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The mechanical properties of pigmented coatings are important for a number of situations;
including coated paper, architectural paints, dnectures in flexible lithium ion batteries. Coated
paper and board undergo a variety of post coajpdjcation processes which have the potential
to cause serious quality problems such as crackioking, and crack-at-the fold (CAF). Because
a large number of parameters are known to influ¢éneeesults, fundamental models are needed

to help describe these processes and link thehetodating formulations and to the defects.

A discrete element method (DEM) computer model degeloped to describe the pigment level
deformation of the coating layer. The model is dase calculating the forces between particles
as they move relative to each other and undergaderr compression. For the case of tension, a
non-linear stress-strain relationship was develagpetl is similar to the behavior seen for pure
binder films — data for the pure binder are ingate the model. In the case of compression, a

repulsive force is used that is linear with strairhis thesis is the first time that a DEM was used



to model bending, to include the influence of dtamnd to model two coating layers. The model
was compared to recent experimental results ititdrature for free-standing coating films using
different ratios of pigment to binder and also @as combinations of latex and starch in the binder

systems.

The two dimensional version of the model was saisipg uniform spherical particles to represent
the paper coating pigments. For both tension amethoint bending, the model was able to predict
cracking in accordance with the experimental dalt@ model’s results followed the same trends
and were of the same order of magnitude as thddéd However, differences between the two
sets of data did exist, which could be attributeduch causes as issues when making the coating
films in the lab, starch impacting the packing,usssg only cohesive failure, the use of spherical
particles, and the assumptions made for the siedilpacking. The two-dimensional model also
was used to simulate the printing event via anadydlane tension event and by applying a moving
force boundary condition. Picking correlated tohbthie experiments and the models for the strain-
at-failure (STF) and not for the elastic moduludarthe ultimate stress. The two-dimensional
model also was applied to two layer coatings. Tieeleh agreed with the literature in that the
starch-rich layers of high coat weight were morengrto cracking. Furthermore, the two-layer
model agreed with pilot and mill results by preutigtless cracking with a thick, flexible bottom

layer and a thin, stiff top layer.

The three-dimensional model using the packing ibistion of uniform spheres, of bimodal size
distributions, and of full particle size distriboris improved the predictions relative to the two-

dimension cases. The results with uniform sphehesved the modulus, maximum stress, and



strain-at-failure to be well predicted except fog maximum stress being underpredicted for cases
near the critical pigment volume concentration (CPMn addition, the strain-at-failure tended to
be overpredicted. When the model used the bimodadl fall distributions for packing, the
predictions improved. The model overpredicted thmdutus and underpredicted the maximum
stress, but the predictions were close in somescasepecially when using the full distribution. In
addition, the STF showed good agreement betweeprdtictions and the lab data when starch
was part of the binder system. Discrepancies etibt between the model predictions and the
experimental data, and these differences can hleua#id to many factors including the method of
packing. The model showed the modulus and the manirstress to increase directly with the
packing density. These results are in accord Wigheixpectation that a tighter initial packing leads

to higher local strains, which lead to increasediatas and stress.
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CHAPTER ONE

INTRODUCTION

Theoretical models can provide a fundamental utaledsng of phenomena that can lead to
improved processes and products reducing the needxperimental work. If the model’s
development is based on sound physics or chenaistiyn reasonable assumptions, then it should
be able to simulate real world physical events &itespectable level of accuracy. The goal of this
thesis work is to develop a model to predict thimaeation behavior of coating layers and, as a

consequence, expand the fundamental understantlihgse events.

1.1 Motivation

Coating failure during post application steps sgeaous quality problem for the paper maker and
for the printer. Whether the issue is crackinghat-fiold (CAF) or picking during printing, the final
result is a poor quality print job that can potali§i result in both lost business and reduced
revenues. The development of a computer model wdachprovide fundamental understanding
of why the various failure events occur could pdaihe industry with another set of tools to avoid
or to minimize such problems in the future. In didadi, the proper balance between final print
guality and cost of the coated paper could be evare achievable and could lead to an even better

performance/cost ratio.

1.2 Objectives
The goal of this thesis is to develop a computedehdased on the discrete element method
(DEM) that will simulate in-line tension, out-ofgaie tension, and bending deformation events.

This research will be performed for single coatisngers as well as for double layer systems and



will focus on spherical particles. The use of tHeNDto model bending and the simulation of two
layers would be new developments. The model worddipt the onset of failure based on coating
mechanical properties and based on using inputs frare binder films. Using such inputs also

was a novel approach as was modeling binders ceetpdf both latex and starch.

1.3 Literature Review

A detailed literature review is not given here hessaeach chapter reviews various aspects of past
work. A key point is that DEM and the finite elememethod (FEM) have been used in the past to
describe paper coatings in a limited way. The Higd been used to model tension, compression,
and bending events but not at the particle scatsiple with the DEM. In the case of the discrete
element method, it has been used to simulate tersid compression events, but not bending
scenarios. The FEM treats the paper and coatiray @smposite material that has some elastic
modulus, not as the individual moduli of the pigitseand of the binder as does the DEM. The
complexity of the various models ranged from pé&tacepresented by simple spheres to particles

representing platy type structures.

The experimental work covered the spectrum fronskzde, to the pilot coater, and to production
coater trials. The lab work would involve makingdrstanding coating films with a simple coating
of pigment and of binder. In most cases, the pigmkad aspect ratios close to one and the binder

was composed only of latex. Some groups includaatistas part of the binder package as well.

The DEM model of this thesis was compared to theedrmental work of two groups. These

sources and their lab data are plotted againsntigel results as seen in the subsequent chapters.



1.4 Basic Concepts of the Model

The computer model is based on the discrete elemetiitod (DEM) and uses simple constitutive

eqguations to solve force balances around indivigaaticles, which are represented by spheres.
Each particle is connected to its neighbors vianddy bridge, with a radius determined to be a
function of the Pigment Volume Concentration (PVThe typical means of representing the

bridge is as a spring and dashpot, but the later i®not included in the model at this time.

Two force equations are the basis for the modélvdfparticles move apart compared to the initial
separation, a tension force is applied to eachgmin the opposite direction of displacement.
The tension equation is a non-linear form of thhess/strain experimental data for the binder as
seen in the literature. The coefficients in thisan are based on mechanical data obtained from
pure binder films. When in tension mode, if the dated strain is greater than the strain-at-failure
of the pure binder film, then failure is assumedbéococcurring and the force goes to zero. As for
the compression forces, these are needed to ketggsfrom overlapping. At every time step,
the net force is calculated for each particle. ngdlewton’s law of motion, this force is used to

update velocity and position of every particle gsennumerical integration.

Two cases of most interest involve tensile deformmaand bending. In the tensile case, one group
of particles on one end of the domain are set teenvaith a known velocity. Another group of
particles on the other end of the domain are nlotwvald to move. The net effect is that the
particles/binder matrix will see a tensile deforimat In bending, this scenario is similar except
that one group of particles are set to move oytlafie, and two other groups of particles are set

to not deform out of plane.



In both cases; the modulus, maximum stress, and strain-at-failure (STF) are obtained from the
simulation data. The modulus represents the sloffeeastress/strain curve close to the zero strain
point. The maximum stress is the high point of¢bere near where the strain begins to decrease
for good. This later point represents failure whichthe model, is when the binder bridge between
two particles fails, or breaks, cohesively. Thipayof failure is one of the assumptions made to

simplify the model.

1.5 Structure of this Dissertation

The sequence of the chapters shows the evolutitheofmodel’s complexity and are built from
papers that have been published or will be subdhgtemn. Chapter 2 discusses the 2D modeling
of in-line tension and was presented at PaperCads.20 Chapter 3, the model is expanded to
simulate three-point bending, which is the firgteithe DEM was used in this regard. This work
was presented at the 2016 Advanced Coating Fundateesymposium and is compared to the
data obtained for bending by Najafial (2018). Chapter 4 continues the model’s develaoytrag

not only is three-point bending simulated againdssib an out-of-plain picking and a novel moving
force/velocity picking type event is simulated. Jlpaper was presented at PaperCon 2017 and
gives insight with regard to the mechanical paransahat are important in picking. In Chapter 5,
three-point bending is applied to two coating lagystems, where each layer has a different binder
system; these predictions were compared to crack area of double coated samples of Najafi et al.
(2019). Chapter 6 expands the model to three-dsinaa for both in-line and three-point bending.
This work has been accepted for presentation aerRam 2019 and compares the model
predictions to experiments and to the 2D case. tehdexpands the model from uniform spherical

particles representing the pigments to two caseseviine particle sizes are either bimodal or full



distributions of spheres. The simulations in thesses are applied to in-line tension and to three-
point bending deformation events. This chapteersding publication at this point. Lastly, Chapter
8 briefly summarizes the entire thesis and the agpereviews some of the data generated when

considering adhesive failure.

As a consequence of using various publicationb@dasis for the chapters, some of the material
is a bit repetitive. The literature reviews and thedel descriptions are quite similar in a number
of the chapters. The best overview of the modekligment and the accompanying literature
review is given in chapter three while chaptersasid seven give thorough descriptions of the
expansion of the model to three-dimensions. Ultatyathe purpose and work of each chapter is

unique as is the comparison with model predictims the experimental data.



CHAPTER TWO
DISCRETE ELEMENT METHOD TO MODEL IN-LINE TENSION EV  ENTS FOR
SINGLE LAYER TWO DIMENSION SYSTEMS OF UNIFORM SPHER ES

2.1 Abstract

The mechanical properties of coated papers candnaigmificant impact on how well they survive
post coating application steps. Processes sucalasdering, printing, and folding can cause the
following quality problems respectively: crackingicking, and crack-at-the fold (CAF). The
Discrete Element Method (DEM) has the potentiadescribe the mechanics of the coating layer
on a microscopic scale. Recent models have givaghhinto the strength properties of coatings,

but a good comparison with experimental resultadking.

In this paper, a DEM model is improved to accowntthe non-linear deformation behavior seen
with most binders. In addition, a new method towashthe latex volume fraction to a latex bridge
radius is proposed. The model results are compgareecent in-plane tension type experimental
data in the literature that include starch-latextores. The elastic modulus, ultimate tensile sires

and strain-to-failure compare well with the expesntal results.

2.2 Introduction

A variety of forces are applied to coated paper@aqgerboard during production, converting, and
printing of these substrates that can have an aevierpact on the final product quality. After
coating application and drying, the paper is commged during calendering to improve the
smoothness of the sheet and to increase the fimsd.grhe coated paper experiences compressive

forces and tensional forces during offset printifige folding step can lead to a paper quality issue



termed crack-at-the-fold (CAF) if the right balarafepaper and coating mechanical properties is

not achieved.

Understanding these mechanical properties is importo the papermaker and to the coating
formulator. The proper balance of these mechamicgberties must be achieved to avoid issues
such as picking and such as CAF. The work presemteithis paper will focus on tension

deformation events. The goal is for the model avaht to simulate compression as well as

bending type situations.

Several groups have conducted experiments evatudtia tensile strength of free standing
coatings layers or discs [Alam (2010), Fetnal. (2012), Husbanet al. (2006, 2007a, 2007b,
2008, 2009, 2010), Lazares al. (2012), Nutbeenet al. (2010), Okomori and Lepoutre (1998),
Prall et al. (2000), Prall (2000), Ramaat al. (1998), Touaitiet al. (2010), Touaiti (2013), Zhat

al. (2014)]. This work showed the importance of the twain components of formulations, the
pigment system and the binder package, in detenguithe mechanical properties. As for the
pigments, the size; shape; and particle size distribution were found to be critical variables in this
regard. The important aspects of the binder weseathount and the glass transition temperature.
And, when taking all of these parameters in contimnathe pigment volume concentration (PVC)

was seen to impact coating strength as well.

The data from three investigations in particularenbeen used in confirming the current model’s
predictive ability. Ramaat al.'s(1998) work involved tensile testing of unsuppdrteating films.

The elastic modulus, the tensile strength, andtieen-to-failure were tested for a wide range of



PVCs. A standard styrene butadiene latex and arisphplastic pigment were used to make the
coating films, which were cut in to a “dog bone’apke for testing. Her most interesting finding
was that the elastic modulus and tensile strengttin éxperienced sudden increases in values near
the critical pigment volume concentration (CPVC)ilerlthe strain-to-failure results were just the
opposite. One possible issue confounding the datathe drying temperature used to prepare the
films might have been too close to the glass ttemmstemperature of the plastic pigment, possibly

causing some of these particles to fuse.

In Prall's PhD thesis (2000), the viscoelastic badraof three pigment systems over a range of
pigment volume concentrations was studied. Freedstg films were prepared via drawdowns
using plastic pigment, rhombohedral precipitatettiomn carbonate (R-PCC), and clay. Two
styrene butadiene (SB-type) lattices of differiragbes of carboxylation were used in this study.
The traditional “dog bone” shaped film strip wasasered in a dynamic mechanical thermal
analyzer (DMTA) using tensile mode to determine\ttsgoelastic response. The results showed
that the tensile strength and the elastic modula®ased directly with PVC until the critical PVC
(CPVC) was reached, then decreased beyond thaatpioint [as did Ramaat al. (1998)]. In
contrast, the elongation-at-break decreased canisiy over the range of PVCs studied. Prall did

not see the rapid change in properties at the C&/did Raman.

Zhuet al.(2014) studied the mechanical properties of ftaeding coating films, focusing on the
impact of starch in a dual binder system with lateer a wide range of binder levels, thus,
covering a broad spectrum of PVCs. A series ofingatcomprised of GCC (60% < 2 um) and of

starch and latex were prepared. The trends seeaidstic modulus, ultimate tensile strength, and



elongation-at-break as the PVC increased weredhe seen by Prall (2000). When increasing
levels of starch were used, the elastic modulusudtntiate tensile strength increased while the

elongation-at-break decreased significantly.

All of these various investigators have modelednieehanical properties of paper coatings in an
attempt to predict failure. They have used keypa&tars such as elastic modulus, strain-to-failure,
and maximum stress as inputs to their models. Typoaaches historically have been taken when
developing these models — the Finite Element Me(lt@&M) and the Discrete Element Method

(DEM).

The finite element method treats the coating lagea continuum and solves for the stress and for
the displacement. A good example is the work abia et al. (2005), where the crack-at-the-
fold was predicted based on some global valuesl&stic modulus and for strain-to-failure. The
FEM does not go down to the particulate level assdbe DEM, but instead, the former method
deals more from a macroscopic viewpoint. Thediriement method treats the paper and coating
as a composite material that has some elastic medubt as the individual moduli of the pigments

and of the binder as does the DEM.

The discrete element method concerns itself withpating the motion of an individual particle
within a cluster of particles and it takes in tac@ant the interactions between the various
neighboring particles. The method allows for thelenstanding of macroscopic events based on

microscopic phenomena and was developed back ieathg 1970s.



This approach is similar to molecular dynamics amalves solving Newton’s second law of
motion for the forces acting on partidléby all neighboring particles This formula has the

following general form:

midzxi _
a2z Fgravitational,i + Fbouyant,i + Fdrag,i + Zj#:i Fcontact,ij (2-1)

wherem is the mass of particleandx, = (x, Vi, z) are the coordinates of its center of gravity. The
forces on the right side of this equation represi@aigravitational, the buoyant, the drag, and the
contact forces acting on parti¢leSome researchers combine the buoyant, dragupesgsadient,
lubrication and lift forces in to one term callelaytirodynamic” force. The rotational motion of
each particle can be obtained through an angulanentum balance using this same equation.
The integration time steps are chosen to be smmalgh in an attempt to achieve stable
calculations. In addition, the net force actingeoparticle depends only on the particles in which
itis in contact, meaning that the first three éoterms on the right side of the equation are asdum
to be small enough to ignore in the calculationster reason for dropping these three forces is
that the coatings considered in this study arerdegning that no fluid exists that would allow the

particles to flow past each other.

A common means of evaluating the contact betweenparticles or, in particular, the contact
force term, is by using the spring-and-dashpot rhddes approach is a good representation of
the binder which connects the pigment particlehi@enDEM model. Viscoelastic materials (such
as paper coating binders) undergoing stress areclembdjuite often using these mechanical
components. The springs represent the elastico(egste) element while the dashpot represents

10



the viscous (dampening) element of the binder. Somthe models incorporating these two
components include the Maxwell Model (spring anshget are in series), the Kelvin-Voigt Model
(both are in parallel), and the standard lineardswiodel (a spring is in parallel with a linear

arrangement of a spring and dashpot). Springs bloeke’s Law by the equation to follow:

R (2.2)

whereo is the applied stressjs the resulting strain, and E is the Young’s Madwf the material.

The strain term is defined as follows:

e = (h—h)/h (2.3)

whereh is the current distance between pigment surfasé$azis the original gap distance. This
equation shows the importance of particle packimghe strain experienced by the binder bridge
connecting two patrticles and, therefore, on thesegbent force relationship. For the dashpot, the

equation relating stress and strain is represdygtaiv.

o= nd (2.4)

wheren is the viscosity. The model of this paper is cossgat of a spring and a dashpot in parallel

with each other, but the dashpot component is magoused at present (as some of the

deformations events being simulated are at vetyr&iss anyway — e.g., printing and folding).

11



Three groups have used the DEM to simulate tensi@mts with paper coatings [Alaet al.

(2012), Toivakka and Bousfield (2001), Toivakdtaal. (2014)]. DEM models have focused only
on tension and on compression type deformations éveugh they should be able to predict
bending events as well. One group that has lookaetbdeling compression events with the DEM

is Azadiet al.(2008a, 2008b).

In this paper, the model of Toivakka and Bousf{@d01) is updated to include a non-linear spring
type interaction between pigments. The proposedlinear model has advantages compared to
past non-linear models. In addition, a new metlmdanvert the pigment volume concentration
(PVC) to various parameters in the model is progosehe model predictions are compared to

data that is in the literature [Ramaial. (1998), Prall (2000), Zhet al.(2014)].

2.3 Development of Current DEM Model

The interaction force between two particles is damseHooke’s Law for linear springs and has the

form

where k is the spring constant of the binder betwtbe two particles, angis the strain. The

spring constant term k is related to the elastidwhas E of the binder via:

k = E*Ap (2.6)

12



where A is the cross-sectional area of the binder bridgeéen two particles (see Equation 2.10).
As such, the spring constant is dependent on theuanof binder via the area term. The total
binder in the matrix is equal to the sum of theunaé of each binder bridge. These individual
volumes are a function of the initial gap betweke particles (before any external forces are
applied) and of the binder bridge radius. The petubelow (Figures 2.1 and 2.2) depict this

scenario, where the second schematic represenlsae& element within the binder bridge.

Figure 2.1 Two particles with a connecting binder bhdge

Figure 2.2 The binder bridge volume element for irggration.

13



The terms in the two pictures are as follows:

* Rsis the radius of the sphere representing thegbarti
* Rypis the radius of the binder bridge
* his the height of the binder bridge as a functibthe radius

» dris the width of the volume element within thader bridge.

The height term h can be calculated from geomettwéen two touching spheres, with the final

form given below.

h=2R - 2(R2 - P)°5 2.7)

The volume of the binder bridge can be obtainethtsgrating the terms2h (which equals the
area of the circumference) from r = 0 to r =(Be width of the volume element). The final form

of this equation is the following:

vb = 21R%Rs - 4n(RS - (RE — RA)19)/3 (2.8)

While the radius Rof the spheres is known from the average parsiae, the binder radius has
been found to correlate quite well with the pigmeatume concentration (PVC). Below the
critical PVC, the binder radius is equal to thetiplr radius (i.e., R= R as the particles are

completely surrounded by the binder. When the P¥/&bove the critical value, the binder bridge

radius for the cylindrical volume element was foundorrelate strongly {= 0.99) with the PVC

14



when R is raised to the fourth power. Equation (2.8) veasd to follow the relationship for PVC

as

Rp = (3.1 — 3.1*PVC/106)% (2.9)

Additionally, it follows that the cross-sectionaka of the binder bridge is

Ap =1R?%, (2.10)

In summary, above the CPVC, the binder bridge madind thus the area of the binder bridge and
the spring constant, should decrease accordinguatien (2.8). Below CPVC, the binder bridge
radius is always taken as the particle radius. Ad¢teon of relating the amount of binder to the
PVC also was suggested in Do-lk Lee’s (1998) wohemw he related binder shrinkage to the
volume fraction of pigment. This prior work alscepents a good “picture” of the situation with

binder and pigments at the CPVC.

The binder of typical paper coatings has been shovwehave in a non-linear manner in simple
tensile tests [(Ramaet al. (1998), Prall (2000), and Zhet al. (2014)]. Thus, if the interaction
force between two particles is a nonlinear funcgttbe mechanical response will also be nonlinear.

It was found that the stress-strain behavior ofpilne binder follows the expression

o =A(l - %) (2.11)
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where A and B are constants adjusted to fit the purder data. Based on taking the derivative of
stress with respect to strain and setting strageto, the initial slope of this curve is A*B, whic

must equal E, the elastic modulus. The ultimatsikerstress of the pure binder is the constant A.
Therefore, the advantage of using this expressiahat the parameters A and B can be obtained
from data for the elastic modulus and for the udtientensile stress of the pure binder. The contact
force between two particles then is the stressutatied by equation (2.11) times the binder area,

or as

F = A(1-6%)nRy? (2.12)

The third value that comes from the pure bindee ¢ashe strain-to-failure, the deformation that

the binder can undergo before it breaks. For patex|systems, this can be over 400%. When
starch is mixed with latex, Ztet al.(2014) report that the strain-to-failure decreabethe model,

if the strain is larger than the strain-to-failufethe binder, the force between particles is set t

zero. This would simulate the propagation of akrac

The constants A and B might be functions of theodeation rate of the experiments as they
currently have been based on the slow rates ugbd literature [Ramaet al.(1998), Prall (2000),
and Zhuet al. (2014)]. If different rates of strain are of irget, these values will have to be
adjusted to predict tension-related deformatiomewader these conditions. Also, in the model,
these input parameters are made dimensionlesparbeeter B is already dimensionless, but the

parameter A is made dimensionless with the elastidulus of the binder as A* = A/E.
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The model starts with a structure of monodispepdeies that are placed in a two-dimensional,
randomly packed layer. Figure 2.3 shows two exampiénitial structures. The program to pack
these spheres is similar to other codes, but sicyphjies a small downward force on the particles
to get them into a structure. For cases belowClR¥C, the particles are widely separated. The

cases in Figure 2.3 should represent cases abwedbe CPVC.

60
50-|
40|
30
20

104

5.8 8 & 8 8 & 8

=)

Figure 2.3 Example initial configurations of partides.

To simulate a tensile test, a group of particleso@ edge of the domain is set to a known velocity.
All particle velocities are normalized to this velky. For example, for the left picture in Figure
2.3, particles that have positions larger than @fstare set to a dimensionless velocity of one in
the positive-x direction. Particles that have posd less than 5 units, are set to zero velocity.
Particle positions and velocities between these dvoaps will be calculated in the model. The
motion of the particles on the right will caus®edl strain between these particles and the pasticl
near them. This strain results in a force on thueicles. The force leads to a velocity and a

displacement of those particles. Figure 2.4 shawaxample of a tensile simulation. Another way

17



to view the deformation is in Figure 2.5, showihg tposition of the particles at a number of

different times.

Figure 2.4 Tensile simulation with DEM model. Crackcan form at any location as spheres
are pulled apart.
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Figure 2.5 Composite deformation of initial structue.

The force between every patrticle pair that is withidistance criteria of four radii is calculated a
every time step using equation (2.12). Mandy components of that force are added to each
particle. The force in each direction determinesdbceleration of the particle in both directions.
A Euler time integration method is used to upda&iecity and position of each particle. The total
stress is calculated by adding the force on thieghes that are held to zero velocity divided bg th
area of the cross section. This area is the hetite simulation cell multiplied by the particle
diameter. The strain is calculated by the displaa@mnf the moving particles divided by the initial

distance between these particles and the partitdtsare held stationary.

There are a number of assumptions associated highntodel. Currently, the model does not
include the dashpot terms. Therefore, the ratesidrchation is not taken into account, meaning
that all deformations are assumed to occur at a@be that the pure binder film modulus was
measured. In addition, the adhesion of the latekeag@articles is assumed to be perfect. However,

in some conditions, it is expected that the biruder break from the pigment. This assumption can
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be addressed by putting some stress criteria éobitider-pigment adhesion. Finally, real coating
layers have a distribution of particle sizes, whil¢his point, uniform spheres are used as arggart

point. And, for cases below the CPVC, the assumpsanade that there are no air voids.

One way to scale the results to account for agarsize distribution involves the concentration
of particles. Figure 3 shows particles that arkthjgpacked into the initial structure. Based oa th
area of particles, the packing is around 0.78 &eedion. If this value is assumed to correlate to
the critical pigment volume concentration, whiclofen around 0.65 for Zhet al.(2014) and for
Ramanret al. (1998), then a scaling factor can be used totlekconcentration in the simulation
with the experimental values. It was found latet thising an area fraction of 0.7 better described
the data of Zheet al. (2014). For concentrations above the CPVC, theesaacking is used, but

the binder bridge area will change, as shown iragqao (2.11).

The current model differs from the previous DEM Wof Alam et al. (2012), of Toivakka and
Bousfield (2001), and of Toivakket al. (2014) in some important ways. The approach of the
current paper is to use nonlinear springs to sitaulee binder and to use monodisperse spheres to
represent the pigment particles. Eventually, palgdise particles will be modeled as well. Alam
et al. (2012) used both monodisperse and polydisperskclpasizes and they developed a
parameter called network connectivity which relates number of neighboring particles, the
binder length, and the binder radius. Toivakka &wmdisfield (2001) used linear springs and
monodisperse particles in their model. Lastly, &tikaet al. (2014) used a triple tier approach to
pack the particles and add the binder, to chanaeteéhis matrix, and to do the mechanical

simulations in tension mode. They also looked atitifluence of dispersants on coating strength.
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The first and third papers included non-linear teand also focused on the type of failure — be it
cohesive (within the binder) or adhesive (at thedbr-pigment interface) and found that the later

type was more likely to occur at lower binder level

2.4 Comparison of Model to Experimental Data

The experimental data to which the model is bemmmared is from Ramaet al. (1998), Prall
(2000), and Zhet al.(2014). In each case, data from those curves @spigment with an aspect
ratio close to one (plastic pigment in the casRafan and Prall and GCC in the case of Zhu) is

used for making the comparisons.

Atypical prediction is shown in Figure 2.6. Stresmade dimensionless with the elastic modulus
of the pure binder. The shape of the predictedecis\quite similar to what experimental results
have been reported by Rameial. (1998), Prall (2000) and Zhet al. (2014). The non-linear
shape of the curve is a direct result of usingribie-linear expression for the pure binder in the
model. The predicted initial slope can be comp#odatie measured elastic modulus of the coating
layer. The maximum stress can be compared to tiveaié tensile stress of the experimental
systems. Last, the strain-to-failure predictiowien the stress drops at the end of the calculation

and can be compared to the measured values.

One factor that was found to influence the prediwithat was not at first expected was the initial
packing of the spheres. If the spheres are alldaweghproach each other in the packing routine a
certain distance, say 1% of the sphere radiusartbe fraction will be a certain value, around 0.8.

If the approach distance (which is the minimum atise allowed between two spheres in the
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packing routine) is reduced to 0.1% of the radilis,area fraction will increase a small amount.
However, the predictions of the elastic modulussagsitive to this approach distance (remember,
E =ol/¢). The reason is that the strain between partisldse current distance divided by the initial
separation distance (see equation 2.3). The satalestoain in the structure will result in more
local strain for the case that has a small appraiéthnce compared to the case that has a large
approach distance. The approach distance is setlé of the sphere radius for the results
presented here, but this issue should be studigtbne detail in future modeling. In addition, the
impact of using particles of different sizes in thedel on packing and on the subsequent force
calculations needs further study (i.e., using pkasi having a broad particle size distribution as

opposed to ones of the same size as is currentig)do
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Figure 2.6 Typical results for A*=0.0288 and B=34.and a binder with a strain-to-failure of
100%. The rapid drop at a strain of 23% is the progation of a crack in the system. The
predicted strain-to-failure is 23% in this case.
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The current model is an improvement over past caem@mimulations because it can predict the
non-linear response of the stress-strain dateges im Figure 2.6. The past work has not shown
predictions like the current one even for thoseesaghere non-linear functions have been used.
While Toivakka and Bousfield (2001) used lineamntsy Alamet al. (2012), Azadiet al. (2008a,
2008b), and Toivakkat al.(2014) all used non-linear functions. The nondineelationships used

in these prior studies were unlike the ones usdtarcurrent paper and these relationships also

involved rather complex connections with the kesapzeters.

The comparison of the current model to the dathaffet al. (2014) is shown in Figures 2.7 — 2.9.
The results being compared are for the elastic ogdthe maximum tensile stress (i.e., at failure),
and the strain-to-failure. For binder systems afeplatex, the model under-predicts the values
compared to the experiments. This result may beazhhby the fact that the model allows particles
only that are in close proximity to “connect”, whih the experimental case, particles may actually
be able to connect with others over a wide distaAtéow latex content of the binder film, the
model over predicts the elastic modulus. One pitergason for the over prediction may link
back to the initial separation distance betweempigts. For the low latex or high starch binder
system, the pigments may not be able to approach @her during drying as close as the pure
latex systems because of the viscosity of the fluid phase; this situation would result in high initial
gaps between pigments and lower elastic modulieBxpents that also measure the void fraction

of the coating layers may help understand thiseissu
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Figure 2.7 Elastic Modulus comparison between modeind Zhu data over a range of latex
percentages of the total binder and with a PVC atite CPVC of 0.635. The remaining binder

is starch. Simulation used 30 X 30 packing.

The ultimate tensile stress in the experimentgp®rted to go to a maximum before decreasing,
as shown in Figure 2.8, but the model predicteadst decrease. In the model, as the latex content
increases, the elastic modulus of the binder systeaneases, which gives rise to this steady
decrease of the ultimate stress. The physical refsdhe maximum in the experimental results

is not clear, but the low latex coatings were rgguabto be brittle. This brittle behavior may result

in the sample breaking early due to mounting issues
The model tends to over-estimate the strain-taxfajlas shown in Figure 2.9. The correct trends

are predicted in that as the starch content obthder package decreases, the strain-to-failure

increases sharply.
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Figure 2.8 Ultimate tensile stress comparison betwa model and Zhu data over a range of
latex percentages of the total binder and with a P& at the CPVC of 0.635. The remaining
binder is starch. Simulation used 30 X 30 packing.
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Figure 2.9 Strain-to-failure comparison between moedl and Zhu data over a range of latex
percentages of the total binder and with a PVC atite CPVC of 0.635. The remaining binder
is starch. Simulation used 30 X 30 packing.
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To simulate a lower PVC, the initial packing is s&f low concentration of particles. Around a
PVC of 0.4, Zhwet al. (2014) give results for the same three paramatsrse. Figure 2.10 shows
the comparison for elastic modulus and for ultimatgsile. The strain-to-failure predictions are
similar to above and compare well with the reséitmin, the elastic modulus is over predicted by
the model for most cases and the ultimate tensilender predicted. This time, the experimental
data do not show the ultimate tensile going throaghaximum and have a steady increase like

the model predicts.
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Figure 2.10 Elastic modulus and ultimate tensile coparison between model and Zhu data
over a range of latex percentages of the total bird and with a PVC near 0.4. The remaining
binder is starch. Simulation used 30 X 30 packing.

To model a case over the CPVC, the latex bindeligeris reduced as in equations (2.9) and (2.10).
For a PVC around 80, the area of the bridge shioelldround 80% of the full area. The parameter
A* (dimensionless A) therefore should be around 8if%he case at CPVC. It turns out that the

results all scale with this 80% value. The datdho also seem to show this level of decrease after

CPVC. The results in Figure 2.11 show the predngtiand the data.
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Figure 2.11 Elastic modulus and ultimate tensile goparison between model and Zhu data
over a range of latex percentages of the total bird and with a PVC near 0.8. The remaining
binder is starch. Simulation used 30 X 30 packing.

While the graphs indicate discrepancies betweemtbeicted results and the experimental data,
the results do follow similar trends and also arthiw the same order of magnitude. Another
possible explanation for the differences could lie pigment particles used in each case. The
model uses homogenous spherical particles whemneasdrk of Zhuet al. (2014) utilized a GCC
(60% < 2 microns), which has a broad particle sisgribution. And, as previously stated, the

starch may impact the particle packing in a diffémr@anner than does the latex.

One plot comparing some data from Raraaal. (1998) is shown in Figure 2.12. In this case, the
model and the experimental data are not in googkesgent. Raman did use homogeneous spherical
particles in her coating (plastic pigment), but flies were dried close to the glass transition
temperature of the plastic pigment, which was stgr&he authors noted that the increase in elastic
modulus was larger than expected and could have doom the fusing of the styrene pigments

during drying. Note that the model is able to pcethe elastic modulus at high PVC. This trend
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again is similar to what was seen by Zhu et al. (2014). Experimentally, these coating layers are

hard to produce without cracks at high values of PVC.
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Figure 2.12 Elastic modulus comparison between model and Raman data (for the one latex
used in her study). Simulation used 20 X 40 packing.

The predictions of the model compared to the results of Prall (2000) are shown in Figure 2.13. The
elastic modulus of the pure latex was not clearly reported, but here it was assumed to be 3.8 MPa,
the same as the value by Raman et al. (1998). The prediction of elastic modulus is much closer to
the measured results than the results of Raman. Prall (2000) air dried the samples to remove the
potential error from pigments fusing. The model under predicts the results at moderate values of
PVC, around 0.5, and at a PVC of 0.85. At PVC of 0.5, the samples were tested at higher rates of
strain, to keep the total time for the test the same. Within Prall’s thesis, it is clear that the higher

strain rates will generate higher values for elastic modulus than the lower strain rates. Again,
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several other reasons for the difference are possible, but this comparison shows that at least the

correct order of magnitude is possible.
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Figure 2.13 Elastic modulus reported by Prall (2000) and the model predictions. Simulation
used 20 X 40 packing.

Toivakka and Bousfield (2001) were able to predict the oscillatory results of Prall (2000) by only
using linear springs and dashpots. Their (2001) findings were likely possible because of the small
deformation that occured in these oscillatory tests. The current model is able to predict the non-
linear deformations of the coating layers, but the time dependent aspects will need to be included

to be able to predict short time scale deformations.
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2.5 Conclusions

The current model has shown the ability to simulatplane tension events. By applying a force
to one end of a matrix of particles and holding olleer end stationary, the model can transmit
forces throughout the system during the pulling¢uatil a potential failure occurs. Also, relating
the binder bridge radius to the PVC “connects” #teicture of the coating matrix to the

macroscopic mechanical properties of the coatirgchvis the basis for the DEM approach.

The current model shows the ability to follow theere trends and to be of the same order of
magnitude as some experimental data availablecititdrature. Differences do exist between the
model’s predictions and the results generateddatethoratory, but some potential reasons for these
discrepancies are offered. Namely, packing istecaticomponent of the simulation as the model
uses spherical particles of the same size whileesafithe lab work utilizes pigment particles with

a broad particle size distribution. The manner iriclv the lab samples are prepared also is critical
to the accuracy of the final results. In additithe impact that different binders such as starele ha

on the packing of the pigment particles also idesucat this point.
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CHAPTER THREE
DISCRETE ELEMENT METHOD TO MODEL THREE-POINT BENDIN G EVENTS
FOR SINGLE LAYER TWO DIMENSION SYSTEMS OF UNIFORM S PHERES

3.1 Abstract

The folding of coated products is important in axer of applications, such as binding operations
and box plants. Discrete element methods (DEM)ehbgen used to simulate tensile and
compression events in the past, but not bendingtsins. A method is proposed to model the
three point bending of a coating layer. Propentiethe binder and the binder concentration are
input parameters. The model predicts the craakdbion of the layer, the flexural modulus, and

the maximum flexural strain.

3.2 Introduction

The mechanical properties of coating layers infagetine ability of the final coated sheet to avoid
quality problems such as cracking, pick resistanod, cracking-at-the-fold (CAF). These issues
can be the result of post coating application stepsh as calendering (cracking), printing
(picking), and folding (CAF). The deformation evemwhich occur during these various steps
include compression, tension, and bending respgtiVhe emphasis of this paper will be bending
and will focus on a Discrete Element Method (DEM)dal for simulating the bending of a coating

layer.

While a number of experiments have looked at theile properties of coating layers [Pratlal.
(2000), Ramaet al.(1998), and Zhet al.(2014)], little has been reported for the bendihfree

standing coating layers. Most experimental workfogused on bending and measuring the extent
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of cracking of coated paper samples. One novelaggprto model the bending of coated papers
was by Lyons and Peshave (2014). They proposedlatity coating stiffness by using a three-
point bending technique in conjunction with modglcoated paper as a multilayer construct as
opposed to an I-beam. While most papers focusenamking in the machine direction (MD), the
work of Ohet al. (2016) also evaluated the impact of folding in tihess direction (CD) on the
degree of cracking. In addition, Ra#bal. (2011) showed that coatings that contain kaolatkr

differently than coatings that contain calcium carate.

The DEM has been used to describe the interachetween individual particles in a variety of
systems. In the case of paper coatings, DEM has leed to model situations where the coating
is under tension [Alaret al. (2012), Toivakka and Bousfield (2001), Toivakdaal. (2014), and
Varney and Bousfield (2016)] and also when theingas under compression [Azagtial. (2008a,
2008b) and Meet al. (2008)]. The other common computer modeling teghaiis the Finite
Element Method (FEM), which has been used for moddension, compression, and bending
events [Alamet al. (2009), Barbier (2005), and Salminenhal. (2008)]. Finite element methods
normally treat the coating or paper as a continanchtherefore do not give insight into events on
a particulate level. FEM methods can be used tlol by particle level models of coating layers
such as described by Barbgdral. (2012), but the computational time can becomeossras the
number of particles increases. The DEM has not lsed to model bending type scenarios for

paper coatings, which is a gap in the literatued this current paper hopes to fill.

In our paper, a DEM type model is suggested tordesthe bending event of a standalone coating

layer. Particle-particle interactions are descrigedilar to our most recent paper [Varney and
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Bousfield, (2016)]. The bending is simulated by mgva group of particles in a certain direction
within the calculation domain. Cracking is predittehen the local strain-to-failure criteria is met.

Results are compared to a companion paper of émference [Hashemi-Najadit al. (2016)].

3.3 Model Description

The model builds on the simple idea of Toivakka @&ualsfield (2001) where pigments are
attached to each other through binder contactsrentie binder is represented by a spring to
describe its mechanical response to deformatiomeyaand Bousfield (2016) describe a novel
approach using a non-linear spring and estimakiadpinder area contact from the pigment volume
concentration (PVC). The non-linear spring givese tb a response that resembles the slow tensile

tests of coatings and the pure binder films argivisn by

F = A(1-6%)nRy? (3.1)

whereF is the tensile force between particl&sandB are parameters that depend on the binder
that can be obtained from the pure binder films, the local strain between particles, and<R
the radius of the binder bridge between particles ia a function of the PVC. When the local
strain between patrticles is larger than the sti@ifailure of the binder, the binder is assumed to
fail cohesively and the force is set to zero. Ppheameter A is also normalized, denoted as A*,
with the elastic modulus of the binder. The datZlodi et al. (2014) for the pure binder systems
has been used for verifying this non-linear expogs#or the tension forces. For compression, a

repulsive force is calculated as
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where C is a constant ands the strain as mentioned above. This constatdibe large enough
to prevent overlapping, which requires the forcentwrease as well. A large force would come
from the compression of high points on the parsicdad is important to keep particles from
overlapping. The difference between tension andpression is that in compression, the force has
to go to a large value as the gap is small to keepcles from overlapping each other while, in
tension, the force follows the behavior seen isitertests and goes to zero when the criticalrstrai

is reached.

The bending simulation is done by holding two gopparticles in place, not allowing motion,
while another group of particles is set to move agplvas shown in Figure 3.1. This simulates a
three point bending test. Other types of defornmatice quite possible with the model such as
moving a group of particles at one end upward astcalowing some patrticles on the other end
to move, such as in a cantilever. Particles inufheone are moved upward with a dimensionless
velocity of one. Quantities are made dimensiontagis the bending velocity, particle radius, and
the elastic modulus of the binder. The grip paggatan be either not allowed to move at all or not
allowed to move in the vertical direction. Thisdiatondition lets the particles in the grip zones
slide and simulates a three point bending test avtier sample is supported loosely with a support

structure.
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Figure 3.1 Typical bending simulation showing gripparticles and particles that will move
upward.

The force on each particle is calculated as it maegtive to its neighboring particles. If parisl
move away from each other, equation (3.1) is usechiculate the tension force between these
particles. If particles are pushed together, theapalsive force is applied to keep the particles
from overlapping as in equation (3.2). The netigattforce on the left and right grip particles are
summed. This upward force should equal the net d@nah force on the particles that are moving

upward to balance the forces. The flexural stresisstrain are defined respectively as

3PL

- 3.3
Tt = d? (3.3)
gf:6fzd (3.4)

whereP is the sum of the forces on the grip particletherload forcel is the distance between
grips, D is the displacement of the upward moving partielethe center of the samplejs the
width of the sample and is the thickness of the sample. The strain redohtere is made
dimensionless with the elastic modulus of the binflee goal is to predict the bending behavior

of these systems and to predict the crack propagati
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A model of this nature involves a number of assuomst The results presented here are limited
to equal sized spheres that are confined in a neye: The spheres are assumed to be rigid
particles and all of the deformation is either coesgion or tension of the latex bridges between
particles. The model in this current form neglebis rotaion and shear between particles; they

can be included if these types of deformation aumd to be important.

3.4 Results and Discussion

Figure 3.2 shows the bending of a layer of pariéte a binder comprised of 52% latex and 48%
starch [Zhuwet al.(2014)]. The dimensionless parameters are notdkifigure caption, where the
scenario also is stated as being one in which tigeparticles are not allowed to move in the
vertical direction (i.e., they can “slide”). FiguB.3 shows the force and bending strain resudts. A
particles in the center move upward, particles paléach other along the top surface. This pulling
action transmits forces to the grip particles. €saare seen both near the region where particles
are forced to move upward, and near the grips. N\the local strain between particles is larger
than the binder strain to failure, the force isteetero and a small crack is predicted. The force
can drop rapidly in this case. If a crack propagarough the whole sample, the sum of the forces

goes to zero.
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Figure 3.2 Bending results of a coating layer witih*=0.03, B=34.7, and strain-to-failure of
24%. Left figure is behavior at short time and right figure is when cracks form. Grip particles
are allowed to slide but not move upward.
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Figure 3.3 Force on left and right grip particles & a function of bending strain for the
conditions in Figure 3.2. Cracks start to form at 66 strain. Grip particles are allowed to
slide.

Similar results are obtained when the grip parsielee not allowed to move at all. Figures 3.4 and
3.5 show the results for the same parameters Bijure 3.2. In this case, a single crack forms
near the left grip. The strain where cracks fitattss earlier. This result makes sense in that th

sample is forced to deform more sharply than inctee where the grip particles can slip.
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Figure 3.4 Similar to Figure 3.2 but grip particlesare not allowed to move in either the x or
y directions.

Figure 3.5 Similar to Figure 3.3 but for grip particles not allowed to move in either the x or
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y directions. Crack forms around 4% strain where tre stress suddenly drops.

The critical pigment volume concentration (CPVClassumed to be when the packing of the
particles is near the maximum value. Based on @neparticles are packed in the packing routine,
this scenario occurs near an area fraction of WM&y researchers have reported the CPVC to be
near 0.63. Therefore, the ratio of 63/78 is useddovert between area fraction and volume

fraction. The initial slope of the stress-straiedgiction is used to predict the elastic modulus of
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the system. The maximum stress and the straindtodan bending is predicted by the model. By
running cases with different packing densities order radii, a spectrum of PVC values is
simulated. For example, in Figure 3.6, low and HRYHC cases are depicted. If the binder has a
small strain-to-failure, then a crack can initiatea low strain. This scenario is for properties of
latex-starch system as reported by £hal. (2014). If the strain-to-failure of the binderlasge,

then a greater amount of bending is predicted bedarack is formed.

®1 PVC 50% - 1 PVC 63%
®1  Binder: 48% Latex, 52% star | *1  Binder: 48% Latex, 52' starcl
70+ L 704
60 L 60
> 50 L > 50

100 100
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Figure 3.6 Final result for a low PVC case (left) ad high PVC case (right), top are high
starch content and bottom are pure latex, using pameters from Zhuet al. (2014).

For a case with a packing that should represenCR¥C, latex properties A=1.6, B=2, and a

binder strain-tcfailure of 200%; the model predicts the results in Figure 3.7. These latex properties
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should match the companion paper Hashemi-Nejadl. (2016). The strain-to-failure predicted is
about 5.7%. This result is similar to the values3® and 9%, depending on the direction of
bending, reported in Hashemi-Najafi al. (2016). The flexural modulus is predicted to bé O.
GPa, compared to the value of 1.7 and 3.0 GPandemgeon the direction the sample was bent.

The stress-at-failure for this case is 19 MPa caoetpto the averaged measured value of 18 MPa.

The model predicts the stress-at-failure and thearsto-failure within what could be expected
considering the assumptions of the model and thmhidty of the experiments. The elastic
modulus, which comes from the initial slope of #igess-strain curve, is under predicted by a
factor of three. The reason for this under préalicis not clear, but several explanations are
possible. One issue may be related to the inpaaking. Particles are packed into the structure so
that the gaps between them cannot be less tharf &%particle radius. In the experiments, some
particles are most likely touching each otherh# tnitial gap between particles is even smaller,
the stress-strain relationship would be even ste@pether possible reason for the discrepancy
between the model and the experimental resultsbreaylated to the two dimensional aspect of
the model. Lastly, the experiments are using pigsetith broad particle size distributions while
the model uses only mono-disperse spherical pestietattéet al. (2012) report the influence of

particle size distribution on crack formation.
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Figure 3.7 Flexural stress verse strain for bindeproperties of A=1.6, B=2, and strain-to-
failure of 200%. A crack forms at 5.5% strain.

The model technique has promise to help exploraldedf the deformation of coating layers on a
particle level scale. The goal is for the modeb&improved further so it can better predict the

number of cracks and the size of cracks that veMatfiop in a folding operation.

3.5 Conclusions

A method to model the bending event of a coatingrausing a discrete element method is
proposed. The flexural stress-strain relationssipredicted based on the PVC and the properties
of the binder. The model is able to predict craokthe structure and the flexural strain-at-failure
The model predicts the stress-at-failure and tteersat-failure measured in the companion paper,

but under predicts the flexural modulus.
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CHAPTER FOUR
DISCRETE ELEMENT METHOD TO MODEL OUT-OF-PLANE TENSI ON AND
THREE-POINT BENDING EVENTS FOR SINGLE LAYER TWO DIM ENSION
SYSTEMS OF UNIFORM SPHERES

4.1 Abstract
The mechanical properties of coating layers arecalifor post application processes such as
calendering, printing, and folding. Discrete elem@ethods (DEM) have been used to simulate
basic deformations such as tensile and compre$sibhave not been used as a tool to predict

cracking-at-the-fold (CAF) or picking. DEM has tpetential to increase our understanding of

these failure mechanisms at the particle level.

A method is proposed to model the three point bendf a coating layer and also the out-of-plane
picking event during printing (using a z-directiscenario and an approach involving a moving
force/velocity). Properties of the binder and tiedBr concentration are input parameters for the
simulation. The model predicts the crack formatodrthe layer, the flexural modulus, and the
maximum flexural strain during bending. The modsbaredicts the forces required for picking
to occur. Results are compared to experiments teghan the companion paper [Hashemi-Najafi

et al. (2017)].

4.2 Introduction

Coated paper and board undergo a variety of prateps following coating application which,
depending on the coating mechanical strength, eae b negative impact on final quality. Such
post application steps include calendering, prgitend folding. The potential quality problems

that can result from these processes are crackiogging, and cracking-at-the-fold (CAF)
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respectively. These issues result from compres@alendering), z-direction tension (printing),
and bending (folding). The proper balance of themaeical properties of the coated substrate

must be achieved to avoid such problems.

The discrete element method (DEM) and the finitement method (FEM) have been used
extensively for modeling free-standing coating faydn the case of DEM, it has been used for
modeling coating layers under tension [Alah al. (2012), Toivakka and Bousfield (2001),
Toivakka et al. (2014), and Varney and Bousfield (2016a)], undempression [Azadet al.
(2008a, 2008b) and Met al. (2008)], and, just recently, during bending [Varreand Bousfield
(2016b)]. The FEM has been used to model all thypes of events [Alaret al. (2009), Barbier
(2005), and Salmineet al. (2008)]. Lyons and Peshave (2014) used a unigpeaph to model
the bending of coated paper. They proposed caioglabating stiffness by using a three-point
bending technique in conjunction with modeling twated paper as a multilayer construct as
opposed to an I-beam. While this work has gretdmi@l to understand the macroscopic behavior

of these systems, it does not facilitate our urtdading on a pigment level.

Because the finite element method normally trdegsbated paper as a composite material, it does
not make the “connection” between events on theaoyscale and the responses on a macro-scale
(as can the DEM). FEM can be used to develop petwel models [Barbieet al. (2012)], but

the computational complexity and the computing timerease significantly as the number of

particles goes up.
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This current paper will build on the recent workMafney and Bousfield (2016a and 2016b). The
non-linear tension model will be applied to outpddne (z-direction) tension, which is a
modification to the in-plane tensile modeling of first paper referenced. This effort will simulate
picking. Two picking simulations will be studied the traditional out-of-plane z-direction
approach and a novel moving force/velocity situation addition, the same tension and
compression equations outlined in the second peileibe applied to a three point bending
simulation for latex and latex/starch binder systeRor both the picking and bending scenarios,
the model will be compared to the experimental d@tdlne companion paper (Hashemi-NagHfi

al. (2017)].

4.3 Model Development

As outlined in the two earlier papers[Varney andifeeld (2016a and 2016b)], a set of equations
were developed to provide a better fit with theioear stress-strain results seen during tension
experiments [Prakt al. (2000), Ramaret al. (1998), and Zhet al. (2014)]. The force equation

evolved into having the following form:

F = A(1-€%9)7Ry? (4.1)

whereF is the tensile force between particlésandB are parameters that depend on the pure
binder, ¢ is the local strain between particles, andiRthe radius of the binder bridge between
particles. The bridge radius and the spacing ofppaeicles depends on the pigment volume
concentration (PVC), which is defined as the rafidotal volume of pigments to the volume of

pigments plus the volume of binder. When the Istedin between patrticles is larger than the
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strain-to-failure of the pure binder, the bindeassumed to fail cohesively and the force is set to
zero. As confirmed with the data of Zhtial. (2014), the model provides a non-linear resposse a

depicted in Figure 4.1.

2.2

2.04 L
184 L
164 L
1.4 L
1.9 L
1.0 L
0.84 L

dimensionless stress

0.6+ r
0.4 r

0.2 r

w7777
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 {].24
strain

Figure 4.1 Typical nonlinear response from tensiogimulation [Varney & Bousfield (2016a)]

For compression, a repulsive force is calculated as

F=GC (4.2)

where C is a constant ands the strain as mentioned above. This constatdibe large enough
to prevent overlapping, which requires the forcentwease as well. A large force would come
from the compression of high points on the parsicdad is important to keep particles from
overlapping. The difference between tension andpression is that in compression, the force has

to go to a large value as the gap is small to keepcles from overlapping each other while, in
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tension, the force follows the behavior seen in tensile tests and goes to zero when the critical strain

1s reached.

The bending simulation is done by holding two groups of particles in place, not allowing motion,
while another group of particles is set to move upward as shown in Figure 4.2. This arrangement
simulates a three point bending test. Other types of deformation are quite possible with the model
such as moving a group of particles at one end upward and not allowing some particles on the
other end to move, such as in a cantilever. Particles in the “push up” zone are moved upward with
a dimensionless velocity of one. The grip particles can be either not allowed to move at all or not
allowed to move in the vertical direction. This latter condition lets the particles in the grip zones
slide and simulates a three point bending test where the sample is supported loosely with a support

structure.

Grip particles Push up zone Grip particles

Figure 4.2 Boundary conditions for a bending simulation. Particles in push up zone are set
to move upward.

The flexural force on each particle is calculated as it moves relative to its neighboring particles. If
particles move away from each other, equation (4.1) is used to calculate the tension force between
these particles. If particles are pushed together, then a repulsive force is applied to keep the

particles from overlapping as in equation (4.2). The net vertical force on the left and right grip
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particles are summed. This upward force shouldldhaanet downward force on the particles that

are moving upward to balance the forces. The fl@xstress and strain are defined respectively as

3PL

- SPL 4.3
e (4-3)
e =25 (4.4)

whereP is the sum of the forces on the grip particlesiterload force)l. is the distance between
grips, D is the displacement of the upward moving partielethe center of the samplejs the
width of the sample and is the thickness of the sample. The strainreported here is made
dimensionless with the elastic modulus of the binded the same applies for the stressThe

goal is to predict the bending behavior of thes#esys and to predict the crack propagation.

Similar to the bending simulation, the picking mibbskets the velocity of the top couple of layers
of particles to an upward direction in the “pull'@one (Figure 4.3). Two conditions are compared
for other particles: 1) the particles along thetdot of the region are assigned zero velocity or 2)
the particles on the sides are not allowed to moke.first condition does not let the paper flex or
bend during printing, a condition which printing both sides of the sample may impose. The
second condition would represent single sided ingntvhere the paper may bend slightly at the
nip exit as the ink tack forces pull on the papéis condition may be similar to standard tests,
like the IGT pick test, that prints an ink layerame side of the paper. The net force on the bottom

particles predicts the force event that the coatifigsee as it fails.
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40
Pull up zone

X

Figure 4.3 Picking simulation by applying an out-ofplane velocity in the pull up zone. Either
bottom layer of particles is held stationary or theside particles are not allowed to move.

The length scales for the simulations for bending for picking are scaled with pigment radius.
If the particles have a radius of one micron, tthenlength in Figure 4.3 would represent a 270 by
20 micron region; the height of this region would be typical of a paper coating layer thickness.

The length scale is much smaller than typical begéests or production scale, but representative
paper and board deformations of these sorts camodeled by increasing the number of particles
in the matrix. Regardless of the length scalerdbalts should be similar as the parameters inghutte

in to the model would be the same.

Another way to simulate picking takes a long layigparticles with a force or velocity dynamically
applied to various regions of this sample. Figureilustrates this condition. The force is applied
to a region of the patrticles. The position of thgplied force or velocity then moves from left to
right at some known velocity. This would represtt@ paper moving from right to left. This
scenario should be close to the condition wheredable force is applied to a small region of the

paper for a short amount of time as the web elx@gptinting nip.
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Figure 4.4 Conditions to simulate the exit of a printing nip. A force is applied to a region of
particles and moves along the web. Upper right part of the figure is an enlargement of the
region that is experiencing an upward force or velocity. The x-y scales are position.

A model of this nature involves a number of assumptions. The results presented here are limited
to equal sized spheres that are confined in a mono-layer (true three-dimensional simulations
eventually will be performed). The spheres are assumed to be rigid particles and all of the
deformation is either compression or tension of the latex bridges between particles. The model in
this current form neglects the rotation and shear between particles; they can be included if these
types of deformation are found to be important. Lastly, the model does not take the Poisson’ ratio
(the absolute ratio of the transverse strain to the longitudinal strain) in to account as the pigment
particles and the binder are assumed not to compress. As such, the ratio is presumed to be about

0.5 in all cases.

Figure 4.5 shows the results of a bending simulation for a system near the critical pigment volume

concentration for a binder package of 40% latex and 60% starch. As expected, the coating layer

fractures earlier than the latex only binder properties at around 1% strain. The flexural stress
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increases to a maximum and drops sharply whenck develops. The shape of these predictions

is similar to the experimental results.

Flexural stress (dimesionless)

T T
50 100 150 200 300
X Flexural Strain

Figure 4.5 Typical bending results for 62 PVC (20pp binder) for binder properties that
resemble 40% latex and 60% starch. Left is the partle positions near the end of the
simulation and right is the stress-strain predictian.

Typical results for the picking simulations are whan Figure 4.6 where the bottom patrticles are
held stationary. A group of particles are forcetjick” from the coating layer. In the real situati

the top surface of a coating layer would be subjech normal-acting tack force instead of a
velocity. If the force is less than the maximumwhan Figure 4.6, the particles will deform some

amount but then remain as part of the coating layer
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Figure 4.6 Typical results of the picking simulation for pure latex binder properties and PVC
of 62 (20 pph binder). Left is the particle positions near the end of the calculation and right
is the stress-strain prediction.

When the picking simulation is done by allowing the bottom particles to move but by holding the
ends stationary, the results in Figure 4.7 are obtained. Again, this situation should represent the
case where the web is allowed to deflect a small amount during printing, as would happen with
one sided printing. Note that quite a different behavior is obtained in that the coating layer cracks

through the entire depth instead of a small region being picked from the coating layer.
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Figure 4.7 Typical picking results when the ends othe coating layer are fixed for similar
binder properties as in Figure 4.6. Left is the paticle positions near the end of the calculation
and right is the stress-strain prediction.

Typical results of the moving force boundary coiois are shown in Figure 4.4. For the

conditions used, the coating layer deforms and doesrack. In general, the model predicts that
as the elastic modulus of the binder becomes léingeforce needed to crack the layer increases.
This behavior does not agree with the common egpee and the companion paper in that as

starch is added, the coating layer elastic modulcreases, but the picking velocity decreases.

Another key result for the moving velocity conditics shown in Figure 4.8. In this case, a region
of the coating layer is forced to deflect a certdistance because an upward velocity boundary
condition is set on a region of the coating layEne location of this condition moves from left to
right in the figure below. Regardless of the etasiodulus of the coating, the layer must deflect.
Figure 8 shows that coating layers that contairclstare more prone to crack. Therefore, even
though coating layers become stronger with theteidof starch, they also become more brittle.

The cracking that is shown in Figures 4.8a and dli8strate the crack formation that occurs.
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Figure 4.8 Results for two binder systems at variainet displacements. Binder consisting of
80% latex and 20% starch at 20 pph binder with netlisplacements of a) 12.5 units and b) 10
units. Binder composition of 60% latex and 40% stach and a net displacement of ¢) 10 units.
4.4 Comparison to Experimental Data

The results of the model simulations are compavele experimental work of Hashemi-Najefi

al. (2016 and 2017). Their efforts involved both thpeent bending and picking experiments. The
pigment used in their coatings was a ground calaanbonate (60 w/w% < 2um) and various
ratios of a latex/starch binder system (latex/$taatios were 100/0, 80/20, and 60/40). The GCC
used in his study would approximate the aspeab @itihe spheres used in the model but would
not have the same particle size distribution (thleese of the model would be mono-disperse
whereas the GCC particles would by poly-disper§ag properties of binder-only films were
characterized by tensile tests. The parameterdithiaé non-linear model are given in Table 4.1.
The elastic moduli here are a bit different tha@ tbmpanion paper because the elastic moduli
reported in that paper were obtained from theahgiope and not by fitting the entire data set. As
expected, as the starch level increases, the elasidulus increases but the strain to failure

decreases. Some tensile properties of the latgxaml coating layers with latex as the binder are

reported by Hashemi-Najadt al. (2016).
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Table 4.1 Properties of the pure binder films fromtensile tests. Strain-to-failure (STF) is
given as a percent. 80L-20S is 80% latex and 20%asch on a weight basis from companion
paper.

Pure Binder
Parameters| Pure
Latex 80L-20S|60L-40S|40L-60S
A 1.5 4.9 4.8 11.0
B 2 15 35 60
E (Mpa) 3 73.5 168 660
STF (%) 200 80 22 5
A* 0.5 0.067 0.029 0.017

4.4.1 Bending simulations

The comparison of the model predictions with theddeg experiments are summarized in Figures
4.9,4.10 and 4.11. For the 100% latex cases, toehpredicts the flexural elastic modulus fairly
well and also is close in predicting the maximunesst. The strain at failure is over predicted by
the model — this over prediction of the model casilg come from its failure to predict minor
defects in the experimental samples that leadrtyg eacking. The model over predicts the elastic
modulus, the maximum stress and the strain atréilar all of the starch containing binder
systems. This result is similar to the predictidos tensile properties given by Varney and
Bousfield (2016). Numerous possible reasons egisthis over prediction — such as the starch
acting to reduce the adhesion of the binder topigenents, the starch altering the packing
properties or the initial separation of the paetsc(induced flocculation), or the starch causing a
number of fine scale defects (shrinkage duringrdy)iThe maximum stress predictions are similar

to the elastic modulus.
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Figure 4.9 Flexural modulus as a function of the latex content of the binder system for two
pigment volume concentrations. The 62 PVC corresponds to 20 parts of binder and 78 PVC
corresponds to 10 parts of binder.
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Figure 4.10 Maximum stress as a function of the latex content of the binder system at two
pigment volume concentrations. The 62 PVC corresponds to 20 parts of binder and 78 PVC
corresponds to 10 parts of binder.
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Figure 4.11 Strain-at-failure as a function of the latex content of the binder for two pigment
volume concentrations. The 62 PVC corresponds to 20 parts of binder and 78 PVC
corresponds to 10 parts of binder.

The over-prediction of the elastic modulus and the stress at failure can be expected from looking
just at the experimental results. As the pure binder films are changed from pure latex to 60% starch,
the elastic modulus of the binder increases by a factor of 50, but the elastic modulus of the coating
only increases by a factor of 1.5. Similar results are found in the data of Zhu et al. (2014) where
the elastic moduli, in tension, of the pure binder films increase by a large amount, yet the moduli

of the coating layers, even below CPVC, increase by a modest amount.

As discussed by Zhu ef al. (2014), starch seems to be acting more like a pigment than a binder. If
the starch is viewed as a pigment in the case of a PVC of 62% and a 60% latex/40% starch binder
system, the PVC would actually be 77%. When this case is run with the pure latex binder
properties, the model predicts an elastic modulus of 2.6 GPa, and a maximum stress of 19 MPa.
These values are much closer to the experimental values than if the properties of the starch-latex

film in Table 4.1 are used. However, the strain at failure is over predicted by a significant amount.
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This over prediction may be due to the assumedtyabfithe latex to respond to strain as if it were
a pure latex film. If the strain to failure for thetex-starch film is used, good predictions of the

strain to failure are obtained.

The temperature of the Hashemi Nagifial. (2017) experiments should not have impacted the
results for any of the binder systems. The freaditey coating films were dried above the glass
transition temperature Y of the latex, so this material was able to forfilra as expected. Since
starch does not have g, The coating film drying temperature would notuince the behavior of
the starch to function as a binder in these expats) assuming it was cooked adequately (which

it was in these studies).

Figures 4.12 — 4.14 show the predictions of thedfpoint bending results when starch is
considered as a pigment — the PVC values are neddify counting the starch volume as a pigment
as shown in Table 4.2. The predicted values fostielanodulus and for maximum stress did

improve when making these changes while the stmafailure values were over predicted.

Table 4.2 Pigment Volume Concentrations (PVC) — oginal experimental values vs. PVC
values when starch is considered as a pigment. 8@0S is 80% latex and 20% starch on a
weight basis.

. . PVC with
Binder Original Starch as
Package PVC .

Pigment
Pure Latex 78 n/a
80L-20S 78 83
60L-40S 78 87
Pure Latex 62 n/a
80L-20S 62 69
60L-40S 62 77
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Figure 4.12 Flexural modulus as a function of the latex content of the binder system for two
pigment volume concentrations and with starch as a pigment (62 PVC corresponds to 20
parts of binder and 78 PVC corresponds to 10 parts of binder).
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Figure 4.13 Maximum stress as a function of latex content of the binder system for two
pigment volume concentrations and with starch as a pigment (62 PVC corresponds to 20
parts of binder and 78 PVC corresponds to 10 parts of binder).
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Figure 4.14 Strain-at-failure as a function of latex content of the binder system for two
pigment volume concentrations and with starch as a pigment (62 PVC corresponds to 20
parts of binder and 78 PVC corresponds to 10 parts of binder).

Another issue which caused the over-predictions at high starch levels may be the adhesive strength
of the binder to the pigments. Starch may reduce this adhesive property. Therefore, as the binder
elastic modulus increases with starch addition, the adhesive properties of the binder to the pigment
may decrease. This adhesive behavior could be studied by measuring the adhesion of binder to
calcium carbonate crystals. The adhesive parameter has been incorporated into the current model,

but the correct value of this parameter needs to be determined from adhesive type tests.

The best predictions are obtained by assuming that the starch acts as a pigment, by using the binder
properties of pure latex, and by using the strain to failure properties of the starch-latex binder film.
This method of using the pure binder properties under predicts the elastic modulus of the starch
containing coating by around 20%, under predicts the maximum stress by 15%, and over predicts

the strain at failure by 80%.
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4.4.2 Picking Simulations

Results of the picking simulations when the bottayer of pigments are held stationary are shown
in Figures 4.15 and 4.16. These simulations were dsing the four binder packages from the
experimental work of the companion paper and ttpak up” zone widths in the model. Changing
the widths would represent different ink half tata sizes in an offset press, for example. The
model particle size is such that the range of upezaidths chosen in this simulation would
represent a typical half tone dot size of abouftB®— 50 um. This set of data is for a pigment

volume concentration at the critical value (CPVC).

The maximum stresses plotted in Figure 4.15 wesentérom the peak on the stress/strain curves,
like those in Figures 4.6 and 4.7 (right side) avate converted from dimensionless stress to
dimensional stress. Figure 4.15 shows how the mamxirsiress at failure would increase directly

with the width of the pull up zone. This plot alstwows that the latex-only binder system had the
lowest stress values while the trends for the Btaontaining systems generally increased in stress
indirectly with starch levels. Figure 4.16 is siamito Figure 4.15 except that the dimensionless
stress is plotted instead. In this case, the latdy-binder system had the highest values while the
addition of starch caused the maximum dimensionddsss to decrease. The predicted stress
before the coating cracks is well above the ink tairess values measured by Harrison and
Bousfield (2015). This result indicates that thesating layers would be strong enough to

withstand normal offset printing forces.
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Figure 4.15 Maximum dimensional picking stress against pull up zone width for four binder
systems. 80L-20S is 80% latex and 20% starch on a weight basis.

0.16
-®-Pure Latex
0.14 - #-80L-20S
60L-40S
40L-60S

o
Y
N

e
HY
)

Dimensionless Maximum Stress
=)
o
(-]
L

o o

o o

& [}
L I

\
|
%l

Pull Upzone Width

Figure 4.16 Maximum dimensionless picking stress against pull up zone width for four binder
systems. 80L-20S is 80% latex and 20% starch on a weight basis.

The picking results of Hashemi Najafi ez al. (2017) show that the IGT velocity at picking increases
with the binder level and decreases with the addition of starch. The model also predicts that

increasing binder level increases the force required to cause picking. However, the increase in
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starch content, corresponding to the amount ustgeiexperiments, should also increase the force
required to generate picking. This result is opjgots what was found in the experiments, where

increasing starch decreases the pick velocity.

The ability of the coating layer to deform, evesnaall amount, to a bending motion explains this
outcome. As seen with the moving force conditiod tre picking simulation that allows bending
of the coating layer, the addition of starch in biveder system decreases the strain at failure even

if the coating layer is stronger.

4.5 Conclusions

A discrete element model is proposed to describebinding and picking events for a coating
layer. This model has the potential to predict kirag events when the sample is bent or picking
phenomena during printing. The model incorporates rhechanical properties obtained from

binder only films.

For the bending results, the model predicts welldbhavior of coatings that contain only latex as
the binder in terms of the elastic modulus, ofrtreximum stress, and of the strain at failure. For
coatings that contain starch, the model over ptedie elastic modulus and maximum stress. If
starch is treated as a pigment, and the propestidex are used for the binder, the predictions

are improved.

In the picking simulations, the model predicts¢berect trend in terms of binder level. The model

also predicts that starch containing coatings shdbel stronger than coatings that contain only

62



latex, but the experiments show that the latex @olgtings are more resistant to picking. If a
deflection or bending of the coating layer is imgbe the model, the cracking of the coating layer

is found to increase with starch content. This ltemgrees with the experiments.
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CHAPTER FIVE
DISCRETE ELEMENT METHOD TO MODEL THREE-POINT BENDIN G EVENTS
FOR TWO LAYER TWO DIMENSION SYSTEMS OF UNIFORM SPHE RES
5.1 Abstract
Cracking at the fold is a serious issue for maradgs of coated paper and coated board. Some
recent work has suggested methods to minimizeptioislem by using two or more coating layers
of different properties [Salminezt al. (2008a and 2008b)]. A discrete element method (PE:s
been used to model deformation events for singlerlaoating systems such as in-plain and out-
of-plain tension, three-point bending, and a naweling force picking simulation, but nothing

has been reported related to multiple coating &yer

In this paper, a DEM model has been expanded tigirthe three-point bending response of a
two-layer system. The main factors being evaluaieldide the use of different binder systems in
each layer and the ratio of the bottom and toprlaaghts. As in the past, the properties of the
binder and the binder concentration are input patara. The model can predict crack formation
that is a function of these two sets of factorsadidition, the model can predict the flexural
modulus, the maximum flexural stress, and therstagifailure. The predictions are qualitatively

compared to experimental results reported in tieediure.

5.2 Introduction
While coated board grades are typically doubleriptet coated, the number of coating layers
applied for standard coated paper grades depentteedacation of production. North American

coated papers typically are single coated whildlampapers in Europe can have multiple layers
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of coating applied. The mechanical properties btahting layers are critical to the paper and
board passing through the various post coatingegtjmn steps without experiencing any quality
problems. These process steps include calendaramgpfession), printing (z-direction tension),
and folding (bending). The potential quality probkethat can result from these processes are

cracking, picking, and cracking-at-the-fold (CAFgspectively.

The two main computer modeling techniques usednimdeling free-standing coating layers has
been the discrete element method (DEM) and theefiaBlement method (FEM). The DEM
approach has been used for modeling coating layetsr tension [Alanet al. (2012), Toivakka
and Bousfield (2001), Toivakkat al. (2014), and Varney and Bousfield (2016a)], under
compression [Azadet al. (2008a, 2008b) and Met al. (2008)], and during bending [Varney and
Bousfield (2016b and 2017)]. The FEM has been ts@dodel all three types of events [Alan

al. (2009), Barbier (2005), and Salminetnal. (2008a)].

The work of Salminert al (2008a and 2008b), of Alast al (2009), and of Yangt al (2014)
was different because they looked at the impaatwfiple coating layers on coating mechanical
properties. All three groups were trying to optimthe balance between stiffness and CAF for
multiple coated papers. While the work of the fizgb groups involved modeling and pilot lab
trials (comparing double and triple coating), thied team scaled up this work to the commercial
level. The chief findings were that the optimaldrade between stiffness and CAF was the case of
a triple coated paper. This “ideal” paper was deieed to consist of a thin, stiff bottom coating

layer; a thick, lowerstiffness middle coating layer; and a thin, stiff top coating layer.
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Ohet al (2014) conducted a series of lab experimentwuatialy the folding response of double
coated heavy weight papers and the relationshtprwdile to CAF. They looked at the impact of
styrene butadiene (SB) latex glass transition teaipee (T) in the topcoat, of starch levels in the
precoat, and of GCC patrticle size. While not comtingnon the effect of the pigments, they
pointed out the negative impact of starch and giiér latex f on cracking tendency. An important
finding was that, as both starch levels and latgkdreased, the number of cracks decreased but

their length and area increased.

Because the finite element method normally trdegsbated paper as a composite material, it does
not make the “connection” between events on theaoyscale and the responses on a macro-scale
(as can the DEM). FEM can be used to develop petwel models [Barbieet al. (2012)], but

the computational complexity and the computing timerease significantly as the number of

particles goes up.

This current paper will build on the recent workMairney and Bousfield (2016b and 2017). The
three-point bending model of these papers will xjgaaded from one to two coating layers. The
impact of latex to starch ratio and of top layebtitom layer thickness ratio (i.e., coat weight
ratio) will be assessed. The model results wiktepared to the past work where multiple coating
layers were applied to a variety of paper subsirggalmineret al (2008a and 2008b), Alaet

al. (2009), Ohet al (2014), Yanget al (2014), and Hashemi-Najadt al (2018)].
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5.3 Model Development
Previous work (Varney and Bousfield 2016a, 2016k,2017) discussed an equation that provides
a good fit with the non-linear stress-strain resgken in prior tension experiments [Pedlal.

(2000), Ramaet al.(1998), and Zhet al.(2014)]. The force equation had the following form

F = A(L-6%) /Ry’ (5.1)

whereF is the tensile force between particlésandB are parameters that depend on the pure
binder, ¢ is the local strain between particles, andiRthe radius of the binder bridge between
particles. The bridge radius and the spacing ofpaeicles depends on the pigment volume
concentration (PVC), which is defined as the rafidotal volume of pigments to the volume of
pigments plus the volume of binder. When the Istedin between patrticles is larger than the
strain-to-failure of the pure binder, the bindeassumed to fail cohesively and the force is set to
zero. Using data from Zhet al. (2014), the model provides a non-linear respossaepicted in

Figure 5.1.
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Figure 5.1 Typical non-linear response from tensiosimulation [from Varney and Bousfield
(2016a)].

For compression, the repulsive force equation gtabéshed as

F=G (5.2)

where C is a constant ands the strain as mentioned above. This constantdibe large enough
to prevent overlapping, which requires the forcentwease as well. A large force would come
from the compression of high points on the parsicéd is important to keep particles from
overlapping. The difference between tension andpression is that in compression, the force has
to go to a large value as the gap is small to lgepcles from overlapping each other while, in
tension, the force follows the behavior seen isitertests and goes to zero when the criticalrstrai

is reached.
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The bending simulation is done by holding two groups of particles in place, not allowing motion,
while another group of particles is set to move upward as shown in Figure 5.2. This arrangement
simulates a three-point bending test. Other types of deformation are quite possible with the model
such as moving a group of particles at one end upward and not allowing some particles on the
other end to move, such as in a cantilever. Particles in the “push up” zone are moved upward with
a dimensionless velocity of one. The grip particles can be either not allowed to move at all or not
allowed to move in the vertical direction. This latter condition lets the particles in the grip zones
slide and simulates a three-point bending test where the sample is supported loosely with a support

structure. For the simulations conducted for this paper, the grip particles were allowed to slide.

Grip particles Push up zone Grip particles

Figure 5.2 Boundary conditions for a bending simulation. Particles in push up zone are set
to move upward. The distance from the zero-y position to the red broken line is the height of
the bottom layer.

The flexural force on each particle is calculated as it moves relative to its neighboring particles. If
particles move away from each other, equation (5.1) is used to calculate the tension force between
these particles. If particles are pushed together, then a repulsive force is applied to keep the
particles from overlapping as in equation (5.2). The net vertical force on the left and right grip
particles are summed. This upward force should equal the net downward force on the particles that

are moving upward to balance the forces. The flexural stress and strain are defined respectively as
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_ 3PL (5.3)

g, =——
" 2bd?
£ = 6LDzd (5.4)

whereP is the sum of the forces on the grip particlesliterload force)l. is the distance between
grips, D is the displacement of the upward moving partielethe center of the samplejs the
width of the sample amdlis the thickness of the sample. The strainis made dimensionless with
the elastic modulus of the binder. The goal isredt the bending behavior of these systems and

to predict the crack propagation.

The key difference between this paper and the posvones presented by Varney and Bousfield
(2016b and 2017) on 3-point bending is the modetihgwo layers in the present case. This
“splitting” of the layers is performed by settinget particles below a certain height to have the
properties of one binder system and the partidbevea this height (up to the top of the particle
matrix) to have the properties of a different binslgstem. As such, data from two binder systems
as well as the intermediate height (the bottomrlaggght) are inputs to the two-layer model. For
this paper, an 18 x 300 particle matrix was useth the bottom layer height being 4.5, 9.0, and
13.5 (thus, establishing bottom layer to top layios of 25:75, 50:50, and 75:25 respectively).
The binder systems used in these simulations wasedoon the data of Hashemi-Najeffial
(2017) and were 60% latex/40% starch, 80% latex/2G#ch, and 100% latex/0% starch. These

binder systems would represent typical latex techteatios used in the paper industry.
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The length scales for the bending simulations eaéed with pigment radius. If the particles have
a radius of one micron, then the length in Figué&vgould represent a 300 by h8eron region;

the height of this region would be typical of a papoating layer thickness. The length scale is
much smaller than typical bending tests or produnctcale, but representative paper and board
deformations of these sorts can be modeled byaserg the number of particles in the matrix.
Regardless of the length scale, the results shmeilsimilar as the parameters inputted in to the

model would be the same.

A model of this nature involves a number of assuomgt The results presented here are limited
to equal sized spheres that are confined in a neye- (true three-dimensional simulations
currently are in progress). The spheres are asstortsalrigid particles and all of the deformation
is either compression or tension of the latex glgetween the particles. The model in this current
form neglects the rotation between particles, wisah be included if it is deemed to be important.
In addition, the failure between the particlessswuaned to be cohesive in nature, so any failure
that takes place is within the binder bridge antdatahe interface between the binder and the
particles (recent work has incorporated adhesiMaréain to the model, but it was not included in
this paper). Lastly, the model does not take thedea’ ratio (the absolute ratio of the transverse
strain to the longitudinal strain) in to accountlas pigment particles and the binder are assumed

not to compress. As such, the ratio is presuméxe tabout 0.5 in all cases.

Figure 5.3 below shows the results of a bendingukition in which the bottom layer was
comprised of 80% latex and 20% starch (80L/20S)taedop layer consisted of 60% latex and

40% starch (60L/40S). The ratio of the bottom lagethe top layer heights (i.e., the coat weight
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ratio) was 75% bottom layer and 25% top layer. The PVC for the simulations was kept to a constant
value of about 62. The pure binder data used as inputs for the model came from the work of
Hashemi-Najafi ef al. (2017), where the PVC was 62 (20 pph binder). The particle position plot
on the left shows the formation of cracks taking place in the top layer, which has a higher amount

of starch in it, but the cracks do not propagate through the second layer.
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Figure 5.3 Typical results for 62 PVC (20 pph binder) with binder properties that resemble
60% latex and 40% starch in the top layer and 80% latex and 20% starch in the bottom
layer. The ratio of bottom layer height to top layer height was 75:25. Left is the particle
positions near the end of the simulation and right is the stress-strain prediction.

5.4 Simulation Results

Atotal of 21 simulations were conducted in generating data for this paper — 18 representing various
combinations of bottom layer/top layer thicknesses and binder systems and three representing
single coating with the three individual binder systems (60L/40S, 80L/20S, and 100L/0S). The

model inputs for the pure binder data of Hashemi-Najafi et al. (2017) is show in Table 5.1 below.
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Table 5.1 Properties of the pure binder films fromtensile tests. Strain-to-failure is given as a
percent. 80L-20S is 80% latex and 20% starch onweight basis from companion paper.

Parameters | Pure Latex 80L-20S 60L-40S
A 1.5 4.9 4.8
B 2.0 15.0 35.0
E (MPa) 3.0 73.5 168.0
STF (%) 200.0 80.0 22.0

The results for flexural modulus, maximum stress], strain-at-failure are shown in Figures 5.4 —
5.6 below. Each property is plotted against thglteof the bottom layer (with the total height

being 18 in dimensionless form). Thus, a bottoneitdyeight of 4.5 means the top layer height is
13.5 and the ratio of the bottom to the top lay&ghts is 25:75. A height of 18 indicates that the

coating is comprised of one layer.

For the flexural modulus, the simulations showhkies to be highest with increased thickness
of the starch-rich layer. This layer dominates rtbgponse and drives the flexural modulus to a
value approaching the single layer condition with same starch-rich binder system. The same
trends were observed with the maximum stress. Ashi strain-at-failure (STF), similar trends
are observed, but in reverse. The values tenddredse at higher thicknesses of the starch-rich
layer as is expected. In addition, the highest 8dlbdes were for increasing thickness of an all
latex binder bottom layer (100L/0S), with eithertbé other two binder systems in the top layer.
When the 100L/0S binder is in the top layer, thé-S@lues remain constant with bottom layer
height regardless of the bottom layer binder syg@®h/20S or 60L/40S). These constant values

are very similar to the single layer condition gsthe same binder package as the bottom layer.
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Figure 5.4 Simulated flexural modulus as a function of the bottom layer height and various
bottom layer/top layer binder systems. B 80/20 T 60/40 stands for bottom layer with an 80%
latex/20% starch binder system and a top layer with a 60% latex/40% starch binder system.
S 60/40 stands for single layer with a 60% latex/40% starch binder system.
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Figure 5.5 Simulated maximum stress as a function of the bottom layer height and various
bottom layer/top layer binder systems. B 80/20 T 60/40 stands for bottom layer with an 80%
latex/20% starch binder system and a top layer with a 60% latex/40% starch binder system.
S 60/40 stands for single layer with a 60% latex/40% starch binder system.
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Figure 5.6 Simulated strain-at-failure as a function of the bottom layer height and various
bottom layer/top layer binder systems. B 80/20 T 60/40 stands for bottom layer with an 80%
latex/20% starch binder system and a top layer with a 60% latex/40% starch binder system.
S 60/40 stands for single layer with a 60% latex/40% starch binder system.

The position plots show cracking in all 21 cases if the simulation is allowed to run long enough to
result in failure. Cracking would always occur in the starch-rich layer regardless of whether it was
in the top or bottom layer. The appearance of cracks in the bottom layer always occurred near the
grips. While cracks did appear in some cases for the all-latex binder system, this situation was in
the minority and might have been more a result of the length of the simulation. These durations
were varied to achieve failure (and, therefore, to obtain the stress/strain and modulus values) and
might not correlate perfectly with a bending test, which is run for the same amount of time in all

experiments.

Some specific situations are depicted in position plots show in Figures 5.7 — 5.10 below. The first
three cases are for thick bottom layers with thin top layers (a 75:25 ratio of bottom layer to top

layer heights). Figures 5.7 and 5.8 represent opposite scenarios, with the first layer being a thick
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latex only bottom layer with a thin starch rich tager while the second case is a thick starch rich
bottom layer with a thin latex only top layer. ligkre 5.7, the cracks appear only in the thin &tarc
containing top layer. The thick latex rich bottoayér does not appear to crack, as might be
expected. Figure 5.8 shows cracking in the bottuoktstarch rich layer, but it also shows cracks
in the top latex only thin layer. The appearanceratks in this top layer is a bit confusing, lut i
could be due to slippage out of the grips as sgehdobottom cracks on the left and ride sides. In
addition, the work of Salminegt al. (2008a and 2008b) showed the case of Figure %@ tess
prone to cracking. Figure 5.9 shows a two-layetesgswith a 50:50 split of a 60% latex/40%
starch bottom layer (60L/40S) and an 80% latex/2@8ch top layer (80L/20S). In this case, the
more cracks occur in the higher starch containiagjon layer, as might be expected. Lastly,
Figure 5.10 is a single layer (of equal thicknesdhe two-layer systems) with a binder system
comprised of 60% latex and 40% starch. Cracks easelen in both the top and bottom of the
single layer. As in the other cases, the bottoncksrappear near the grips, possibly indicating

some slipping at these positions.
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Figure 5.7 Position plot for 62 PVC (20 pph binder) with binder properties that resemble
100% latex in the bottom layer (100L/0S) and 60% latex plus 40% starch in the top layer
(60L/40S). The ratio of bottom layer to top layer heights is 75:25 (i.e., a thick latex rich
bottom layer and a thin starch rich top layer).
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Figure 5.8 Position plot for 62 PVC (20 pph binder) with binder properties that resemble
60% latex plus 40% starch in the bottom layer (60L/40S) and 100% latex in the top layer
(100L/0S). The ratio of bottom layer to top layer heights is 75:25 (i.e., a thick starch rich
bottom layer and a thin latex rich top layer).
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Figure 5.9 Position plot for 62 PVC (20 pph binder) with binder properties that resemble
60% latex plus 40% starch in the bottom layer (60L/40S) and 80% latex plus 20% starch in
the top layer (80L/20S). The ratio of bottom layer to top layer heights is 50:50 (i.e., layers of
equal thickness which both contain starch, with the bottom layer having twice as much starch
as the top layer).
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Figure 5.10 Position plot for 62 PVC (20 pph binder) with binder properties that resemble
60% latex plus 40% starch (60L/40S) in a single layer (i.e., one starch rich layer equal in
height to the two-layer scenarios).

5.5 Comparison to Experimental Data
The simulations of this paper show agreement with the trends observed in the literature. While the

model was not concerned with finding the optimal balance between stiffness and CAF [as were
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Salminenet al. (2008a and 2008b), Alarat al (2009), and Yangt al (2014)], the current
simulations did show that cracking tendency woutdrdase with a thick, low-stiffness bottom
layer and a thin, stiff top layer (i.e., conditiongh an all-latex bottom layer and a top layertwit
some level of starch — the conditions with the bgjlstrain-at-failure values). As noted earlieg, th
position plot of Figure 5.7 is an example of how 8imulations agree with this past work. As
stated above, these earlier investigators founid idheal paper to be a thin, stiff bottom coating
layer, a thick, lower-stiffness middle coating lgyand a thin, stiff top coating layer. It may batt
cracks form in the top coating layer in these systebut they are not noticed because the middle

coating layer (bottom layer in our case) does natlcor it dissipates the crack.

The tendency for the starch-rich layers in the rhddebe more prone to cracking was in
accordance with Oét al (2014) who commented about the negative impactracking tendency
when adding starch to the precoat (the topcoatamaall-latex binder system in theitudy). As
stated previously, they found that the length am &f the cracks would increase directly with
starch level. In addition, their data agreed wiith tesults of Zhet al.(2014) in that the strain-at-
failure decreased and the maximum stress incressebre starch was added to the precoat. Since
the model is concerned with two dimensions at priesiefinitive comments about the size and
number of cracks cannot be made. However, the ntms show agreement with the stress-strain
data from Otet al.(2014) for the simulations involving starch-coniag precoats and an all-latex
topcoat. The maximum stress goes up when the sievehis raised, be it from adding more to
the precoat or from increasing the precoat weightor the strain-at-failure, this parameter drops
with more starch but remains constant with increggirecoat weight. However, the position plot

of Figure 8 shows the appearance of cracks in klatak top layer. These results are not in
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agreement with Olet al. (2014) even though the simulated stress-stramtee®llow the same

trends as the prior experimental work.

Hashemi-Najafiet al. (2018) applied two coating layers to a couple apgr substrates. The
coatings were formulated at two different PVCs awith the four binder systems used in the
simulations above. Following bending, the areahefdracks was found to be a strong function of
the amount of latex in the topcoat. The area waglat higher levels of latex in the top layer
binder system, indicating that cracking became déss issue in this case. These results concur
with the model in that cracking, in general, did nocur in the layers with an all-latex binder
system. However, the simulated strain-at-failursults for the case of an all-latex topcoat
(100L/0S) were not the highest in all cases, thdgating that these conditions did not show the

lowest propensity of cracking.

5.6 Conclusions

A discrete element method model was found capdtdemulating bending for a two-layer system
comprised of different ratios of the two heightsl ari different binder systems in the two layers.
The model could predict cracking during the threepbending event. The model was based on

using the mechanical properties obtained from purder films.

The model shows a direct relationship between lsti@nel and height of a starch-rich layer on the

flexural modulus and the maximum stress. For tise ad strain-at-failure, the model shows the

relationship to be the inverse case.
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The trends shown by the model are in general agrremith the literature in that starch-rich
coating layers of high coat weight were seen tmbee prone to cracking. Additionally, the lowest
tendency for cracking was seen for a thick bottayet of an all-latex binder system with a thinner

top layer of a starch-containing coating.

More work needs to be performed to improve the rfegeedictions relative to experimental

results. Possible ideas to pursue include the igfagtarch on the mode of failure (cohesive vs.

adhesive) and true three-dimensional packing.
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CHAPTER SIX
DISCRETE ELEMENT METHOD TO MODEL INLINE TENSIONAND THREE-POINT
BENDING EVENTS FOR SINGLE LAYER THREE DIMENSION SYS TEMS OF
UNIFORM SPHERES
6.1 Abstract
The mechanical properties of paper coating layersmaportant in converting operations such as
slitting, calendaring, printing and, folding. Whaenumber of experimental and theoretical studies

have advanced our knowledge of these systems,darticle level understanding of issues like

crack at the fold are lacking.

In this paper, a discrete element method (DEM) rhbds been modified to account for three
dimensions. Simulations were run for both in-lieadion and for three-point bending of single
layer systems. As with past models, inputs to fhev8rsion include properties of the pure binder
film and the binder concentration. The model predarack formation as a function of these
parameters and can also calculate the modulugydxénum stress, and the strain-at-failure. The
simulation results were compared to the work of 2hal. (2014) and of Hashemi-Najadt al.

(2018). Good predictions are obtained for botlsiterand bending for a range of latex-starch

ratios and at various pigment concentrations.

6.2 Introduction

The mechanical properties of coatings are importard number of applications. For coated
papers, the resistance to picking during the prindiperation is critical as well as is the abifay
the sample to be converted or folded without craglaf the coating layer [Siret al. (2012) and

Barbieret al.(2012)]. The increased use of starch as a bisddrinterest as the industry tries to
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move to natural binders, but starch often increasasking problems as reported by Réatté and
Hornatowska (2010) and (dt al. (2015). If the coating layer is a homogenous nmtesuch as

a specific polymer, the mechanical properties eflélyer can be estimated from the bulk properties
of that material. However, when the coating layeaicomposite of pigments and binder, the

mechanical properties are more difficult to predict

Finite element methods (FEM) can be used to preldéctieformation of coated paper by treating
the coating layer as a continuum [Barleéal. (2005) and Alanet al. (2009)]. The compressive
and tensile stresses during bending can be predidtavever, the elastic modulus and the Poisson
ratio are inputs of the model; these would nedzktmeasured for each sample because they would
depend on the latex type, starch loading, and aipepfiber properties. These methods also do not

lead to insight as to the mechanism of crack foionat

Some continuum type models have been explored lbelimgy groups of particles connected by
polymeric bridges (Ratto, 2004). When the numbggasticles increase and the distance between
particles is small, numerical analysis of this natare costly. While some insight into mechanical
properties of porous composites has been obtaindd avmesh-free continuum mechanics
simulation (Toivakkaet al. 2015), an understanding of the micromechanicalatien of

pigmented coating layers in various industrialligvant situations is lacking.

Discrete element methods (DEM) are based on thieledength scale and have potential to reveal
particle level mechanisms in the study of theséesiys. Toivakka and Bousfield (2001) proposed

a simple model to predict the dynamic mechanicaperties of a pigmented coating layer in
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tension and compared the simulation results toraxeatal data. DEM has been used to study the
compression of paper coatings during the calengagvent (Azadiet al. 2008). Tensile and
bending predictions also have been reported prelyday Varney and Bousfield (2016a, 2016b,
2017, and 2018). While most of these models arediw@nsional in nature except Azaial.

(2008); a good comparison between 2D and 3D mdaeisot been reported.

In this current paper, the authors propose to ysstecle level 3D model to understand the tensile
and bending behavior of coating layers that conpegments, latex, and starch. The results are
compared to the experimental data of Zhal. (2014), of Cheret al (2014), and of Najatt al.

(2018). Latex and starch mixtures were used asndebibetween ground calcium carbonate
pigments in these experiments and the mechanioglepiies of these starch-latex mixtures are
inputs into the model. The predictions of two ahdeé dimensional forms of the model are

compared along with the experimental values.

6.3 Model Description
When two particles move relative to each othermnaBigure 6.1 (similar to in-line tension), a
restoring force is calculated to pull them togeth&sed on the local strain of the polymer between

them. The force equation used here takes on thdimesr form

F = A(L-€%) /Ry’ (6.1)

whereF is the tensile force between particleS,andB are parameters that depend on the pure
binder propertiess is the local strain between particles, andsRhe radius of the binder bridge

between particles. The bridge radius and the spadithe particle depends on the pigment volume
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fraction (PVC), which is defined as the ratio oé ttotal volume of pigments to the volume of
pigments plus the volume of binder. The relatiopsiatween the PVC and the binder bridge radius
was discussed by Varney and Bousfield (2016ahiswork, the binder bridge radius was found

to fit the equation below, where the PVC is abdweedritical value.

025

R, = (31- 3.1PVC) (6.2)

Note that the bridge radius goes to zero as PVG goé.0, which is a system that has no binder.
Below the critical PVC, the binder bridge radiud.i8, but the particle separation would increase.

This value represents a system that is full of eireerywhere.

When the predicted local strain between partiddanger than the strain-to-failure measured for
the pure binder, the binder is assumed to fail sivley and the force is set to zero. This non-linea
form for the force equation (6.1) is selected bseatiresembles the behavior of the tensile tests
of the binder films as reported by Pratlal. (2000) and Ramaet al. (1998). The model can also

account for adhesive failure by putting a straistoess criteria in the calculation.

The mechanical properties of the binder films argsgble to measure from tensile tests. £hal
(2014) and Najafet al. (2018) report the mechanical properties of mixduré starch and latex.
The maximum stress at failure is the parameter éguation (6.1). The elastic modulus divided
by A is the parameter B in equation (6.1) becabsartitial slope of equation (6.1) is the product
of Aand B. Table 6.1 shows the mechanical progedf these films produced from mixtures of
latex and starch. As is well known, as starch geado these systems, the elastic modulus of the

binder increases but the strain at failure decease
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Figure 6.1 Idealized system of two spherical pigmésiconnected together by a binder bridge.
The binders of interest here are mixtures of starcland latex. R is the binder bridge radius
and h is the height of the binder bridge.

Table 6.1 Mechanical properties of particle free fms composed of mixtures of starch and
latex.

Weight

Fraction
Investigator Latex A (MPa) B E(MPa) | STF (%)

(Parts)

Najafi et al. 100 1.5 2 3 200
Najafi et al. 80 4.9 15 73.5 80
Najafi et al. 60 4.8 35 168 22
Najafi et al. 40 11.0 60 660 5
Zhuetal. 100 3.75 3.2 12 355
Zhuetal. 77 9.4 24 221 200
Zhuetal. 58 15.5 29 448 41
Zhuetal. 38 32.0 36 1156 13

If particles move closer to each other compareatiéanitial gap (compression), a repulsive force
is applied to keep the particles from overlappifiys repulsive force is linear and depends on the
compressive strain as F =,Gvhere C is some constant and the strain is therugap between
particles divided by the initial gap. The value®imust be large enough to prevent the particles

from overlapping, but not to impact the final resul
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One parameter included in the model is the distdreteveen two particles to consider them
neighbors and, thus, to have a connection. Some teamed this concept “nearest neighbors”. At
the Critical Pigment Volume Concentration (CPVQJery particle should be close to several
others. However, it is not clear at what distaremtigles should be considered connected. In Figure
6.2, if the gap between the particle of interest e other particles, is less than one radius, the
particles will be considered neighbors and, theegfbe connected. If they are too far away, then

no connection is assumed.

Figure 6.2 Near neighbor criteria with Ri=1.0. Particles closer than the criteria are assued

to be connected. As Rincreases, more particles are connected together.

For the 2D model, spheres are assumed to be cdrtfing@ monolayer, as depicted in Figure 6.3.
Spheres are “pressed” into the region during tit@impacking, keeping the minimum separation
of spheres to be around 0.5% of the radius. In3hecase, depicted in Figure 6.4, spheres are
packed into the structure using a Brownian motigmetsimulation, where particle motion is

accepted for minimizing the gap between partidie®ither case, the particles are packed into a
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structure that would represent the coatings atdmaer content, where most particles will have a
number of near neighbors. For low pigment volumeceatrations, the initial packing should be
much lower. These cases can be calculated by wksengame packing, but assuming that the

particles have a radius less than what is useddk fhe structures near CPVC.

To simulate an in-line tensile event, particlegh@a grip region on the right of the figure aretset

a velocity of one dimensionless unit value to igat Particles in the left grip region are assijne
to no velocity. This scenario causes the partictethe right to pull on other particles in the meld

of the structure and transmit forces throughoutstinecture. The up zone is not used in tension.
The results presented here are for slow motioradivel to the inertia of the particles. Therefore,
the forces are near equilibrium during the deforomaevent and the rate of deformation is not

important.

To stabilize the simulation when a crack occunsais found helpful to add a small damping factor,
where a particle moving at some velocity will expece a force in the opposite direction. The
equation iskF = =DV, whereD is a damp factor and is the velocity vector. The value of the
damping factor should be small enough so as noflicence the predictions of the modulus or of
the ultimate stress.

To simulate bending tests, particles in the “puphaone are assigned an upward velocity (i.e.,
the particles are pushed upwards from below thie)xd-or the results here, the push up zone has
a width of 10 units which is smaller than depictedhe figure. The sizes of the two grip zones
and of push up zone have minimal influence on éiselts as long as the distance from the zones

is large compared to the zones themselves. Simdaditions are set for the 3D model — the
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bending of a 3D case is shown in Figure 6.4. Spheres on the two sides (the grip zones) of the
simulation are not allowed to move in the vertical direction, but they are allowed to slide in the

horizontal direction or deflect downward.

grip particles up zone grip particles

Figure 6.3 Simulation set up for the 2D model for the three point bending case for 30x300
matrix (the particles are pushed up from the bottom in the “push up” zone).

Grip zone up zone Grip zone

Figure 6.4 3D situation for uniform spheres packedn a 10x10x100 cell. Particles here have
undergone some upward deflection. Particles are pked to a PVC of 64%.

In both cases, as some particles are forced to move from their equilibrium position, a vector force
on neighboring particles is calculated using either equation (6.1) or the compression equation (F =
Ce ). The net force on every particle is calculated based on its position and the position of all of

the neighbors. This net force is used to update particle velocities and positions with a numerical
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integration using a predictor-corrector methodthie results presented in this paper, the motion is
slow and the inertia terms are small; time or rates do not influence the results, but these effects are

straight forward to include in the future. Thesediintegrations can be expressed as

a=dV/di=F/x,

6.3
dP/dt=V (6:3)

wherea is accelerationV is velocity,F is force,xm is a parameter that represents the mass of the
particle, andP is position. Equation (6.4) is a vector equatiesduse it has components in each

dimension.

The sum of the forces on the particles that moletedo the force a mechanical tester would
record; these forces balance the sum of the facdke particles that are not allowed to move. In
tension, the stress is the sum of the forces ogribgoarticles divided by the cross sectional area
In 2D, the distance into the paper is assumed toneeparticle diameter. The flexural stress and

strain can be calculated as

3PL
= 6.4
Tt T o (6.4)
eDd
& =? (6.5)

whereP is the sum of the forces on the two grip partig@sthe load force),L is the distance
between gripsD is the displacement of the upward moving partiakethe center of the sample,
is the width of the sample anmlds the thickness of the sample. The goal is tdipte¢he bending

behavior and the crack propagation of these systems
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A typical bending result is shown in Figure 6.5. &Agiroup of particles moves from the initial
position, the forces are transmitted through thréigdas to generate a force throughout the sample.
At some point, the local strain of the sample eslsdbe strain to failure of the pure binder, akrac
propagates, and the sample breaks. This generaVioeland the shape of the response are quite
similar to the experimental data. The model predice elastic modulus of the coating layer from

the initial slope of the response as well as thgimam stress and the strain to failure.
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Figure 6.5 Flexural strain and stress predicted bythe simulation (left) and crack of the
coating layer (right) for a 2D example.

The deformation and local forces for a typical 2i3e& are shown in Figure 6.6. In the region that
is forced upward, a tensile force is generatedoAtear the regions where particles are only
allowed to slip in the horizontal direction (thepmerones), a tensile force is generated between

particles.
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Figure 6.6 Bending deformation in 3D mode, showinthe connections between particles for
a typical case.

6.4 Results

The value of C is found to not strongly influenhe tesults as long as it is large enough to prevent
particles from overlapping. In tension simulati@specially, the value of C has little influence.
Figures 6.7 — 6.9 show how the parameter C inflagribe mechanical properties for different
values of a damping factor for a bending simulatibimese plots were produced for 3D bending
with a set value of Rof 1.0 and an x of 5.0x10° using mono-disperse spheres. The model in the
current form neglects the viscous effects and sé#ects, but these factors can be incorporated in
a straight forward way if needed. As C increadesflexural modulus increases, but the maximum
stress and the strain to failure are little infloed. And, as C increases, particles are not able to
move towards each other. In bending, this situatvonld cause particles on the top side of the
sample to move more than cases where C is smadl $et flexural strain — the net results is that
increasing C increases the elastic modulus. Basédese result, a value of 500 was used for C in

the simulations.

Figures 6.7 — 6.9 also show that a damping fadtGr@L does not influence the results, but if the
damping factor is larger than this value, the pralns are influenced. The damp factor was set to

0.001 for most of the predictions.
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Figure 6.7 Flexural modulus vs. C-factor at various values of damping factor using

monodisperse spherical particles.
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Figure 6.9 Flexural strain at failure vs. C-factor at various values of damping factor using
monodisperse spherical particles.

The predictions of the models are compared to the tensile experimental data of Zhu et al. (2014)
in Figures 6.10 — 6.12 for the PVC near the critical value of about 63% by volume of pigment. The
model predictions are for R,= 1.0 and Ry = 1.0. The different ratios of latex and starch results in
different values of 4 and B in equation (1) as well as a different strain to failure of the binder itself.
Both the 2D and 3D models predict the elastic modulus well considering the assumptions of the
model. The predicted elastic modulus is on the order of 20 times larger than the pure binder films,
given in Table 6.1. As the binder contains more latex, the elastic modulus decreases, mirroring the

pure binder behavior.

94



16
@ Zhu et al
12 F 3D
10 } —4A—2D
g
o 8
[V N]
6
4
2
0
20 40 60 80 100 120

Latex in binder system (%)

Figure 6.10 Elastic modulus of coating layers in tesion for PVC = 63% for various values of
the starch and latex content in the binder systen8D closer by 12% vs. 2D.

The maximum stress or the stress at failure is updegdicted by both the 2D and 3D models as
shown in Figure 6.11. The experimental data showsxeimum value at middle values of latex
content. It is possible that the decrease in maxirstress at low latex content could be caused by
issues related to mounting a brittle sample intotdnsile test, as discussed by 2Zhal. (2014).

The predictions of the strain at failure are shawrfigure 6.12. The 3D model picks up the
experimental results quite well, but the 2D pradit$ are quite low. The potential for a crack to
form in tension comes from a weak region in the eb@gstem. In 2D, the probability of a weak
area increases because of the fewer numbers aflpsidnd the lower connectivity to neighboring

particles when compared to 3D case.
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Figure 6.11 Predictions of the stress at failure fothe coating layers in tension for PVC =
63% for various levels of latex and starch in the imder system. 3D closer by 24% vs. 2D.
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Figure 6.12 Predictions of the stress at failure fothe coating layers in tension for PVC =
63% for various levels of latex and starch in the imder system. 3D closer by 77% vs. 2D.
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The 2D and 3D predicted flexural modulus, maximum stress, and strain at failure as well as the
experimental data of Hashemi-Najafi ef al. (2018) for various latex content of the binder system
are all shown in Figures 6.13 — 6.15. Both the 2D and 3D models predict the correct trends — as
the latex content decreases, the coatings become more brittle. The 2D model underpredicts the
elastic modulus and the maximum stress a significant amount. If the value of R, is increased, better
predictions are obtained. The 2D situation has fewer connections between particles than the 3D
case. Both models over predict the strain to failure, in Figure. 6.15; this result may be due to minor
imperfections in the coating layers in the experiments, causing the samples to fail earlier than they
would in theory. Considering the assumptions in the model and the simple interactions between

particles, these predictions are encouraging.

6
3D Simulations
-6-2D Simulations
5 4 e
-~-Najafi et al.
\
4 \

N
L

Flexural Modulus (GPa)
w

0 T T T T T
50 60 70 80 920 100 110
Latex Content of Binder (%)

Figure 6.13 Predicted and measured flexural modulus for the coating layer near PVC of 63%
for binder components of various levels of starch and latex. 3D closer by 59% vs. 2D.
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Figure 6.14 Maximum stress at failure for coating layers near PVC of 63% for various levels
of latex and starch in the binder composition. 3D closer by 38% vs. 2D.
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Figure 6.15 Predicted and measured strain at failure for coating layers near PVC of 63% for
various levels of latex and starch in the binder composition. 2D closer by 87% vs. 3D.
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As seen in Figures 6.10 — 6.15, the move from 2BRo(uniform spheres) offered significant
improvements in the model’s ability to approximtite experimental data. These 3D gains ranged
from 12% to 77% vs. the 2D conditions for all prdjees with both in-line tension and three-point
bending (save for the strain-at-failure with thpeent bending, where the 2D STF results were

much closer to the lab data).

Figures 6.16 — 6.18 show the comparison of the infod¢he two different PVC concentrations
of Najafi et al (2018). The binder bridge radius, for PVC of 78%690 percent of the particle
radius based on equation (2) above. This valuecestlihe modulus predictions and the maximum
stress predictions around that factor, but theirstta failure remains quite similar. The
experimental data at PVC of 78% is nearly 60% efdhta at 63%: this lower value is closer to
the model predictions than the 63% case. The giteds of the 40% latex level are shown, but

experimental value could not be obtained due tdtlide nature of the samples.
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Figure 6.16 Flexural modulus predictions and expemental results of Najafiet al. (2018).
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Figure 6.17 Maximum stress predictions for two diféerent PVC values and the predictions.

25

=&~data PVC = 62%

20 —6—data PVC =78%
Model 3D PVC = 62%

—A—Model 3D PVC = 78%

Strain at failure (%)

0 T . -+
40 50 60 70 80 90 100
Latex Content of Binder (%)

Figure 6.18 The strain at failure predictions and @ta for two PVC values.

In both tension and flexural deformation, the moaletier predicts the maximum stress or the

stress at failure with the exception of the 78% HW&ural case. This under prediction is hard to
100



explain, especially for the 3D case. The maximuesstbetween each particle pair summed across
the cross section would control this predictionséme way, the real system seems to make more
connections than predicted withR.0. In a system with a broad particle size distibn, as in

the experiments, it is possible that the particiés make more connections. The inclusion of a

broad particle size distribution is straight fordi@nd is the subject of our current work.

The influence of the Rfactor is demonstrated in Figures 6.19 — 6.21. Vdlee of R influenced
the elastic modulus predictions a small amount. él@x, the maximum stress and strain to failure
are strongly influenced. In fact, the maximum srissnow over predicted with,R= 1.5. This
result must come from the increased number of attiores between particles that can support a
higher strain value. Therefore, a better predictibthe maximum stress could be obtained with a

value of R around 1.25, but now the strain to failure is qwexdicted.
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Figure 6.19 Comparison of R value on model modulus predictions for the PVC 63%ase.
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Figure 6.20 Comparison of model predictions for maxnum stress for two values of R.
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Figure 6.21 Comparison of predictions of strain afailure for two values of R..

A number of assumptions are used in these simaktio simplify the model. This list includes

perfect adhesion between the binder and the pigntleatinitial packing of the particles being
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similar to that of the real case, and the starchlatex forming a uniform material (Chenal.in
2014 discuss this topic in detail). In additioregh results are for uniform spherical particledavhi

pigments in the experiments have a wide size didion.

The model is flexible for other situations. If arm@l downward load is applied to the top layer of
the particles, a calendering event would be modeléd load is applied vertically to a layer of
the particles (in a pull up zone), the tensile évming printing could be simulated. If multiple
coating layers are of interest, the parametergéoh layer could be specified. The inclusion of
particle inertia is natural to model high speedneseEven complex processing, such as slitting,

could be modeled.

6.5 Conclusions

A discrete element method based model is develtpgatedict the mechanical properties of

pigmented coating layers. The model parametertharenechanical properties of the binder and
the pigment volume concentration. The model giessonable predictions in both tensile and
flexural tests and does predict all of the corteshds. The 3D model improves the predictions
compared to the 2D model. The elastic modulusiieguell predicted in both tension and bending,

but the maximum stress is under predicted exceph&78% PVC case. The strain at failure tends
to be over predicted. Including a full particleesidistribution may improve predictions of real

systems.
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CHAPTER SEVEN
DISCRETE ELEMENT METHOD TO MODEL INLINE TENSION AND THREE-POINT
BENDING EVENTS FOR SINGLE LAYER THREE DIMENSION SYS TEMS WITH
BIMODAL AND FULL PARTICLE SIZE DISTRIBUTIONS OF SPH ERICAL
PARTICLES

7.1 Abstract

The mechanical properties of paper coating layersmaportant in converting operations such as
calendaring, printing and, folding. While a numlbérexperimental and theoretical studies have

advanced our knowledge of these systems, a gotidlpdevel understanding of issues like crack

at the fold are lacking.

In this paper, the three dimension version of tilserdte element method (DEM) model of Varney
et al. (2019) has been modified. The particles used énntlodel have been expanded from the
standard monodisperse packing of spherical pasttoléimodal distributions of spherical particles
and also to pseudo-full particle size distributiofispherical particles. In making this upgrade to
the model, the impact of particle size distributmnthe mechanical properties of the coating layer

could be studied.

Simulations were run for both in-line tension andthree-point bending of single layer systems.
As with past models, inputs to the 3D version idelyproperties of the pure binder film and the
binder concentration. The model predicts crack &irom as a function of these parameters and
can also calculate the modulus, the maximum stess,the strain-at-failure. The simulation
results were compared to the work of Atal. (2014) and of Hashemi-Najadt al. (2018). Good

predictions were obtained for both tensile and bendor a range of latex-starch ratios and at
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various pigment concentrations. In addition, thedelgredicted the correct trends and order of

magnitude relative to the experimental data.

7.2 Introduction

The mechanical properties of coatings are importiard number of applications. For coated
papers, the resistance to picking during the printiperation is critical as well as is the abifay

the sample to be converted or folded without cragkif the coating layer [Siret al. (2012) and
Barbieret al.(2012)]. The increased use of starch as a bisd#rinterest as the industry tries to
move to natural binders, but starch often increasasking problems as reported by Réatté and
Hornatowska (2010) and (dt al. (2015). If the coating layer is a homogenous ntesuch as

a specific polymer, the mechanical properties eflélyer can be estimated from the bulk properties
of that material. However, when the coating layeaicomposite of pigments and binder, the

mechanical properties are more difficult to predict

Finite element methods (FEM) can be used to siradlet deformation of coated paper by treating
the coating layer as a continuum [Barleémal. (2005) and Alanet al. (2009)]. The compressive
and tensile stresses during bending can be predithe elastic modulus and the Poisson ratio are
inputs to these models and would need to be mahfureach sample because they would depend
on the latex type, starch loading, and the paper fproperties. One drawback of FEM is that it

does not lead to particle scale insights of thelraeism of crack formation.

Some continuum type models have been explored lbelimg groups of particles connected by

polymeric bridges (Ratto, 2004). When the numbgasticles increase and the distance between
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particles is small, numerical analysis of this natare costly. While some insight into mechanical
properties of porous composites has been obtaindd avmesh-free continuum mechanics
simulation (Toivakkeet al. 2015), an understanding of micromechanical bemafipigmented

coating layers in various industrially relevantiations is lacking.

Discrete element methods (DEM) are based on thieledength scale and have potential to reveal
particle level mechanisms in the study of theséesiys. Toivakka and Bousfield (2001) proposed
a simple model to predict the dynamic mechanicaperties of a pigmented coating layer in
tension and compared the simulation results toraxeatal data. DEM has been used to study the
compression of paper coatings during the calengasivent (Azadiet al. 2008). Tensile and
bending predictions also have been reported prelyday Varney and Bousfield (2016a, 2016b,
2017, and 2018). Since most of these models aradimensional in nature except Azaatial.

(2008), a good comparison between 2D and 3D mdaeisot been reported.

While much of the past 3D DEM work has involved tis® of monodisperse spherical particles
[Ratto (2004), Varnewt al. (2019)], some of the prior work has used othepsband particle
size distributions. Azadst al. (2008a) used spherical particles similar in sizé distribution to
two GCCs (60 w/w% < 2 microns and 90 w/w% < 2 mn&oplus a hypothetical pigment with a
bimodal distribution. In a second study, Azatlal. (2008b) used commercially available software
to model spherical, needle-like, and platy partici€he latter two shapes were modeled as a
collection of spherical particles “attached” to leasther. Two particle size distributions were
modeled for each particle shape — monodispersepahdlisperse. Other investigators used

multiple size distributions for 2D DEM work [Alaet al. (2012)] and with the FEM [Alaret al.
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(2008) and Alam and Toivakka (2012)]. The later kvetudied spherical as well as platy particles

in their model.

In this current chapter, the authors propose tcaysarticle level model to understand the tensile
and bending behavior of a coating layer that costpigment, latex, and starch. Two different
particle size distributions for the spherical pigrtgewill be evaluated — bimodal and pseudo-full
distributions. The results are compared with expental data from Zhet al. (2014) and from
Najafi et al. (2018). Latex and starch mixtures were used aisidebbetween ground calcium
carbonate pigments in these experiments and thdévanaal properties of these starch-latex
mixtures are inputs into the model. The predictiohthree dimensional forms of the model are

compared along with the experimental values for pwgmnent volume concentrations (PVCs).

7.3 ModelDescription
When two pigments move relative to each other as in the example of in-line tension shown in
Figure 7.1, a restoring force is calculated to pull them together based on the local strain of the

polymer between them.

Figure 7.1 Idealized system of two spherical pigments connected together by a binder bridge.
The binders of interest here are mixtures of starch and latex. Ry is the binder bridge radius
and h is the height of the binder bridge.
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The force equation used here takes on the nonrlinea

F = A(L-€%) 7R’ (7.1)

whereF is the tensile force between particleS,andB are parameters that depend on the pure
binder propertiess is the local strain between particles, andsRhe radius of the binder bridge
between particles [Varney and Bousfield (2016a}je Toridge radius and the spacing of the
particles depends on the pigment volume fractio’QR which is defined as the ratio of total
volume of pigments to the volume of pigments pheswtolume of binder. The relationship between
the PVC and the binder bridge radius was discusg&@rney and Bousfield (2016a). In this work,
the binder bridge radius was found to fit the egumbelow, when the PVC is above the critical

value.

025

R = (31-31PVQ (7.2)

Note that the bridge radius goes to zero as PVG goé.0, which is a system that has no binder.
Below the critical PVC, the binder bridge radiusgual to the particle radius (which is set to a
dimensionless value of 1.0). As such, the partelgaration would increase as the PVC decreases.

This value represents a system that is full of eireerywhere.

When the local strain between particles is largantthe strain-to-failure of the binder, the binder

is assumed to fail cohesively and the force isseero. The non-linear form for the force equation

(7.1) is selected because it resembles the behaivilbe tensile tests of the binder films as regbrt
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by Prallet al. (2000) and Ramaet al. (1998). The model can also account for adhesiarégby

putting a strain or stress criteria in the calaalat

The mechanical properties of the binder films argsible to measure from tensile tests. £hal
(2014) and Najafet al. (2018) report the mechanical properties of mixdusé starch and latex.
The maximum stress at failure is the parameter éguation (7.1). The elastic modulus divided
by A is the parameter B in equation (7.1) becahsdriitial slope of this equation is the product
of Aand B. Table 7.1 shows the mechanical progeif these films produced from mixtures of
latex and starch. As is well known, as starch deddo these systems, the elastic modulus of the

binder increases but the strain at failure decsease

Table 7.1 Mechanical properties of particle free fms composed of mixtures of starch and
latex.

Weight

Investigator Fraction A (MPa) B E(MPa) | STF (%)
Latex

(Parts)
Najafi et al. 100 1.5 2 3 200
Najafi et al. 80 4.9 15 73.5 80
Najafi et al. 60 4.8 35 168 22
Najafi et al. 40 11.0 60 660 5
Zhuetal. 100 3.75 3.2 12 355
Zhuetal. 77 9.4 24 221 200
Zhuetal. 58 15.5 29 448 41
Zhuetal. 38 32.0 36 1156 13

If particles move closer to each other comparetiéanitial gap (compression), a repulsive force

is applied to keep the particles from overlappifigs repulsive force is linear and depends on the
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compressive strain as F =,Gvhere C is some constant and the strain is thergugap between
particles divided by the initial gap. The value®imust be large enough to prevent overlapping

but not to impact the final results.

Another parameter included in the model is theatlise between two particles within which they
can still be considered neighbors and, thus, censtto have a connection. Some have termed
this concept “nearest neighbors”. At the Criticadr®ent Volume Concentration (CPVC), every
particle should be close to several others. Howetvisrnot clear at what distance particles should
be considered connected. In Figure 7.2, if the lystveen the particle of interest and the other
particles, is less than one radius, the particldésbe considered neighbors and, therefore, be

connected. If they are too far away, then no conmeés assumed.

Figure 7.2 Near neighbor criteria with R\=1.0. Particles closer than the criteria are assued
to be connected. As Rincreases, more particles are connected together.
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7.4 Particle Size Distributions

The main difference between this current paperthagrevious one by these authors [Varaey
al. (2019)] was the move beyond a monodisperse paakirngpherical particles to two other
distributions of the same particle shape. The &rst involved bimodal distributions of large and
small spheres. The amounts, or levels, of eachvaze based on the work of Brouwers (2011).
This paper showed that the void fraction of bimadaltures was a function of the size rati¢u

= du/ds, whered, is the diameter of the large particles algis the diameter of the small particles)
and of the volume fraction of the large particte(see Figure 7.3). To cover a range of void
fractions, three size ratios (5:1, 3.33:1, and1).@ere used for each of three volume fractions of

the large particles (0.80, 0.65, and 0.50).

In addition to these nine bimodal distributionsp twll distributions that represented a coarse GCC
(60 w/w% < 2 microns) and a narrow particle size@®3 w/w% < 2 microns) were also
evaluated [they were the GCC types used byettal. (2014) and by Mohammaat al. (2017 and
2018 respectively]. To generate data for the parfoatine, particle size distribution data for thes

two commercially available GCCs from Omya, Inc. wasained and discretized.

The packing routine of Toivakkat al (2019) was used to generate the (X, y, z) coatdsfor the
nine bimodal cases, the two GCCs, and the monadispase. As with all prior simulations, these
coordinate points were inputs to the model alortf Wie mechanical properties of the pure binder

films.
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Figure 7.3 Void fraction of bimodal mixes as a function of size ratio and of volume fraction
of large constituent [from Brouwers (2011)].

7.5 3D Packings

The 3D packings initially were generated with a voxel-based digital packing tool detailed in
Byholm et al. (2009). Subsequently, the porosity of the packings was adjusted to a desired level
by using a particle packing approach mimicking Brownian motion. In this case, an energy function
calculated from the particle positions and particle overlaps was minimized towards the desired

porosity utilizing a simulated annealing algorithm [Corana et al. (1987)].

Pictures of the nine bimodal distributions and of the two full distributions (representing the two
GCCs) are shown in the 11 figures below. The bimodal figures clearly show the changing ratios of
the small to large particles and the changing sizes of the small particles as well (the large particles

always had a diameter of 1.0 in dimensionless units).
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Figure 7.4 Representation of bimodal distribution of spherical particles with 50% large
particles and small particle radius of 0.2 (large diameter is always 1.0).

Figure 7.5 Representation of bimodal distribution of spherical particles with 50% large
particles and small particle radius of 0.3 (large diameter is always 1.0).
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Figure 7.6 Representation of bimodal distribution of spherical particles with 50% large
particles and small particle radius of 0.4 (large diameter is always 1.0).

Figure 7.7 Representation of bimodal distribution of spherical particles with 65% large
particles and small particle radius of 0.2 (large diameter is always 1.0).
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Figure 7.8 Representation of bimodal distribution of spherical particles with 65% large
particles and small particle radius of 0.3 (large diameter is always 1.0).
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Figure 7.9 Representation of bimodal distribution of spherical particles with 65% large
particles and small particle radius of 0.4 (large diameter is always 1.0).

Figure 7.10 Representation of bimodal distribution of spherical particles with 80% large
particles and small particle radius of 0.2 (large diameter is always 1.0).

Figure 7.11 Representation of bimodal distribution of spherical particles with 80% large
particles and small particle radius of 0.3 (large diameter is always 1.0).
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Figure 7.12 Representation of bimodal distribution of spherical particles with 80% large
particles and small particle radius of 0.4 (large diameter is always 1.0).

Figure 7.13 Representation of full distribution of spherical particles approximating a narrow
particle size GCC (93 w/w% < 2.0 microns).

Figure 7.14 Representation of full distribution of spherical particles approximating a broad
particle size GCC (60 w/w% < 2.0 microns).

7.6 Modelling of In-line Tension and of Three-Point Bending

To simulate an in-line tensile event, particles in the grip region on the right of Figure 7.15 are set
to a velocity of one dimensionless unit value to the right. Particles in the left grip region are
assigned to no velocity (the pull up zone does not exist with in-line tension). This scenario causes
the particles on the right to pull on other particles in the middle of the structure and transmit forces

throughout the structure. The results presented here are for slow motions relative to the inertia of
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the particles. Therefore, the forces are near equilibrium during the deformation event and the rate

of deformation is not important.

Grip zone up zone Grip zone

Figure 7.15 3D situation for uniform spheres packedh a 10x10x100 cell. Particles are
packed to a PVC of 64%.

To stabilize the simulation when a crack develops, it was found helpful to add a small damping
factor, where a particle moving at some velocity will experience a force in the opposite direction.
The equation is F' = —-DV, where D is a damp factor and V' is the velocity vector. The value of the
damping factor should be as small as to not influence the predictions of the modulus or of the

ultimate stress.

To simulate bending tests, particles in the “push up” zone are assigned an upward velocity (the
particles are pushed upwards from below this zone). The sizes of the two holding (grip) zones and
of the push up zone have minimal influence on the results as long as the distance from the zones
is large compared to the zones themselves. Spheres on the two sides (the grip zones) of the
simulation are not allowed to move in the vertical direction, but they are allowed to slide in the

horizontal direction or deflect downward.
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In both cases (in-line tension and three-point beg)das some particles are forced to move from
their equilibrium position, a vector force on neighing particles is calculated using either
equation (1) or the compression equation (Fe9.(’he net force on every particle is calculated
based on its position and the position of all & treighbors. This net force is used to update
particle velocities and positions with a numericaegration using a predictor-corrector method.
In the results presented in this paper, theionat slow and the inertia terms are small; time or
rates do not influence the results, but these &ffae straight forward to include in the future.

These time integrations can be expressed as

a=dV/dt=F/Xm (73)
dP /dt =V

wherea is accelerationV is velocity,F is force,xm is a parameter that represents the mass of the
particle, andP is position. Equation (7.3) is a vector equatiecduse it has components in each

dimension.

The sum of the forces on the particles that molaedo the force a mechanical tester would
record; these forces balance the sum of the facedke particles that are not allowed to move.
In tension, the stress is the sum of the forcetheryrip particles divided by the cross sectional

area. The flexural stress and strain can be caésliEs

3PL
o, = 7.4
" 2bd? (7.4)
6Dd
. = T (7.5)
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whereP is the sum of the forces on the grip particleslierload force)L is the distance between
grips, D is the displacement of the upward moving partielethe center of the samplejs the
width of the sample andlis the thickness of the sample. The goal is tdipt¢he bending behavior

and the crack propagation of these systems.

The deformation and local forces in the 3D caseshosvn in Figure 7.16 for a typical three point
bending case. In the region that is forced upwaregnsile force is generated. Also, near the two
grip regions where particles are only allowed tp 8l the horizontal direction, a tensile force is

generated between particles.

Figure 7.16 Bending deformation in 3D mode, showintie connections between patrticles for
a typical case for monodisperse spheres.

7.7 Results — In-line Tension

The predictions of the models are compared toriHme tensile experimental data of Zaual.
(2014) in Figures 7.17 — 7.19 for the PVC neardtigcal value of 63% by volume of pigment
and for the 77% latex/23% starch binder package/g85). The model was run using the nine
different bimodal distributions, the uniform sphereand the pseudo-Hydrocarb 60 (H60)

distribution (this GCC was the pigment used in Zhekperiments). The values for the input
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parameters A and B were taken from the 77L/23S fimeer data. Other important model

parameters were values of R1.0 and = 1.0.

The plot of elastic modulus is shown in Figure 77Tife modulus is plotted vs. the volume fraction
of larger particles with three lines representihg small particle radii (0.2, 0.3, and 0.4). In
addition, datapoints for the Zhu data and for theyolo-H60 are shown as horizontal lines across
the range of X-values. Lastly, the mono-disperse ¢a shown as a single data point at the 100%
large particle point on the X-axis. The three bimlolines are assumed to converge on this

monodisperse point.

The graph shows the pseudo-H60 datapoint to be @¥lyhigher than the value from Zhu’'s
experiments of 4.7 GPa. The bimodal distributiothva small particle radius Rof 0.4 comes
the closest to matching this value, but it stiltesds the Zhu data like the rest of the bimodal
simulations. One trend to note is the increase oudutus as the radius of the small particle
decreases, which occurs for each volume fractidargé particles (save for one case). The reason
for this trend is that the number of particles amehce, the “tightness” or density of the packing
increases as the small particle radii decreaséh Wire particles filling the voids between the
larger ones, fewer and smaller voids are resultimgich leads to more connections. As a
consequence, the strength will increase with a@lepacking. In addition, the general trend in
modulus values as the percent volume of largeigbestincreases is downward, which results
from the same argument that there are fewer smpdldicles and the bimodal distribution is

trending towards being more of a monodisperse raditierestingly enough, the pseudo-H60 data
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point is lower than the rest, which might imply a fairly open packing that probably is due to a large

average particle size (about 1.4 microns).
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Figure 7.17 Elastic modulus of coating layer for in-line tension at PVC = 63% and with the
77L/23S binder system. H60 closest to Zhu — off by only 6.4%.

In contrast to the modulus, the maximum stress plot below (Figure 7.18) shows the model results
to be significantly below the Zhu value of about 27.0 MPa. The monodisperse and pseudo-H60
data points are below all three bimodal lines, which also all appear to trend upwards (in contrast
to the modulus bimodal lines). In addition, the data from Zhu and for the pseudo-H60 case are
quite different. The reasons for the poor performance of the model to approximate the Zhu

experimental data for this property are not clear at this time.
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Figure 7.18 Maximum stress of coating layer for in-line tension at PVC = 63% and with the
77L/23S binder system. H60 worse of all (by 71%) and Rs = 0.2 low by 50%.

The strain-at-failure simulation results shown in Figure 7.19 indicate the model to underpredict
the Zhu data, albeit not to the extent as with the maximum stress. The same trends followed in both

cases, with the pseudo-H60 being the lowest for the STF results as well.
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Figure 7.19 Strain-at-failure of coating layer for in-line tension at PVC of 63% and with the
77L/23S binder system. H60 worst of all (by 80%) and Rs = 0.2 low by 58%.

Figures 7.20 — 7.22 show the comparison of Zhu’s in-line tension data with the model at two PVCs
(and, four different latex/starch ratios in each case). While the experimental work was done at
several pigment volume concentrations, the values of 63 (which is the critical PVC) and 78 were
chosen for this exercise. The modulus plot in Figure 7.20 shows the model to approximate the
experimental data quite well, especially at higher latex levels in the binder system. At the lowest
level of latex (38%), the model overpredicts the modulus. In addition, the values at a PVC of 78
are lower than the corresponding values at a PVC of 62. This results makes sense as there is less
binder in the matrix (relative to the amount of pigment) above the CPVC, which should lead to a
drop in strength. And, as has been seen in the past, the modulus decreased as the level of latex in

the binder system increased (i.e., the amount of starch was reduced).
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Figure 7.20 Elastic modulus comparison between Zhand the model at two PVCs (in-line
tension).

The maximum stress plot in Figure 7.21 shows some of the same general trends save for the model
underpredicting the work of Zhu instead. The higher 78 PVC results for both the model and the
experimental work were lower than the 62 PVC conditions and the overall curves decreased

directly with the starch level.
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Figure 7.21 Maximum stress comparison between Zhuna model at two PVCs (in-line

tension).

The strain-at-failure plot in Figure 7.22 shows the same trends as have been seen before. The model

and the experimental data are in good agreement at low levels of latex in the binder package but

start to diverge as the latex percentage increases (especially when the binder is 100% latex). The

model underpredicts the Zhu data as well.
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Figure 7.22 Strain-at-failure comparison between Zh and model at two PVCs (in-line
tension).

7.8 Results — Three-Point Bending

The predictions of the model are compared to the three-point experimental data of Najafi et al.
(2018) in Figures 7.23 — 7.25 for the PVC near the critical value or around 63% by volume of
pigment and for the 80% latex/20% starch binder package (80L/20S). The same particle size
distributions were run in this comparison as was done with Zhu but the pseudo-H60 was replaced
with a distribution which approximated Covercarb HP (which was the GCC used by Najafi ef al.).
In addition, the model input parameters A and B were taken from the 80L/20S pure binder data.
And, as before the values for R, and for Ry, were 1.0 in each case. In addition, these sets of figures

are set up in the same manner as Figures 7.17 — 7.19 in terms of how the data is plotted.

The flexural modulus shown in Figure 7.23 shows the same general trends as did the Zhu data as

far as the bimodal distributions are concerned. While the simulation results all over-predict the
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Najafi modulus value of 3.7 GPa, the bimodal distribution with 80% large particles by volume and
a small particle radius of 0.4 comes the closest to Zhu. The pseudo-CCHP line also is significantly

higher than the Zhu data by a factor of over two.
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Figure 7.23 Predicted and measured flexural modulus for the coating layer near PVC of 63%
for binder components of various levels of starch and latex (three-point bending). Mono
(uniform spheres) closest to Najafi (off by 41%) along with one Rs = 0.4 condition.

As for the maximum stress seen in Figure 7.24, the results of Najafi ef al. and of the model using
the pseudo-CCHP particle size distribution are fairly close. The bimodal distribution with a small
particle radius of 0.2 also is a good match to these two horizontal data lines. The monodisperse
data point (to which the three bimodal curves converge) is the furthest from the experimental data

line of Najafi, which could be a function of the impact of packing on strength.
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Figure 7.24 Predicted and measured flexural maximum stress for the coating layer near PVC
of 63% for binder components of various levels of starch and latex (three-point bending).
CCHP only 2% above Najafi and Rs = 0.2 only off by 3%.

The strain-at-failure of Figure 7.25 shows good agreement between the Najafi data and the CCHP
prediction. The three bimodal lines also are reasonably close to the experimental results. As with
the maximum stress, the monodisperse data point is significantly different from the other results,

be they from the experiments or from the model.
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Figure 7.25 Predicted and measured strain at failure for coating layers near PVC of 63% for
various levels of latex and starch in the binder composition (three-point bending). Rs = 0.2
spot on vs. Najafi while CCHP very close as well (0.5 vs. 0.6).

Figures 7.26 — 7.28 show the comparison of the inod¢he two different PVC concentrations
(63 and 78) of Najatet al (2018). As with the Zhu comparisons in FiguréX®# 7.22, the binder
bridge radius, for a PVC of 78%, is 90 percenthef particle radius based on equation (2) above.
This value reduces the modulus predictions andide@mum stress predictions around that factor,

but the strain to failure remains quite similar.

The flexural modulus results in Figure 7.26 ovedpes the experimental data for both PVCs.
This result is in contrast to the in-line tensiacmmparison with Zhu's data, which was more
favorable. Regardless, both sets of data showatie $rends in that the higher PVC condition has
a lower modulus value and the lines trend downwavitls increasing latex percentage in the

binder system.
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Figure 7.26 Flexural modulus predictions and expemental results of Najafi at two PVCs
(three-point bending).

Figure 7.27 shows the maximum stress and the rabbociose agreement between the model and
the Najafi data at 62 PVC. For some reason, tHeVA8 experimental data is significantly different

from the other lines.
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Figure 7.27 Maximum stress predictions for two diféerent PVC values and the predictions
(three-point bending).

The strain-at-failure in Figure 7.28 indicates vgopd agreement between the Najafi data and the

model results. This same scenario was seen inéRifor the in-line tension PVC comparison.
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Figure 7.28 The strain at failure predictions and @ta for two PVC values (three-point
bending).

A number of assumptions are used in these simaktio simplify the model. This list includes
perfect adhesion between the binder and the pigntleatinitial packing of the particles being
similar to that of the real case, and the starchlatex forming a uniform material (Chenal.in

2014 discuss this topic in detail). In additiong tHistributions modelled in this paper only

approximate the particle size distributions of élstual pigments used in the experiments.

7.9 Impact of Packing Density on Mechanical Propents

The manner in which the particles were packed ithéothree-dimensional matrix was described
earlier in brief fashion. This technique producextiing densities ranging from about 0.60 to
almost 0.71, with a resulting minimum gap betweartiples of about 0.005. The impact of the
tightness of this initial packing on the final maaircal properties of the simulation are shown in

Figures 7.29 — 7.31.
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Figure 7.29 shows the modulus for both in-line i@m&nd for three-point bending. The data for

both cases shows a slight upward trend in modutugh@ packing density increases. As the

particles are packed more tightly, the minimum dapreases, which causes the initial strain to

increase, resulting in an increase in the modulus.
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Figure 7.29 Modulus vs. packing density (in-line tesion and three-point bending).

The maximums stress seen in Figure 7.30 followsdmee trend. The two curves show an increase

in values as the packing density increases (i®.tha minimum gap between the particles

decreases). The same reasoning for the trend latimbdulus explains this trend as well.
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Figure 7.30 Maximum stress vs. packing density (iline tension and three-point bending).

Figure 7.31 illustrates the impact on strain-alufai is a bit varied as the packing density incesas
The STF for the in-line tension is fairly flat ihe plot, but the scale skews the appearance of the
trend line, as it actually increases directly withcking density. The STF for the three-point
bending shows the data to follow a downward trertdch is contrary to expectations. The reasons

for this result are not clear at this time.
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Figure 7.31 Strain-at-failure vs. packing densityi@-line tension and three-point bending).

7.10 Conclusions

A discrete element method model is developed tdipréhe mechanical properties of pigmented
coating layers. The model parameters are the meaigumoperties of the binder and the pigment
volume concentration. The model gives reasonal@digtions in both tensile and flexural tests
and does predict all of the correct trends. Expamthie model from its traditional use of uniform
spherical particles to bimodal and full particleesidistributions of the same particle shape
improves the predictions. For both in-line tensard for bending; the model overpredicts the
modulus and underpredicts the maximum stressr{gtinsion in particular). The results are not
consistent between the two deformations types wadthard to strain-at-failure. Lastly, the
comparisons between the model and the two setspefrienental data show better agreement for

three-point bending than for in-line tension.
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One possible explanation for the discrepancies éatvthe model and the experimental data is the
packing routines used to “assemble” the pigmentrimmalhey only involve packing of the
pigments and do not take the binder in to accautdgrims of its impact on the packing density and
the initial minimum gap. As a consequence, whitelimder is assumed to be between and around
each particle (at or below the CPVC), the real daituation might be quite different. Some
particles might not have much if any binder betweearound them (especially at PVCs above
the critical value), which can impact the coatingeisgth and the cracking propensity. Thus,
somehow incorporating the binder in to the inipalcking could improve the predictions even

further.
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CHAPTER EIGHT

SUMMARY AND FUTURE WORK

8.1 Summary

The goal of this thesis was to use the discretm@t method (DEM) to model paper coating

deformation events to improve the fundamental wstdading of the responses resulting from
these events. The DEM had been used to simulatotemnd compression but it had never
modelled bending before. The thesis was able tavghat this method could model all three of

these events and provide results comparable tariexpatal data. As for the type of tension, the

model could handle in-line as well as out-of-plaindes, which was novel as well. Other firsts
with this model was its ability to simulate bindgistems comprised of latex and starch in addition
to latex-only binders. Plus, the model simulatedéhpoint bending for a two-layer coating, which

had not been done in any prior work.

All of the modeling was done using particles reprgésd by spheres. Much of the early work was
done in two-dimensions with a uniform distributiohspherical particles. As the model evolved,
three dimensional arrays of spheres were modefexlly, the particle size distribution being

modelled was expanded to both nine bimodal andftlalistributions. In all of these cases, the

various deformation modes were simulated and coeapi@a experimental data.

An important point to remember when consideringghecess of the model in approximating the
experimental data is the standard deviation ofdhalata itself. While Zhet al. (2014) does not

provide this information for the pigmented filmbetstandard deviations of the pure binder films
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ranged from a low of about 3% to over 33% of thecdllite values of the three main mechanical
properties across the eight binder systems evaluathis thesis. As for Najaét al. (2018), he

provided the standard deviations of the pigmeniletsf These values fluctuated from less than
1% to over 31% for modulus, maximum stress, and &dress four binder systems. Thus, the
model predictions should be even closer to the xaatal results when taking the error of the

lab data in to account.

The model has some features which make it uniquapaoced to other approaches. First,
mechanical properties of the pure binder filmsiapeits to the model (in addition to the particle
positions). This approach is somewhat novel. Sdgptide model is based on a clear set of

constitutive equations, which makes it simpler tbh#rer types of models.

These mechanical properties are just a few ofrthatiparameters evaluated during the study. As
an example, the parametes &d the move to a full particle size distributware assessed but
provided inconsistent results. While a slightlyfeliént range of values could be considered for the
many input parameters, the results probably woelthle same in terms of the predictive ability
of the model. As a consequence, the list of in@utables for adjustment most likely has been

exhausted.

While the model was not perfect, it could predioe tcorrect trends with the same order of

magnitude as the experimental data. Modificatioaslento the model to improve the predictions

were based on physical science and not on matheahatljustments to help the simulation results

137



better match the experimental data. As such, the@eimight be considered conceptual in nature

as its goal, as stated previously, was to improveldmental understanding.

The model also has a great deal of versatility.[@hican simulate a variety of deformation events
for multilayer coatings comprised of various pdetisize distributions, other possibilities exist as
well. It should be capable of simulating a cantlletype of bending event, calendering as done in
paper making, and slitting among other scenarités Work could be done as part of the next

iteration of improvements.

8.2 Future Work

Future work to improve the model should focus ores& opportunities. Optimizing it for specific
binder systems (e.g., the adhesive force factapamding it to model deformation events not
included in this thesis, and including the basespap another layer are some ideas. Another option
is to include the binder in the packing routineew the particles are packed. Since this routine
only involves the particles, the binder and its acipon the packing density and on the gap between
particles is not taken in to account. Currentlye thodel assumes that a binder bridge exists
between each particle, but this situation wouldlbyethe case above the critical pigment volume
concentration (CPVC). This modification could betmmental to improving the comparison
between the model and the lab data. In a waysimgar to considering starch as a pigment, which
this paper as well as past researchers have igagsti. Lastly, modifying the packing routine so

that the gap between the particles is not the sdraeld be considered.
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In addition, other ideas to consider include thiéofaing: the use of non-spherical particles, the
consideration of a substrate as another layer, sSomecluding dispersant on the particle surfaces
as occurs with commercial pigments, and the relaxaif the assumption that all failure takes
place cohesively within the binder. The first ideauld involve attaching small spheres together
to form a particle which might mimic a platy clawarficle for example. And the notion of

considering failure not only to be cohesive bubashesive (at the binder/particle interface) is

addressed in the appendix with the use of an adhésice fraction factor.
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APPENDIX

CONSIDERATION OF ADHESIVE FAILURE

A. 1 Adhesive Failure Concept

One of the many ideas that were evaluated wasath@rof how the binder fails during the various
deformation events (tension or bending). Throughloistthesis, the model assumes that failure is
cohesive in nature, meaning that it occurs withshinder bridge itself (when the strain-at-failure
calculated by the model exceeds the value for tine pinder films). However, failure most likely
also occurs at the interface between the bindert@@digment particles — noted as adhesive

failure.

To evaluate this idea, a parameter termed AdhéSvee Factor (AFF) was incorporated in to the
model. The maximum stress (notedaasy, Which is the A value) would be multiplied by this
factor. If 6 < A * AFF, then the traditional non-linear stressdst relationship discussed earlier in
this thesis would apply [i.es, = A(1 — €59)]. Otherwise, the stress would be set to zeramihsré
would be assumed to have occurred. This compawssdone using the model in 2D mode with

uniform spherical particles.

The data to which this concept was compared was Najafi'set al. (2016 and 2017) three-point
bending experiments. His results for both the G2the 78 PVC conditions were compared to the
model using the following values for AFF: 0.25, @.®.75, and 1.00. A value of 1.0 for AFF
represents no adhesive failure, which means tteataifure is cohesive in nature. Figures A.1 —

A.3 below show the comparisons.
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Figure A.1 Flexural modulus comparison between data of Najafi and the model for various
AFF values (three-point bending).
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Figure A.2 Maximum stress comparison between data of Najafi and the model for various
AFF values (three-point bending).
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Figure A.3 Strain-at-failure comparison between data of Najafi and the model for various
AFF values (three-point bending).

These plots show the simulation results come closer to the experimental data when the AFF is used
and starch is part of the binder package. For the flexural modulus, the AFF value that comes closest
to approximating the data of Najafi is about 0.25. The trends are similar for the maximum stress
as values of 0.25 to 0.50 for AFF appear to bring the model results closest to the experimental data.
Lastly, the strain-at-failure values are all fairly close, with the AFF of 0.5 appearing to provide the

best fit in this case.

Most likely, when starch is present, adhesive failure between the binder bridge and the particles

seems to explain the results better than other mechanisms. Each starch level might have a different

AFF, but a value of 0.5 seems to work best in these cases.
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