible, student reasoning skills from conceptual understanding. A 

method for doing this, which involves paired questions, has been reported on 

previously (Kryjevskaia, Stetzer, & Grosz, 2014; Kryjevskaia, Stetzer, & Le,  

2015). The paired-question methodology uses a screening question which 

requires the student to generate a specific line of reasoning followed by a 

target question that effectively requires the same line of reasoning in a 

slightly different context. This then allows one to study those students who 

answer the screening question correctly but opt for other, perhaps more 

salient, lines of reasoning on the target question; such students have 
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demonstrated the ability to correctly draw upon relevant concepts in the 

correct line of reasoning at least once, and so their opting for other lines of 

reasoning on the target question is likely not due completely to difficulties in 

conceptual understanding. This methodology is similar to so-called “Elby 

Pairs” (Elby, 2001; Redish E. F., 2004) which are pairs of questions that elicit 

intuitive answers which are in conflict with each other; the task for the 

student became reconciling their intuition with the formal physics with the 

aim of refining intuition. The difference in the methodologies is that the goal 

of the latter was to create an educational outcome while the goal of the 

former was to isolate and study a reasoning phenomenon. 

The paired question methodology was used to study a static friction 

task in which the student is expected to reason with Newton’s 2nd Law to 

determine the magnitude of a friction force for a box that remains at rest.  In 

the screening question (see Figure 3-2.a), a single box is shown and students 

are told that the box remains at rest when an applied force of 30 N is acting 

on the box. Students are asked to compare the magnitude of the applied force 

with the magnitude of the friction force. The correct line of reasoning is that 

the box remains at rest and, by Newton’s 2nd Law, this requires that the net 

force on the box must be zero and therefore the magnitudes of the two forces 

must be equal to each other. In the target question, students are asked to 

compare the forces of friction on two separate, identical boxes on different 

surfaces with identical applied forces exerted on both boxes. (see Figure 
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3-2.b). In the diagram, the coefficient of static friction for each box-surface 

pair is shown next to each box. These coefficients appear to elicit a common 

but incorrect comparison that the friction force on box A is less than the 

friction force on box B because the coefficient for box A is less than the 

coefficient for box B. Typically, 50% of students will answer this way, and 

50% will answer correctly (Kryjevskaia, Stetzer, & Le, 2015). 

 

Figure 3-2. Diagrams given to students for (a) the screening question and (b) 

the target question of the two-box friction task. 

 

If, instead, one was to reason from Newton’s second law and the 

observation that both boxes remained at rest, the (correct) conclusion would 

be that the friction force on box A is equal to the friction force on box B. Of 

those who answered the screening question according to the correct line of 

reasoning, 35% opted to use the incorrect line of reasoning on the target 

question (Kryjevskaia, Stetzer, & Le, 2015). This result was interpreted as a 

failure to engage the analytical process 2 in a productive manner. Instead, 

students appeared to rely on process 1 first impressions for reasoning cued by 
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the salience of the coefficients; despite the fact that they demonstrated the 

ability to step through a correct line of reasoning, they abruptly abandoned 

that line of reasoning on the target question. This abrupt abandonment was 

highlighted in Kryjevskaia, Stetzer, & Le (2015) using a transcript from an 

interview in which a pair of students worked through both parts of the static 

friction task consecutively. This study provided further evidence that low-

level cognitive influences can have an impact on the use of higher-level 

mental structures, but it was unclear as to how exactly this impact could be 

mitigated.  

Low-level factors such as the salience of a specific feature can be 

domain-general in that they impact performance in predictable ways across 

context. For instance, the general effects of relative cognitive accessibility 

(Heckler & Bogdan, 2018) were demonstrated in the contexts of 

forces/friction, simple harmonic motion, kinematics, potential energy, and 

mass density. These low-level, domain-general influences represent 

mechanisms from which predictions about student performance patterns can 

be made; as such, understanding their impact on reasoning can provide 

guides and leverage for improving student performance and reasoning skill 

overall. Some early efforts have been made to draw upon these mechanisms 

in order to improve student performance, e.g., Gette, Kryjevskaia, Stetzer, & 

Heron (2018), and the closely related investigations described in this article 
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represent another attempt to leverage the ongoing research on cognitive 

mechanisms to improve student performance. 

 

3.4 Theoretical framework 

This work utilizes dual-process theories of reasoning as a theoretical 

framework. These theories propose two separate processes in the mind by 

which reasoning and decision making occur: process 1, an automatic, 

subconscious, and generally fast process, and process 2, an effortful, explicit, 

and generally slow process. Process 1 is primarily at play in decisions such as 

how to manipulate a steering wheel to keep a car in the center of a lane or 

judging someone’s emotions from a glance at that person’s face. Process 1 

guides much of adult decision making throughout the course of a day because 

it is optimized to reduce cognitive load and free up working memory for more 

important tasks (i.e., we tend to be misers with regards to cognitive 

resources). When there is a reason to expend effort, process 2 comes into play 

recruiting working memory to run simulations, test hypotheses, or execute an 

algorithm. This process is helpful with problems such as long division, 

deducing a result from first principles, or deciding which tax cut to take. 

Because dual-process theories of reasoning originated outside the field 

of physics education research, it is helpful to situate them within the context 

of the frameworks utilized by physics education researchers. Dual-process 

theories fit cleanly into the resources perspective. This point is illustrated by 
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Elby (2000). In this paper, he posited a fine-grained cognitive structure that 

promotes a “same means same” resource which he named the “WYSIWYG 

intuitive knowledge element” (“what you see is what you get”). He used this 

knowledge element to predict that students would be stymied by a graph task 

with an intersection such as the one shown in Figure 3-1.b because of 

activation of this knowledge element. Critically, he argued that activation of 

the knowledge element is based upon the perceptual salience of the 

intersection because “the human visual system [is] hardwired to ‘see’ certain 

features such as edges, corners, and motion.” In this paper, he put forward 

salient distracting features as a control mechanism by which resources are 

activated or remain unactivated. 

The resources framework offers post-hoc explanatory power for 

understanding how our students may be thinking, but it falls short in 

offering the mechanisms by which predictions could be made (aside from the 

paper mentioned above). Specifically, the framework falls short in answering 

the questions of which models are activated when there are competing 

models and when models are abandoned in favor of other models. Dual-

process theories of reasoning offer these mechanisms, and as such can 

provide predictions for student performance on physics questions. 

Among the general theories of reasoning that fall under the umbrella 

of dual-process theories, we have found the heuristic-analytic theory (Evans, 

2006) to be particularly helpful in analyzing student responses to our physics 
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tasks. While it is general to any process of reasoning, the heuristic-analytic 

theory was developed in the context of the psychology of logical reasoning, 

wherein participants were asked to make judgements about syllogisms or 

solve logic puzzles such as the Wason selection task (Wason, 1968). The 

heuristic-analytic theory, shown diagrammatically in Figure 3-3, is therefore 

able to provide detailed roles for process 1 and process 2 in the context of 

physics. The heuristic-analytic theory of reasoning is especially helpful 

because it rests on three main principles that describe the mechanisms by 

which models are selected and/or abandoned. These principles are the 

relevance principle, the singularity principle, and the satisficing principle 

(Evans, 2006), and are described below along with the theory. 

 

Figure 3-3. Diagram showing the separate roles of the heuristic (type 1) and 

analytic (type 2) processes, taken from (Evans, 2006). 

 

In this theory, process 1, the heuristic process, is responsible for 

generating a mental model that is perceived to be the most plausible or 
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relevant model given the task features, the goals of the task, and the 

reasoner’s prior knowledge. In this context, a mental model is a hypothetical 

mental representation of the structure or relationships between given 

entities. For instance, it may be a sketch schematic of a car engine, a 

proposition such as “the bigger the coefficient of friction, the bigger the 

frictional force”, or indeed a judgement such as “that person is happy”. The 

singularity principle states that only one mental model is considered at a 

time. Which model is chosen for consideration is based on the perceived 

relevance of the model to the current task. This is a statement of the 

relevance principle. One key aspect of this default model is that it is 

accompanied with a value judgement about how plausible the model is. This 

is referred to elsewhere in the literature as a “feeling of rightness” 

(Thompson, 2009), a measure of how confident a reasoner is that the model is 

the correct model appropriate for the task at hand. If the feeling of rightness 

is strong, process 2 may only be engaged superficially, if at all, before a final 

judgement is made. If the feeling of rightness is not strong, however, an 

analytic intervention is triggered and only then does process 2 comes into 

play in a non-superficial way. 

Process 2, the analytic process, is responsible for running mental 

simulations (explicit reasoning) using the model, and it primarily attempts to 

ascertain whether the model truly is satisfactory for the task at hand. This 

point is called the satisficing principle. Thus, process 2 becomes mostly a 
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hypothetical or reflective process with an aim of validating, if possible, the 

process 1 model. As a result, reasoning biases such as confirmation bias 

(Nickerson, 1998) can enter into the reasoner’s thinking and decision-making. 

Because process 2 utilizes working memory and is effortful, it is also 

susceptible to errors in reasoning such as performing an algorithm 

incorrectly. If the analytic process determines that the initial model is 

insufficient to the task, the process searches for alternate models and 

possibilities, and the process is repeated. 

Using this theory we can derive implications for student behavior on a 

qualitative inferential reasoning task in physics. One implication is that task 

features (such as intersection points on graphs) and task goals (such as 

“speed over accuracy” (Heckler & Scaife, 2014)) have a large impact on which 

model becomes the default model in a given context because of the relevancy 

principle.  

Since reasoning occurs using one model at a time (the singularity 

principle) and alternate models are considered only if the initial default 

model is deemed unsatisfactory by explicit reasoning (the satisficing 

principle), an analytic intervention is unlikely to be triggered in a meaningful 

way without either (1) a general disposition of reflectiveness (Tishman, Jay, 

& Perkins, 1993) which engages the analytic system out of habit or (2) 

sufficient evidence to question the relevance of the default model (i.e., a 

decreased feeling of rightness in the initial model). Studies such as (Wood, 
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Galloway, & Hardy, 2016) that correlate proficiency at reflecting on intuitive 

responses (i.e., the skill of “cognitive reflection” (Frederick, 2005)) with course 

success are addressing the first issue. This work addresses the second issue. 

For reasoners whose default model is incorrect, the intervention of the 

analytic process is necessary but not sufficient; they must also have the 

relevant conceptual knowledge to correctly solve the problem, otherwise there 

will not be an adequate alternate model for consideration. Thus, a productive 

analytic intervention requires both that the analytic intervention be 

triggered in a meaningful way and that the student possesses the relevant 

conceptual knowledge. 

At this point, we wish to bring greater definition to some of the terms 

we have been using. We understand relevant conceptual knowledge to be 

more than a single mental model. Instead, we view conceptual knowledge as, 

in the words of Stanovich, “mindware” - a collection of “rules, knowledge, 

procedures, and strategies that a person can retrieve from memory in order to 

aid decision making and problem solving.” (Stanovich, 2010, pg. 40). 

Additionally, we wish to draw a distinction between automatic, bottom-up 

processes that influence type 1 reasoning and the reasoning strategies and 

procedures used by process 2. The former have domain-general impact, 

meaning that they influence regardless of context (though to varying degrees 

based on how context mediates the effect); the latter, however, are explicit 
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and tied closely to specific conceptual models and are therefore included in 

the “mindware” associated with the model. 

We now summarize these points as a working hypothesis for this 

paper: 

An analytic intervention that results in abandoning the default 

model is more likely to occur in the presence of both (1) information that 

refutes the default model as opposed to information that promotes 

alternate models and (2) a satisfactory alternate model associated with 

correct mindware. 

A corollary to this hypothesis is the following: 

Information that promotes alternate models is likely to be 

incorporated into reasoning based on the default model (even if that 

information is inconsistent with that model) rather than causing a 

student to abandon the default model. 

Together, this working hypothesis and corollary provide the theoretical basis 

for the experiments described in this article. 

Several research questions, both general and specific, guided this 

investigation. Can reasoning chain construction tasks be used in order to 

explore the extent to which dual-process theories of reasoning can 

successfully predict student reasoning and performance on certain physics 

questions?  In particular, can reasoning chain construction tasks be used to 

examine previously untested aspects of these dual-process frameworks for 
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reasoning?  The specific research questions that emerged from these 

overarching research questions are listed below.  

1. How, if at all, does providing students with statements of 

relevant and correct conceptual understanding impact student performance 

on a physics question containing one or more salient distracting features?   

 

2. How, if at all, does providing students with a statement that 

refutes the common incorrect model impact student performance on a physics 

question containing one or more salient distracting features?  Does the 

impact of this statement on student performance depend on whether or not 

students possess the relevant mindware? 

 

3.5 Methodology and experimental design 

In order to make progress in developing instructional materials that 

support students in the development of expert-like reasoning strategies, it is 

first necessary to better understand the interplay between domain-general 

and domain-specific processes.  As such, new methodologies that help both 

disentangle reasoning approaches from conceptual understanding and 

foreground domain-general reasoning phenomena are critical for advancing 

our understanding of the role of these phenomena in physics reasoning.  In 

this section, we present one such methodology and describe two experiments 

that highlight the affordances of the methodology in service of probing the 
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extent to which dual process theories of reasoning can describe student 

reasoning in physics.  

3.5.1 A new methodology: The reasoning chain construction task 

The methodology we developed and employed involves what we call a 

reasoning chain construction task, or simply a chaining task, which allows 

students to focus on arranging conceptual knowledge into a logical 

progression of inferences. We accomplish this using a modified card sorting 

task in which we: (1) provide the student with a list of reasoning elements; 

(2) indicate that all of the statements within these elements are true and 

correct; and (3) ask the student to construct a solution to a physics problem 

by selecting elements from the list, ordering them, and, as needed, 

incorporating provided connecting words (“and", “so", “because", “but"). The 

reasoning elements primarily consist of observations about the problem 

setup, statements of physical principles, and qualitative comparisons of 

quantities relevant to the problem, all of which are true. Everything the 

student needs to produce a complete chain of reasoning is present in the 

elements; the student’s task is then to pick from given conceptual pieces and 

directly assemble a reasoning chain. 

We have found the reasoning chain construction task to be useful in 

providing insight into the processes by which students generate a chain of 

qualitative inferences in a variety of ways. For instance, some physics tasks 
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require only a few steps to arrive at a correct answer (e.g., a qualitative 

question that can be solved via a short, linear chain of elements like the one 

shown in Figure 3-1.b), while others require the student to combine two 

independent lines of reasoning (e.g., synthesis problems such as those 

reported by (Ibrahim, Ding, Heckler, White, & Badeau, 2017)); by casting 

each of these types of questions as a chaining task, we can obtain information 

about how students approach these different scenarios. We have previously 

interpreted results from chaining tasks through a dual-process perspective 

(Speirs, Ferm Jr., Stetzer, & Lindsey, 2016), and here we utilize dual-process 

theories of reasoning to make and test predictions about student behavior on 

chaining tasks. Additionally, Chapter 4 will report on the utility of network 

analysis techniques on data derived from chaining tasks. 

Reasoning chain construction tasks have primarily been implemented 

online using Qualtrics’ “Pick/Group/Rank” question format. This online 

format is illustrated in the context of a graph task and is shown in Figure 

3-4. Reasoning elements from the “Items" column, connecting words, and 

final conclusions can be dragged and dropped into the “Reasoning Space" box; 

the box increases in size vertically as elements are added. 
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Figure 3-4. Example of how a chaining task appears to the student using the 

online survey platform Qualtrics’ “Pick/Group/Rank” question format. 

 

These tasks were administered on homework assignments or exam 

reviews for students enrolled in an introductory calculus-based physics 

sequence, along with other questions relevant to the course but not relevant 
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to the content found in the research task. These assignments counted for 

participation credit in most cases, though in some cases extra credit was 

awarded. In all cases, the tasks were administered after relevant lecture, 

laboratory, and small-group recitation instruction at a research university in 

New England. Research-based materials from Tutorials in Introductory 

Physics (McDermott & Shaffer, 2001) were used in the recitation section. 

The reasoning elements provided to the student are based on 

previously obtained student responses to open-ended, free-response versions 

of the task. Elements consisted of statements of first principles, observations 

about the task, and statements that are derived from first principles and 

observations. Some were productive to the correct line of reasoning, and some 

were not. Among the unproductive elements were elements which, while true, 

were useful primarily in constructing the common incorrect line of reasoning. 

In addition, the extent to which students selected unproductive elements not 

associated with the common incorrect line of reasoning could help us gauge 

the likelihood that students were simply inserting elements at random. Three 

blank elements labeled “Custom:” were provided, with instructions that if 

students felt they wanted to add something not represented among the given 

reasoning elements, they could use the text box attached to the custom 

element to create their own reasoning elements. 

An affordance of an online chaining task is the ability to track the 

progression of a students’ work in the reasoning space. Using JavaScript, we 
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added functionality to Qualtrics to capture the contents of the reasoning 

space whenever there was a “mouse up” event as the students engaged with 

the task. A mouse up event is a construct within the JavaScript language 

that triggers when a pointing device button is released within the window of 

the webpage. If a mouse up event occurred, but the reasoning space had not 

changed (i.e., if there was nothing added or rearranged in the space), we did 

not record the contents. 

The experiments will be now briefly summarized, and then greater 

detail and results will be given in a following section. 

 

3.5.2 Experiment 1A and 1B: Providing information that promotes 

alternate models 

Experiments 1A and 1B test the hypothesis that information that 

promotes alternate models is not enough to productively help students 

disengage from a default model. These experiments also test the corollary 

that if a default model is not abandoned, the information would instead be 

used to justify the default model, even if it appears inconsistent to an expert. 

For Experiment 1A, we cast the kinematics graph task (KGT) used by 

Heckler, 2011 (see Figure 3-1.b) as a reasoning chain construction task. We 

also developed two screening questions that were meant to gauge whether a 

student possessed an ability to determine the magnitude of an object’s 
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velocity from a position vs. time graph. These two screening questions are 

shown in Figure 3-5. 

             

Figure 3-5. Screening questions used to gauge ability to determine the 

magnitude of velocity from a position vs. time graph. Each graph was 

shown to the student along with the prompt, “At which of the three 

labeled times is the magnitude of the velocity (i.e., the speed) of the car 

the greatest?” 

 

In the design of the experiment, students who participated in the 

online exam review were randomly placed in a treatment or control condition. 

In the treatment condition, students were given the chaining task version of 

the kinematics graph task; in the control condition, students were given the 

kinematics graph task in a more standard multiple-choice format followed by 

a prompt to explain the reasoning they used to arrive at an answer. All 

students were given the screening questions in the multiple choice with 

explanation format. Since we wanted to ensure that the act of doing the 

screening questions would not interfere with student performance on the 

kinematics graph task, thereby ensuring that student performance data on 

the KGT in the experiment could be compared with KGT data from previous 
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semesters, the screening questions were placed after the kinematics graph 

task and separated from it by a several exam review questions on unrelated 

topics. 

Experiment 1B tested the domain-general nature of the salient 

distracting feature and was meant to further examine the hypothesis that 

information that promotes alternate models would not cause students to 

abandon the default model. In Experiment 1B, three graph tasks isomorphic 

to the kinematics graph task were devised in the contexts of mechanical 

potential energy, electric potential, and magnetic flux. Each task uses the 

same plot with the intersecting graphs, and the wording in the plots was kept 

as parallel as possible while reflecting the new contexts. Additionally, the 

reasoning elements provided on the kinematics graph task were altered to 

reflect the new context but were otherwise parallel and isomorphic in 

structure to those on the kinematics task. The problem statements and 

reasoning elements for these three tasks are provided in the appendix. 

Isomorphic screening questions were similarly constructed. 

The design for Experiment 1B was the same as that for Experiment 

1A: students were randomly placed in a treatment (chaining task) condition 

or a control (regular format) condition. In each case, the screening questions 

were placed after the graph task and separated from it by multiple questions 

on unrelated topics. Given that the four graph tasks were all administered 

across a single academic year, most students who completed the introductory 
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calculus-based sequence would have seen and completed multiple, and likely 

all four, tasks. 

3.5.3 Experiment 2A and 2B: Providing information that refutes the 

default model 

Experiment 2A was designed to test the main working hypothesis that 

providing information that refutes the default model will be more productive 

than information that supports alternate models. In this experiment, we cast 

the two-box friction task from Kryjevskaia, Stetzer, and Lê (2015) (see Fig. 

2_b) as a reasoning chain construction task and randomly split the students 

into treatment and control conditions. Both conditions utilized the chaining 

task version of the friction task, but in the treatment condition, a single 

element was added to the list of reasoning elements provided to the student. 

This element indicated that “the coefficient of static friction is not relevant to 

this problem” and was designed to call into question student satisfaction with 

the common, incorrect default model. 

In experiment 2B, we included the screening question (in regular 

format) reported by Kryjevskaia, Stetzer, and Lê (2015) and shown in Figure 

3-2.a before the chaining task. This allowed us to test the hypothesis that 

correct mindware is required for a productive engagement of the analytic 

process that leads to the selection of an appropriate alternate model. In the 

experiment, we operationalized possessing the correct mindware as 
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answering the screening question correctly with correct reasoning; namely, 

such students demonstrated in at least one context that they were able to 

generate the correct line of reasoning needed to answer the target question. 

Examining the impact of the analytic intervention element in both the 

presence and absence of requisite mindware (as indicated by performance on 

the screening question) will allow us to determine the impact (or lack thereof) 

of possessing relevant mindware. 

 

3.6  Experiments 1A and 1B: Graph tasks, predictions and results 

In Experiment 1A, we cast the kinematics graph task (KGT, shown in 

Figure 3-1.b) as a chaining task, with the reasoning elements shown in Table 

3-1 provided to the students. As previously stated, elements consisted of 

statements of first principles (such as “𝑣 = 𝑑𝑥/𝑑𝑡”), observations about the 

task (such as “the slopes are the same at time A”), and statements that are 

derived from first principles or observations, such as “velocity is given by the 

value of the slope of a position vs. time graph”. In the list, there are elements 

productive to the correct line of reasoning as well as elements that are true 

but (logically) irrelevant to that line of reasoning. 
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Δxt1→t2
= ∫ 𝑣(𝑡)𝑑𝑡

𝑡2

𝑡1

 

𝑣 = 𝑑𝑥/𝑑𝑡 

the integral, ∫ ℎ(𝑟)𝑑𝑟, is the area under the graph of h(r) vs. r 

the derivative, 𝑑ℎ(𝑟)/𝑑𝑟, at a specific point is the slope of the tangent 

line of the h(r) vs. r graph at that point 

velocity is given by the value of the slope of a position vs. time graph 

displacement is given by the area under a velocity vs. time graph 

the lines intersect at time B 

the slopes are the same at time A 

the magnitudes of the velocities are the same at time A 

the magnitudes of the velocities are the same at time B 

the magnitudes of the velocities are the same at time C 

the magnitudes of the velocities are never the same 

Table 3-1. Reasoning elements provided to the students on the kinematics 

graph task. Elements productive to the correct line of reasoning are 

shaded. 

 

There is a logical structure inherent among the productive elements 

provided (shaded gray in Table 3-1). While at first glance, it may appear that 

the elements “𝑣 = 𝑑𝑥/𝑑𝑡”, “the derivative, 𝑑ℎ(𝑟)/𝑑𝑟, at a specific point is the 

slope of the tangent line of the h(r) vs. r graph at that point”, and “velocity is 

given by the value of the slope of a position vs. time graph” are equivalent and 

interchangeable statements, they actually constitute a logical argument 

justifying why the slope is the velocity: the two elements “𝑣 = 𝑑𝑥/𝑑𝑡” and “the 

derivative[…] is the slope…” combine to imply the third element. We refer to 

the element, “velocity is given by the value of the slope of a position vs. time 

graph”, as a derived heuristic because it represents a chunked knowledge 

piece (National Research Council, 2000) that is derived from two independent 

principles. While it would be acceptable to many instructors if students were 
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to simply use the “slope is velocity” heuristic, all three elements are needed to 

provide a logically sound argument. Their inclusion, then, provided an 

opportunity for additional insight into student reasoning. 

Both screening questions asked students to determine the time at 

which the magnitude of velocity was the greatest. The screening questions, 

shown in Fig. 5, contained distractors that tend to elicit slope/height 

confusion and difficulty interpreting a negative vs. a positive slope. We 

operationalized understanding how to obtain the velocity from a position vs. 

time graph as answering both screening questions correctly. Indeed, students 

who answered both questions correctly demonstrated that they possessed a 

functional understanding of velocity sufficient to compare velocities by 

finding and comparing slopes on position vs. time graphs. 

 

3.6.1 Predictions 

We hypothesized that a student will not abandon a default model 

unless there is sufficient reason to question the satisfaction of that model, 

and as a corollary, that information promoting models other than the default 

model would be recruited to defend the default model rather than change it. 

This hypothesis leads to specific predictions for student behavior on the 

chaining tasks in experiment 1A.  

The high-salience intersection point results in many students in the 

population to embrace a default, intersection-cued model, leading to an 
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answer of time B (the time at which the two graphs intersect). For such 

students, the elements productive to the correct line of reasoning are in 

promotion of an alternate model, and there are no elements that explicitly 

refute the default model of the intersection point. Thus, one prediction drawn 

from our hypothesis is that explicitly providing the reasoning elements 

associated with a correct line of reasoning will not largely increase 

performance on the task. 

Because the high-salience of the intersection point affects process 1 

reasoning and is not necessarily connected with models based in physics 

content, we would expect the default model to be associated with the 

intersection regardless of whether or not someone possessed a robust 

understanding of how to obtain the velocity from a position vs. time graph. 

Because that understanding will not likely be explored without 

dissatisfaction with the default model, we would expect that a lack of shift in 

performance will also hold among the subset of students who correctly 

answer both screening questions. 

Finally, because of the satisficing principle, if the default model is not 

abandoned, process 2 will likely utilize formal reasoning to justify the default 

model – even if that reasoning is logically flawed or inconsistent with other 

reasoning provided by the student elsewhere. Thus, elements productive to 

the correct line of reasoning would likely be incorporated into the reasoning 

chains of students who answer incorrectly. 
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In summary, on the basis of our hypotheses, we made the following 

predictions for Experiment 1a: 

Prediction 1) The reasoning elements provided will not be 

sufficient to produce a large increase in student performance on the 

kinematics graph task. 

Prediction 2) Prediction 1 will hold even in the case of those who 

demonstrate relevant prior knowledge by answering both screening 

questions correctly. 

Prediction 3) Productive reasoning elements will be endorsed by 

students who select time B, the answer associated with the default, 

intersection-based model. 

 

3.6.2 Results and discussion 

In this section we review results from Experiment 1(A). We first 

examine and discuss the general performance on the graph task and then 

consider the results from the screening questions. 

3.6.2.1 Performance 

Student performance data on the chaining version of the kinematics 

graph task from a single semester is shown in Table 3-2, along with data 

from the multiple choice with explanation version of the task administered to 

the same class. As can be seen in Table 3-2, there is a statistically significant 

but small positive shift in the performance (p = 0.03, V=0.1), suggesting that 
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the presence of correct, relevant reasoning elements alone is not enough to 

produce a large shift in performance. For reference, Heckler (2011) reported 

that 60% of students gave the correct response, whereas 40% of students 

chose time B (the intersection point). In Heckler’s study, students did not 

have the option of indicating that the slopes were never the same. 

 Percentage of total responses 

 

KGT MC w/explanation 

format 

(N=158) 

KGT chaining  

format 

 (N=149) 

Time A (correct) 44% 57% 

Time B (intersection) 30% 29% 

Time C 1% 0% 

Never 24% 14% 

Table 3-2. Student performance data from two versions of the kinematics 

graph task (KGT) administered as part of Experiment 1A. The task 

itself is shown in Figure 3-1.b. There is a small increase in 

performance on the chaining format in comparison with the multiple-

choice with explanation format (𝜒2 = 7.31, 𝑑𝑓 = 2, 𝑝 = 0.03, 𝑉 = 0.1). 

3.6.2.2 Discussion of performance results 

Student response data shows that the presence of relevant, correct 

information was not enough to produce a large, positive shift in performance 

on this task. This may be hard to explain from a perspective that highlights 

the construction or possession of incorrect models as the primary reason for 

incorrect answers. 

Indeed, taking the perspective that students who answer the physics 

questions incorrectly are utilizing an incorrect model of a physics concept, one 

might predict that giving students statements of relevant knowledge would 
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increase performance. For instance, it has been argued that students who 

select the intersection in this kinematics question lack a conceptual 

understanding of velocity, are drawing upon incorrect ideas about velocity or 

are cued to construct incorrect knowledge around p-prims such as “same is 

same”. By providing the relevant conceptual elements, one might predict that 

performance should increase substantively because students may now draw 

upon these elements, which might help them refine their understanding of 

velocity, address the incorrect concept, or give them an alternate cue around 

which they can construct their knowledge and argument. However, because 

there are not well-defined mechanisms for what specific knowledge is 

constructed in any of these cases, no firm prediction can be made. 

Dual-process theories of reasoning, however, make a firm prediction 

because they give more definition to the control mechanisms by which models 

are chosen for consideration as well as the conditions under which they would 

be abandoned in favor of alternate models. In this case, an incorrect model 

based on the intersection point drew some students to the time B answer. In 

order for students to switch away from this default answer, an analytic 

intervention would need to be triggered (i.e., a productive engagement of 

process 2) resulting in a loss of confidence in this answer. However, the 

analytic system is primarily concerned with running simulations based on 

the original model; thus, it is more likely that a student would come up with 

physics-like justifications of an incorrect answer than that they would change 
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the model itself to arrive at a different answer. The presence of correct 

information alone, then, would not be expected to produce the level of 

dissatisfaction required to prompt an exploration of alternate models. This is 

consistent with prediction 1 articulated in section 3.6.1. 

3.6.2.3 Results from Screening Questions 

According to prediction 2 from section 3.6.1, we would expect that the 

even among those students who demonstrate functional knowledge of how to 

obtain the magnitude of velocity from a position vs. time graph on the 

screening questions, their performance on the KGT would not largely 

improve upon increased access to relevant conceptual knowledge. We would 

thus expect that the intersection point would still be a prevalent incorrect 

answer among those who have previously demonstrated the requisite 

knowledge. 

Overall, student performance on the screening questions (see Figure 

3-5) was rather strong. Ninety-six percent of students correctly answered 

screening question 1, 83% of students correctly answered screening question 

2, and 82% correctly answered both. It is worth noting that the screening 

questions included a distractor consistent with slope-height confusion. In 

both questions, time C had the greatest height. This answer was not 

prevalent in screening question 1 but comprised 17% of student responses to 

screening question 2. It is surmised that the shape of the graph contributed 
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to this difference in prevalence of responses indicative of slope-height 

confusion, with the sharpness of the curve at time C in question 2 possibly 

being more salient than the smooth curve at time C in question 1. This 

speculated difference in salience is consistent with previous research on 

salient distracting features in graphs (Elby, 2011). 

For those students who answered both screening questions correctly, 

the observed increase in performance was statistically significant but with a 

small effect size (p = 0.03, V = 0.1). Additionally, as shown in column 1 of 

Table 3-4, 22% of students who answered both screening questions correctly 

ultimately chose time B on the KGT, which corresponds to the intersection 

point. This is consistent with prediction 2 described earlier. 

3.6.2.4 Analysis of reasoning chains 

The chaining format affords students an opportunity to employ 

reasoning elements that they otherwise might not consider using. According 

to the dual-process framework, we predicted that such reasoning elements 

would likely be used in conjunction with the default answer put forward by 

process 1, even if the element itself was inconsistent with the default answer 

(prediction 3). This prediction proved to be correct; many students who chose 

the common incorrect answer used elements in their chain that represented 

reasoning that, to an expert, is more closely related to the correct line of 

reasoning. 
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(a)               (b) 

Figure 3-6. (a) A student endorses information more closely associated with 

the correct answer in the process of justifying the common incorrect 

answer. (b) Another student answers with only the observation that 

the lines intersect at time B (a “canonical response”).  

 

As a specific example, consider the student response shown in Figure 

3-6. The first three elements, “velocity is given by the value of the slope of a 

position vs. time graph / because / 𝑣 = 𝑑𝑥/𝑑𝑡” are logically connected in a way 

that, to an expert, suggests an understanding of the underlying physics. With 

that point of view, this student is clearly endorsing correct conceptual 

information before abruptly shifting toward the incorrect answer associated 

with the salient distracting feature. 

To study this phenomenon in greater detail, criteria were developed to 

gauge the extent to which students who both chose the intersection (time B) 

and endorsed productive elements were demonstrating understanding of the 

underlying physics. In doing so, we rely on the assumption that including 

elements in the reasoning space is a tacit endorsement from the student of 

the usefulness or relevancy of that element. 
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The most rigorous criterion required the student to use 2 or more of 

the 3 elements that comprise the “velocity is slope” triad explained above. An 

example of this is shown in Figure 3-6. In all cases in which a student 

satisfied this criterion, it was clear that they were linking the elements 

together logically. Of those students who answered time B, 7% of their 

reasoning chains met this requirement. 

The second, more relaxed criterion contends that any student who uses 

at least one of the three elements (without using irrelevant elements) is 

endorsing correct conceptual information. This is appropriate given that the 

derived heuristic, “velocity is slope”, element is commonly the only element 

used in supporting a correct answer. It also represents correct information 

that is likely to occur to a student because of possible repetition during 

normal classroom instruction. Relaxing the requirements to this level of 

constraint raises the proportion of students who chose time B and also 

certified correct information to over 50%. These results are summarized in 

the chart shown in Figure 3-8. Thus, we were able to generate both upper 

(50%) and lower (10%) bounds on the extent to which students who chose the 

intersection and also endorsed productive elements were demonstrating some 

level of understanding of the underlying physics. 

The fact that between 10% and 50% of students supposed the common 

incorrect answer by endorsing information more closely aligned with the 

correct line of reasoning indicates a sort of cognitive conflict between learned 
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information and an intuitive answer generated by process 1. Our prediction 

above was that students who chose time B, when confronted with improved 

access to knowledge relevant to the correct line of reasoning, would choose to 

incorporate that very knowledge into a reasoning chain in support of the 

incorrect answer. This prediction (prediction 3) proved to be correct. 

Students who did not endorse these productive elements typically 

responded by only using the elements “the lines intersect at time B” and “the 

magnitudes of the velocities are the same at time B” (44% of those students 

who selected time B as their answer) or else they endorsed elements that 

were irrelevant (< 1% of those students who selected time B). Given its 

ubiquity in the chaining format versions of the KGT as well as its prevalence 

in the explanations in the multiple-choice with explanation version of the 

KGT, we refer to the former class of responses as the “canonical incorrect 

answer”, illustrated in Figure 3-6.b and reported in Figure 3-8. 

3.6.2.5 Reasoning chain analysis using move tracking 

Using the added functionality described above to capture the contents 

of the reasoning space anytime there was a “mouse up” event, we were able to 

obtain data about which elements were placed in the reasoning space and at 

what times they were inserted or moved as each student worked through the 

chaining task. In the remainder of this article, we call this “move tracking”. 
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The move tracking data revealed another pattern in student responses: 

some of those students who answered correctly placed the “time B” answer 

element (the answer associated with the intersection point) into the 

reasoning space before changing their answer to another option. 

Figure 3-7 shows a representation of this behavior. The column on the 

left shows the answer option that was placed in the reasoning space first 

(regardless of whether another element was already in the box). An arrow 

connects this answer option to the answer option that was in the reasoning 

space when the student completed the task (the right column). (This figure is 

similar to an alluvial diagram, which shows how different entities flow and 

transform with time.) Each arrow represents one student, and students who 

did not switch their answer options are not shown in the diagram. Thus, if 

student A initially thought the answer was “never the same” and put that 

element in the reasoning space, but then while looking at the other reasoning 

elements decided that time A was the answer and replaced “never the same” 

with the time A element, that student would be represented in Figure 3-7 as 

one of the arrows going from “never the same” in the left column to “time A” 

in the right column. 



   

 

82 

 

 

Figure 3-7. Answer switching measured via tracking the movements of the 

reasoning elements while students completed the task. 

 

This “switching graph” reveals a tendency on the part of students to 

select time B as an initial answer, and to then shift away from this answer, 

suggesting that even those who answer correctly may initially be taken in by 

the salience of the distracting feature. The 12 students shown switching from 

“time B” to some other answer represent 8% of the total population. Given 

the manner in which we capture this answer switching data, this number 

most likely underrepresents the actual percentage of students who are, at 

least initially, cognitively drawn toward “time B” as an answer before 

pivoting away from it mentally while thinking about the task. Our analysis 

only captures those students who provide explicit evidence of this switch in 

the reasoning space. 

It is tempting to think that this 8% could account for the increase in 

performance of about 10% on the graph task and that the answer switching 

seen above was catalyzed by the presence of the reasoning elements in the 

chaining format. There are two reasons that make this less unlikely. First, 
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there are about the same number of students shifting from “time B” (the 

intersection point) to the “time A” answer (the correct answer) as there are 

shifting from “time B” to “never the same”. Secondly, the overall increase in 

the performance didn’t alter the percentage of students choosing “time B”, as 

shown in Table 3-2. 

Our data corpus does not provide any explicit connection between this 

switching behavior and the reasoning elements provided. However, even if it 

were catalyzed by the presence of the reasoning elements, the point still 

stands that there was, in fact, a subset of students who ultimately arrived at 

the correct answer but who were originally invested in the “time B” 

intersection answer, as predicted by our dual-process framework. 

This phenomenon as well as others described above suggest a spectrum 

of impact of the intersection point, possibly based on each student’s “feeling of 

rightness”. For some, the feeling of rightness about the intersection point 

answer is low, and these students abandon that model with little or no 

prompting. For others, the feeling of rightness may be moderate, and so 

process 2 engages presumably relevant mindware. Some of these students 

have correct physics conceptions that they struggle to reconcile with their 

intuitive answer. Others may construct incorrect conceptions that they use to 

justify their response. Still others may have such a strong feeling of rightness 

that they engage process 2 only on a surface level to ratify the process 1 

answer. With a more refined methodology utilizing chaining tasks, it may be 
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possible to tease out the relationship between behavior on a chaining task 

and the feeling of rightness in the initial model. 

3.6.3 Experiment 1B: Isomorphic graph tasks 

Based on dual-process theories of reasoning, the intersection point 

present in the KGT should cue the same default judgment even in contexts 

outside of the kinematics context due to process 1 relying on the salient 

features of a task when selecting an initial model. Indeed, Heckler & Scaife 

(2014) used math graphs, kinematics graphs, and graphs of electric potential 

to demonstrate that processing time had an effect on answer patterns for 

questions regarding the slope of a graph independent of context. While 

context and content mediate the effects of domain-general factors, these 

factors are still at play. For instance, in Heckler and Scaife’s work (2014), the 

effects of processing time were less pronounced in more familiar contexts but 

were still present. Likewise, the working hypothesis of this paper (i.e., that 

access to relevant conceptual information would not be sufficient to abandon 

a default model) should be operative regardless of specific physics content. 

To test this hypothesis, three additional chaining tasks were devised. 

These tasks were structurally parallel to the kinematics graph task to the 

greatest extent possible but were in the contexts of potential energy, electric 

potential, and magnetic flux. Each context has a correct line of reasoning that 

relies on an understanding that the desired quantity can be obtained from 
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the derivative of the known quantity, and thus the slopes of the graphs at the 

point of interest ought to be compared. We constructed screening questions 

that would indicate the extent to which the students possessed an ability to 

determine the desired quantity from the slope in the absence of the salient 

distracting feature. The reasoning elements provided to the student in each 

task were modified to fit the context but remained isomorphic in their 

structure. All four graph tasks (including the KGT), the reasoning elements 

provided on the chaining version of each task, and the screening questions 

are all included in Appendix A.  

All tasks were administered after relevant course instruction was 

completed in class. Given the contexts associated with these isomorphic 

tasks, data were collected in both semesters (fall and spring) of the on-

sequence calculus based introductory physics course.  The experimental 

design was the same as for the kinematics graph task in that a between-

student design was employed with the treatment condition corresponding to 

the chaining version of the graph task, and the control condition 

corresponding to a multiple-choice with explanation version of the graph 

task.  

Given the similarity in experimental design, we expected all three 

predictions made for experiment 1A to hold for experiment 1B as well. 

Namely, we predicted  



   

 

86 

 

Prediction 1) The reasoning elements provided will not be 

sufficient to produce a large increase in student performance on 

any graph task. 

Prediction 2) Prediction 1 will hold even in the case of those who 

demonstrate relevant prior knowledge by answering both 

screening questions correctly. 

Prediction 3) Productive reasoning elements will be endorsed by 

students who select the answer associated with the default, 

intersection-based model. 

The three additional graph tasks serve the purpose of generalizing 

results. If the predictions held across all three additional contexts, our results 

would provide further evidence that the observed phenomena on the KGT are 

truly driven by domain-general reasoning phenomena. 

3.6.4 Experiment 1B: results and discussion 

In this section we review results from Experiment 1(B). We first 

examine and discuss the general performance on the graph task and then 

consider the results from the screening questions. 

3.6.4.1 Performance 

The results from all four isomorphic graph tasks are summarized in 

Table 3-3. There is little or no statistically significant improvement in 

student performance (i.e., more correct time A responses and fewer 
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intersection or time B responses) on the chaining version in comparison to 

that on the multiple-choice with explanation version for three of the four 

graph tasks. These results suggest that, in general, providing greater access 

to relevant physics concepts does not increase performance. It is important to 

note, however, that the electric potential graph task exhibited a positive, 

medium effect-size improvement in performance on the chaining version in 

comparison to the control version. We discuss this discrepancy in the next 

section. 

 

Context  Kinematics 

Potential 

Energy 

Electric 

Potential Magnetic Flux*  

Format CG 
MC + 

Exp. 
CG 

MC + 

Exp. 
CG 

MC + 

Exp. 
CG 

MC + 

Exp. 

N: 149 158 76 80 97 121 88 83 

Time A 57% 44% 43% 38% 73% 44% 66% 59% 

Time B 29% 30% 51% 58% 21% 45% 28% 40% 

Time C 0% 1% 1% 0% 1% 3% 5% 0% 

Never 14% 24% 4% 5% 5% 8% 1% 1% 

(p,V) (0.03,0.1) (0.75,0.04) (0.001,0.21) (0.34,0.07) 

Table 3-3. Performance comparison between control (multiple choice with 

explanation) and treatment (chaining format) for each graph task. 

*Data collected from the previous year for Magnetic Flux task. See text 

for details. 

 

Given a different experiment we were conducting as part of our 

broader investigation, it was not possible to collect truly analogous multiple-

choice with explanation data for the magnetic flux task. As such, data 

collected the previous year from both versions (treatment and control) of the 

isomorphic flux graph task are included in Table 3-3. However, the results 
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are similar to those collected for the flux task administered in the same year 

as the other three tasks. 

Chaining format results for those students who answered both 

screening question correctly are shown in Table 3-4. The intersection point 

still tends to be a common incorrect answer, even in the electric potential 

task, with around 25% of the population picking “time B”. 

Context 
Kinematic

s 

Potential 

Energy 

Electric 

Potential 

Magnetic 

Flux 

N: 122 38 76 90 

Time A 

(Correct) 
63% 58% 75% 73% 

Time B 

(Intersection) 
22% 34% 17% 22% 

Time C 0% 3% 1% 0% 

Never 15% 5% 7% 4% 

Table 3-4. Performance data for the isomorphic graph tasks in chaining 

format for those students who answered both of the corresponding 

screening questions correctly. Data from magnetic flux graph task are 

drawn from the same year as the other three tasks. 
 

3.6.4.2 Discussion of performance results 

With the exception of the electric potential graph task, there is little to 

no positive shift in performance from the control to the experimental 

condition, with the only statistically significant improvement being of small 

effect size. The lack of sizable performance shift among three of the four 

graph tasks strengthens the claim that improved access to relevant 

conceptual information does not automatically improve performance. The 

impact of the reasoning elements on student performance on the electric 
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potential graph task is of note in that the increase in performance is of 

medium effect size. The impact of the reasoning elements appears to be 

specific to the topic of electric potential, but we are unsure of the specific 

cause. However, the domain-general nature of the salient intersection is still 

apparent in the control (MC with explanation) condition, and, to a lesser 

extent, in the treatment (chaining format) condition, as evidenced by the 

prevalence of time B answers for that task. 

Through the use of the screening questions, in combination with the 

chaining versions of the isomorphic graph tasks, we were able to ascertain 

that the predicted process 1 default answer was still present even among 

those who answer both screening questions correctly and are given the 

relevant conceptual information in the chaining task. In other words, 

students who previously demonstrated the functional knowledge needed to 

obtain the relevant quantities from a graph and who were provided reasoning 

elements that might cue them toward another model still answered 

consistent with a model based on the salient distracting feature. Since this 

occurs across all four different contexts, it is unlikely that this pattern stems 

from either student difficulties with the relevant concepts or topic-specific 

misconceptions. Instead, it is more likely the result of a process 1 response 

that is not followed up with a productive analytic intervention. 
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3.6.4.3 Analysis of reasoning chains: cross-task comparison 

Because the element structure on each task was identical, comparison 

between tasks is made possible. To analyze the reasoning chains of those 

students who selected the common incorrect answer, we apply the same 

criteria discussed in Section 3.6.2.4. The result is shown in Figure 3-8. As 

described in Section 3.6.2.4, the “canonical” category is defined as those 

responses that only include the elements “the lines intersect at time B” and 

the “time B” answer. The other two categories give two levels of constraint 

regarding the usage of productive reasoning elements. In the most rigorous, a 

student is required to have used 2 or 3 of the 3 conceptual elements 

productive to the correct line of reasoning. In the more relaxed constraint, 

only one of the three elements is required. The percentage of these students 

who only used the derived heuristic is indicated by crosshatching placed over 

this latter, relaxed constraint. The “other” category contains students who 

utilized irrelevant elements, either in conjunction with productive elements 

or alone, or were otherwise uninterpretable. 

Across all four tasks, there is a tendency for those students who 

answered time B on the chaining versions to endorse elements that were 

productive to the correct line of reasoning. Between a half and a quarter of 

students answering incorrectly endorsed at least one element associated with 

the correct line of reasoning. Interestingly, the prevalence of the “derived 

heuristic only” is larger in the kinematics context compared to the other three 
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tasks. Instead, students seem to favor either listing two or three of the three 

triad elements or using one of the two independent principles only. This is 

likely related to instruction. The heuristic of finding the velocity from the 

slope of a position graph is more common in instruction than finding the 

induced EMF from the slope of flux graph; instead, when teaching flux, the 

emphasis is typically on the mathematical relation of Faraday’s law (i.e., 𝜀 =

−
𝑑Φ𝐵

𝑑𝑡
). 

In summary, analysis of the incorrect reasoning chains produced by 

students on the isomorphic chaining tasks provide further support for the 

prediction that the productive elements, if used at all, will be incorporated 

into incorrect answers despite their logical inconsistency from the perspective 

of an expert. 
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Figure 3-8. Incorrect reasoning chains categorized. Values shown are 

percentages of those students who selected time B as their answer. 

Total number of students who selected time B is indicated for each 

task. 

3.6.5 Summary of Experiment 1B 

In experiment 1A, we utilized the kinematics graph task to investigate 

the working hypothesis that providing improved access to relevant conceptual 

information would not cause students to abandon an initial incorrect model. 

A variety of measures on that task provided evidence for this hypothesis. The 

isomorphic graph tasks employed in experiment 1B resulted in student 

performance data and analysis of reasoning chains that support the proposed 

mechanisms driving the selection and abandonment of mental models. These 

data also establish that these mechanisms are at play in contexts outside of 
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kinematics. The predictions drawn from the working hypothesis about 

student performance and behavior on reasoning chain construction tasks 

were shown to be correct not just in the kinematics context, but across four 

different physics contexts.  

3.7  Experiment 2A and 2B: Friction task with added “Analytic 

Intervention Element” 

Experiments 1A and 1B demonstrated that providing relevant 

conceptual information to students was not helpful in improving performance 

on physics graph tasks. This supported the working hypothesis that an 

incorrect default model would only be abandoned in the presence of 

information that refutes this model. In Experiments 2A and 2B we wish to 

provide this refutery information and determine whether a productive 

engagement of the analytic system occurs. 

In Experiment 2A, we explored the working hypothesis in a direct way 

by providing an element which was intended to stimulate a more productive 

process 2 intervention. Process 2 reasoning is initiated by an analytic 

intervention triggered by a low feeling of rightness (Thompson, 2009) in the 

initial model and is primarily concerned with evaluating the satisfaction of 

the initial model. If the feeling of rightness is strong, the analytic process 

may not be engaged, or may be engaged only superficially. To induce a more 

productive analytic intervention in the context of having an incorrect default 

model, the feeling of rightness needs to be lowered to a point where the 
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default model becomes unsatisfactory. In Experiment 2A, we attempted to 

decrease the feeling of rightness and to promote a productive analytic 

intervention in the context of the chaining format via a relatively modest 

intervention; namely, we inserted a single reasoning element into the list 

that explicitly refuted the common incorrect default model. 

To do this, we utilized the two-box friction task described in the 

introduction (shown in Figure 3-2.b) and cast it into the chaining format. In 

the two-box friction task, students are asked to compare the magnitudes of 

the friction forces on two identical boxes on different surfaces. Next to each 

box is indicated the coefficient of friction for the box-surface pair; these 

coefficients are a salient distracting feature for students, resulting in a 

common incorrect answer based on reasoning from the coefficients alone.  

The reasoning elements used in this task are shown in Table 3-5. To 

test the effect of an element that would attack the satisfaction of the common 

incorrect default model, the population was split into treatment and control 

groups. The treatment group received the chaining version of the friction task 

with the element “the coefficients of friction are not relevant to this problem” 

included. In this manuscript, we refer to this element as the “analytic 

intervention element”, or AIE, because it was designed to stimulate a more 

productive analytic intervention by reducing the satisfaction with the model 

that the coefficients of static friction determine the magnitude of the static 
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friction. The control group received a chaining version of the friction task that 

did not include the AIE. 

𝐹𝑛𝑒𝑡 = 𝑚𝑎 

Both boxes have the same mass 

The tension force on box A is equal to the tension force on box B 

Both boxes remain at rest 

Coefficient of friction for A is smaller than the coefficient of friction for 

B 

Both boxes have the same weight 

The normal force on box A is equal to the normal force on box B 

Neither box is accelerating 

The horizontal forces are balanced 

The vertical forces are balanced 

The net force on both boxes is zero 

The friction force and the applied force are the only horizontal forces 

acting on the box 

The coefficient of static friction is not relevant to this problem* 

Ffrct on A is [insert relationship here] Fapp on A  

Ffrct on B is [insert relationship here] Fapp on B 

Table 3-5. Reasoning elements provided to the students on the chaining 

version of the two-box friction task. Elements productive to the correct 

line of reasoning are shaded. The final two elements had a text box 

where students could indicate whether the friction force was greater 

than, less than, or equal to the applied force for each box. *denotes the 

analytic intervention element, which was present only in the 

treatment condition. 
 

To ensure that we would have sufficient statistical power to compare 

the experimental and control groups described above and because our 

intervention required the chaining format of the two-box friction task, we did 

not attempt to randomly assign any students to a more traditional multiple-

choice with explanation format version of the two-box friction task. In section 

3.7.2, however, we will compare our control results with published results on 

the two-box friction task (Kryjevskaia, Stetzer, & Le, 2015). 
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3.7.1 Predictions 

In experiments 1A and 1B, we saw that the presence of elements that 

support a correct line of reasoning was not enough to stimulate a productive 

analytic search for alternate possibilities. Indeed, a significant percentage of 

those students who demonstrated the relevant mindware to construct a 

correct line of reasoning on the screening questions still drew upon a default, 

incorrect model of the intersection when answering the kinematics graph 

task and the other three isomorphic graph tasks. Moreover, of those students 

giving incorrect responses consistent with the default model, many 

incorporated productive reasoning elements into an erroneous chain.  

Similarly, in Experiment 2A, we expected that providing reasoning 

elements productive to a correct line of reasoning on the two-box friction task 

would not increase performance substantially. However, we expected that the 

inclusion of the analytic intervention element would reduce the satisfaction of 

the default model and would, by implication, improve performance by causing 

students to switch from an incorrect default model to the correct model. Thus, 

our prediction for Experiment 2A is that student performance would be 

stronger in the treatment condition than in the control condition for the 

chaining version of the two-box friction task. 
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3.7.2 Results and discussion 

3.7.2.1 Performance 

Table 3-6 shows the student performance on both versions (experiment 

and control) of the chaining version of the two-box friction task collected in 

two different semesters (both on sequence and off sequence) of the 

introductory calculus-based mechanics course. 

PHY121 Semester 

Control 

(without AIE) 

% Correct 

Treatment 

(with AIE) 

% Correct 

On-sequence 

N=119/120 
(𝑝 = 0.02, 𝑉 = 0.2) 

55% 74% 

Off-sequence 

N=64/66 
(𝑝 = 0.03, 𝑉 = 0.2) 

27% 38% 

Table 3-6. Student performance on both versions (experiment and control) of 

the chaining version of the two-box friction task. The task itself is 

shown in Figure 3-2.b. The off-sequence course was without a fully 

implemented tutorial instruction. See note in text about how p-values 

are calculated. 

 

While the overall performance in the on-sequence and off-sequence 

courses differed substantively, in both trials there was a statistically 

significant, medium-effect size improvement in performance in the treatment 

condition with respect to the control condition. This suggests that the AIE 

had an impact on performance over all. While only the percentages correct 

and incorrect are shown in the table, the p-values were derived from a chi-

squared test of independence comparing the distributions of all answer 
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choices from the treatment (AIE) condition and those from the control (non-

AIE) condition. It is worth noting that the overall performance difference 

between the on- and off-sequence courses may possibly stem from differences 

in instruction (e.g., differences in the implementation of Tutorials in 

Introductory Physics) and/or differences in participation rate and 

participation incentives among the two courses; for the purpose of our 

investigation, the absolute performance was of less interest than the shift in 

performance between treatment and control. 

3.7.2.2 Discussion of Performance Results 

Table 3-6 demonstrates that the AIE impacted student performance, 

regardless of the baseline level of understanding demonstrated by the 

performance of the control group from each population. Indeed, the 

performance of students from the off-sequence course was considerably lower, 

suggesting that the population differed somehow from that in the on-

sequence course. Even in the off-sequence population, however, the AIE still 

produced a medium effect-size positive shift in performance despite the 

overall lower performance. The fact that we observed improved performance 

by the treatment group in both courses provides further evidence for the 

generalizability of the AIE result. 

It may be surmised that the answer choice “equal” could also be 

arrived at using solely perceptual (non-physics) cues, especially once the 
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coefficients are eliminated as a relevant factor. It may therefore be tempting 

to think that the AIE simply redirects students from the default, coefficient-

based model to a purely perception-based based approach, as opposed to our 

interpretation that the AIE stimulates deeper examination of physics 

principles via a productive analytic intervention. This alternative explanation 

for our results will be explored more fully in Experiment 2B, in which we 

investigated the impact of the AIE while controlling for performance on a 

screening question. 

3.7.2.3 Switching behavior on the two-box friction task 

As on the kinematics graph task, we inserted JavaScript into the 

Qualtrics platform in order to capture the reasoning space every time a 

“mouse-up” event was triggered (as described in Section 3.5.1). Using these 

data, we determined when students initially put an answer element into the 

reasoning space that differed from the final answer element in the reasoning 

space when they moved to the next page. Graphs of the documented 

switching behavior are presented separated for treatment and control groups 

in Figure 3-9. 
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Figure 3-9. Answer switching measured via tracking the movements of the 

reasoning elements while students completed the two-box friction task. 

The switching behavior are presented separated for treatment (AIE) 

and control (non-AIE) groups. 

 

As indicated in Fig. 3-9, only a few students switched their answers in 

the treatment and control groups. However, although the data presented in 

Figure 3-9 are sparse, one can see that the trend for answer switching 

between treatment and control groups is different. In the treatment (AIE) 

condition, the trend shows a shifting from the common incorrect answer 

(driven by the coefficients of static friction) to the correct answer, whereas in 

the control (non-AIE) condition, the shift is to the common incorrect. This 

suggests the important role that a salient distracting feature may play in 

impacting student reasoning as well as the apparent impact of an element 

that attacks reasoner satisfaction with the default model in moving students 

away from the model cued by the salient distracting feature. Of course, these 

data don’t carry enough statistical power to make a solid claim (as only about 

5% of the population explicitly changed their answers), so additional research 

would need to be conducted in a more rigorous experiment to ascertain 
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whether or not the switching trend observed here is both reproducible and 

statistically significant. However, we do suspect that these graphs 

underreport the actual amount of switching that is occurring because many 

students likely switch answers without explicitly documenting these switches 

in the reasoning space. In any case, our data indicate that the analytic 

intervention element seems to influence student reasoning in a manner that 

helps students arrive at a correct answer – a phenomenon observed in a 

statistically significant manner in our experimental and control group 

comparisons in Table 3-6 and in a much less rigorous manner in the 

switching diagrams in Fig. 3-9. 

3.7.2.4 Analysis of reasoning chains 

It seems likely that the analytic intervention element causes students 

to abandon an incorrect default model in favor of a correct model. However, it 

could be that little to no physics knowledge is utilized when students make 

judgments (i.e., ratify a final answer) based on the new, correct model. 

Instead, once the coefficients are ruled out, they may be basing their answer 

on the perceptual cue that everything else in the problem is equal for both 

cases: the mass, the weight, the tension, etc. (Indeed, we cannot preclude the 

possibility that those who were cued on the correct model initially were 

backfilling their formal reasoning in support of a process 1 answer derived 

solely by the perceptual cues.) 
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To further investigate whether students who are seemingly affected by 

the AIE are employing formal physics knowledge when answering correctly, 

we examined the chains that the students who gave correct responses used in 

the treatment condition. In both semesters, 80% of correct responses in the 

treatment condition exhibited chains that clearly indicated correct reasoning. 

Generally, these responses included an indication of Newton’s 2nd law being 

utilized to determine that the horizontal forces are balanced on both boxes. 

An example is given below: 

 

“both boxes have the same mass / and / the normal force on box A is 

equal to the normal force on box B / so / because / 𝐹𝑛𝑒𝑡 = 𝑚𝑎 / and / both 

boxes remain at rest / the horizontal forces are balanced / and / the net force 

on both boxes is zero / because / the friction force and the applied force are the 

only horizontal forces acting on the box / Ffrct on A is equal to Ffrct on B” 

 

The other 20% of responses were ambiguous; they could easily be seen 

as indicating correct reasoning but could also be construed as rationalization 

based on the features of the problem that are equal. One example is a student 

who responded in the following manner: 

 

 “Ffrct on A is equal to Ffrct on B / because / both boxes remain at rest / and 

/ the tension force on box A is equal to the tension force on box B”.  
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It is important to keep in mind that only 20% of responses were 

ambiguous, the rest were unambiguous. These results indicate that those 

who answered correctly in the treatment condition were able to answer with 

correct reasoning, that is, by engaging with some version of Newton’s 2nd law. 

This suggests that for the students in the treatment condition, the answer 

choice “equal” was not arrived at solely by perceptual cues for most students; 

if it were, we would expect that a larger percentage of students would answer 

“equal” but lack the ability to chain together a response that indicated a 

complete and correct line of reasoning. Perhaps such perceptual cues served 

as the origin of their answer, but there is no evidence that, for any of these 

students, perceptual cues are the sole factor behind their reasoning and 

conclusion. 

Our analysis revealed interesting features in the incorrect responses as 

well. As a specific example of a common class of incorrect responses, consider 

the following student argument: 

 

“both boxes have the same mass / but / coefficient of friction for A is 

smaller than the coefficient of friction for B / so / Ffrct on A is less than Ffrct on B” 

 

This student responded with what would be considered a canonical 

incorrect answer – an answer that primarily relies on a direct judgment 
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based on the coefficients of friction or the equation 𝑓 = 𝜇𝑁 without reference 

to other physics principles. Approximately 60% of incorrect responses fell into 

this category in each semester, in both the treatment and control conditions.  

 

Another 30% utilized the coefficient reasoning but included other 

pieces of relevant information such as the observation that the boxes 

remained at rest. For example, one student argued: 

 

“both boxes have the same weight / and / the normal force on box A is 

equal to the normal force on box B / but / neither box is accelerating / 

because / both boxes remain at rest / Ffrct on A is less than Ffrct on B” 

 

This response is consistent with an incorrect conception in which 

friction is greater than the applied force until the applied force is big enough 

to overcome that friction force. Thus, the student didn’t answer purely based 

on the coefficients alone, but likely had some form of intervention of process 

2, though one that resulted in an erroneous justification for their answer.  

Other students gave responses similar to the following: 

 

“the normal force on box A is equal to the normal force on box B / and / 

both boxes have the same weight / but / coefficient of friction for A is smaller 

than the coefficient of friction for B / so / Custom: “B needs more force to 
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move” / but / Custom: “since neither of them moved” / the horizontal forces 

are balanced / and / neither box is accelerating / and / the net force on both 

boxes is zero / therefore / both boxes remain at rest / but / Custom: “since the 

coefficient of friction for B is greater” / Ffrct on A is less than Ffrct on B” 

 

This response shows a student who appears to struggle between a 

desire to articulate correct knowledge and a strong default model, similar to 

the incorrect responses we saw on the isomorphic graph tasks (including, for 

example, the kinematics graph task). These responses were not prevalent 

(less than 2% percent of all responses) in the two semesters in which 

Experiment 2A was implemented. For this reason, we did not attempt to 

establish and evaluate such responses according to rigorous criteria in order 

to determine upper and lower bounds on the extent to which this type of 

struggle was occurring for students (as we did for the graph tasks). 

Overall, the findings from our analysis of the incorrect responses fall in 

line with dual-process theories. In the context of our framework, those who 

are attracted to the salient distracting feature likely have a strong feeling of 

rightness. We would expect, therefore, that there would not be motivation to 

search for alternate models, and this seems to be reflected in the reasoning 

chains leading to an incorrect answer; indeed, most of them do not indicate 

any reflection on the answer beyond a single model built around the 

coefficients. 
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3.7.3 Experiment 2B: Description of the experiment and predictions 

3.7.3.1 Description of Experiment 2B 

In our working hypothesis, we stated that a productive analytic 

intervention would require an alternate model that was more satisfactory, 

and that this model would need to be associated with relevant and productive 

mindware. In Experiment 2A, it was demonstrated than an element that 

attacked student satisfaction with the default, common incorrect model 

successfully increased performance on the two-box friction task. In 

Experiment 2B, we modify Experiment 2A to test the full extent of the 

working hypothesis with a focus on the need for this alternate model and 

requisite mindware. 

To gauge the effect of having, or not having, this model and associated 

mindware, we repeated Experiment 2A again with a single modification: the 

screening question originally used before the two-box friction task by 

Kryjevskaia et al. (Kryjevskaia, Stetzer, & Le, 2015) was administered to 

students in both conditions before they were given the chaining version of the 

two-box friction task. We thus operationalized student possession of the 

requisite model/mindware as demonstrating that knowledge on the screening 

task. We were then able to control for performance on the screening question 
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and to probe the impact on the analytic intervention element on students who 

did and did not possess the requisite mindware. 

Additionally, it was argued in a previous section that the increase in 

performance caused by the analytic intervention element could be due solely 

to redirecting students’ attention to alternate, less salient features of the 

task. These features may lead students to a correct answer even in the 

absence of any reasoning directly connected to correct physics models. By 

including the screening question, we could determine the extent to which 

such a phenomenon is happening, if at all. If we found that the analytic 

intervention element had roughly equal impact on those students who 

answer the screening question correctly versus those who do so incorrectly, 

our study would be inconclusive with regards to whether correct physics 

models necessarily played a role in the documented increase in correct 

answers. However, if the impact of the AIE was found to be greater among 

students who demonstrated that they had the requisite mindware, we could 

conclude that those who switched did so because of relevant mindware, not 

solely because the default model involving the coefficients was ruled out and 

they were thus led to choose the next best answer based solely on task 

features. 



   

 

108 

 

3.7.3.2 Predictions 

As the only change in Experiment 2B was the inclusion of a screening 

question prior to the chaining version of the friction task, we expected that 

the inclusion of the analytic intervention element would incite a strong 

positive performance shift, consistent with the prediction made in 

Experiment 2A. 

Based on the criteria from the working hypothesis that a more 

satisfactory alternate model is necessary for a productive analytic 

intervention, we expected that a performance shift would occur most 

prevalently for those who possessed the relevant “mindware” to replace the 

default model with something more satisfactory. Without a more satisfactory 

model to replace the default model, the default model would be ratified by 

process 2 because of its initial salience (Johnson & Raab, 2003; Tversky & 

Kahneman, 1973; Hertwig, Herzog, Schooler, & Reimer, 2008). Thus, by 

controlling for performance on the screening question, we expected that any 

shift caused by the analytic intervention element would primarily manifest 

itself in the responses of those students who answered the screening question 

correctly. Thus, for Experiment 2B, we made the following two predictions: 

Prediction 1) There will be an improvement in performance for the 

treatment (AIE) condition compared to the control (non-AIE) condition 

on the two-box friction task. 
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Prediction 2) The improvement in performance caused by the AIE will 

occur more predominately among those who demonstrate relevant 

prior knowledge by answering the screening question correctly with 

correct reasoning. 

3.7.4 Experiment 2B: Results and discussion 

3.7.4.1 Performance results 

Of those students who participated in Experiment 2B (N = 153), 52% 

arrived at a correct answer on the screening question supported by correct 

reasoning. In the control condition, 49% of students (N=81) correctly 

answered the target question. In the treatment condition, 64% of students 

(N=85) answered correctly. This improvement in performance of the 

treatment group with respect to the control group is not statistically 

distinguishable (𝑝 = 0.13, 𝑉 = 0.11). Results controlling for the screening 

question are shown in Table 3-7. 

 

 

 

 

 

 

 



   

 

110 

 

 Screening Correct  

(with correct reasoning) 
Screening Incorrect 

Task Version 

Treatment 

(AIE) 

(N = 39) 

Control 

(No AIE) 

(N = 40) 

Treatment 

(AIE) 

(N = 39) 

Control 

(No AIE) 

(N = 35) 

Ffrct on A = Ffrct 

on B (Correct) 
90% 60% 41% 40% 

Ffrct on A < Ffrct 

on B  
8% 40% 54% 57% 

Ffrct on A > Ffrct 

on B 
2% 0% 5% 3% 

Not enough 

info 
0% 0% 0% 0% 

 𝜒2 = 9.24, 𝑝 = 0.002, 𝑉 = 0.34 𝜒2 = 0.22, 𝑝 = 0.897, 𝑉 = 0.04 

Table 3-7. Performance data for the two-box friction task separated into 

treatment (AIE) and control (non AIE) groups while controlling for 

performance on the screening question. 

 

3.7.4.2 Discussion of performance results 

The lack of statistical difference and the small effect size observed in 

the overall performance improvement could have arisen from a statistical 

type-II error (i.e., an outlier or false negative) or, alternatively, it could have 

stemmed from the presence of the screening question itself and its impact on 

student thinking; thus, at the present time, it is not possible for us to identify 

the source of the weaker signal in Experiment 2B compared to Experiment 

2A. Given that the goal of Experiment 2B was to split both the treatment and 

control groups into sub-populations based on their performance on the 

screening question, the weaker signal is not necessarily problematic for the 

purposes of our intended analysis. 
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From Table 3-7, one can see that there was a statistically significant 

increase in performance with a medium-to-large effect size for the treatment 

group in comparison to the control group for students who answer the 

screening question correctly using the normative reasoning pathway; for 

students who did not answer the screening question correctly, no shift in 

performance was observed for the treatment group in comparison to the 

control group. Our operational definition of possession of relevant mindware 

was answering the screening question correctly with correct reasoning, so we 

see that our second prediction proved to be correct in that the performance 

increase was more predominate among those students who demonstrated 

that they possessed the relevant mindware, and that there was no 

improvement in performance among those students who did not demonstrate 

that they possess relevant mindware. 

These results suggest that some students who had the requisite 

mindware available to them may have been prevented from applying that 

knowledge on the target question. We propose that they were prevented from 

applying that knowledge because of a strong feeling of rightness about an 

incorrect default model. When a challenge to that feeling of rightness is 

available to them in the form of the AIE, these students are then able to 

arrive at a correct answer using the appropriate mindware. Similarly, we 

propose that students who do not have the requisite mindware available to 

them are unaffected by a challenge to the feeling of rightness via the AIE 
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because they do not have a more satisfactory alternative model to reason 

with. 

In Experiment 2A, we argued that the answer choice “equal” could also 

be arrived at using solely perceptual (non-physics) cues once the coefficients 

are eliminated as a relevant factor, and that the analytic intervention 

element does not necessarily induce reflection on physics principles. Our 

results allow us to address this issue as well. If, after ruling out the common 

incorrect answer, the correct answer choice (“equal to”) was arrived at solely 

by perceptual cues and not with reference to relevant physics, we would 

expect the analytic intervention element to have been effective regardless of 

whether relevant knowledge was demonstrated on the screening question. 

Since the AIE had no impact on those who did not demonstrate relevant 

knowledge on the screening question, we are led to believe that the 

jettisoning of the default model is only useful when there is relevant 

conceptual knowledge at hand that can bolster confidence in the new model. 

Thus, students who were impacted by the AIE and subsequently answered 

correctly were likely considering physics principles and not simply answering 

according to perceptual cues based on task features. 
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3.7.4.3 Analysis of reasoning chains 

Table 3-8 shows an analysis of reasoning chains while controlling for 

performance on the screening question. Note that Table 3-8 includes 

percentages based on the respective column. Each response was categorized 

based on the nature of the reasoning presented and is consistent with the 

categories described in Section 3.7.2.4. To summarize that discussion, the 

correct line of reasoning was typically given with either clear evidence of 

correct reasoning or else reasoning that was ambiguous as to whether 

Newton’s 2nd law was considered fully. (When it was ambiguous, it was 

regarded as possible that students were being cued directly on task features, 

which were equal for both boxes, and answering correctly without formal 

physics reasoning.) There were also a small amount of responses with no 

evidence of correct reasoning – these were either uninterpretable or 

contained only the answer element. The reasoning chains for those students 

who selected the common incorrect answer were marked either “canonical”, 

wherein a student only endorsed elements which were directly related to the 

𝑓 = 𝜇𝑁 model of friction, or “conceptual difficulty”, wherein the student 

endorsed elements that indicated consideration of alternate, incorrect models 

of friction, or finally “struggle” reasoning, wherein the student incorporated 

reasoning consistent with the correct line of reasoning while ultimately 

selecting the common incorrect answer. 
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The nature of the reasoning chains in experiment 2B was similar to 

those for experiment 2A, namely, most correct answers were accompanied 

with correct reasoning and about 60% of students who chose the common 

incorrect answer (or, as shown in Table 3-8, about 30% of all students) 

employed reasoning that only referenced the single model based on the 

coefficients (and thus were categorized as “canonical”).  

A striking difference between the reasoning chains in experiment 2A 

and experiment 2B is that in experiment 2B there is a greater number of 

students who appeared to struggle with a desire to reconcile correct 

knowledge and a strong default model inconsistent with that knowledge. (For 

an example of this type of response, see Section 3.7.2.4.) In Experiment 2A, 

these types of responses were not prevalent (less than 2% of responses), but 

in experiment 2B 30% of incorrect responses (or, as shown in Table 8, 14% of 

all students in the control condition) exhibited this “struggle” behavior. We 

surmise that asking the screening question primed these students to consider 

correct mindware while reasoning with an incorrect default model. 

Importantly, these “struggle” responses only occurred in the control 

condition, suggesting that similar students “struggling” to incorporate 

relevant conceptual information in the treatment condition were impacted by 

the AIE in such a way as to either push them towards a correct answer or to 

decide against including those considerations into their final reasoning chain. 

Table 3-8 provides support for this interpretation; while the percentage of 
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students in the “struggle” category decreased from control to treatment 

regardless of performance on screening question, the only observed increase 

in performance was for those who answered the screening question correctly 

with correct reasoning. For those who did not answer the screening question 

correctly, it appears the effect of the AIE was to push them out of the 

“struggle” category and into other incorrect reasoning pathways. 

Furthermore, from Table 3-8, one can see that in the control group, 

38% of students who selected the correct answer on the screening question 

selected the common incorrect answer on the target question and cited either 

canonical reasoning or reasoning that suggests a struggle between the 

intuitive answer and the correct line of reasoning. With the inclusion of the 

AIE, however, the proportion of these responses appear to vanish while 

proportion of responses in the unambiguous correct line of reasoning category 

increases. On the basis of these results, we submit the following argument: 

students in the control condition who used correct reasoning on the screening 

question and responded to the target question incorrectly with chains that 

fall into the canonical incorrect category or the struggle incorrect category 

were blocked from using the requisite mindware by the cueing of an incorrect 

default model by process 1. Furthermore, we argue that if these students had 

access to the AIE in their reasoning elements, they would have overcome the 

feeling of rightness in this incorrect default model and responded with correct 

reasoning via a productive process 2 intervention. 
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  Screening: Yes 

AIE: Yes 

(N=38) 

Screening: Yes 

AIE: No 

(N=42) 

Screening: No 

AIE: Yes 

(N=41) 

Screening: No 

AIE: No 

(N=35) 

Correct w Correct 

Reasoning 

84% (32) 48% (20) 22% (9) 17% (6) 

Ambiguous Correct 

Reasoning 

8% (3) 10% (4) 12% (5) 20% (7) 

Correct w no 

evidence of correct 

reasoning 

0% (0) 0% (0) 5% (2) 3% (1) 

Canonical 

Incorrect 

Reasoning 

3% (1) 24% (10) 39% (16) 37% (13) 

Conceptual 

Difficulty Incorrect 

Reasoning 

5% (2) 5% (2) 15% (6) 6% (2) 

Struggle 

Reasoning 

0% (0) 14% (6) 0% (0) 14% (5) 

Other 0% (0) 0% (0) 7% (3) 3% (1) 

Table 3-8. Comparison of reasoning chains in Experiment 2B controlling for 

performance on the screening question shown in Figure 3-2.a. 

 

3.8  Conclusions and next steps 

The overarching aim of this investigation was to study the extent that 

dual-process theories of reasoning could account for reasoning phenomena on 

qualitative physics questions using a new methodology, the reasoning chain 

construction task. In particular, we wished to draw upon dual-process 

theories of reasoning to make and test predictions about student behavior on 

these chaining tasks. From Evans’ heuristic-analytic theory, we developed a 

working hypothesis that stated that students would be unlikely to shift away 
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from an incorrect default model cued by process 1 unless they were provided 

with information that explicitly refuted the satisfactoriness of that model. 

Two sets of experiments built on the chaining task methodology were devised 

to test this hypothesis. In the first, students were given graph tasks with a 

known salient distracting feature (the intersection point, see Figure 3-1.b) 

which had been cast into a chaining format; the reasoning elements in the 

chaining task version of the graph task functioned to give students access to 

relevant conceptual information, thus testing whether or not this improved 

access would be sufficient to increase performance. In the second set of 

experiments, we gave students access to information (via the analytic 

intervention element, or AIE) that refuted a common incorrect default model 

about static friction in order to determine whether the presence of this 

information improved performance, as suggested by our working hypothesis. 

Several important lessons came out of this work. Experiment 1A 

showed that providing increased access to relevant, correct information was 

not enough to produce a large shift in performance on a kinematics question 

with a salient distracting feature. Instead, that information was used by 

many students to justify an incorrect (and therefore inconsistent) answer. 

Experiment 1B showed that the salient distracting feature had a recognizable 

effect in three other content domains as well, and that, generally, the 

reasoning elements provided in each domain were not enough to negate the 

effects of the salient distracting feature on the reasoning process. Experiment 
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2A showed that a large increase in performance could in fact be realized by 

providing access to information (via the AIE) that refuted a common incorrect 

default model cued by the salient distracting feature on the static friction 

task. Experiment 2B revealed that the AIE had a greater impact on students 

who had previously demonstrated relevant mindware (i.e., answered a 

screening question correctly with correct reasoning) and that there was no 

statistically discernible change in performance for those students who had 

not demonstrated relevant mindware. Together, these results provide support 

for the use of dual-process theories as a mechanistic framework for making 

and testing predictions about student performance and behavior, particularly 

about which models are selected and why, in turn, some are abandoned. 

This work also has some broader implications related to the interplay 

between conceptual understanding and reasoning skills. This work strongly 

suggests that those students who possess the relevant mindware to answer a 

problem correctly may not use that mindware because of an undeveloped 

ability to critically reflect on an intuitive answer cued by process 1. It may 

also be possible that those who do have this domain-general reflective skill 

may answer a specific question incorrectly because they possess no relevant 

mindware in the specific context of that question (suggested by those 

students in the treatment condition (AIE) who answered the screening 

question incorrectly and answered the target question incorrectly as well). 

Alternatively, it may also be that students need a certain amount of 
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mindware regarding a topic before being able to fully develop or employ the 

reflective reasoning skill. At any rate, it is clear from the current work that 

domain-general reasoning skills affect the process of content-specific 

reasoning, and that there is a need to develop both domain-general reasoning 

skills and conceptual understanding if increased performance is a goal. More 

work is needed to characterize with greater resolving power the interplay 

between reasoning skills and conceptual understanding in order to provide 

detailed research-based approaches for supporting reasoning skills and 

conceptual understanding in a more integrated fashion. 

However, the successful leveraging of dual-process mechanisms in this 

work suggests a possible pathway to develop the skills needed to overcome an 

incorrect default model cued by a salient distracting feature. Giving the 

student access to a refutation of the default model apparently caused 

students to recognize and evaluate other relevant physics models. If this 

scaffolded prompting to search for other models could be repeated on many 

tasks with salient distracting features, students may begin to internalize a 

prompting to reflect on intuitive answers. This scaffolding could be provided 

directly by a line of questioning on a specific tutorial worksheet, but it may 

also be that more “hidden” scaffolding such as that provided by the AIE may 

be more effective in that, by interacting with the AIE, students are 

recognizing and modifying their answer without explicitly being prompted to 

do so. At some point, however, we suspect that students should be explicitly 
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instructed about the impact of salient distracting features and how reflective 

thinking and searching for alternate answers can improve decision-making 

when these features are present, perhaps by having them reflect on their 

interaction with an AIE after the fact. We believe that instruction of this sort 

may aid students in developing the reflective skill necessary to effectively 

navigate qualitative physics questions with salient distracting features. More 

research, of course, is needed to gain insight into specific pedagogical 

approaches. 

Finally, our work suggests that other domain-general reasoning effects 

can be studied through the lens of dual-process theories of reasoning, and 

that the mechanisms put forward by these theories can be used to make and 

test predictions about student performance and behavior. The results of such 

studies can then be leveraged to improve the teaching and learning of physics 

more broadly. 
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4 UTILIZING NETWORK ANALYSIS TO EXPLORE STUDENT 

QUALITATIVE INFERENTIAL REASONING CHAINS  

4.1  Abstract: 

Physics education research has produced instructional materials aimed 

at improving conceptual understanding, problem solving skills, and the skill 

of mathematizing real-world situations. Students are often expected to 

complete an introductory calculus-based physics course with these skills as 

well as a strong set of critical thinking skills related to qualitative inferential 

reasoning. Many of the research-based materials developed over the past 30 

years are scaffolded and step students through a qualitative chain of 

inferences via a series of questions, and it is often tacitly assumed that such 

materials improve qualitative reasoning skills. There is, however, no real 

documentation of improvements in qualitative reasoning skills in the 

literature. Additionally, a growing body of research related to reasoning in 

physics highlights that general reasoning processes not tied to physics 

content may be responsible, in part, for the errors students make on some 

physics questions. New methodologies are needed to better study reasoning 

processes and to disentangle, to the extent possible, processes related to 

physics content from processes general to all human reasoning.  

In our investigation, we employed network analysis methodologies to 

examine student data from reasoning chain construction tasks in order to 

gain deeper insight into the nature of student reasoning in physics. In a 
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reasoning chain construction task, or simply chaining task, students are 

given a list of reasoning elements (such as statements of physics concepts) 

and are asked to assemble a chain of reasoning from the elements leading to 

an answer. In this paper, we show that network analysis metrics are both 

interpretable and valuable when applied to student reasoning data generated 

from reasoning chain construction tasks and illustrate how network analysis 

is useful for both studying known inferential reasoning phenomena and for 

uncovering new phenomena for further investigation. 

4.2  Introduction 

Students pursuing undergraduate STEM majors are often expected to 

take one or more physics courses as part of their degree programs, even when 

they are not physics majors. While certain physics concepts and principles 

will be of use in these students’ future academic careers, many will not. 

Instead, it is often expected that the lasting takeaways from a physics course 

will be a repertoire of problem-solving strategies, a familiarity with 

mathematizing real-world situations, and a strong set of critical thinking 

skills related to qualitative inferential reasoning. Furthermore, these 

takeaways are important to all students taking a physics course, including 

those who go on to be physics majors and physicists.  

Physics education research has produced many instructional materials 

that have been demonstrated to improve conceptual understanding and other 

learning outcomes (Finkelstein & Pollock, 2005; Saul & Redish, 1997; 
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Sokoloff & Thornton, 1997; Beichner R. , 2007; Crouch & Mazur, 2001). Many 

of these materials are scaffolded and step students through qualitative 

chains of inferences via a series of questions (McDermott & Shaffer, 2001; 

Lillian C. McDermott, 1995; Wittmann, Steinberg, & Redish, 2004). It is 

often tacitly assumed that such materials also improve qualitative reasoning 

skills, but there is no documentation of such improvements in the PER 

literature. Furthermore, it has been observed that despite overall conceptual 

gains after research-based instruction, there are still certain physics 

questions for which it is difficult to improve student performance (Heckler, 

2011; Kryjevskaia, Stetzer, & Grosz, 2014; Heron, 2017). Instead, these 

studies suggest that reasoning processes general to all humans may impact 

how students understand and reason in a physics context.  

There is thus a need to investigate how students generate qualitative 

inferential chains of reasoning. To do so, new methodologies need to be 

explored, particularly those that can separate, to the degree possible, 

reasoning skills from conceptual understanding. Some methodologies have 

approached this goal. For instance, eye tracking methodologies seek to 

determine where attention is being placed while working through a physics 

problem and can be used to gain insight into domain-general reasoning 

processes that apply in many different contexts (Rosiek & Sajka, 2016; 

Heron, 2017; Sattizahn et. al., 2015). Additionally, methodologies that seek to 

find and document a particular reasoning-related phenomenon across 
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multiple different contexts also separate, to a degree, reasoning patterns 

from particular physics concepts (e.g., those methodologies employed in 

Heckler & Bogdan, 2018 and Heckler & Scaife, 2014). But these 

methodologies don’t necessarily separate students’ knowledge of a concept 

required for a particular problem from their ability to reason through that 

problem; rather, the methodologies are examining reasoning phenomena that 

occur outside of a given physics context.  

A methodology that comes close to the goal of separating reasoning 

skills (in particular, the skill of productively navigating an intuitive response 

when it is in conflict with the correct response) from conceptual 

understanding on a given problem is the paired question methodology 

reported in (Kryjevskaia, Stetzer, & Grosz, 2014). This methodology has 

provided further evidence that many students possess an ability to reason 

correctly through a physics problem but opt for other, more salient lines of 

reasoning on closely related questions.  

In connection with a similar project, we have developed a new 

methodology centered around reasoning chain construction tasks, or chaining 

tasks, that have been designed to separate reasoning skills from 

understanding of a particular physics concept. This methodology was initially 

reported in Speirs, Ferm Jr., Stetzer, & Lindsey (2016) and has since been 

used to leverage results from cognitive science to improve student 

performance on qualitative physics questions. In this companion paper, we 



   

 

125 

 

describe a method for exploring chaining task data using network analysis 

and present four examples that demonstrate the utility of network analysis 

methods for gaining insight into the structure of student reasoning via 

chaining tasks. The overarching goal of this manuscript is to highlight the 

affordances of network analysis approaches to generate knowledge about how 

students reasoning on physics questions, particularly when they are 

responding to questions requiring a series of inferences. In combination with 

reasoning chain construction tasks, network analysis generates novel data 

and findings related to the content and structure of student arguments. 

These data and findings will support further research exploring the 

mechanisms behind student reasoning in physics and the development of 

reasoning skills over time. Indeed, the groundwork for such research is laid 

out in the final discussion section. 

4.3 Background 

In this section, we review pertinent literature that both makes the case 

for the need for more sophisticated analyses of student reasoning and 

highlights the unique affordances of network analysis of chaining task data 

to meet this need. 
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4.3.1 Research directly related to qualitative inferential reasoning 

in physics education 

Understanding student reasoning on physics problems has long been a 

goal of physics education research. Early investigations of student conceptual 

understanding identified specific reasoning difficulties as well as conceptual 

difficulties. This long tradition of more than 30 years unearthed similar 

reasoning difficulties in many different places. One such difficulty could be 

referred to as compensation reasoning, in which two physical quantities that 

change in opposite ways were assumed to cancel (Lawson & McDermott, 

1987; Loverude, Kautz, & Heron, 2003; Kautz, Heron, Shaffer, & McDermott, 

2005; Lindsey, Heron, & Shaffer, 2009). The focus of these early 

investigations was to identify the prevalence of such difficulties and to 

address them in a non-general, content-specific way. In this research 

tradition, no claims were made as to the cognitive structure or composition of 

the difficulties; rather, the difficulties were described as observed and the 

empirical findings were used to guide the development of content-specific, 

research-based instructional materials (McDermott, 2001; McDermott, 1991; 

Heron, 2004).  

  

Other early investigations sought to understand the composition of 

student conceptions of physics and to explain how or why certain conceptions 

were formed, cued, and used for reasoning (diSessa, 1993; diSessa & Sherin, 
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1998; Hammer, 1996; Redish E. F., 2004; Elby, 2000; Hammer, Elby, Scherr, 

& Redish, 2005). These investigations created a framework that allows one to 

identify and observe the use of student "resources" for reasoning. "Resource" 

is a general term for fine-grain cognitive structures (i.e., general rules, 

epistemological stances, phenomenological primitives) that make up larger-

grain cognitive structures such as concepts or skills. It is posited by this 

framework that the act of reasoning is an act of cognitively selecting and 

coordinating the use of a subset of available resources. While the resources 

framework is useful, it falls short of making specific predications about which 

resources are activated when and how they impact reasoning. Instead, the 

framework provides compelling post-hoc explanations for reasoning 

phenomena. 

A growing body of research is investigating predictive control 

mechanisms that govern reasoning in a physics context. For example, in 

order for a task feature to cue a specific resource in the course of reasoning, 

that feature must be processed by the brain. Thus, the time it takes to 

process a certain feature represents a control mechanism that may predict 

which resources are cued and when. To show the impact of processing time on 

answering patterns, Heckler and Scaife (2014) measured the approximate 

processing time of finding either the slope or the height of a particular point 

on a graph and found that processing the slope took a longer time than 

processing the height. Applying an enforced time-delay on student answers 
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guaranteed that the students’ brains had time to process the slope and 

resulted in improved performance on questions in which the slope and the 

height of a particular point were in competition (i.e., that the two quantities 

led to different answers). 

This strand of research has called for new methodologies to be 

employed in physics education research that would allow for the collection of 

data not normally accessible from a written response or think-aloud 

interview alone (Heckler, 2011; Sattizahn et al., 2015). Methodologies that 

can separate reasoning skills from conceptual understanding are particularly 

useful. One methodology that represents a step in this direction is a paired 

question methodology reported in (Kryjevskaia, Stetzer, & Grosz, 2014; 

Kryjevskaia, Stetzer, & Le, 2015). This methodology aims to gain insight into 

the impact of intuitive responses on the formation of reasoning chains. This is 

accomplished by first asking a “screening question” that requires a student to 

step through a specific line of reasoning and then immediately asking a 

“target question” that requires that same line of reasoning. The target 

question is similar to the screening question but is typically designed or 

selected to elicit an intuitive, incorrect response. This methodology was used 

to examine “compensation reasoning” in the context of capacitors and 

demonstrated that even those students who articulated the correct line of 

reasoning on the screening question abandoned that reasoning in favor of the 

intuitive incorrect reasoning on the target question. To provide further 
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evidence that students did in fact possess the ability to correctly reason 

through the problem, the target question was administered in two formats. In 

one, the student was given the question and asked to answer it. In the other, 

the student was given the question along with the answer and asked to 

justify that answer. Those students in the “justify” condition who answered 

the screening question with correct reasoning gave the correct justification, 

while some among those in the “answer” condition who answered the 

screening question correctly still employed the compensation argument. 

4.3.2 Other discipline-specific, reasoning-related research 

The list of reasoning-related research can be rightfully extended to the 

expansive research on student problem solving (Hsu, Brewe, Foster, & 

Harper, 2004). Research on student problem solving emphasizes traditional 

quantitative problems that typically require manipulation of multiple 

equations and quantities and seeks to understand and improve the strategies 

students employ while working through these problems. It has been pointed 

out that the list of skills and strategies that a student has to employ while 

problem solving is extensive and somewhat overwhelming. Notably, rubrics 

for assessing problem solving skills continue to be developed (Docktor, et al., 

2016). Likewise, there has been research related to scientific reasoning skills 

such as control of variables, conservation of volume, and proportional 

reasoning, and assessments have been used to study differences in 
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proficiency with these skills between populations before and after instruction 

(Lawson, 1978; Coletta et al., 2009; Bao, et al., 2009; Ding, 2014).  

However, while quantitative problems and scientific reasoning are 

essential to a physics curriculum, the focus of this manuscript is on the 

structure of qualitative inferential reasoning patterns more akin to the 

reasoning difficulties identified in specific content areas of physics. 

Additionally, many of the research-based instructional materials expect 

students to engage in qualitative inferential reasoning in order to deepen 

conceptual understanding (e.g., McDermott & Shaffer, 2001; Wittmann, 

Steinberg, & Redish, 2004). Instructors often have this expectation as well. 

The proofs literature in mathematics education research is somewhat 

more closely aligned to the specific goals of the investigation described in this 

manuscript. Selden and Selden provide a wonderful review of this literature 

in a 2008 paper (Selden & Selden, 2008). In a typical undergraduate 

mathematics program, there are specific courses that aim to teach student 

how to create mathematical proofs. These proofs tend to take the form of a 

series of deductive, qualitative inferences that are linked together as an 

argument in support of a specific conclusion. The research regarding student 

skill at constructing proofs is reminiscent of many research endeavors in 

physics education. Often, students' responses to a particular proof task are 

examined through various epistemological and conceptual lenses, with an 

emphasis placed on the identification of student difficulties with constructing 
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proofs. While the nature of the reasoning chains examined in the "proofs" 

literature is very closely related to those considered in this manuscript, the 

current work takes a different approach. Instead of examining possible 

causes for a particular reasoning difficulty, the current work aims to identify 

patterns in the structure of the reasoning chain itself; our goal is to provide 

new forms of data that can be utilized by future researchers investigating the 

mechanisms behind student construction of reasoning chains. 

4.3.3 Network Analysis in Physics Education Research 

Network analysis is fairly new to physics education research but has 

recently been seeing a dramatic increase in use, mostly in social network 

analysis characterizing social dynamics within a physics community (i.e., a 

classroom, department, or university) and relating these dynamics to 

performance and learning gains within a physics course (Spillane & Kim, 

2012; Brewe, Kramer, & Sawtelle, 2012; Bruun & Brewe, 2013; Wolf, Sault, 

& Close, 2018; Vargas, et al., 2018). However, network analysis has also been 

used to study epistemological shifts in conversations as a result of instruction 

(Bodin, 2012), to model differentiation of concepts (Koponen, 2013), to assess 

patterns in representation use throughout a course employing modeling 

instruction (McPadden, 2018), and to gain insight the structure of answer 

patterns on a conceptual inventory (Brewe, Bruun, & Bearden, 2016). The 
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current work utilizes network analysis to study the structure of student 

reasoning chains, which we believe is a novel pursuit. 

4.3.4 Resource Graphs as Network Analysis 

Returning to resources, the coordination of resources has been studied 

using network-like representations, sometimes called "resource graphs" 

(Wittmann, 2006; Sabella & Redish, 2007; Smith & Wittmann, 2008; Black & 

Wittmann, 2009). Resource graphs offer a view of the theoretical constructs 

within the resources framework by highlighting the structural topology of 

these constructs. One of these views is that some concepts share a similar 

sub-set of resources, with only one or two resources making the difference 

between a productive, correct conception for the context and an unproductive 

conception (Smith & Wittmann, 2008), and evidence has been presented for 

the reification of particular procedural resources from smaller grained 

resources (Black & Wittmann, 2009; Wittmann & Black, 2015). Another 

insight put forward in these studies is that conceptual change can be 

represented as the rearrangement or addition/deletion of connections among 

specific resources. Finally, Sabella and Redish (2007) modeled the flow of a 

student's inferential reasoning using a network-like representation called a 

"reasoning map". In that paper, they modeled a student's knowledge 

structure as brief statements of the student’s reasoning and showed that 
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there were differences in students’ knowledge structures based on the 

reasoning maps constructed from their think-aloud reasoning. 

While resource graphs could, in principle, offer a more detailed view of 

student reasoning, the match between a resource graph and experimental 

data is challenging due to some level of ambiguity in terms of what 

constitutes a resource when coding experimental data. In addition, another 

challenge appears to be ascertaining what exactly counts as a connection 

between resources. For instance, a resource could be represented as a 

collection of smaller-grained constructs or as a reified object. Which is it to 

the particular student? Differentiating between the two can be hard from 

think-aloud data alone, unless the student is particularly loquacious. The 

current work side-steps this issue by providing a pre-defined statement of 

knowledge to the student and seeks to investigate the structures that emerge 

from student use of these pre-defined statements. Thus, network analysis of 

chaining task data may provide a methodology through which the theoretical 

constructs inherent in resource graphs can be studied in a systematic way. 

4.3.5 Summary 

The data collection and analysis methodology presented in this 

manuscript is designed to create a separation between reasoning skills and 

conceptual understanding and to provide data not normally accessible from 

written responses and think-aloud interviews. We aim to create a tool that 
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can be used to study specific reasoning difficulties, to provide insight into the 

development of specific reasoning abilities, and to serve as a venue in which 

to test predictions made by mechanistic theories from cognitive science. The 

main goal of this paper is to demonstrate how network analysis of reasoning 

chain construction tasks may be used in order to accomplish all three 

objectives. 

4.4  Methodology 

This section is broken into two main parts. In the first, we describe the 

reasoning chain construction task, which underlies the methodology 

employed here. In the second, we describe the network analysis methods that 

are of use in this manuscript. 

4.4.1 Reasoning Chain Construction Tasks 

A reasoning chain construction task, or chaining task, is a modified 

card-sorting task in which we: (1) provide the student with a list of reasoning 

elements; (2) indicate that all of the statements within these elements are 

true and correct; and (3) ask the student to construct a solution to a physics 

problem by selecting elements from the list, ordering them, and, as needed, 

incorporating provided connecting words (“and", “so", “because", “but"). The 

reasoning elements primarily consist of observations about the problem 

setup, statements of physical principles, and qualitative comparisons of 

quantities relevant to the problem; all of which are true. Everything the 
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student needs to produce a complete chain of reasoning is present in the 

elements; the student’s task is then to pick from the given conceptual pieces 

and directly assemble a reasoning chain. 

Reasoning chain construction tasks have primarily been implemented 

online using Qualtrics’ “Pick/Group/Rank” question format. This online 

format is illustrated in the context of a graph task and is shown in Figure 

4-1. Reasoning elements from the “Items" column, connecting words, and 

final conclusions can be dragged and dropped into the “Reasoning Space" box; 

the box increases in size vertically as elements are added. 
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Figure 4-1. An example of a reasoning chain construction task implemented 

online using Qualtrics’ “Pick/Group/Rank” question format. 

 

These tasks were administered on homework assignments or exam 

reviews for students enrolled in an introductory calculus-based physics 

sequence, along with other questions relevant to the course but not relevant 

to the content found in the research task. These assignments counted for 
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participation credit in most cases, although extra credit was awarded in some 

cases. In all cases, the tasks were administered after relevant lecture, 

laboratory, and small-group recitation instruction at a research-intensive 

university in New England. Research-based materials from Tutorials in 

Introductory Physics (McDermott & Shaffer, 2001) were used in the course 

recitations. 

The reasoning elements provided to the student were typically based 

on previously obtained student responses to open-ended, free-response 

versions of the task. Elements consisted of statements of first principles, 

observations about the task, and statements derived from first principles and 

observations. Some were productive to the correct line of reasoning, and some 

were not. Among the unproductive elements were elements that, while true, 

were useful primarily in constructing a common incorrect line of reasoning, if 

there was one associated with the task. In addition, the extent to which 

students selected unproductive elements not associated with the correct or 

common incorrect line of reasoning could help us gauge the likelihood that 

students were simply inserting elements at random. Three blank elements 

labeled “Custom:” were provided, with instructions that students could use 

the text box attached to the custom element to create their own reasoning 

elements is they felt they wanted to add something not represented among 

the given reasoning elements. 
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An important aspect of a chaining task is the intended logical 

connections between the provided reasoning elements – that is, the logical 

topology of the elements. For instance, some physics tasks require only a few 

steps to arrive at a correct answer (e.g., a qualitative question that can be 

solved via a short, linear chain of elements like the task shown in Figure 4-1), 

while others require the student to combine two independent lines of 

reasoning (e.g., synthesis problems such as those reported by (Ibrahim, Ding, 

Heckler, White, & Badeau, 2017)); by casting each of these types of questions 

as a chaining task, we can obtain information about how students approach 

these different scenarios. In particular, by manipulating the logical topology 

of the task, we can introduce experimental conditions that can provide deeper 

insight into student ability to generate inferential chains.  

When considering what can be learned from student responses to a 

chaining task, there are a few important points to remember. The first is that 

the provided reasoning elements determine to a large extent how students 

interact with the task. The elements were written by researchers (i.e., the 

author of this work) who likely have a specific epistemological stance in mind, 

as well as a particular pedagogical perspective. The elements and especially 

the wording of the elements reflect the researchers’ values about such ideas 

as what constitutes reasoning, a reasoning element, and the size of logical 

steps. For instance, an element corresponding to Newton’s second law could 

read, among other things, “𝐹𝑛𝑒𝑡 = 𝑚𝑎”, “the net force is equivalent to the mass 
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times the acceleration”, or “an acceleration is caused by a net force.” Each of 

these may convey a different meaning to the student, may interact differently 

with the context of the problem, and may differently represent what a “first 

principle” is and looks like. Thus, when interpreting responses to a chaining 

task, the main research endeavor is to ascertain not how students’ reason 

generally about the problem, but how students engage in the specific types 

and lines of reasoning supported by the elements. In most of the tasks 

presented in this manuscript, attempts were made to make the reasoning 

space topology as close to the observed student reasoning topology by drawing 

upon student written explanations of reasoning, but there were some 

intentional exceptions (which will be discussed later). 

A second point worth mentioning is that the chaining task (especially 

when implemented online) creates an environment in which students are 

required to present their argument in a linear progression of inferences, and 

this presentation of reasoning is separate from the process of reasoning that 

occurs in the mind. For instance, a student may consider a lengthy line of 

reasoning, but feel that simplicity and elegance are valued in the sciences 

and therefore seek to construct the most concise argument possible in the 

elements; another student, though, may report a short chain out of a desire to 

get through the task quickly, without deep study of the elements provided. 

Regardless of these differences, there is still something valuable to be gained 

from analyzing patterns in the reasoning chains constructed by students. For 



   

 

140 

 

example, suppose students don’t endorse first principles in their chains. We 

can’t assume that they did not consider first principles, but we can assume 

that if they did consider first principles, they made a decision (whether 

conscious or not) to exclude those considerations in the presentation of their 

reasoning. 

4.4.1.1 Chaining task data as networks of associations 

Chaining task data can be cast as a network for quantitative analysis. 

To accomplish this, the reasoning elements can be represented as nodes in a 

network and associations made by the student between the elements can be 

represented as links. We considered two main methods for establishing 

associations (links) between reasoning elements (nodes). In the first, a 

connection is said to exist between two elements if the two elements are 

placed consecutively in a student’s chain or on either side of a connecting 

word; a network created using this definition of association is referred to in 

this paper as a direct association network. In the second method, a connection 

exists between two elements if they appear together in the same student 

response; a network constructed in this way is referred to as an indirect 

association network. Individual student response networks are summed to 

create the full network for all responses in a given data set. 

In both methods, we remove connecting words from the data and use 

undirected links to form our networks. The connecting words, while serving 
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in many cases to clarify the logic of a student’s argument, posed a challenge 

for network analysis for two reasons. Initially, it was hoped that the 

connecting words could be used to define different types of links between 

elements (some causal, some associative). This hope was diminished when it 

was observed that students often used connecting words intermittently and 

inconsistently. For instance, a few students placed an answer element 

followed by “therefore” and then elements that justified their answer, 

effectively reversing the inherent logic between the answer and the 

argument. This may have been a simple oversight or error in meaning (like a 

typo) or it may have reflected a deeper misunderstanding of logical 

connectives. At any rate, it was unclear in some cases that the connecting 

words were being used according to a normative understanding of logic. The 

second difficulty was that even when connecting words were used consistent 

with normal rules of logic, there remained ambiguity in the components that 

were intended to be associated with the connective, particularly when a task 

required multiple inferences. For instance, consider the phrase “A because B 

and C therefore D”. This phrase could be parsed logically as “A because (B 

and C)” or it could be parsed as “(A because B) and C”. (Similar ambiguity 

exists regarding the parsing of the “therefore” connective.)  For these two 

reasons, we felt uncomfortable attributing representational meaning to the 

connecting words when constructing the networks. 
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Figure 4-2. An example of two methods for constructing an individual-

student network from an individual student’s response. 

 

Because we removed the connecting words from students’ responses 

when constructing a network, we also opted to make the links undirected. 

One could imagine, alternatively, a scheme that encodes either (1) the 

ordering of the elements by placing a directed link (i.e., an arrow) from an 

element to the element that comes next in the chain, or (2) the logical 

associations implied by the connecting words, using undirected links for 

elements connected by “and” as well as directed links for elements connected 

by “therefore” or “because”. A network constructed according to the latter 

scheme would be problematic for the reasons outlined in the previous 

paragraph. However, a network constructed using the former scheme would 

also be problematic because a directed link would imply a causal direction in 
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the association between elements. This implication would be misleading 

because the directionality of the association is made ambiguous when 

removing the connecting words. For instance, the phrase “A therefore B” 

could equivalently be written “B because A”. When constructing a directed 

network, both cases would be represented differently in the network but 

actually correspond to the same type of logical causality. We wished to 

respect this limitation by not representing the ordering of the elements in 

students’ responses, instead opting to represent the proximity. By doing so, 

we interpret a link between reasoning elements as simply a general 

“association” between those elements rather than interpreting any sort of 

logical meaning from the link. However, we find that this method of 

constructing networks does yield interpretable results, and we view this 

decision as a ground-level analysis of reasoning chains. Future analyses may 

be performed in order to investigate the usefulness of directed networks.  

In some cases, directed networks were constructed to better interpret 

the undirected networks, primarily in measuring which elements were likely 

to be first or last in a chain. We measured this by creating a directed network 

according to scheme 1 explained above, in which there is a directed link from 

an element in a chain to the subsequent element used in that same chain. 

Using this network, we calculate the ratio of out-degree (number of links 

pointing away from the node) to in-degree (number of links pointing toward 

the node). Elements for which this ratio is much greater than one are 
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considered to be likely starting points while elements with a ratio less than 

one are considered to be ending points. It has been observed that, in most 

chaining tasks, the answer elements tend to be ending points. 

Note that in the work presented in this dissertation, undirected 

indirect- and direct-association networks are both used in the main analysis, 

whereas directed direct association networks are only used in certain places 

where useful. 

4.4.2 Network analysis 

In this section, we present an overview of the network analysis 

techniques employed in this work. Later sections will describe in detail how 

to interpret the results of these methods in the context of reasoning chain 

construction tasks. 

4.4.2.1 Locally Adaptive Network Sparsification 

Network sparsification aims to uncover the “backbone” structure of a 

large network by deleting links (sometimes called edges) that are 

unimportant to that structure (Foti, Hughes, & Rockmore, 2011). One simple 

method for achieving this is to establish a threshold value for a link’s weight 

and delete all links that fall below this threshold. For instance, one might 

decide a connection is only relevant if more than 5% of students made the 

connection, and so we would delete any link that had a weight less than the 

value of 0.05 ∗ 𝑁, where 𝑁 represents the population size. However, this 
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method does not preserve some structures that may be of interest. Perhaps a 

small group of students decided to be detailed in their reasoning chains, and 

so they added structure to the network that is relevant to overall patterns of 

reasoning but, due to their low prevalence among the whole population, this 

structure might get cut from the network by an arbitrarily set threshold 

weight. Additionally, it may be hard to guess, a priori, a threshold weight 

that preserves these structures and still reduces the complexity of the 

network. 

Another, more sophisticated, method of sparsification is Locally 

Adaptive Network Sparsification (LANS) (Foti, Hughes, & Rockmore, 2011). 

In LANS, the statistical significance of each link is calculated for the two 

nodes locally and a link is deleted only when it is found to be below a 

threshold value of significance to both nodes. This preserves local structure 

that would be dismantled using a threshold link weight method. The LANS 

method is implemented by first calculating the fractional link weight of a link 

connecting nodes i and j, as 

𝑝𝑖𝑗 =
𝑤𝑖𝑗

∑ 𝑤𝑖𝑘
𝑁𝑖
𝑘=1

, 

where 𝑤𝑖𝑗 is the weight of the link, and the sum in the denominator is 

over all the nearest neighbors of the node i. Then, the cumulative distribution 

function (CDF) is computed as 

𝐹𝑖𝑗 =
1

𝑁𝑖
∑ 1̂

𝑁𝑖
𝑘=1 {𝑝𝑖𝑗 < 𝑝𝑖𝑘}, 
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and the link is retained if 𝐹𝑖𝑗 > 𝛼, where 𝛼 is the pre-determined 

significance threshold. These same calculations are, of course, completed for 

every link in the network. 

To give an example of how this method works, a sample network 

(Figure 4-3.a) was constructed, and the technique applied. The main 

structure of the original network is represented by the lettered nodes. The 

link between nodes D and E is 7 times weaker than the link between nodes D 

and C; all other links between lettered nodes are roughly equivalent in 

strength. The added nodes 6-8 were given random connections to each other 

and the other nodes in the network to simulate smaller structures that may 

be of interest and generate “noise”. The sparsified network is shown in Figure 

4-3.b. One can see that the smaller structures have been retained even after 

the network has been simplified via the LANS technique. Importantly, the 

connection between nodes D and E has been severed. Thus, this technique is 

able to preserve small structures while still detecting and removing weaker 

connections among the larger structures.  

Note that the four connections to node 6 remain. This is because those 

four connections are equally significant to node 6; more generally, anytime a 

node has only edges of weight one, all of those links will be preserved due to 

the nature of the algorithm. Because of the tendency to automatically 

preserve nodes such as node 6, we “prune” sparsified networks by removing 

all links of weight 1 after sparsification to make the network more readable. 
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a            b   

Figure 4-3. Example network illustrating Locally Adaptive Network 

Sparsification (Foti, Hughes, & Rockmore, 2011). (a) The base network. 

(b) The same network after sparsification at 𝛼 = 0.1. 

 

For the work presented here, the threshold 𝛼 was chosen by lowering 

the theshold as much as possible before either nodes or collections of nodes 

began to be separated from the network. For instance, in some networks, 

there are elements that are more tightly associated with each other than with 

the rest of the network, and these may break off during sparsification when 

the threshold is too low. We wished to preserve the structure of the network 

to the extent possible while still simplifying it, so we felt uncomfortable 

breaking the network into separate pieces. Typical values of 𝛼 for this work 

ranged from 0.1 to 0.2. These values ended up being consistent with other 

studies using LANS (Foti, Hughes, & Rockmore, 2011).  

4.4.2.2 Community Detection 

The techniques of network analysis allow us to quantitatively 

determine groupings of elements, or communities, which are more tightly 
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associated with each other than with the rest of the network. There are many 

methods of community detection available, and there is no single “best” 

method (Fortunato, 2010). The method used in this work is termed optimum 

modularity community detection (Newman, 2006). This method of community 

detection was chosen based on its potential for interpretability of results and 

also because the underlying statistical nature of the method allowed it to be 

useful for a broad range of network types. It was also selected because the 

method allowed for a rigorous definition of a community as an indivisible sub-

graph of the network. 

Network modularity is proportional to the number of links between a 

pre-defined group of elements minus the number of expected links in an 

equivalent network (i.e., one with the same nodes) in which the links are 

placed at random. The expected number of links is 𝑘𝑖𝑘𝑗/2𝑚, where 𝑘𝑖 and 𝑘𝑗 

are the degrees of node 𝑖 and node 𝑗, and 𝑚 is the total number of links in the 

network and is given by 𝑚 =
1

2
∑ 𝑘𝑖

 
𝑖 . Thus, the expected number of links is 

related to the degree of the node: the higher the degree, the more likely it is 

to have links in a network in which the links are placed at random.  

The modularity is maximized by dividing the network into two 

subgraphs of maximum modularity and then repeating this process for each 

of the two parts. If any proposed division causes the total modularity to 

decrease, the corresponding subgraph is preserved and considered a 
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community, and the algorithm moves on to the next subgraph until all 

communities are found. Thus, a community is defined as an indivisible 

subgraph of the network. 

Before relying on the results of community detection, it is helpful to 

gauge how robust the community structure is. Could small perturbations 

produce a different community structure in the network? If the answer is yes, 

then it would be reasonable to mistrust the divisions made by optimizing 

modularity. However, if the structures are impervious to random insertions 

or deletions, this would be clearer evidence of true community structure. To 

assess robustness, we employ a technique based on statistical bootstrapping 

that has been modified from Fortunato (2010) for the context of chaining 

tasks.  

For a data set of N student responses, our bootstrapping technique 

consists of creating a hypothetical data set comprised of 𝑀 = 𝑁 responses 

drawn at random from the 𝑁 actual student responses. (A specific response in 

the original data set may be selected more than once for the hypothetical 

data set; if this weren’t the case, the hypothetical data set would be 

equivalent to the actual data set.) This hypothetical data set is treated as a 

new data set and a network is constructed from it. The community structure 

of this new hypothetical network is found, and tests are applied to the 

hypothetical community structure. The process is then repeated for many 

iterations, tallying the results of the tests so as to determine how frequent a 
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particular result is. It is suggested to perform as many iterations as possible, 

but in chaining task analysis, convergence is attained quite easily. 

Accordingly, in the research described in this manuscript, a standard 1000 

iterations were found to be sufficient to obtain reliable information. 

Typically, the primary test for a bootstrap iteration is to determine 

whether or not the community structure in the hypothetical network is the 

same as the community structure in the actual network. In many cases, one 

or two elements may not be as tightly bound in a community as the others, 

and so testing for the exact community structure does not produce enough 

resolution to determine the strength of a community. Instead, it is helpful to 

determine, via testing, which elements are most often contained in a given 

community. This type of test can be applied by selecting an element of 

interest (such as an answer element) and determining which of the other 

elements are consistently in the same community as that element. By taking 

note of the community members in each iteration, a frequency plot can be 

generated from the results. An example of such a frequency plot is shown in 

Figure 4-7.   

4.4.2.3 Network measures: centrality and clustering 

Two network measures, betweenness centrality and global clustering 

coefficients, were utilized in the current work and will be described here. 

Betweenness centrality (Opsahl, Agneessens, & Skvoretz, 2010) is seen as a 
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measure of a node’s control over the “flow” in the network. A node’s 

betweenness was originally defined as the number of shortest distance paths 

through that node divided by the total number of shortest distance paths in 

the network (Opsahl, Agneessens, & Skvoretz, 2010). This definition applied 

only to unweighted networks, and so the definition was modified to respect 

the weights of the various links in the network by defining “shortest 

distance” as a combination of the traditional “distance” (i.e., number of nodes 

on a path between two end-nodes) and a “conductance” (i.e., the weighting of 

the different links on a path between two end-nodes) (Newman, 2001). 

Opsahl et. al. (2010)’s modification of betweenness for weighted networks 

relies on a similar definition of shortest distance, and is represented as  

𝑑(𝑖, 𝑗) = min (
1

(𝑤𝑖ℎ)𝛼
+ ⋯ +

1

(𝑤ℎ𝑗)
𝛼) 

where 𝑑 is the shortest distance between node 𝑖 and node 𝑗, 𝑤𝑔ℎ is the weight 

of the link between nodes 𝑔 and ℎ, and 𝛼 is a positive tuning parameter 

which is set based aspects on the context that the network is representing. 

When 𝛼 < 1, the number of nodes in a path becomes a greater influence on 

the distance, whereas for 𝛼 > 1, the weight of the links becomes a greater 

influence. In chaining networks, the weight of a link represents the number 

of students who made an association between the two elements and so it 

should have the most influence over the distance: a path that many students 

established should be of smaller distance than a short path that only a few 
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students took. However, we don’t wish to completely drown out structures 

created by only a few students. For this reason, we select a value of 1.5 for 𝛼. 

The betweenness is then calculated in the same manner as for unweighted 

graphs: by finding the ratio of the number of shortest paths through a given 

node to the number of shortest paths in the network. 

Global clustering coefficients were also defined originally for 

unweighted networks and needed to be updated for weighted networks. The 

goal of a global clustering coefficient is to quantify how interconnected a 

network is. The clustering coefficient was originally defined as the number of 

closed triads (grouping of three nodes all connected to each other) divided by 

the total number of triads, either open, (i.e., only two links among the three 

nodes), or closed (i.e., all nodes connected) (Opsahl & Panzarasa, 2009). The 

direct association network shown in Figure 4-2 would have a clustering 

coefficient of zero, while the indirect association network shown in that figure 

would have a clustering coefficient of one. The idea of clustering is extended 

to weighted networks by assigning a weight, 𝜔, to each triad in the network 

based on the weights of the links in the triad (Opsahl & Panzarasa, 2009). 

The weights, 𝜔, are computed from the geometric mean of the weights of the 

two links stemming from the center node of the triad. The clustering 

coefficient can then be defined as follows, with 𝜏 representing the set of 

triplets and 𝜏Δ representing the set of closed triplets: 
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𝐶𝜔 =
total value of closed triplets

total value of triplets
=

∑ 𝜔𝜏Δ

∑ 𝜔𝜏
. 

Thus, if a network had many closed triads compared to open triads, but 

the open triads were all of heavier weight, the network may not be considered 

to be interconnected. Conversely, if a network had few closed triads but these 

triads weighted most heavily in the network, this network would rightly be 

considered to be interconnected. 

 

4.5  Research tasks 

In this section, we present network analysis of four chaining tasks in a 

physics context in order to highlight the power of these methods in providing 

insight into student reasoning. The first task is set in a work and energy 

context and provides an introduction to the interpretations of the network 

analysis methods in the context of chaining tasks. The second and third tasks 

examine reasoning related to friction and reveal the possible utility of 

network analysis of chaining tasks toward understanding the structure of 

student knowledge. Finally, in the last section, we detail a set of four 

isomorphic graph-based tasks that span four content areas: kinematics, 

potential energy, electric potential, and magnetic flux. Network analysis of 

these graph-based tasks reveals the development of a more coherent line of 

reasoning across two semesters of introductory physics instruction.  
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In summary, this investigation asked and answered the following 

research questions. To what extent can network analysis methodologies 

applied to reasoning chain construction task data better characterize the 

nature of student reasoning on qualitative physics questions? In particular, 

how can we interpret the results from network sparsification, community 

detection, and betweenness centralities when applied to networks of 

reasoning chain elements? 

4.5.1 Work-Energy task 

Here we focus on a chaining task in the context of work and energy, 

and we use this task as an example of how the methods of network analysis 

can be interpreted in the context of chaining tasks. In this section, we 

describe the task, provide the results of the network analysis techniques 

described in section 4.4.2, and discuss the insights gained from this approach. 

The goal of this task was to answer the following question. How 

effective are network analysis methodologies at characterizing and 

differentiating among different lines of reasoning on a physics question that 

most students can answer correctly? 

4.5.1.1 Physics question overview  

The work-energy task was adapted from a concept question (Chapter 9, 

Concept Question 6) appearing in Knight’s text (Knight, 2016). In the task, 

students are told that a point particle moving to the left is slowing down 
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because of a force pushing to the right, and no other forces are acting on the 

particle. Students are asked if the work done on the particle by the force is 

positive or negative, or if there is not enough information to tell. The 

complete prompt as well and the reasoning elements provided to the student 

are shown in Figure 4-4. 

The correct answer is that the work on the particle by the force is 

negative. There are two viable ways of answering this question. The first 

involves recognizing that the work done is defined as the dot product between 

the force and displacement vectors and that a dot product of two vectors 

pointing in opposite directions is negative in order to establish that the work 

is similarly negative. This line of reasoning will be referred to as the work as 

a dot product argument. The second line of reasoning, the work as a change in 

energy argument, uses a statement of the work-energy theorem (i.e., 

𝑊𝑛𝑒𝑡,𝑒𝑥𝑡 = Δ𝐾𝐸 + Δ𝑃𝐸) with the observation that the particle is slowing down 

to argue that since the kinetic energy is decreasing, and a point particle has 

no change in potential energy, the work done on the particle by the force 

must be negative. This line of reasoning could be simplified by invoking the 

work-kinetic energy theorem (i.e., 𝑊𝑛𝑒𝑡,𝑒𝑥𝑡 = Δ𝐾𝐸), and thus disregarding 

arguments related to potential energy.  

On the basis of student responses to similar questions in other 

formats, the most common incorrect response involves concluding that the 
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work on the particle by the force is positive because the force is pushing to 

the right, which is assumed to be the positive direction.  

4.5.1.2 Chaining task implementation  

The reasoning elements provided to students on the chaining version of 

the work-energy task were expressly designed to reflect both the work as a 

dot product argument and the work as change in energy argument, and are 

shown in Figure 4-4. While the common incorrect line of reasoning may also 

be constructed from the elements provided, all of the reasoning elements 

(with the exception of the incorrect conclusion elements) are true statements. 

 

Figure 4-4. Work-energy task.  Question prompt and associated reasoning 

elements provided to students are shown. The elements are numbered 

for later reference and color coded based on whether they were 

intended for the work as a change in energy argument (green) or for the 

work as a dot product argument (blue) or are conclusion elements 

(yellow). 
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4.5.1.3 Performance overview 

Of the 119 students who completed the chaining version of the work-

energy task, 92% of them answered correctly that the work done by the force 

on the particle is negative. Of these responses, 69% responded with the work 

as a dot product argument, 12% responded with the work as a change in 

energy argument, and 16% included both arguments. Figure 4-5 shows an 

example of each type of student response.  

We have purposefully chosen to introduce network analysis using the 

work-energy task due to the unambiguous nature of the collected data set, as 

this allows us to demonstrate the applicability and power of the network 

analysis tools before examining more complex, nuanced data sets. Because of 

the strong overall performance on the work-energy task, it is likely that 

students had a solid grasp of the reasoning involved in answering the 

question, and we therefore expected this to be reflected in their reasoning 

chains. Furthermore, since many students articulated each independent 

argument (energy and/or dot product), we recognized that these lines of 

reasoning would be clearly represented in a network constructed from all 

student responses. As a result, this set of student responses represents an 

ideal test case for the application of the network analysis methods described 

above in the context of reasoning chain construction tasks.  
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Figure 4-5. Examples of each type of response to the work-energy task. The 

example response with both has been condensed, while the other two 

examples show what the chain would have looked like to the student. 

4.5.1.4 Community detection analysis of correct responses 

We constructed both a direct and an indirect association network from 

the correct responses to the work-energy task and applied the community 

detection algorithm to each separately. (Recall that, as discussed in Section 

4.4.1, a direct association network only links elements that are placed 

consecutively in a student response, while an indirect association network 

links each reasoning element in a response with every other reasoning 

element in that response.) The results from that analysis are shown in Figure 

4-6. In the figure, the elements that are important to the work as a dot 

product argument are colored blue and the elements important to the work as 

a change in energy argument are colored green. 
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(a)

(b) 

Figure 4-6. A representation of the communities found in (a) a direct 

association network and (b) an indirect association network built from 

correct responses to the work-energy task described in Section 4.5.1.2. 

Elements that are aligned with a work as dot product argument are 

colored blue and the elements aligned with the work as a change in 

energy argument are colored green. The answer element is colored 

yellow. 
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In both the direct and indirect association networks, the elements in 

the work as a dot product argument and the elements in the work as a change 

in energy argument are found by the community detection algorithm to be 

separate from each other. Additionally, the community structure of the direct 

association network reveals that the work as dot product elements appear to 

have two groupings: one with the two elements that state that the force 

vector is to the right and the displacement vector is to the left, and one with 

the rest of the work as dot product elements. 

We wish to note here that these results show that the two types of 

networks, direct and indirect, yield differing levels of detail and indeed 

different types of information about the set of student responses represented. 

Thus, it is valuable to examine both types of networks. More will be said 

about this in Section 4.5.1.6. 

4.5.1.4.1 Bootstrapping Community Detection Results 

To assess the stability of the communities found via the optimum 

modularity community detection algorithm, bootstrap tests were 

administered by repeatedly testing “hypothetical” networks constructed from 

resampled correct responses, as explained in Section 4.4.2.2. We first discuss 

our examination of the communities arising in the direct association network, 
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and then turn our attention to the communities in the indirect association 

network. 

For the direct association network, in every bootstrap test, the 

elements associated with the work as a change in energy argument and the 

work as a dot-product argument were well separated from each other. For 

example, consider the bootstrapping frequency plots shown in Figure 4-7.a 

and Figure 4-7.b. The plots indicate the percentage of the bootstrapping trials 

in which each element was included in a specified community. For these 

tests, we defined membership in the work as a change in energy community 

as being in the same community as the general statement of the work-energy 

theorem (i.e., element 1), and membership in the work as dot-product 

community as being in the same community as the statement of work as a 

dot-product (i.e., element 4). The frequency plots reveal that the two 

arguments are well separated in the network since no element associated 

with the work as a change in energy argument appears in the work as a dot 

product community, and vice versa, in close to 100% of the trials.   

The two-element “force is to the right” and “displacement is to the left” 

community shown in Figure 4-6.a was only preserved in 35% of bootstrapping 

runs when testing for the presence of that community on each iteration. On 

its surface, such a result would seem to call into question the robustness of 

that structure. However, there is indeed a stronger association between those 

two elements than any other two elements in the network; there is a link 
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weight of 39 between those two elements, whereas the next strongest link 

weight is only 18 (not shown). The frequency plot for that community (shown 

in Figure 4-7.c) shows that the two elements are always coupled together in 

the same community (1000 times out of 1000) but that between 30% to 40% of 

the time, the elements concerning the dot product (elements 3 and 4) are also 

included. Taken together, then, these results indicate that this two-element 

structure is indeed present in the network and that the frequency plot may 

be a more reliable method for obtaining information about the robustness of 

community structure than simply testing for the existence of the community 

with the initial structure. 
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Figure 4-7. Bootstrapping frequency plot for three communities, including (a) 

the work as a change in energy community, (b) the work as a dot-

product community, and (c) the two-element force and displacement 

community. The plot indicates the percentage of the trials in which 

each element was included in the specified community. A dotted line 

corresponds to the 60% threshold used for ascertaining community 

membership in the bootstrapping tests. 

 

For the indirect association graph, we administered three bootstrap 

tests. In the first bootstrap test, we tested the hypothetical network for the 

exact community structure shown in Figure 4-6.b and found that 88% of 
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networks had that exact same structure. We also conducted bootstrap tests 

where, on each iteration, we tested which elements were in the same 

community as (a) the general statement of the work energy theorem (element 

1) and (b) the statement of work as a dot product, (element 4), as with the 

direct association graph. Based on the bootstrapping frequency plots (not 

shown), all of the work as a change in energy argument elements are found 

100% of the time in the community with the statement of the general work-

energy theorem, and the elements related to the work as a dot product 

argument are likewise found 100% of the time with the statement of work as 

a dot product. Thus, we felt very confident in the robustness of community 

structure depicted in Figure 4-6.b. 

4.5.1.5 Network Sparsification Method Applied to Work Task Correct 

Responses 

We now explore the usefulness of network sparsification by analyzing a 

direct association network built from the correct responses to the work task. 

Figure 4-8 shows a sparsified version of the direct association network at a 

threshold of 𝛼 = 0.2. The elements in this figure are color coded according to 

the same color scheme used in Section 4.5.1.2. 
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Figure 4-8. A representation of a sparsified (𝛼 = 0.2) direct association 

network built from correct responses to the work task. The elements 

are color coded according to the line of reasoning they are useful for: 

green elements are useful in the energy argument, and blue elements 

are useful in the dot product argument. 

 

In Figure 4-8, it can be seen that the two independent arguments are 

again separated as distinct in the network since the elements associated with 

the energy argument are separate from the elements associated with the dot 

product argument. Furthermore, examination of the network reveals the 

existence of two clear chains of reasoning, each of which appears to include 

general principles (such as the work-energy theorem or the definition of work 

as the dot product of the force and displacement vectors) and then to step 

through the application of the specifics in the problem statement before 

finally arriving at an answer. By constructing a directed network and 

calculating the ratio of out-degree to in-degree (as explained in Section 4.4.1), 

it was shown that the element “the system of interest is the point particle” 

(element 10) is indeed a starting point for students (out:in is 3.0) as well as 

“work can be computed …” and “the dot product is…” (elements 3 and 4; 

out:in is 2.0 and 1.3, respectively). Additionally, the answer element is an 

end-point with an out:in of 0.1. Thus, based on the sparsified undirected 
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graph and the information about out to in degrees of the directed graph, the 

students in this case appeared to generally be starting with 1st principles and 

applying situation specific constraints to arrive at an answer.  

4.5.1.5.1 Assessing the fidelity of the sparsified representation 

While the features of the sparsified graph are of interest, it is also good 

to assess, to the extent possible, whether they are true representations of the 

network structures, or whether they are artifacts of the sparsification 

process. To assess the fidelity of the sparsified representation, we compare 

features of the sparsified network to network measures applied to the 

unsparsified network. 

The first feature of interest is the observed topology of the network. 

The topology of the work as a change in energy argument elements, shown in 

Figure 4-8, is observed to be quite linear, while the topology of the elements 

associated with the work as a dot product argument is more interconnected. 

These apparent topological differences are reflected in the global clustering 

coefficients for each argument. Analysis of an unsparsified sub-network 

composed of solely the elements in the work as a change in energy argument 

yields a clustering coefficient of 0.48. The global clustering coefficient of an 

unsparsified sub-network consisting of just the elements in the work as a dot-

product argument is 0.89 -- substantially higher. Thus, the relative 

interconnectedness of each of these arguments in the original, unsparsified 
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networks (indicated by the clustering coefficients) appears to be preserved 

even after the sparsification process (indicated by the topology of the 

sparsified network); this consistency highlights both the fidelity and 

reliability of the chosen sparsification technique in retaining key 

characteristics of the network structure. 

Another observed feature of the network structure is the element, “the 

particle is slowing down” (element 8) that bridges the two independent 

arguments. We sought to ascertain whether or not this element also served as 

a bridge in the unsparsified network. Bridges tend to have higher 

betweenness centrality as they are essential to the flow of information 

through a network (upon which the betweenness centrality is based), which 

means that betweenness centrality is a good measure to assess whether the 

feature is a bridge in the unsparsified network. The two elements in the 

unsparsified network with the highest betweenness are “the change in kinetic 

energy is negative” (element 12) and “the particle is slowing down” (element 

8). These two elements, incidentally, have the same betweenness. 

Furthermore, in the sparsified network, those two elements also have the 

highest betweenness centrality. Thus, the sparsified structures appear to be 

reliable representations of the original network structures on the basis of 

betweenness centrality as well.  

The location of “the particle is slowing down” as a bridge in the 

network may be attributed to that particular element being used frequently 
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in both the work as a dot-product argument and the work as a change in 

energy argument. Upon more detailed analysis of student responses, it was 

found that in the work as a change in energy argument, the element was 

used to justify why the kinetic energy (and thus the work) is negative, 

whereas in the work as a dot-product argument, the element was used to 

describe the consequence of the force and displacement being in opposite 

directions. This latter use may have stemmed, in part, from students 

referencing the task prompt, which noted that the particle “is slowing down 

because of a force pushing to the right”. 

4.5.1.6 Discussion of Results 

The separation of the elements into two distinct lines of reasoning in 

both the community detection results and the sparsification results shows 

that network analysis of data drawn from the reasoning chain construction 

task can explore, in a meaningful way, the content of the various arguments 

constructed by students. In particular, the results show the role that each 

type of network (indirect vs. direct association) can play in examining student 

reasoning. Based on our analyses, finding communities in the indirect 

association network seems best suited for determining which lines of 

reasoning are present among the responses, whereas community detection 

applied to direct association networks allows for greater resolution of the sub-

arguments that make up those lines of reasoning. 
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Bootstrapping is an indispensable part of community detection. The 

bootstrapping frequency plot revealed a fairly stable sub-argument structure 

in the direct association network comprised of the elements “the force on the 

particle is to the right” and “the displacement vector is to the left”. We would 

expect those two elements to be more closely associated with each other in 

the network since they were often placed next to each other in student 

responses. Indeed, the algorithm is sensitive to that structure. It is important 

to note that bootstrap testing for an exact community structure is less 

informative than a bootstrapping frequency plot (recall the two-element sub-

structure in Figure 4-6.a, as the latter can determine which elements are 

more likely to be in a given community. 

The sparsified network appears to give information about how 

students viewed the structure of an argument. The linearity of the work as a 

change in energy argument and the non-linearity of the work as a dot-

product argument suggest a difference in how students approached those two 

arguments. On the face of it, the linearity or non-linearity of the associations 

between a group of elements indicate that many students either responded 

with similar ordering of the elements (creating a linear network) or that 

there was not a preference for which elements came before others in the 

reasoning chain (creating a clustered, non-linear network). It could be that 

this is inherent to the elements provided, or it could be indicative of a 

particular learned approach to a problem. As noted in the sparsification 
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results section, the students in this case appear to have started with first 

principles and the application of situation specific constraints in order to 

arrive at an answer. Perhaps in an energy setting, students recognized that 

defining a system needed to occur before the application of the general work 

energy theorem. In contrast, the implication of the dot product on the sign of 

the work when the vectors were in opposite directions (i.e., element 3) is not 

necessarily an important next logical step after establishing that “work can 

be computed from the dot product of force and displacement” (element 4). If it 

were, the network would have appeared much more linear, with element 4 

being linked only to element 3, from which the rest of the network would be 

linked. Students instead appeared to proceed to information about the force 

and displacement vectors before discussing the mathematical aspects of the 

dot product.  

Most importantly, the ability to quickly and efficiently determine 

information about how a large group of students is approaching a line of 

reasoning can be very useful to instructors and researchers alike, even if the 

specific interpretation of the structure is not always immediately apparent. 

It is important to note, however, that the clear chain of reasoning 

shown in the sparsified graph does not necessarily represent the chain of 

reasoning constructed by the majority of individual students. Actually, only 2 

students out of 100 responded with chains that included the first four 

elements of the energy argument (namely, elements 1, 9, 10 and 11) in the 
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order represented in Figure 4-8, and only 8 used all four elements in their 

chain. Many students only cited parts of the argument, inserted irrelevant 

elements into their argument, arranged the argument differently, etc.; still, 

these students constructed their arguments in a way that led to the majority 

of the associations being between those four elements in the ordering shown 

in Figure 4-8. Thus, the sparsified network represents a “wisdom of the 

crowd” (Galton, 1907; Surowiecki, 2004) result, a synergistic classroom 

consensus on how the elements ought to be arranged that transcends the 

reasoning chains constructed by individual students. 

Further evidence of this synergistic consensus or wisdom of the crowd 

is provided by the results of the betweenness calculations. In the full, 

unsparsified network of correct student responses, the element “the speed is 

decreasing” served as a bridge between the two independent arguments and 

therefore has a high betweenness centrality. However, that particular 

element was not used by any single student to bridge the two arguments in 

his or her reasoning chain. Instead, the element’s high betweenness 

centrality offers a glimpse into how the students as a whole viewed that 

particular element; in the logical landscape of this problem, the information 

that the speed is decreasing can be seen as relevant to both arguments. An 

implication of this dual-relevancy is that this single element may serve as a 

possible pivot point for shifting from one argument to the other during, for 

example, a classroom discussion of the solution to the task.  
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A more general implication of the synergistic nature of the reasoning 

chain network (whether sparsified or not) is that the betweenness centrality 

of an element is not necessarily related to the position of that element in any 

given chain, but rather the position of that element in the collection of all 

chains. The two are coupled, of course, because if a certain element is placed 

at the beginning of a chain by every student, that element would have a low 

betweenness score. However, an element that is always placed in the middle 

of a chain may not necessarily have high betweenness in the resulting 

reasoning chain network unless that element is shared among many different 

types of chains or orderings of a particular argument. As an example, 

consider the element “a point particle has no potential energy and therefore 

no change in potential energy” (element 9). From the sparsified network, this 

element was likely consistently placed in the middle of individual student 

chains, but its betweenness is low (5th from lowest) because it was always 

placed in the middle of the same student chain (further study of the 

individual reasoning chains confirmed this to be the case). Thus, betweenness 

centrality measures centrality to the wisdom of the crowd or classroom 

consensus reasoning. 

This classroom consensus reasoning can be useful in identifying where 

a class stands with respect to the usage of certain arguments. For instance, 

the work task was administered to two different calculus-based introductory 

mechanics courses at the same university, but with different instructors who 
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had different instructional emphases. The sparsified network shown in 

Figure 4-8 was derived from student responses during one these courses and 

represents a full work as a change in energy argument, whereas the sparsified 

network of responses from the other class (not included in this paper) gave a 

truncated work as a change in energy argument that only associates the 

elements “in this case, the net external work done is equal to the change in 

kinetic energy” and “the change in kinetic energy is negative” before arriving 

at an answer. The work as a dot product argument, however, appeared to 

have been articulated in full by students in that same class. Since the 

arguments associated with the definition of work as a dot product in both 

classes were similar, the difference in how the work as a change in energy 

argument was approached by these two classes could be due to factors such 

as the focus of instruction, the epistemological stance of the instructor and/or 

students, mastery of work-energy related content, etc. Our network data 

alone cannot isolate the reason for the difference, but they do provide a 

method of quickly ascertaining the nature of the difference. Thus, we find 

chaining tasks coupled with network analysis to be a useful diagnostic tool in 

investigating student reasoning patterns throughout instruction. 

While the community detection results and the sparsification results 

were largely complementary in our analysis of the work-particle task, it isn't 

necessarily the case that elements found to be tightly associated with each 

other using community detection will be as tightly associated with each other 
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in the sparsified network. The main reason for this is that each analysis 

method is answering a different question about the associations made by the 

students. Community detection answers the question “Which elements are 

more tightly associated with each other than with the rest of the network?”, 

whereas the sparsification method answers the question “What is the 

structure of the associations made between all of the elements?”. As a specific 

example of how the answers to these questions can differ for the same task, 

we found in the work-particle task that the element “the particle is slowing 

down” was more tightly associated with the work as a change in energy 

argument than with the work as a dot product argument; however, 

sparsification revealed that, structurally, the element was shared between 

both arguments.  

4.5.2 Truck Friction task 

In the previous section, the strong student performance on the work-

energy task helped us illustrate the power of network analysis methods in 

characterizing student responses to reasoning chain construction tasks. In 

this section, we analyze the results of reasoning chain construction task that, 

like the work-energy task, has two independent pathways for answering 

correctly, but which is considerably more difficult for students.  

The truck friction task examines three main research questions. 
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1. How effective are network analysis methodologies at 

characterizing and differentiating among different lines of 

reasoning on a physics question that is more challenging for 

students? 

2. What are the limitations associated with reasoning chain 

construction tasks, and can the tasks be modified via 

adjustments to the list of reasoning elements to address such 

limitations? 

3. To what extent can network analysis be used to identify and 

document evidence in support of specific theoretical constructs 

(e.g., dual-process theories of reasoning or resources) in 

reasoning chain construction task data?   

4.5.2.1 Physics question overview 

In this task, a box is resting on the back of an accelerating truck, as 

shown in Figure 4-9. Students are told that “the truck is moving to the right 

and speeding up (i.e., the truck is accelerating to the right)” and that the box 

is not moving with respect to the truck. They are asked to determine the 

direction of the force of static friction from the truck on the box.  

There are several approaches that may be used to arrive at the correct 

answer that the static friction is directed to the right. In a more formal 

approach, it is recognized that the net force on the box must be in the 
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direction of the acceleration of the box (from Newton’s second law), which is 

to the right.  Since the only horizontal force acting on the box is the force of 

static friction, the net force is equivalent to the static friction force. Thus, the 

static friction force must be directed to the right. The two main arguments in 

this approach (net force is in the direction of acceleration and the static 

friction force is equivalent to the net force) are independent of each other but 

must both be considered in order to logically deduce that the static friction 

force must be directed to the right. 

A common alternative approach is to construct a hypothetical 

argument that, in the absence of friction, the box would slide toward the back 

of the truck (i.e., this is the impending motion).  Thus, since the box is not 

sliding to the left with respect to the truck, the friction force must be 

opposing the impending motion and is therefore directed to the right. 

 

Figure 4-9. Task statement and diagram given to students on the Truck 

Friction task.  

 

Based on previous research regarding this task and ones similar to it, 

a common incorrect way of answering this question is to reason that friction 

opposes the actual motion (as opposed to the relative or impending motion) 

and that since the box is moving to the right, the friction must point left to be 
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in opposition to that motion. From free response data to this task, we found 

that students also commonly add that the friction is opposing the force of 

motion to the right and cite Newton’s third law to justify that they are equal 

in magnitude. (These same students still maintain that the static friction is 

directed to the right.) The common incorrect line of reasoning is consistent 

with conceptions of friction noted in literature (e.g., Besson 2007). 

From a preliminary study in which this question was asked as a 

multiple choice plus explanation question, we found that of 115 respondents, 

22% of students used the formal Newton’s 2nd Law reasoning, 37% of students 

used the correct hypothetical argument, and 16% of students responded with 

the common incorrect line of reasoning. The remaining students either gave 

no explanation (11%) or gave explanations that were either ambiguous or fell 

into categories too small to be considered separately (< 6% each). On the basis 

of our data, the hypothetical argument is the predominate lines of reasoning 

used by those students who gave correct answers. 

4.5.2.2 Chaining task implementation 

As with the work-energy task, we created reasoning elements (shown 

in Figure 4-10) that would encapsulate both correct lines of reasoning as well 

as provide an option for piecing together an incorrect line of reasoning. Again, 

each reasoning element provided to the students contained a true statement, 

and students were notified of this fact in the task prompt. Still, some 
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elements could be incorporated into an erroneous line of reasoning if 

interpreted incorrectly. An example is the element “the force of static friction 

always opposes the impending motion” (element 8), which could be read 

incorrectly by some students to mean that friction opposes motion generally 

and used in the incorrect line of reasoning. 

In Figure 4-10, elements that are useful for the formal line of 

reasoning are color coded based whether they are intended to be part of the 

sub-argument establishing that the net force is to the right (blue) or part of 

the sub-argument argument establishing that the net force is equivalent to 

the static friction (green). The correct hypothetical argument elements, 

“without friction, the box would move to the left with respect to the truck” 

(element 13), “the box is not moving with respect to the truck” (element 4) 

and “the force of static friction always opposes the impending motion” 

(element 8) are shaded dark blue. Finally, the answer elements are colored 

yellow and all other elements are colored gray. 
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Figure 4-10. Reasoning elements provided to the student on the truck friction 

task. In a modified version of the task (see Section 4.5.2.6), the 

elements “without friction, the box would move to the left with respect 

to the truck” (element 13) and “the box is moving to the right” (element 

3) are not present. The elements are color coded as explained in the 

text.  

4.5.2.3 Performance overview 

On the truck friction task, 50% of students answered correctly on the 

chaining task by selecting that the static friction was to the right, while 43% 

of students selected the common incorrect answer (static friction is to the 

left).  

An overview of the categories of reasoning chains constructed by 

students is given in Table 4-1. The coding of the categories was based on the 

elements employed. An argument was classified as formal reasoning if it 

included elements from both sub-arguments and also did not include element 

13, “without friction, the box would move to the left with respect to the 
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truck”. An argument was classified as correct hypothetical reasoning if it 

included the element “without friction, the box would move to the left with 

respect to the truck” (element 13) and did not include reference to a net force. 

Some students appeared to use both the hypothetical and formal arguments 

in their response, such as the following student response: 

“the box is accelerating to the right / but / the box is not moving with 

respect to the truck / without friction, the box would move to the left with 

respect to the truck / so / the net force is to the right / because / the 

acceleration of an object is in the same direction as the net force on the object 

/ and / the static friction force on the box must be in the same direction as the 

net force on the box / therefore / the static friction force from the truck on the 

box is to the right” 

An argument was classified as “common incorrect reasoning” if the 

student employed the element “friction opposes motion” and also selected the 

answer “the static friction from the truck on the box is to the left”, regardless 

of what other elements the student included in his or her reasoning chain. 

Reasoning employed Percentage of Students 

(N = 116) 

Formal Reasoning 22% 

Correct Hypothetical 

Reasoning 
23% 

Both Formal and 

Hypothetical 
3% 

Common Incorrect 

Reasoning 
42% 

Table 4-1. An overview of the categories of reasoning chains constructed by 

students on the truck friction task. 
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4.5.2.4 Arguments Found via Community Detection 

A representation of the communities found in an indirect association 

network comprised of all responses to the truck friction task is shown in 

Figure 4-11. Community detection again reveals meaningful separations 

among the elements. In the community that includes the common incorrect 

answer element, “the force of static friction from the truck on the box is to the 

left”, there are three other elements: “the force of static friction always 

opposes the impending motion”, “the truck is moving to the right”, and “the 

box is moving to the right”. These elements are consistent with a common 

incorrect response. 

 



   

 

182 

 

 

Figure 4-11. A representation of the communities found in an indirect 

association network comprised of responses to version A of the truck 

friction task. 

 

The community that includes the correct answer element is more 

complex, but appears to include elements that we would expect to be 

associated with the two different lines of correct reasoning -- the hypothetical 

and the formal. Furthermore, there is a third community, not associated with 

any answer element in particular, that is comprised mostly of elements 

regarding the acceleration of the truck and the box. By examining the 

communities found in direct and indirect association networks comprised of 

only correct or incorrect answers, we determined that this community 
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appears to be elements that are shared between the two predominant 

answers (“fs to the right” and “fs to the left”) and is also conflated with a sub-

argument structure for the correct answer (the argument establishing that 

the net force is directed to the right).  

 

Figure 4-12. Frequency plots of the results for 1000 iterations of a bootstrap 

that tallied the elements contained in the same community as the 

indicated answer element. Results are shown for the correct and 

common incorrect answer. A threshold of 60% is indicated by the 

horizontal bar. The plots are color coded according to the color of the 

corresponding elements in the community plot shown in Figure 4-11. 

 

Figure 4-12 shows the results of the element frequency bootstrapping 

method discussed in Section 4.4.2.2. From the results, it can be seen that the 

common incorrect community is likely to be comprised of the elements “the 

box moves to the right”, “the truck moves to the right”, and “the force of static 

friction always opposes the motion”. For the correct answer element, the 

community is comprised of “without friction, the box would move to the left 
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with respect to the truck”, “the box is not moving with respect to the truck”, 

and “the static friction force must be in the same direction as the net force on 

the box”. Since the elements associated with the hypothetical line of 

reasoning have a much higher frequency, it indicates that the hypothetical 

line of reasoning is used more often in support of the correct answer than the 

formal reasoning. The content of this community (those three elements) are 

consistent with what we would expect from that line of reasoning.  

4.5.2.5 Topology of Argument Structure via Sparsification 

We wished to examine the structure of both the correct arguments and 

the incorrect arguments made by students with the reasoning elements 

provided to them. In the truck friction task, we separated responses based on 

which answer element was present in the response and created direct 

association networks. To better study the topology of the correct hypothetical 

argument (the predominant line of reasoning employed in the correct 

responses), we included in the correct response network only responses that 

included element 13 (“without friction, the box would move to the left…”). We 

then sparsified these correct response and incorrect response networks to 

obtain information about the topology of the argument structure. The result 

is shown in Figure 4-13.a, which is the correct hypothetical argument, and 

Figure 4-13.b, which is the common incorrect argument. The number of 

responses in each network is also indicated in the figure. 
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(a) 

 

 

(b)

  

Figure 4-13. Sparsification of direct association networks comprised of (a) 

correct responses that use the hypothetical line of reasoning (𝛼= 0.2), 

and (b) responses endorsing the common incorrect answer (𝛼 = 0.1). 

 

In the sparsified networks comprised of responses endorsing the 

common incorrect answer and the correct answer, it is seen that many of the 

same elements are selected by the student to place in their reasoning chains. 
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These elements include, “the box is not moving with respect to the truck” 

(element 4), “the truck accelerates to the right” (element 1), “there are three 

forces acting on the box […]” (element 5), “the force of static friction always 

opposes the impending motion” (element 8) and “without friction, the box 

would move to the left with respect to the truck” (element 13). However, 

although both networks include the same elements, these elements are 

arranged in different topologies in the two networks. Additionally, the 

element “the box moves to the right” (element 3) seems to be uniquely 

important to the network of incorrect answers. Interestingly, the element 

“the force of static friction always opposes the impending motion” in the 

incorrect answer network occupies the same central position as the element 

“without friction, the box would move to the left with respect to the truck” in 

the correct answer network. A calculation of betweenness centrality for both 

networks in their unsparsified form (shown in Table 4-2) reveals that these 

two elements have high betweenness in their respective networks. Thus, even 

though both populations of students used the same subset of elements, the 

structure of the associations made between those elements indicates that 

emphasis was placed on different elements. 
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Abbreviated 

Element Label 

Betweenness in 

Network Comprised 

of Correct 

Responses using 

Hypothetical 

Reasoning 

 Abbreviated 

Element Label 

Betweenness in 

Network Comprised 

of Common Incorrect 

Responses 

w/out friction, box 

would move left 
93.5 (1.0) 

 friction opposes 

motion 
136.5 (1.0) 

box not moving 

with respect to 

truck 

44 (0.47) 

 truck acc. to right 

89 (0.70) 

friction opposes 

motion 
27 (0.29) 

 f_s is to left 
29 (0.23) 

F_net is to right 

25 (0.27) 

 box not moving 

with respect to 

truck 

22 (0.17) 

f_s in same 

direction as F_net 
19 (0.20) 

 N + W = 0 
18 (0.14) 

Table 4-2. Weighted betweenness centrality calculations (via (Opsahl, 

Agneessens, & Skvoretz, 2010)) using unsparsified networks. Only the 

top five elements are shown in each case. The normalized betweenness 

is reported in parentheses. 

4.5.2.6 Modified version of the truck friction task to study sub 

argument structure 

In order to study the structure of the formal line of reasoning in 

greater detail, a version of the truck friction task was designed that did not 

include elements 13 (“without friction, the box would move to the left with 

respect to the truck”) or 3 (“the box is moving to the right”). Removing these 

elements from the list was intended to preclude the use of the hypothetical 

argument, thus allowing us to isolate the formal line of reasoning. 

This modified version of the task was administered to a different 

student population:  students enrolled in the same course in a different 

semester. On this modified version of the task 68% of students answered 

correctly and 28% selected the common incorrect answer. An overview of the 
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categories of reasoning chains constructed by students on the modified 

version is given in Table 4-3. The coding of the categories was the similar to 

the coding scheme described in Section 4.5.2.3. In this version, the formal 

argument was predominant among the correct responses (and indeed among 

all responses) rather than the hypothetical argument. However, it was 

observed that on the modified version, in which the hypothetical statement 

(element 13) was removed, there were a subset of students who were using 

the “friction opposes impending motion” element in a way that suggested 

they were attempting to use the hypothetical argument and weren’t able to 

do so fully with the elements provided. An example of this type of response is 

shown in Figure 4-14. Such students were classified as using the hypothetical 

correct reasoning in Table 4-3. 

 

Figure 4-14. Example student response where the student appeared to be 

attempting to use the hypothetical argument but were unable to do so 

because of the constraints of the modified version of the task (i.e., that 

certain elements were removed from the provided list in that version). 

 

While we suspect that the differences in the percentage of students 

using the formal line of reasoning is related to our removal of the key element 

(element 13) essential to the hypothetical argument, we cannot attribute any 

causality due to the populations having different instructors and being in 

different courses, etc.  
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Reasoning employed Percentage of students 

(N=111) 

Formal Reasoning 47% 

Correct Hypothetical 

Reasoning 
13% 

Both Formal and 

Hypothetical 
4% 

Common Incorrect 

Reasoning 
19% 

Table 4-3. An overview of the categories of reasoning chains constructed by 

students on the modified version of the truck friction task. 

 

However, noting that the prevalence of the formal line of reasoning is 

higher in the modified version of the task compared to base version allows us 

to study the formal line of reasoning more clearly in that population. Figure 

4-15 shows the results of the element frequency bootstrapping method 

discussed in Section 4.4.2.2. Recall that for the base version, in which the 

hypothetical argument was accessible, the correct answer element 

community revealed a strong preference for the hypothetical line of reasoning 

and only had one element from the formal line of reasoning included. The 

correct community for the modified version reflects the usage of the formal 

line of reasoning and shows that all of the elements associated with that line 

of reasoning are above the threshold for inclusion in the community except 

for the element describing the three forces acting on the box (element 5). That 

element was just over the threshold (60% of 1000 iterations) for inclusion  in 

the common incorrect community. 
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Figure 4-15. Frequency plots of the results for 1000 iterations of a bootstrap 

which tallied the elements contained in the same community as the 

indicated answer element. Results are shown for the correct responses 

to the modified versions of the task. A threshold of 60% is indicated by 

the horizontal bar. The plots are color coded according to the color of 

the corresponding elements in the community plot shown in Figure 

4-11. 

 

Finally, we constructed a direct association network from the correct 

responses to the modified version and sparsified that network. The result is 

shown in Figure 4-16. The sparsified network constructed with correct 

responses to the modified version of the truck-friction task shows a complex 

line of reasoning. The cycles (circular structures) in the network imply a 

multi-path flow in which each path is fairly ordered and linear. Using 

directed networks to ascertain starting and ending points, it was determined 
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that the primary starting point is the element “the truck accelerates to the 

right”. (This may be due to the fact that this element was listed first in the 

“items” column, although further work would need to be done to ascertain 

whether or not that is the reason why this element served as a starting 

point.) Taking “the truck accelerates to the right” as the starting point, it 

becomes apparent that students collectively made associations among the 

elements that would tend to create a flow from one sub-argument (the net 

force is to the right argument) through the other sub-argument (static friction 

is equivalent to the net force) to arrive at an answer. It is worth noting that 

the directed network (not shown) for the formal line of reasoning generally 

affirms this result. The cycles in this sparsified network show a more complex 

structure of associations than on the base version of the task (in which 

correct reasoning primarily relied on the hypothetical argument).   

 

Figure 4-16. Sparsification of direct association networks comprised of all 

correct responses to the modified version of the truck friction task 

(α=0.1). 
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The population of students who answered with the common incorrect 

answer on the modified version of the task was small enough that the 

network formed from the responses was too sparse to interpret with any 

degree of confidence. As a result, the network is not included in this 

manuscript. 

4.5.2.7 Discussion of results 

The truck friction task, like the work-energy task, has two independent 

pathways for answering correctly, but the base physics question for the truck 

friction task has been shown to be much more difficult for students than the 

work-energy task. It was thus expected that the task would indicate the 

extent to which network methods may be applied productively to problems 

without a strong classroom consensus on the right way to answer a question 

and, in addition, provide insight into student reasoning surrounding a 

common student difficulty related to friction. 

In general, the results affirmed that network analysis of student 

responses to chaining tasks may produce meaningful outcomes even in the 

presence of a common incorrect answer. The community detection algorithm 

produced distinct communities of elements tightly associated with each of the 

two predominant answers, namely the correct and the common incorrect 

answer choices, for both the base and modified version of the task. The 
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results for the correct line of reasoning showed a drastic difference in 

communities between the base version and the modified version of the task. 

In the base version, the elements one would associate with the hypothetical 

line of reasoning were included along with only one element from the formal 

line of reasoning, reflecting the fact that the hypothetical line of reasoning 

was indeed predominant among the responses. In the modified version, the 

community structure included almost all of the elements relevant to the 

formal line of reasoning. While we cannot attribute this difference to a 

particular cause due to the two tasks being administered to different 

populations, it does seem plausible that the difference is due to the lowered 

accessibility of the hypothetical argument in the modified version (as a result 

of the absence of element 13). Additionally, even though students who 

selected the common incorrect answer used a variety of other elements in 

their response, the algorithm found that the tightest associations were 

between the three elements that are the foundation of the common incorrect 

argument. Taken together, we see these results as further evidence of the 

usefulness of community detection in determining the essential pieces of an 

argument in favor of a specific answer. We  also suggest suspect that 

community detection is may be most effective when only one line of reasoning 

per answer is present incompatible with the elements provided. 

Furthermore, if the difference in the correct community from the base 

to the modified version is found to be attributable to the lowered accessibility 
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of the hypothetical argument in the modified version, it would be plausible to 

use chaining tasks to isolate specific lines of reasoning for detailed study. To 

support this, consider the sparsified “wisdom of the crowd” structure 

regarding the two correct arguments. The structure of the hypothetical 

argument is quite simple, while the structure of the formal argument is 

complex even if it has hints of linearity in it. Further study of these 

topological differences in a more controlled experimental design could yield 

insight into each line of reasoning.  

In addition, network sparsification enabled us to examine the possible 

structure of a common difficulty with friction via network sparsification. 

Looking at the sparsification results from the base task, we observed that the 

same sub-set of elements are arranged differently to arrive at correct and 

incorrect answers. This result is reminiscent of the resource graphs discussed 

in Section 4.3.4 and hints at another possible avenue of future research using 

chaining tasks coupled with network analysis. The overlapping subset of 

elements may represent a shared set of resources among the two populations, 

with the elements “w/out friction, box would move left” and “friction opposes 

motion” having a different impact on how resources were coordinated. The 

high betweenness values of these elements in the correct and common 

incorrect networks (respectively) is consistent with this speculation. 

Furthermore, the element “the box moves to the right” (element 3) was 

tightly associated with the common incorrect answer. It could be that this 
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element represents a resource which, combined with the shared subset of 

resources with an emphasis on the “friction opposes motion” element, 

produces the incorrect answer. 

If reasoning elements do indeed stand in for the theoretical construct 

of “student resources” on some level, then it is within the realm of possibility 

that reasoning chain construction tasks can be utilized to study the 

structural coordination of student resources by fine tuning the elements to 

represent a known set of resources. At any rate, the results shown from this 

task do not represent progress in any theoretical direction but rather 

represent a phenomenological pattern worthy of further study, whatever 

theoretical framework one wishes to employ. 

4.5.3 Two-Box Friction task 

In this section, we present an in-depth network analysis of a chaining 

version of a task that was originally developed to study the extent to which 

dual-process theories of reasoning can explain and predict student behavior.  

This task, the two-box friction task, was originally the focus of an 

investigation reported in the literature in 2015 (Kryjevskaia, Stetzer, & Le, 

2015). A separate paper (presented in Chapter 3 of this dissertation) by the 

authors of the current manuscript details how reasoning chain construction 

tasks can be utilized alongside dual-process theories of reasoning to gain 

greater insight into domain-general reasoning phenomena in physics and to 
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draw upon the findings and theories of cognitive science to increase 

performance on this particular task. The task is included in this manuscript 

in order to highlight the findings from network analysis of student responses 

to this task, which are related to student reasoning more generally. Indeed, 

the results from this analysis suggest a possible avenue for further 

investigating cognitive phenomena, including dual-process reasoning, using 

chaining tasks coupled with network analysis. 

The two-box friction task offers another opportunity to revisit two of 

the research questions related to the truck friction task. How effective are 

network analysis methodologies at characterizing and differentiating among 

different lines of reasoning on a physics question that is more challenging for 

students?  To what extent can network analysis be used to identify and 

document evidence in support of specific theoretical constructs (e.g., dual-

process theories of reasoning or resources) in reasoning chain construction 

task data?   

4.5.3.1 Physics question overview 

The two-box friction task is drawn from the literature (Kryjevskaia, 

Stetzer, & Le, 2015) and is part of a question pair expressly designed to study 

the impact of salient distracting features on student reasoning. In the two-

box friction task, students are asked to compare the magnitudes of the 

friction forces on two identical boxes on different surfaces. Both boxes remain 
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at rest while a 30 N tension force is applied. Coefficients of friction for each 

scenario are provided to the student in a diagram, shown in Figure 4-17. In 

order to arrive at a correct comparison, students must realize that the 

horizontal forces on the box (i.e., the tension and the static friction) are 

balanced because the box remains at rest, from which they may conclude that 

the friction force exerted on both boxes is 30 N and the magnitude of friction 

on box A is therefore equal to the magnitude of the friction on box B. When 

asked in a multiple choice with explanation format (Kryjevskaia, Stetzer, & 

Le, 2015), 65% of students answered this way, while 35% of students 

answered incorrectly that since the coefficient between box A and the surface 

is less than the coefficient between box B and the surface, the magnitude of 

friction on A must also be less than the magnitude of friction on B. 

 

Figure 4-17. Two-box friction task prompt. Diagram given to students on the 

two-box friction task is replicated from Kryjevskaia, Stetzer, & Le, 

2015) 
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4.5.3.2 Chaining task implementation 

The reasoning elements provided to the student are shown in Figure 

4-18. Each element included is true, and the students are told this in the 

prompt for the chaining task implementation of the two-box friction question. 

It is important to note, however, that some of these true elements are 

productive in common incorrect lines of reasoning, such as “the coefficient of 

friction for A is smaller than the coefficient of friction for B”.  

The last two elements invite the student to compare the friction force 

to the applied force on each box, providing them with small attached text 

boxes in which they can insert a relationship such as “greater than”. The 

instructions in the prompt explained this option. The prompt also explained 

the subscript notation used in those elements. (Ultimately, the students did 

not end up using these customizable elements, so they are not represented in 

the networks we discuss below.) 

The two-box friction task was preceded by a “screening” question in 

(Kryjevskaia, Stetzer, & Le, 2015), and this screening question was asked 

here as well in a multiple choice with explanation format. Results from the 

screening task will not be discussed in this manuscript. 
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Figure 4-18. Elements provided to the student on the two-box friction task. 

The two elements labeled “X” were removed from the analysis as no 

student used them. 

 

4.5.3.3 Performance overview 

Of the 166 students who completed this task, 57% selected the correct 

answer and 40% selected the common incorrect answer; the performance on 

the chaining format of this task was generally consistent with previously 

reported findings (Kryjevskaia, Stetzer, & Le, 2015). 

4.5.3.4 Arguments Found via Community Detection 

Figure 4-19 shows a representation of the communities identified in an 

indirect association graph comprised of all responses to the two-box friction 

task. 
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(a) 

 

(b) 

Figure 4-19. A representation of the communities identified in (a) an indirect 

association network and (b) a direct association network comprised of 

all responses to the two-box friction task. 
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Again, the algorithm produces a meaningful separation between the 

common incorrect and the correct line of reasoning. A frequency plot (shown 

in Figure 4-20) generated by the method of bootstrapping explained in 

Section 4.4.2.2 indicates that the community structure is fairly robust. In the 

plot, the dark blue markers indicate the community that includes the correct 

answer element, while the light blue markers indicate the community that 

includes the common incorrect answer element. The elements “the normal 

force on box A is equal to the normal force on box B” (element 7), “neither box 

is accelerating” (element 8), and “the friction force and the applied force are 

the only horizontal forces acting on the box” (element 12) appear to be 

somewhat shared between the two communities, but all elements in each 

community structure shown in Figure 4-19 are above a 60% threshold for 

their respective community, and below 30% for the opposite community. 
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Figure 4-20. A frequency plot of the communities identified in the indirect 

association network generated by the method of bootstrapping 

explained in Section 4.4.2.2. The figure shows a test for the community 

that includes (a) the correct answer element, and (b) the common 

incorrect answer element. The elements are color coded according to 

the coloring presented in the community plot shown Figure 4-19. 

 

The community structure of the direct association graph shows a 

similarly meaningful separation between correct and common incorrect 

responses, but the graph separated a collection of elements with a similar 

theme -- namely, the four elements that explicitly state that something is 
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“equal” or “the same”. These elements were “both boxes have the same mass” 

(element 2), “both boxes have the same weight” (element 6), “the normal force 

on box A is equal to the normal force on box B” (element 7), and “the tension 

force on box A is equal to the tension force on box B” (element 3). 

This “sameness” community in the direct association network (Figure 

4-19.b) fails a bootstrapping test for the exact community structure shown 

(success rate of 10%). However, a frequency plot of the elements most often in 

a community with the “tension is the same” element (not shown) suggests 

that the elements “same weight” and “normal forces equal” are tightly 

connected to the tension element and are the only elements above the 60% 

threshold for robustness (75% and 65%, respectively). Additionally, a 

bootstrapping test for the presence of those two elements in the community 

that includes “tension is the same” has a 65% success rate. We conclude that 

the “sameness” community is moderately robust; it is clearly present but it is 

fragile to small perturbations in the network structure. The other 

communities in the direct association network are highly robust with the 

exception of the element “both boxes have the same mass” (element 2) which 

is shared among all three communities shown. 
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4.5.3.5 Topology of Argument Structure via Sparsification 

Separating the responses based on answer element used, two direct 

association networks were sparsified resulting in the networks shown in 

Figure 4-21. 

(a)  

(b)  

Figure 4-21. Sparsification of direct association networks comprised of (a) 

correct responses and (b) responses with the common incorrect answer. 

𝛼 = 0.2 for both. 
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The sparsification of the direct association network comprised of 

responses containing the common incorrect answer element reveals a 

somewhat linear topology, while the topology of the correct responses mimics 

a “wheel graph”, wherein the central node (in this case the answer element) 

is connected to every node on a ring of nodes surrounding it. The global 

clustering coefficients of the unsparsified graphs are 0.48 and 0.6 

respectively, which reinforces an interpretation of the incorrect reasoning 

topology as being more “linear” than the correct reasoning topology. 

The elements with the highest betweenness in the unsparsified 

network of incorrect responses are “the coefficient of friction for A is less than 

the coefficient of friction for B” (59.3), “the boxes remain at rest” (48.8), and 

“both boxes have the same weight” (35.5). For the correct responses, the 

highest betweenness was the element “the boxes remain at rest” (51.2) and 

the answer tile (40.7).  

4.5.3.6 Discussion of results 

The network analysis results from the two-box friction task reinforce 

that community detection, especially of indirect association graphs, gives 

meaningful information about the elements associated with the lines of 

reasoning leading to different answers. The elements for the correct and the 

common incorrect chains were well separated, as indicated by the 

bootstrapping frequency plot, and were interpretable. Additionally, the direct 
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association graph gave greater resolution on the core of the common incorrect 

argument: students apparently base their reasoning on the difference 

between the coefficients of static friction for each scenario. This is, of course, 

expected as the task was expressly designed to elicit reasoning based on the 

coefficients; network analysis of chaining tasks has, then, an ability to detect 

reasoning effects related to salient distracting features. 

The sparsification process likewise yielded meaningful differences in 

the topologies of the two types of reasoning. The “wheel”-like structure of the 

correct network indicates that there isn’t a strong consensus as to the 

ordering of the specific argument or, more particular to this structure, a 

strong consensus as to what elements need to be included in an argument 

supporting the correct answer. Looking at the student chains, it appears that, 

to the students, there are many ways of saying the same thing. Sparsification 

of the common-incorrect answer network, on the other hand, showed a strong 

consensus about the core of the argument, which was comprised of a tight 

association between the element comparing the coefficients and answer 

element. The other elements in the common-incorrect network seem 

somewhat peripheral, but the linear structure also indicates a consensus in 

how these elements are arranged into arguments.  

Based on the known nature of this task as eliciting strong intuitive 

responses formed around the coefficients (Kryjevskaia, Stetzer, & Le, 2015), 

it may be that the topology of the common incorrect line of reasoning is 
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indicative of a strong cueing on the coefficients. This view would be consistent 

with a dual-process theory perspective. From this perspective, students who 

have a strong intuitive (process 1) answer may attempt to rationalize that 

answer using formal physics knowledge during a superficial engagement of 

process 2, but this rationalization will always be post-hoc due to process 1 

having already formed a conclusion. Recalling that the sparsified network 

represents the classroom consensus of the “logical landscape” that the 

elements create, we interpret the strong association between the element 

comparing the coefficients and the answer element as mimicking the 

association formed by process 1 between the cue and the judgement 

proceeding from that cue. The weaker associations among the elements which 

would add further justification and detail for the coefficient argument would 

then be indicative of process 2 having been only superficially engaged, if at 

all, by the population as a whole. In this perspective, the “wheel”-like nature 

of the network representing the correct reasoning may be related to a more 

comprehensive understanding of the elements – each element in the line of 

reasoning is associated with the answer on some level such that everything is 

deemed to be relevant to that answer. Further research would be required to 

bring this speculation into a measurable domain, but this does highlight the 

possibility that theoretical frameworks, such as dual-process theories, can be 

explored using chaining tasks coupled with network analysis. 
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The sparsification results yield the additional insight that the element 

“both boxes remain at rest” appears to be used in both networks. It could be, 

then, that the recognition that both boxes remain at rest is not sufficient to 

cue reasoning related to balanced forces for students who ultimately select 

the common incorrect answer. Perhaps the difference between students who 

select the correct answer and students who select the common incorrect 

answer is a cognitive connection between the cue “both boxes remain at rest” 

and “the horizontal forces are balanced” (which is prominent in the correct 

reasoning network but largely absent in the common incorrect network). 

Attending to that connection during instruction may improve performance on 

this question. If this hypothesis is eventually confirmed, then reasoning chain 

construction tasks may be useful in revealing specific portions of arguments 

in which reasoning chains can be reinforced during instruction. 

The betweenness results also help provide insight into what, exactly, 

betweenness may be measuring in a reasoning chain network. The elements 

with the highest betweenness for the correct and common incorrect answer 

networks are cues from the problem statement that we would expect would 

be indicative of the respective answer (“boxes at rest” for the correct answer, 

and coefficients for the common incorrect). This result leads to a proposed 

interpretation of betweenness in reasoning chain networks. Given that 

betweenness is aimed at measuring the control of the flow of information 

through a network, the betweenness in a reasoning chain network may be 
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measuring the central idea in students’ reasoning; that is, the idea the 

students “lock on to” in order to frame their reasoning.  

Finally, the community detection of the direct association network 

found that four elements had tighter association with each other than with 

the rest of the network. These four elements were “both boxes have the same 

mass” (element 2), “both boxes have the same weight” (element 6), “the 

normal force on box A is equal to the normal force on box B” (element 7), and 

“the tension force on box A is equal to the tension force on box B” (element 3). 

There is an a priori reason to believe the first three elements would be 

associated with each other, namely that there is a direct connection between 

weight and mass (they are proportional) and because of the direct connection 

between the normal force and the weight (they are equal in this case and it is 

common for a student to write 𝑁 = 𝑚𝑔 regardless of the situation). But the 

presence of the “tension” element led us to wonder if there was an underlying 

reason that these elements would be connected, especially as the tension 

element is not very useful in an incorrect chain of reasoning. Students may 

have a desire to express a thought related to the tension in that it does not 

“overcome” the friction force, but this idea is not represented by this 

particular element. The element instead simply compares the tension on A to 

the tension on B.  

It could be that this community represents an unconscious tendency to 

associate things that are the same with one other, similar to a “same is same” 
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p-prim (diSessa, 1993). The mediocre robustness of the community of 

“same/equal” elements is consistent with an unconscious tendency to 

associate similar elements because we would expect these unconscious effects 

to be hard to discern (Gawronski & Payne, 2010). However, the methods and 

results described here are far from able to assess such an effect, and this 

proposal is mentioned to illustrate a possible future use of chaining tasks and 

network analysis for research. 

4.5.4 Isomorphic Graph Tasks 

In this section, we report on student reasoning on a collection of four 

similar tasks administered over the course of two subsequent semesters of 

introductory calculus-based physics. Each of the four tasks is designed to 

foreground the same line of reasoning in four different contexts. By 

conducting this experiment, we sought to answer the following research 

question. To what extent can network analysis methodologies be used in 

conjunction with reasoning chain construction tasks to track and document 

the development of a specific line of reasoning over the course of a two-

semester introductory physics sequence? Network analysis of these tasks 

provided evidence for the development of a skill and comfort with this line of 

reasoning over the course of instruction. 
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4.5.4.1 Physics question overview 

As part of an investigation of the impact of salient distracting features 

on patterns of student reasoning in the context of introductory physics, we 

developed four chaining-format graph tasks that are isomorphic in structure 

and are based upon one task in the literature, which we refer to as the 

kinematics graph task (Heckler, 2011; McDermott, Rosenquist, & Zee, 1987; 

Beichner, 1994; Elby, 2000; see also Speirs, Ferm Jr., Stetzer, & Lindsey, 

2016).  

In the kinematics graph task, shown in Figure 4-22, students are 

asked to determine when the speeds of two cars are the same by examining a 

plot of position vs. time with two graphs representing the motion of the two 

cars. At time A, the slopes of the two graphs are the same, and at time B the 

two graphs intersect. The correct answer is arrived at by noting that the 

velocity is the time-derivative of position, which on a graph equates to the 

slope of the tangent line at a point. Comparing slopes allows students to 

determine that the speeds (i.e., the magnitudes of the velocities) are the same 

at time A. However, it is observed in the literature (Heckler, 2011) that many 

students answer that the speeds are the same at time B, consistent with 

attending to the intersection point of the two graphs. The phenomenon of 

incorrect answering on these types of graphs has led to researchers 

investigating “slope-height confusion” and other difficulties related to 

interpreting and using graphs in a physics context (McDermott, Rosenquist, 
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and Zee 1987; Beichner, 1994; Christensen & Thompson, 2012), and has also 

been used to examine the impact of salient distracting features in physics 

contexts (Heckler, 2011; Speirs, Ferm Jr., Stetzer, & Lindsey, 2016).  

The other three tasks are presented, in detail, in Appendix A. All four 

tasks are structurally parallel and presented in the contexts of kinematics, 

potential energy, electric potential, and magnetic flux. Each graph task has a 

correct line of reasoning that relies on an understanding that the desired 

quantity can be obtained from the derivative of the known quantity, and thus 

the slopes of the graphs at the point of interest ought to be compared.  

 

Figure 4-22. The first of four isomorphic graph tasks adapted from (Heckler 

2011). The other three graph tasks are shown in detail in Appendix A. 

4.5.4.2 Chaining task implementation 

The reasoning elements provided to the student in each task have been 

modified to fit the context but remain isomorphic in their structure. The 

reasoning elements are shown in Figure 4-23. Unlike the tasks discussed in 
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previous sections, these isomorphic tasks include a large number of elements 

that are irrelevant to both the correct and common incorrect lines of 

reasoning; indeed, seven of the twelve elements are not relevant to any 

common line of reasoning. 

 

Figure 4-23. Reasoning elements provided to the student on each of the four 

isomorphic graph tasks. 

 

There is an inherent logical structure among the productive elements 

provided to the students (shown in red in Figure 4-23). While, at first glance, 
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it may appear that the elements “𝑣 = 𝑑𝑥/𝑑𝑡”, “the derivative, 𝑑ℎ(𝑟)/𝑑𝑟, at a 

specific point is the slope of the tangent line of the h(r) vs. r graph at that 

point”, and “velocity is given by the value of the slope of a position vs. time 

graph” are equivalent and interchangeable statements, they actually 

constitute a logical argument justifying why the slope is the velocity; namely, 

the two elements “𝑣 = 𝑑𝑥/𝑑𝑡” and “the derivative[…] is the slope…” combine 

to imply the third element. We refer to the collection of these three elements 

as the velocity triad. We also refer to the element “velocity is given by the 

value of the slope of a position vs. time graph” as a derived heuristic because it 

represents a chunked knowledge piece (National Research Council, 2000) 

that is derived from two independent principles. While it would be acceptable 

to many instructors if students were to simply use the “slope is velocity” 

heuristic, all three elements are needed to provide a logically sound 

argument. Their inclusion, then, provided an opportunity for additional 

insight into whether students tend to justify their arguments with first 

principles or instead rely on derived heuristics learned in class. 

4.5.4.3 Performance overview 

All tasks were administered after relevant course instruction. 

Chronologically, the kinematics task was administered first in the year, the 

potential energy task second, the electric potential task early in the second 

semester of physics, and the magnetic flux task last. Given the contexts 
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associated with these isomorphic tasks, data were collected in both semesters 

(fall and spring) of the on-sequence calculus-based introductory physics 

course. Because the four graph tasks were administered across a single 

academic year, most students who completed the introductory calculus-based 

sequence would have seen and completed multiple, and likely all four, tasks. 

Student performance for these tasks is shown in Table 4-4. The 

percentage of responses answering correctly increases very slightly over the 

two-course sequence, but it can be seen that salient distracting feature (the 

intersection point) remains a strong distractor, with more than a quarter of 

students answering consistent with attending to the intersection point. 

Response 
Kinematics 

(N = 149)  

Potential 

Energy 

(N = 76) 

Electric 

Potential 

(N = 97)  

Magnetic Flux 

(N = 88) 

Time A 57% 43% 73% 66% 

Time B 29% 51% 21% 28% 

Time C 0% 1% 1% 5% 

Never 14% 4% 5% 1% 

Table 4-4. Overview of student performance on the four isomorphic graph 

tasks. 

4.5.4.4 Arguments Identified via Community Detection 

Each indirect association network (not shown) built from responses to 

the graph tasks generally breaks into three communities: the correct answer 

community, which includes the elements isomorphic to “𝑣 = 𝑑𝑥/𝑑𝑡”, “velocity 

is given by the value of the slope of a position vs. time graph”, and “the slopes 

are the same at time A”; the common incorrect answer community, which 

includes the element isomorphic to “the lines intersect at time B”; and a third 
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community including all of the other elements in a loosely connected network. 

These elements were not relevant to any common line of reasoning. 

Interestingly, the element “the derivative, 𝑑ℎ(𝑟)/𝑑𝑟, at a specific point is the 

slope of the tangent line of the of the h(r) vs. r graph at that point” (element 

6), which is very relevant to the correct line of reasoning, was found in the 

common incorrect answer community for the kinematics and potential energy 

graph task, but was found in the correct answer community in the electric 

potential and magnetic flux task. We would have expected this element to 

always be associated with the correct answer. To investigate this 

phenomenon more fully, we examined community structure in indirect 

association networks comprised of just the correct responses to each task. The 

resulting networks are shown in Figure 4-24. The elements that make up the 

full, detailed correct line of reasoning are colored red in the figure, while all 

other elements are colored dark blue except the answer element, which is 

colored yellow. One can notice that the derivative is slope element is not in 

the main answer community for the first two graph tasks but becomes more 

tightly associated with the correct answer in the final two graph tasks. 
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(a)  

(b)  

(c)  

(d)  

Figure 4-24. Community structure detected in indirect association networks 

comprised of correct responses to the graph task as posed in the 

context of (a) kinematics, (b) potential energy, (c) electric potential, and 

(d) magnetic flux. 
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A bootstrapping frequency plot for the correct community, shown in 

tabular form in  

Table 4-5 for ease of reading, revealed that the derivative is slope 

element is indeed increasing in use across the four tasks (administered in the 

sequence shown), and thus increasing over the course of the two-semester 

introductory calculus-based physics sequence. 

 Kinematics 

Potential 

Energy 

Electric 

Potential 

Magnetic 

Flux 

derivative is slope 46% 29% 74% 100% 

“v=dx/dt” 85% 100% 95% 100% 

slope is “velocity” 100% 100% 100% 100% 

slopes same at A 100% 100% 100% 100% 

 

Table 4-5. The results of a bootstrapping frequency plot in tabular form for 

the correct answer community. Results are shown in table form rather 

than a plot for ease of reading. Elements referencing velocity are in 

quotes to remind that in the non-kinematics graph tasks, this element 

was cast into the appropriate context. 
 

The community structures of the direct association networks for the 

four graph tasks (not shown) also reveal a shift in how the derivative is slope 

element is used by students. In the responses to the kinematics and potential 

energy tasks the element is not a member of the correct answer community or 

in the same community as the other productive elements, whereas in the 

responses to the electric potential and magnetic flux tasks the element is 

more closely associated with the productive elements. A particularly 

compelling community structure is found in the direct association network 
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built from correct responses to the magnetic flux task and is therefore shown 

in Figure 4-26. The community structure shows a subcommunity made up of 

the “velocity triad” elements. Recalling that, in direct association networks, a 

connection is formed between two elements when they are placed 

consecutively, the sub-community of the “velocity triad” elements means that 

those three elements were consistently placed next to each other in student 

responses. 

  

Figure 4-25. Community structure found in the direct association network 

comprised of correct responses to the magnetic flux graph task. The 

sub-community of the “velocity triad” elements means that those three 

elements were consistently placed next to each other in student 

responses. 
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4.5.4.5 Topology of Argument Structure via Sparsification 

The basic result that the derivative is slope element becomes more 

integrated into the correct line of reasoning is also revealed in the 

sparsification of the direct association networks. For space, we only show the 

sparsified correct answer networks for the kinematics and magnetic flux 

tasks (see Figure 4-26). 

The sparsified network of correct responses to the kinematics task, 

shown in Fig. 4-26a appears to be a linear path from v = dx/dt through the 

derived heuristic “slope is velocity” (element 7) to the answer. The “derivative 

is slope” element constitutes an extension of this, another independent piece 

of information that must be brought in to secure the logic of the argument. 

The sparsified network of correct responses to the potential energy task (not 

shown), however, reveals that the derivative is slope element is heavily 

connected to the unproductive element "slope of momentum is force" and, as 

in the kinematics task, is somewhat connected to “the slopes are the same at 

position A”. In the sparsified correct answer network for the electric potential 

task (also not shown), the derivative is slope element is placed into the main 

line of reasoning, which consists of “derivative is slope”, “𝐸 = −
𝑑𝑉

𝑑𝑥
”, “slopes 

same at position A”, and then the correct answer element; it is no longer 

peripherially attached to the main line of reasoning as in the previous two 

tasks. However, it is still only somewhat connected to that chain of elements. 

Finally, in the sparsified network of correct responses to the magnetic flux 
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task shown in Fig. 26b, the derivative is slope element serves as a bridge 

between the elements “𝜀 = −
𝑑Φ𝐵

𝑑𝑡
” (element 3) and “the slopes are the same at 

time A” (element 12) and is heavily connected to both of those elements. An 

examination of directed networks showed that element 3 (“𝑣 = 𝑑𝑥/𝑑𝑡” for the 

kinematics task) is a common starting point for the correct responses to all 

tasks. 

(a)   

(b)  
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Figure 4-26. Sparsified direct association networks comprised of correct 

responses to the (a) kinematics graph task (𝛼 = 0.1), and (b) magnetic 

flux task (𝛼 = 0.1). 

 

While the sparsified networks for the correct responses appear to 

become less linear over the four tasks, the global clustering coefficients for 

the correct response networks for the four tasks range from 0.61 to 0.75, 

indicating fairly clustered networks throughout. Even so, the magnetic flux 

task has a higher clustering coefficient (0.75) than the kinematics task (0.61), 

which does suggest some increase in clustering. 

The betweenness centrality of the elements in the correct response 

network for each of the four tasks is of interest. Normalized betweenness 

centrality calculations for the three elements that comprise the “velocity” 

triad are shown in Table 4-6. As can be seen, one of the elements (the 

derivative is slope element) had a betweenness of zero, whereas in the later 

tasks, all elements had non-zero betweenness. Additionally, the average 

betweenness of the velocity triad elements increases across the four tasks. 

Isomorph 

Element 

Abbreviation 

Kinematics 
Potential 

Energy 

Electric 

Potential 

Magnetic 

Flux 

“v = dx/dt” 0.82 1.00 0.87 1.00 

derivative is slope 0.00 0.22 0.77 0.28 

slope is “velocity” 1.00 0.50 0.38 0.99 

Average 0.61 0.57 0.68 0.75 

Table 4-6. Normalized weighted betweenness centrality (Opsahl, Agneessens, 

& Skvoretz, 2010) calculations for the unsparsified network comprised 

of correct responses for each graph task. The element label is shown in 

the kinematics context but is meant to be general to all contexts. 
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As might be expected, sparsification of the common incorrect answer 

networks show strong associations between “the lines intersect at 

(time/position) B” and the corresponding incorrect answer element. In the 

kinematics context, the sparsified incorrect answer network also revealed a 

tendency to associate the elements “velocity is slope” and “𝑣 = 𝑑𝑥/𝑑𝑡” with 

the intersection element and the answer element, but this was the only 

context to do so. Because of there being very few elements (an average of 2.5 

elements per chain) used in the incorrect responses, the sparsified networks 

appeared linear, and the clustering coefficients for the unsparsified incorrect 

response networks indicated linear structure with coefficients ranging from 

0.17 to 0.48. The typically low number of elements per chain combined with 

the lower number of students selecting the incorrect answer rendered the 

betweenness centrality measure uninterpretable for the later tasks, so 

betweenness centrality is not reported for the incorrect answer networks. 

4.5.4.6 Discussion of results 

The results of network analysis of the four isomorphic graph tasks 

again demonstrate that community detection can meaningfully separate lines 

of reasoning in the responses according to the answer choice. Additionally, 

the wisdom of the crowd results from sparsifying the direct association 

networks reveal meaningful structures in the responses such as the relative 

(compared to the other tasks) linearity of the correct line of reasoning in the 
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kinematics task or the tight association between the cue (lines intersect at B) 

and the common incorrect answer. Thus, the key result that network analysis 

of chaining task data provides useful and interpretable information is 

replicated in this task. 

Perhaps the most important result from the isomorphic graph tasks is 

the observed development of a cohesive line of reasoning regarding the 

“velocity triad” of elements, seen in both the community detections and 

network sparsifications. The identified communities in both the direct and 

indirect association networks indicate that the derivative is slope element 

was not tightly associated with the other productive elements (including the 

correct answer element) for the mechanics tasks but was tightly associated 

with those elements for the electromagnetics tasks.  

For an indirect association network, membership in the correct answer 

community alongside the other productive elements implies that the 

derivative is slope element either increases in frequency of use in correct 

responses overall or compared to responses that also include unproductive 

elements. The proportion of correct responses that include the "derivative is 

slope" element is 14% for the kinematics task, 24% for potential energy task, 

24% for electric potential task, and 27% for magnetic flux task, indicating 

that the frequency of use overall is not increasing much over the last three 

tasks. Instead, the element must have been more frequently placed in 

responses that include only the other productive elements, rather than being 
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placed in responses that include unproductive elements as well – that is, the 

element is being used “more productively”. 

The fact that the derivative is slope element joins the community of the 

other productive elements in the direct association networks is also indicative 

of associating that element with productive rather than unproductive 

elements as the introductory physics course sequence progressed. This is 

because the connections in a direct association network are formed based on 

an element’s proximity to other elements. Thus, if two elements are tightly 

tied together, they are more often used in proximity to each other and are 

thus more associated. The observation that the derivative is slope element 

gains membership in communities with the other productive elements then 

implies that the element was used in closer proximity to the other productive 

elements, which supports the interpretation that the element was used more 

productively over time. 

This interpretation is further bolstered with the results from 

sparsification. There, the element starts out as peripheral to the “classroom 

consensus” on the correct line of reasoning but progresses to become more 

central to that line. Thus, the coherence between the derivative is slope 

element and the other productive elements increases. If betweenness 

centrality indeed stands as a proxy for core ideas in a reasoning chain, as 

suggested by the results from other tasks, the increasing betweenness 
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centrality of the “triad” elements would be further evidence in support of the 

development of a coherent chain of reasoning.  

We propose that, as the sequence progresses, the students in these 

tasks either better understand the connection between that element and the 

other elements or are more comfortable with the use of that element 

alongside the other elements.  

Why would this shift occur?  

One explanation for the relative non-use of the element among correct 

respondents on the kinematics graph task is that the phrase "the velocity is 

the slope" is often a "chunked" cognitive element or heuristic, even among 

experts3. We presume that the students who answer correctly on this task in 

the context of kinematics employ the learned heuristic that the slope of a 

position versus time graph is the velocity and ignore the first principles from 

which that heuristic is derived. When asked the question in a context in 

which they haven't formed such a heuristic, they may then resort to a wider 

examination of the separate elements.  

The heuristic may have been formed to varying degrees in the other 

contexts. For instance, in the magnetic flux task, it may be that student were 

less familiar with the application of Faraday's law to a graph of magnetic flux 

                                                 
3We have administered the chaining version of the kinematics graph task to physics 

and other STEM educators and a frequent comment we hear is that the three elements "v = 

dx/dt", "derivative is slope", and "velocity is slope" are functionally equivalent. Only when it 

is pointed out that the former two are independent statements that combine to justify the 

latter is it agreed upon that the three elements are actually logically different. 
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than they were with, say, how to get an electric field from a graph of electric 

potential. Because of a lack of familiarity, students may have relied more on 

the calculus to make a connection between Faraday's law and the graph, as 

opposed to simply knowing from the features of the graph how to obtain an 

answer. This is supported by a brief review of the curriculum. In the course 

textbook (Knight, 2016), there are many examples of switching between field 

and potential graphically, but most examples concerning Faraday's law were 

centered in non-graphical considerations. Thus, the heuristic was probably 

more familiar in the electric potential task than it was in the magnetic flux 

task, with both being less familiar than the kinematics task. 

Another possibility is that the students, over the course of the two 

semesters, became more comfortable and/or more proficient with the 

language and concepts of calculus, such that they felt comfortable endorsing 

elements that explicitly included those concepts. Some of the think-aloud 

interviews conducted with students seemed to support this interpretation as 

well, at least in the aspect of student’s not feeling comfortable with the 

language on the kinematics task. Further work would need to be done to 

determine the extent to which comfort with calculus impacts the use of the 

derivative is slope element, but this is a very real possibility to consider, as a 

significant percentage of students were concurrently taking the first calculus 

course as a co-requisite at the time the kinematics task was administered 

and derivatives were covered later in the semester in calculus. 
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  While the cause of the shift can't be ascertained from our data alone, 

the evidence of a shift points to the usefulness of the network analysis of 

chaining tasks to examining student formation of specific reasoning chains. 

We see a shift across multiple metrics, including community detection on 

indirect association networks, community detection and sparsification of 

direct association networks, and betweenness calculations for direct 

association networks. Thus, network analysis techniques are sensitive to 

shifts in reasoning chains over time and, as such, could be used to gauge how 

students are building reasoning skills over time. 

Finally, the results regarding the incorrect answer networks revealed a 

tight association between the element “the lines intersect at (time/position) 

B” and the incorrect answer element. This tight association is reminiscent of 

the association between the element comparing the coefficients and the 

common incorrect answer in the two-box friction task and may be due to a 

similar phenomenon. The intersection point in each graph task is a salient 

distracting feature and commands attention. Thus, the tight association 

between the intersection element and the answer element could be related to 

a tight link between a perceptual cue and a process 1 judgement based on 

that cue. Recalling that the correct line of reasoning was less linear than the 

common incorrect line of reasoning in both the two-box friction task and the 

graph tasks, there could also be a relationship between the cue-judgement 

phenomenon and the linearity of the networks. However, it may also be that 
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those wishing to respond with the “time B” answer simply had no other 

elements they could use to describe their reasoning, which would create both 

the tight association and the linearity of the network. Further investigations 

would be necessary to examine the extent to which the observed phenomenon 

documented through network analysis primarily stems from underlying 

cognitive mechanisms or features of the particular task discussed here. 

4.6  Conclusions and future work 

The overarching goal of this manuscript was to illustrate how a new 

methodology, network analysis of student responses to reasoning chain 

construction tasks, can generate valuable knowledge surrounding how 

students reason on physics questions, specifically those questions that 

require stepping through a series of qualitative inferences. As we have 

shown, network analysis of responses to chaining tasks generates novel data 

sources related to both the content and structure of student arguments. Here, 

we discuss general affordances seen across tasks, and then highlight how 

these affordances, and other patterns observed in the data, can be used to 

bolster existing analysis methods or generate entirely new research 

questions. 

Across all tasks, we have demonstrated that network analysis of 

chaining task data has the ability to separate lines of reasoning associated 

with a particular answer. Via community detection, we were consistently able 

to find elements that were more tightly associated with a given answer than 
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the other elements in the set; these tight associations were interpretable as 

typical reasoning seen from students in free response / interview settings. 

One affordance of the network methodology is that the categorization of the 

elements into lines of reasoning associated with a particular answer is 

automatic through the use of the community detection algorithm, so large 

data sets can be analyzed quickly. Furthermore, by studying the community 

structure in both direct and indirect association networks, one can determine 

a set of elements that are core to an argument, and which are associated but 

somewhat peripheral to arriving at a particular answer. As an example, 

recall that in the box friction task, which included a salient distracting 

feature in the form of the given coefficients of friction, the indirect network 

showed associations between many of the element expected to be tied to a 

common incorrect answer, but the direct association graph showed that the 

main core of the argument was the comparison of the two coefficients. Clear 

distinctions between correct and incorrect arguments were also seen in the 

sparsification results across tasks, indicating once again that the lines of 

reasoning associated with particular answers can be meaningfully separated 

in chaining task data. 

Network sparsification yields further insight into another aspect of 

student reasoning with the provided elements: on each task shown, 

sparsification was meaningfully interpreted as the “wisdom of the crowd” 

consensus about the structure (or logical landscape) of the identified 
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arguments. In most of the tasks reported on, the structure of the associations 

among the elements revealed information that would not have been available 

from an examination of the responses individually. For instance, in the work-

energy task, the linear structure of the work as a change in energy argument 

compared to the clustered structure of the work as a dot product argument 

would have been hard to ascertain from simply studying the individual 

responses alone. One affordance of knowing the structure of an argument is 

to ascertain how students are responding to specific lines of reasoning. For 

instance, in the two-box friction task, it was seen that the students who 

responded with the common incorrect answer had a strong consensus to the 

core argument elements, whereas those students who responded with the 

correct answer choice did not have a strong consensus in the ordering or 

arrangement of the reasoning elements. Likewise, the structure of the 

correct, formal reasoning in the truck friction task indicated a more complex 

view of that specific line of reasoning compared with the relatively straight 

forward hypothetical reasoning. 

One outcome of the ability to separate and structurally study different 

lines of reasoning is that specific instructional implications can develop. For 

instance, the element “both boxes remain at rest” in the two-box friction task 

is used by students in both the correct and common incorrect lines of 

reasoning. However, in the correct line of reasoning, that particular element 

is associated closely with the element indicating that the "horizontal forces 
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are balanced", whereas in the common incorrect line of reasoning, that 

particular element is not heavily associated with anything else. Attending to 

developing a connection between the boxes remaining at rest and the idea of 

balancing horizontal forces during instruction may improve performance on 

these types of questions.  

A further, perhaps more powerful use of network analysis of chaining 

task data is to isolate and observe specific lines of reasoning before, during 

and after instruction. The truck friction task demonstrated that it may be 

possible to isolate specific lines of reasoning (such as the formal line of 

reasoning) by not including elements from other lines of reasoning. The 

isomorphic graph tasks revealed that over the course of two semesters, a 

specific reasoning element regarding the relationship between the slope of a 

graph and the derivative of the function represented on the graph was more 

productively incorporated into a line of reasoning. These two results suggest 

that network analysis of reasoning chain construction task data can be used 

to isolate and study the development of specific reasoning skills. This could 

be helpful in assessing the impact of instructional materials on student 

reasoning with specific arguments. For instance, many instructional 

materials (especially scaffolded tutorials) step students through qualitative 

inferential arguments while forming physics conceptual knowledge or 

teaching problem solving strategies. These same qualitative inferential 

arguments are then expected to be used on new but similar questions such as 
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those found on exams, for instance. Chaining tasks could be used to study 

student use of these arguments before, during and after instruction. We 

likewise feel that chaining tasks, coupled with network analysis techniques, 

can be utilized to study many types of arguments, and specifically arguments 

related to the reasoning difficulties identified in physics education research 

literature. 

Results from reasoning chain construction tasks can support analyses 

drawn from other theoretical and experimental methodologies. In the second 

task, the truck friction task, we gave evidence from community detections 

and network sparsification that suggested that students who answer 

correctly and incorrectly on a friction task are drawing largely upon the same 

reasoning elements. The difference in the populations was the topology of 

their argument and the elements on which emphasis was most placed. This 

finding is reminiscent of studies using the resources framework that posit 

that different reasoning outcomes may share a subset of similar resources, 

with only one or two resources not in common with each other. We therefore 

have hopes that reasoning chain construction tasks coupled with the network 

analysis techniques described here can be used to support research regarding 

the resources framework, specifically where resource graphs have been 

helpful in the past. 

Similarly, in the box friction task, we gave evidence suggesting that 

network analysis could possibly be able to detect unconscious phenomena 
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such as being cued towards a specific answer based on task features. The 

high betweenness of the observational elements core to the correct and 

incorrect line of reasoning suggest that students are highly influenced by 

these features. Additionally, the observed linear topology of the common 

incorrect line of reasoning and the non-linearity of the correct reasoning 

suggested a dual-process interpretation wherein the common incorrect line of 

reasoning was the result of an intuitive process 1 judgement without much 

consideration of other models. This same trend in topology was seen in the 

graph tasks reasoning patterns as well, with the correct answer network 

having more interconnections than the intuitive answer pattern.  

On the basis of the demonstrated affordances of facilitating the 

investigation of specific reasoning chains through novel data generation, 

assisting in theory building, and informing instruction in new ways, we 

believe that the network analysis of reasoning chain construction tasks has 

the potential to become a valuable tool for researchers in physics education.  

Perhaps most importantly, we are confident that it will be a distinct asset to 

ongoing efforts to investigate and strengthen student reasoning in physics, 

particularly those that attend to domain-general reasoning phenomena. 
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5 EXAMINING STUDENT TENDENCY TO EXPLORE ALTERNATE 

POSSIBILITIES 

5.1  Abstract 

A broad goal of physics education is to provide students with a strong 

repertoire of problem-solving strategies, a familiarity with mathematizing 

real-world situations, and a strong set of critical thinking skills related to 

qualitative inferential reasoning. A growing body of research has 

demonstrated that some patterns in student responses to qualitative physics 

questions may be attributable to processes general to all human reasoning, 

and not necessarily related to physics content. Theories from the psychology 

of reasoning posit that the ability to consider and explore alternate 

possibilities is a hallmark of strong reasoning skills. Furthermore, recent 

findings suggest that there may be a link between student ability to consider 

alternative possibilities and student performance on physics problems –– 

particularly problems in which salient distracting features appear to prevent 

students from accessing relevant knowledge.  We have piloted new tasks 

designed to measure student ability to consider multiple possibilities when 

answering a physics problem. These tasks measure the relative accessibility 

of a mental model (or possibility) as well as student ability to recognize 

whether or not this model is consistent with given problem constraints. Using 

these tasks across three physics content areas, we find that a model in which 

two objects are in opposition (such as two fans pushing in opposite directions) 
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is less accessible than models in which the objects are not in opposition. This 

result suggests that a domain-general mechanism may control model 

accessibility. We expect that this underlying mechanism is a tendency to 

avoid expending cognitive resources on multiple, complicated models and 

instead reason from a single, easy-to-represent model. 

5.2  Introduction 

A typical physics course is full of new vocabulary, procedures for 

problem solving, and strategies for applying concepts to real-world situations. 

In addition to learning definitions, procedures, and strategies related to each 

physics concept, physics students are also often expected to apply their 

knowledge to reason their way through new and difficult physics problems. 

Research-based instruction has shown a marked improvement in student 

performance on questions assessing conceptual understanding and other 

related abilities (Finkelstein & Pollock, 2005; Saul & Redish, 1997; Sokoloff 

& Thornton, 1997; Beichner R. , 2007; Crouch & Mazur, 2001). However, 

despite research-based instruction, some physics questions continue to prove 

difficult for students, even when students demonstrate that they can 

generate correct lines of reasoning on questions targeting the same concepts 

(Heckler, 2011; Kryjevskaia, Stetzer, & Grosz, 2014).  

A growing body of research suggests that processes general to all 

human reasoning and not necessarily associated with physics content may be 
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primarily responsible for the observed discrepancies. As such, it is important 

to investigate the interplay between domain-general reasoning processes and 

reasoning in a physics context to understand more clearly how to best 

prepare students for applying their knowledge to new situations. One such 

reasoning process is a tendency to search for alternate possibilities. 

Searching for alternate possibilities is associated with more productive 

reasoning (Johnson-Laird, 2009; Evans, 2007; Lawson, 2004; Tishman, Jay, 

& Perkins, 1993) and in some cases may be foundational to productive 

reasoning. For instance, in Johnson-Laird’s mental model’s theory of 

reasoning (Johnson-Laird, 2009), the failure to fully flesh out possibilities is 

the fundamental mechanism for all reasoning errors. 

A student’s tendency to explore alternate possibilities can be impacted 

by the cognitive accessibility of an idea. Cognitive accessibility is a measure 

of how easily a concept or model is retrieved from memory (Higgins, 1996), 

and so a search for alternate possibilities can be truncated if the accessibility 

of an initial idea is much higher than the accessibility of the other 

possibilities. Heckler and Bogdan recently investigated the effects of 

accessibility on physics questions (Heckler & Bogdan, 2018). They first 

measured the relative cognitive accessibility of causal factors in different 

physics contexts, such as length and mass in the context of determining the 

period of a pendulum. They then found that when a highly accessible factor 



   

 

238 

 

was offered in a problem statement, students tended not to explore alternate 

factors - even when the factor offered was causally irrelevant to the physics 

scenario (e.g., the mass of a pendulum). Furthermore, when the less 

accessible factor was offered students did explore alternate factors, namely 

the highly accessible factor. They surmised from this that accessibility could 

represent a “soft contour” (i.e., a control mechanism) that influences the 

trajectory of a reasoning process. 

The notion of accessibility is generally applied to the ease of recall of 

information stored in memory. In this paper, we extend the notion of 

accessibility to the ease of generating novel possibilities. We aim to examine 

the relative accessibility of various generated mental models within the 

context of three tasks, one in a non-physics domain and two in physics 

domains. In doing so, we aim to provide additional insight about how 

accessibility might impact reasoning in a physics domain and to shed light on 

factors that contribute to the relative accessibility of a model in a given 

context. This work thus serves to deepen researchers’ understanding of the 

interplay between domain-general and domain-specific reasoning in physics. 

  

5.3  Background and Theoretical Framework 

When examining the concept of cognitive accessibility in physics, it is 

critical to have a solid understanding of the relevant frameworks for 
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understanding human reasoning. We will discuss, in detail, two related 

theoretical frameworks: a class of theories collectively referred to as dual-

process theories of reasoning and decision-making (Evans & Stanovich, 2013) 

as well as the mental models theory of reasoning developed by Philip 

Johnson-Laird (Johnson-Laird, 2009). Once this theoretical background has 

been established, we discuss the notion of accessibility in greater detail along 

with a focused discussion about accessibility in the context of physics 

reasoning. 

5.3.1 Theoretical frameworks for student reasoning 

Dual-process theories posit two processes for reasoning: an automatic, 

subconscious process 1; and an effortful, slower process 2 (Evans & 

Stanovich, 2013). Process 1 is responsible for constructing the most plausible 

model based on contextual clues and prior knowledge. When there is a reason 

to expend effort, process 2 comes into play by recruiting working memory to 

run simulations, test hypotheses, or execute an algorithm. This process is 

helpful with problems such as long division, deducing a result from first 

principles, or deciding which tax cut to take. In most dual-process theories, 

the searching for alternate models occurs only if process 2 finds the default 

model supplied by process 1 to be insufficient in some way (e.g., (Evans, 

2006)) or if the reasoner has an innate disposition to execute that search 
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(Tishman, Jay, & Perkins, 1993; Thompson, 2009). Otherwise, the default 

model tends to be the only model considered. 

Another theoretical framework for reasoning is Johnson-Lairds’ theory 

of mental models (Johnson-Laird, 2009). For Johnson-Laird, a mental model 

is a mental representation of the relationships between objects; reasoning is 

then a process of simulation based on that representation. Reasoning errors 

are due primarily to the failure to represent all possible models of a given 

situation. Khemlani and Johnson-Laird (2016) extended the theory of mental 

models to include a dual-process perspective and posit that process 1 puts 

forward a single mental model from which an intuitive judgment is made. 

This mental model is limited by a human tendency to use reduce the load on 

working memory and other cognitive resources (i.e., cognitive miserliness). In 

the theory, if more cognitive resources are available and there is a need to 

recruit such resources, counterexamples to the original judgment are then 

sought after by representing more possibilities until all possibilities are fully 

fleshed out. 

To describe Johnson-Laird’s theory in greater detail, we provide an 

example to show each step in the theorized mental model reasoning process. 

Consider the following logical statement4:  If there is a circle, then there is a 

                                                 
4 For a mathematician, this statement and the following discussion may appear odd. This statement 

was originally phrased by Johnson-Laird and could be modified to read “If there is X, then there is Y”, 

which is logically equivalent. Johnson-Laird’s representation of mental models is also not supposed to 
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triangle. Johnson-Laird represents mental models on paper via a spatial 

arrangement of icons (i.e., words) that reflect theory’s stance that real mental 

models are also spatial arrangements of mental icons. Using Johnson-Laird’s 

representation, a single, fully fleshed out mental model of the information in 

this statement would consist of three distinct possibilities: 

 

Circle  Triangle 

No Circle Triangle 

No Circle No Triangle 

 

Due to a tendency to preserve resources, Johnson-Laird’s framework predicts 

that the typical mental model produced by process 1 would not be fully 

fleshed out, but instead be abridged:  

 

 Circle  Triangle 

     … 

 

Rather than represent all three possibilities explicitly in the model, the mind 

keeps a mental “footnote” (Johnson-Laird’s representation of this footnote is 

an ellipses) as a reminder that other possibilities exist and that the model 

would need to be fleshed out to include representations of these possibilities if 

the task requires it so to be.  

Which models get “footnoted” and which get explicitly represented in the 

model produced by process 1 is partially governed by the “principle of truth”, 

                                                                                                                                                 
represent a logical truth table or logically equivalent statements. They simply simulate possible 

configurations that are consistent with the premise. 
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which says that models represent what is true in a possibility rather than 

what is false. Thus, the situation in which “Circle” is false (i.e., “No Circle”) is 

not explicitly represented but rather is left to be explored if the situation 

demands it. In contrast, if the logical statement had been “If there is not a 

circle, there is a triangle,” then the intuitive mental model would be 

 No Circle Triangle 

                      … 

 

with the ellipsis denoting the two non-represented possibilities where there is 

a circle. In this case, the semantic content of the initial phrase implies the 

object to consider is “No Circle”.  

In the mental models theory of reasoning, the tendency of the human 

mind to “footnote” certain possibilities is the source of all observed systematic 

reasoning errors. For instance, consider the following logical problem: “If 

there is a circle, then there is a triangle. There is not a circle. What follows?” 

A common answer to this problem is “there is not a triangle”, but this answer 

is incorrect. As indicated by the fully fleshed out mental model shown above, 

there are two possible outcomes associated with the absence of a circle: either 

there is a triangle or there is not a triangle. Thus, nothing follows deductively 

from the two statements given in the problem. Reasoners make an error on 

this problem because they are reading a judgement directly from the 

intuitive, abridged mental model produced by process 1 (i.e., the second one 
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depicted) rather than fully fleshing out the model to include all possibilities 

and reading a judgement from that more thorough simulation. 

5.3.2 Cognitive accessibility and availability 

We now examine the notion of cognitive accessibility. Accessibility is best 

understood in contrast to availability. Knowledge (concepts, mental models, 

procedures, etc.) is available if it (or some of its constituent parts) is stored in 

memory, whereas the accessibility of knowledge is a measure of how readily 

this knowledge can be activated or brought into working memory. In other 

words, accessibility is an “activation potential of available knowledge” 

(Higgins, 1996). The accessibility of specific knowledge structures is posited 

to be primarily dependent on the strength of associations between it and 

other relevant structures. For instance, “fleas” is a highly accessible 

explanation for a scratching dog because fleas and dogs are strongly 

associated with each other (Quinn & Markovits, 1998). These strong 

associations are mostly formed through repeated exposure to the association 

during the course of everyday experiences. However, the accessibility of a 

mental construct can also be temporarily increased through priming effects. 

If a particular concept (e.g., a stereotype, see Wheeler & Petty, 2001) is 

unconsciously primed (e.g, by subliminal exposure to words related to the 

stereotype), ideas associated with that concept become temporarily more 

accessible and it is possible to study the time-decay of that accessibility 
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(Higgins, 1996). As such, the accessibility of a given knowledge structure is 

both context-dependent and time-dependent. 

The accessibility of various knowledge structures impacts which of those 

structures process 1 draws upon during the act of reasoning. For instance, 

when two or more models are in competition, the model with the higher 

accessibility tends to be constructed or selected for use in reasoning. 

According to most dual-process theories, reasoners tend to utilize a single 

model while reasoning; thus, a highly accessible model can hinder a student's 

exploration of possible alternate models. This was shown clearly in Heckler 

and Bogdan’s study of accessibility in a physics context (Heckler & Bogdan, 

2018). When highly accessible explanations for physics phenomena were 

offered in the question prompt, students did not tend to reason via alternate 

explanations, whereas when less accessible explanations were offered, they 

did. 

In that study, and in line with other studies regarding accessibility (e.g., 

Quinn and Markovits), relative cognitive accessibility was operationally 

defined as the relative number of times that an explanation is listed in a free-

recall task. As an example, one such free-recall task told students that 

“Pendulum A swings with a longer period (time) than pendulum B” and were 

prompted to “list the possible reason(s) why pendulum A has a longer period”. 

Heckler and Bogdan report data regarding which explanations were listed, 
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which were listed first, which were listed singly, and the number of times 

that all explanations were offered. Considering all of these measures 

together, they determined which explanations were highly accessible and 

subsequently manipulated the presentation of physics questions to control for 

the explicit mention of these explanations.  For instance, they presented the 

observation that “Pendulum A swings with a longer period (time) than 

pendulum B” and asked students if the statement “Pendulum A has a longer 

string than pendulum B” was a valid explanation for the observation (length 

being a highly accessible factor). By varying the offered explanation, they 

determined that the accessibility of the offered explanation impacted whether 

students would explore alternate explanations for the stated observed 

phenomena. 

5.3.3 Applying accessibility and availability to mental models 

The language of accessibility and availability as employed by Heckler 

and colleagues has generally referred to the recall of knowledge structures 

(such as the relevancy of length to the period of a pendulum). Since we were 

interested in exploring Johnson-Laird’s mental models framework as a means 

of studying the extent to which particular possibilities could be generated or 

identified in a given research task, we have applied the same notions of 

accessibility and availability to reasoner generated possibilities. 
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To illustrate the difference, consider the syllogism “All artists are 

bakers, some bakers are chemists. What follows?” A typical response is to say 

that “Some artists are chemists” because, according to Johnson-Laird, the 

initial, abridged mental model would be 

 Artist  Baker  Chemist 

 Artist  Baker  Chemist 

 Artist  Baker  

                          … 

 

Indicating a model in which there is the possibility of an artist-baker not 

being a chemist. Because reasoners don’t initially represent what is not true, 

the possibility of there being bakers who aren’t artists does not readily occur 

to reasoners and reading off of the model above they conclude that some 

artists, but not all, are chemists. A more fleshed out model may look 

something like 

 Artist  Baker  Chemist 

 Artist  Baker  Chemist 

 Artist  Baker 

   Baker  

   Baker  Chemist 

      … 

 

in which case the reasoner would readily read off that there was no definite 

relationship between the state of being an artist and being a chemist. (That 

is, it could be that none of the artists are chemists.) 

The point of this discussion is to illustrate that a student would likely 

have never considered specific arrangements of artist-status and baker-

status prior to the task. Thus, they can’t reasonably be said to be recalling 
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information about these arrangements. Rather, they are generating novel 

models in response to the task. However, the concept of accessibility still 

applies. In the context of the task, where artist is listed first, possibilities in 

which bakers are also artists are more accessible than possibilities in which 

bakers are not artists. This difference in accessibility has ramifications for 

the model that is constructed for use in reasoning: it is unlikely that an 

initial model would appear as 

   Baker  Chemist 

   Baker  Chemist 

 Artist  Baker 

      … 

 

In this study, we extended the concept of accessibility to reasoner-generated 

models in a physics context and used this to pursue a greater understanding 

of the tendency to explore alternate possibilities. In particular, the 

investigation was designed to answer the following research questions. Can 

investigating the relative accessibility of mental models in both physics and 

non-physics contexts provide a better understanding of the mechanisms that 

control reasoning in a physics context?  Can such an investigation also yield 

insight into domain-general reasoning phenomena occurring while students 

answer physics questions? 

5.4  Methods 

To deepen an understanding of the interplay between domain-general and 

domain-specific reasoning, we aimed to study how accessibility might impact 
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reasoning in a physics domain as well as to investigate factors that contribute 

to the relative accessibility of a possibility in a given context. Accordingly, we 

created three isomorphic tasks that probe student tendency to explore 

possibilities. These tasks span three content areas: a purely numerical 

context, a force and motion context, and a circuits context. In all tasks, 

students are asked to identify all possible arrangement or configurations 

consistent with the given premise.  The tasks are intentionally isomorphic in 

construction. By this, we mean that each task has a similar underlying 

reasoning pathway that requires students to determine a set of discrete 

values that sums to a given positive number. 

 
 

Figure 5-1. Three isomorphic tasks designed to investigate relative cognitive 

accessibility in (a) a numerical “physics-less” context, (b) a forces 

context, and (c) a circuits context. 
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In the first task (see Figure 5-1.a), the question states that three cards 

are laid out on a table, and that printed on each card is either a 0, a +1, or a -

1. The student is told that the first card reads +1 and that the other two 

cards each could read either 0, +1, or -1. The students’ task is to determine 

the combinations of numbers that could be printed on cards B and C such 

that the cards sum to a non-zero positive number. There are 6 combinations 

of numbers that could satisfy the premises: (i) both cards could read 0, (ii) 

card B could read +1 and card C could read 0, (iii) card B could read 0 and 

card C could read +1, (iv) both cards could read +1, (v) card B could read -1 

and card C could read +1, and (vi) card B could read +1 and card C could read 

-1.  

The other two tasks set up the same basic situation in the context of 

forces and circuits. In the forces task (shown in Figure 5-1.b), a fan cart has 

three fans that can direct a force on the cart to the right or to the left. The 

fans can also be turned off. The students are told that the fan cart is 

accelerating to the right and also that fan A is on and the force on the cart by 

the fan is to the right. In the circuits task (shown in Figure 5-1), a circuit has 

a battery of voltage 𝑉0 oriented with its positive terminal to the right, two 

sockets (each of which could hold a battery, with its positive terminal 

oriented either to the right or to the left, or a straight connecting wire), and a 

resistor. It is indicated that an ammeter measures a non-zero current to the 
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right (as shown in the diagram). Thus, in all three cases, the students must 

consider how two object states, each of which could be represented as a value 

that could be either zero or signed positive or negative, combine with a given 

third object state to produce an effect that is signed positive. 

The accepted way of combining the objects is context specific. In the 

numerical context, the rule is given to the students: the numbers on the cards 

must be added. In the forces context, the forces from the fans on the cart can 

be represented as vectors, with the sign of the vector indicating the direction 

of the force on the cart. Newton’s 2nd Law provides the underlying rule 

governing how these forces are combined to produce an acceleration: the 

vectors are added and the direction of the sum of the force vectors is the 

direction of the acceleration. In the circuits context, Ohm’s law governs the 

relationship between the cause (a potential difference Δ𝑉) and the effect (a 

current). The potential difference is additive and signed based on the 

orientation of each battery (i.e., where its positive terminal is with respect to 

the rest of the circuit). 

In all three of these tasks, there are only nine combinations of states 

among the two objects. If one represents the state of each of the remaining 

objects (B and C) using the symbols +, -, and 0, one can represent all nine 

combinations in a concise fashion, as shown in Figure 5-2.  Of these nine, 

only six are consistent with the information provided in the task statement. 
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These six are indicated in Figure 5-2 via the absence of shading. It should be 

noted that some of these combinations (e.g., 0+ and +0) would be equivalent if 

the two objects (B and C) were indistinguishable.  Our treatment of such 

combinations during data analysis will be described in greater detail in the 

results section. As a clarifying note, the term possibility will be used 

interchangeable with configuration and combination of states in the following 

sections and does not necessarily denote a possibility in the Johnson-Laird 

sense, except where explicitly referenced as such. 

 

Figure 5-2. A table of the nine possible combinations of states. Only six of 

these are consistent with the premises given in the three iso-morphic 

possibilities tasks. The other three have been shaded in the table to 

indicate that they are inconsistent with the task premises. 

 

Each task was administered online using the Qualtrics survey 

software. The tasks were administered on homework assignments or exam 

reviews for students enrolled in an introductory calculus-based physics 

sequence, along with other questions relevant to the course but not relevant 
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to the content found in the research task. These assignments counted for 

participation credit in most cases, although extra credit was awarded in some 

cases. In all cases, the tasks were administered after relevant lecture, 

laboratory, and small-group recitation instruction at a research-intensive 

university in New England. Research-based materials from Tutorials in 

Introductory Physics (McDermott & Shaffer, 2001) were used in the recitation 

section. Given that the tasks were all administered across a single academic 

year, most students who completed the year-long introductory calculus-based 

sequence would have seen and completed all three tasks. 

To examine the relative accessibility of the different possibilities 

inherent in these questions, we used a between-student methodology and 

randomly split students into two conditions: (1) a select condition in which 

students were asked to select possibilities from a list of configurations, and 

(2) a generate condition in which students were asked to generate their own 

list of possibilities. Together, the data from the two conditions enable us to 

gather information about which possibilities are available to students (i.e., 

possibilities that students are able to recognize as consistent with the given 

information and the rule for adding the quantities, captured by data from the 

select condition) and which are relatively accessible (i.e., possibilities that are 

easily generated when students are left to come up with their own, captured 

by data from the generate condition). 
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In our analysis of these data, we operationalized relative accessibility 

three different ways, in the tradition of Heckler and Bogdan, 2018. In the 

first approach, we simply determined how many students cited a particular 

possibility in the generate condition. The second way we operationalized 

relative accessibility was to determine how many students in the generate 

condition listed a particular possibility first in their response. This approach 

implicitly assumes that students did not edit their responses but simply 

listed their models in the order in which they came to mind (or at least 

quickly listed the first model that came to mind).  We recognize, of course, 

that this may not always be the case. Finally, since accessibility is proposed 

to inhibit the exploration of alternate possibilities, the third 

operationalization of relative accessibility was to examine the relative 

prevalence of models listed by students who only generated one possibility in 

their responses.  Given that each approach had associated limitations, we 

used all three approaches to estimate the relative accessibilities of the 

various possibilities, thereby ensuring that our results were reliable.  It is 

worth noting that a similar multi-operationalization approach was employed 

by Quinn and Markovits (1998) as well as Heckler and Bogdan (2018).  As we 

discuss later, all three operational definitions yielded similar results and 

served to strengthen our results.    
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5.5  Results 

The results are grouped into three sections. In the first, we introduce a data-

driven coding scheme used in the subsequent results sections. In the second, 

we provide general results, and in the third section we provide results from 

the three different ways of operationalizing accessibility. The three tasks are 

considered together in each section. 

5.5.1 Coding Scheme Development 

As discussed in Section 5.4, possibilities such as +0 and 0+ could be 

considered to be equivalent if objects B and C were effectively 

indistinguishable.  For this reason, in our initial analysis of the data we 

probed the ways in which students treated those possibilities that would be 

equivalent for indistinguishable objects.  The two quotes presented below are 

illustrative of the kinds of responses students gave when ask to generate 

possible configurations in the forces task. 

 “B and C can be off, both be applying force to the right, or one 

applying force to the right and the other either off or applying force 

to the left” 

 

“- B and C may both be turned off 

- B and C may both be turned on and to the right 

- B may be on and to the right, C may be on and to the left 

- B may be on and to the left, C may be on and to the right” 
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In the first response, the student treated components B and C as 

indistinguishable, noting that one could be to the right while the other could 

be off to the left and suggesting that it doesn’t matter which is which. In the 

second response, the student treated the components as distinguishable but 

explicitly mentioned both the +- possibility and the -+ possibility. It was 

observed that in over 98% of student responses, the components (B and C) 

were either treated as indistinguishable or both possibilities in a given set of 

distinguishable possibilities were mentioned. 

Therefore, for coding purposes, we collapsed the six consistent 

configurations down to four, and the three inconsistent configurations down 

to two. In particular, we established a single opposition configuration code, 

denoted +-, in which the two components are competing. Configurations in 

which one component is “on” and the other is "off" (i.e., +0, 0+, -0, and 0-) 

were denoted either + (when "pushing" to the right) or - (when “pushing” to 

the left). Finally, the possibility that neither component B nor C is "pushing" 

was denoted 0. 

5.5.2 General Results 

In the numerical context, the select and generate conditions were 

similar in the number of possibilities chosen (see Figure 5-3.a). Almost 70% of 

students recognized all of the possibilities that were consistent with the 

premises given (select condition), and close to 60% of students were able 



   

 

256 

 

generate and endorse these possibilities on their own (generate condition). 

Another 40% generated and endorsed three of the four consistent 

possibilities.  

 

 
 

Figure 5-3. Plots showing the proportion of students selecting a given number 

of possibilities for (a) the numerical context, (b) the forces context, and 

(c) the circuits context.  

 

In the forces context, there was a stronger performance difference 

between the Select and Generate conditions. As shown in  

Figure 5-3.b, 50% of students recognized all four possibilities as 

consistent with the premises in the select condition, while only 30% were able 

to generate all four possibilities. The circuits context yielded very similar 

results ( 

Figure 5-3.c). 
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5.5.3 Accessibility measures 

In this section, we examine the results of measuring accessibility via 

three different operationalizations of the concept, namely accessibility as 

measured by the percentage of students who generated the possibility, by the 

percentage of students who listed the possibility first in their response, and 

by the percentage of students who listed the possibility as the only possible 

configuration. 

5.5.3.1 Accessibility as measured by the percentage of students who 

generated the possibility 

Figure 5-4 shows a comparison of the percentage of students who 

endorsed a configuration in their response in the select and generate 

conditions for each task. Each row constitutes a distribution of endorsed 

possibilities. Typically, the configurations consistent with the premises were 

endorsed by the majority of students, while the two inconsistent 

configurations were not highly endorsed. The tables of percentages are 

shaded according to the percentages in a linear function with zero shading 

(white) corresponding to the maximum percentage in the table, and max 

shading (black) corresponding to the minimum percentage for the table. 
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Figure 5-4. A comparison of the percentage of students that endorsed a 

configuration in their response in the select and generate conditions for 

each task. For each distribution, a chi-square test was used on the four 

consistent configurations to gauge the extent to which observed 

variations were statistically significant. The tables are shaded 

according to the percentages in a linear function with zero shading 

(white) corresponding to the maximum percentage in the table, and 

max shading (black) corresponding to the minimum percentage for the 

table. 

 

For each distribution, a chi-square test was used on the four consistent 

configurations to gauge the extent to which observed variations were 

statistically significant. These tests revealed a general trend in which all 

consistent configurations were equally likely to be selected from a list, but 

also indicated statistically significant differences in each of the two physics 

contexts for the generate condition. 
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5.5.3.2 Accessibility as measured by how many times the possibility 

was listed first 

The percentage of students in the generate condition who listed a 

specific possibility first in their response is given in Figure 5-5. A consistent 

pattern is shown across all three tasks: the 0 configuration appears most 

prevalent, and the +- configuration is the least likely (of the four consistent 

possibilities) to be listed first.  

 

Figure 5-5. Percentage of students in the generate condition that listed a 

given possibility first. These values also include students who only 

listed one possibility. 

5.5.3.3 Accessibility as measure via the number of students who 

listed the possibility alone 

By looking at which configurations were the only ones listed by a 

particular student (see Figure 5-6), we found that in all contexts, students 

who only listed one consistent possibility tended to list the 0 or the + 

configurations (>60%), while the +- configuration was only rarely listed alone, 

if at all (< 9%). The sample size was fairly small, however, so firm conclusions 

are hard to make about which possibility was most accessible according to 

this measure alone. Nevertheless, it seems certain from this measure that 
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the opposition configuration (+-) was among the lowest accessibility models 

taking the three contexts together. 

 

 

Figure 5-6. Absolute number of students who listed only one possibility 

broken down by what possibility they listed. The absolute number of 

students is shown rather than a percentage because the number of 

students in this condition was so small. 
 

5.6  Discussion 

On these tasks, students treated the two objects as indistinguishable 

when generating possible configurations – even when they distinguished 

between the two objects in their response. We view this result as suggesting 

that a student who generates the configuration 0+ and the configuration +0 

are generating both configurations from the same underlying mental 

simulation which treats the components indistinguishably.  Thus, we are 

inclined to believe our coding scheme represents the 6 different underlying 

mental simulations used by students when reasoning through these tasks, 

four of which produce results which are consistent with the premises of the 

problem. 
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 In the following discussion, we refer to these simulations as models. 

Because there is a difference in the way that the term mental model is used 

in Johnson-Laird’s framework and in the more general dual-process theories, 

we wish to introduce a notation that will aid the reader in distinguishing 

what is meant. Johnson-Laird refers to a collection of possibilities as a single 

mental model of the premises, whereas in dual-process theories generally a 

single possibility is considered the mental model. Therefore, when we refer to 

a collection of possibilities, we will use the term JL mental model. Otherwise, 

when using the terms mental model or model, we are referring to the single 

underlying model that corresponds to a single possible configuration. 

To summarize the basic results, students were able to select more 

configurations from a list than they were able to generate on their own.  Also, 

in all contexts, each consistent model was generally equally available to more 

than half of the students, as evidenced by the results of the chi-square test on 

the distributions in the select condition. Additionally, the inconsistent models 

were avoided by most students.  

While our results indicated that the models were generally available to 

most students, we discovered a difference in the relative accessibility of each 

model. Taking the three methods of measuring accessibility together, it 

appears that the opposition model, +-, was less accessible for students than 

the other models. Additionally, the 0 model was consistently among the top 

for accessibility.  
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These results can be interpreted in a few different ways. In the first 

interpretation, we look to the proposed mechanism for accessibility. Since the 

primary mechanism driving accessibility is posited to be the strength of 

associations between the knowledge structure and the context in which the 

knowledge is being activated, and given that the specific configurations of 

objects in these tasks is largely novel to the student, one could ask “what is 

being associated with the context of these tasks when generating a model to 

determine possible configurations?”  

One might propose that each configuration is constructed from a 

pairing of an abstract knowledge element -- like the fine-grained 

phenomenological primitives described in diSessa (1993) -- with the 

conceptual content of the task (e.g., the vector nature of Newton’s second 

law), and that it is these abstract structures that are more or less associated 

with the context of the task. For instance, a “status quo” structure (such as 

the “WYSIWYG” knowledge element from Elby, 2001) might seek to take the 

context “as-is” without hypothetical simulations. This structure could 

combine with the specific task features to create the 0 model. Likewise, a 

“conformity” structure (which seeks homogeneity) would combine with the 

state object A is in to create the + and ++ models; or an “opposition” structure 

(like diSessa’s “canceling” p-prim (diSessa, 1993)) produces the +- model in 

the context of these tasks. Note that our purpose isn’t to define these 

structures, but simply to propose their existence and effect. One could say, 
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then, that these abstract structures are invoked with certain relative 

accessibilities in each context due to the level of their association with the 

particular context.  

If this were true, one could argue that the associations with the 

abstract structures were based more on the underlying structure of the 

problem (i.e., entities combining through vector addition) rather than the 

specific task features or content area (i.e., whether the entity was a battery or 

a card) because it appears that the least accessible and most accessible 

models for each context are the same (+- and 0, respectively). This would 

represent a domain-general effect related more to problem structure than 

physics content. 

An alternate interpretation uses the perspective of cognitive 

miserliness – that is, a reasoner’s tendency to avoid large expenditures of 

cognitive resources such as working memory when reasoning through a task. 

It could be that the observed lack of accessibility of the +- model is due to the 

cognitive effort involved in mentally representing that model. Recall that the 

0 model seemed most accessible across the three tasks, with the + and ++ 

models next, and finally the +- as least accessible. We would expect that a 

model in which nothing changes (the 0 model) would be the easiest to 

maintain in working memory since it only requires that one object be 

represented (object A). Likewise, models in which only one extra component 

needs to be represented (+ and – ) or where the components are in the same 
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state (++ and --) would be more easily maintained in memory than the 

opposition model, in which it is necessary to represent two extra components 

in different states.  

Of note is that while two out of the three accessibility measures 

showed the opposition model as less accessible in the numerical context, the 

opposition model was just as accessible as the other consistent models in the 

numerical context when accessibility was operationalized as the number of 

times a model was cited in the generate condition.  We suspect that the 

construct of cognitive miserliness may contribute the apparent 

inconsistencies in accessibility of the opposition model in the numerical 

context.  Given that two out of three accessibility measures indicate that the 

opposition model is less accessible in the numerical context and given that 

the opposition model was found to be less accessible in the other two contexts, 

we are inclined to believe that the opposition model is, in fact, less accessible 

in the numerical context as well.  However, because fewer cognitive resources 

were devoted to interpreting the content and representing the cards (the 

physical objects) as abstract mathematical objects in the numerical context, 

students had more resources available for exploring alternate possibilities. 

Thus, from the perspective of cognitive miserliness, the opposition model is 

more likely to be generated in the numerical context than in the two physics 

contexts, as the latter two contexts require more resources for navigating the 

specific conceptual content of the tasks. Findings from the “Listed First” 
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measure of accessibility (see Figure 5-5. Percentage of students in the generate 

condition that listed a given possibility first. These values also include students who only 

listed one possibility.) are consistent with this interpretation. The results shown 

in Figure 5-5 indicate that the 0 model (the simplest one) increased in 

accessibility while the other models (including the opposition model) 

decreased in accessibility while going from the numerical context to the 

circuits context, with the latter being the most complex of the contexts. 

Indeed, this interpretation through the lens of cognitive miserliness is 

also consistent with Johnson-Laird’s mental models theory of reasoning since, 

in his framework, factors such as working memory capacity are tightly linked 

to how many possibilities are explicitly listed in a JL mental model and 

which are “footnoted”. As discussed in Section 5.3, the “principle of truth” 

partially governs which possibilities are explicitly represented in the intuitive 

model. This principle states that the intuitive process typically yields a JL 

mental model that only includes those things that are “true” and does not 

represent models that include things that are “not true”. The problem 

statement in all three contexts alludes to object A having a positive-signed 

quantity and the net effect being positively signed. It could be that the 

problem statement in all three contexts sets up the reasoning such that the 

positive-signed quantities are the “true” quantities to represent. Thus, 

according to Johnson-Laird’s “principle of truth”, the mind is biased against 

representing things that run counter to positive-signed quantities; that is, 
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the reasoner is predisposed to not put any negative-signed quantities in the 

possibilities, unless those are structural consequences of the premise. 

Of the two interpretations of our data, we favor the cognitive 

miserliness interpretation because it accounts for the finer details of the 

results and it combines multiple theoretical perspectives into a single 

coherent model of student reasoning in physics. However, further research 

would need to be done to establish for certain whether cognitive miserliness 

was indeed the controlling factor for the observed relative accessibility. If 

further research supports this interpretation, it would constitute a control 

mechanism for accessibility beyond simple associations and might serve to 

enhance the breadth and applicability of the concept of accessibility.  Even in 

the absence of a coherent, robust understanding of the phenomenon observed 

in this work, the empirical results alone still have the potential to inform 

instruction, as discussed in the next section.  

5.7  Conclusions, implications for instruction, and future work 

In this study, we examined the relative cognitive accessibility for 

reasoner-generated mental models inside and outside of physics contexts. 

Three isomorphic tasks were developed to probe student tendencies to explore 

alternate possibilities consistent with a given premise. These tasks all had 

the same underlying structure (the addition of three signed/vector quantities) 

but were in different contexts and they probed student tendency to explore 

alternate possibilities consistent with a premise. We analyzed results to these 
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tasks to determine the availability and accessibility of the different possible 

configurations. We found a consistent pattern across three content areas 

suggesting that a model in which two objects are in opposition (such as two 

fans pushing in opposite directions) is less accessible than models in which 

the objects are not in opposition. Because this pattern spanned two different 

physics contexts, we are inclined to believe that a domain-general mechanism 

may control model accessibility. In particular, we speculate that this 

underlying mechanism is cognitive miserliness, or the tendency to avoid 

expending cognitive resources on multiple, complicated models and instead 

reason from a single, easy-to-represent model. 

Regardless of the mechanism responsible for the phenomenon, our 

findings have specific implications for instruction and further research. First, 

the finding that students can recognize that a model is consistent with 

premises but have difficulty generating the model on their own suggests that 

physics questions in which possibility generation is used as a measure of 

availability of conceptual knowledge may in fact be testing the accessibility of 

that knowledge instead. Such questions, therefore, if used alone, may not be 

appropriate for assessing student knowledge of a particular concept, as they 

will tend to underestimate the corresponding level of knowledge. 

Moreover, our findings suggest that accessibility-related phenomena 

could impact reasoning on questions leading to a competition between an 
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opposition model and a more accessible model such as a “null” or 0 model. 

Based on this work, it would be expected that students would exhibit a 

preference for lines of reasoning based on the latter, more accessible models. 

Future work should be directed toward verifying this claim. 

Finally, we anticipate that future research will explore the extent to 

which these findings might help uncover a mechanism behind some of the 

documented conceptual difficulties in certain areas of physics, particularly 

when involving vector quantities. For instance, there is a tendency for 

students to treat momentum as a scalar when totaling the momentum of a 

system. It may be that underlying this difficulty is a bias toward not 

explicitly representing mental models that require opposing quantities.  

Further work is needed to link these two largely independent lines of existing 

research.  

Research-based materials have focused primarily on conceptual 

understanding and scientific reasoning skills. The overall results of this 

paper (and related studies) point to a need for a better understanding of the 

interplay between domain-general reasoning processes and content-specific 

reasoning with physics concepts. With an improved understanding of this 

interplay, a next generation of research-based materials can be developed 

that help students navigate these domain-general reasoning processes in the 

context of physics while also preparing them for more effective reasoning 

outside of a physics context (e.g., in a future career).  
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6 CONCLUSIONS AND FUTURE WORK 

The goal of the work presented in this dissertation was to provide new 

methodologies to examine qualitative inferential reasoning that separate 

reasoning skills from understanding of a particular physics concept. This 

dissertation presented two new methodologies, the reasoning chain 

construction task and the possibilities task, and demonstrated their utility in 

exploring mechanistic processes related to the generation of qualitative 

inferential reasoning chains and in revealing insight into the nature of 

student reasoning generally. In this section, we review the results of each 

investigation, discuss broad implications, and then discuss future directions 

for research and implications for instruction. 

6.1  Review of Results from Chapter 3 

In Chapter 3, we presented the results of a study in which the 

reasoning chain construction task was utilized to probe the extent to which 

dual-process theories could account for and predict student behavior on tasks 

with salient distracting features. From Evans’ heuristic-analytic theory 

(Evans, 2006), we developed a working hypothesis stating that students 

would be unlikely to shift away from an incorrect default model cued by 

process 1 unless they were provided with information that explicitly refuted 

the satisfactoriness of that model. Two sets of experiments built on the 

chaining task methodology were devised to test this hypothesis. In the first, 

students were given graph tasks with a known salient distracting feature 
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(the intersection point, see Figure 3-1) which had been cast into a chaining 

format; the reasoning elements in the chaining task version of the graph task 

served to give students access to relevant conceptual information, thus 

testing whether or not this improved access would be sufficient to increase 

performance. In the second set of experiments, we gave students access to 

information (via the analytic intervention element, or AIE) that refuted a 

common incorrect default model about static friction in order to determine 

whether the presence of this information improved performance, as suggested 

by our working hypothesis. 

Several important lessons emerged from these experiments. The first 

set of experiments showed that providing increased access to relevant, correct 

information was not enough to produce a large shift in performance on a 

kinematics question with a salient distracting feature. Instead, the correct 

information was used by many students to justify an incorrect (and therefore 

inconsistent) answer. Additionally, the salient distracting feature had a 

recognizable effect in three other content domains as well, and correct 

reasoning elements provided in each domain were not enough to negate the 

effects of the salient distracting feature on the reasoning process.  

The second set of experiments showed that a large increase in 

performance could in fact be realized by providing access to information (via 

the analytic intervention element, or AIE) that refuted a common incorrect 

default model cued by the salient distracting feature on the two-box friction 
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task. This set of experiments revealed that the AIE had a greater impact on 

students who had previously demonstrated relevant mindware (i.e., answered 

a screening question correctly with correct reasoning) and that there was no 

statistically discernible change in performance for those students who had 

not demonstrated that they possessed the relevant mindware. Together, 

these results provide further support for the use of dual-process theories as a 

mechanistic framework for making and testing predictions about student 

performance and behavior, particularly about which models are selected and 

why, in turn, some are abandoned. 

6.2  Review of Results from Chapter 4 

The overarching goal of the investigation detailed in chapter 4 was to 

show the usefulness of network analysis of data stemming from this 

methodology towards the goal of gaining insight into the composition and 

structure of student reasoning chains. In addition, we illustrated the many 

ways in which the novel data resulting from network analysis of reasoning 

chain construction tasks could be leveraged for future research regarding 

reasoning difficulties, reasoning resources, and reasoning mechanisms. 

We provided four tasks that highlighted various aspects of the 

usefulness of network analysis on chaining task data. The first task 

established the uses of various network analysis methods and measures. The 

second task provided evidence that students drew upon the same set of 

reasoning elements when arriving at both correct and incorrect conclusions, 
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but placed emphasis on different elements, consistent with studies using the 

resources framework to study the topology of student causal nets via resource 

graphs. The third task hinted at the possible use of network analysis 

techniques on chaining task data to provide insight into dual-process effects 

by revealing a sub-community of “same is same” elements and showing that 

salient distracting features had a “short-cutting” effect on student reasoning 

chains. Finally, the fourth set of tasks showed evidence for the development, 

over the course of a two-semester physics course, of a justification argument 

for a graph-reading heuristic, showing the usefulness of reasoning chain 

construction tasks for assessing the development of specific reasoning skills 

before, during, and after scaffolded instruction. 

The results of this investigation point to the usefulness of chaining 

tasks, coupled with network analysis techniques, to study many types of 

arguments, particularly those arguments related to the reasoning difficulties 

identified in physics education research literature. Additionally, reasoning 

chain construction tasks may also be leveraged to investigate how students 

coordinate reasoning resources while solving through a physics problem. 

Finally, it may be that the associations students make while assembling a 

reasoning chain on a chaining task are reflective of subconscious associations 

and reasoning processes. Thus, network analysis of such tasks may be useful 

in studying the effects of domain-general mechanisms. 
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6.3  Review of Results from Chapter 5 

Chapter 5 introduced the possibilities tasks, which were designed to 

examine the relative cognitive accessibility for generating various mental 

models inside and outside of a physics context. The tasks revealed a 

consistent pattern across three content areas, which suggested that a model 

in which two objects are in opposition (such as two fans pushing in opposite 

directions) is less accessible to reasoners than models where the objects are 

not in opposition. Because this pattern spanned two physics content areas, it 

was proposed that a domain-general mechanism controls which model is 

accessible. This mechanism was proposed to be cognitive miserliness, or the 

tendency to avoid expending cognitive resources and instead reason from 

single, easy to represent models. 

Thus, chapter 5 illustrates the process of gaining insight about a 

domain-general mechanism in the context of physics by implementing a new 

methodology (i.e., by studying the relative accessibility of each mental model 

in three different contexts using possibility generation tasks).  

6.4  Implications from all three studies 

Each of the studies described in this dissertation explored the 

interplay between domain-general reasoning and content-specific reasoning. 

The first showed that introducing a cognitive scaffold based on a domain-

general reasoning mechanism produced an increase in performance for the 

students, thus giving more definition to the cognitive mechanism interacting 
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with the specific context. The second showed that it is possible to generate 

new forms of data that are useful to studying content-specific reasoning, and 

possibly to uncover insights into domain-general reasoning mechanisms as 

well. The third highlights how another reasoning mechanism - cognitive 

miserliness – can impact the tendency to search for alternate models. In each 

case, the results spanned multiple contexts, thereby allows us to more 

thoroughly characterize the interplay between context and domain-general 

reasoning. 

6.5  Future directions 

The results from network analysis of reasoning chains appear to be 

robust as the interpretations of the network measures were consistently 

applied across many contexts. However, if one were to continue exploring 

network analysis of chaining task data, a productive route would be to 

observe the behavior of the analysis methods in a wider variety of contexts to 

further verify that the interpretations remain consistent across contexts. 

Secondly, an exploration of other network analysis measures could be 

productive. In particular, it may be that a stochastic block modeling 

community detection algorithm (the favored algorithm of Fortunato (2010)) 

produces more reliable communities, and this may provide greater 

consistency across tasks or reveal inconsistencies across tasks leading to 

further insight. Furthermore, working with directed graphs more extensively 
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and analyzing the shortest and most probable paths could also help us better 

understand student reasoning patterns and phenomena. 

Perhaps more exciting are the possibilities for utilizing chaining tasks to 

study various reasoning phenomenon already identified in the literature. For 

instance, scaffolded materials such as Tutorials in Introductory Physics and 

Open Source Tutorials in Physics Sensemaking often step students through a 

series of qualitative inferences. These series of inferences constitute a chain 

of reasoning that could be built into a chaining task, and differences in the 

quality of students’ chains could be studied before, during, and after 

scaffolded instruction. That is, one could more formally explore the research 

question about the extent to which scaffolded materials aid students in 

developing context-specific reasoning skills. 

  Additionally, these scaffolded materials could be scrutinized for 

domain-general skills addressed in a context-specific way, such as the 

compensation reasoning difficulty addressed in the contexts of work and 

energy, bouyancy, and the ideal gas law. Then, a chaining task could be 

devised that isolated a compensation reasoning argument in a novel (and 

unfamiliar) context and student reasoning chains could be studied before and 

after relevant scaffolded instruction. Such an investigation to explore the 

extent to which addressing a domain-general reasoning skill on a context-

specific basis leads to proficiency at that skill. 
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Another exciting avenue for future research is to craft reasoning 

elements that reveal information about students’ coordination of resources 

while reasoning. Procedural resources have been identified for separation of 

variables in a physics context (Black & Wittmann, 2009), and other resources 

have been proposed in the contexts of Newton’s 3rd law (Smith & Wittmann, 

2008) and waves (Wittmann, 2006). There could be a way for these resources 

to be directly incorporated into a chaining task. Because chaining tasks can 

be implemented online, a large amount of data can be accumulated and 

analyzed fairly efficiently. Furthermore, with the capability of gathering 

time-dependent data on student construction of reasoning chains, it may be 

that patterns can emerge that corroborate the ideas put forward in literature 

regarding resource graphs. Other insights about the coordination of resources 

as students work through physics problems may also emerge. 

The possibilities task has considerable potential for future 

development in a number of ways also. Along one dimension, the ability to 

represent many different mental models is linked with good reasoning skills 

(Johnson-Laird, 2006; Tishman, Jay, & Perkins, 1993; Lawson, 2004). It 

would be productive, therefore, to use the results of possibilities tasks, 

perhaps coupled with scores on the cognitive reflection test (Frederick, 2005; 

Wood, Galloway, & Hardy, 2016), to correlate the skill of generating hard-to-

access models with success on physics problems (including those in existing 
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concept inventories) that elicit a strong intuitive response. If there were 

positive correlations between these three factors, one might propose a 

possible direction for increasing student performance on such problems, by 

developing and implementing interventions expressly focused on increasing 

the tendency to explore (alternate) possibilities. 

Another dimension for possibilities tasks to investigate is the link 

between documented conceptual difficulties and the cognitive structures used 

in reasoning. If, as proposed in Chapter 5, the tendency to treat momentum 

as a vector quantity is related to cognitive miserliness, the possibilities tasks 

can play a key role in better understanding that connection. Furthermore, 

there may be other contexts in which similar phenomena occur. Possibility 

tasks written for these contexts may be helpful in exploring the interplay 

between cognitive miserliness and the construction of particular cognitive 

constructs related to scalar vs. vector quantities. 

Finally, the work presented in this dissertation is directly applicable to 

the development of a new generation of research-based materials that attend 

to domain-general reasoning mechanisms and bolster domain-general 

reasoning skills. The tasks presented here could be used to assess the 

productivity of such materials, but they could also play a key role in the 

instruction itself. For instance, new tutorials could target the exploration of 

alternate possibilities in a variety of contexts, thus giving students more 
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practice with this skill. Chaining tasks could be used as a vehicle to discuss 

claim-evidence based reasoning (McNeill & Krajcik, 2008) or to examine the 

effects of salient distracting features on the use of specific lines of reasoning.  

This latter goal of raising awareness of and addressing the impact of high-

salience features on productive reasoning could perhaps be accomplished 

with chaining task modifications that ask a student to construct a line of 

reasoning leading to each of two answers and then asking them to reflect on 

which of the two answers seems more accurate based on (1) gut feeling and 

(2) quality of formal reasoning (similar to the Elby pairs (Elby, 2001) 

discussed in Chapter 2). Another way to address this may be to use “analytic 

intervention elements” followed by a series of follow-up questions that 

address the use or non-use of specific reasoning elements. Whatever the 

specific tactic employed, it seems that eliciting reflection on reasoning 

phenomena related to intuitive answers seems a promising avenue for future 

instructional materials that attend to student reasoning in physics more 

comprehensively (for instance, Elby, 2001 and Smith & Wittmann, 2007; see 

also Le, 2017). 
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APPENDIX A: ISOMORPHIC GRAPH TASKS 

A.1: Task statements 

Task Kinematics Graph Task Potential Energy Graph Task 

Figure 

  

Task 
Statement 

The motions of two cars are described 
by the position vs. time graphs shown 
above. 
 
When, if ever, are the magnitudes of the 
velocities (i.e., the speeds) of the cars 
the same? 

The potential energy of system 1, in which only 
particle 1 can move, is described by the potential 
energy vs. position graph shown. Likewise, the 
potential energy of system 2, in which only 
particle 2 can move, is shown. The two systems 
don’t interact. 
 
Where, if anywhere, are the magnitudes of the 
forces on the particles the same? 

   

Task Electric Potential Graph Task Magnetic Flux Task 

Figure 

  

Task 
Statement 

The electric potentials set up by two 
charge distributions located far away 
from each other are described by the 
electric potential vs. position graphs 
shown above.  
 
Where, if anywhere, are the magnitudes 
of the electric fields due to the charge 
distributions the same? 

The magnetic fluxes through two different 
conducting loops in different magnetic fields are 
described by the magnetic flux vs. time graphs 
shown above. 
 
When, if ever, are the absolute values of the 

induced EMF’s (𝜀1 and 𝜀2) the same? 
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A.2: Reasoning Elements Provided 

In consultation with the members of the advisory committee and external 

collaborators, the elements were refined as the project continued. The network 

analysis described in Chapter 4 was conducted on an earlier data set based on a 

longer list of elements. In accordance with feedback from members of the advisory 

committee and other external collaborators, the element list was subsequently 

refined and shortened. This refined list was used for the investigation of phenomena 

related to dual-process theories of reasoning and decision-making documented in 

Chapter 3. 
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Elements used for network analysis task (Chapter 4): 

  

                     
                               

                     

                                  

                           

                   

                        

                          

              

                     

                      

        

                             

                             

           

                  

                

                  

                  

                  

             

                  

 

  

 

 

 

 

 

 

 

 

  

  

  

  

  

  

  

  

  

  

                       

                 

            

                         

                 

            

                          

      

                          

      

                          

      

                             

  

  

  

  

                     
                               

                     

                                  

                           

                   

                              

                             

                  

                                 

                             

            

                                 

                                 

                       

                       

                               

                             

                                   

                          

                             

                          

                             

                          

                             

                          

                             

                  

                     
                               

                     

                                  

                           

                   

                                  

                            

                               

                       

                     

                         

                                 

                                 

                                  

                         

            

                      

                               

                  

                              

                                 

                              

                                 

                               

                                 

                              

                         

                     
                               

                     

                                  

                           

                   

                             

                              

               

                              

                               

                              

           

                             

                             

                           

                               

                             

                             

                              

                           

                              

                            

                              

                            

                              

                            

                              

                        

                              

                        

                     
                               

                     

                                  

                           

                   

                        

                          

              

                     

                      

        

                             

                             

           

                  

                

                  

                  

                  

             

                  

 

  

 

 

 

 

 

 

 

 

  

  

                       

                 

            

                         

                 

            

                     
                               

                     

                                  

                           

                   

                              

                             

                  

                                 

                             

            

                                 

                                 

                       

                       

                               

                             

                                   

                          

                     
                               

                     

                                  

                           

                   

                                  

                            

                               

                       

                     

                         

                                 

                                 

                                  

                         

            

                      

                               

                  

                     
                               

                     

                                  

                           

                   

                             

                              

               

                              

                               

                              

           

                             

                             

                           

                               

                             

                             

                              

                           



   

 

291 

 

Elements used in investigation of phenomena related to dual-process 

theories of reasoning (Chapter 3): 
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A.3: Screening Question Task Statements 

Task Kinematics Screening Questions Potential Energy Screening Questions 

Figures 

 

 

       

Task 
Statement 

The motion of a car is described by the 
position vs. time graph shown above. 
 
At which of the three labeled times is 
the magnitude of the velocity (i.e., the 
speed) of the car the greatest? 

The potential energy of a system in which only 
one particle can move is described by the 
potential energy vs. position graph shown. 
 
At which of the three labeled positions is the 
magnitude of the force on the particle the 
greatest? 

   

Task Electric Potential Screening Questions Magnetic Flux Screening Questions 

Figure 

            

Task 
Statement 

The electric potential set up by a charge 
distribution is described by the electric 
potential vs. position graph shown 
above. 
 
At which of the three labeled positions 
is the magnitude of the electric field due 
to the charge distribution the greatest? 

The magnetic flux through a conducting loop is 
described by the magnetic flux vs. time graph 
shown above. 
 
At which of the three labeled positions is the 
absolute value of the induced EMF the greatest? 
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