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Black soldier flies (BSF), Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) 

consume decaying organic waste as larvae (BSFL) and can be used for recycling a variety of 

biogenic wastes. BSFL can also be processed into value-added animal feeds, including those 

used in aquaculture. An overarching goal of this project was to obtain additional insights into 

BSF biology to improve their rearing and handling in future mass-production facilities serving 

Maine aquaculture.  

We tested BSFL growth in the laboratory on seven seafood wastes from Maine fish 

processing facilities. Substrates potentially suitable for BSFL rearing included finfish trimmings, 

wet sea cucumber, dry quahog, and sea urchin. Crab meal produced large larvae in short time, 

but larval mortality was high. There were dramatic differences in seemingly similar materials, 

such as wet and dry sea cucumber or wet and dry quahog, highlighting the importance of 

thorough testing of specific substrates instead of extrapolating from published data.   



 
 

We investigated antixenotic and antibiotic effects of finfish substrate inhabited by BSFL, 

which are important for hygiene in mass-rearing facilities. Green blow flies, Lucilia sericata 

(Meigen) (Diptera: Calliphoridae), were reluctant to colonize substrates previously inhabited by 

BSFL even after the latter were sifted out. When released into BSFL-containing substrates, the 

majority of L. sericata larvae emigrated. There was significantly lower enzymatic activity as 

measured by fluorescein diacetate in substrate inhabited by BSFL than in the control. Subsequent 

plating and enumeration of colony forming units attributed that to decline in bacterial abundance. 

Fungal abundance were not significantly different from the control when BSFL were present but 

increased after their removal. BSFL also altered the taxonomic composition of microbial 

communities in finfish substrate, as estimated by a diversity assay using bTEFAP® illumina 

sequencing with 20k reads of fungal ITS and 16s primers.  

Migration of BSF prepupae is commonly exploited for self-harvesting biomass in 

commercial rearing facilities. We tested if harvesting larvae prior to the prepupal stage can 

produce larger larvae than those harvested as prepupae. Our results indicated that larvae were at 

their highest weight immediately before transition into prepupae. Therefore, the late larval instar 

before reaching prepupae can be considered as the optimal harvest period for larval biomass.  

BSF are normally found in subtropical and warm temperate regions. Potentially, cold 

temperatures can also be used to manipulate the rate of BSFL development, which may be 

needed for obtaining certain life stages in mass-production facilities. We determined that BSFL 

were highly susceptible to freezing. Chilling at above-freezing temperature also had a significant 

negative effect. However, it was much smaller, especially for fifth instars. We do not anticipate 

that BSF will become an invasive species in Maine. Low temperatures may be used to 

manipulate development of the late instars, but at a cost of higher mortality.
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CHAPTER 1 

1. THE USE OF BLACK SOLDIER FLY LARVAE AS A BENEFICIAL RECYCLER OF 

ORGANIC WASTES 

1.1 Waste management challenge 

Sustainable waste management is one of the most important issues facing highly 

industrialized modern-day societies. Americans generated approximately 258 million tons of 

post-consumer municipal solid waste (MSW) in 2014 (US EPA 2016). Current efforts to 

improve environmental impact of waste management practices involve reduction, reuse, 

recycling and composting. However, landfilling and incineration are still the most common 

method for final disposal of solid wastes (US EPA 2016). The increasing concerns about 

sustainability of burying waste in landfills have caused a shift in public opinion towards 

preference for alternative methods. There are programs to reduce MSW, such as recycling and 

the reuse of resources, as well as organic composting. However, it is not simple, especially when 

animal protein wastes are used (Arvanitoyannis and Kassaveti 2008). 

Additionally, large amounts of pre-consumer organic waste originate from over 

production, shelf life expiration, trim waste, and, spoilage. Each year, between 56 and 72 million 

tons of food are not consumed throughout food supply chain in the United States (Gunders 

2017). Food can be lost on farms, during distribution, storage, in retail stores, food service 

operations, and in households. It has been estimated that as much as 25 percent of the world’s 

food is lost post-harvest due to microbial spoilage, while 40 percent of America’s food is wasted 

due to inefficient production and careless consumer habits (Nellemann et al. 2009, Gunders 

2017). Pre-consumer waste is generated in restaurants, during food processing, or manufacturing, 

which includes everything from canning, freezing, drying, and precutting fruits and vegetables to 
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making cheese, soup, or frozen meals.  It is estimated that 0.9 million tons of food waste is 

generated at this stage, not including food waste going to animal feed, compost, or otherwise 

recycled (Gunders 2017).  

Manure waste produced by livestock is another challenge to be faced within the food 

processing supply chain. More than 335 million tons of dry matter waste is produced annually on 

farms in the United States, representing almost a third of the total municipal and industrial waste 

produced every year (USDA 2005). Depending on their type and size, farms where livestock are 

kept and raised in confined space can produce between 2,800 tons and 1.6 million tons of manure 

annually (GAO 2008). It is estimated that in the United States, livestock produce between three 

and twenty times more manure than people, amounting to as much as 1.2 – 1.37 billion tons of 

waste (US EPA 2005). The environmental protection agency does not require that livestock 

waste be treated like human waste through sewage treatment plants. This is because it can be 

utilized as fertilizers in the farming industry. However, excessive amounts of manure may 

become unmanageable and cause environmental and health risks (Hribar 2010).  

In addition to livestock waste, approximately 1.04 million tons of marine waste is 

generated each year in the United States and 1.5×105 tons are lost in distribution and retail, 

including 2.6×105 tons of bycatch that are lost when commercial fishers catch the wrong species 

of fish and then discard them back into the ocean (Love et al. 2015). A considerable amount of 

waste generated while processing farmed fish are discarded each year, often by being disposed of 

in the ocean (Ramakrishnan 2013). In 2004, a seafood processing waste survey was conducted to 

estimate the volume of shellfish and finfish waste that may require ocean disposal in the UK in 

the future. It was estimated that there is a potential for 45,238 tons per year of shellfish waste and 

26,214 tons per year of finfish waste to be disposed of at sea (Large 2004, Mazik et al. 2005). 
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The breaking down of marine waste in the oceans cause aerobic bacteria to reduce the amount of 

dissolved oxygen in the water, as well as to increase nitrogen, phosphorus, and ammonia levels. 

It also results in unstable pH levels that may be unsuitable for fish habitats. Limited oxygen will 

cause anaerobic conditions that can lead to the release of greenhouse gases such as carbon 

dioxide and methane (Tchoukanova et al. 2012). The International Labor Organization stated that 

the trend of processing more fish products within the supply chain has created an increase of fish 

offal and other by-products, that may constitute up to 70 percent of fish and shellfish after 

industrial processing that is discarded.  The remaining 30 percent of by-products are utilized for 

food products for human consumption such as fish sausages, cakes, gelatin and sauces (Food and 

Agriculture Organization of the United Nations (FAO) 2016). Some are used in feeds formulated 

for aquaculture, livestock, and pet food. In the last two decades, the use of fish by-products has 

gained attention because they can represent a significant additional source of nutrition. However, 

there is still concern due to low consumer acceptance and sanitary regulation restrictions for their 

use (FAO 2004).  

1.2. The importance of aquaculture 

The National Oceanic and Atmospheric Administration (NOAA) reported that U.S. 

aquatic farmers produced 2,800 tons of seafood in 2015 valued at $1.39 billion (Fisheries of the 

United States (FUS) 2015). Worldwide, aquaculture produces 45% of all seafood consumed, and 

the production is expected to rise to 75% in the next 20 years (Papadoyianis 2007). Wild caught 

fish used for fish meal will not be able to sustain aquaculture industries, and its continuous 

harvest could lead to detrimental ecological consequences. The Food and Agriculture 

Organization of the United Nations (2016) estimated that 31.4% of assessed fish stocks were 

harvested at a biologically unsustainable level, resulting in a serious global problem of 
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overfishing. Total world fishery production (capture plus aquaculture) is projected to expand 

over the next eight years, reaching 196 million tons in 2025. The share of aquaculture in total 

fishery production will grow from ca. 44% in 2013–15 to over 50% in 2021. In 2025, this share 

will reach 52% (Food and Agriculture Organization of the United Nations (FAO) 2016). These 

projections indicate that aquaculture will be the main source of fish production, while the relative 

importance of harvesting the already depleted wild stocks will progressively decline. 

1.3. Susceptibility of aquafeed production 

Currently, 25% of the global fish production is used to produce fish meal and fish oil, 

even though the world fish stocks are in decline (Papadoyianis 2007). Fishmeal and fish oil are 

highly valued products for human consumption and are an important source of revenue for some 

countries (Food and Agriculture Organization of the United Nations (FAO) 2016). They are 

considered to be the most nutritious and digestible components for farmed fish feeds (Food and 

Agriculture Organization of the United Nations (FAO) 2016). As such, they are essential for 

supporting continuously increasing aquaculture production (Food and Agriculture Organization 

of the United Nations (FAO) 2016). However, both are largely made from wild-caught fish. With 

the wild fish stocks already declining due to overfishing, the amount of fishmeal and fish oil 

available for processing into feed for aquaculture has shown a declining trend. A variety of fish 

species are used for fishmeal and fish-oil production, with Peruvian anchoveta, Engraulis 

ringens (Jenyns), being one of the most important. Due to reduced catches of E. ringens, world 

fishmeal production was 15.8 million tons in 2014, whereas it was over 146 million tons in the 

1960s. This has led to implementation of some conservation measures, such as the use of fish by-

products for fish meal that were previously discarded. Usage of feeds that contain fish by-

product ingredients are used on specific stages of production, such as in hatcheries and for brood 
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stock (Food and Agriculture Organization of the United Nations (FAO) 2016). While this is a 

welcome development, these measures are not likely to fully compensate for declining 

availability of fish meal and fish oil. Therefore, finding feasible alternatives for these products is 

important for supporting sustainable growth of aquaculture industry. 

1.4. Black soldier fly 

1.4.1. Biology 

Black soldier fly (BSF), Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae), is a 

common species that is not considered a pest. Its distribution ranges throughout the Western 

Hemisphere, including the continental United States (Oliveira et al. 2015). BSF have four life 

stages: egg, larvae, pupae, and adult. The final instar is known as the prepupae, a non-feeding 

migratory stage that searches for a pupation site. The adult fly may survive on the stored fat 

obtained during feeding at the larval stage (Myers et al. 2008), but a recent study also reported 

adult feeding on a sugar solution (Richard-Giroux and Spindola 2017). In the absence of feeding, 

the adult dies when the stored fat depletes (Myers et al. 2008). The larvae are saprophytic feeders 

and can consume a variety of organic substrates, including feces, rotting and fresh fruit, animal 

flesh, food waste, and even cellulose (Sheppard et al. 2002, Tomberlin et al. 2002, Holmes 2010, 

Nguyen 2010).  

BSF have approximately a 40-day life cycle from egg to adult, depending on the 

environmental conditions and the available diet. The eggs incubate for about three days. Upon 

hatching, neonates immediately search for a suitable food source. The larval stage consists of six 

instars and lasts for 14−22 days. Rate of consumption depend on larval size and the type of food 

being consumed (Diener et al. 2009, Nguyen 2010). Adults have an average lifespan of ten days. 

Mating starts two days after adults emerge (Tomberlin and Sheppard 2002).  
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Optimal moisture of larval substrates ranges from 60% - 90% (Myers et al. 2008). 

Feeding larvae produce metabolic heat, allowing them to develop in temperatures lower than 

their preferred range, albeit at lower rates (Tomberlin et al. 2009). Moisture content is important 

for growth. Outside of an optimal range, the colony will exhibit little growth, convert waste 

inefficiently, or prematurely migrate to another food source (Fatchurochim et al. 1989). As a 

result, manipulation of the moisture preference can be used as a tool in a mass rearing facility to 

control direction and development of larvae.  

BSF are generally considered to be warm-climate species preferring the areas with 

subtropical and warm temperate climates. Observations submitted by citizen scientists and 

records of preserved specimens available on iNaturalist.org have provided year-round data from 

around the world between 1913 – 2018 of BSF at all life stages with images included. The 

iNaturalist recorded distribution shows a northern most range limit reaching up to Washington 

State in the United States (Figure 1.1), and with the most southern range in New Zealand 

(iNaturalist 2018).  In New England, the most northern range reaches Massachusetts. 

Temperatures optimal for their development range from 27°C - 33°C (Sheppard et al. 2002). 

Higher temperatures have a detrimental effect on this species. Little is currently known about its 

response to lower temperatures (Tomberlin et al. 2009). 

When approaching pupation, larvae stop feeding and enter a migratory stage looking for a 

dark and dry place to continue their life cycle (Craig Sheppard et al. 1994). They change color 

from creamy white to dark brown or black and are commonly referred to as prepupae. The 

duration of the prepupal stage varies, and may depend, in part, on the ability to find a suitable 

place to pupate. The prepupae prefer dry pupation substrates but require ambient humidity levels 

around 60% to emerge as adults (Sheppard et al. 2002, Holmes 2010). 
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BSF can pupate without medium but will have a higher mortality as pupae (Holmes 

2010). The optimal medium depth for pupation is 15 – 20 cm. Depending on temperature and 

humidity, pupation can last 5 – 7 days. In mass rearing conditions, migration behavior can be 

exploited to self-harvest larval biomass by directing emigrating larvae into a collection tray for 

processing or incubation for re-introduction into a colony (Holmes 2010).  

Ambient light levels are important factors for mating to occur. If indoors, lighting with 

irradiance of over 200 micromoles /m2/s is optimal (Sheppard et al. 2002). Mating occurs best 

with full natural sunlight; therefore, the use of artificial lights should be supplemental when there 

is little natural sunlight. Mating begins with aerial coercion stimulated by light, which then leads 

to copulation (Furman et al. 1959). Although observations made by undergraduate student 

workers in a BSF colony reared in a greenhouse in the University of Maine (Personal 

Communication 2016) suggest that mating can occur on the ledges of the cage, published studies 

indicate aerial coercion is an important process to ensure mating (Tomberlin et al. 2002). 

Therefore, rearing facilities should have enough space for adults to fly and land to mate.  

Egg-laying occurs approximately two days after mating. Females normally lay eggs in a 

dry area near the food source. Detecting pungent chemicals from waste is thought to be the 

mechanism for this action (Sheppard et al. 2002). Egg laying sites should be maintained at 27°C 

and relative humidity of 60% or higher because successful hatching has been observed at these 

conditions (Sheppard et al. 2002, Holmes 2010). Eggs can be removed from food source and 

placed in similar conditions in a separate container with food available.  

1.4.2. Uses for larvae & prepupae  

Black soldier fly larvae (BSFL) have been utilized in agricultural settings to remediate 

manure from swine, bovine, and poultry operations in areas that sustain BSF year-round through 
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consumption of manure in livestock housing (Gayatri and Madhuri 2013). Another benefit the 

BSFL can provide is harvestable biomass consisting of their nutrient-rich bodies. They contain 

useful compounds that have commercial value, being comprised of approximately 40% protein 

and 30% fat (Sheppard 1993, Craig Sheppard et al. 1994, Newton et al. 2004). Depending on 

what they eat, the larvae may also acquire essential amino acids and fatty acids that are important 

for a value-added livestock and fish feed (Barroso et al. 2017).  

Considerable amount of research was dedicated to finding BSFL uses for livestock feed 

(Newton et al. 2004, Oyegoke et al. 2006). Overall, BSFL show a good potential for being 

incorporated into animal feeds. For instance, Newton et al. (1977) evaluated the palatability of 

dried BSFL to pigs. The meal composed of 33% of diet with addition to soy and compared to 

100% soy meal. They determined that the apparent digestibility of dry matter for pigs that were 

fed dry BSFL meal diet was significantly lower than for the pigs that were fed soybean meal diet. 

Additionally, a choice experiment was conducted between the two diets and the pigs did not 

discriminate against a diet containing BSFL meal. Another study by Al-Qazzaz et al. (2016) was 

conducted to evaluate the effects of using BSFL as a source of added protein in layer hen basal 

diets. Daily egg production, egg appearance, texture, taste, brightness of the egg yolk color, and 

the acceptance by a panel of thirty judges conducting sensory evaluations were improved when 

hens were fed an increasing level of BSFL in their basal diets. Feed intake, weight gain, egg 

protein quality, and hatchability were not affected by BSFL when compared to the basal diet.  

However, the shell thickness and shell weight decreased with increasing levels of BSFL in the 

diet, possibly due to the calcium content of BSFL when compared to the basal diet (Al-Qazzaz et 

al. 2016).  
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BSFL also has promise as feed in aquaculture systems. Bondari and Sheppard (1981) 

found no differences in the body weight and total length of channel catfish, Ictalurus punctatus 

(Rafinesque) and tilapia, Oreochromis sp. (Günther) fed on a 100% BSFL diet and a mixed diet 

of 50% BSFL : 50% commercial feed compared to high-(45%) and low-(30%) protein 

commercial diets. Similarly, the replacement of 25% of the fishmeal and 38% of the fish oil 

components of a commercial diet had no effect on the feed conversion ratio in rainbow trout, 

Oncorhynchus mykiss (Walbaum), (St-Hilaire, Cranfill, et al. 2007). However, in the 

experiments by Sealey et al. (2011) and Sánchez-Muros et al. (Sánchez-Muros et al. 2014) the 

effects of replacing 25% and 50% of the fishmeal on the growth of O. mykiss depended on 

whether BSFL meal was enriched with fish offal. The growth of fish that were fed offal-enriched 

BSFL diets was not significantly different from those fish that were fed the fishmeal-based 

control diet, whereas the growth of fish that were fed BSFL-only diets was significantly reduced 

compared with the control diet. 

An important factor responsible for aquafeed performance is their fatty acid composition, 

in particular omega-3 fatty acids. There are three main omega-3 fatty acids: alpha-linolenic acid 

(ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA is found mainly in 

oils of plant origin, such as flaxseed, soybean, and canola, whereas DHA and EPA are found in 

seafoods (Glencross 2009). 

 Essential fatty acids (EFA) are not produced by an organism’s body. Therefore, they 

must be obtained from another source. ALA is an EFA, which can then be converted into EPA 

and then to DHA by all vertebrates. Therefore, getting EPA and DHA from foods or supplements 

is the only way to increase levels of these omega-3 fatty acids in humans (NIH 2018). Omega-3s 

also play an important role in the cell membrane function. Concentrations of certain fatty acids, 
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such as DHA, are especially high in retina, neural, and sperm cells in many animals, especially 

fish (Mourente and Tocher 1992, Sargent et al. 1993, Masuda 2003). The molecular structure of 

DHA also provides strong and flexible support for the conformational transitions in cell types 

that are subject to rapid and repeated membrane reorganization, which is particularly true in the 

brain (Glencross 2009). Omega-3s have many functions related to heart, blood vessels, lungs, 

immune system, and endocrine system health and serve as a store of energy (NIH 2018).  

Many studies with different fish species (Castell et al. 1972, Hardy et al. 1987, Santha 

and Gatlin 1991, Kalogeropoulos et al. 1992, Kennish et al. 1992, Ruyter et al. 2000) have 

shown that the fatty acid composition of body lipids closely follows that of the diet provided. 

When a fish is fed a diet poor in EFA, there are health risks involved with EFA deficiency 

(Glencross 2009).  For example, erosion of the caudal fin, myocarditis (inflammation of the heart 

muscle), and shock syndrome were observed in an EFA-deficient rainbow trout (O. mykiss) 

(Castell et al. 1972). Other deleterious effects included a fainting reaction when handled and 

increased sensitivity to stressful situations (Castell et al. 1972, Millikin 1982, Watanabe 1982). 

Slow or stunted growth and increased mortality were also reported (Castell et al. 1972, Hardy et 

al. 1987, Santha and Gatlin 1991, Kalogeropoulos et al. 1992, Kennish et al. 1992, Ruyter et al. 

2000).  

Another aspect of BSFL biology that can benefit mass-rearing operations are 

antimicrobial secretions they produce that are left in the frass while they feed. For example, 

Escherichia coli (Migula) and Salmonella enterica serovar Enteritidis (Kauffmann & Edwards) 

were inactivated by BSF larvae in chicken manure up to six days (Erickson et al. 2004). 

Similarly, a study conducted by Choi et. al. (2012) demonstrated that BSFL have antibacterial 

activity which strongly inhibits the growth of Klebsiella pneumoniae (Schroeter), Neisseria 
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gonorrhoeae (Zopf) and Shigella sonneio (Levine). However, antibacterial effects in that study 

were not induced in Gram-positive bacteria. It was also reported lower concentrations of 

Salmonella spp. and several virus species in a mixture of pig manure, dog food, and human feces 

processed by BSF larvae (Lalander et al. 2014). 

BSF frass can also be used to repel pest insects. Oviposition by house fly, Musca 

domestica (Linnaeus) in poultry manure was inhibited when BSFL were present in high densities 

(Bradley and Sheppard 1984). However, little is known about mechanisms of this phenomenon 

in Diptera, or about its range against different taxonomic groups of filth-dwelling insect pests. 

Deterrent effects of larval frass have been observed in phytophagous and entomophagous insects 

in the order Lepidoptera and Coleoptera. This includes: the yellow cutworm Agrotis segetum 

(Hufnagel), pineapple borer Thecla basilides (Geyer), egyptian cotton leaf worm Spodoptera 

littoralis (Boisduval), fall armyworm Spodoptera frugiperda (J.E. Smith), cabbage looper 

Trichoplusia ni (Hubner), European corn borer Ostrinia nubilalis (Hubner), Japanese pine 

sawyer Monochamus alternatus (Hope), Asian ladybeetle Harmonia axyridis (Pallas) and the 

turtle vein lady beetle Propylea japonica (Mulsant) (Ditrick et al. 1983, Renwick and Radke 

1985, Williams et al. 1986, Klein et al. 1990, Anderson et al. 1993, Anderson and Löfqvist 1996, 

Rhainds et al. 1996, Anbutsu and Togashi 2002, Agarwala et al. 2003). In many insect species, 

chemicals in larval frass may deter oviposition of conspecific females to avoid competition 

among larvae for food on the host (Li and Ishikawa 2004). In all species listed above, it was 

demonstrated that larval frass decreased oviposition of conspecific females significantly, with the 

highest reduction rate of in A. segetum (Anderson and Löfqvist 1996) and O. nubilalis (Ditrick et 

al. 1983). Deterrence of heterospecific insects was also demonstrated for females of both H. 

axyridis and P. japonica. They exhibited similar behavior in response to water extracts of their 
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own feces. For P. japonica, the deterrence of heterospecific feces was greater than that of 

conspecific feces. This demonstrates that feces of ladybirds contain odors that have the potential 

to deter the feeding and oviposition activities of conspecific as well as heterospecific ladybirds 

that may allow these insects to avoid predation risk (Agarwala et al. 2003).  

BSFL may also be used as a vermicomposting agent. Vermicomposting is a popular 

approach to converting solid organic wastes into a useful soil amendment. It is commonly 

described with the use of frass from earthworms as a soil amendment; therefore, it may be 

feasible to replicate vermireactors with BSFL. Vermicomposting was originally defined as a 

biological process that involves the oxidation and stabilization of organic wastes through the 

joint effort of invertebrates, such as earthworms, and microorganisms (Domínguez et al. 2004, 

Westerman and Bicudo 2005, Yadav and Garg 2011), and turns waste into a valuable soil 

amendment, known as vermicompost, together with valuable worm byproducts. The ability of 

vermicomposting to improve biochemical features, reserve nutrients, reduce pathogens, and 

reduce odor emission, has allowed it to be used to process various types of wastes, including 

animal manure, food-processing waste, municipal sludge, and even industrial waste (Boushy 

1991, Marchaim et al. 2003, Bai et al. 2007, Diener et al. 2009, Yadav and Garg 2011).  

Similar to BSFL, earthworms play a role in the decomposition of organic waste and 

biodegradation of cellulosic and proteinaceous materials in organic waste due to the presence of 

a complex of enzymes in the gut of the earthworms, such as proteases, lipases, amylases, 

cellulases, and chitinases (Kim et al. 2011), as well as the microorganism community in the 

intestinal tract (Aira et al. 2007, Monroy et al. 2009, Gómez-Brandón et al. 2011, Jeon et al. 

2011). The process of vermicomposting also regulates the dynamic curves of the enzymatic 

activity of b-glucosidase, cellulases, proteases, and phosphatases in the waste or vermicompost 
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(Aira et al. 2007, Gómez-Brandón et al. 2011), which directly determines the biodegradation of 

organic carbon, nitrogenous organic compounds, and phospholipids in waste. Moreover, 

earthworms also excrete large amounts of casts containing more soluble and available nutrients, 

such as nitrogen, phosphorus, potassium, and calcium, compared to those present in raw manure 

(Bai et al. 2007, Knapp et al. 2009). Microbial communities have been studied to elucidate the 

microbial functioning mechanisms of earthworm vermireactors, which may control the pace of 

the vermicomposting process (Yasir et al. 2009, Zhao et al. 2010, Jeon et al. 2011). However, the 

link between biochemical features and microbial functioning has not been evaluated with the use 

of BSFL consuming marine waste. 

1.4.3. Safety considerations 

BSF does not vector disease or become a nuisance to humans (Furman et al. 1959), 

probably because adult flies use energy accumulated at a larval stage and do not require 

additional food (Furman et al. 1959, Sheppard et al. 2002). Furthermore, unlike many other flies 

that are saprophagous at a larval stage, BSF adults lay their eggs not directly onto decaying 

substrates, but adjacent to them. As a result, their contact with potentially pathogenic bacteria is 

more limited (Furman et al. 1959).  

Although uncommon, there were several reported cases of accidental intestinal myiasis 

caused by BSFL in humans (Meleney and Harwood 1935, Lee et al. 1995). Myiasis is a parasitic 

infestation of vertebrate hosts by fly larvae that consume their tissues. There are three different 

types of myiasis: obligatory, facultative, and accidental. Obligatory myiasis is caused by species 

such as bot flies (e.g., Dermatobia hominis (Linnaeus Jr.)) that require a vertebrate host for 

development. Facultative myasis occurs when species such as blow flies (e.g., Calliphora vicina 

(Robineau-Desvoidy)) that normally develop on carrion invade living hosts, often through 
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wound openings. In this case, larvae of the same species can be free living or parasitic (Catts and 

Mullen 2002). Accidental myiasis occurs when fly larvae or eggs contaminate food or other 

items and are consequently ingested by a vertebrate host (Catts and Mullen 2002). Species 

involved in accidental myiasis, including BSF, are not normally parasitic, but at some of them 

can become such in order to survive. Known cases of BSFL myiasis occurred in poverty-stricken 

tropical areas, where access to clean water for washing was not readily available (Yang 2014). 

Currently, there have been no reports of myiasis in waste management facilities that use BSF. 

Overall, in the presence of proper sanitation efforts the risk of BSFL myiasis appears to be low.  

Spread of invasive insect pest species that can be detrimental to the environment and 

economy is a serious worldwide concern. For example, one Dipteran species native to Asia, the 

spotted wing drosophila, Drosophilia suzukii (Matsumura), is listed as serious invasive pest in 

Maine, (DACF 2018). Large populations of this insect can severely damage healthy fruit such as 

blueberries and reduce blueberry yields for farmers. BSF has a global distribution and is 

generally considered beneficial. Still, if BSF can establish populations in Maine, where it  

currently does not reside, local saprophagous Diptera may be negatively affected through 

competition. However, this species appears to be prevalent mostly in tropical and subtropical 

zones. Therefore, its invasion is likely to be impeded by harsh winters in Maine.   

1.5. The importance of present study 

The need for more sustainable alternative sources of high protein feed, together with the 

interesting opportunities that insects offer in this regard, are driving research to mass produce 

these organisms at the industrial scale (Rumpold and Schlüter 2013). The black soldier fly is one 

of the most promising insects used for this. Its larvae are capable of bio converting a wide range 

of organic substrates to turn them into high-quality protein to be used as feed, while other 
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compounds such as oils derived from fats and chitin can be used as a raw material in chemical 

industries (Diener et al. 2009, Maurer et al. 2015). It may no longer be a question of whether an 

entire food value chain will arise for mass rearing of BSF, but how fast it will be installed. It is 

only a matter of time before the use of insects as feed booms into a stable industry. Therefore, it 

is important to gather a similar level of in-depth knowledge on their biology that is available for 

other farmed animals to support this novel industry.  

Technological and conceptual advances have set a standard for the investigations of how 

insects interact with bacteria and other microbes. Pairing studies with behavior and physiology 

could potentially deepen our understanding of how BSFL interact with bacterial symbionts if 

present. Due to their close association with decomposing organic matter, BSFL also have close 

associations with numerous bacteria that thrive in decaying environments (Wang and Shelomi 

2017). Literature has shown that bacteria are the initial colonizers of such material, and their 

degradation of these materials results in the production of volatile organic compounds that attract 

pest flies such as blow flies to colonize the detritus (Tomberlin et al. 2017). Applications of 

pairing studies with behavior and physiology represent the start of this exciting area of research 

and the establishment of BSFL interactions with bacteria as a model system for studying the 

effects and impacts of microbial and insect interactions and the role of interkingdom 

communication. In future studies, the utilization of microbial communities could be used to 

enhance production of insect biomass and the application of BSF associated microbial 

communities to find new biotechnological tools. 

Currently, the economic benefits of conventional composting are often marginal and 

sometimes negative if no financial subsidy is received from the government (Westerman and 

Bicudo 2005). Due to the remarkable capacity of waste reduction and stabilization as well as the 
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considerable economic gain, the advantages of BSFL vermicomposting will be more prominent 

in land restricted and over populated developing countries, referenced on the operational 

requirement (Westerman and Bicudo 2005, Yadav and Garg 2011). The application of BSFL 

vermicomposting for marine waste treatment and the establishment of the corresponding value-

added waste to the economy may help benefit ecosystem stability and the sustainable 

development of the insect mass production industry. 

 

 

 

 

Figure 1.1. Distribution of Hermetia illucens in the United States recorded as observations 
submitted by citizen scientists and records of preserved specimens from iNaturalist.org from 
1913 – 2018 at all life stages.  
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CHAPTER 2 

2. BLACK SOLDIER FLY LARVAE DEVELOPMENT ON MARINE WASTES 

2.1. Introduction 

 Black soldier fly, Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) (BSF) is a 

beneficial fly species that can be used for remediating biological waste. Their larvae (BSFL) are 

rich in nutrients, grow rapidly, convert a variety of decaying organic wastes to vermicompost 

while suppressing human pathogens and pests, and contain a number of potentially valuable 

biologically active compounds (Choi et al. 2012a). Therefore, using the BSFL as a replacement 

ingredient for fish meal in aquafeed formulations may benefit the environment by reducing the 

amount of wild-caught forage fish currently used for fish meal production in aquaculture.  

In the United States, in 2015, freshwater and marine aquaculture production was around 

2.84×105 tons, with a value of $1.4 billion. That was an increase of 8.8×103 tons worth $61.5 

million from 2014 (Fisheries of the United States (FUS) 2015). Fish meal is an important 

component of most aquafeed formulations. Therefore, aquaculture itself can be considered a 

major consumer of fish protein. In fact, consumption by aquaculture accounts for 60 to 70% of 

the annual production of fish meal (Rust et al. 2011). It was reported that domestic production of 

fish and shellfish meal in the U.S. was 2.53×105 tons valued at $307.7 million (Fisheries of the 

United States (FUS) 2015).  

 There are several species of forage fish commonly harvested for the use of fish meal 

such as: Peruvian anchoveta Engraulis ringens (Jenyns), Pacific sardine Sardinops sagax 

(Jenyns), Chilean jack mackerel Trachurus murphyi (Nichols), and Atlantic herring Clupea 

harengus (Linnaeus) (Cashion et al. 2017). Along the trophic pyramid, these fish play a vital role 

in marine ecosystems by relocating energy from low to high trophic-level species, which 

includes commercially available fish with high economic value such as salmons, cods and tunas 
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(Cashion et al. 2017). The importance of keeping sustainable forage fish populations is at an all-

time high for functioning ecosystems. Thus, the forage fish wild-caught for fishmeal production 

may represent a loss in higher trophic-level species, and a less valuable ecosystem service since 

commercial fish that consume forage fish are worth more (Pikitch et al. 2014).  

Harvesting high amounts of forage fish to produce fishmeal when wild fish stocks are 

decreasing is not an economically and environmentally sustainable approach. Therefore, 

adopting an alternative aquafeed production technology that relies on the biological conversion 

of organic wastes using BSFL could potentially reduce overharvesting of wild-caught forage 

fish. When compared to other insects, BSFL has higher ash and crude protein contents. 

Additionally, its amino acid composition is similar to fish meal (Barroso et al. 2014). Since the 

1970’s, there has been an interest in utilizing BSFL for feed in aquaculture (Bondari and 

Sheppard 1981), as well as in its use as value added supplement in livestock feed (Newton et al. 

1977). More recent research confirmed the high potential of using BSFL for aquafeed (St-

Hilaire, Cranfill, et al. 2007, Sealey et al. 2011). Furthermore, a sensory evaluation of rainbow 

trout, Oncorhynchus mykiss (Walbaum) and BSFL showed that the fish consuming experimental 

feed formulation containing BSFL had a milder and fresher taste when compared to the fish 

consuming commercial fish meal formulation containing anchovy, corn, and soybean meal, fish 

oil, and vitamin C (Sealey et al. 2011). It is also known that BSFL can intake essential fatty acids 

that are important for fish development (St-Hilaire 2007, Wang and Shelomi 2017). 

There are several commercial facilities that mass produce BSF worldwide (Dossey et al. 

2016). They use a variety of wastes and several of them generate output on the scale of tons of 

larvae per day. The number of BSFL facilities continue to rise with the ongoing efforts of bio 

converting waste into valuable products.  
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As of 2016, Maine ranked second in the top five states by value of landings, which 

reached $633.6 million according to the (Fisheries of the United States (FUS) 2015). Landings 

represent a report of the total quantity or poundage of all marine species harvested, brought to 

shore, and sold to another person or party for direct human consumption; this includes anything 

received from a fisherman whether it is discarded or not sold. The Maine Department of Marine 

Resources (DMR) reported that $569 million worth of commercial Maine landings occurred as 

of February 12, 2018, amounting to 1.15x105 tons. Of those commercial landings, over $17 

million were Atlantic herring C. harengus, for a total of 3.0x104 tons (Watts 2018).  

Maine’s aquaculture industry is the largest in the United States and is rapidly growing. It 

will greatly benefit from a BSFL commercial operation that utilizes marine waste from fish 

processing facilities. Therefore, the aim of our study was to identify the best fish waste available 

in Maine that can optimize bioconversion rates through BSFL feeding.  

2.2. Materials and methods 

2.2.1. Marine wastes tested   

Seven sea food wastes provided by fish processing facilities were tested under laboratory 

conditions. Fresh finfish trimmings (viscera, skins and trim) of various consumer species were 

gathered at Harborfish Market, Portland, ME. That material comprises 25-30% of the whole fish 

and did not include the muscle fillet, head, bone, and scales. The intended use of this material in 

New England is for the pet food market. Dry and wet clam viscera containing quahog, 

Mercenaria mercenaria (Linnaeus), was gathered from Sea Watch Int’l., New Bedford, MA, 

which is the largest clam processor in the country. Technological process to dry clam viscera 

involves pressing the wet version to 35-40% moisture, which increases the crude protein content 

(Wohlt et al. 1994). Currently, this waste is being sent to compost facilities in Rhode Island and 
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Maine. Sea cucumber, Cucumaria frondosa (Gunnerus), residuals were gathered from ISF 

Trading, Portland, ME, that currently sells sea cucumber as a dried ingredient into the pet and 

human nutraceutical market. The wet and dry sea cucumber residuals used in our study consisted 

of everything but the tentacles and muscles from the body wall (Feindel et al. 2011). Sea urchin, 

Strongylocentrotus droebachiensis (Muller), residuals were also gathered from ISF Trading, 

which discards them in a Portland, ME, area compost. Crab meal was obtained from Ocean 

Organics, Waldoboro, ME.  

2.2.2. Colony maintenance of black soldier flies 

The black soldier fly breeding colony was first purchased on May 2016 from Symton 

Black Soldier Fly Solutions (College Station, TX). The colony arrived in a plastic container with 

a total of 20,000 immature larvae in coconut coir substrate. The 20,000 immature larvae were 

distributed into two separate 20 by 33 by 38 cm plastic dish pans (United Solutions, Leominster, 

MA). The two dish pans were then placed side by side in a transparent 89.9 by 42.5 by 14.9 cm 

plastic bin (Sterlite, Townend, MA). The lid of the plastic bin had two 12.7 by 12.7 cm squares 

cut out and covered with aluminum mesh for ventilation. Larvae were fed with commercially 

available non-medicated chicken feed (Home Fresh® Extra Egg, Blue Seal, Lawrence, MA) 

mixed with tap water to achieve 60% (w : w) moisture contents of the resulting substrate 

(Fatchurochim et al. 1989). Larvae were reared in laboratory with ambient temperature at 261°C 

(range: 24 - 27.7°C) and 508% (range: 42.5 - 69%) relative humidity. 

Once pupation occurred, pupae and substrate were transferred into a separate 89.9 by 

42.5 by 14.9 cm plastic bin and placed in a 2 by 2 by 4-m custom-made wooden frame screen 

cage in the greenhouse with ambient temperature at 261°C (range: 24°C - 30°C) and 60% (range: 
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42.5% - 69%) relative humidity. All temperature readings were recorded with an EL-USB-2-

LCD USB Humidity Data Logger w/ LCD Display (Lascar, Erie, PA).  

Emerging adults were continuously provided with water by spraying a 17 cm by 17 cm 

by 17 cm custom-made screen mesh cube from inside with a 0.8 GPH, 6.3 mm hose barb with 

fogging nozzle (Home Depot, Bangor, ME) equipped with a brass water pressure reducing valve 

(Watts Water Technologies, North Andover, MA). Two days after emergence, when females 

were ready to lay eggs, a 21.8 by 16.2 by 13.2 cm (GladWare Oakland, CA), container with 50 

ml of moist chicken feed was placed inside the cage. Three bundles of three dry 12.7 by 5 cm 

corrugated cardboard strips with 5 mm flutes were suspended above the container on a skewer.  

The strips served as an oviposition substrate for gravid females.  

Every five days, eggs were harvested by removing cardboard strips filled with egg 

masses and replacing them with new ones in the cage. The cardboard strip with eggs was then 

placed in a 21.8 by 16.2 by 13.2 cm, 1892 ml GladWare container with 50 ml of chicken feed 

and 30 ml of water and moved to the lab. Once eggs hatched, moist chicken feed was provided 

ad libitum as described above. 

2.2.3. Larval development on sea food wastes 

Experiment was conducted in 21.8 by 16.2 by 13.2 cm GladWare containers with a spout 

and ventilated lid covered with screen mesh. Seven sea food wastes (see above) were tested: dry 

sea cucumber, wet sea cucumber, crab meal, finfish, dry quahog, wet quahog, and sea urchin. All 

wastes were dried in a soil-drying room overnight at 76°C. After that, 25 g of dry substrate, 25 g 

of blended sawdust, and 75 ml of water were homogenized and placed into each container. 

Additional 25 g of dry substrate was added once a week, and additional 25 g of blended sawdust 

was added once a month until the end of the experiment. Every week, a 5-g sample of the 
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substrate was removed and placed in the soil drying room as described above. Water content of a 

sample was determined as the difference between its weight before and after drying. Water was 

added to the substrate as needed, allowing to keep moisture levels between 60-70% (w : w) 

throughout the experiment (Fatchurochim et al., 1989). A total of 25 g of saw dust was added to 

the substrates to maintain their porosity. Chicken feed (see above) was used as a reference 

treatment. Once substrates were prepared,  29.1 mg of eggs was placed on top of a wax paper on 

their surfaces. After one week from the time of hatching, larvae were large enough to measure 

their weight with analytical scale (Ohause Co., Pine Brook, NJ). The measurements were taken 

every five days until all larvae pupated. Feeding substrate prepared as described above was 

added once a week. Larvae were maintained at the ambient temperature of 26±1°C and 50±8% 

humidity. The spout was plugged with a rubber cork on the inside to prevent escape of immature 

larvae. Once prepupae were noticed, the cork was removed. A 120 ml plastic cup filled with 

vermiculite was placed beneath the spout to allow migrating prepupae to fall in. The numbers of 

emigrating pupae were counted once a week. 

To analyze differences in survival, mean and maximum weights of larvae associated with 

different marine wastes, and durations of development to prepupae, ANOVAs followed by a 

Tukey’s honestly significant difference (HSD) tests were conducted using SAS (PROC MIXED, 

SAS Institute 2017). Data normality was tested prior to the analyses using Wilk-Shapiro test at 

P<0.01 (PROC UNIVARIATE, SAS Institute 2017). Non-normal data were transformed using 

rank transformations (PROC RANK, SAS Institute 2017; (Conover and Iman 1981). 
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2.3. Results 

2.3.1. Larval development on sea food wastes 

There was a significant difference in the number of prepupae emigrating from containers 

with different sea food wastes (d.f.=7,29, F=29.70, P<0.0001). Feeding on wet sea cucumber and 

finfish trimmings resulted in the best survival of black soldier fly larvae to prepupal stage 

compared to other treatments. Virtually no larvae survived on dry sea cucumber. Other substrates 

were somewhat in between the two extremes (Figure 2.1).  

Diet also had a significant effect on the mean (d.f.=7,29, F=5.25, P=0.0006) and 

maximum larval weights (d.f.=7,29, F=4.46, P=0.0018). Despite relatively low survival on crab 

meal and chicken feed compared to wet sea cucumber and finfish trimmings, larval weights were 

fairly similar on the four substrates (Figure 2.2 A). Furthermore, maximum larval weights were 

similar for all the treatments except for dry sea cucumber and wet quahog (Figure 2.2 B). 
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Figure 2.1. Emigration of black soldier fly prepupae that completed their development on 
different marine wastes. CD – dry sea cucumber, CM – crab meal, CW – wet sea cucumber, CF 
– chicken feed (control), FF – finfish trimmings, QD – dry quahog, QW – wet quahog, SU – sea 
urchin. Bars followed by the same letter are not significantly different from each other. 

CD  –  Dry Sea Cucumber 
CM  –  Crab Meal 
CF  –  Chicken Feed 
CW  –  Wet Sea Cucumber 
FF  –  Finfish Trimmings  
QD –  Dry Quahog 
QW –  Wet Quahog  
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Figure 2.2. Weights of black soldier fly larvae that completed their development to prepupae on 
different marine wastes (A – mean; B – maximum). CD – dry sea cucumber, CM – crab meal, 
CW – wet sea cucumber, CF – chicken feed (control), FF – finfish trimmings, QD – dry quahog, 
QW – wet quahog, SU – sea urchin. Bars followed by the same letter are not significantly 
different from each other. 
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CD  –  Dry Sea Cucumber 
CM  –  Crab Meal 
CF  –  Chicken Feed 
CW  –  Wet Sea Cucumber 
FF  –  Finfish Trimmings  
QD –  Dry Quahog 
QW –  Wet Quahog  
SU –  Sea Urchin  
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The amounts of time necessary for reaching prepupal stage were different among the 

treatments (d.f.=7,26, F=6.23, P=0.0002). The larvae feeding on dry sea cucumber and crab meal 

developed faster than the larvae feeding on wet sea cucumber, finfish trimmings, and sea urchin 

(Figure. 2.3). There was no difference among other treatments.   
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Figure 2.3. Time between release of black soldier fly larvae into containers with different marine 
wastes and their emigration in search of pupation habitats. CD – dry sea cucumber, CM – crab 
meal, CW – wet sea cucumber, CF – chicken feed (control), FF – finfish trimmings, QD – dry 
quahog, QW – wet quahog, SU – sea urchin. Bars followed by the same letter are not 
significantly different from each other. 

2.4. Discussion 

BSFL are saprophagous and can colonize a wide variety of organic materials in their 

natural habitat ranging from decaying human and pig cadavers (Tomberlin et al. 2005, Martínez-

Sánchez et al. 2011), to decaying vegetables (Banks et al. 2014). Therefore, their ability to 

successfully utilize some of the marine wastes is not surprising. However, even highly 
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omnivorous species have certain restrictions on their diets. For instance, some digestive 

limitations of BSF include organic matter high in lignin or cellulose, such as rice straw, that are 

also considered low quality as livestock feed (Zheng et al. 2012, Manurung et al. 2016).  

In our study, the highest mean number of prepupae were found when developing on wet 

sea cucumber and finfish trimmings. The next highest was dry quahog, followed by chicken 

feed. All others resulted in relatively low survival, with the highest mortality found for dry sea 

cucumber. Mean weight of developing larvae was also strongly affected by sea food waste fed, 

although not all treatments causing high larval mortality resulted in small larvae. Finfish 

trimmings and chicken feed produced the largest larvae, followed by crab meal, then by wet sea 

cucumber, and then by sea urchin. All other wastes resulted in relatively small larvae. 

Developing on dry sea cucumber and crab meal led to the shortest time period before emigration 

of prepupae.  

BSFL survival and weight gain was dramatically different on wet versus dry sea 

cucumber, with the latter being largely unsuitable for growing larvae. The reverse was true for 

quahog, with significantly better growth on dry residues compared to wet residues. Processing 

leads to significant changes in the composition of both quahog (Wohlt et al. 1994) and sea 

cucumber (Zhong et al. 2007), which was likely responsible for the observed effects. It is 

possible that technological process that produced dry sea cucumbers extracted some nutrients 

essential for BSFL development or compromised the suitability of this substrate in some other 

way. If sea cucumber waste is to be used for BSFL commercial operations, it would be advisable 

to refrain from using dried versions or combine them with other waste material. Furthermore, sea 

cucumber byproducts are sold as nutritional supplements for arthritis in humans and pets. Maine 
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 DMR has increased regulations on harvest size due to declining populations of C. frondosa, and 

their prices are also relatively high (Feindel et al. 2011). Therefore, the likelihood of using sea 

cucumber waste for commercial BSFL operations seems to be low for economic reasons.  

 Finfish trimmings produced the largest larvae and resulted in high survivorship compared 

to the other experimental wastes. Similarly, when larvae were fed a diet of cow manure and a 

mix of fish offal with cow manure, the weight of the prepupae fed fish offal were larger (St-

Hilaire, Cranfill, et al. 2007). Unfortunately, finfish trimmings are used extensively by pet food 

industry. Therefore, they are relatively expensive. However, an underutilized finfish trimming 

waste streams may be an option for BSFL mass production facilities. 

Crab meal normally contains ca. 32% protein and 41% ash and is traditionally marketed 

as an additive to livestock feeds as a protein source. However, due to the low protein digestibility 

when fed to livestock, it has a minor feed value and is better suited for crustacean or mollusk 

diets (Hertrampf and Piedad-Pascual 2000, Stewart and Noyes-Hull 2010). It is also susceptible 

to contamination by salmonella and other harmful microbes that produce toxins, which makes 

processing it a health hazard (Hertrampf and Piedad-Pascual 2000). Other uses include fertilizers 

due to its high chitosan content.  

Our results show that BSFL had the ability to attain a relatively high mean weight in a 

relatively short period of time when fed crab meal, comparable to those attained when feeding on 

wet sea cucumber, finfish trimmings, and chicken feed. However, their survival was very poor 

compared to the other marine wastes except dry sea cucumber, wet quahog, and sea urchin. 

Apart from being potentially nutritionally inadequate, crab meal had fine powder consistency 

that may have made it difficult for BSFL to transpire. Observations during experiment indicated 

that crab meal would stick to the larvae, which may have clogged their spiracles or prevented 
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proper molting. Since crab meal is mostly composed of chitin, it could have also promoted 

microbial populations that were detrimental to BSFL. Products containing blue crab scrap, have 

been shown to suppress soil dwelling plant-parasitic nematode populations (Rich and Hodge 

1993). The mode of action of chitin on nematodes has been hypothesized to be the production of 

ammoniacal nitrogen and enhanced chitinolytic fungal activity (Godoy et al. 1983, Rodriguez-

Kabana et al. 1987, Rodriguez-Kabana and Morgan-Jones 1988).  Knowing mechanisms 

responsible for negative effects of crab meal on BSFL may allow finding ways of using this 

byproduct for BSFL rearing, as it allows surviving larvae to grow to full size.   

Chicken feed commonly serves as a standard control diet in BSFL studies (Nguyen et al. 

2015). However, larval survival on this substrate recorded in our study was not very high 

compared to other treatments. The feed formulation used in our experiment was mostly plant-

based in origin. Although BSFL are capable of developing on plant materials (Nguyen et al. 

2015, Barragan-Fonseca et al. 2017, Tinder et al. 2017), it is possible that the chicken feed had 

smaller amounts of certain nutrients compared to the seafood wastes. In particular, high protein 

contents, typical for animal carcasses such as sea food wastes tested in this study, have been 

shown to be beneficial for BSFL (Cammack and Tomberlin 2017, Tinder et al. 2017).  

Lower survival did not necessarily correlate with smaller size of surviving larvae. It is 

likely that we observed a density-dependent response when lower nutritional qualities were 

compensated for by lower larval densities due to the die-off of less competitive individuals. For 

saprophagous dipteran species, the short-lived immature stages determine the fitness of adults. 

Second to early third instar larvae commonly experience crowding that usually results in 

exploitative competition for resources when the larvae need to acquire food necessary for 

successful pupation (Levot et al. 1979, Mueller 1988). If the ageing substrate is losing nutritional 
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value over time, and the feeding rate of BSFL is highest in the later instars, it is likely that the 

older larvae will need to consume more low nutrition feed (Banks et al. 2014). Release from 

competition may allow survival on otherwise unfavorable diets.   

Other species of saprophagous insects are capable of subsisting on non-preferred foods 

when preferred foods are not available. For example, Chrysomya rufifacies (Macquart) larvae 

shifted from saprophagy to predation and cannibalism in instances where food was limited 

(Goodbrod and Goff 1990). Similarly, dung beetle Deltochilum verruciferum (Felsche) had a 

strong preference to feeding on  carrion and excrement, but could utilize decomposing fruits, and 

even seeds, if preferred resources were scarce (Salomão et al. 2018). BSF may have the potential 

to do the same and adapt to available low-quality substrates.  

Faster time of development in fly larvae may also help surviving in nutrient-poor 

environments. Individuals that pupate early, before reaching their optimal sizes, are likely to 

have increased energy costs for flight and decreased fecundity as consequences of their smaller 

adult sizes. However, these are smaller fitness penalties than the increased risk of mortality in the 

larval or pupal stages (Williams and Richardson 1983). Indeed, the fastest-developing BSFL fed 

on dry sea cucumber in our study also had the smallest size. Their mortality was also the highest, 

although at least some larvae survived to prepupal stage. Interestingly, BSFL also developed 

quickly on crab meal, which was not a favorable substrate based on their mortality. However, 

there was no decrease in the size of survivors. As discussed above, it is possible that high BSFL 

mortality on crab meal was caused by its physical properties or by the activity of chitinolytic 

microorganisms rather than by its nutrient deficiencies.    

 



30 
 

Our results expand the list of wastes potentially available for BSFL rearing to include wet 

sea cucumber, dry quahog, sea urchin, and, possibly, crab meal. They also highlight the 

importance of thorough testing of specific substrates, as there were dramatic differences in 

seemingly similar materials, such as wet and dry sea cucumber or wet and dry quahog. Currently, 

fish meal and fish oil are primarily made with small pelagic fish and trimmings of processed fish 

from wild-caught and aquaculture sources. Due to low fish stocks, the use of by-products that 

were previously discarded are being incorporated into feeds (Food and Agriculture Organization 

of the United Nations (FAO) 2016). At the same time, approximately 1.04 million tons of marine 

waste is generated each year in the United States alone (Love et al. 2015). Therefore, diverting 

the seafood waste stream for the use of BSFL can help with more sustainable practices, 

especially if various types of waste are used, and not only finfish trimmings.  

 

 



31 
 

CHAPTER 3 

3. ANTIBIOTIC AND ANTIXENOTIC PROPERTIES OF SUBSTRATES INHABITED BY 

BLACK SOLDIER FLY LARVAE  

3.1. Introduction 

Many studies on black soldier fly (BSF), Hermetia illucens (Linnaeus) (Diptera: 

Stratiomyidae) have been conducted on the development, bioconversion of waste materials, and 

nutritional value, but less attention has been paid to the associated microbial communities that 

occupy the same environment (De Smet et al. 2018). The few existing studies focused mostly on 

internal symbionts within their digestive system. Eight-day old BSF larvae (BSFL) reared on 

restaurant food waste, cooked rice, and vegetable-based calf forage had different microbial 

communities within their guts. Bacterial phyla were more diverse in larvae fed on food waste 

than on cooked rice and calf forage, partly due to carbohydrates being the main source of 

nutrients Degradation of substrates by the intestinal bacteria of BSFL played an important role in 

reduction of waste material that produce beneficial probiotic compounds. That confirmed the 

likely effect of BSFL presence on microbes that inhabit their feeding substrates (Jeon et al. 

2011). There was also a significant change in microbial communities when DNA was extracted 

from whole specimens at various life stages after larvae were fed Gainesville diet (corn mean, 

alfalfa meal, wheat bran, and water) inhabited by the first vs. the second generations of BSFL. 

That demonstrated the capability of particular bacteria to be kept throughout life stages (Zheng et 

al. 2013).  

Fungal communities of the BSFL guts reared on chicken feed for 17, 14, and 21 days 

followed by vegetable waste for 4 and 7 days were assessed  (Boccazzi et al. 2017). Larval guts 

from eight surface-sterilized larvae per trial period were dissected. The fungal communities 

observed by OTU composition presence or absence within samples were influenced by substrate 
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variations similar to the bacterial communities described above. There was more fungal diversity 

estimated with diversity indices: Shannon H diversity, Pielou’s J evenness indices and Chao-1 

when larvae fed on different wastes (Boccazzi et al. 2017). 

BSFL are known to feed on a wide variety of organic material at different stages of decay 

(Tomberlin et al. 2005, Martínez-Sánchez et al. 2011, Banks et al. 2014). In a mass rearing 

operation using BSFL to consume marine waste from fish processing facilities, other Dipteran 

species may be attracted to the same marine waste material during transport or in storage units 

prior to being fed to BSFL. Contamination by wild pest fly larvae may affect the development of 

BSFL or decrease the quality of harvested biomass. The blow fly Lucilia sericata (Meigen) 

(Diptera: Calliphoridae), is commonly the first species to be attracted to decaying matter (Byrd 

and Castner 2009, Australian Museum 2015). This can be due to the volatile organic compounds 

produced during the break down of organic material by microorganisms being attractive to L. 

sericata (Hammack 1991). Adult Calliphoridae are a potential health risk because they can be 

carriers of human and animal pathogens (Pava-Ripoll et al. 2012).  

Sterilizing the substrate to eliminate biological contamination prior to feeding it to BSFL 

may not result in optimal BSFL development. In commercial rearing facilities, sterilized 

substrates need to be inoculated with a small amount of untreated substrate in order to obtain 

proper BSFL performance (De Smet et al. 2018). Fortunately, decaying substrates inhabited by 

BSFL appear to naturally acquire antibiotic and antixenotic properties against a range of micro- 

and macroorganisms. If larvae do become contaminated, feeding becomes minimal or 

nonexistent, reducing larval mass. These negative effects were reported for Escherichia coli 

(Migula) and Salmonella enterica serovar Enteritidis (Kauffmann & Edwards) (Erickson et al. 

2004, Lalander et al. 2015), Klebsiella pneumoniae (Schroeter), Neisseria gonorrhoeae (Zopf) 
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and Shigella sonneio (Levine) Choi et. al. (2012), and several virus species (Lalander et al. 

2015). Furthermore, oviposition by house fly, Musca domestica (Linnaeus) in poultry manure 

was inhibited when BSFL were present in high densities (Bradley and Sheppard 1983).  

Our results on the development of BSFL demonstrated that they perform well when 

developing in finfish substrate, compared to six other marine wastes (see previous chapter). 

Preliminary observations made while rearing BSFL in the laboratory and greenhouse showed 

that Calliphora vomitoria (Linnaeus), Lucilia coeruleiviridis (Macquart), Musca domestica 

(Linnaeus), and L. sericata were attracted to the vicinity of finfish substrate but avoided 

ovipositing in the substrate presently or previously inhabited by BSFL. In the present study, we 

further investigated effects of BSFL on other saprotrophic organisms. We hypothesized that 

BSFL presence will serve as a deterrent to its colonization by blow flies and alter microbial 

communities associated with decaying finfish substrate. 

3.2. Materials and methods     

3.2.1. Blow fly origins  

 Wild flies were collected on sunny days with no cloud cover by leaving 200 g of beef 

liver in small white Styrofoam bowl outside a greenhouse on the University of Maine campus in 

Orono. Liver was left uncovered for at least six hours. It was then removed and placed in the 

laboratory to inspect for eggs. Hatching larvae were reared in Styrofoam bowls on beef liver. 

Water was added to the bowls to prevent liver from drying. The bowls with larvae were 

maintained in a 36 by 20 by 38 cm plastic storage box (Sterlite, Townend, MA) containing 20 ml 

of vermiculite. After larvae completed their development, they emigrated from the bowls and 

pupated in vermiculite. Pupae were transferred into a 120 ml plastic cups with vermiculite. Cups 

were covered with a mesh screen to prevent escape of any emerging flies.  
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After six to seven days, the adult flies emerged. All flies were identified using two taxonomic 

keys (Triplehorn et al. 2005, Marshall, S.A., Whitworth, T. and Roscoe 2011). Lucilia sericata 

adults were isolated for further rearing. 

3.2.2. Blow fly rearing 

 Adult blow flies were kept in a 81 by 102 by 114 cm custom-made wooden frame screen 

cage in the greenhouse with ambient temperature at 261°C (mean standard deviation; range: 

24°C - 30°C) and 60% (42.5% - 69%) relative humidity. They were fed ad libitum by adding 80 

ml of granulated sugar, 100 g of fresh beef liver, and 120 ml of clean tap water to the cage as 

needed. The food and water were placed under a cardboard shelter to avoid direct sunlight. 

Larvae were reared in the same manner as described above for wild colony founders, but in the 

greenhouse in a 30 cm white parasitoid-resistant popup rearing and observation cage with vinyl 

window (BioQuip, Rancho Dominguez, CA) to prevent parasitoids and other pest flies from 

contaminating the colony.  

3.2.3. Black soldier fly origins and rearing 

The black soldier fly breeding colony was originally obtained from Symton Black Soldier 

Fly Solutions (College Station, TX). It was maintained in our laboratory following the 

procedures described in Chapter 2. Third instars were used to create experimental treatments 

described below. 

3.2.4. Substrate preparation 

Substrate for fly oviposition and development used in the present study consisted of 100 

g of Pacific whiting, Merluccius productus (Ayres), fillets (The Fishin' Company, Munhall, PA) 

and 10 g of pine shavings (AWF Pets Pick, Columbia, MD) mixed with tap water to achieve 

60% moisture content (w : w). The Pacific whiting filets were purchased frozen and processed in 
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laboratory by blending them at room temperature, then evenly spreading over a large tray, and 

placing in a soil drying room at 76°C for 24 hours. The dried filets were re-blended, weighed 

with an analytical scale (Ohause Co., Pine Brook, NJ), and mixed with pine shaving and water as 

described above. After that, prepared substrate was added to a 22 by 16 by 13 cm, 1892 ml 

GladWare container (GladWare, Oakland, CA) with a lid that had a 10 by 5 cm opening covered 

with an antivirus insect mesh (BioQuip Products, Rancho Dominguez, California). All treatments 

were maintained in the laboratory on a shelf under ambient temperature at 261°C (range: 24 - 

27.7°C) and 508% (range: 42.5 - 69%) relative humidity. The shelf was covered by a black 

plastic film to prevent desiccation.  

3.2.5. Experimental treatments 

 Unless specified otherwise, the following three treatments with five replications were 

tested in the present study: 1) substrate with BSFL feeding for two weeks and still present at the 

time of the experiment, 2) substrate with BSFL removed after one week of feeding, and 3) 

substrate with no BSFL that served as control. All samples were mixed gently for approximately 

ten seconds prior to removing for microbial community analysis. Baseline microbial activity and 

microbial community composition at the beginning of the experiment before BSFL introduction 

into experimental containers was determined by taking samples from each replicate of the 

control substrate only. 

3.2.6. Substrate colonization 

We tested colonization by L. sericata of the following: 1) substrate with BSFL feeding 

for two weeks and still present at the time of the experiment, 2) substrate with BSFL removed 

after one week of feeding, and 3) substrate with no BSFL to serve as our control. A total of five 

replicates were set up for each treatment. Treatments with BSFL were seeded with 50 third 
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instars. All treatments were maintained for two weeks before exposure to L. sericata oviposition 

in a greenhouse under ambient temperature at 26±1°C (range: 24°C - 30°C) and 60±6% (range: 

42.5% - 69%) relative humidity. For the duration of the experiment, 20 mL of tap water was 

added daily to all boxes to prevent desiccation. Trials were conducted in a greenhouse by 

introducing 25 gravid L. sericata to a 2 by 2 by 4 m wooden screened cage with six uncovered 

GladWare containers arranged following randomized complete block design for 24 hours. 

Twenty-five newly separated gravid L. sericata were used in every replication. After 24 hours, 

the GladWare containers were covered with screened lids, removed from cages, and maintained 

in the same greenhouse with daily additions of 20 mL of tap water until all L. sericata had 

pupated. The number of pupae were then counted. 

3.2.7. Blow fly larvae emigration 

This experiment was limited to two treatments, substrate with no BSFL and substrate that 

was fed on by BSFL for two weeks. A total of five replications were set up for each treatment. 

One hundred larvae were placed into each of the ten treatment boxes made of 22 by 16 by 13 cm, 

1892 ml GladWare containers (GladWare, Oakland, CA) without the lids. Boxes were 

individually placed into a 36 by 20 by 38 cm plastic storage box (Sterlite, Townend, MA) to 

collect emigrating larvae. Each treatment box was then individually placed into a 30 cm white 

parasitoid-resistant popup rearing and observation cage with vinyl window (BioQuip, Rancho 

Dominguez, CA) in the laboratory with ambient temperature at 261°C (range: 24 - 27.7°C) and 

508% (range: 42.5 - 69%) relative humidity. The number of larvae that emigrated from the 

treatment boxes were counted after 24 hours. 
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3.2.8. Determination of microbial activity using fluorescein diacetate 

Substrate samples were taken after one week immediately following BSFL removal from 

the containers assigned to Treatment 2, and at the end of the experiment. Following Schumacher 

et al. (2015), chemical reagents including potassium phosphate buffer (60 mM, pH 7.6), 

fluorescein diacetate (FDA) stock solution (1000 μgmL-1), and 0.2 ml chloroform were used. A 

total of 0.5 g of substrate was taken from each box and transferred into a 100-mL Erlenmeyer 

flask and mixed with 15 mL of 60mM potassium phosphate buffer (pH 7.6). Then, 0.2 mL of 

FDA stock solution (1000 μgmL-11) was added to the Erlenmeyer flask to initiate the 

hydrolyzing reaction. Control substrate samples were also prepared without adding FDA stock 

solution. All these samples with FDA and controls in Erlenmeyer flasks were closed with 

stoppers and shaken by hand for few minutes. These Erlenmeyer flasks of six replications were 

placed in an incubator with orbital shaker (with 100 rpm) at 30 °C for 20 min. After incubation, 

15 mL of chloroform were immediately added to the flask to stop the hydrolyzing of FDA by 

enzymes released by microbial functional groups in the substrate. The contents of Erlenmeyer 

flasks were then thoroughly shaken before transferring into 50-mL centrifuge tubes. Those tubes 

with samples were centrifuged at 2000 rpm for 5 minutes using an Eppendorf Centrifuge 5810 R 

(Fisher Scientific, Ottawa, Ontario). The clear supernatant solutions were filtered, and the yellow 

color intensity measured as absorbance at 490 nm using a UV-Vis spectrophotometer (Spectronic 

Instruments Genesys 20, Thermo Scientific Waltham, MA). The concentration of fluorescein in 

supernatant solutions of samples was determined using a calibration curve of 0–5 μgmL-1 FDA 

standards. 

 

 



38 
 

3.2.9. Determination of microbial activity using dilution plating  

To supplement the FDA analysis, estimates of populations of total culturable bacteria and 

fungi in black soldier fly substrates were assayed by dilution plating and subsequent counting of 

the number of colonies growing in Petri dishes. Samples were taken at the end of the experiment 

from the same containers as for the FDA analysis described above. For logistical reasons, the 

number of replications for all treatments was reduced to three by randomly omitting two out of 

five containers.  

Three separate 10 g subsamples (technical replicates) were then taken from each sample, 

independently processed, and plated as follows. Each 10 g subsample was added to 90 milliliters 

of 0.2% sterile water agar, stirred on magnetic stir plates for 5 min, and subsequently serially 

diluted onto 1/10-strength tryptic soy agar (TSA) for bacterial counts (dilutions of 107 and 108) 

and potato dextrose agar (PDA) containing 50 milligrams of chlortetracycline and 1 mL/L of 

tergitol for fungal counts (dilutions of 104 and 105) (Larkin 1993). Each dilution of each 

technical replicate was plated in duplicate. Bacterial plates were kept at 28°C for 3 days in a 

biological incubator (Percival Scientific, Peabody, MA) and fungal plates were incubated at 

22°C for 7 days in a closed cardboard box in the laboratory before colonies were enumerated. All 

microbial counts were recorded as the number of colony forming units (CFUs) per gram of 

substrate. An additional 10 g subsample of the substrate was removed from each technical 

replicate onto a 42 ml fluted aluminum weighing dish (Fisher Scientific, Ottawa, Ontario) and 

placed in a soil drying room at 76°C for 24 hours. The wet weight and dry weights were 

measured to account for the substrate moisture concentrations of each replicate. Drying the 

substrate was necessary to calculate the number of microbes per gram of dry substrate to correct 

for variation in the number of microbes at different moisture levels (Bernard 2012).  
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3.2.10. DNA sequencing 

 Taxonomic composition of microbial communities was estimated by sequencing DNA 

extracted from the experimental substrates.  On the seventh day, when BSFL were removed from 

the containers assigned to Treatment 2, and at the end of the experiment on the fourteenth day, 

samples were taken from each container. The extracted DNA was pooled for all replicates, 

producing composite samples for each of the treatments.  

DNA was extracted following manufacturer’s recommendation from 0.25 g of the 

substrate sample using MOBIO Laboratories, Inc, PowerLyzer® PowerSoil® DNA Isolation Kit 

(QIAGEN, Germantown, MD). A total of 750 µl of bead solution was added to a 0.1 mm glass 

bead tube and gently vortexed. Next, 60 µl of Solution C1 was added and the tube was inverted 

several times. The glass bead tubes were placed horizontally on a Vortex Genie 2 (Scientific 

Industries, Inc., Bohemia, NY), secured on a flat-bed vortex pad with tape, and vortexed at 

maximum speed for 10 minutes. The bead tubes were placed in an Eppendorf centrifuge 5424 

(Fisher Scientific, Ottawa, Ontario) at 10,000 x g and spun for 30 seconds at room temperature. 

The supernatant was transferred to a clean 2 ml collection tube and 200 µl of solution C3 was 

and vortexed briefly. After vortexing, it was incubated at 4°C for 5 minutes and then centrifuged 

for 1 minute at room temperature at 10,000 x g. Avoiding the pellet, up to 750 µl of the 

supernatant was placed into a clean 2 ml collection tube. Subsequently, 1200 µl of solution C4 

was added to the supernatant and vortexed for 5 seconds. After that, approximately 675 µl were 

loaded onto a spin filter and centrifuged it at 10,000 x g for 1 minute at room temperature. The 

flow through was discarded, an additional 675 µl of supernatant were added to the spin filter, and 

centrifuged at 10,000 x g for 1 minute at room temperature. We loaded the remaining 

supernatant onto the spin filter and centrifuged it at 10,000 x g for 1 minute at room temperature. 
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A total of 500 µl of solution C5 was added and centrifuged at room temperature for 30 seconds 

at 10,000 x g. The flow thorough was discarded and centrifuged again at room temperature at 

10,000 x g. The spin filter was placed in a clean 2 ml collection tube. Next, 100 µl of Solution 

C6 was added to the center of the white filter membrane and centrifuged at room temperature for 

30 seconds at 10,000 x g. Finally, the spin filter was discarded, and the DNA was placed in a 

freezer at -12°C. DNA was sent to Molecular Research (MRDNA) Company (Shallowater, TX), 

where a diversity assay was conducted using bTEFAP® illumina sequencing with 20k reads 

using the ITS primers, ITS1F-Bt1 (5′-CTTGGTCATTTAGAGGAAGTAA-3′) and ITS2R      

(5′-GCTGCGTTCTTCATCGATGC-3′) and 16s primers, 515F (5′- GTGCCAGCMGCCGC 

GGTAA -3′) and 806R (5′- GGACTACHVGGGTWTCTAAT -3′). 

3.2.11. Data analyses 

 To calculate the proportion of boxes in each treatment colonized by L. sericata pupae, a 

Chi-square test was conducted. For the number of pupae in colonized substrates for each 

treatment, an ANOVA. A T-test was conducted for the number of L. sericata larvae remaining in 

two treatments.  

The number of microorganisms in a substrate sample was estimated by counting the 

number of CFUs at dilutions of 107, 108 for bacteria, and 104, 105 for fungi. The higher dilution 

counts for example (108), were multiplied by a dilution factor of 10 and averaged with the lower 

dilution counts (107) for both fungi and bacteria. Number of colonies as CFU per gram of wet 

substrate values were weight corrected to represent the number of colonies as CFU per gram of 

dry substrate. That was done by dividing dry weight by wet weight to obtain a weight correction 

factor, and then multiplying the number of CFUs per gram of wet substrate by that weight 

correction factor. FDA values were converted to fluorescein concentration (µg/ml) and were 
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weight corrected in the same way. One-way ANOVAs were conducted to compare weight-

corrected numbers of CFUs among the treatments. Mean separation was carried out with Tukey’s 

honestly significant difference (HSD) tests (P < 0.05). Repeated measures ANOVA was used to 

analyze the FDA data. When the interaction between treatment and time was not significant, a 

Tukey HSD was conducted on the overall means (P < 0.05). All analyses were performed using 

the Statistical Analysis Systems R software (R free software, Cary, North Carolina). Normality 

was tested using Shapiro–Wilk test, and skewed data was transformed by cube root 

transformation. 

 Operational taxonomic units (OTUs) assigned to the same genus and species were 

merged into a single composite taxonomic unit, with the number of reads added together (Soh et 

al. 2013, He et al. 2015, Tang et al. 2015). After that, genera and species were arranged in a 

descending order based on the number of reads. Subsequent discussion was limited to the top 20 

taxonomic units. Venn diagrams were produced using Venny software package (Oliveros 2015) 

to identify taxa unique to each treatment.  

3.3. Results 

3.3.1. Substrate colonization  

Results suggested that introducing BSFL into the substrate resulted in approximately a 

ten-fold decrease in the number of encountered L. sericata pupae. The difference among the 

treatments was marginally significant (df=2,27, F=3.03, P=0.0651) (Figure 3.1). The proportion 

of boxes being colonized by blowfly pupae in each treatment was 40% (control), 50% (BSF), 

and 30% (SBSF). The Chi-square test showed that they were not significantly different among 

the treatments (χ2=0.83, P=0.6592).  
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Figure 3.1. Mean number of green blow fly Lucilia sericata pupae in colonized substrate. Means 
followed by the same letter were not significantly different from each other (HSD test, P > 0.05). 
Experimental treatments are: Control (finfish substrate without BSFL), BSF (finfish substrate 
with BSFL feeding for fourteen days), and SBSF (finfish substrate with BSFL feeding for seven 
days and then removed). 

3.3.2. Blow fly larvae emigration 

 For the short-term behavioral response, no L. sericata larvae were found outside of 

substrate that did not have any BSFL. All 100 initially released larvae were recovered from each 

of the test arenas. In the same time, less than one-third of blow fly larvae remained within the 

substrate inhabited by black soldier fly larvae. The difference in the number of emigrating larvae 

between the treatments was highly significant (df=4, T=12.66, P=0.0002) (figure 3.2). 

 
Figure 3.2. Mean number of green blow fly Lucilia sericata larvae remaining in substrate with 
and without black soldier fly larvae (BSFL). 

a 

b b 
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3.3.3. Determination of microbial activity using fluorescein diacetate 

 

Figure 3.3. The fluorescein concentration indicates the amount of esterase activity on day 0, 7 
and 14 when black solider fly larvae fed during experimental treatments: Control (finfish 
substrate without BSFL), BSF (finfish substrate with BSFL feeding for fourteen days), and SBSF 
(finfish substrate with BSFL feeding for seven days and then removed). Horizontal line shows 
baseline concentration measured at the Control samples in the beginning of the experiment. Bars 
followed by the same letter are not significantly different from each other. 

The fluorescein concentration was significantly different among the treatments (df= 2,12, 

F= 3.882, P= 0.050). Therefore, the esterase activity was significantly influenced by the different 

treatments. Meanwhile, there was no significant time effect. In other words, the treatments did 

not show different esterase activity over time (df= 1, F= 0.333, P= 0.575). The treatment by time 

interaction was not significant (df= 2, F= 0.501, P= 0.618). Therefore, differences among the 

treatments were consistent throughout the experiment. Tukey HSD test conducted on the overall 

means indicated that the control and BSF treatment were significantly different from each other, 

but not from the SBSF treatment (Figure 3.3).   
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3.3.4. Determination of microbial activity using dilution plating  

3.3.4.1 Fungi 

 

Figure 3.4. Average number of fungal colony forming units (CFUs) observed for experimental 
treatments: Control (finfish substrate without BSFL), BSF (finfish substrate with BSFL feeding 
for fourteen days), and SBSF (finfish substrate with BSFL feeding for seven days and then 
removed). Average number of CFUs were calculated with the concentration of 104 CFU per 
gram of substrate multiplied by 10 (dilution factor), averaged with the concentration of 105 CFU 
per gram of substrate, and dry weight corrected. Bars followed by the same letter are not 
significantly different from each other.  

The average number of fungal colony forming units was significantly influenced by the 

treatment (df= 2,51, F=4.335, P=0.01). The Tukey HSD test suggested that the SBSF treatment 

had significantly more fungi than control, but there was no difference between the control and 

BSF treatment. No significant difference was found between the BSF and SBSF treatment 

(Figure 3.4).  
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3.3.4.2. Bacteria 

 

Figure 3.5. Average number of bacterial colony forming units (CFUs) observed for experimental 
treatments: Control (finfish substrate without BSFL), BSF (finfish substrate with BSFL feeding 
for fourteen days), and SBSF (finfish substrate with BSFL feeding for seven days and then 
removed). Average number of CFU’s were calculated with the concentration of 107 CFU per 
gram of substrate multiplied by 10 (dilution factor), averaged with the concentration of 108 CFU 
per gram of substrate and dry weight corrected. Bars followed by the same letter are not 
significantly different from each other. 

The average number of bacterial CFUs was significantly influenced by the treatment (df= 

2,51, F=16.87, P=0.0001). Both BSF and SBSF treatments had significantly fewer bacteria than 

the control, but they were not different from each other (Tukey HSD test, P<0.05) (Figure 3.5). 
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3.3.5. Taxonomic composition of microbial communities 

3.3.5.1. Fungi 

 

Figure 3.6. Similarities between fungal taxa observed on day 7 (A) and day 14 (B) for experimental treatments: Control (finfish 
substrate without BSFL), BSF (finfish substrate with BSFL feeding for fourteen days), and SBSF (finfish substrate with BSFL feeding 
for seven days and then removed).
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Presence of BSFL affected fungal composition of substrates, although there were 

similarities among the treatments. On Day 7, 21.1% of fungal taxa were unique in the control, 

while 36.8% were ubiquitous (Figure 3.6 A). On Day 14, the number of taxa unique to the 

control increased to 32%, while the number of ubiquitous taxa decreased to 20% (Figure 3.6 B). 

The top five fungal families observed across all treatments for Days 7 and 14 were: 

Aspergillaceae, Debaryomycetaceae, Lichtheimiaceae, Liposcelidae, Microascales, Pichiaceae, 

Rhizopodaceae, Saccharomycetales, Taphrinaceae, and Tremellales (Table 3.1). 

 Lichtheimiaceae, Taphrinaceae and Rhizopodaceae were only observed in the Control on 

Days 7 and 14, Microascales – in the BSF treatment on Day 14, and Liposcelidae – in the SBSF 

treatment on Day 14. All other families were more consistent across the treatments and days, 

although their relative abundances varied (Table 3.1). 

 Aspergillus oryzae, Candida rugosa, and Trichosporon asahii were observed in all the 

treatments. Lichtheimia corymbifera, Penicillium citrinum, Penicillium griseofulvum, Rhizopus 

oryzae, Saccharomycopsis fibuligera and Taphrina johansonii were unique to the Control, while 

Scopulariopsis sp. was unique in the BSF treatment and Liposcelis decolor in SBSF. Pichia 

kudriavzevii, and Candida tropicalis were both found in BSF and SBSF treatments, while 

Aspergillus ochraceus was found in the Control and SBSF treatment (Table 3.1). 

 Species composition was generally consistent throughout the experiment, with a few 

exceptions (Table 3.1). Malassezia restricta was the most abundant fungus in fresh substrate 

without larvae. Aspergillus oryzae became prominent on subsequent sampling dates regardless of 

treatment. Scopulariopsis sp., was rare on earlier dates, but became the most dominant species in 

the BSF treatment on Day 14. Somewhat similarly, Liposcelis decolor became the most abundant 

fungus in the SBSF treatment on Day 14, while being completely absent from all other samples. 
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3.3.5.2. Bacteria 

 

Figure 3.7. Similarities between bacterial taxa observed on day 7 (A) and day 14 (B) for experimental treatments: Control (finfish 
substrate without BSFL), BSF (finfish substrate with BSFL feeding for fourteen days), and SBSF (finfish substrate with BSFL feeding 
for seven days and then removed).
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There was a considerable difference between the control and the two treatments that 

contained soldier fly larvae. On Day 7, 35.7% of taxa were unique to the control, and 35.7% of 

taxa were shared between BSF and SBSF, but absent from the control. 14.3% of taxa were 

ubiquitous among the treatments, and only 3.6% of taxa was shared between the control and the 

BSF (Figure 3.7 A). Similarities increased on Day 14, but not by much (Figure 3.7 B). 

The top five bacterial families observed across all treatments for Days 7 and 14 were: 

Bacillaceae, Brevibacteriaceae, Corynebacteriaceae, Micrococcaceae, Planococcaceae, and 

Staphylococcaceae (Table 3.2). 

For the Control treatment, Staphylococcaceae and Micrococcaceae had the highest 

number of reads on Days 7 and 14. On Day 7, Planococcaceae first appeared in the BSF 

treatment and became relatively abundant on Day 14 in all the treatments. All other families 

remained the same, but their relative abundance changed. In the BSF treatment, all families 

remained the same between Days 7 and 14. More Planococcaceae were observed on Day 14 

while on Day 7 in the BSF and SBSF treatments Staphylococcaceae had the highest number of 

reads. In the SBSF treatment on Day 7 all families remained the same as in the BSF treatment. 

On Day 14 Enterobacteriaceae first appeared replacing Planococcaceae while all other families 

remained the same, but their relative abundance changed. 

Some bacterial species were unique to a particular treatment, while others appeared in all 

treatments. Bacillus szutsauensis, Corynebacterium variabile, Pantoea agglomerans, Shigella 

sonnei, and Vagococcus lutrae were unique to the control samples, Bacillus sp., 

Nosocomiicoccus ampullae, and Ornithinibacillus sp. were unique to the BSF treatment, and 

Proteus myxofaciens and Providencia rustigianii were unique to the SBSF treatment.   
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Species composition was generally consistent among the days of the experiment, with a 

few notable exceptions (Table 3.2). Bacillus cytotoxicus was the most abundant bacteria in the 

fresh substrate without any larvae added. Staphylococcus sciuri was prominent on Day 7 for all 

treatments while Sporosarcina sp. had a relative low abundance. On Day 14 Sporosarcina sp. 

replaced Staphylococcus sciuri in the BSF and SBSF treatment. In the control treatment for both 

days, Staphylococcus epidermidis and Staphylococcus cohnii were not present in the BSF and 

SBSF treatment including the unique species above. Species that were only observed in the BSF 

and SBSF treatment on Days 7 and 14 were: Bacillus cytotoxicus, Brachybacterium 

paraconglomeratum, Brevibacterium albus, Brevibacterium luteolum, Brevibacterium picturae, 

Corynebacterium sp., Jeotgalicoccus halotolerans, Natronobacillus azotifigens, and 

Sporosarcina soli. On Day 14, some species that first appeared and were absent from all other 

samples were: Bacillus sp., Nosocomiicoccus ampullae, and Ornithinibacillus sp. in the BSF 

treatment while in the SBSF treatment, Proteus myxofaciens and Providencia rustigianii.
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Table 3.1. Top 20 most abundant fungal species based on sequencing analyses of substrates with and without black soldier fly larvae 
for experimental treatments: Control (finfish substrate without BSFL), BSF (finfish substrate with BSFL feeding for fourteen days), 
and SBSF (finfish substrate with BSFL feeding for seven days and then removed). 

FUNGI 
  DAY 0   DAY 7    DAY 14 

Treatment # of 
Reads Species (Family1)   

# of 
Reads Species (Family1)   

# of 
Reads Species (Family1) 

  16556 Malassezia restricta (M1)   45603 Aspergillus oryzae (A2)   11388 Aspergillus oryzae (A2) 
  10497 Saccharomycopsis fibuligera (S3)   14748 Lichtheimia corymbifera (L1)   7646 Penicillium citrinum (A2) 
  10117 Trichaptum abietinum (P4)   4887 Aspergillus ochraceus (A2)   2404 Trichosporon asahii (T3) 
  9933 Cyberlindnera fabianii (P1)   3080 Penicillium griseofulvum (A2)   1570 Candida rugosa (S2) 
  6394 Saccharomyces bayanus (S1)   2158 Trichosporon asahii (T3)   1126 Taphrina johansonii (T1) 

  6325 Candida tropicalis (D)   2084 Rhizopus oryzae (R)   610 Saccharomycopsis 
fibuligera (S3) 

  3342 Cladosporium 
cladosporioides (C1)   1674 Penicillium citrinum (A2)   514 Penicillium griseofulvum (A2) 

  2704 Kodamaea ohmeri (M2)   1612 Candida rugosa (S2)   309 Lichtheimia corymbifera (L1) 
Control  1860 Perenniporia subacida (P4)   1033 Rhizopus stolonifer (R)   154 Aspergillus ochraceus (T3) 

  1532 Cladosporium sp. (C1)   1036 Mucor plumbeus (M5)   146 Scopulariopsis sp. (M4) 
  1517 Malassezia globosa (M1)   590 Saccharomycopsis fibuligera  (S3)   117 Candida tropicalis (D) 
  1328 Geomyces pannorum (P6)   564 Aspergillus sp. (A2)   111 Hymenochaete spreta (H2) 
  1315 Clavispora lusitaniae (M2)   387 Scopulariopsis sp. (M4)   98 Lotharella globosa (E) 
  1156 Phialophora sp. (H1)   359 Lichtheimia ramosa (L1)    88 Clavispora lusitaniae (M2) 
  931 Aspergillus oryzae (A2)    235  Eurotium sp. (A2)         
  891 Rhizomucor pusillus (L1)                 

  754 Rhodosporidium 
sphaerocarpum (S4)                 

          6930 Trichosporon asahii (T3)   11057 Scopulariopsis sp. (M4) 
          3823 Aspergillus oryzae (A2)   5005 Aspergillus oryzae (A2) 
          1713 Candida rugosa (S2)   4570 Trichosporon asahii (T3) 
          1455 Pichia kudriavzevii (P3)   1203 Pichia kudriavzevii (P3) 
          493 Candida tropicalis (D)   1011 Candida rugosa (S2) 
          401 Rhizopus oryzae (R)   711 Candida tropicalis (D) 
    BSF     305 Scopulariopsis sp. (M4)   617 Kernia pachypleura (M3) 
          234 Aspergillus ochraceus (A2)   347 Ceriporia purpurea (P2) 
          158 Lichtheimia corymbifera (L1)   167 Hydnellum scrobiculatum (T2) 
          98 Penicillium citrinum (A2)   139 Lichtheimia corymbifera (L1) 
          82 Saccharomycopsis fibuligera (S3)   122 Mycena maurella (T4) 
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Table 3.1 Continued. 
          57 Kernia pachypleura (M3)   120 Phlebia lindtneri (C2) 
          9309 Aspergillus oryzae (A2)   27638 Liposcelis decolor (L2) 
          6158 Trichosporon asahii (T3)   4911 Trichosporon asahii (T3) 
          2307 Candida rugosa (S2)   4674 Aspergillus oryzae (A2) 
          1165 Candida tropicalis (D)   1821 Candida tropicalis (D) 
          1092 Aspergillus ochraceus (A2)   1818 Candida rugosa (S2) 
    SBSF     705 Pichia kudriavzevii (P3)   1664 Pichia kudriavzevii (P3) 
          342 Saccharomycopsis fibuligera (S3)   574 Cyberlindnera fabianii (P1) 
          258 Lichtheimia corymbifera (L1)   506 Amanita muscaria (A1) 
          209 Kodamaea ohmeri (M2)   263 Malassezia restricta (M1) 
          131 Penicillium griseofulvum (A2)   208 Scopulariopsis sp. (M4) 
          94 Clavispora lusitaniae (M2)   208 Steccherinum sp. (P5) 
          92 Penicillium citrinum (A2)        

1(A1) – Amanitaceae, (A2) – Aspergillaceae, (C1) – Cladosporiaceae, (C2) – Corticiaceae, (D) – Debaryomycetaceae, (E) – Eukaryota, (H1) – Herpotrichiellaceae, (H2) – 
Hymenochaetaceae, (L1) – Lichtheimiaceae, (L2) – Liposcelidae, (M1) – Malasseziaceae, (M2) – Metschnikowiaceae, (M3) – Microascaceae, (M4) – Microascales, (M5) – 
Mucoraceae, (P1) – Phaffomycetaceae, (P2) – Phanerochaetaceae, (P3) – Pichiaceae, (P4) – Polyporaceae, (P5) – Polyporales, (P6) – Pseudeurotiaceae, (P6) – Rhizopodaceae, 
(S1) – Saccharomycetaceae, (S2) – Saccharomycetales, (S3) – Saccharomycopsidaceae, (S4) – Sporidiobolales, (T1) – Taphrinaceae, (T2) – Thelephoraceae, (T3) – Tremellales, 
(T4) – Tricholomataceae
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Table 3.2. Top 20 most abundant bacterial species based on sequencing analyses of substrates with and without black soldier fly 
larvae for experimental treatments: Control (finfish substrate without BSFL), BSF (finfish substrate with BSFL feeding for fourteen 
days), and SBSF (finfish substrate with BSFL feeding for seven days and then removed).   

BACTERIA 
  DAY 0   DAY 7    DAY 14 

Treatment # of 
Reads Species (Family1)   

  
# of 

Reads Species (Family1)   
# of 

Reads Species (Family1) 

Control  

95606 Bacillus cytotoxicus (B1)   168310 Staphylococcus sciuri (S)   37404 Staphylococcus sciuri (S) 
15619 Bacillus szutsauensis (B2)   15336 Staphylococcus epidermidis (S)   20490 Arthrobacter creatinolyticus  (M1)  
7434 Bacillus subtilis (B1)   10109 Staphylococcus cohnii (S)   17665 Sporosarcina sp. (P2) 
3209 Staphylococcus sciuri  (S)    5285 Arthrobacter creatinolyticus (M1)   6119 Staphylococcus epidermidis (S) 

2042 Macrococcus equipercicus (S)   2781 Staphylococcus saprophyticu (S)   5187 Corynebacterium 
brevibacterium stationis (C) 

1131 Weissella 
paramesenteroides (S)   1676 Corynebacterium 

spheniscorum (C)   4392 Sporosarcina pasteurii  (P2) 

760 Pantoea agglomerans (L)   1405 Bacillus cereus 
subsp.Cytotoxis  (B1)   3716 Staphylococcus cohnii (S) 

697 Sphingobacterium sp. (E1)   1305 Corynebacterium 
brevibacterium stationis (C)   3427 Gracilibacillus bigeumensis  (B1) 

530 Planococcus spp. (P2)   701 Pantoea agglomerans (E1)   3288 Cosenzaea proteus 
myxofaciens (E1) 

401 Sporosarcina sp.  (P2)   623  Shigella sonnei  (E1)   2760 Vagococcus lutrae (E2) 
379 Bacillus acidicola (B1)   618 Corynebacterium variabile (C)   1370 Atopostipes spp. (C) 

377 Bacillus funiculus (B1)   561 Staphylococcus spp. (S)   1254 Bacillus cereus subsp. 
Cytotoxis  (B1) 

323 Ochrobactrum 
pseudintermedium (B4)   473 Sporosarcina sp. (P2)   930 Bacillus acidicola (B1) 

319 Bacillus fastidiosus  (B1)   457 Bacillus szutsauensis (B2)   636 Corynebacterium 
spheniscorum (C) 

299 Phyllobacterium trifolii (P1)              
292 Bacillus sp. (B1)                 
235 Shigella sonnei (E1)                 

221 Corynebacterium 
brevibacterium stationis (C)                 

  
        91568 Staphylococcus sciuri (S)   30686 Sporosarcina sp. (P2) 

        29466 Corynebacterium 
brevibacterium stationis (C)   18696 Staphylococcus sciuri (S) 

  
        6572 Jeotgalicoccus halotolerans (S)   15188 Corynebacterium sp.  (C)  
        3950 Brevibacterium picturae  (B3)   12356 Sporosarcina pasteurii  (P2) 
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Table 3.2 Continued. 

 

        2103 Bacillus cereus subsp. 
Cytotoxis (B1)   11088 Jeotgalicoccus halotolerans (S) 

        2055 Brevibacterium albus  (B3)   7275 Gracilibacillus bigeumensis  (B1) 
        671 Staphylococcus spp. (S)   1974 Brevibacterium picturae  (B3) 
  BSF     663 Brevibacterium luteolum (B3)   1945 Bacillus sp. (B1) 
        524 Sporosarcina sp. (P2)   1852 Nosocomiicoccus ampullae  (S) 
        500 Arthrobacter creatinolyticus  (M1)   1105 Arthrobacter creatinolyticus  (M1) 
        476 Staphylococcus saprophyticus (S)   1094 Bacillus cytotoxicus (B1) 
        448 Gracilibacillus bigeumensis (B1)   832 Sporosarcina soli  (P2) 

        430 Brachybacterium 
paraconglomeratum (D)   827 Cosenzaea proteus 

myxofaciens (E1) 

        417 Cosenzaea proteus 
myxofaciens (E1)   777 Natronobacillus azotifigens (B1) 

        342 Corynebacterium 
spheniscorum (E1)   711 Ornithinibacillus sp. (B1) 

          67788 Staphylococcus sciuri (S)   48371 Sporosarcina sp. (P2) 

   

        20896 Corynebacterium 
brevibacterium stationis (C)   24640 Gracilibacillus bigeumensis (B1) 

        15555 Jeotgalicoccus halotolerans  (S)    14558 Jeotgalicoccus halotolerans (S) 

        2418 Bacillus cereus subsp. 
Cytotoxis (B1)   12302 Staphylococcus sciuri (S) 

        1920 Brevibacterium picturae (B3)   10405 Corynebacterium sp.  (C)  
        1331 Sporosarcina pasteurii  (P2)   4273 Sporosarcina pasteurii  (P2) 
        1305 Sporosarcina sp (P2)   1555 Proteus myxofaciens (E1) 
        1210 Brevibacterium albus (B3)   1243 Providencia rustigianii  (E1) 
  SBSF     1090 Staphylococcus spp. (S)   1054 Arthrobacter creatinolyticus (M1) 
        783 Gracilibacillus bigeumensis (B1)   965 Sporosarcina soli  (P2) 
        640 Arthrobacter creatinolyticus  (M1)   902 Bacillus cytotoxicus (B1) 

        461 Cosenzaea proteus 
myxofaciens (E1)   824 Natronobacillus azotifigens (B1) 

        404 Staphylococcus saprophyticus (S)   592 Brevibacterium picturae  (B3) 

        308 Brachybacterium 
paraconglomeratum (D)   582 Atopostipes spp. (C) 

        283 Bacillus acidicola  (B1)         
 
          277 Brevibacterium luteolum (B3)         
 

 
      274 Corynebacterium 

spheniscorum (C)         
1(B1) – Bacillaceae, (B2) – Bacillidae, (B3) – Brevibacteriaceae, (B4) – Brucellaceae, (C) – Carnobacteriaceae, (D) – Dermabacteraceae, (E1) – Enterobacteriaceae, (E2) – 
Enterococcaceae, (L) – Leuconostocaceae, (M1) – Micrococcaceae, (P1) – Phyllobacteriaceae, (P2) – Planococcaceae, (S) - Staphylococcacea
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3.4. Discussion 

Our results demonstrated that BSFL make substrates less suitable for L. sericata larvae. 

In an earlier study, there was a 94-100% reduction of M. domestica production and a 97% 

reduction in oviposition when BSFL fed on poultry manure in the laboratory (Bradley and 

Sheppard 1984). However, M. domestica readily colonized substrates previously inhabited by 

BSFL, which was different from our study.  Also, Bradley and Sheppard (1984) hypothesized 

that severely reduced number of M. domestica larvae and pupae in BSFL-inhabited substrate was 

caused by oviposition-deterring allomone produced by BSFL. Although reduced oviposition 

cannot be ruled out for L. sericata, rapid emigration of its larvae from the BSFL-infested 

substrate showed the existence of an alternative antixenotic mechanism for this species. 

Considering there is evidence that blow flies are capable of developing on substrate at different 

stages of decay and also produce antimicrobial peptides (Tomberlin et al. 2017) just as BSFL 

(Park et al. 2015, Elhag et al. 2017), it is interesting  why L. sericata is less competitive 

compared to BSF.  

Antagonism with L. sericata suggests that BSFL not only have the potential to be used a 

value-added feed but have the capability of deterring pest flies with their presence. From a 

veterinary perspective, BSFL could discourage blow flies where livestock operations contain 

excess manure and injured livestock that attract Calliphoridae flies that cause myiasis (Tomberlin 

et al. 2017). BSFL could consume the waste while simultaneously preventing pestiferous flies 

from ovipositing.  

Possible explanations of the observed effect include depletion of nutrients due to 

consumption, repellant chemicals produced by BSFL either through their frass or salivary glands, 

or alteration of microbial biota by BSFL that are not favorable for blow fly larvae (Bradley and 
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Sheppard 1984, Zurek and Nayduch 2016). It is also possible that they alter the chemical 

composition of their substrates. When reared on decaying vegetal and food scrap waste, BSFL 

increased nitrogen mineralization, a process where organic nitrogen is converted to an inorganic 

form that is utilized by plants, by up regulating the concentration of ammonium in the leachate 

produced (Pepper et al. 2015). They also facilitated recovery of nitrate present in the leachate via 

nitrate/nitrite ammonification. Therefore, the nitrogen present in the BSFL leachate could be 

used as fertilizer for crops (Green and Popa 2012). Excess inorganic nitrogen is not an ideal 

environment for saprophages like L. sericata (Brown 1938). 

Secretions produced by BSFL can also contain antimicrobial peptides that reduce 

microbial numbers. Park et al. (2014) demonstrated that BSFL suppressed Escherichia coli, 

Bacillus subtilis and methicillin resistant Staphylococcus aureus. Choi et al. (2012) reported that 

BSFL had Gram-negative specific antibacterial activities including Klebsiella pneumonia, 

Neisseria gonorrhoeae, and Shigella sonnei. A molecule responsible for reductive activity 

against Gram-positive bacteria was identified as a defensin peptide, which is in the first line of 

host defense against pathogenic infections (Tu et al. 2015).  

In our study, microbial activity measured by FDA was significantly lower in the substrate 

inhabited by BSFL than in the control substrate both on Day 7 and Day 14 of the experiment 

(Figure. 3.3). Results were inconclusive for the substrate from which BSFL were removed after 

seven days of feeding, which was different neither from control nor from the substrate still 

inhabited by BSFL (Figure. 3.3). Plating data revealed increase in fungal abundance in the 

substrate from which BSFL were removed (Figure. 3.4) but decline in bacterial abundance in 

both BSFL treatments (Figure. 3.5). Thus, overall decline in microbial activity detected by the 

FDA analyses was most likely driven by decline in the number of bacteria. 
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Several odors produced by bacteria attract different species of Calliphoridae species and 

have been described in numerous studies because of their veterinary importance. Indole 

produced by E. coli, lactic acid produced by Lactobacillus acidophilus, ammonia and putrescine 

produced by Proteus mirabilis attract L. sericata, L. cuprina (Wiedemann), and Calliphora 

erythrocephala (Meigen). Cochliomyia spp. (Townsend) and Chrysomya spp. (Robineau-

Desvoidy) are attracted by p-Cresol produced by Lactobacillus spp., butyric acid produced by 

pig cecal bacteria, and phenol produced by marine bacteria (Hepburn and Nolte 1943, Cragg 

1950, Urech et al. 2004, Ma et al. 2012). The majority of saprophytic bacteria associated with L. 

sericata and L. cuprina that are found in organic matter they consume belong to the phyla 

Proteobacteria, Firmicutes, and Bacteroidetes. P. mirabilis has been shown to induce a greater 

incidence of oviposition by L. sericata (Ma et al. 2012). Therefore, it is possible that altered 

microbial communities in substrates inhabited by BSFL could have been at least partially 

responsible for their lower suitability to L. sericata. 

DNA sequencing analyses revealed diverse and dynamic microbial communities that 

were different among the treatments and between the days of sampling. Larger, replicated studies 

are necessary to elucidate their ecology and relationships to BSFL . It is worth noting, however, 

that some species were present in the control samples, but absent from both substrates containing 

BSFL. It is possible that those were directly or indirectly suppressed by BSFL or were gut 

associated microbes that facilitate with feeding. Many of those are common and may be 

economically significant. 

The fungal species observed in the fin fish substrate that were unique to the control 

treatment but absent from the BSF and SBSF treatments were found to be both pathogenic and 

saprophytic. Penicillium citrinum is a commonly occurring filamentous fungus with a worldwide 
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distribution. It can be found in various substrates such as soil, cereals, spices and indoor 

environments. P. citrinum produces a mycotoxin citrinin, classified as a nephrotoxin, a substance 

that inhibits cells within animal kidneys if ingested (Houbraken et al. 2010). Even though P. 

citrinum is recognized to be ubiquitous in the environment, in rare cases it has been reported to 

cause human infection such as: keratitis, inflammation of the cornea, urinary tract infection, and 

pneumonia (Mok et al. 1997). 

Penicillium griseofulvum is a blue mold, associated with stored apples, corn, wheat, 

barley, flour, walnuts, and meat products. It is considered an important postharvest disease of 

pome fruit. It can produce both detrimental and beneficial secondary metabolites such as patulin, 

a mycotoxin that can cause acute toxicity when consumed by animals and humans. Recently it 

has the potential to be used in cancer chemotherapy and suppress the hepatitis C virus in vitro 

(Banani et al. 2016).  

Rhizopus oryzae is a saprotroph found in soil, dung, and rotting vegetation. R. oryzae 

have been used for centuries as fermented food starters in tempeh and other Asian foods. Species 

in this group have been known to act as opportunistic, invasive animal and human pathogens that 

cause deadly infections in immunocompromised individuals (Gryganskyi et al. 2010).  

Saccharomycopsis fibuligera is found worldwide in high starch substrates such as cereal-

based fermented foods and beverages (Cronk et al. 1977). It has also been used to break down 

potato processing wastes to produce yeast cells for cattle feed (Lachance and Kurtzman 2011).  

Taphrina johansonii are parasitic yeast-like fungi that cause yellow swelling of carpels, 

known as aspen tongue, on the common aspen Populus tremula (Linnaeus), where they are 

normally found (Petrýdesová et al. 2013).  
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Lichtheimia corymbifera is a thermophilic mold found in soil, decaying plants and food 

with a worldwide distribution. It has been reported to be responsible for 5% of zygomycosis, an 

infection caused by fungi in the zygomycota phylum that occur on the face or nose and mouth 

cavity on humans and animals (Garcia-Hermoso et al. 2009, LIFE 2018). 

The bacterial species observed in the finfish substrate that were unique to the control 

treatment but absent from BSF and SBSF treatments were mostly saprophytic. Bacillus, a genus 

of gram-positive, rod-shaped bacteria in the phylum Firmicutes and are ubiquitous in nature. 

They can be obligate aerobes or facultative anaerobes. Depending on the environment, they can 

produce endospores and remain dormant till conditions are habitable (Pepper et al. 2015). The 

species Bacillus szutsauensis is reported as a dominant species found in the gut microbiota of the 

Asian fish Labeo rohita (Hamilton), commonly used in aquaculture (Ghori et al. 2018) 

The genus Corynebacterium includes a diverse collection of pathogenic and non-

pathogenic species, that have been found in a variety of habitats such as soil, plant material, 

waste water, and dairy products. Corynebacterium variabile is non-pathogenic, Gram-positive, 

and are nonmotile rods part of a complex microflora on the surface of smear-ripened cheeses that 

contribute to the development of flavor and texture during cheese ripening (Schröder et al. 2011). 

Pantoea agglomerans, is a ubiquitous bacterium associated with plants as a symbiont or 

mutualist, and is found in animal or human feces. P. agglomerans is normally not pathogenic but 

can cause opportunistic human infections produced by wounds from vegetation. It has also been 

identified to a cause plant diseases in a variety of cultivable plants, animal diseases, and hospital-

acquired infections on immunocompromised individuals (Dutkiewicz et al. 2016).  
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Shigella sp. are Gram-negative, nonmotile and non-spore-forming rod-like bacteria that 

can grow in aerobic and anaerobic conditions. Shigella sonnei can cause a diarrheal disease when 

ingested by humans called shigellosis, and is the most common species in the United States to 

cause this (Scallan et al. 2011, Centers for Disease Control and Prevention 2017).  

Vagococcus lutrae is a Gram-positive single celled, non-spore-forming motile, 

nonpathogenic bacterium that is considered a rare bacterial species. It was described when 

isolated from the common otter’s blood, liver, lungs and spleen, and has also been isolated from 

the intestine of the largemouth bass. The first human skin infection case was recently reported as 

a food-mediated acquisition caused by poor hygiene (Lawson et al. 1999, Garcia et al. 2016). 

 Overall, our results confirm that BSFL have antibiotic properties affecting other 

organisms. These properties may have important implications for pest management in a variety 

of situations that involve decaying materials. Furthermore, identifying individual factors 

responsible for the observed antibiosis may provide new biologically active ingredients for 

pharmaceutical and pest control industries.  
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CHAPTER 4 

4. TEMPORARY DYNAMICS OF WEIGHT GAIN BY BLACK SOLDIER FLY LARVAE 

4.1. Introduction 

 Black soldier fly, Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) (BSF) is a 

beneficial fly species that can be used for remediating biological waste. Their larvae (BSFL) are 

saprophagous and can colonize a wide variety of organic material at different stages of decay 

(Tomberlin et al. 2005, Martínez-Sánchez et al. 2011, Banks et al. 2014). Recent interest to use 

BSFL for waste management has been drawn from the increase in the amounts of livestock 

manure, pre- and post-consumer municipal solid waste, and the increased demand for high 

quality fish meal, all of which has led to environmental and health risks (USDA 2005, 

Nellemann et al. 2009, Hribar 2010, Love et al. 2015, Gunders 2017). BSFL show a great 

promise for mass-rearing operations on both small and large scale because they are rich in 

nutrients, grow at a fast rate, convert organic wastes to vermicompost while suppressing human 

pathogens and pests, and contain a number of potentially valuable biologically active compounds 

(Choi et al. 2012a). The prepupal stage contains between 42 – 45% protein and 31 – 35% fat 

(Newton et al. 1977, Sheppard 1993, Craig Sheppard et al. 1994); therefore, they can be 

converted into beneficial end products such as feed, oil, and fertilizer (Čičková et al. 2015, 

Henry et al. 2015, Barroso et al. 2017, Wang and Shelomi 2017). They can provide a suitable 

replacement for conventional fat and protein sources and can be fed to animals such as poultry 

(Gayatri and Madhuri 2013), swine (Newton et al. 1977), catfish, tilapia (Bondari and Sheppard 

1981), and rainbow trout (St-Hilaire, Sheppard, et al. 2007).  
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When larvae of Dipteran species enter a post-feeding stage known as the prepupal phase 

of their development, they emigrate from their feeding substrate and search for suitable substrate 

for pupation to protect themselves from predation and desiccation (Lima et al. 2009). BSF 

prepupae have slight morphological changes compared to larvae in the feeding stage. Their 

bodies change color from cream white to a black color and their labrum acquires a downward 

bend that acts as a hook to assist with pulling them to a suitable pupation site (Schremmer 1986, 

Diener et al. 2011). The emigration of prepupae away from feeding substrate can be initiated by 

abiotic environmental cues including temperature, photo intensity, and soil moisture. These 

factors will encourage the prepupae to migrate toward cool, dark, and dry substrates (Gomes et 

al. 2006). Moving BSF prepupae are capable of climbing slopes of 40° when dry. Emigrant 

behavior makes them easy to direct for harvesting, with no mechanics needed to remove the 

prepupae from their food source (Craig Sheppard et al. 1994). Such an approach is commonly 

referred to as self-harvesting. In facilities designed for waste management that utilize BSFL and 

collect emigrating prepupae destined for animal feed, larvae climb up a ramp out of a rimmed 

container to eventually end in a collection chamber attached to the end of the ramp (Newton et 

al. 2004, Diener et al. 2011). 

Most previous studies focused on the weight of BSF prepupae as a target stage to be used 

for harvest. It has been suggested that they are at their maximum size, exhibiting large protein 

and fat contents to sustain them through adulthood (Newton et al. 1977). It has also been shown 

that larval growth in medically important dipteran species, such as blow flies (Diptera: 

Calliphoridae) also exhibit a pattern of rapid increase in length followed by a decrease once they 

reached pupation (Donovan et al. 2006). However, Banks et al. (2014) recently demonstrated  
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that BSFL fed on fresh human feces reached their highest mean weight two days before reaching 

the prepupae stage. A similar decrease in weight in the migratory post-feeding stage was seen in 

other fly species, especially for prepupae that traveled longer distances (Goodbrod and Goff 

1990, Gomes et al. 2006). 

Maine can greatly benefit from a BSFL commercial operation that utilizes live-stock 

manure, marine, pre- and post-consumer waste. With the increased interest in using BSFL for 

feed, there is a competitive pressure to maximize yield in mass-rearing facilities. Therefore, this 

study aims to understand if harvesting larvae prior to the prepupae stage can produce larger 

larvae than those harvested as prepupae to benefit BSF commercial rearing operations in a 

climate-controlled facility. 

4.2. Materials and methods 

4.2.2. Colony maintenance of black soldier flies 

The black soldier fly breeding colony was first purchased May 2016 from Symton Black 

Soldier Fly Solutions (College Station, TX). The colony arrived in a plastic container with a total 

of 20,000 immature larvae in coconut coir substrate. Once in our laboratory, the colony was 

maintained as described in Chapter 2. 

4.2.3. Larval growth curve  

 One egg mass was placed in a Petri dish with a 2.5 cm diameter hole covered with a 

black cloth for ventilation containing a moist 2.5 by 2.5 cm square sponge, wrapped in parafilm. 

The dishes were placed in a tray with a paper towel saturated with water to prevent egg 

desiccation. The tray was maintained inside environmental chamber (Percieval Scientific, Perry, 

Iowa) at 28±1ºC and 18L : 6D photoperiod. Once the eggs hatched, the larvae were fed ad 

libitum with moist chicken feed. Daily, their lengths were measured with digital calipers 
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(General Tools and Instruments, New York, NY), and their weights were measured with an 

analytical scale (Ohause Co., Pine Brook, NJ). Water was added to the sponge as needed. The 

experiment was replicated ten times. 

Visual examination of the data suggested that a period of weight gain by developing 

larvae is eventually replaced by a period of weigh decline (Figure 4.1). To confirm the existence 

of such a trend, the data were analyzed by fitting peak functions using TableCurve 2D software 

package (SYSTAT, 2002), with the best function selected based on r2 values (Golubev 2010).  

4.2.4. Biomass of larvae 

Experiment was conducted in ten 21.8 by 16.2 by 13.2 cm ventilated GladWare boxes. 

Two hundred larvae (a mix of second and early third instars) were placed into each container. All 

larvae were fed ad libitum with non-medicated chicken feed (see above) with tap water to 

achieve 60% (w : w) moisture contents of the resulting substrate (Fatchurochim et al. 1989). The 

boxes were maintained on shelves in laboratory with ambient temperature at 26±1°C (range: 24 - 

27.7°C) and 50±8% (range: 42.5 - 69%) relative humidity. 

Biomass accumulation was measured by weighing a pooled sample of ten randomly 

selected larvae from each container using an analytical scale (Ohause Co., Pine Brook, NJ). The 

first measurement was done in the beginning of the experiment to get baseline information on 

larval size. After that, larval development was monitored daily by visual observations. The 

second measurement was taken when the first darkened pre-pupa appeared. The third 

measurement was taken when approximately half of larvae become darkened pre-pupae. The 

final measurement was done by weighing a pooled sample of ten randomly selected pupae from  

each container. In addition, ten cream-colored larvae and ten grayish-brown prepupae were 

collected from each box and weighed at the time point when approximately half of the larvae 
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became pre-pupae. Data normality was tested using Wilk-Shapiro test (PROC UNIVARIATE, 

SAS Institute 2017). Non-normally distributed data were transformed using rank transformations 

(Conover and Iman, 1989). Changes in weight from early instars to pupae were analyzed using 

one-way repeated measure ANOVA (PROC MIXED, SAS Institute 2017). Differences in weight 

between larvae and prepupae were analyzed using Student’s paired t-test (PROC TTEST, SAS 

Institute 2017). 

4.3. Results 

4.3.2. Larvae growth curve 

BSFL underwent a period of rapid weight gain, followed by slow decline around the time 

when the first prepupae appeared (Figure 4.1).  
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Figure 4.1. Weight gain of black soldier fly larvae. Trendline shows exponentially modified 
Gaussian function. 
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Exponentially modified Gaussian distribution (Equation 1) provided the best description of the 

increase in larval weights over the duration of experiment.  
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where h is the amplitude of the normal distribution, μ is the mean of the normal distribution, σ is 

the standard deviation of the normal distribution, and τ is the exponential decay parameter (τ = 1 

/ λ) (Equation 1). 

Table 4.1. Model parameters 

Parameter Value Std Error t-value 95% Confidence Limits P>|t| 
 h 0.913139 0.247831 3.684528 0.424571 1.401706 0.00029 
 µ  179.7844 0.415375 432.8247 178.9656 180.6032 0.00000 
 σ  3.94382 0.459635 8.580325 3.037705 4.849936 0.00000 
 τ  48.20502 12.33175 3.909017 23.89446 72.51558 0.00013 

 

4.3.3. Biomass of larvae  

There was a significant difference in weight among the different life stages (d.f.=3, 36, 

F=55.34, P < 0.0001). Larval mass increased rapidly between early-and late instars, but there 

was no significant weight change between the time when the first prepupae was detected and the 

time when approximately half of the larvae entered prepupal stage. Pupae were significantly 

lighter than late instars (Figure 4.2).  
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Larvae weighed significantly more than prepupae co-occurring with them at 

approximately 50 : 50 ratio (d.f.=9, t=-6.95, P < 0.0001). On average, the former weighed 0.2289 

± 0.0072 g (mean ± SE), while the latter weighed 0.1709 ± 0.0072 g. 
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Figure 4.2. Weight of immature black soldier fly at different time points. SL – small larvae; 1st 
PP – appearance of the first prepupae; 50% PP – 50 : 50 larvae / prepupae mix; P – pupae. Error 
bars denote standard errors. Means followed by the same letters are not significantly different 
from each other (Tukey tests, P > 0.05). 

4.4. Discussion 

Our results indicate that maximum weight gain by BSFL was reached around the time 

when they were ready to become prepupae. This makes sense because at this point they stop 

feeding while remaining physically active and migrating in search of pupation substrates. Other 

dipteran species such the blow flies Calliphora vicina (Robineau-Desvoidy), Chrysomya 

albiceps (Wiedemann), Lucilia cuprina (Wiedemann), Chrysomya megacephala (Fabricius), and 
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Chrysomya rufifacies (Macquart) also display a migratory behavior during the post feeding 

phase. Similar to our findings, the highest weight in those species was observed in post-feeding 

larvae, which then decreased in size when crawling or burrowing (Goodbrod and Goff 1990, 

Donovan et al. 2006, Gomes et al. 2006).  

Although mathematically complicated, exponentially modified Gaussian distribution 

describes a fairly straightforward process of rapid initial growth of a measured response, 

followed by its stabilization and slight decline. It has been successfully used to describe a 

number of biological processes, including cell proliferation and differentiation (Golubev 2010), 

cell population dynamics (Tyson et al. 2012), latency and interresponse time in free recall of 

previously memorized items (Rohrer and Wixted 1994), and response times in visual search 

(Palmer et al. 2011). Knowing mathematical relationship between time and weight may provide 

an opportunity for predicting larval size at given points in time. However, BSFL development 

varies depending on diet, feeding rate, temperature and humidity (Tomberlin et al. 2002, 2009, 

Diener et al. 2009, 2011, Holmes et al. 2012). Therefore, certain caution needs to be exercised 

when extrapolating results obtained under different sets of conditions. 

In this study, BSFL were significantly heavier compared to prepupae inhabiting the same 

substrate at the same time. Therefore, there was no evidence that heavier larvae were the first 

ones to pupate. Instead, weight losses were likely to be driven by metabolic processes linked to 

transition to adulthood.  

Our findings are consistent with those of Liu et al. (2017), who presented the nutritional 

composition of BSF at different phases of its life span. In that study, there was also a trend 

towards a rapid increase in crude protein, crude fat, and dry mass from egg to late instars and 
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early prepupae, followed by a decline from late prepupae to adults. Early prepupae also had 

significantly less vitamin E, sodium, iron, and zinc compared to late feeding instars, but more 

phosphorus (Liu et al. 2017).  

Based on the larval growth curve, the optimal harvest period of larval biomass is during 

the time immediately before they turn into prepupae and start searching for pupation habitats. 

However, there could be other considerations in designing harvesting approaches. If most 

prepupae emigrate from their feeding substrates, which we do not know at this point, self-

harvesting eliminates necessity for sifting them out. This may result in savings on equipment and 

labor. Also, BSF pupae float in water (Alyokhin, unpublished). Therefore, flotation may be a 

viable option for their separation from feeding substrates. Further investigations are needed to 

better understand these issues. Although migration behavior can be exploited to self-harvest 

BSFL for processing or for incubation and re-introduction into a colony (Holmes 2010), 

convenience of such an approach needs to be carefully weighed against biomass losses linked to 

cessation of feeding and spending accumulated energy reserves on movement.  
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CHAPTER 5 

5. COLD TOLERANCE OF BLACK SOLDIER FLY LARVAE  

5.1. Introduction 

The black soldier fly (BSF), Hermetia illucens (Linnaeus) (Diptera: Stratiomyidae) has 

been shown as a valuable source of feed, oil, and fertilizer in a variety of large and small-scale 

livestock operations (Čičková et al. 2015, Henry et al. 2015, Barroso et al. 2017, Wang and 

Shelomi 2017), especially in areas where black soldier fly larvae (BSFL) can develop in a 

suitable habitat year-round. BSF are generally considered to be warm-climate species preferring 

areas with subtropical and warm temperatures. They are common to North and South America 

and the Australasian region (Oliveira et al. 2015 Üstüner et al. 2003). In the southeastern U.S., 

BSF have three generations per year. Temperatures for optimal  development in the laboratory 

and in the wild range from 27°C – 33°C (Sheppard et al. 2002). The distribution compiled based 

on observations submitted by citizen scientists and records of preserved specimens available on 

iNaturalist.org between 1913 – 2018 shows a northern most BSF range limit reaching up to 

Washington State in the United States (Figure 1.1). In New England, the most northern range 

reaches Massachusetts (iNaturalist 2018). 

Even though BSF has a global distribution and reaches across southern and central U.S., 

there is apprehension toward BSF becoming a harmful invasive species in Maine. BSF are not 

currently recorded as occurring naturally in Maine, which is a significant issue because there is 

interest in utilizing BSFL in Maine for marine waste processing and aquafeed production. Mass 

rearing companies from Georgia, Ohio, and Texas currently distribute live BSFL throughout the 

U.S. Therefore, there is considerable probability of this species’ establishment beyond its native 

range. However, low winter temperatures may set a northern limit to BSF range. 
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Better understanding of BSF response to low temperatures may also have important 

implications for its rearing on a commercial scale. Mass production of insects demands 

optimization of the efficacy and decreasing the costs of their rearing. This includes preservation 

of live beneficial insects for shipping and storage (Ortiz et al. 2016). Cold treatments can help 

extend their shelf life. These include cryopreservation, induction and maintenance of diapause, 

and slowing down insect metabolism by placing them under temperatures close to lower 

developmental thresholds. 

Cryopreservation is a method of preservation accomplished through chemical/physical 

manipulation prior to placing the insects in liquid nitrogen storage (Leopold 2005). Currently 

there are eight dipteran species of importance in forensic sciences, medicine, and agriculture that 

have been successfully cryopreserved as late stage embryos: Musca domestica (Linnaeus), 

Cochliomyia hominivorax (Coquerel), Ceratitis capitate (Wiedemann), Anastrepha suspensa 

(Leow), A. ludens (Leow), and Lucilia sericata (Meigen) (Leopold 2005, Rajamohan et al. 

2014). However, cryopreservation is a complicated process that requires specialized skills and 

equipment. Therefore, it is unlikely to be widely adopted in small- and medium-scale BSF 

production, especially in developing countries.  

Diapause is elicited through management of environmental factors such as photoperiod, 

temperature, and moisture (Leopold 2005). It has been observed in another soldier fly species, 

Ptecticus flavifemoratus (Rozkosny) (Diptera: Stratiomyidae) ( Rozkošný and Kovac 1998). 

However, we are not aware of any reports on diapause in the BSF. Because insects are 

poikilothermic organisms, development of non-diapausing individuals can also be slowed down 

by low temperatures. This can be used for short-term storage, such as during shipping to 
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different locations, and for synchronization of development in rearing operations. In laboratory 

colonies used for research purposes, this has been successfully carried out with the Colorado 

potato beetle Leptinotarsa decemlineata (Say), a predatory midge Aphidoletes aphidimyza 

(Rondani), and the predatory mite Phytoseiulus persimilis (Evans) (Boiteau and Alford 1983, 

Kostal and Havelka 2001, Luczynski et al. 2008). Therefore, there is a possibility of using this 

approach on a larger scale in mass-rearing of BSF. 

Development of BSF within the optimal developmental temperature thresholds is 

relatively well understood. An investigation on the life history traits of BSFL reared at three 

different temperatures was conducted to examine the relation of immature development features 

to adult fitness characters. Results demonstrated that adults reared at 27°C weigh 5% more and 

live roughly 10% longer than those reared at 30°C. The authors suggested that longer larval 

development might allow more energy reserves to accumulate and produce more fitness tradeoffs 

such as having the ability to withstand lower temperatures (Tomberlin et al. 2009). A recent 

study analyzed whether growth rates of BSF at varying temperatures differed between larvae fed 

on a grain-based diet and a vertebrate tissue diet. BSFL reared on pork required more degree 

hours to complete larval development than those reared on the beef and grain-based diets. Larvae 

reared at 27.6°C and 32.2°C required more degree hours to complete development and had a 

final larval weight 30% greater than larvae reared at 24.9°C (Harnden and Tomberlin 2016).  

Less attention was paid to the effects of low temperatures on BSF survival and 

development. Furman et al. (1959) reported that BSFL were killed by 30 min exposure to -2°C, 

but most of them survived 24 h exposure. However, those authors did not provide any data to 

support their claims. Holmes et al. (2016) determined the lower temperature developmental 

threshold of BSF immature stages. Mean development time from egg to adult at 19°C was 72 
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days while BSF failed to survive at lower temperatures (Holmes et al. 2016). Another study 

examined the cold tolerance of different developmental stages using the supercooling point and 

lethal time at 5°C as parameters. However, mortality rates following short-term exposure to 

temperatures approaching supercooling points was not measured. Lethal time experiments at 5°C 

indicated that prepupae and pupae were the most cold-tolerant life stages. Still, they died after a 

few weeks, suggesting they are susceptible to chilling injury. The authors suggested  that 

differences in supercooling points of young versus older larvae may be related to their body size, 

where smaller size generally have a lower supercooling points (Spranghers et al. 2017).  

In the present study, we further investigated BSF response to low temperatures. Our 

objectives were to measure mortality of different life stages exposed to suboptimal temperatures 

for different periods of time and to determine whether experiencing cold temperatures as larvae 

affects the adult stage. 

5.2. Materials and methods 

5.2.1. Insect origins 

 Black soldier fly larvae (BSFL) to start our colony were initially purchased from Symton 

BSF Company (College Station, Texas) and reared to adulthood as described below. Eggs 

produced by our colony were harvested from a 2 by 2 by 4-m custom-made wooden frame screen 

cage kept in the University of Maine greenhouse under ambient temperature at 26±1°C (mean±SE; 

range: 24°C - 30°C) and 60±6% (42.5% - 69%) relative humidity. Eggs were incubated in the 

laboratory at 26±1°C (24 - 27.7°C) and 50±8% (42.5 - 69%) relative humidity in a 21.8 by 16.2 

by 13.2 cm, 1892 ml GladWare container (GladWare, Oakland, CA). Hatched larvae were fed ad 

libitum in 50 ml increments with non-medicated chicken feed (Home Fresh® Extra Egg, Blue 

Seal, Lawrence, MA) mixed with tap water to achieve 60% moisture content (w : w). After the 
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total volume of larval mass and substrate became greater than the volume of the container, they 

were placed in 20 by 33 by 38 cm plastic dish pans (United Solutions, Leominster, MA) where 

they remained till they were removed for experimental trials or pupated. Every two to three days, 

100 – 300 ml of chicken feed mixed with tap water to achieve 60% moisture content (w : w) was 

added along with 250 – 500 ml of pine shavings (AWF Pets Pick, Columbia, MD) to improve 

aeration and prevent accumulation of free liquids. Once BSFL reached desired life stage, they were 

removed individually from the colony, and placed into respective boxes for experimental trials. If 

larvae were not used, they pupated and were transferred to the greenhouse and placed in rearing 

cages to become reproductive adults. 

5.2.2. Cold treatments 

 Different black soldier fly immature life stages were exposed to cold temperatures by being 

stored in a residential Frigidaire refrigerator - freezer (WCI Canada Inc., Augusta, GA). Cold 

tolerance was tested by keeping them at 4°C for 0 hrs, 24 hrs, 48 hrs, and 72 hrs. Freeze tolerance 

was tested by keeping them at -12°C for 0 min, 10 min, 30 min, and 60 min. The chosen freezing 

temperature was within the range of supercooling points reported by (Spranghers et al. 2017). All 

experiments were replicated five times, except the experiment on cold tolerance of eggs that was 

replicated ten times.  

5.2.3. Survival of eggs at 4°C 

 To determine whether eggs could survive cold temperatures, 29.1 mg of an egg mass, 

which is equivalent to ca. 1,000 eggs (Booth 1983), were placed in a 120 ml plastic cup lined 

with a 2.5 cm layer of folded paper towel saturated with water. Eggs were situated on top of a 2.5 

by 2.5 cm strip of wax paper. Cheese cloth was secured on top of each cup with a rubber band.  
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Eggs were stored in a refrigerator at 4°C as described above. Once removed, cups were placed in 

laboratory at 26±1°C (24 - 27.7°C) and 50±8% (42.5 - 69%) relative humidity for the eggs to 

hatch. The number of hatching first instars was counted under dissecting scope.  

5.2.4. Survival of eggs 

 To determine whether eggs were viable following exposure to cold treatments, 29.1 mg 

of eggs were placed in a 120 ml plastic cup lined with a 2.5 cm layer of folded paper towel 

saturated with water and sealed with a plastic lid. Eggs were treated as described above. Once 

removed from the refrigerator - freezer, cups were placed in laboratory at 26±1°C (24 - 27.7°C) 

and 50±8% (42.5 - 69%) relative humidity for one week to allow the eggs to hatch. At the end of 

the week, all replicates were frozen to halt development and preserve the condition of the larvae. 

The frozen neonates were not removed from the freezer until counting to reduce the risk of decay 

or fungal growth.  

Neonates hatching from the eggs exposed to 4°C were counted under dissecting scope. 

That approach proved to be very labor-consuming. Therefore, the neonates hatching from the 

eggs exposed to -12°C were scanned using an Epson Expression 1680 Flatbed Scanner (Epson 

America Inc., Long Beach, CA). Prior to scanning, each cup of neonates was placed onto a clean 

Pyrex glass petri dish 20 mm by 150 mm (Corning Inc., Corning, NY) for separation from paper 

towel bits. Neonates stuck to the sides of the cup were also removed and placed in the clean petri 

dish at this time. They were then poured out, one petri dish at a time onto the scanner, which was 

cleaned with Sprayway (Sprayway Inc., Downers Grove, IL) and a Kimwipe (VWR, Radnor, 

PA) between scanning larvae from each petri dish. Each scanned image was imported into 

ImageJ software package (NIH Image, Bethesda, MD) for automatic counting.  Each image was 

converted into binary black and white format. Larval size was set to range between 15-200  
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pixels. Watershed function was used to recognize potentially overlapping larvae as separate and 

count them as two instead of one. The output file was then saved, and the results of processing 

all images were compiled into one Excel spreadsheet.  

5.2.5. Survival of other immature stages 

Second, 3rd, and 5th instar larvae, as well as pupae, were tested for cold and freeze 

tolerance. For every time duration, 100 larvae or pupae were tested. They were extracted and 

individually counted from the breeding colony and placed in a 10 by 12.7 by 5 cm plastic tray with 

50 ml of vermiculite. To prevent escape, a lid with a 4 by 2 in opening covered with an antivirus 

insect mesh (BioQuip Products, Rancho Dominguez, California) was secured, which also provided 

ventilation. Once removed from the refrigerator – freezer, the larvae were placed in the laboratory 

for one hour to allow them to readjust to ambient room temperature. Pupae were maintained in the 

laboratory until adult emergence. The number of live and dead immature stages were then counted. 

All trials were kept in a small room in the lab with ambient air temperature at 27±6.2°C (21 - 28°C) 

and 39.3±6.9% (30% - 56.5) relative humidity. All temperature readings were recorded with an 

EL-USB-2-LCD USB Humidity Data Logger w/ LCD Display (Lascar, Erie, PA).  

5.2.6. Size of adults surviving exposure to cold temperatures as immatures. 

 Fifth instars surviving the cold treatments were maintained in the laboratory and observed 

daily until no more adults emerged. The number of successfully emerging adults and dead pupae 

from which adults failed to emerge were counted. The adult length from head to wing tip was 

measured with digital calipers (General Tools and Instruments, New York, NY).  
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5.2.7. Statistical analysis 

Survival of immature black soldier flies at different temperatures was analyzed by one-way 

ANOVA (R version 3.4.1, The R Foundation for Statistical Computing). Data were converted to 

proportions and then the mean percent and standard deviations were calculated. The normality of 

the data was tested using the Shapiro-Wilk normality test. If data were not normal, it was arcsine 

transformed. To test if means were significantly different among treatments, a Tukey's Honest 

Significant Difference (HSD) test was conducted. With a few exceptions, all analyzed data were 

not normally distributed even after arcsine transformation. However, W values substantially 

increased following the transformations. Therefore, we considered ANOVAs performed on the 

transformed data to be sufficiently robust to detect differences among the treatments. 

5.3. Results 

5.3.1. Effects of exposure at 4°C 

All black soldier fly life stages tested in this study suffered significantly higher mortality 

after being exposed to cold treatments (Table 5.1). Severity of the impact depended on the 

duration of the exposure. Larvae were more tolerant of chilling than eggs, with higher mortality 

usually detected only after spending 72 h in the refrigerator. The fifth instars were somewhat of 

an exception, with statistically significant difference of mortality was detected only after 24 h of 

exposure to cold temperature. However, their mortality was generally low, with close to 92% of 

larvae surviving even after 72 h in the refrigerator. Adults emerging from the chilled fifth instars 

were significantly smaller compared to the control adults. Reduction in size followed the length 

of exposure to cold temperature. 
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Table 5.1. Percent survival and adult length (mean ± SE) of the black soldier flies exposed to 
4°C. Means in the same rows followed by the same letters are not different from each other 
(Tukey tests, P < 0.05). 

Duration of Exposure at 4°C 
Life stage 0 h 24 h 48 h 72 h df F P 

Eggs 33.2 ± 19.4a 8.2 ± 9.6b 0.93 ±0.4c 1.66 ± 1.4c 3, 36 31.1 <0.001 
2nd instars 96.6 ± 2.2a 86.6 ± 10.6a 94.4 ± 5.5a 2.0 ± 2.5b 3, 16 118 <0.001 
3rd instars 98.6 ± 1.7a 89.0 ± 5.0a 94.0 ± 11.8a 81.3 ± 13.3b 3, 16 4.26 0.021 
5th instars 99.2 ± 0.83a 94.0 ± 2.54b 93.2 ± 2.58b 91.8 ± 6.8b 3, 16 6.34 0.004 

Pupae 80.8 ± 3.2a 50.2 ± 7.8b 45.8 ± 7.7b 22.8 ± 6.6c 3, 16 65.4 <0.001 
Adulta length, mm 15.3 ± 0.6a 13.2 ± 0.5b 11.6 ± 0.4b 6.0 ± 0.2c 3, 16 101 0.001 

a Flies eclosing from pupae that were exposed to 4°C as fifth instars. 

5.3.2. Effects of exposure at -12°C. 

 Similar to the effects of chilling, exposure to -12°C had a pronounced negative effect on 

survival of black soldier fly eggs and larvae (Table 5.2). Longer periods of exposure resulted in 

higher mortality. To the contrary, among the fifth instars that were alive after being removed 

from the freezer, more insects survived to adulthood after 30 min of exposure (Table 5.3). Their 

size was also larger compared to other treatments (Table 5.2). In the same time, none of the fifth 

instars kept at -12°C for 60 min developed to adulthood. 

Table 5.2. Percent survival and adult length (mean ± SE) of the black soldier flies exposed to        
-12°C. Means in same rows followed by the same letters are not different from each other 
(Tukey tests, P < 0.05).  

Duration of Exposure at -12°C 
Life stage 0 min 10 min 30 min 60 min df F P 

Eggs 17.7 ± 13.4a 3.6 ± 2.2b 2.4 ± 1.4b 2.1 ± 1.6b 3, 16 8.69 0.001 
2nd instars 94.0 ± 2.4a 93.8 ± 9.0a 6.6 ± 4.1b 0.6 ± 1.34c 3, 16 203 <0.0001 
3rd instars  97.6 ± 1.8a 91.8 ± 3.4a 89.2 ± 7.2b 0.6 ± 1.3c 3,16 280 <0.0001 
5th instars 97.9 ± 2.0a 99.2 ± 1.1a 18.2 ± 9.4b 0.8 ± 1.8c 3, 16 284 <0.0001 

Pupae 94.6 ± 0.9a 86.0 ± 11.2a 48.0 ± 23.5b 0.0 ± 0.0c 3, 16 81.6 <0.0001 
Adulta length, mm 5.3 ± 0.5a 5.2 ± 0.4a 6.7 ± 0.2b N/A 2, 12 20.2 <0.0001 

a Flies eclosing from pupae that were exposed to -12°C as fifth instars. 
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Table 5.3. Adult black soldier fly survivorship (mean ± SE) indicated by eclosing from pupae 
that were exposed -12°C and 4°C as fifth instars. Means in same rows followed by the same 
letters are not different from each other (Tukey tests, P < 0.05).  

Adult survivorship  
4°C  -12°C 

0 min 100 ± 0a 0 h 97.2 ± 0.4a 
10 min 84.8 ± 1.2b 24 h 98.8 ± 0.4a 
30 min 74.0 ± 0c 48 h 99.4 ± 0.5b 
60 min 41.8 ± 1.8d 72 h N/A 

df 3, 16 df 2, 12 
F 3850 F 27.7 
P <0.001 P <0.001  

 

5.4. Discussion 

Our results confirm negative effect of low temperatures on BSF. This is not surprising, 

because BSF naturally inhabit subtropical and temperate regions of the Americas between 45° N 

and 40° S, which are characterized by mild winters (Üstüner et al. 2003). Generally, insects 

exhibit freeze-tolerant or freeze avoidance behaviors to withstand cold temperatures. Freeze-

tolerant species synthesize ice-forming agents to allow extracellular freezing, while freeze-

avoiding species remove all potential ice-forming material, such as gut content and produce 

antifreeze agents (Bale and Hayward 2010). For most insects, prolonged exposure even to above-

zero cold temperatures result in increased mortality due to the accumulation of chilling injury. 

The associated thermotropic damage to the cell membranes may lead to metabolic imbalances, 

such as loss of cell turgor, leakage of cytoplasmic solutes, disturbance in ion homeostasis, lack of 

energy, or cell autolysis and death, and ultimately result in death of an affected organism (Lee 

and Roh 2010, Kostal et al. 2004, 2006, Spranghers, Noyez, Schildermans, and De Clercq 2017). 

These imbalances can lead to the accumulation of a toxic metabolites, implying that low 
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temperatures can inhibit enzymes or a metabolic pathways (Lyons and Raison 1970, Renault et 

al. 2002). It is reasonable to suggest that the effects observed in our experiments had similar 

underlying mechanisms. 

Survivorship of BSFL and eggs decreased when exposed to above-freezing cold 

temperatures at 4°C longer than 72 hours, more so in younger life stages. Adults developing from 

the chilled fifth instars were smaller compared to the control adults. This may have been 

stemming from higher survival of smaller larvae in above-freezing cold temperatures because 

smaller insects have a lower supercooling points making them less susceptible to chill damage. 

For instance, Collembola and mites commonly have supercooling points of -20°C or lower, while 

large insects frequently have supercooling points of -15°C or higher (Johnston and Lee 1990). 

Alternatively, it is possible that repairing chilling damage incurred energetic costs that prevented 

developing larvae from growing to their full sizes.  

Smaller adult size may provide an advantage when reproductive success is dependent on 

completing life cycle in a short period of time in a highly seasonal environment. Larger insect 

size tends to correlate with a longer development time in many insect species (Price et al. 2011). 

Tomberlin et al. (2009) described BSFL time of development as an excellent predictor of adult 

longevity, with longer-living adults originating from slower-developing larvae. Therefore, if 

breeding time is short, larger individuals are at a disadvantage. There may be selective pressure 

to reduce development time when exposed to above-freezing cold temperatures to prevent chill 

damage and increase reproductive success.  However, there is also considerable evidence that 

larger insect females lay more eggs (Price et al. 2011). For example, Drosophila melanogaster 

(Meigen) (Roff 1981) and many species of mosquitoes (Gobbi et al. 2013) had higher 

reproductive output as female size increased. BSF females have also shown this relationship. 
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Larger ovaries and basal oocytes were found in females with large wing and large body size than 

small females (Gobbi et al. 2013). Therefore, there is likely to be a trade-off if the size is 

decreased to survive low temperatures. 

When exposed for 60 minutes to freezing temperatures at -12°C, all life stages suffered 

heavy mortality. Unlike results obtained for 4°C, fifth instars that survived the cold treatments 

developed into larger adults. Apparently, physiological processes responsible for larval 

survivorship were different between above and below-freezing temperatures. It is possible that 

certain characteristics of larger larvae, such as smaller surface-to-volume ratio or higher fat 

reserves, allowed for their better survivorship and subsequent development into larger adults. 

However, we did not measure the weight of surviving larvae, while Spranghers et al. (2017) 

found no significant relationship between supercooling points and body weights within different 

life stages. It is also possible that exposure to a short-term cold shock had a hormetic effect, 

increasing general fitness of survivors (Calabrese 2009). Since all individuals, irrespective of 

their developmental stage, eventually died after 60 minutes in freezing temperatures, BSF may 

be a freeze-intolerant species. Majority of freeze-intolerant insects die before a super cooling 

point is reached as a result of cumulative chilling injury (Spranghers et al. 2017). 

Earlier instars were generally more susceptible to cold treatments compared to later 

instars. This is similar to the results reported by Spranghers et al. (2017), who found significantly 

shorter lethal times for early instars than to late instars. Interestingly, supercooling points in that 

study were lower for early instars.  This may be due to differences in gut content. When few 

items are present in the gut, there are also fewer potential ice-forming particles present. This can 

explain lower mortality (Spranghers et al. 2017).  
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Pupae tested in our experiments showed a stronger response to cold injury compared to 

larvae, both when exposed to 4°C and -12°C. This is different from Spranghers et al. (2017), 

who reported prepupae and pupae to be the most cold-tolerant BSF stadia. Further investigations 

are needed to explain the observed discrepancy. It is possible that it was caused by genetic 

differences between BSF strains, differences in pupal maturity, or some other unknown factor(s). 

An important consideration when discussing BSF ability to withstand cold temperatures 

is its ability to enter a diapause. Unfortunately, little is currently known about diapause in this 

species. Rozkošný and Kovac (1998) reported that Ptecticus flavifemoratus (Rozkosny) (Diptera: 

Stratiomyidae) is capable of entering diapause. To the best of our knowledge, no such 

information exists for the BSF. Field observations at Buenos Aires, Argentina reported adult 

emergence from spring through the summer and early fall months with larvae spending the 

winter in quiescence (Furman et al. 1959). In 1958, BSFL were used to reduce poultry manure 

found beneath cages in open housing in California. Observations demonstrated that BSF adults 

and larvae can be found throughout the year in poultry manure, while adult emergence from 

pupae was delayed until the warm, spring weather (Furman et al. 1959). However, the authors 

did not investigate whether the observed quiescence was a true diapause, or a slow-down in 

metabolic rates caused by low temperatures. 

Another factor that could influence the cold tolerance of BSFL is the diet on which it is 

reared (Harnden and Tomberlin 2016). A diet rich in certain nutrients may be able to provide the 

insect with components that promote its cold hardiness (Spranghers et al. 2017). Amino acids 

such as proline or the sugar trehalose, could assist with preserving the cell structure by binding to 

cell membranes and prevent water molecules from binding (Doucet et al. 2009). Prepupae 

require a suitable substrate for pupation and a significant part of their life in the wild takes place 
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in the upper soil layer (Holmes et al. 2013). Moreover, Harnden and Tomberlin (2016) found that 

grain-fed larvae were usually smaller and weighed less than those fed pork or beef diets. In our 

study, larvae were reared on vegetable-based chicken feed, which may limit their size and effect 

their cold tolerance because of less nutrient available from their diet.  

The majority of BSF populations in the U.S. and other countries are associated with 

animal production facilities (Newton et al. 2004). Therefore, during cold weather BSFL may 

avoid low temperatures by overwintering indoors in pig or poultry stables, where relatively high 

temperatures are maintained year-round. Observations made in open poultry housing manure 

management studies using BSFL, demonstrated it was possible for BSFL to remain active year-

round (Furman et al. 1959).  However, adult BSF are often reluctant to enter enclosed structures, 

including modern environmental animal housing, where they rarely colonize manure in these 

situations (Sheppard et al. 2002). There is also potential for BSFL or pupae to survive during 

northern U.S. winters by inhabiting specific hibernacula like manure, organic waste, or compost 

heaps where temperature remains higher than in the surrounding environment.  

Nevertheless, our results appear to confirm the findings by (Spranghers et al. 2017) that BSF do 

not survive well at low temperatures. Therefore, it is unlikely to permanently inhabit the regions 

with cooler temperate climate, such as Maine. This is also confirmed by their apparent current 

absence from Maine, even though there are no geographic barriers limiting their northward 

expansion from Massachusetts. 

Using above-freezing cold temperatures for life cycle synchronization or to improve 

shipping and storage of live flies may have some use for late-instar BSF, but not for earlier 

instars, eggs, or pupae (Table 1). However, a caution needs to be exercised while using this 

approach, especially for time periods longer than 48 h. Although their survivorship was fairly 
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high, chilled larvae still suffered higher mortality compared to the controlled larvae. 

Furthermore, negative effects of chilling fifth instars were carried over to an adult stage. The use 

of chilling is better suited for diapausing insects (Rajamohan et al. 2014). Freezing does not 

appear to be a viable option for manipulating BSFL development when maintaining live stock is 

necessary, but can be used for their slaughter and storage.   
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