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inhabited by coastal populations of some of these species.  We captured sparrows and measured 

niche characteristics at 130 locations between 16 May and 24 Aug of 2015 and 2016.   

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Map of sparrow capture locations in tidal marshes across the northeastern and mid-

Atlantic coast, USA. Tidal wetlands classified as Estuarine Intertidal Wetland by the National 

Wetland Inventory (U.S. Fish and Wildlife Service National Wetlands Inventory 2010) are 

shown in green, and sparrow capture locations are indicated by yellow dots.  The map insets to 

the right outlined in blue and red provide more detail of the extent of the river gradients we 

captured in our sampling.    
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Niche Axes – Functional 

 Functional traits respond evolutionarily to environmental conditions experienced by 

populations over time, and thus they indicate a longer-term record of niche breadth than can be 

measured during a single field visit to a population.  We measured portions of this longer niche 

exposure using two well-studied functional traits: bill size and body size.  Several studies have 

shown that temperature and water limitation select for larger bills to maximize the capacity for 

heat dissipation while minimizing water loss (Greenberg and Droege 1990, Greenberg et al. 

2012a, Greenberg and Danner 2012, 2013; Luther and Greenberg 2014, Danner et al. 2017, 

Olsen et al. In Revision).  Body size is also a well-known functional trait associated with 

temperature (Bergman 1847), and varies in response to summer temperatures across space and 

time (Gardner et al. 2009, Andrew et al. 2018). 

We banded each individual with a uniquely numbered U.S. Geological Survey leg band 

and recorded a number of standard morphological measurements.  Specifically, we measured bill 

width and depth at the anterior edge of the nares, and bill length from both the anterior edge of 

the nares to the bill tip and along the length of the skeletal culmen.  We also measured both the 

left and right tarsometatarsus, unflattened wing cord length, and mass to the nearest 0.01 gram.  

We log-transformed all morphological variables prior to analysis, and conducted two separate 

Principle Component Analyses (PCAs). We first created an index of body size using the full set 

of morphological measurements.  We then created a second PC axis using just the three bill 

morphology measures.   
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Niche Axes – Performance  

Performance traits vary with the environmental experiences of individuals over time 

scales from the immediate to an entire lifetime.  They are different from simple phenotypic 

variation in that their values influence demographic parameters (Nowicki et al. 1998, Byers et al. 

2010).  Therefore, similar to functional traits, they can capture niche axes over a period of time 

that is longer than a single site visit, but they are expressions of the niche experienced by 

individuals and are correlated with the probability of persistence within those conditions.  For 

instance, body temperature could be used as a performance metric in an endotherm, and values 

that are far outside the thermal neutral zone both reflect the conditions the individual has 

experienced and might indicate a reduced probability of long-term persistence for the individual 

in that environment.  Performance traits can thus track individual, population-relevant, 

environmental experiences.  We used hematocrit, feather degradation, and skeletal asymmetry as 

performance traits that track previous environmental experiences within taxa.   

Hematocrit values increase with plasma and urine osmolality following dehydration, and 

can indicate signs of environmental stress (Goldstein and Zahedi 1990).  As such, we expect 

hematocrit to covary with those environmental variables that produce osmotic stress.  We expect 

this trait to be demographically important for our study species, as some tidal-marsh sparrows 

have increased osmoregulatory capacity (Goldstein et al. 1990, Goldstein 2006).  The presence 

of this adaptation underscores both the appropriateness of osmolality as a performance metric in 

this ecosystem and the need to expect differences in performance among taxa that experience the 

same environmental conditions but have different evolutionary histories.  To measure the niche 

axes that control both of these processes, we pierced the ulnar vein of each captured bird and 
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collected a blood sample in a single capillary tube (<70µL).  We spun each tube for 10 minutes 

in a centrifuge (Zipocrit Model LWZIP2) to separate out the blood plasma from the packed cell 

volume.  We measured total blood volume, plasma volume and packed cell volume in the 

capillary tube with calipers to the nearest 0.01 mm and used the proportion of packed cell 

volume total blood volume to calculate a hematocrit value.   

Feather structure, and its ability to resist breakage and wear, can have important 

implications for thermoregulation and water repellency (Nilsson and Svensson 1996, Rijke and 

Jesser 2011).  We expected feather wear to covary with an individual’s history of abrasion and 

bacterial degradation.  There are multiple reasons to suspect that feather wear has demographic 

consequences in tidal-marsh birds.  The presence of certain bacteria increases degradation of 

feathers in wild birds and this selection pressure can influence the evolution of feather color 

(Kent and Burtt 2016).  The darker plumage of many tidal-marsh birds relative to their closest 

inland relatives is thought to have evolved in response to increases in feather degradation by salt-

tolerant bacilli in the tidal marshes (Peele et al. 2009).  Increased melanism in feathers has also 

been linked to increased resistance to mechanical abrasions, breakage, and feather wear (Bonser 

1995, Mackinven and Briskie 2014), and can serve as an indicator of individual condition (Parejo 

et al. 2011).   

We recorded several measures of feather wear.  First, we took photos of each bird with 

spread retrices against a white background. From the photos, we followed a standardized 

protocol to score each individual feather for each bird (Borowske 2015).  We recorded a 

qualitative measure of wear according to a standardized scale between 0 (no wear) and 5 

(substantial wear).  We also counted the number and severity (on a scale of 1 to 3) of fault bars 
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on each feather.  We calculated the average wear score for each individual, and summed the 

number of fault bars per feather.  For the second set of measurements, we collected the outermost 

retrix from each bird, and photographed the collected feather with a Canon T1i and a 60mm 

macro lens against a white background with a ruler for scale.  We digitally measured the overall 

feather length and the length of the plumulaceous section along the rachis of each feather, 

excluding the calamus, in Adobe Photoshop CS6 (ver. 13.0.5).  We counted the number of fault 

bars, the number of broken barbs, and after discarding the outer 20% of the length, we counted 

the total number of barbs. We divided the number of broken barbs by the total barb count and 

divided the fault bars by the feather length to provide a quantitative measure of feather wear that 

accounted for differences in tail feather size and structure among species.  For both measures of 

wear (proportion of broken barbs and our qualitative wear score), we accounted for within 

season variation by calculating the residuals of a linear model fit as a function of Julian date.  As 

such we aimed to estimate the performance of each individual controlling for time of year so that 

variation in performance was more closely related with variance in spatial environment.  We 

combined these two measures of wear with the three fault bar measurements (counts and severity 

score) in a PCA and used the first principal component as a composite measure of feather wear 

in our analysis.  

We also included a measure of asymmetry as a performance trait.  Fluctuating asymmetry 

tracks the experiences of individuals during development, covaries with environmental stress 

(Gest et al. 1986, Møller 1997), and can be associated with overall growth, fecundity, and 

survival (Møller 1997).  We calculated an index of asymmetry as the absolute value of 

differences in the length of the left and right tarsi of each individual. 
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Niche Axes - Competition 

The presence, absence, and abundance of potential competitors are classic axes that 

define a realized niche (Hutchinson 1957).  Since the abundance and distribution of each of our 

taxa varies across our study region, this allowed us to define the breadth of potential interspecific 

competition within populations and across species.  To obtain an index of interspecific 

competition, we conducted a point count survey at each capture site following standardized 

methods outlined in the National Marsh Bird Monitoring Protocol (Conway 2011).  We recorded 

all aural and visual detections of unique individuals during a five-minute passive listening 

period.  We did not conduct surveys during periods of rain, high winds (>20 km/h), or fog.  We 

created an index of interspecific competition based on the number of Passerellid sparrow species 

present at each site.  We used only Passerellid sparrows since they are close relatives, have 

similar habitat requirements and diets, and the opportunity for competition exists among all of 

our study taxa (Mowbray 1997, Arcese et al. 2002, Greenlaw et al. 2018, Post and Greenlaw 

2018, Shriver et al. 2018).  

Niche Axes – Environmental 

We further defined the niche of each taxon using the plant assemblage and local climate. 

We conducted standardized vegetation surveys at each capture site by recording percent cover of 

each species present within a 50m radius from the center of the net locations to quantify habitat 

characteristics that define position along a number of ecological gradients. Plant species 

composition in these habitats reflect the salinity, elevation, and flooding frequency (Tiner 2013) 

experienced by those individual birds captured at the site. Vegetation structure is also an 

important determinant of nest loss due to flooding and predation (Ruskin et al. 2017).  We log 
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transformed our plant cover data to improve normality of the distribution, and conducted a PCA 

to summarize the variation in vegetative composition among sites.   

We obtained climatic variables from each capture location during the breeding season (1 

May through 31 August of 2015 and 2016) from the Prism Climate Group (2019).  We obtained 

mean, maximum, and minimum daily temperature, and daily precipitation values.  We created 

variables for total precipitation, mean, minimum, and maximum temperature, and variance of the 

daily mean temperature within the breeding season for each location.  We conducted a PCA to 

reduce the number of variables, and to account for correlation among variables.  We included the 

first principal component axis as an index of position along the climate niche axes. 

Estimating Niche Breadth 

 We obtained data on these nine niche axes for 549 individuals, including 198 seaside 

sparrows, 259 saltmarsh sparrows, 47 Nelson’s sparrows, 36 song sparrows, and 31 swamp 

sparrows. We used the hypervolume package in Program R (Blonder et al. 2018) to create a 

measure of niche breadth along multiple niche axes. We scaled all variables prior to analysis to 

ensure that estimates of niche breadth were comparable among axes.  We grouped axes into four 

categories: environmental (the first and second PCs for plant species composition and the PC for 

climate), morphological (the PCs for bill morphology and body size), performance (hematocrit, 

fluctuating asymmetry, and the PC for feather wear), and competition (sparrow species richness).  

For each axis category, we estimated the hypervolume for each species using the 

hypervolume_svm function.  We chose this method since the kernel density estimation technique 

can overestimate the hypervolume in some cases with high dimensional data (Qiao et al. 2017, 

Blonder et al. 2018).  We ran 15 replicates with a random sample of 30 individuals for each 
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species, as hypervolumes increase with number of samples.  We also estimated the available 

space for each species and niche category using a random sample of 150 observations from all of 

the species (30 samples from each of the 5 species).  We used this same rarified, replicate 

sampling technique to estimate five hypervolumes which each left out a single category of niche 

axes for each species and the available environmental space.   

Predicting Niche Volume Across Axes 

 We assessed covariation in niche volume across axes by allowing the hypervolume of 

each single-category niche to predict the hypervolume of the niche with all of the remaining 

niche categories.  We first used the lm function in R to run a univariate model for niche category 

with the species-specific hypervolumes of the niche with a single missing category as the 

dependent variable, and the niche hypervolume of the missing category as the predictor.  We 

used the Adjusted R2 value to evaluate the relative performance of each niche category in 

predicting the size of the hypervolume described by the remaining niche axes.  To evaluate the 

ability of all categories to predict niche size simultaneously, we also evaluated the results of a 

log-linear model that predicted all twenty five hypervolumes that were missing a single category 

(five hypervolumes for five species) as a function of the size of the niche described by the 

missing category nested within the category type.  We also conducted a correlation test to 

determine if niche volume was correlated across any of the single-category niches. We log 

transformed all hypervolume values for each of these analyses to account for the differences in 

dimensions among values. 
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RESULTS 

Niche Axes – Functional 

The first principal component for morphological measurements explained 52% of the 

variation in morphology, and indicated differences in body size among species. Song and seaside 

sparrows had the highest positive scores, while the smaller saltmarsh, Nelson’s, and swamp 

sparrows had negative scores.  The first principal component axis for bill morphology explained 

71% of the variation in bill size. Bill depth had the highest loading, followed by bill width and 

skeletal culmen.  Song and seaside sparrows had negative scores, while swamp, Nelson’s and 

saltmarsh had positive scores.       

The hypervolume for functional traits sampled across all species was 5.79 ± 0.51 SD2 

(Table 1).  Swamp sparrows showed the largest variation, with a niche size of 1.95 ± 0.13 SD2, 

while seaside sparrows showed the lowest, with a niche size of 0.92 ± 0.14 SD2 (Table 5.1). 

Niche Axes – Performance  

The first principal component for feather wear measurements described 33% of the 

variation among individuals in our analysis.  The average number of fault bars among all the 

feathers had the highest loadings, while our two measures of wear (proportion of broken barbs 

and our qualitative measure) had the lowest loadings.  Hematocrit values ranged from 0.36 to 

0.96 (mean = 0.51).  Values for fluctuating asymmetry ranged from 0 to 2.2 (mean = 0.30). 

The performance niche showed high variation among most of the species sampled. The 

niche size sampled across all species was 22.79 ± 5.53 SD3 (Table 1).  Swamp sparrows showed  
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the largest variation, with a niche size of 14.08 ± 0.15 SD3, or 62% of the available space, while 

Nelson’s sparrows showed the lowest size of 1.91 ± 0.49 SD3, or 8% of the available space 

(Table 5.1). 

Niche Axes – Competition 

  The number of species present at a site ranged from 1 to 4 (mean = 2.08).  Species 

showed similar variation in the number of species present across the sampled space. The niche 

size sampled across all species was 1 ± 0.04 SD (Table 1).  Swamp sparrows showed the largest 

variation, with a niche size of 1 ± 0.01 SD, while saltmarsh sparrows showed the lowest, with a 

volume of 0.81 ± 0.14 SD (Table 5.1). 

Niche Axes – Environmental 

The first principal component for plant species explained 14% of the variation, and 

mainly separated out the northern versus more southern sites, representing the latitudinal 

gradient.  The second principal component explained an additional 12% of the variation and 

represented the upriver salinity gradient, where grasses, Typha augustifolia, Carex, and 

Eliocharis had negative loadings, and coastal species such as Spartina alterniflora, Spartina 

patens, Distichilis spicata, Salicornia, and wrack had the highest positive loadings.  The first 

principal component axis explained 60% of the variation in climate among sites. Mean and 

maximum temperature had the highest loadings, while variance in mean temperature had the 

lowest. 

The environmental niche space showed large variation among species, and aligned with 

their time of association with the tidal marsh.  The sampled available space had a hypervolume 

of 20.39 ± 2.43 SD3 (Table 5.1).  Song sparrows showed the largest niche breadth, with a volume 
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of 10.78 ± 1.89 SD3, while seaside sparrows showed the narrowest, with a volume of 0.69 ± 0.23 

(Table 5.1).  For estimates of volume with only vegetation, the available space had a niche size 

of 11.35 ± 1.38 SD2.  Swamp sparrows had the largest niche size of 8.42 ± 0.14 SD2, and seaside 

sparrows had the narrowest, with a size of 1.56 ± 0.39 SD2 (Table 5.1).  

Table 5.1. Niche volume. We show the mean and standard deviation estimated from 15 random 

samples of 150 observations for the available space, and 15 random samples of 30 observations 

for each species.  Environmental niche includes two principal components for plant species 

composition, and a principal component for climate. The Vegetation niche includes only the two 

principal components for plant species composition. Functional niche includes a principal 

component for both body size and for bill size. The Performance niche includes feather wear, 

hematocrit, and fluctuating asymmetry, and the Competition niche is defined by the species 

richness of potential sparrow competitors at each site.  

 Environmental Vegetation Functional Performance Competition 
 Mean SD Mean SD Mean SD Mean SD Mean SD 

Available 20.39 2.43 11.35 1.38 5.79 0.51 22.75 5.53 1.00 0.04 
NESP 7.64 1.87 6.60 1.34 1.06 0.13 1.91 0.49 0.95 0.03 
SALS 3.57 1.10 2.82 0.75 1.50 0.32 4.41 2.00 0.81 0.14 
SESP 0.69 0.23 1.56 0.39 0.92 0.14 13.31 4.16 0.89 0.14 
SOSP 10.78 1.89 5.38 0.75 1.45 0.15 10.31 2.46 0.88 0.05 
SWSP 9.81 0.92 8.42 0.14 1.95 0.13 14.08 0.15 1.03 0.01 
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Figure 5.2. Density distribution and box plots showing the mean and standard deviation of niche 

volume estimates across 15 samples of 30 individuals for each species. We provide estimates 

across environmental, vegetation, performance, competition and functional trait axes.  Niche 

volume estimated using the hypervolume_svm function in the hypervolume package in R.  
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Predicting Niche Volume Across Axes 

Results from univariate log-linear regression models suggest that competition and 

functional traits explain the most variation in niche volume across other niche axes.  Competition 

explained 7% of the variation in volume of the remaining niche axes, while functional traits 

explained 6% (Table 5.2).  The nested linear regression also suggested that functional traits and 

competition had the highest predictive power (P = 0.01; Table 5.3) and that overall, individual 

category niches explained 10.2% of the variation in the size of the niche delineated by the 

remaining niche categories. 

 Competition and vegetation niche axes had the highest correlation coefficient (0.68), 

followed by functional traits and environmental (0.67; Figure 3, Table 5.4), and functional and 

environmental (0.61) but none were significant (P = 0.21, P = 0.22, P = 0.28, respectively).  The 

performance niche axis had the lowest correlations overall, and was negatively correlated with 

both environmental (-0.23) and vegetation niche axes (-0.19, Table 5.4). The vegetation and 

environmental axes were highly correlated (0.94), but environmental axes included the 

vegetation axes.    
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Table 5.2.  Effect size and variation explained by log-linear models that predicted the size of a 

multi-dimensional hypervolume.  We defined hypervolumes for niche axes from four categories 

(Vegetation, Functional, Competition, Environmental, Performance) using the estimated size of a 

niche defined by axes in the remaining category.  The Environmental axes include both 

vegetation PCs and the single climate PC.  

 𝛽 Adj R2 P 
Vegetation 0.61 0 0.64 
Functional 2.82 0.06 0.35 
Competition 15.35 0.07 0.34 
Environmental -0.09 0 0.87 
Performance -0.33 0 0.75 

 

Table 5.3. Parameter estimates, variance, and P values from a single log-linear model that 

predicted all twenty five hypervolumes. Estimates describe prediction of hypervolumes that were 

missing a single category (five hypervolumes for five species) as a function of the size of the 

niche described by the missing category nested within the category type. 

 𝛽 SE P 
Vegetation -0.23 0.51 0.66 
Functional 2.99 1.90 0.13 
Competition 9.99 5.93 0.11 
Environmental 0.09 0.42 0.83 
Performance -0.09 0.38 0.81 
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Figure 5.3. Pearson’s correlation coefficients for relationships between the size of niches 

calculated using log transformed hypervolume values for each single niche axis category. The 

environmental niche included all of the variables defining the vegetation niche in addition to the 

climate PC.   

Table 5.4. Pearson’s correlation coefficients.  Correlations (as shown in Figure 3 above) show 

relationships between the size of niches calculated using log transformed hypervolume values for 

each single niche axis category. The environmental niche included all of the variables defining 

the vegetation niche in addition to the climate PC.   

 

  Competition Environmental Functional Performance Vegetation 
Competition 1 0.40 0.26 0.17 0.68 
Environmental 0.40 1 0.67 -0.23 0.94 
Functional 0.26 0.67 1 0.30 0.61 
Performance 0.17 -0.23 0.30 1 -0.19 
Vegetation 0.68 0.94 0.61 -0.19 1 
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DISCUSSION 

  We estimated niche volume across functional, competitive, performance, and 

environmental niche axes among five closely related sparrow species inhabiting tidal marsh 

ecosystems of the eastern US.  Niche size was positively correlated among most of the individual 

axes, but performance niche size was negatively correlated with vegetation and environmental 

axes.  This suggests that specialism is correlated among on multiple niche axes.  However, the 

rank order of species changed among several of the niche axes, and the predictive power of the 

size of any single axis on the remaining niche hypervolume was fairly low.     

We found no evidence, however, for tradeoffs in niche breadth in this system along 

climatic niche axes, plant assemblage axes, an interspecific competitor axes, and the 

environmental axes behind selection on two functional traits (bill and body size).  Taxa that 

exhibited narrow niche breadth in any of these domains were generally specialized for all of 

them.  Selection for specialization along a single niche axis may lead to positive associations of 

specialization across other niche axes, at least among the five species we describe.  These 

positive correlations may be a result of correlation among traits (i.e., selection for specialized 

adaptations within one niche domain lead to changes in other traits – from pleiotropy or epistatic 

effects, for example – that decrease the range of environmental use by the species in other niche 

domains) or correlation among selection (i.e., selection for specialization on one niche axis is 

generally accompanied by selection for specialization on another niche axis because of 

environmental correlations in conditions).  This pattern is consistent with the report of a tidal 
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marsh syndrome of specialization across a suite of functional traits associated with tidal marsh 

colonization (Grenier and Greenberg 2005, Greenberg et al. 2006, Walsh et al. 2018).   

Regardless of the cause, we found no evidence for specialization on one axis being 

compensated for by a broader niche in another realm among the niche axes we examined.  This 

pattern may not hold over different taxonomic scales or different niche axes.  For example, 

positive correlations between habitat and diet specialization have been reported in European 

birds (Reif et al. 2016), but not among birds breeding in Germany or in a broad taxonomic group 

of coral reef fish (Brändle et al. 2002, Brandl et al. 2015).   

We found the strongest positive correlations among competition and vegetation axes. 

Interspecific competition also had the highest predictive power for the remaining niche 

hypervolume among the five combinations that we tested.  We suspect his is because taxa that 

occupy a broader niche, exist in more diverse environments, and are more likely to overlap the 

range of a larger number of species.  Additionally, our first vegetation PC described the 

latitudinal cline in plant species.  Many of our focal bird species also had range limits across this 

cline; thus sparrows with a larger latitudinal range extent would be expected to encounter more 

diverse plant assemblages and more interspecific competitors as well.   

We also found a strong positive correlation between the sizes of the functional trait and 

vegetation axes.  The functional niche axes ranked among the top two axes categories in 

predictive power for the remaining niche hypervolume.  In general we suspect this is because 

taxa that experience more diverse environments are more likely to diverge in functional traits, 

because they are more likely to experience both different selection pressures and genetic 

isolation among populations.  For the axes we examined there may also be underlying 
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environmental drivers of both functional and environmental diversity.  For instance, our first PC 

for vegetation described the latitudinal cline in plant species which is predicted by a strong 

temperature gradient.  Intraspecific body size is widely known to vary with temperature 

(Bergmann 1948, Gardner et al. 2009, VanderWerf 2012, Andrew et al. 2018), and latitudinal 

gradients in bill size have been reported for saltmarsh sparrows over the same range we 

examined (Olsen et al. In Revision) Thus those species with larger latitudinal ranges would likely 

show larger variation in functional traits associated with the latitudinal temperature gradient.  

Functional traits in this system are also likely shaped by the gradient of tidal inundation.  There 

is evidence for selection in bill size (Chapter 4) as well as a suite of other functional traits across 

tidal gradients (Walsh et al. 2018), and the second vegetation PC represented an upriver tidal 

gradient.  In water limited environments such as saline tidal marshes, both temperature and water 

limitation select for larger bills to maximize the capacity for heat dissipation while minimizing 

water loss (Greenberg and Droege 1990, Greenberg et al. 2012a, Greenberg and Danner 2012, 

2013; Luther and Greenberg 2014, Danner et al. 2017, Olsen et al. In Revision).  Thus those 

species that inhabit a narrow range of temperature and salinity may also show narrow ranges of 

functional trait variation.      

 Performance axes showed low correlation with other niche axes, and low predictive 

power.  This niche axis was also the only axis category that showed a negative correlation with 

the remaining niche hypervolume among our five categories.  This could be a result of recent 

colonizers at the edge of their realized niche showing only low values of performance within 

tidal marshes, while those that are specialized (low environmental and competitive niches) and 

adapted to tidal marshes (low functional diversity) are able to show both high and low 
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performance values.  Alternatively, our performance metrics may have just shown high 

interindividual variation across all species.  Hematocrit is a highly plastic trait that varies with 

environmental condition (Potti 2007) and is influenced by a variety of factors aside from 

osmoregulatory challenges, including energy expenditure and parasite loads (Fair et al. 2007).  

Further, while differences in melanism can help resist feather wear (Peele et al. 2009, Mackinven 

and Briskie 2014), differences in feather wear among species and sexes can also result from 

differences in activity levels and mating systems (Borowske 2015).  Thus, individual variation 

may result in large niche breadth for species with both broad and narrow habitat niche breadth.  

Ecological specialization is the process of adaptation to a narrow range of available 

environmental conditions (Poisot et al. 2011), and can have consequences for the abundance and 

distribution of species (Brown 1984) and species persistence (Julliard et al. 2004, Devictor et al. 

2008, Correll et al. 2017, 2019).  Determining how niche breadth changes on one axis may 

impact that in other dimensions of niche space is integral to understanding the origin and 

maintenance of specialization.  We found that niche size, or specialization, was correlated among 

niche axes that vary in their temporal scale. For instance, measures of niche size on 

environmental niche axes that are instantaneous in time, were correlated with variation in 

functional traits that may evolve over longer multi-generational times scales.  These findings 

suggest that the origin of specialization can result from selection for specialization on a single 

axis.  In this system, species niche breadth within a gradient of tidal inundation were informative 

about their niche breadth along other niche dimensions in ecological space, and can explain 

variation in certain functional traits.  Tidal regimes in this system are also important predictor of 

fitness and survival in tidal marsh sparrows (Field et al. 2017, Benvenuti et al. 2018, Maxwell 
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2018).  Focusing on multiple niche axes can further our understanding of how phenotypic 

variation and environmental conditions might constrain niche evolution (Laughlin and Messier 

2015). 
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APPENDIX A: SUPPLEMENTAL TABLES 
  
Table A3.1. Mean and standard deviation of the MCMC analysis and Maximum Likelihood 

parameter estimates for the full MuSSE model allowing all rates to vary freely. Lambda is the 

speciation rate for each bill shape category as denoted in Figure 1, mu is the extinction rate, and 

q is the transition rate, subscripts denote the direction of transitions in morphological space.  

Parameter ML Estimate MCMC (Mean) MCMC (SD) 

lambda1 0.211 0.214 0.015 
lambda2 0.338 0.365 0.044 
lambda3 0.349 0.442 0.083 
lambda4 0.166 0.159 0.048 
lambda5 0.241 0.284 0.058 
mu1 0.000 0.007 0.008 
mu2 0.000 0.041 0.039 
mu3 0.000 0.118 0.108 
mu4 0.000 0.044 0.045 
mu5 0.000 0.070 0.065 
q12 0.002 0.003 0.003 
q13 0.001 0.003 0.003 
q14 0.004 0.006 0.004 
q15 0.004 0.005 0.003 
q21 0.103 0.107 0.025 
q23 0.000 0.006 0.006 
q24 0.000 0.005 0.005 
q25 0.026 0.037 0.018 
q31 0.083 0.088 0.026 
q32 0.026 0.025 0.013 
q34 0.059 0.084 0.042 
q35 0.012 0.015 0.010 
q41 0.091 0.075 0.039 
q42 0.000 0.011 0.011 
q43 0.000 0.031 0.047 
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Table A3.1 
Cont.    
q45 0.000 0.009 0.009 
q51 0.016 0.022 0.017 
q52 0.039 0.052 0.025 
q53 0.000 0.009 0.009 
q54 0.000 0.010 0.011 

 

 
Table A4.1.1. Summary statistics on bill size for three sparrow species. We calculated bill size 

as 1/3 π * bill length * bill width * bill depth, following Greenberg and Droege (1990).   

 
 Minimum Median Mean Maximum SD CV 
SESP 247.00 338.20 342.50 478.60 40.29 11.76 
SALS 147.00 208.00 208.50 271.10 22.93 11.00 
NESP 131.70 190.60 190.00 250.70 24.67 12.99 

 
 
Table A4.1.2. Summary statistics on bill size for males and females for three sparrow species. 

We calculated bill size as 1/3 π * bill length * bill width * bill depth, following Greenberg and 

Droege (1990).   

 Female Male 
 Mean Median SD CV Mean Median SD CV 

NESP 204.30 209.58 16.07 7.86 187.86 188.05 25.10 13.35 
SALS 200.97 203.34 21.39 10.64 210.91 209.54 22.94 10.88 
SESP 323.79 324.12 33.52 10.35 350.83 349.28 40.35 11.50 
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Table A4.2.1.  Preliminary dbRDA models to determine best predictors for each category. In 

order to reduce the number of models, we conducted a two-step approach using dbRDA models 

to determine the combination of factors that explained the most variation in niche position and 

niche breadth among populations of saltmarsh and seaside sparrows in tidal marshes of the 

northeastern U.S.  The dependent variables are dissimilarity matrices constructed from sex 

corrected bill size for each population (niche position), and coefficient of variation in bill size for 

each population (niche breadth).  For each of 3 categories of predictors that had multiple 

variables (geographic distance, interspecific competition, and vegetation PC axes), we first 

constructed a model for using single predictors.  We also constructed models using combinations 

of the predictors that had positive Adjusted R2 values.  Following this step, we combined our 

single variable for intraspecific competition (the number of individuals caught per net hour), with 

the variables in the top model for each of the three categories.  Full model set containing 

independent variables from each category are listed in table 2b. We scaled all variables prior to 

analysis.  

 

Saltmarsh Sparrow Niche Position 

Geographic Distance (PCNM axes)  Interspecific Competition  Vegetation (PC Axes) 

Model Adj. R2  Model Adj.R2  Model Adj.R2 

PCNM1 + PCNM4 + PCNM8 0.17  SWSP + SESP (Abundance) 0.11  
PC1 + PC4 + 
PC5 0.21 

ALL 0.17  
SESP + NESP + STSP + SWSP + SOSP + 
SAVS (abundance) 0.09  PC1 + PC5 0.19 

PCNM1 + PCNM8 0.15  SWSP (abundance) 0.06  PC1 + PC4 0.17 

PCNM1 + PCNM4 0.11  SWSP (presence) 0.06  PC1 0.16 

PCNM1 0.10  
SESP + NESP + STSP + SWSP + SOSP  
(abundance) 0.05  PC4 + PC5 0.03 

PCNM4 + PCNM8 0.06  Total abundance 0.04  PC5 0.03 

PCNM6 0.05  SWSP + SOSP (abundance) 0.04  PC4 0.01 

PCNM1 + PCNM4 + PCNM6 + PCNM8  0.04  SESP (abundance) 0.03  PC2 0.01 
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Table A4.2.1 Continued        

PCNM8 0.03  SWSP + NESP (Abundance) 0.03  PC3 -0.004 

PCNM1 + PCNM6 + PCNM8  0.01  SESP + NESP (abundance) 0.02  PC9 -0.01 

PCNM4 0.01  SESP (presence) 0.02  PC6 -0.02 

PCNM9 0.00  Number of Species Present 0.01  PC7 -0.02 

PCNM1 + PCNM4 + PCNM6 0.00  SESP + SOSP (abundance) 0.01  PC8 -0.03 

PCNM2 -0.01  
SESP + NESP + STSP + SWSP + SOSP + 
SAVS (presence) 0.00    

PCNM3 -0.01  SOSP (presence) -0.01    
 
 
PCNM4 + PCNM6 -0.01  NESP (presence) -0.02    

PCNM5 -0.02  NESP (abundance) -0.02    

PCNM1 + PCNM6 -0.03  STSP (abundance) -0.02    

PCNM6 + PCNM8 -0.03  STSP (prsence) -0.02    

PCNM7 -0.03  SOSP (abundance) -0.02    

   NESP + SOSP (abundance) -0.04    

        

Saltmarsh Sparrow Niche Breadth 

Geographic Distance (PCNM axes)  Interspecific Competition  Vegetation (PC Axes) 

Model Adj. R2  Model Adj.R2  Model Adj.R2 

PCNM6 0.03  SOSP (abundance) 0.03  PC3 0.01 

PCNM6 + PCNM8 0.03  SWSP + SOSP (abundance) 0.01  PC8 0.01 

PCNM3 + PCNM6 0.02  SESP + SOSP (abundance) 0.00  PC5 0.01 

PCNM3 + PCNM6 + PCNM8 0.02  STSP (presence) 0.00  PC2 0.00 

PCNM8 -0.01  SWSP (abundance) -0.01  PC9 0.00 

PCNM2 -0.01  SWSP (presence) -0.01  PC3 + PC8 -0.01 

PCNM4 -0.01  SESP + NESP + SOSP (abundnace) -0.01  PC7 -0.02 

PCNM5 -0.01  SESP + SOSP + SWSP (abundance) -0.01  PC4 -0.02 

PCNM3 -0.01  NESP (abundance) -0.02  PC1 -0.02 

PCNM1 -0.02  SAVS (abundance) -0.02  PC6 -0.03 

PCNM3 + PCNM8 -0.02  NESP (presence) -0.02  PC5 + PC9 -0.05 

PCNM7 -0.02  
SESP + NESP + STSP + SWSP + SOSP + 
SAVS (abundance) -0.02  PC3 + PC5 -0.05 

PCNM9 -0.03  NESP (presence) -0.02  PC3 + PC9 -0.07 

PCNM1:9 -0.11  SOSP (presence) -0.02  
PC3 + PC5+ 
PC9 -0.09 

   Total abundance -0.02    

   SESP (abundance) -0.03    

   STSP (abundance) -0.03    

   STSP + NESP  (abundance) -0.03    
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Table A4.2.1 Continued        

   SESP (presence) -0.03    

   Number of Species Present -0.03    

   SESP + SWSP (abundance) -0.03    

   NESP + SESP (abundance) -0.04    

   

 
 
 
 
 
 
      

Seaside Sparrow Niche Position 

Geographic Distance (PCNM axes)  Interspecific Competition  Vegetation (PC Axes) 

Model Adj. R2  Model Adj.R2  Model Adj.R2 

PCNM1 + PCNM2 + PCNM3 0.16  Number of Species Present 0.14  PC3 + PC4 0.13 

PCNM2 + PCNM3 0.13  SALS + SWSP + SOSP  (presence) 0.11  
PC3 + PC4 + 
PC7 0.13 

PCNM1 + PCNM2 0.13  SALS + SWSP (presence) 0.11  PC4 0.11 

PCNM2 0.11  SALS + SOSP (presence) 0.07  PC4 + PC7 0.11 

PCNM1 + PCNM3 0.04  SWSP (presence) 0.05  PC1:7 0.09 

PCNM3 0.02  SOSP + SWSP (presence) 0.05  PC3 0.01 

PCNM1 0.02  SALS (presence) 0.04  PC3 + PC7 0.01 

   SOSP (presence) 0.02  PC7 -0.01 

   SWSP (abundance) 0.02  PC1 -0.01 

   SWSP + SOSP (abundance) 0.01  PC2 -0.01 

   SALS + SWSP (abundance) 0.00  PC5 -0.01 

   SALS (Abundance) -0.01  PC6 -0.02 

   SALS + SWSP + SOSP  (abundance) -0.01    

   SOSP (abudance) -0.02    

   SALS + SOSP (abundance) -0.03    

        

Seaside Sparrow Niche Breadth  

Geographic Distance (PCNM axes)  Interspecific Competition  Vegetation (PC Axes) 

Model Adj. R2  Model Adj.R2  Model Adj.R2 

PCNM1 -0.01  SALS (Abundance) 0.02  
PC3 + PC4 + 
PC5 0.09 

PCNM2 -0.02  SALS +SOSP (Abundance) 0.02  PC3 + PC4 0.08 

PCNM3 -0.03  SALS +SWSP (Abundance) 0.01  PC3 + PC5 0.05 

PCNM1 + PCNM2 -0.03  SALS + SWSP + SOSP (abundance) 0.00  PC4 + PC5 0.04 

PCNM1 + PCNM3 -0.05  SOSP (presence) -0.02  PC3 0.04 
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Table A4.2.1 Continued 
PCNM2 + PCNM3 -0.06  SOSP (abundance) -0.02  PC4 0.03 

PCNM1 + PCNM2 + PCNM3 -0.07  SWSP (abundance) -0.02  PC5 0.01 

   Number of Species Present -0.02  PC2 + PC5 0.00 

   SWSP (presence) -0.02  PC2 -0.01 

   SALS (presence) -0.03  ALL  -0.01 

   SWSP + SOSP (abundance) -0.03  PC1 -0.02 

   SWSP + SOSP (presence) -0.04  PC6 -0.03 

   SALS + SOSP (presence) -0.04  PC7 -0.03 

   SALS + SWSP (presence) -0.05    

   SALS + SWSP + SOSP  (presence) -0.07    
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Table A4.3.1. Loadings for the first 9 principle components for vegetation species cover at sites 

with saltmarsh sparrows. 

 
Vegetation Species PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Alopecurus_pratensis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Amaranthusm_cannabinu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Apiacea_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Argentina_anserina -0.17 0.11 -0.06 -0.04 0.03 0.17 0.11 0.06 -0.02 
Atriplex_patula -0.11 -0.18 0.12 0.20 0.18 0.02 -0.07 0.05 0.24 
Baccharis_halimifolia 0.04 0.00 -0.03 0.16 0.00 -0.10 -0.06 0.16 -0.12 
bare_ground 0.04 0.04 0.05 0.03 -0.03 -0.03 0.11 -0.05 -0.02 
calystegi_sepium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Chamerion_angustifolium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cirsium_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Comarum_palustre 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cuscuta_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Dactylis_glomerata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Distichlis_spicata -0.36 0.00 0.26 -0.04 0.14 -0.44 0.19 -0.29 0.18 
Drodera_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Eliocharis_spp -0.09 0.10 0.09 0.03 0.19 0.11 0.02 0.01 -0.05 
Elymus_repens 0.02 -0.19 0.04 -0.10 0.05 0.18 -0.17 0.27 -0.06 
Glaux_maritima -0.10 -0.17 -0.11 0.29 -0.07 0.07 -0.01 -0.21 0.06 
Heliotropium_curassavicum 0.01 -0.25 0.20 -0.15 -0.11 0.31 -0.28 0.07 -0.04 
Hypericum_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
iris_versicolor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Iva_frutescens -0.04 -0.02 0.53 0.32 -0.03 -0.22 0.14 0.49 -0.04 
Juncus_balticus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Juncus_gerardii -0.44 -0.31 -0.07 -0.04 -0.10 -0.28 -0.11 -0.13 -0.32 
Juncus_roemerianus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Juncus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
juniper 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Juniperus_Virginiana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Lathyrus_japonicus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Leymus_molli -0.03 -0.09 0.07 -0.07 -0.02 0.07 -0.02 0.11 -0.05 
Limonium_nashi -0.02 -0.41 -0.05 0.06 0.13 -0.09 0.07 0.11 -0.35 
Nuphar_lutea 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 



  
  
  
  
  

134 

Table A4.3.1 Continued 
        

Nyphaea_odorata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
open_water 0.02 0.03 0.13 -0.07 -0.07 0.00 -0.04 0.02 -0.38 
PPC 0.00 0.02 0.25 -0.05 0.12 -0.07 -0.15 0.04 0.02 
Peltandra_virginica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phleum_pratense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phragmites_spp 0.15 0.43 0.20 0.00 -0.36 -0.13 -0.33 -0.05 -0.03 
Pinus_taeda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Plantago_maritima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Polygonum_hydropiperoides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Pontederia_cordata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Prunus_virginiana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Puccinellia_maritima -0.12 0.05 -0.10 -0.07 0.00 0.12 0.08 0.06 0.04 
Ranunculus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Reubus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rhinanthus_minor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rhynchospora_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
road 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rosaceae_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Saggitaria_lancifolia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Salicornia_spp_ 0.13 -0.32 0.22 -0.21 0.28 0.04 -0.28 -0.07 0.41 
Schoenoplectus_americanus -0.24 0.25 0.08 0.06 0.23 0.12 0.00 0.10 -0.28 
Schoenoplectu_.pungens 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Schoenoplectus_robustus -0.35 0.24 0.11 -0.06 0.05 -0.04 -0.31 -0.22 0.02 
Schoenoplectus_tabernaemonta
ni 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

solidago_graminifolia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Solidago_sempervirens -0.35 -0.06 -0.11 0.24 -0.21 0.23 -0.29 0.05 0.09 
Spartina_alterniflora_s 0.29 0.12 -0.17 0.47 0.42 -0.05 -0.09 -0.19 -0.05 
Spartina_alterniflora_t 0.02 -0.05 -0.09 -0.42 0.10 -0.10 0.17 -0.06 0.00 
Spartina_cynosuroides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Spartina_patens -0.07 0.07 0.10 0.00 -0.17 0.15 -0.07 -0.01 0.07 
Spartina_pectinata -0.13 0.05 -0.10 -0.07 0.00 0.12 0.09 0.07 0.05 
standing_water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Taraxacum_officinale 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalictrum_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thlaspi_arvense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Toxicodendron_radicans -0.03 -0.08 0.03 0.13 -0.01 0.05 -0.02 -0.07 0.03 
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Table 4.3.1 Continued 
Trifolium_pratense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Triglochin_maritima -0.15 -0.09 -0.22 0.13 -0.07 0.18 0.08 -0.04 -0.02 
Typha_angustifolia -0.21 0.21 0.02 -0.05 0.25 0.20 0.14 0.15 0.16 
unknown_cordgrass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_fern 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_goldenrod -0.02 -0.01 0.05 -0.10 -0.06 0.01 -0.07 -0.14 0.03 
unknown_grass -0.21 0.16 0.01 -0.03 0.23 0.24 0.10 0.08 -0.02 
unknown_herbaceous -0.04 -0.09 0.07 0.34 -0.08 0.08 -0.07 -0.13 0.13 
unknown_rush 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_shrub -0.05 -0.04 0.11 -0.06 0.15 0.10 -0.03 0.11 -0.02 
unknown_succulent -0.04 -0.03 0.03 0.07 0.00 -0.02 -0.02 -0.10 0.10 
unknown_vine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_woody 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
upland 0.03 0.08 -0.13 -0.08 0.37 -0.11 -0.49 -0.03 -0.28 
Vicia_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
wrack 0.13 -0.07 0.45 0.02 0.02 0.41 0.23 -0.52 -0.33 
Carex_all -0.02 0.04 0.05 0.00 0.16 0.05 -0.01 0.02 0.02 

          

 
 
Table A4.3.1. Loadings for the first 9 principle components for vegetation species cover at sites 

with seaside sparrows. 

 
Vegetation Species Cover PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 

Alopecurus_pratensis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Amaranthusm_cannabinu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Apiacea_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Argentina_anserina 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Atriplex_patula -0.01 -0.03 0.06 -0.01 0.07 -0.10 0.01 -0.21 -0.10 
Baccharis_halimifolia -0.05 -0.13 0.37 0.03 -0.04 -0.28 0.39 -0.10 -0.25 
bare_ground 0.03 -0.04 -0.03 -0.02 -0.03 0.17 0.07 -0.05 0.24 
Calystegi_sepium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Chamerion_angustifolium 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Cirsium_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Comarum_palustre 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A4.3.2 Continued 
Cuscuta_spp -0.02 -0.10 0.10 0.05 -0.04 -0.04 0.15 0.07 -0.07 
Dactylis_glomerata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Distichlis_spicata 0.35 0.03 -0.06 -0.54 0.00 0.15 -0.14 -0.43 -0.28 
Drodera_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Eliocharis_spp 0.08 -0.03 -0.05 0.08 0.03 -0.03 0.01 -0.02 -0.04 
Elymus_repens 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Glaux_maritima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Heliotropium_curassavicum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Hypericum_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Iris_versicolor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Iva_frutescens 0.39 0.42 -0.01 0.05 -0.31 0.04 0.32 -0.07 0.39 
Juncus_balticus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Juncus_gerardii 0.15 -0.03 -0.07 0.12 -0.14 -0.08 -0.15 0.02 -0.18 
Juncus_roemerianus 0.19 0.13 -0.01 -0.01 -0.20 -0.28 -0.25 0.06 -0.06 
Juncus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
juniper 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Juniperus_Virginiana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Lathyrus_japonicus 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Leymus_molli 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Limonium_nashi 0.02 0.06 0.07 0.10 -0.03 0.23 0.00 -0.08 -0.10 
Nuphar_lutea 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Nyphaea_odorata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
open_water 0.31 0.00 -0.22 0.16 0.08 -0.12 0.11 0.15 -0.18 
PPC -0.14 -0.02 -0.06 -0.08 -0.15 0.15 -0.02 0.07 -0.13 
Peltandra_virginica 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phleum_pratense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Phragmites_spp 0.27 -0.35 0.50 0.11 0.19 0.25 -0.43 -0.04 0.25 
Pinus_taeda 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Plantago_maritima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Polygonum_hydropiperoides -0.04 -0.15 0.20 0.03 0.04 -0.18 0.19 -0.19 -0.22 
Pontederia_cordata 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Prunus_virginiana 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Puccinellia_maritima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Ranunculus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Reubus_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Rhinanthus_minor 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A4.3.2 Continued 
Rhynchospora_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
road 0.27 0.02 -0.11 0.12 0.28 0.43 0.26 -0.05 0.03 
Rosaceae_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Saggitaria_lancifolia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Salicornia_spp -0.19 0.23 -0.08 0.26 0.00 0.24 -0.06 -0.08 -0.30 
Schoenoplectus_americanus 0.29 0.02 -0.14 0.05 0.45 -0.11 0.11 0.28 -0.15 
Schoenoplectu_.pungens 0.06 0.01 -0.03 -0.18 0.32 0.16 0.04 0.36 -0.27 
Schoenoplectus_robustus 0.14 -0.12 -0.01 0.23 0.31 -0.31 -0.06 -0.38 0.09 
Schoenoplectus_tabernaemontani 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Solidago_graminifolia 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Solidago_sempervirens 0.09 0.13 0.21 0.18 0.05 0.08 0.10 -0.02 0.06 
Spartina_alterniflora_s -0.19 0.67 0.25 -0.02 0.35 -0.08 -0.12 -0.26 -0.08 
Spartina_alterniflora_t -0.13 -0.27 -0.38 0.20 0.00 0.19 0.19 -0.47 -0.06 
Spartina_cynosuroides 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Spartina_patens 0.25 -0.06 0.19 -0.40 -0.13 -0.01 0.26 -0.05 -0.10 
Spartina_pectinata 0.25 0.04 -0.13 0.24 -0.02 -0.27 -0.07 -0.06 0.06 
standing_water 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Taraxacum_officinale 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thalictrum_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Thlaspi_arvense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Toxicodendron_radicans 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Trifolium_pratense 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Triglochin_maritima 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
Typha_augustifolia 0.16 -0.04 -0.07 0.13 -0.14 -0.08 -0.14 0.02 -0.18 
unknown_cordgras 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_fern 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_goldenrod 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_grass 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_herbaceous -0.01 -0.02 0.34 0.19 -0.10 0.11 0.27 0.12 -0.12 
unknown_rush 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_shrub 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_succulent 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_vine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
unknown_woody 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
upland 0.10 0.07 0.07 0.17 -0.23 0.22 -0.18 -0.06 -0.29 
Vicia_spp 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table A4.3.2 Continued          
wrack 0.17 0.07 0.15 0.29 -0.17 0.14 -0.04 0.01 -0.22 
Carex_all 0.08 -0.01 -0.02 0.04 -0.18 -0.05 -0.17 0.04 -0.15 
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BIOGRAPHY OF THE AUTHOR 

 
Meaghan was born in the Bronx, the northernmost borough of the big apple, the best city 

on earth.  Her nomadic tendencies were evident at an early age, when she migrated north at the 

ripe old age of two.  Meaghan spent some time in the Hudson Valley, where she learned to read 

trail maps just as efficiently as subway maps.  After a short stint in Connecticut for high school, 

she became the first in the family to snag a bachelor’s degree, from the State University of New 

York in Binghamton, the literal and figurative armpit of the Empire State.  With this new fancy 

piece of paper in hand, and no longer able to resist the strong influence of her migratory 

tendencies, Meaghan flew the coop.  The first stop was southern Mississippi, an unlikely 

destination, but one that sealed her fate as a bird nerd.  At a small rehabilitation clinic tucked in 

the woods, those feathered little nuggets captured her heart and her intrigue.  San Antonio was 

next on the list, where she discovered a new found love of breakfast burritos at Rolando’s taco 

house, and made friends with parrots, panthers, and primates.  Meaghan quickly felt caged by 

captive animal husbandry, and gravitated toward a more rewarding career in scientific research 

that required walking through mosquito infested marshes on the Colorado River, and collecting 

cow patties that she strategically placed in owl burrows.  She spent some time chasing Condors 

through the mountains of California and snuggling with seabirds on some remote islands before 

settling in Tucson.  Apparently, she apparently contracted a brain parasite during her time in the 

Peruvian cloud forest or was high on prickly pear syrup.  After a quick phone call, she was lured 

by Brian’s boisterous laughter, and decided to trade the joy of basking in the sunshine and 

mountain views for a place called vacationland.  She quickly discovered, however, that she had 

been scammed into a desolate life of PhDom, on a block of ice in the arctic tundra.  She has so 
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far been lucky in avoiding losing limbs to frostbite.  She is a candidate for the Doctor of 

Philosophy degree in Ecology and Environmental Sciences from the University of Maine in May 

2019. 

 


