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Fermented vegetables can provide consumers with important health benefits, particularly 

due to the presence of probiotics. These fermented products have gained popularity with 

American consumers over the past decade. Therefore, a lacto-fermented seaweed sauerkraut, 

containing seaweed and cabbage, was developed to address this trend and to create a value-added 

seaweed product with extended refrigerated shelf life. The objective of this study was to evaluate 

the effects of kelp species and seaweed incorporation level on the fermentative success, 

microbial safety, consumer acceptability, and refrigerated shelf life of seaweed sauerkraut for 60 

days post inoculation.  

Six treatments with varying levels (25%, 50%, 75%) of farm-raised kelp (sugar kelp or 

winged kelp) were processed in triplicate. Shredded fresh kelp and cabbage were mixed with 2% 

kosher salt, inoculated with Lactobacillus plantarum (~106 CFU/g) and Leuconostoc 

mesenteroides (~101 CFU/g), and fermented at ambient temperature until a pH of < 4.6 was 

achieved. The presence of pathogens (Vibrio spp., Salmonella, Staphylococcus aureus, Listeria 

spp.) was evaluated and coliforms were enumerated in the fresh sauerkraut. Titratable acidity 



 

(TA), pH, instrumental texture (shear force), color, antioxidant capacity, aerobic plate counts, 

lactic acid bacteria, yeasts and molds were measured periodically for 60 days after inoculation by 

the lactic acid bacteria (LAB).  Additionally, acetic acid, lactic acid, sugar (glucose, fructose, 

sucrose), and ethanol levels were determined using high-performance liquid chromatography 

(HPLC).  Multi-way analysis of variance was performed to evaluate significant (p<0.05) effects 

of the treatment variables. Sensory acceptability of these products was also evaluated to 

determine the consumer response to the 25% and 50% winged kelp and sugar kelp treatments. 

Kelp species and incorporation levels significantly affected most variables tested in the 

freshly prepared sauerkraut. LAB grew fastest in the winged kelp treatments, with all products 

reaching a pH below 4.6 within 3 days and resulting in significantly lower pH and higher TA 

compared to the sugar kelp treatments. In contrast, the sugar kelp treatments did not achieve a 

pH of <4.6 until day 14. Kelp incorporation levels significantly influenced LAB counts with the 

highest average counts for both kelp species occurring in the 25% (7.5 log CFU/g) and 50% (7.7 

log CFU/g) treatments. Notably, sugar kelp (SK) treatments had significantly lower shear force 

values than winged kelp (WK), and as concentrations of SK increased from 25% to 75% shear 

force decreased from 165.5 to 53.8 N. In regard to antioxidant capacity, there were no 

differences among SK and WK treatments but increasing seaweed concentrations improved total 

phenolic content and ferric reducing antioxidant power (FRAP) values of the sauerkraut. The SK 

treatments had higher levels of coliforms, and Vibrio sp. was detected only in the 75% SK 

treatment on day 7.  

 

 



 

This study is the first to report on lactic acid fermentation to produce fresh seaweed 

sauerkraut. Seaweeds are primarily sold in dried form, and fermentation offers the potential to 

introduce refrigeration-stable, value-added, seaweed products to the market. Results indicate that 

seaweed sauerkrauts produced from fresh farm-raised kelp were refrigeration stable throughout 

the study.   
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1. INTRODUCTION   
1.1. Seaweeds 

 
 Seaweeds are marine macroalgae that are found in coastal areas around the world. 

Because they are found globally, there are over 10,000 species of seaweed and more that are 

continuing to be discovered (Mouritsen et al. 2013b). Many species can tolerate harsh 

environments that fluctuate in temperature, have rapid ocean currents, or are highly saline 

(Mouritsen et al. 2013b). Furthermore, seaweeds are usually found attached to hard substrates, 

because their environment is subject to strong waves. They have specialized tissues that serve as 

anchorage, called a holdfast, similar to a plant’s root system (Mouritsen et al. 2013b).  However, 

there are some species that float freely in the ocean. Typically, seaweeds grow in the intertidal 

zone because the sunlight helps them grow through photosynthesis, as all seaweeds contain 

chlorophyll and are photosynthetic (Mouritsen et al. 2013b). However, some species, like kelps, 

grow deep in the ocean.  

Seaweeds are divided into three categories based on their color: Chlorophyta (green), 

Rhodophyta (red) and Phaeophyta (brown). The seaweed categories also differ in structural and 

biochemical features. Brown and red seaweeds are mostly found in marine waters, but green 

seaweeds can also be found in freshwater systems. There are approximately 6,200 red species, 

1,800 green species, and 1,800 brown species of seaweed (Mouritsen et al. 2013b). 

1.2. Sea vegetables 
 

Seaweed can be used in a variety of applications including cosmetics, medicine, and 

food. Seaweeds used in foods are often called sea vegetables because any edible seaweed is 

termed a sea vegetable. Seaweeds are super foods that are rich in vitamins and provide important 

health benefits.  
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In addition, seaweeds can offer different benefits than land plants. For example, seaweeds 

can provide 10-20 times more minerals than land plants because seaweeds can obtain minerals 

from seawater (Makkar et al. 2016). 

 Seaweeds are rich in proteins and prebiotics, are good sources of bioactive compounds, 

are low in lipids, and contain non-starch polysaccharides (Fleurence, 1999).  Furthermore, the 

polysaccharides found in seaweeds have the potential to have medicinal values for the body 

(Smit, 2004). Seaweeds are also a good source of fiber and the consumption of seaweeds may 

reduce the risk of colon cancer (Smit, 2004).   

Brown, red, and green seaweeds offer different dietary benefits for humans. Red and 

green seaweeds are higher in protein and mineral content compared to brown seaweeds (Makkar 

et al. 2016). Red and green seaweeds contain ~50% and 30% protein content, respectively 

(Makkar et al. 2016). Nonetheless, brown seaweeds are rich in bioactive compounds such as 

phloroglucinol-based polyphenolic compounds, carotenoids, and polyunsaturated fatty acids 

(Holdt and Kraan, 2011). Bioactive compounds can influence human health and act similarly to 

antioxidants. Furthermore, brown seaweeds contain alginate, laminarin, and fucoidan which are 

resistant to human digestive enzymes, making them a source of dietary fiber (Charoensiddhi et 

al. 2016). 

1.3. Seaweed industry 
 

The seaweed industry is growing, and seaweeds that are used for direct human 

consumption around the world is a 5.29-billion-dollar (USD) industry (Chopin and Sawhney, 

2009). This equates to 8.59 million tons of edible seaweeds harvested in a year, according to 

2006 data (Chopin and Sawhney, 2009).  
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The worldwide seaweed industry farms approximately 220 seaweed species. However, 

the edible seaweed market consists of three dominant seaweed genera:  ,)ubmok ro( airanimaL

,)iron ro( aryhproP and .)9002 ,yenhwaS dna nipohC( )emakaw ro( airadnU   

Asian countries are the largest consumers of seaweeds and most of the world’s edible 

seaweeds are produced in Asian countries (Chopin and Sawhney, 2009). However, the recent 

radioactive contamination of Asian waters, caused by the leaking Fukushima nuclear plant in 

Japan, has created safety concerns about seaweeds from this area. Therefore, Maine’s seaweed 

industry has the opportunity to grow to meet the increased demands for high quality seaweeds.  

The Maine seaweed industry is the number one edible seaweed producer in the United 

States (NBC, 2015). In 2014, 17.7 million pounds of seaweed were collected by Maine 

harvesters and the number of Maine seaweed companies has doubled from 10 years ago (NBC, 

2015).  North American Kelp, Springtide Seaweed, Maine Coast Sea Vegetables, SOURCE 

Maine, VitaminSea, and Atlantic Holdfast Seaweed Company are just some of the more than 20 

companies that grow or harvest seaweed in Maine. Furthermore, some of these companies have 

been around for 30 years or more (Maine Seaweed Council, 2016). One company, Maine Coast 

Sea Vegetables, harvests roughly 100,000 pounds of seaweed a year and sells their products to 

Amazon, Whole Foods, and other health food stores (Maine Coast Sea Vegetables, 2016).   

The success of Maine’s seaweed industry comes from the variety of edible seaweeds 

native to Maine’s coast such as Palmaria palmata (or dulse) (Figure 1), Alaria esculenta (or 

winged kelp) (Figure 2), and Saccharina latissima (or sugar kelp) (Figure 3). Dulse are red 

seaweeds that are harvested from the early summer to fall (Maine Coast Sea Vegetables, 2016). 

Dulse is found in many food dishes across the world and is also commonly consumed as a snack. 

Dulse can also be used as a nutritional supplement because it is rich in iodine, protein, and iron 
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(Mouritsen et al. 2013a). Sugar kelp and winged kelp, are large brown seaweeds that have long 

and thin blades with wavy edges. There are about 300 different kinds of kelps that are classified 

under the laminariales, edible kelps (Mouritsen et al. 2013b). Kelps often create kelp forests in 

the ocean because of their large size that can reach up to 50 meters long (Mouritsen et al. 2013b).   

 
Figure 1.  Palmaria palmata, also known as dulse (McKirdy, 2015). 
 
 

 

 
Figure 2. Alaria esculenta, also known as winged kelp (Norwegian Seaweeds, 2018). 
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Figure 3. Saccharina latissima, also known as sugar kelp (Algolesko, 2018). 

 

 
The winged kelps and sugar kelps found in Maine offer consumers important health 

benefits. The winged kelps are a good source of Vitamin A (Mouritsen et al. 2013b) and protein, 

while sugar kelps offer medicinal and unique flavor characteristics to consumers.  Sugar kelps 

are unique because they have a sweeter taste (Mouritsen et al. 2013b). When sugar kelps are 

dried, they excrete polysaccharides and mannitol, the compound responsible for the sweet taste 

of this seaweed. Overall, kelps are rich in vitamins, minerals, and phytonutrients (Mouritsen et 

al. 2013b). Some minerals found in kelps are calcium, potassium, iodine, and magnesium 

(Mouritsen et al. 2013b). In addition, kelps have a naturally high monosodium glutamate (MSG) 

content, responsible for their umami taste (Mouritsen et al. 2013b). Therefore, kelp is often 

incorporated in a variety of foods such as, soup, salad, cooked dishes, or sprinkled on food, like a 

spice. However, some varieties of kelps are better for human consumption because some are thin 

and soft, while others can be undesirably thick and tough.  

While many of Maine’s seaweeds are freshly harvested, few seaweeds are sold fresh to 

the market. Dried seaweeds have a longer shelf life than fresh seaweeds, therefore, many edible 



 6 

seaweeds are sold in either dried or frozen forms. One potential alternative to drying seaweed is 

to ferment it. Fermenting could transform fresh seaweed into a shelf stable product. Furthermore, 

seaweeds are super foods that are rich in vitamins and provide important health benefits. 

Fermenting seaweed could increase its health benefits and create a non-dairy alternative 

probiotic product for consumers.  

1.4. Lacto-fermentation 

Fermentation can be described as respiration without air, meaning that microbial enzymes 

can cause chemical changes in food anaerobically. In addition, fermentation is a process in which 

an organism converts a carbohydrate into an alcohol or an acid. One type of fermentation is 

called lacto-fermentation, during which lactic acid bacteria convert carbohydrates, such as 

glucose, from fruits and vegetables into lactic acid (Paramithiotis, 2017).  

The natural presence of lactic acid bacteria on vegetables allows for spontaneous 

fermentation to occur yet, using a starter culture in fermentation provides a more reliable and 

consistent fermentation (McFeeters, 2004).  One of the most common starter cultures used in 

lacto-fermented products is Lactobacillus plantarum (Molin, 2001). However, there are many 

different species of lactic acid bacteria that are found in fermented products. Lactobacillus, 

Leuconostoc, Pediococcus and Streptococcus are the main genera involved in desirable food 

fermentations (FAO, 1998). Lactic acid bacteria are gram positive, aerotolerant, anaerobic, 

micro-aerophillic, bacteria. Lactic acid bacteria can be heterofermentors or homofermentors. 

Heterofermentors produce lactic acid, acetic acid and other products, while homofermentors 

produce mostly lactic acid. Lactobacillus bacteria are unique because some are heterofermenters 

or homofermenters (FAO, 1998).  
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 The success of lactic acid bacteria growth is dependent on temperature, salt content, and 

oxygen availability (FAO, 1998). Furthermore, lactic acid bacteria growth can also be affected 

by the carbohydrate source and concentration and pH levels (Gupta et al. 2011). Changing the 

pH of the environment can affect how lactic acid bacteria inhibit other bacteria (Akbar et al. 

2016).   

1.5. Food industry uses for lacto-fermentation 

 One current food trend is that consumers are looking for more simple food products that 

contain fewer ingredients (Inova Market Insights, 2018). Simple products are considered by 

many consumers as healthier and more natural. One example of making products simpler could 

be to replace common artificial preservatives found in foods with food fermentation, which is a 

natural preservation process.  One outcome of this trend is the increased development of lacto-

fermented foods. Innova Market Insights reports that fermented foods and beverages increased 

by 35 percent in the U.S. from 2015 to 2016. Therefore, there is a lot of opportunity for new 

fermented products because the demand for fermented products will likely continue to increase 

in the near future.  

1.5.1. Preservation 

One of the reasons lacto-fermentation is used in the food industry is because of its ability 

to preserve vegetables, increase their shelf life, and enhance safety of food products. The process 

of fermentation preserves food naturally by decreasing pH and slowing the growth of spoilage 

bacteria.  Fermentation utilizes the sugars in the product/vegetable and produces organic 

compounds, like propionic acid and lactic acid (Paramithiotis, 2017). The production of these 

acids creates an unsuitable (low pH) environment, causing antimicrobial activity. 
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Using lacto-fermentation for food preservation can also be termed as biopreservation. 

Biopreservation refers to the use of living microbes to extend the shelf life of foods (Akbar et al. 

2016). Biopreservation is a natural method that decreases the use of preservatives or 

antimicrobials in foods, ingredients that consumers are avoiding. Lactic acid bacteria provide 

biopreservation because they produce lactic acid, acetic acid, hydrogen peroxide and other 

antimicrobial compounds, that help extend the shelf life of vegetables (Akbar and Anal, 2014). 

Additionally, lactic acid bacteria have antagonistic metabolites and bacteriocins (Akbar et al. 

2016). Bacteriocins are natural proteins that have antimicrobial properties that can inhibit the 

growth of other similar bacteria or unwanted microbes, such as spoilage bacteria and pathogens 

(Akbar et al. 2016). Lacto-fermentation also helps to preserve antioxidants such as ascorbic acid, 

phenols, and colored pigments like beta carotene and anthocyanin (Panda et al. 2009). It is for 

these reasons that lactic acid bacteria improve the safety, shelf life, and quality of food products 

and are used in preservation.  

Lactic acid bacteria are used for food preservation because of their ability to decrease 

food contamination by foodborne pathogens and spoilage bacteria. Lactic acid bacteria, 

particularly L. plantarum, helped to inhibit growth of foodborne pathogens (Staphylococcus 

aureus, Salmonella spp., Clostridium perfringens, Bacillus cereus) in a fermented red seaweed 

beverage (Ratanburee et al. 2011, Hayisame-ae et al. 2014). L. plantarum was reported to have 

the most promising ability to control fungi such as yeast and mold in fermented plant beverages 

(Prachyakij et al. 2008). Prachyakij et al. (2008) studied samples of fermented plant beverages 

that are common to Thailand. Some samples were contaminated with yeast and a total of 72 

lactic acid bacteria strains were studied to see which strain could inhibit yeast contamination. 

They found that mold and yeast spoilage were less likely to occur in a fermented product using 
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L. plantarum as the inoculate species. However, more research needs to be done to determine 

why this inoculate had the best inhibiting effect.  

1.5.2. Flavor  

More commonly, lacto-fermentation is used to create food products with unique flavor 

profiles. Some examples of lacto-fermented products are sauerkraut, yogurt, kimchi, sourdough 

bread, fish sauce, and kombucha. Lactic acid bacteria are commonly used as starter cultures 

because of the role they play in providing flavor and texture to fermented foods. 

 Lactic acid bacteria are responsible for creating a unique sour taste because these 

organisms produce lactic acid, acetic acid, and hydrogen peroxide during fermentation. 

However, the LAB strain can influence the flavor of the product. Dongmo et al. (2017) compared 

the aroma composition and sensory profile of fermented beverages that were each produced with 

a different strain of lactic acid bacteria. Aroma plays an important role in how the flavor of a 

product is perceived. The results showed that different lactic acid bacteria significantly affected 

the aroma of the product and different lactic acid bacteria strains produced more aroma 

compounds in the beverages. More specifically, the L. plantarum strain was correlated with 

producing a fruity flavor. 

The consumer acceptance of aroma, appearance, texture, and flavor of products with 

probiotics was tested by Luckow and Delahunty (2004) using blackcurrant juices. A blackcurrant 

juice that contained Lactobacillus plantarum was compared to seven conventional blackcurrant 

juices that were popular in the market. Consumers described the probiotic drink as perfumey in 

aroma and savory and sour in taste (Luckow and Delahunty 2004). This research shows that 

probiotics can provide a detectable flavor difference in drinks. The authors also determined that 

age of the panel members influenced the acceptance of probiotic juices, with older consumers 
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being more accepting of the probiotic drink. This is possibly because older consumers could be 

less sensitive to the unique flavor of the probiotic drink. In addition, females that were over 40 

preferred the flavor of the probiotic juices and indicated that they would also drink them more 

frequently than conventional juices (Luckow and Delahunty, 2004).  

Overall, lacto-fermentation can impact the flavor of products. There are several variables 

in a fermented product that can influence its taste. The overall acidity, salt, addition of spices, 

different microbial strains, and how the product is packaged, are a few examples of how flavor 

can easily be influenced.  

 1.5.3. Health 

Consumers are becoming more interested in their personal health and are more concerned 

about making responsible food choices. It is for this reason that consumers are interested in foods 

that offer health or probiotic benefits (Granato et al. 2010). Foods that provide these benefits are 

termed functional foods. Lacto-fermented products are considered functional foods because 

lacto-fermented products provide consumers with important health benefits, particularly 

probiotic benefits. Overall, probiotics are “good” bacteria that administer health benefits, like 

disease prevention or improved digestion (Dunne et al. 2001; Luckow and Delahunty, 2004). 

Beganovic et al. (2011) defined a probiotic as containing 106 CFU/g live probiotic strains. 

Probiotics aid in disease prevention because they compete with pathogens (e.g. E. coli, 

Salmonella spp.) by binding to epithelial cell binding sites to inhibit colonization by pathogenic 

bacteria (Akbar et al. 2016). In addition, some probiotics can produce bioactive compounds that 

inhibit the growth of other bacteria (Akbar and Anal, 2014). Probiotics can aid in digestion 

because they can survive extreme conditions, such as wide pH ranges and can tolerate bile salts 

to ensure that they work in the intestinal passage of the body (Dunne et al. 2001). Some lactic 
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acid bacteria can offer probiotic benefits because of their strong ability to survive in the human 

gut and inhibit microbes. It can take the human body three hours to digest certain meals and this 

means that lactic acid bacteria must survive in the acidic conditions of the GI tract to administer 

health benefits to the body (Olejnik et al. 2005). Duangjitcharoen et al. (2009) studied the 

probiotic characteristics of Lactobacillus plantarum by researching how it could survive in the 

gastrointestinal tract. The results showed that L. plantarum was a successful probiotic because it 

survived in a range of differing environments. Furthermore, L. plantarum is commonly found in 

the human gastrointestinal (GI) tract. The human GI tract is an acidic environment that contains 

bile salts. These conditions are like the environment in a fermenting process and is why these 

bacteria can survive in that environment. In addition, this study confirmed that L. plantarum was 

safe to use in fermented products after studying mice that had consumed L. plantarum fermented 

products. 

Consumers are very interested in products that contain probiotics.  Foods and 

supplements containing probiotic ingredients were worth $16 billion (USD) in 2008 and the 

market continues to grow (Granato et al. 2010). Interestingly, most probiotic products are dairy 

products, with yogurt being the most consumed product (Granato et al. 2010). Dairy products are 

not always ideal, due to lactose intolerance and specific diets (veganism) that preclude their 

consumption. Non-dairy examples of probiotics include supplements, sauerkraut, and kombucha. 

Therefore, there appears to be a lot of potential for the continued development of some non-dairy 

probiotic products.  
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1.6. Vegetable lacto-fermentation   

1.6.1. Sauerkraut 

Sauerkraut is a fermented cabbage product that is usually served as a side dish or 

condiment. Sauerkraut typically ferments from naturally present lactic acid bacteria. The 

microflora found on cabbage changes based on growing region, season, and cultivation patterns 

(Xiong et al. 2012).  Sauerkraut typically contains cabbage and sometimes a mixture of spices 

and garlic. Cabbage is usually immersed in a 6-8% (w/v) salt solution and left at room 

temperature to ferment for 6-12 days in a mason jar (Xiong et al. 2012.)  

It is important to have an anaerobic environment during cabbage fermentation. The 

sauerkraut should be kept lidded and the contents should be covered with enough brine to reduce 

the risk of oxygen exposure. Oxygen can increase the growth of other microorganisms that thrive 

in aerobic environments and this can spoil the fermentation and negatively impact the flavor of 

the product (Paramithiotis, 2017).  

The addition of salt to the cabbage plays an important role in fermentation success. Salt 

helps improve the flavor of fermented products and, to some extent, inhibits growth of some 

spoilage bacteria (Xiong et al. 2016). Mainly, salt is used because it is responsible for 

maintaining the texture of the cabbage, as it prevents the cabbage from softening (Paramithiotis, 

2017). Contrastingly, too much salt can negatively impact the fermentation.  Xiong et al. (2016) 

found that high salt concentration (8% w/v) decreased the growth of lactic acid bacteria 

populations and delayed the fermentation.  

The natural bacteria present in the sauerkraut changes throughout the fermentation time 

and influences the outcome of the fermented product. The bacteria L. plantarum, L. casei and 

L. zeae are dominant species found in sauerkraut. In a study by Xiong et al. (2012), L. plantarum 
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reached its maximum concentration on the second day and then decreased throughout the seven-

day period, while L. casei reached its maximum on the third day (Figure 4). L. zeae survived the 

shortest amount of time because it is most sensitive to high acidity (Xiong et al. 2012).  

L. mesenteroides was the dominant species at the beginning of the fermentation, while 

E. faecalis, L. lactis, L. zeae, L. plantarum and L. casei were present towards the end of the 

fermentation period (Xiong et al. 2012). 

In sum, the population dynamic of spontaneous sauerkraut production changes 

throughout the fermentation period. Knowledge of the population dynamic of microflora in 

sauerkraut can help control the fermentation process and how to use starter cultures to provide a 

more consistent population dynamic.  

Figure 4. Changes in the flora of Lactobacilli during Chinese sauerkraut fermentation.  
 

 

(◆ L. plantarum; ■ L. casei; ▲ L. zeae) (n = 6). Values below 1 indicate that the count
 was less than the detection limit (10 CFU/mL). Obtained from Xiong et al. (2012). 

 

 Spontaneous fermentations are highly dependent on the lactic acid bacteria present and 

this results in unpredictable fermentations. If a spontaneous fermentation does not have enough 

lactic acid bacteria present from the start this can affect the acidity levels of the treatment and 
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risk spoilage of the product (Paramithiotis, 2017). The use of starter cultures in cabbage has 

contributed to more uniform ferments and improved fermentative function. Xiong et al. (2014) 

tested four different lactic acid bacteria strains and found that Leuconostoc mesenteriodes grew 

faster than the other strains and produced lactic acid sooner. The results also indicated that 

different LAB strains had varying tolerances to acid. The addition of starter cultures to the 

sauerkraut can also improve the texture of sauerkraut. Johanningsmeier et al. (2007) tested 

sauerkraut with and without starter cultures added and found that the firmness in spontaneous 

fermentations varied among treatments and decreased over time. Yet, the addition of L. 

mesenteroides, a lactic acid bacteria starter culture, to the sauerkraut resulted in better texture. 

Therefore, adding a starter culture to a fermentation can influence the properties of the fermented 

product.  

1.7.  Seaweed fermentation   

The application and possibility of fermenting seaweed is a relatively new concept, as 

most of the fermented products available consist of terrestrial foods. Although recipes for 

seaweed flavored sauerkrauts are available on the internet and seaweed products exist in the 

market, they consist primarily of cabbage and contain extremely small amounts of seaweed, 

around one tablespoon per cabbage head, likely added for visual appeal and some flavor notes. 

We have not found a sauerkraut containing significant levels of seaweed, or any peer reviewed 

paper on this topic in the scientific literature. One reason for this is that seaweeds are difficult to 

ferment, making this a topic in need of further research.  Seaweeds contain polysaccharides that 

are not ideal fermentation substrates (Uchida and Miyoshi, 2013). For example, major 

polysaccharide components in brown algae include alginate and fucoidan. Alginate structure is 

made of guluronic and mannuronic acids (Marcel and Meyer, 2013). Fucodians have structural 
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units that consist of fucan and sulfated polysaccharides (Marcel and Meyer, 2013). Red algae 

contain agar and carrageenan. Green algae and seagrasses contain cellulose and hemicellulose as 

major components (Uchida and Miyoshi, 2013). However, seaweeds also contain sugars that 

could possibly be utilized during fermentation. Hwang et al. (2011) compared lactic acid yields 

from seaweed sugars to land plant sugars. The results showed that seaweed contained diverse 

sugars (D-galactose, D-mannitol, L-rhamnose, D-glucuronic acid, and L-fucose) and the 

predicted lactic acid yields were comparable to fermenting land plants. Furthermore, recent 

studies have reported successful fermentation of brown and red seaweeds by using lactic acid 

bacteria starter cultures and various seaweed pre-treatments.  

Gupta et al. (2011) evaluated the effects of thermal processing of seaweed and 

aerobic/anaerobic conditions of seaweeds on the growth of lactic acid bacteria. The fermentative 

capability of three Irish brown seaweeds (Himanthalia elongata, Laminaria digitata, and 

Laminaria saccharina) were tested by using L. plantarum as the starter culture.  For the heat 

treatment, seaweeds were placed in an autoclave at 95º C for 15 min. The results from this 

preliminary study suggested that growth of lactic acid bacteria could not be sustained in any of 

the raw seaweed species, however lactic acid bacteria growth did occur in the heat treated L. 

digitata and L. saccharina. The heat treatment resulted in an increase in the amount of sugars 

readily used by L. plantarum. Furthermore, heat treatment could help reduce the microbial 

surface load on the seaweed and increase availability of nutrients and sugars in the seaweeds for 

the bacteria (Gupta et al. 2011). Overall, this study showed that heat treated L. digitata and L. 

saccharina were suitable substrates for lactic acid fermentation by L. plantarum.   
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The results showed the highest cell populations were found in the L. digitata treatments, 

while L. saccharina achieved a faster fermentation time because it took less time for maximum 

cell growth to occur (Gupta et al. 2011).  

Gupta et al. (2011) also tested the effects of aeration conditions on lactic acid bacteria 

growth and acetic acid production by changing the speed of agitation. Microaerophillic and 

aerobic conditions were tested and growth kinetics, such as the lag period and maximum specific 

growth rate of the L. plantarum, were measured. The agitation speed of the culture influenced the 

lactic acid bacteria growth; as the agitation speed was increased, the maximum cell growth 

decreased. This was due to the different metabolic processes that occurred in the presence of 

oxygen during fermentation (Gupta et al. 2011).    

Ratanaburee et al. (2011) studied the use of L. plantarum as a seaweed starter culture by 

researching the optimal conditions and ingredients for producing a functional fermented red 

seaweed beverage. Dried Gracilaria fisheri, a red seaweed that is commonly found in Thailand, 

was used in this study because it contains carotenoids, polyphenols, and phenolic acid that can be 

beneficial for human health (Ratanaburee et al. 2011). The authors studied four different 

fermented plant beverage formulations. The first formulation, treatment A, consisted of red 

seaweed, sucrose, and water. Treatment B was similar to treatment A, but had the addition of a 

5% starter culture of L. plantarum. Treatment C was also similar to treatment A, however it 

included an increased sucrose concentration and the addition of monosodium glutamate (MSG).  

Treatment D was the same as treatment C, but had the addition of a 5% starter culture of L. 

plantarum.   
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Gamma-aminobutyric acid (GABA) is often found in fermented foods because some 

lactic acid bacteria (Lactobacillus brevis, L. plantarum and Lactococcus lactis) can produce it. 

GABA has been shown to prevent diabetes, inhibit the growth of cancer cells, and reduce 

hypertension (Adeghate and Ponery, 2002).  GABA is a non-protein amino acid compound that 

is made through the decarboxylation of glutamic acid by the glutamate decarboxylase enzyme 

(Siragusa et al. 2007).  Because of this process, MSG was added to treatments C and D to 

determine if it could lead to an increase in the amount of GABA synthesized (Ratanaburee et al. 

2011). Results indicated that the treatments that were inoculated with a starter culture had a 

higher number of beneficial microbes, total bacteria count (TBC), and LAB count after the 

fermentation period of 60 days. Additionally, LAB was the dominant bacteria present in all 

treatments. Treatments C and D, the treatments with the added MSG, produced higher amounts 

of GABA during the fermentation period, with treatment D producing the highest amount.  

However, the MSG treatments scored the lowest on a sensory test that measured flavor, odor, 

and color due to their salty taste. Lastly, as the sugar content decreased during the fermentation 

the acidity level increased. 

Ratanburee et al. (2011) showed that fermentation of dried Gracilaria fisheri is possible. 

However, the balance between having a palatable product and having a high GABA content still 

remains in question. Adding MSG to seaweed fermentations resulted in an unpalatable product, 

despite the high GABA production. This research also showed that yeast contamination can be a 

problem during seaweed fermentation, as yeast contamination was found in all treatments. 

Research by Uchida et al. (2007) on the fermentation of the brown seaweed, Undaria 

pinnatifida, addressed the problem of bacterial contamination in fermentation by determining 

how lactic acid bacteria could regulate the growth of contaminant bacteria. This research also 
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provided alternatives to the need to sterilize seaweed prior to fermentation. Sterilizing seaweed 

can reduce the load of undesirable microbes during fermentation, however, sterilizing can 

destroy some of the nutritional properties and the appearance of seaweeds. The appropriate 

inoculate species or salt content could help to reduce the microbial load and omit the need to 

sterilize seaweed prior to fermentations. 

1.7.1. Inoculate species 

Uchida et al. (2007) studied fourteen different lactic acid bacteria strains to determine 

which strain could reduce the presence of spoilage bacteria in fermentations. All the treatments 

that had no added inoculate spoiled, indicating that the addition of an inoculate may be a 

necessary component to successful seaweed fermentation. The inoculates L. brevis, L. 

plantarum, L. casei, and L. rhamnosus showed the highest inhibition of bacterial contamination 

and showed 90% predominance in the cultures (Uchida et al. 2007). These inoculate species, 

except for L. brevis, were homofermenters and they all produced the highest quantity of lactic 

acid compared to the other strains. The high acid production by these species lowered the pH of 

the fermented culture, most likely causing the successful inhibition of contaminant species.   

The temperature (21° C) used during this study could have played a role in the inhibition 

capabilities of certain strains. Typically, cultures are incubated at 37° C for optimal growth. 

However, this experiment was conducted at a temperature closer to the natural temperature of the 

ocean and the environment of seaweed.  Because of this, LAB strains that showed the highest 

populations in these conditions could be used to ferment seaweed (Uchida et al. 2007).  

  1.7.2. Salt content 

 Uchida et al. (2007) also researched the conditions for fermenting seaweeds by 

investigating the effects of salt content, a variable that had never been tested before. Treatments 
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were made using wakame (Undaria pinnatifida) seaweed powder, water, 3.5% salt (w/v), 

inoculate, and cellulase. Similar mixtures were made without the addition of salt.   Cellulase was 

added as a pretreatment for the seaweed powder because previous findings by Uchida et al. 

(2007) showed a higher soluble sugar content and more successful ferment with the addition of 

cellulase. Cellulase allows for saccharification, the hydrolysis of polysaccharides to soluble 

sugars to help support fermentation.  Cellulase also helped to avoid rotting during fermentation 

(Uchida et al. 2007).   

The presence of salt helped to inhibit unwanted microbes, as cultures without salt grew 

contaminant bacteria that spoiled the fermented product. The concentration of salt added also 

affected the growth of Lactobacillus starter cultures. Lactobacillus are not halotolerant and their 

growth is restricted as the salt concentration is increased above 5%. It was found that salt 

concentrations that ranged from 2.5-3.5% resulted in the most ideal fermentation conditions 

(Uchida et al. 2007). 

  1.7.3. Fermentation time 

 The effects of fermentation period on seaweed were determined based on the production 

of lactic acid, total acid, sugar consumption, and pH levels (Ratanburee et al. 2011). The authors 

measured the fermentation of a red seaweed, Gracilaria fisheri, throughout the course of 60 days 

and found that most biochemical changes occurred within the first 7 days. It was found that the 

highest levels of lactic acid bacteria occurred within the first ten days of the fermentation period 

with a gradual decline thereafter. The total bacteria count displayed a similar trend, where almost 

all treatments showed the highest count within ten days. In addition, the total sugar decreased the 

most rapidly after 7 days, this also resulted in the increase of total acidity. The pH of the 
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fermentation decreased the most rapidly within the first day of the fermentation. After 60 days, 

the pH in the tested treatments ranged from 3.2-3.8, with the initial pH range being 5-7.  

In addition, similar findings by Uchida et al. (2007) determined that fermentation period 

of a brown seaweed, Unidaria pinnatifida, was seven days based on lactic acid production, pH 

consistency, and the increase in microbial counts. The microbial counts increased from the first 

day to the fourth or sometimes until the seventh day of the study. After this time, the microbial 

count gradually decreased while the pH stayed constant.  

1.8. Justification 

Maine’s seaweed industry is growing and there are limited types of products available, 

creating a need for product development. Fermentation can be used to create a value-added 

refrigerated product that utilizes fresh seaweed and serves as an alternative to dried products. 

Fermentation could also be a low cost preservation method for small producers. Furthermore, 

fermenting seaweed could create a non-dairy alternative probiotic product for consumers, as well 

as increase the health potential of this super food that is already rich in nutrients.  

Based on this review of the literature, the key variables that influence seaweed 

fermentation are salt content, environmental oxygen levels, inoculate species, temperature, and 

the pre-treatment of seaweed.  At this point, seaweed fermentation is a relatively new concept 

and has mostly been tested in the development of fermented seaweed beverages, primarily for 

Asian consumers. While some of these variables have been studied on seaweeds, none have been 

tested on sugar kelp (Saccharina latissima) and winged kelp (Alaria esculenta), raising the 

question of whether these economically important Maine seaweeds can successfully be 

fermented. In addition, although seaweed sauerkraut recipes are available, to our knowledge, 

there are no scientific reports on the development of lactic acid fermented seaweed sauerkraut. 
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Additionally, the fact that seaweed sauerkraut recipes exist indicates that there is consumer 

interest in these types of products. Therefore, the overall objectives of this research were as 

follows:  

1.9. Objectives 

Objective 1: Develop novel seaweed sauerkraut products using a lactic acid bacteria 

starter culture and assess their sensory acceptability by a consumer panel.  

Objective 2: Evaluate the effects of seaweed species (sugar kelp and winged kelp) and 

seaweed to cabbage ratios (75:25, 50:50, 25:75) on fermentation success, microbial safety, and 

physicochemical properties of seaweed sauerkraut under refrigerated (3º C) storage. 
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2. MATERIALS AND METHODS 

2.1.  Experimental design 

The overall objectives of this research were to: 1) Develop novel seaweed sauerkraut 

products using a lactic acid bacteria starter culture and assess their sensory acceptability by a 

consumer panel, and 2) Evaluate the effects of seaweed species (Factor 1: sugar kelp, winged 

kelp) and seaweed to cabbage ratios (Factor 2: 75:25, 50:50, 25:75) on fermentation success, 

microbial safety, and physicochemical properties of seaweed sauerkraut under refrigerated (3º C) 

storage. Six treatments with varying fresh kelp (sugar kelp or winged kelp) levels (25%, 50%, 

75%) were prepared in triplicate for a 2 x 3 complete randomized design with repeated 

measurements over time.  Shredded kelp and cabbage were mixed with 2% kosher salt, 

inoculated with Lactobacillus plantarum (~106 CFU/g) and Leuconostoc mesenteroides (~101 

CFU/g), and allowed to ferment at ambient temperature (21-22º C) until a pH of < 4.6 was 

achieved. Subsequently, the sauerkraut was stored at 3º C and shelf life was evaluated. 

Fermentation was evaluated by measuring aerobic plate counts (APC), lactic acid bacteria (LAB) 

counts, titratable acidity (TA) and pH. Additionally, acetic acid, lactic acid, sugars (glucose, 

fructose, sucrose), and ethanol levels were determined using high-performance liquid 

chromatography (HPLC). These measurements were taken on days 1, 3, 5, 7 and 14 after 

inoculation. The presence of pathogens (Vibrio, Salmonella, Staphylococcus aureus, Listeria) 

was evaluated prior to inoculation and seven days after inoculation. The pH, titratable acidity 

(TA), instrumental texture (shear force), color, antioxidant capacity, APC, LAB counts, 

coliforms, yeasts, and molds were measured periodically for 60 days post inoculation.  
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2.2.  Seaweed sauerkraut 

2.2.1. Processing 

Seaweed sauerkraut, consisting of farmed seaweed and cabbage, was made using sugar 

kelp (SK) and winged kelp (WK) freshly harvested in June 2017 from Spring Tide Seaweed 

(Sorrento, Maine). Harvested seaweed was delivered to the University of Maine in coolers on 

ice. To avoid direct contact of seaweed and ice, seaweed was placed in plastic bags. All seaweed 

was processed the same day it was harvested. Processing consisted of rinsing seaweed with tap 

water and checking for quality defects, such as epiphytes and hydroids.  The poor-quality 

seaweeds were discarded.   

Whole kelp fronds were shredded using a RobotCoupe® continuous feed food processor 

with a 28064 1/8” slicing disc (CL 50 Series E, Jackson, MS). SK was passed twice through the 

food processor, while WK was passed once through the food processor so that all materials were 

similar in width (~2cm). Once the kelp was shredded, it was weighed in batches according to 

each treatment. The 25%, 50% and 75% treatments had 1000, 2000, and 3000 g of kelp, 

respectively. The weighed batches were placed into two gallon Ziploc bags and put in the walk-

in cooler (3 ºC) overnight.  

Whole green cabbage was purchased at a local grocery store. Cabbage heads were rinsed 

with tap water. The outer two leaves from each cabbage head were removed and the bottom 

white stem was chopped off. The cabbages were quartered by hand with a sharp knife and passed 

through the RobotCoupe® (CL 50 Series E, Jackson, MS) once. Shredded cabbage was pre-

weighed according to treatment, and stored using the same method as for the seaweed.  
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2.2.2. Preparation 

Shredded cabbage and shredded seaweed were placed into a commercial stainless steel 

mixing bowl according to each treatment, for a total mass of four kg per batch. Then, 80 g (2% 

wt/wt) of canning and pickling salt (Morton, Manistee, MI) were added to each of the 18 

batches. The salt was spread on the surface of the seaweed and cabbage mixture, and after five 

minutes the seaweed, cabbage, and salt were hand mixed (using gloves for sanitary purposes) 

vigorously for three minutes. The mixture sat for one minute and then it was mixed again by 

hand for one minute. This process was done to extract brine from the seaweed and cabbage 

mixture.   Next, the contents of the bowl were packed into a one gallon glass fermentation jar 

(Kombucha Brooklyn, Kingston, NY) that contained a plastic lid and airlock. After the 

fermentation jar had been packed halfway, the jar was aseptically inoculated, using an 

autoclaved pipette tip and gloves, with Lactobacillus plantarum (106 CFU/g) and Leuconostoc 

mesenteroides (101 CFU/g). A total of 10 g of the seaweed and cabbage mixture was removed 

from each batch to perform microbial testing pre-and post-inoculation.   

 The fermentation jar was packed with the seaweed and sauerkraut mixture, with 

approximately two inches of headspace filled with brine above the solid materials. The jar was 

sealed with the airlock lid, which was filled halfway with water and monitored to ensure this 

level was maintained. Treatment jars were labeled and coded according to the seaweed 

percentage and seaweed species in the product. For example, a treatment with 75% sugar kelp 

and 25% cabbage was coded: SK 75.  Each of the six treatments was prepared in triplicate 

batches (A, B, C), for a total of 18 fermentation jars. The seaweed and cabbage mixtures were 

fermented in a lab at ambient temperature (21-22º C) until a pH of < 4.6 was achieved to prevent 

growth of Clostridium botulinum. Subsequently, the fermentation jars containing the product 
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were placed in refrigerated storage (3º C) for 60 days post inoculation. Samples (brine and/or 

vegetable material, depending on analyses) were aseptically taken from each fermentation jar 

periodically to perform microbiological, pH, TA, instrumental texture, color, antioxidant 

capacity, and HPLC analyses. 

2.3. Inoculation 

2.3.1.  Lactobacillus plantarum 

Lactobacillus plantarum (ATCC 8014) was obtained in Kwik-Stick™ form from 

Microbiologics (St. Cloud, MN) and it was stored in the refrigerator at 2°-5°C prior to use.  The 

L. plantarum was streaked onto a Lactobacilli MRS agar plate (Alpha Biosciences, Baltimore, 

MD) at room temperature (21-22º C) and placed into a 35°C incubator for 48 hours. White 

colonies formed on the MRS plate after 48 hours.  

To calculate the amount of bacteria needed to inoculate the seaweed/cabbage mixture to 

the desired 106 CFU/g, the population count was determined after 24 hours of growth. To do this, 

one single colony was aseptically isolated from an incubated MRS agar plate and was placed into 

a test tube with nine mL of room temperature Lactobacilli MRS broth (Alpha Biosciences, 

Baltimore, MD). The L. plantarum tube was incubated for 24 hours and 1:10 serial dilutions 

were performed in 0.1% peptone (BD, Sparks, MD). Each dilution was plated, using aseptic 

technique, onto new MRS plates and incubated for 48 hours. The colony forming units (CFU) of 

L. plantarum per mL of sample broth were determined by the plate count number and multiplied 

by the dilution factor. This process was repeated ten times to calculate an average population 

count. The average growth after 24 hours was ~4 X109 (~log 9) and this value was used to 

estimate the volume (mL) of inoculate needed for each fermentation jar.  
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2.3.2. Leuconostoc mesenteroides 

Leuconostoc mesenteroides was isolated from Choozit Cheese Cultures (Danisco, Paris, 

France). Approximately 0.5 g of this powder was directly placed in nine mL of MRS broth and 

incubated for 24 hours at 40º C. Then, 0.1 mL was plated onto MRS plates and incubated upside 

down for 48 hours at 40º C.  A single colony was used from the MRS plate and the same 

inoculation process was used as for L. plantarum. 

To calculate the amount of L. mesenteroides needed to inoculate the seaweed/cabbage 

mixture to the desired 101 CFU/g, it was assumed that the population growth dynamics in 24 

hours were similar to L. plantarum. Jeong et al. (2017) studied the growth of L. mesenteroides 

and found that the population was 9.85 x 108 (~9.60 log CFU/g) after 24 hours, similar to L. 

plantarum.  

2.4. Microbiological analysis  

Cabbage, winged kelp, and sugar kelp were each weighed (10 g) into sterile stomacher 

bags and combined with 90 mL of sterile 0.1% peptone (BD, Sparks, MD). Samples were 

automatically homogenized (Interscience BagMixer®, Woburn, MA) for two minutes. 

Appropriate serial dilutions were carried out in sterile 0.1% peptone. To conduct microbial 

analysis of the sauerkraut treatments, one mL of brine was removed from the treatments and 

serially diluted with 0.1% peptone.  

2.4.1. Aerobic plate counts (APC) 

Aerobic plate counts (APC) using tryptic soy agar (TSA) (Alpha Biosciences, Baltimore, 

MD) plates were measured using aseptic techniques on days 0, 1, 3, 7, 14, 28, and 60. The TSA 

plates were prepared according to manufacturer’s instructions (Alpha Biosciences, Baltimore, 

Maryland).  One mL of brine was sampled from each treatment replicate. Serial dilutions in 0.1% 
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peptone (BD, Sparks, Maryland) were plated in duplicate. TSA plates were incubated upside 

down for 48 hours at 37 ºC and colonies were counted.  

2.4.2. Lactic acid bacteria counts (LAB) 

The lactic acid bacteria populations were counted using Lactobacilli MRS agar (Alpha 

Biosciences, Baltimore, MD).  One mL of sample brine was aseptically removed from each 

treatment replicate on days 0, 1, 3, 7, 14, 28, and 60. Serial dilutions in 0.1% peptone (BD, 

Sparks, Maryland) were prepared based on the total plate counts and plated in duplicate, 

accordingly. MRS plates were incubated upside down for 48 hours at 40º C and colonies were 

counted. The LAB plate counts were based on colony counts of 25-300 per plate. The plate count 

number was multiplied by the dilution factor and LAB was calculated as colony forming units 

(CFU/g).  

2.4.3. Coliform counts  

Coliform counts were obtained using the three tube Most Probable Number (MPN) 

method (FDA, 2010; Hardy Diagnostics, 2018). Nine separate tubes of ten mL of lactose broth 

(Acumedia, Lansing, MI) were inoculated with 3 x 1mL, 3 x 0.1 mL, 3 x 10 μL brine and 

incubated at 37 ºC for 24 hours. After 24 hours, the test tubes were examined for turbidity and 

bubbles. The scoring of the most probable number was determined by comparing the number of 

positive test tubes to the table from the US Food and Drug Administration (FDA) Bacterial 

Analytical Manual (FDA, 2018). Presumptive positives were confirmed using brilliant green bile 

lactose broth (BGLB) (BD Biosciences, Maryland). Each of the BGLB tubes was inoculated 

using a loophole from the positive MPN tubes and they were incubated at 37º C for 24 hours and 

checked for bubbles.  
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2.4.4. Fungi 

Acidified potato dextrose agar (APDA) plates were made using potato dextrose agar 

(Alpha Biosciences, Baltimore, MD) and 10% tartaric acid (pH 3.5) to measure yeast and mold 

growth according to manufacturer’s instructions from Hardy Diagnostics (2018).  A one mL 

aliquot of sample brine was taken out of each treatment replicate. Serial dilutions prepared in 

nine mL peptone broth were plated. APDA plates were incubated at room temperature (21-22º C) 

for 5+ days and the number of yeast and molds were counted after 7 days.  

2.4.5. Pathogens 

 Pathogens were checked in the raw cabbage and kelps used to make the seaweed 

sauerkraut and in each of the treatments before inoculation and at the end of the first week of 

fermentation. Pathogens tested were those reasonably likely to be present in a typical processing 

facility. Vibrio spp. was also inspected due to its ubiquitous presence in the marine environment.  

Methods from the Bacteriological Analytical Manual for Staphylococcus aureus, 

Salmonella, Listeria monocytogenes, and Vibrio (FDA, 2018) were modified to enumerate the 

pathogens accordingly. To identify each pathogen, 25 g of each of the test materials were placed 

aseptically into a 225ml pathogen specific broth, placed in a stomacher bag for two minutes, 

incubated in stomacher bags for 24-48h, then streaked and spread plated (0.1mL) in duplicate 

onto pathogen-specific plates (Table 1). The plates were checked for growth to determine the 

presence of pathogens.  
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Table 1. Media, incubation time, and temperatures used to detect different pathogens. 
 

Pathogen Media Incubation Time and Temperature 
Staphylococcus 

aureus 
Tryptic soy broth 
(Acumedia, Lansing, MI) 
with 10% salt (NaCl) and 1% 
sodium pyruvate (TSBSP) 
incubated at 35º C for 24 h. 

Baird-Parker (Alpha Biosciences, 
Baltimore, MD) plates incubated at 35º C 
for 48 h. 

Salmonella spp. Lactose broth (Acumedia, 
Lansing, MI) incubated at 35 
ºC for 24 h. 

Xylose lysine deoxycholate agar (XLD) 
(Alpha Biosciences, Baltimore, MD) 
incubated at 35º C for 48 h. The plates 
were checked for colonies with black 
centers.  

Listeria 
monocytogenes 

Listeria enrichment broth 
(LEB) (Alpha Biosciences, 
Baltimore, MD) incubated at 
28º C for 24 h. 

Modified oxford agar base (MOX) (Alpha 
Biosciences, Baltimore, MD) plates 
incubated at 28º C for 48 h. 

Vibrio spp. Alkaline peptone water (pH 
8.6) (Alpha Biosciences, 
Baltimore, MD) incubated at 
28º C for 24 h. 

Thiosulfate-citrate-bile salts-sucrose agar 
(TCBS) (Alpha Biosciences, Baltimore, 
MD) plates incubated at 28º C for 48 h. 

 

2.5. pH 

The pH measurements of each treatment batch were taken using a Thermo 

Scientific™ Orion Star™ A111 pH Benchtop Meter (Waltham, MA) with a flat probe 

attachment (Thermo Scientific™ Orion™ AquaPro™ Flat Surface 9135, Waltham, MA). 

Approximately 10 g of seaweed sauerkraut were aseptically removed from the fermentation jars. 

The flat probe was placed directly on the seaweed sauerkraut until a consistent reading was 

obtained. Measurements were taken in duplicate per fermentation jar and pH values were 

averaged.  pH measurements were taken on days 1, 3, 5, 7, 14, 28 and 60 post inoculation. 

2.6. Titratable acidity  

A modified titratable acidity (TA) procedure (UC Davis, 2018) was used as an 

approximation of total acidity in the treatments on days 1, 3, 5, 7, 14, 28, and 60. Seaweed 

sauerkraut (10 g) from each treatment was aseptically removed from the fermentation jars and 



 30 

the weight was recorded (0.1g). The sample was placed into a beaker with 100 mL of distilled 

water and a magnetic stir bar. A pH meter, 0.1 N sodium hydroxide (NaOH) (Fisher Scientific, 

Waltham, MA), and a magnetic stir plate were set-up to perform the titration. The sodium 

hydroxide was slowly titrated into the beaker until the standard pH of 8.2 was achieved. The total 

volume (mL) of titrant added was recorded. 

The calculations were based on the acidity of lactic acid, where the volume of sodium 

hydroxide that was added was converted to moles of lactic acid and multiplied by the equivalent 

milligrams of lactic acid and divided by the original weight of the sample (g).  TA was measured 

as a percentage value according to the following formula: 

Normality of NaOH (mol/L)*Volume of NaOH (mL)* Equivalent weight of lactic acid (g/mol)* 100=% TA 
Sample mass(g) * 1000 

 
2.7. Texture analyses 

A Kramer shear force method was used to evaluate the texture of the seaweed sauerkraut, 

using methods modified from Johanningsmeier et. al (2007). The texture analyzer (TA-XTi2, 

Texture Technologies Inc., Scarsdale, NY) was calibrated using a 5,000 g load cell from the 

same company before each use. Twenty-five g of seaweed sauerkraut were loaded in a single 

layer on the base of the Kramer shear cell (TAXTi2, Texture Technologies Inc., Scarsdale, NY), 

with a total of five flat blades.  The pre-test and post-test speed was set to 2 mm/sec with a 

distance of 50 mm (Johanningsmeier et. al 2007). The force (N) required to shear the sample was 

recorded by the texture analysis software (Exponent 32, version 5.0, 6.0, 2010, Texture 

Technologies Inc., Scarsdale, NY). The test was repeated ten times for every treatment replicate, 

and force values were averaged. 
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2.8. Colorimetric analyses  

Colorimetic analysis was performed using a LabScan XE Colorimeter (HunterLab) to 

determine L*, a*, and b* values. Before each use, the colorimeter was warmed for 30 minutes 

and was standardized using black and white ceramic standard plates. The area view was set to 

1.75 inches and the port size was set to 5. Colorimeter sample cups (353002, Corning, Durham, 

NC) were filled to the top with seaweed sauerkraut. A total of three readings were taken and 

averaged by the software by rotating the colorimeter cup slightly clockwise after the initial 

reading. Ten subsamples were measured for each treatment replicate and averaged.  

2.9. Antioxidant analysis 

2.9.1. Sample preparation 

Approximately 50 g of seaweed sauerkraut from each treatment replicate were taken at 

days 21, 42, and 60 of the experiment. Antioxidant analysis was performed at these times 

because they represented likely time points when typical consumers would receive this product. 

The samples were placed in plastic bags (Nasco Whirlpack, Fort Atkinson, WI), placed in the 

blast freezer (-30º C) (Southeast Cooler, Lithia Springs, GA) for 1 hour, and then stored at -80 ºC 

for three weeks. Samples were later processed using a freeze drier (35 EL, VirTis Co. Inc. 

Gardiner, NY) for 72 hours (24 hours for each cycle) until the sample weights no longer 

fluctuated. The dried samples were crushed and ground by using a mortar and pestle. The ground 

samples were stored in plastic bags (Nasco Whirlpack, Fort Atkinson, WI) in the freezer (-80 

ºC). 

 The ground samples were thawed and weighed to 2 g (± 0.005 g) and 20 mL of 60% 

methanol (Fisher Scientific, Waltham, MA) was added to the samples in an Erlenmeyer flask, 10 

mL, at a time. The samples were placed on a shaker for 24 hours at 210 rpm (13687700 Multi-
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Platform Shaker, Fisher Scientific, Waltham, MA) with parafilm to cover each Erlenmeyer flask 

and to minimize sample evaporation. Next, the samples were centrifuged for 10 minutes at 2100 

xg (Beckman Avanti J-25, Brea, CA). The supernatant was collected and 10 mL of 60% 

methanol was added to the centrifuge tube and vortexed for 30 seconds to mix the solution. The 

sample was placed back on the shaker for ten minutes and then centrifuged again. This process 

was repeated two more times and the supernatant volumes were combined. After this process, 

distilled water was added to the supernatant to bring the total volume to 50 mL. The solution was 

vortexed for 30 seconds. This extract was used for all antioxidant analysis and it was kept no 

longer than 48 hours at -20º C. 

2.9.2. Total phenolic content (TPC) 

 The Folin-Ciocalteu method was used to measure the total phenolic content in the 

sauerkraut samples (Matanjun et al. 2008, Rajauria et al.  2010). The Folin-Ciocalteu reagent 

(Sigma Aldrich, St. Louis, MO) was diluted (1:10) in distilled water prior to use. The diluted 

Folin (1.5 mL) was added to 200 μL of sample extract, then the solution was vortexed for ten 

seconds. After a five-minute incubation period, 1.5 mL of 6% sodium bicarbonate solution was 

added. The samples were then placed in the dark for 1 hour to incubate.  

Stocks of varying amounts of gallic acid (TCI Chemicals, Portland, OR) (0-200ug/mL in 

40% methanol) were used as a standard. Samples were run in duplicate and the values were 

averaged per treatment replicate. The absorbance was measured at 725 nm using a 

spectrophotometer (Beckman Du 530, Brea, CA) and the blank for this protocol was 40% 

methanol. Total phenolic content was expressed as mg gallic acid equivalents per g of freeze-

dried sample.  
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2.9.3. Ferric reducing antioxidant power (FRAP) assay 

The Benzie and Strain (1996) method was used with some modifications to perform 

FRAP analysis. Four different solutions (A, B, C, D) were made to perform the FRAP analysis. 

Solution A was a 300 mM acetate buffer (pH 3.6) that was made by adding 3.1 g sodium acetate 

trihydrate (Fisher Scientific, Waltham, MA) to 16 mL glacial acetic acid (Fisher Scientific 

Waltham, MA). The solution was brought up to 1000 mL (1L) with distilled water. Solution B 

was 10 mM 2,4,6-tripyridyl-s-triazine (TPTZ, Acros, Fair Lawn, NJ) in 40 mM hydrochloric 

acid (HCl, Fisher Scientific Waltham, MA). Solution C was 20 mM FeCl36H20 (Acros, Fair 

Lawn, NJ). Solution D (FRAP reagent) was a mixture of Solution A, Solution B, and Solution C 

(10:1:1) that was stirred until well mixed. Solution D was warmed to 37º C in a water bath prior 

to use. A standard curve was comprised of varying concentrations (50-500 μM) of FeSO47H2O in 

deionized water (Spectrum Chemicals, New Brunswick, NJ). To conduct this assay, one mL of 

sample extract or standard was placed in a cuvette and 3 mL of warmed FRAP reagent was 

added. After 4 minutes, the absorbance was measured at 593 nm against a deionized water blank. 

An internal control of 250 μM Trolox (Acros, Fair Lawn, NJ) in 40% MeOH (Fisher Scientific, 

Waltham, MA) was used.  Each sample extract was analyzed in duplicate and results were 

expressed in μmol ferrous sulfate equivalents (FSE) per gram of freeze-dried sample.  

2.9.4. α, α-diphenyl-β-picrylhydrazyl (DPPH) assay  
 
DPPH was performed based on the method from Blois (1958) with modifications. A 0.2 

mM DPPH (Sigma Aldrich, St. Louis, MO) solution was prepared in 100% ethanol. To conduct 

the assay, varying amounts (0.5, 1.0, 1.5, 2.0 mL) of the sample extracts were each pipetted into 

test tubes, total volumes were brought to 2 mL using 40% methanol and vortexed for 10 seconds. 
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Next, 2 mL of DPPH solution was added to the test tubes which were then vortexed for 10 

seconds. The test tubes were incubated in the dark for 30 minutes.  

After a 30-minute incubation in the dark, the absorbance was measured at 517 nm against 

the blank of 100% ethanol. Duplicate sample extracts were prepared the same way to make 

sample blanks that would account for the purple color of DPPH. Therefore, 2 mL of ethanol was 

added to the 2 mL of seaweed extracts instead of DPPH solution. The make the control, 2 mL of 

either DPPH solution or ethanol was added to 2mL of 40% methanol. In addition, Trolox 

standards were also made in duplicate for this procedure to serve as a positive control. To make 

the Trolox standards, varying volumes (0.25, 0.50, 1.0 1.5, 2.0 mL) of Trolox were added to test 

tubes and brought up to 2 mL with 40% methanol and 2 mL of ethanol was added to half of the 

test tubes and 2 mL of DPPH solution was added to the other half. The following formula was 

used to calculate % inhibition: 

% DPPH inhibition = Control Abs – (Sample Abs – Sample Blank Abs) x 100 
Control Abs (DPPH and 40% MeOH) 

 

The calculated % DPPH inhibition values were plotted against the concentrations 

(mg/mL) of sample and the effective concentration (mg/mL) of sample required to inhibit 50% 

of the DPPH radical (EC50) was calculated using the slope and constant of the plotted line.    

2.10. High performance liquid chromatography (HPLC) 

 HPLC analysis was performed on brine samples to quantify acetic acid, lactic acid, 

glucose, sucrose, fructose, and ethanol concentrations. Brine samples (1 mL) were collected on 

days 1, 3, 5, 7, and 14 of the study and stored at -20º C. Samples were thawed in the refrigerator, 

diluted (1:3) in mobile phase (0.01M H2SO4), then passed through 0.45 μm filters (Advanced 

Microdevices MDI Membrane Technologies, Ambala Cantt, India) using a 5-mL plastic syringe. 
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Filtered samples were placed into 2 mL vials and loaded in the HPLC (Agilent Technologies, 

Santa Clara, CA). The HPLC system consisted of an 1100 series pump, degasser and 

autosampler, and a 1200 series refractive index detector (RID). The 0.05 M H2SO4 mobile phase 

temperature was set at 50º C and the injection volume was 20.0 μL. The column (Agilent Hi-

Plex H) flow was 0.6 mL/min. Standards of sucrose, glucose, and fructose ranging from 0.0025-

0.03 mg/mL were prepared to identify and quantify sugars in sample brines. Standards ranged 

from 0.0001-0.01 mg/mL for acetic acid and from 0.0003-0.01 mg/mL for lactic acid. For 

ethanol, standards ranged from 1-3 mg/mL.  

2.11. Statistical analysis 

Data were analyzed using IBM SPSS Statistics 24. Outliers were removed using a 3 X 

Interquartile range (IQR). Multi-way analysis of variance (ANOVA) was used to assess the main 

effects of seaweed species (2 levels), seaweed concentration (3 levels), and time (variable levels, 

depending on analysis) on dependent variables (Laerd Statistics, 2018). Tukey’s Honest 

Significant Difference (HSD) test was selected for post-hoc analyses. A significance value of 

p<0.05 was chosen for all statistical analyses. A Spearman Correlation was used to assess the 

linear relationships between select dependent variables. 

2.12. Sensory testing 

Consumer acceptability testing occurred at the University of Maine Sensory Evaluation 

Center (SEC) in Hitchner Hall on Tuesday, March 27th 2018 between the hours of 11:00 am and 

5:00 pm. Approximately one hundred participants who enjoy consuming sauerkraut were 

recruited via word of mouth, e-mail, and posted flyers to rate the acceptability of the seaweed 

sauerkraut (Appendix A). Prior to testing, institutional review board (IRB) approval was 

obtained. An informed consent was provided before participation and those allergic to seafood 
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and those who do not enjoy consuming seaweed or sauerkraut were asked to not participate in 

the sensory evaluation (Appendix B).  The consumers received a three dollar incentive for their 

participation.  

2.12.1. Seaweed sauerkraut preparation for sensory testing 

All samples were processed using fresh seaweed collected on March 1, 2018 from Spring 

Tide Seaweed (Sorrento, Maine). The seaweed sauerkraut was prepared using the same methods 

as described previously.  A total of 3000 g of shredded seaweed and cabbage were weighed, 

mixed with 2% canning and pickling salt, inoculated with L. plantarum (106 cfu/g) and 

Leuconostoc mesenteroides (101 cfu/g), packed into four fermentation vessels, and allowed to 

ferment at room temperature. To guarantee the safety of these products, the presence of 

pathogens (E. coli, Vibrio) was checked and the end pH in the samples was verified as < 4.0. 

This pH was below the minimum pH of 4.6 needed to control the growth of Clostridium 

botulinum. Once the desired pH was established, the samples were placed in the walk-in cooler 

(3º C) for two weeks until sensory evaluation to simulate when a typical consumer might receive 

the commercial product after transport and stocking.  

2.12.2. Sample testing 

Consumers tested four seaweed sauerkraut samples: two sugar kelp and two-winged kelp 

formulations made with 25 and 50 percent seaweed concentrations. The samples were served 

chilled and panelists were asked to evaluate the texture, color, flavor, aroma, and overall 

acceptability of the products using a 9-point hedonic scale (1 = dislike extremely, 5 = neither like 

nor dislike, 9 = like extremely) (Meilgaard et al. 2016) (Appendix C). Just about right scales 

(1=Not nearly salty/sour enough, 3=Just about right, 5=Much too salty/sour) were used to 

evaluate sourness and saltiness. Prior to testing the samples, panelists were asked general 

demographic questions and how often they consumed seaweed, sauerkraut, and probiotics. 
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Lastly, the participants were asked to add any additional comments about the samples they 

tested. 

 The test process was executed using SIMS 2000 software (SIMS Sensory Quality Panel 

Software Cloud Systems, Sensory Computer Systems, Berkeley Heights, NJ) and the 

acceptability data were assessed by one-way Analysis of Variance (ANOVA) and Tukey’s post-

hoc test to determine significant (p <0.05) differences among the four samples. 

During testing, the environmental conditions were kept clean and well-lit to control 

variables and biases. Distractions were kept to a minimum and differences were minimized 

amongst samples by filling each ramekin half full (~25 g) of seaweed sauerkraut. Samples were 

placed into two-ounce clear plastic containers that had computer printed labels attached at the 

same location. All samples were kept at a similar temperature by holding them in the refrigerator 

until serving. The presentation of samples was balanced and randomized according to the SIMs 

software. The participants were asked to evaluate the four coded samples from left to right and to 

take a sip of water in between samples.  
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3. RESULTS AND DISCUSSION  
3.1. Overview 

The results indicate that kelps can be fermented successfully and that seaweed species 

and incorporation level affect certain characteristics of the fermented products. Visually, the 

winged kelp (WK) sauerkraut was slightly darker green and the fermentation vessels had more 

brine. Seaweed and cabbage were clumped together in the SK treatments and were somewhat 

slimy to the touch. Some SK treatments also had a slight red color, possibly from yeast 

contamination, at the upper surface of the sauerkraut and this have may been due to air exposure 

from having less brine in the treatments or from repeated sampling.  Each fermentation jar was 

filled to the top with brine to normalize the amount of brine across treatments and to avoid 

exposure to air, however some samples bubbled over during fermentation resulting in some loss 

of brine. Furthermore, fermentation jars had to be checked frequently to make sure that samples 

were covered in brine. To avoid this in future studies, fermentation weights could be used to help 

keep the samples more packed and submersed in brine. The bubble production in the air lock 

showed that all treatments produced carbon dioxide, however less bubbling occurred in the high 

SK concentration treatments. No spoilage off odors were noted during the experiment and 

overall, these products remained stable throughout the refrigerated storage study.  

3.2. Microbiology 
 

3.2.1. Lactic acid bacteria counts 

Each treatment was inoculated with Lactobacillus plantarum (target 106 CFU/g) and 

Leuconostoc mesenteroides (target 101 CFU/g) at the beginning of the study (Day 0). The lactic 

acid bacteria count immediately post inoculation was less than 4 log CFU/g in all treatments. 

This was lower than expected, possibly because the microbial sampling for this time point was 

taken shortly after inoculation. The average lactic acid bacteria count in the seaweed sauerkraut 
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treatments ranged from 3.00- 7.79 log CFU/g over time as the counts increased throughout the 

study (Figure 5). However, all treatments reached an average lactic acid bacteria count of 106 

CFU/g or higher during the study. The increase in total lactic acid bacteria populations over time 

was expected due to fermentation and the use of starter cultures. Furthermore, the high (≈106) 

lactic acid bacteria populations found in the treatments show the potential of this product as a 

probiotic. Beganovic et al. (2011) defined probiotic products as containing at least 106 live 

probiotic colonies per gram and the added Lactobacillus plantarum and Leuconostoc 

mesenteroides are both considered probiotic strains (Beganovic et al. 2011). Additionally, the 

maximum lactic acid bacteria populations found in this study are comparable to an inoculated 

2.5% NaCl sauerkraut study by Beganovic et al. (2011), where counts ranged from 5.88-7.27 log 

CFU/mL.  
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Figure 5. Mean lactic acid bacteria populations (log CFU/g) in seaweed sauerkraut over time, a) 
sugar kelp and b) winged kelp.  
 

 a)   

 b)   
 
Values are means ± S.D. (n=3). 
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There was a significant (p=0.03) interaction between seaweed species, concentration, and 

time with regard to LAB population. Seaweed species had a significant effect on LAB counts in 

the sauerkraut, as SK had a significantly (p<0.01) higher (5.42 log CFU/g) average lactic acid 

bacteria population overall compared to WK (3.97 log CFU/g). The higher overall LAB counts 

in the SK treatments is because their LAB counts remained steady over time. Additionally, there 

was a significant interaction between time and treatment (p<0.01). After day 7 of the study, mean 

LAB counts across SK treatments varied by only 1 log CFU/g.  In contrast, the LAB counts over 

time in WK dropped similarly to an inoculated sauerkraut fermentation study on red cabbage 

(Hunaefi et al. 2013). The authors reported maximum LAB counts on day 7 and after the 

maximum was reached, the population decreased slowly, a trend that was also found in the WK 

treatments. Despite the higher average LAB counts in SK, WK reached 6% higher maximum 

LAB counts during the study.  For WK, the maximum mean LAB counts occurred on day 7 (7.08 

log CFU/g), while for SK, the maximum mean LAB count was on day 60 (6.65 log CFU/g). 

Overall, the highest mean lactic acid bacteria count was 6.42 log CFU/g on day 7. 

The difference in LAB counts among seaweed species is interesting because both species 

are brown seaweeds. Brown seaweeds are rich in carbohydrates including laminarin, mannitol, 

and structural carbohydrates such as alginate and cellulose (Schiener et al. 2015). Their 

carbohydrate contents vary seasonally, as seaweed have more storage carbohydrates during the 

fall because they are an energy source in the colder months (Schiener et al. 2015).  

Carbohydrates are necessary for LAB growth and ideal carbohydrates used in seaweed 

fermentation are the glucose polymer laminaran and sugar alcohol mannitol (Sandbakken et al. 

2018).  Therefore, the changing carbohydrate composition during seasons could account for the 

differences in LAB counts among species. A study compared the seasonal differences in the 
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composition of WK and SK and found that WK had maximum carbohydrate content during early 

June and July (Schiener et al. 2015). However, SK carbohydrate maximums were found later in 

fall (Schiener et al. 2015). The seaweed was collected in June for this study. Therefore, high WK 

LAB counts found in the first week of this study could be from the availability of carbohydrates 

in the WK and could account for the delayed fermentation in SK. Furthermore, seasonality also 

influences the minerals and vitamins found in seaweed species and changes the micronutrients 

available for microbial growth in fermentation and this could account for LAB count variability 

among species (Schiener et al. 2015).  

There was a significant interaction between seaweed concentration and seaweed species 

(p=0.01) and seaweed concentration and time (p<0.01). Varying amounts of SK/cabbage 

influenced lactic acid bacteria growth, with significantly (p<0.01) lower overall LAB counts 

found in the 75% SK treatment. However, in the WK, the 25%, 50%, and 75% treatments were 

not significantly different in lactic acid bacteria populations (Table 2). Lactic acid bacteria are 

naturally found on cabbage and an average of 3.71 log CFU/g was present on the raw cabbage. 

No lactic acid bacteria were detected in raw winged kelp and sugar kelp starting material, based 

on a 25-300 colonies per plate detection limit. Despite the higher starting lactic acid bacteria 

populations in the cabbage compared to kelps, the treatments with more cabbage did not have 

significantly higher mean LAB populations, likely from inoculating ~100 times higher than the 

natural LAB population found on cabbage. However, this could also suggest that seaweed has 

similar nutrients to cabbage that can sustain lactic acid bacteria populations. As mentioned 

previously, cabbage and seaweed are rich sources of carbohydrates. There are also important 
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micronutrients found in cabbage and seaweed, like zinc, that help support microbial growth 

during fermentation (Wu et al. 2008; Schiener et al. 2015).  
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3.2.2. Aerobic plate counts   

There was a significant interaction found among seaweed species and seaweed 

concentration (p<0.01), seaweed species and time (p<0.01), and seaweed concentration and time 

(p<0.01). The aerobic plate counts were 23% higher overall in the SK treatments (5.53 log 

CFU/g) compared to the WK treatments (4.25 log CFU/g), meaning that there was a significantly 

higher total bacteria population in the SK treatments (Figure 6). The WK aerobic plate count 

remained consistent over time among different seaweed concentrations, with a mean ranging 

from 4.23-4.28 log CFU/g (Table 3).  All WK concentrations had significantly lower average 

aerobic plate count throughout the study when compared to SK treatments. In contrast, the 

addition of SK affected the aerobic plate count, as the highest average aerobic plate count was in 

the 50% treatment (6.33 log CFU/g), while the lowest average aerobic plate count was in the 

75% treatment (4.69 log CFU/g). These results were unusual, however, this could have been due 

the antimicrobial effects of seaweed (Kausalya and Narasimha 2015 
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Figure 6. Mean aerobic plate counts (log CFU/g) in seaweed sauerkraut by species. 
 

 
 
Values are means ± S.E. Treatments not sharing a letter are significantly (p<0.001) different 
based on Multi-Way ANOVA (n=9). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sugar	Kelp Winged	Kelp	
Mean 5.53 4.25

0

1

2

3

4

5

6
Lo
g	
CF
U/
g

Species

  b 

a 



 47 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 48 

However, the mean aerobic plate count across all treatments was similar at the beginning 

(day 0) and the end (day 60) of the study, as the mean aerobic plate count started at 4.13 log 

CFU/g and ended at 4.77 log CFU/g. Throughout the study, the overall aerobic plate count 

ranged from 3.08-6.99 log CFU/g across all treatments over time. The aerobic plate counts were 

considerably lower compared to another sauerkraut study by Beganovic et al. (2011) that tested 

three different conventional sauerkraut formulations. One treatment had 4% salt and was a 

spontaneous fermentation. The other two treatments were inoculated with L. plantarum and L. 

mesenteroides (1:1), with one treatment having 2.5% salt and the other having 4% salt. The mean 

range of the aerobic plate count among all these treatments was 6.04 to 8.11 log (Beganovic et al. 

2011).  The addition of seaweed to the treatments could account for the lower total bacteria 

population because compounds in seaweed display antimicrobial activity (Perez et al. 2016). 

Brown seaweeds (like kelp) are rich in polysaccharides and phenolic compounds. Because of the 

unique structure and chemical nature of these compounds, they are known for antimicrobial, 

antiviral, and antifungal activity (Perez et al. 2016).  Furthermore, seaweeds produce metabolites 

that act as defense mechanisms during environmental stress and act as natural antimicrobial 

agents (Perez et al. 2016).  

3.2.3. Coliform counts  

Coliforms are typically tested to determine water quality and to detect fecal coliforms, 

which are evident in water polluted with sewage or animal waste (CDC, 2015). While the 

number of coliforms in the seaweed sauerkraut varied randomly throughout the study, positive 

MPN tubes were confirmed. This indicates that fecal coliforms were present in some of the 

treatments. The cabbage could have contributed to the number of coliforms could that were 

found, as the average number of coliforms found on the raw cabbage was 47 times higher than 
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the average number of coliforms found on the winged kelp (15 MPN/g) and sugar kelp (14 

MPN/g). Seaweed could have also contributed to these values, if so, indicating that the harvest 

waters and seaweed were exposed to coliform bacteria. To support this, the concentration of 

seaweed significantly influenced the number of coliforms that were found in the SK seaweed 

sauerkraut. The 75% SK had significantly higher coliform counts than the 25% SK and 50% SK 

treatments, at 619 + 105.45 MPN/g, 229.6 + 101.87 MPN/g and 85.57 + 101.87 MPN/g, 

respectively. Contrastingly, there were no significant differences in coliform counts as the WK 

concentrations increased in the treatments. However, the WK treatment fermented sooner than 

SK and fermentation is reported to decrease the number of coliforms found in a product 

(Kimmons et al. 1999). This could explain the lower number of coliforms detected in WK 

sauerkraut and why coliform counts were significantly higher in the SK treatments throughout 

the entire study (Figure 7).  Additionally, the 75% SK treatments fermented the slowest and this 

could also be why this treatment had the highest number of coliforms. Overall, the process of 

fermentation did not decrease the number of coliforms, as much as anticipated. Kimmons et al. 

(1999) defined product contamination as greater than 100 CFU/mL of sample when measuring 

coliforms in different foods. Several seaweed sauerkraut treatments had higher numbers 

recorded.  Overall, length of storage did not influence the number of coliforms that were found in 

the sauerkraut treatments. 
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Figure 7. Mean positive coliform count (MPN/g) in seaweed sauerkraut by species. 
 

  
 
Values are means (MPN/g + S.E.) Values not sharing a letter are significantly (p<0.01) different 
from each other based on Multi-Way ANOVA (n=9).    
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study. 

 Molds were not expected in these products, as molds typically grow in aerobic conditions 
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(2008) found that L. plantarum enabled the best yeast inhibition in fermented plant beverages 

when tested against 72 different LAB strains and helps support the results in this study.  

3.2.5. Pathogens 

Food safety is important to maintain in all products and pathogens are typically 

responsible for foodborne illness.  Therefore, the presence of Staphylococcus aureus, 

Salmonella, Listeria monocytogenes, and Vibrio was checked in all treatments. One pathogen, 

Vibrio, was detected at the start of the study on the raw winged kelp material. Further testing 

showed that Vibrio was also present in the first week of the study on the sugar kelp 75% 

treatment, but it was not present at the end of the study. The presence of this pathogen could be 

because the seaweed in this study was harvested at the end May, which is towards the end of the 

harvesting season. Vibrio is a pathogen that is typically more prominent in the summer/warmer 

months and this could be why it was detected (CDC, 2017). However, kelp is usually harvested 

earlier in the spring and this could help prevent contamination by Vibrio. When samples were 

prepared for sensory evaluation using seaweed that was collected in March, no pathogens were 

detected. Additionally, collecting the seaweed in March resulted in much cleaner seaweed 

overall.  There was hardly any biological fouling present, meaning that hydroids, epiphytes, and 

other organisms were not on the seaweed. There was a much larger incidence of biological 

fouling on the seaweed collected in May.  

 It should be reiterated that the absence of pathogens, low aerobic plate count, and low 

presence of mold/yeast, could be because of the important antimicrobial effects of seaweed 

(Kausalya and Narasimha 2015; Perez et al. 2016; Roohinejad et al. 2017). The inhibition of 

pathogens was tested in a study by Kausalya and Narasimha (2015). The growth inhibition of 18 

different pathogens (S. aureus, E. coli, Enterobacter aerogenes, etc.) was tested in brown 
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seaweed extracts and it was determined that seaweed had significant antimicrobial activity based 

on the absence of pathogens.  

3.3. pH 

 pH is a key indicator used to track fermentation, as acid is the main product in a lacto-

fermentation.  Kelp species had a significant (p<0.01) effect on pH values of sauerkraut 

treatments, with WK treatments having lower overall pH values than SK treatments (Figure 8). 

There was also a significant (p=0.02) interaction between species and concentration. In both 

species, the 25% treatments had overall pH values that were significantly (p=0.002) lower than 

the 75% seaweed concentrations. As the concentration of SK increased there was no significant 

effect on pH values. However, as the concentration of WK increased from 50% to 75% the pH 

increased significantly (p<0.001) from 4.2 to 4.5. 

 
Figure 8. Mean pH values in seaweed sauerkraut by species. 
 

 
 
Values are means ± S.E. Values not sharing a letter are significantly different (p<0.001)  
from each other based on Multi-Way ANOVA (n=9). 

Sugar	Kelp Winged	Kelp
Mean 4.8 4.3

4.0
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

pH

Treatment	

b

a



 53 

Based on pH, there was a significant (p=0.02) three-way interaction between seaweed 

species, percent, and time. Regarding time and species, there was a significant (p<0.01) 

interaction and WK treatments fermented quicker than the SK treatments. All WK treatments 

reached the goal pH of 4.6 or lower by day 3. The results are consistent with other sauerkraut 

fermentation studies that inoculated with L. plantarum and L. mesenteroides. Hunaefi et al. 

(2013) and Beganovic et al. (2011) inoculated cabbage with L. plantarum and found that the 

sauerkraut pH reached below 4.6 by day 4 and day 7, respectively.  However, in the current 

study, SK did not reach the goal pH until day 14. SK took approximately 11 days longer to 

ferment compared to WK (Table 4).  The delayed fermentation in the SK treatments is consistent 

with the lactic acid bacteria populations, as some of the highest lactic acid bacteria populations 

were achieved on day 28 and 60 of the study, which is when the lowest pH values were also 

recorded. Furthermore, pH was negatively correlated (p<0.001) with aerobic plate counts (-0.30) 

and lactic acid bacteria (-0.35), meaning that the pH decreased when the populations increased. 

Although the SK treatments exhibited delayed fermentation in comparison to WK, the 

fermentation times were quicker than in typical spontaneous sauerkraut products (Beganovic et 

al. 2011). Beganovic et al. (2011) conducted research on spontaneous sauerkraut fermentation, 

using 4% salt, and found that the pH did not drop below 4.6 until day 28.  Interestingly, the mean 

pH values for WK and SK treatments were similar at the start of the study and the end. For WK 

treatments, the starting pH was 5.8 the end pH was 3.9. For SK treatments, the mean pH was 5.5 

at the beginning of the study and 4.0 at the end.  
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3.4. Titratable acidity 

 Similar to the pH results, there was a significant interaction among species, seaweed 

concentration, and time (p=0.02). TA was significantly different among species, as the overall 

TA of 0.31% for SK samples was significantly (p<0.01) lower than the TA of 0.41% for WK. 

This was expected because TA is typically higher in samples that have a lower pH, as supported 

by the significant (p<0.01) strong negative correlation (-.848) between TA and pH (Table 5).  TA 

was positively correlated with aerobic plate counts and lactic acid bacteria, meaning that the TA 

increased when the lactic acid bacteria and aerobic plate count increased (p<0.01).  

 
Table 5. Spearman correlations among pH, titratable acidity (TA), lactic acid bacteria (LAB) 
population, and aerobic plate counts (APC). 

  pH TA LAB APC  

pH ____ -.848** -.353** -.296***  
 

TA -.848** ____ .266** .259**  
 

LAB -.353** .266** ____ .850**  
 

APC -.296*** .259** .850** ____  
 

 
**=p<0.01, ***=p<0.001.  
  

Overall, as the concentration of seaweed increased, the TA decreased significantly 

(p<0.01) at each concentration level (Figure 9). Specifically, this was the case for the SK 

treatments. However, in WK treatments, the 25% and 50% TA were not significantly different, 

but both were significantly lower than the 75% treatment (p<0.01).  
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Figure 9. Overall mean titratable acidity (%) in seaweed sauerkraut by seaweed concentration. 
 

 
 
Values are means ± S.E. Values not sharing a letter are significantly (p<0.001) different 
from each other based on Multi-Way ANOVA, followed by a Tukey’s HSD post hoc test 
(n=6).  
 
 

Among all treatments, time had significant (p<0.01) interactions with percent, as well as 

seaweed species (p<0.01). Over time, the average TA increased significantly (p<0.01) from the 

beginning of the study at 0.05% (Day 0) to 0.67% (Day 60) (Table 6).  
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3.5. Texture analysis 
 

Texture of fermented products is a key attribute for consumers because it is important 

that the structure of the product is preserved. Kelp species significantly (p<0.001) affected the 

mean shear force (N) values in the sauerkraut throughout the study (Figure 10).  WK treatments 

were ~2 times higher in mean shear force values than SK treatments throughout the study. This 

result was expected because WK has a distinct midrib in the middle of its blade. This midrib is 

thicker than the surrounding blade and similar in thickness to seaweed stipes. This likely 

accounted for the higher resistance to shear when comparing the two species, because SK has a 

thinner undivided blade.    

 

Figure 10. Mean shear force (N) of seaweed sauerkraut by species.  

  
 
Values are means ± S.E. Values not sharing a letter are significantly (p<0.001) different  
based on Multi-Way ANOVA (n=9).  
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There was a significant (p<0.01) interaction between the seaweed species and seaweed 

concentration texture values. The texture of the SK sauerkraut treatments was significantly 

influenced by seaweed concentration. For SK treatments, as concentrations of SK increased from 

25% to 75%, shear force decreased significantly from 165.5 to 53.8 N (Figure 11a). 

Interestingly, the percent incorporation did not influence the shear force values of the WK 

sauerkraut (Figure 11b), indicating that WK texture was similar to cabbage in terms of resistance 

to shear.  
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Figure 11. Mean shear force (N) of seaweed sauerkraut by seaweed concentration, a) sugar kelp 
and b) winged kelp.  
 
 

a)   

b)     
 
Values are means ± S.E. Values not sharing a letter are significantly (p<0.05) different from each 
other based on Multi-Way ANOVA followed by a Tukey’s HSD post hoc test (n=3).  
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Throughout the study, there was a significant interaction (p<0.01) between seaweed 

species and time.  The WK and SK treatments showed similar trends over time with the lowest 

shear force values recorded at the beginning of the study and the highest values on day 27, 

indicating that resistance to shear increased significantly over time for the first half of the storage 

period (Table 7). The mean shear resistance of the SK and WK treatments significantly 

decreased by over 30 percent from day 27 to the end of the study (Day 60) with mean values 

changing from 208.5 N on day 27 to 142.7 N on day 60.  The increase in shear resistance found 

in the first half of this study could be due to the use of starter cultures. Johanningsmeier et al. 

(2007) found that the firmness of spontaneous fermentation products varied within treatments 

and decreased over time. Yet, the addition of L. mesenteroides, a lactic acid bacteria starter 

culture, to the sauerkraut helped to retain the texture. The addition of salt to the treatments could 

have also influenced the shear resistance values found in the seaweed sauerkraut. 

Johanningsmeier et al. (2007) found that adding salt increased the crunchiness (shear firmness) 

of conventional cabbage sauerkraut.  Their study suggested that salt inhibited activity of 

softening enzymes and preserved the original texture (Johanningsmeier et al. 2007). This could 

explain why the average shear firmness among all the treatments did not decrease until day 60 

for this seaweed sauerkraut study.  
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Table 7.  Mean shear force values (N) in seaweed sauerkraut over time.  
 

Species Concentration 
(% seaweed) 

Days 
6  12  27 60 

Sugar 
Kelp 

25 125.5 + 37.3 140.5 + 32.4 209.9 + 29.1 186.2 + 29.6 

50 61.5 + 19.9 86.9 + 23.9 111.7 + 19.0 106.8 + 21.7 

75 34.2 + 14.1 38.1 + 15.2 88.7 + 17.1 54.0 + 14.6 

Winged 
Kelp 

25 172.1 + 37.9 249.4 + 34.4 278.6 + 40.7 179.2 + 40.5 

50 164.7 + 7.9 266.3 + 6.7 267.7 + 7.1 158.9 + 42.5 

75 127.9 + 48.5 221.0 + 49.1 294.3 + 47.4 171.1 + 41.1 

 
Values are means + S.D. (n=3). 
 

3.6. Colorimetric analysis 
 

 Color is an indicator of quality for many food products and measuring color can show 

how the products change over time. Regarding species, the L* values were not significantly 

different between WK and SK samples (Figure 12). However, a* and b* values were both 

significantly (p<0.01) higher in SK sauerkraut treatments. For b* values, there was also a 

significant (p<0.01) three-way interaction between seaweed species, seaweed concentration, and 

time. These data indicate that SK samples were more red and yellow in color than the WK 

treatments.  It could also suggest that SK treatments had more fucoxanthin, as this pigment is 

responsible for the yellowish and brownish color of seaweeds (Mouritsen et al. 2013b). When 

fuxoxanthin is present, the pigment responsible for green color, chlorophyll a, is masked. WK 

treatments were greener than SK treatments, indicating that chlorophyll a was a more dominant 

pigment.  

The difference in dominant pigments among species could impact the marketability and 

consumers’ response to this product. For example, consumers typically relate the color green to 
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nature (Sliburyte and Skeryte 2014). The greener WK might be considered more favorable to 

consumers wanting more natural products, although, both products are equally natural.  

 
Figure 12.  Mean L* a* b* values of seaweed sauerkraut samples by species. 
 

 
 
Values are means ± S.E. Values not sharing a letter are significantly different (p<0.01)  
from each other based on Multi-Way ANOVA followed by a Tukey’s HSD post hoc test  
(n=9).  
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for L* values. As the seaweed concentration increased the L* values decreased significantly 

(p<0.01). This was expected because the seaweed was darker than the cabbage. The a* values 

decreased as the seaweed concentration increased, indicating that the sample became greener 

with the addition of seaweed. For a* and b* values, there was a significant interaction between 

seaweed concentration and time (p=0.02, p=0.05). A significant interaction (p=0.05) also 

occurred between seaweed concentration and species (p=0.05) in the b* values, as the b* values 
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Additionally, the overall L* values were significantly lower on day 6 than other days of 

the study. After day 6, the L* values stayed consistent for the rest of the storage time. This 

indicates that the samples color was maintained. Additionally, a* and b* values were highest on 

day 6. 

3.7. Antioxidant analysis 

3.7.1. Total phenolic content (TPC) 

 Throughout the study, SK and WK treatments had very similar average total phenolic 

contents (TPC) of 2.38 (mg/g) and 2.61(mg/g), respectively, indicating that species did not 

influence TPC.  The similarity in TPC among WK and SK sauerkraut treatments is interesting 

because other researchers have reported significant differences in TPC among various seaweed 

species (Gupta et al. 2012). Gupta et. al (2012) compared the TPC among two different kelp 

species, Laminaria digitata and Saccharina latissima (SK). The TPC for L. digitata was 3.1 

times lower than for the SK. The variability found among species in that study may have been 

due to environmental and location factors. Therefore, the similar TPC found among WK and SK 

sauerkraut treatments could be because they were harvested at the same time and in the same 

location.  

 As seaweed concentration increased in SK and WK sauerkraut samples, TPC also 

increased and there was a significant (p<0.01) interaction among seaweed concentration and 

seaweed species (Table 9). The 75% treatments were more than 50% higher in TPC than the 

25% seaweed sauerkraut. However, the TPC in 25% and 50% treatments were not significantly 

different from each other for both the WK and SK treatments. Comparing the TPC in this study 

to a red cabbage sauerkraut study by Hunaefi et al. (2013) suggests that the addition of seaweed 

may have increased the TPC of the sauerkraut. The TPC in red cabbage inoculated with L. 
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plantarum ranged from 1.29-1.85 mg/g throughout a 38-day study, almost 30% lower than the 

average TPC found in the WK (2.61 mg/g) and SK (2.38 mg/g) treatments. However, we cannot 

confirm that the seaweed was directly responsible for higher TPC level between studies, since 

different cabbage species were also used. Yet, TPC of seaweed sauerkraut can be directly 

compared to the TPC of fresh WK and SK blades. Nayyar (2016) reported that the average TPC 

of WK and SK were approximately 14 mg/g and 2 mg/g, respectively. This suggests that SK and 

SK sauerkraut are similar in TPC. However, Nayyar (2016) recorded TPC levels in WK more 

than 3x higher than levels found in 75% WK sauerkraut.  Differences among studies may be due 

to seasonality and the fact that seaweed sauerkraut treatments had less seaweed, however, this 

would only account for a slight variation. The TPC of the seaweed sauerkraut treatments did not 

significantly change during storage. Additionally, these TPC values can be compared to berries, 

fruits well-known for their high antioxidant activity. Huang et al. (2012) found that blueberries, 

strawberries, and blackberries had a TPC of 9.44, 2.72, and 5.58 mg/g, respectively. While 

blueberries had a particularly high TPC, the TPC of seaweed sauerkraut was comparable to those 

of strawberries and blackberries, indicating that this product also has high antioxidant activity.   

  
 Table 9. Mean total phenolic content (mg/g) of seaweed sauerkraut over time.  
 

  Days 

Species Concentration 
(% seaweed) 21 42 60 

Sugar  
Kelp 

25 1.78 + 0.08 1.91 + 0.11 2.11 + 0.14 

50 2.20 + 0.29 2.17 + 0.14 2.12 + 0.15 
75 2.49 + 0.5 3.43 + 0.36 3.20 + 0.36 

Winged 
Kelp 

25 1.58 + 0.06     1.78 + 0.1 1.83 + 0.15 

50 1.68 + 0.29 2.04 + 0.15 2.01 + 0.30 

75 3.90 + 0.46 4.48 + 0.88 4.17 + 0.52 

 
Values are means + S.D. (n=3). 
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3.7.2.  Ferric reducing antioxidant power (FRAP) assay 

The FRAP assay assesses the ability of an antioxidant to reduce reactive species. It is an 

electron transfer reaction that reduces a ferric oxidant to a ferrous ion (Benzie and Strain 1996). 

The higher FRAP values found in SK sauerkraut show that species did influence FRAP values 

and that SK treatments had higher antioxidant capacity (Figure 13). Seaweeds tend to differ in 

FRAP values among species, with brown seaweeds having high FRAP values when compared to 

red seaweeds (Matanjun et al. 2009; O’Sullivan et al. 2011).  Furthermore, fermented products 

have shown higher FRAP values than non-fermented products (Cho et al. 2015). One reason for 

this could be because fermentation releases active peptides, due to the use of Lactobacillus. A 

study by Ramesh et al. (2012) found that Lactobacillus strains produced bioactive peptides in 

milk, which have antioxidant activity due to their interaction with free radicals.  

Figure 13.  Overall mean FRAP values (μmol FSE/g) in seaweed sauerkraut by species. 
 

 
 
Values are means ± S.E. Values not sharing a letter are significantly (p<0.05) different from 
each other based on Multi-Way ANOVA followed by a Tukey’s HSD post hoc test (n=9).  
FRAP = ferric reducing antioxidant power. 
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Similar to the results of the TPC analysis, the percentage of seaweed significantly 

affected the FRAP values. There was a significant interaction between seaweed species and 

seaweed concentration (p<0.01). The highest FRAP values were found in the 75% treatments, 

with an average of 26.6 μmol FSE/g dried seaweed sauerkraut in the 75% WK treatment and 

37.4 μmol FSE/g in the 75% SK treatment.  Additionally, the 75% SK FRAP values were 54% 

higher than the 25% treatments. In WK, the 75% FRAP values were 30% higher than the 25% 

treatments (Figure 14). Unexpectedly, the FRAP values were lowest in the 50% treatments for 

both the SK and WK. 

 
Figure 14.  Overall mean FRAP values (μmol FSE/g) in seaweed sauerkraut by seaweed 
concentrations. 
 

 
 
Data are means ± S.E. Values not sharing a letter are significantly (p<0.05) different from  
each other based on a Multi-Way ANOVA followed by a Tukey’s HSD post hoc test (n=6). 
FRAP = ferric reducing antioxidant power. 
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seaweed species (p=0.01) and time and seaweed species. (p<0.01). Time influenced the FRAP 

values, as the values in SK treatments were 10% higher at day 60 compared to day 21 (Table 10). 

Comparably WK treatments were approximately 80% higher at day 60 than day 21. The increase 

in FRAP values was mostly due to the 75% sauerkraut treatments.  The increase in FRAP values 

over time could be due to fermentation and the presence of lactic acid bacteria, as previously 

mentioned. In this study, the overall average lactic acid bacteria counts were lowest on day 21 

and highest on day 60.  Therefore, the increase in lactic acid bacteria metabolic activity could 

have produced compounds that increased the antioxidant activity.  

 
Table 10. Mean FRAP (μmol FSE/g) values in seaweed sauerkraut over time.  
 

Species Concentration (% seaweed) Days 
21 42 60 

Sugar Kelp 

25 17.4 + 3.4 13.0 + 4.7 20.0 + 2.6 

50 9.2 + 0.5 16.9 + 1.9 11.4 + 0.9 

75 36.0 + 3.6 38.7 + 1.9 37.4 + 2.5 

Winged Kelp 

25 18.2 + 1.8 18.4 + 3.1 19.4 + 3.1 

50 10.4 + 0.5 11.5 + 0.8 10.6 + 1.1 

75 9.4 + 1.0 39.2 + 5.6 37.5 + 5.9 

 
Values are means + S.D. (n=3). FRAP = ferric reducing antioxidant power.  
 

3.7.3. α, α-diphenyl-β-picrylhydrazyl (DPPH) assay  
 
 The results of the DPPH assay show that species did not influence the DPPH values. The 

DPPH units are reported in EC50 (mg/mL), which is the sample concentration (mg/mL) needed to 

inhibit 50% of the DPPH free radicals. Throughout the study, SK and WK treatments had very 

similar average EC50 values of 5.31 (mg/mL) and 5.54 (mg/mL), respectively. 
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 As seaweed concentrations in the sauerkraut increased, EC50 values decreased 

significantly (Table 11). The lower the EC50 value of the sample, the higher its antioxidant 

capacity. The 75% treatments had the lowest EC50 values, while the highest was found in the 

25% treatments. The 75% percent treatments were approximately three times lower than the 25% 

seaweed sauerkraut treatments, overall indicating that they had a higher antioxidant capacity. 

Data from Nayyar (2016) support the claim that the addition of seaweed contributes to higher 

antioxidant activity. Nayyar (2016) found low DPPH values in seaweeds, with an average EC50 

~7mg/mL in sugar kelp and a better value of ~1 mg/mL for winged kelp. For sauerkraut, this 

study found average EC50 values of 3.1 and 2.3 mg/mL, in the 75% SK and 75% WK treatments, 

respectively.  While the WK EC50 values found in seaweed sauerkraut are comparable to those in 

raw WK, the SK EC50 values were lower (better) compared to raw sugar kelp. As discussed 

previously, the process of fermentation may have contributed to the lower EC50 values by 

increasing the production of antioxidant metabolites. 

 
Table 11. Mean DPPH EC50 (mg/mL) values in seaweed sauerkraut over time.  
 

Species Concentration 
 (% seaweed) 

Days 

21 42 60 
Sugar Kelp 25 8.93+ 0.86 7.70 +1.70 5.73 + 0.94 

50 6.32 + 1.20 4.86 +1.39 4.80 + 1.24 

75 3.41+ 1.39 2.94 + 0.78 3.07 + 0.53 

Winged 
Kelp 

25 7.96 + 0.97 6.73+ 0.99 7.52 + 2.86 

50 7.44 + 1.65 6.90 +0.42 6.54 + 0.76 

75 2.13 + 0.57 2.67 + 1.55  2.01 + 0.56 

 
Values are means + S.D. (n=3). DPPH = α, α-diphenyl-β-picrylhydrazyl. 
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The DPPH EC50 values decreased somewhat over time, but the changes were not 

significant. Mean SK and WK EC50 values decreased from 6.22 to 4.53 mg/mL and 5.84 to 5.36 

mg/mL, respectively, from day 21 to day 60 of the study. These results are comparable to those 

for FRAP values, as there was an increase in antioxidant capacity over time among sauerkraut 

samples. 

Because TPC, FRAP, and DPPH assays are all indicators of antioxidant activity, they 

were compared using Spearman Correlations. DPPH EC50 values were strongly negatively 

correlated (-0.788, p<0.01) with TPC and to a lesser extent with FRAP (-0.541, p<0.01) (Table 

12). FRAP and TPC were strongly positively correlated (0.601, p<0.01), meaning that samples 

with a higher TPC also had a higher FRAP. The data are supported by previous studies that also 

reported a high correlation between TPC and antioxidant activity among seaweeds (Chew et al. 

2008, Rajauria et al. 2010). One reason for this high antioxidant activity is because seaweeds 

have a unique chemical composition.  Seaweeds are rich in phlorotannins, which are the 

dominant phenolic compounds in brown seaweed. Seaweeds with more phlorotannins have 

showed high antioxidant activity. Brown seaweeds also have more biologically active 

compounds that have been known to inhibit enzymes (e.g. α-glucosidase, acetylcholinesterase, 

and butyrylcholinesterase) and free radicals, making the species rich in important antioxidants 

(Andrade et al. 2013). Additionally, seaweed is high in polysaccharides and these 

polysaccharides have sulphate groups that could enhance their antioxidant activities (Roohinejad 

et al. 2017).   
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Table 12. Spearman Correlation among TPC, DPPH, and FRAP values of seaweed sauerkraut. 

  FRAP DPPH TPC  

FRAP ____ -.541** .601**  
 

DPPH -.541** ____ -.788**  
 

TPC .601** -.788** ____ 
 

 
 
**=p<0.01, TPC = total phenolic content, DPPH = α, α-diphenyl-β-picrylhydrazyl, FRAP = 
ferric reducing antioxidant power. 
 

3.8. Organic Acids 

3.8.1. Lactic acid  

 Lactic acid is one of the main products produced by lactic acid bacteria during 

fermentation. Therefore, measuring the lactic acid concentration indirectly measures the progress 

of the fermentation. Furthermore, the growth of lactic acid bacteria helps create an acidic 

environment that deters spoilage bacteria. Also, it is responsible for the unique flavor that 

consumers identify in lacto-fermented products. 

There was a significant (p<0.01) three-way interaction between all the tested variables 

and lactic acid. WK treatments had approximately double the amount of lactic acid concentration 

than SK treatments (Figure 15). Seaweed species and seaweed concentrations had a significant 

(p<0.01) interaction with the lactic acid concentrations and the 75% treatments had the lowest 

lactic acid concentrations. Additionally, lactic acid concentrations had significant interactions 

between time and seaweed species (p<0.01), time and seaweed concentrations (p<0.01).  The 

lactic acid concentrations in the seaweed sauerkrauts were measured until day 14 and during this 

time, WK had higher recorded lactic acid bacteria counts and lower pH values than the SK 

treatments. These results confirm that the higher LAB populations created more lactic acid and 
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reduced the pH of the sauerkraut. SK took longer to ferment likely explaining the significantly 

lower lactic acid concentration.  

 
Figure 15. Mean lactic acid and acetic acid concentrations (g/L) in seaweed sauerkraut by 
species.  
 

 
 
Values are means ± S.E. Values not sharing a letter are significantly different (p<0.01)  
from each other based on a Multi-Way ANOVA followed by Tukey’s HSD post hoc test 
(n=9).  

 

Lactic acid concentrations increased continually over time with the highest concentration 

found on day 14 (Figure 16). Overall, lactic acid was 40 times higher on day 14 day than on day 

0. Lactic acid bacteria counts were highest on day 7 and remained high until day 14, suggesting 

that the growth of LAB effected the lactic acid concentrations.  
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Figure 16. Mean lactic acid and acetic acid concentrations (g/L) in seaweed sauerkraut 
over time.  
 

 
 
Values are means + S.E (n=18). 
 

 
The lactic acid concentrations found in this study are comparable to another sauerkraut 

study. Trail et al. (1995) tested eight commercial sauerkrauts and found that lactic acid values 

ranged from 111-178mM (~10-16g/L) in the fermented products. These lactic acid 

concentrations are similar to the seaweed sauerkraut, which had a mean lactic acid concentration 

of 13 g/L at the end of the fermentation period. 
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Acetic acid was present in low amounts in all treatments. This could be because 

Lactobacillus plantarum bacteria are facultative heterofermentors, meaning they can produce 
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acetic acid concentrations. There was also a significant interaction (p=0.03) between seaweed 

concentration and seaweed species. Acetic acid production was highest in the 75 WK treatments.  

Regarding time, there was a significant (p<0.01) increase in mean acetic acid concentrations over 

time from day 0 (0.37 g/L) compared to day 14 (0.92 g/L). 

3.9. Sugars  

 Sugars are one of the main carbohydrate sources that drive fermentation. Therefore, 

measuring the sugar concentrations in the brine can help clarify how and which carbohydrates 

are utilized by microorganisms.  

The sugar concentrations among treatments were relatively similar between species, 

suggesting that the microorganisms utilized sugars similarly in fermented WK and SK products 

(Figure 17). In contrast, the concentration of seaweed influenced sugar concentrations in the 

sauerkraut treatments. Fructose, sucrose, and glucose were significantly higher in concentration 

in the 25% treatments and the lowest in the 75% treatments, likely due to the contribution from 

the cabbage fraction of the sauerkraut. Overall, cabbage has a higher sugar content than seaweed. 

The content of sugars in green cabbage is about 3.2 g per 100 g, while sugar kelp has 0.6 g per 

100 g (USDA, 2018). In a study by Hughes and Lindsay (1985), it was found that glucose was 

the most abundant sugar in cabbage when compared to fructose and sucrose. Fructose is also an 

abundant sugar, while sucrose is typically found in small amounts in cabbage (Xiong et al. 

2014).  

Brown seaweeds are rich in polysaccharides and sugar alcohols like laminarin, alginate, 

mannitol and cellulose (Schiener et al. 2015). Laminarans are storage compounds and structural 

polysaccharides, monosaccharides linked with different glucosidic bonds, that are main 

components in the cell wall of seaweed (Perez et al. 2016). Laminarans can make up to 32% dry 
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weight (Kraan, 2012) of some brown seaweeds.  Alginates are also structural polysaccharides 

and are major components of brown seaweed and are made up of mannuronic and guluronic 

acids (Perez et al. 2016). Cellulose is a cell wall polysaccharide that is insoluble (Kraan, 2012). 

Mannitol is a sugar alcohol found in brown seaweeds and in some species of brown seaweed it 

can make up 25% of the dry weight depending on the season (Kraan, 2012). Mannitol is used as 

a flavor enhancer and is known for its sweet flavor.  These different carbohydrates are 

responsible for some of the diverse sugars found in seaweed, including D-galactose, D-mannitol, 

L-rhamnose, D-glucuronic acid, and L-fucose (Hwang et al. 2011).  

 
Figure 17. Mean sugar content (g/L) in seaweed sauerkraut by species 
 

 

Values are means ± S.E. Values not sharing a letter are significantly different from each other 
based on Multi-Way ANOVA followed by Tukey’s HSD post hoc test (n=9).  
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glucose and fructose concentrations throughout the study (Xiong et al. 2014).  Fructose levels 

increased approximately fourfold by day 7 and there was approximately two times as much 

fructose than glucose. Similarly, by day 7 glucose levels increased to 8.35 g/L, approximately 16 

times the concentration on day 0 (0.52 g/L). The increase in fructose and glucose concentration 

could have been partially due to diffusion of these sugars from the cabbage into the brine. 

Overall, these results are comparable to a study by Trail et al. (1995) that tested eight 

commercial sauerkrauts and found that glucose ranged from 0-57mM (~0-10g/L), and fructose 

ranged from 0-22mM (0-4g/L). The somewhat higher fructose concentrations observed in the 

seaweed sauerkraut brine can further be explained by a study by Xiong et al. (2016) that 

measured different chemical compositions of sauerkrauts prepared with different salt 

concentrations. In that study, fructose concentrations were initially higher in the cabbage than in 

the brine. However, over time, the fructose concentration quickly increased in the brine and then 

remained steady throughout the fermentation (Xiong et al. 2016). That study suggested that the 

increase in fructose concentrations could also indicate that this sugar was not utilized by the 

microorganisms. 
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Figure 18. Overall mean of sugar concentration (g/L) in seaweed sauerkraut over time.   
 

    
 
Values are means ± S.E. (n=18). 
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galactose and D-glucuronic acid) could have influenced the sugar concentrations that were found 

in the seaweed sauerkraut brine. Evaluating the concentration of specific seaweed sugars and 

monitoring their changes during fermentation may provide insight into their potential influence 

on fermentation.   

3.10. Sensory testing 
 

Sensory evaluation was conducted on four different seaweed sauerkraut formulations to 

determine how consumers would react to this product. One hundred panelists participated in this 

study: 56% female and 44% male.  A majority (71%) of the panelists were in the age range of 

18-24 or 25-31. When asked how often they consumed seaweed, 70% indicated that they 

consumed seaweed either 1-4 times per year (32%) or 1-2 times per month (38%).  Panelists 

consumed seaweed more often than sauerkraut, as most panelists consumed sauerkraut less than 

once a year (39%) or 1-4 times per year (38%).  Over 56% of panelists consumed probiotics at 

least once a week and 73% of panelists were aware that fermented foods contained probiotics, 

indicating that probiotics were an important part of their diet.   

While many attributes were tested, the results of this sensory study indicate that there 

were no significant differences among the four different seaweed sauerkraut treatments for all 

attributes (Table 13). The lack of significant difference in the sensory attributes among 

treatments was surprising because physicochemical analyses revealed significant differences 

among treatments. Although sourness was also tested, the data could not be used due to errors in 

the computerized testing procedure. 
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Table 13. Mean hedonic scores for four seaweed sauerkraut treatments on a 9-point hedonic 
scale. 

Attribute 25 SK  50 SK  25 WK 50 WK P-Value 
Color 6.18 ± 1.49 6.15 ± 1.59 6.14 ± 1.31 5.86 ± 1.75 0.4302 

 
Aroma 5.48 ± 1.77 5.40 ± 1.75 5.13 ± 1.79 5.30 ± 1.60 0.5213 

 
Flavor 6.01 ± 1.85 5.81 ± 1.91 5.73 ± 1.88 5.79 ± 1.84 0.7401 

Texture 6.73 ± 1.40 6.47 ± 1.51 6.65 ± 1.44 6.60 ± 1.34 0.6291 

Overall 
Liking 

5.99± 1.66 5.79 ± 1.80 5.82 ± 1.85 5.85 ± 1.74 0.8627 

 
Values are means + S.D. No significant differences among the means were found based on a 
Multi-way ANOVA (n=100).  
 

3.10.1. Overall liking 
 
Using the 9-point hedonic scale, the average “Overall liking” scores for these products 

was 5.86, just under 6.0 which is equivalent to “Like slightly.” The “Overall liking” scores of 

consumers who ate seaweed more than once a year averaged 5.95, also equivalent to “Like 

slightly.” Those who consumed seaweed less than once a year rated the “Overall liking” of the 

sample approximately half a point lower with an average of 5.52, suggesting that overall 

acceptability of the seaweed sauerkraut was related to the panelists’ familiarity with seaweed 

products.  

The overall distribution for “Overall liking” was bell curved, meaning that the data were 

normally distributed. A majority of panelists rated the samples at or above a 6, which is the 

“Like slightly” category (Figure 19).  The 25% SK sample had the highest “Overall liking” score 

(5.99 ± 1.66), and 70% of panelists chose “Like slightly” or higher for this sample. The 50% SK 

treatment had the lowest “Overall liking” score (5.79 ± 1.80), with 59% of panelists rating the 

sample as “Like slightly” or higher. 
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Figure 19. Frequency of “Overall liking” scores for four seaweed sauerkraut treatments. 
 

 
 

3.10.2. Flavor  
 
Flavor is usually considered one of the most important attributes for product 

development.  The 25% SK treatment had the highest mean score (6.01 ± 1.85) for flavor.  

Panelists commented that this sample had just the right amount of flavor and that it was good. 

Additionally, this sample had a nice pickle flavor that helped disguise the ocean flavor. Other 

panelists thought that this sample was too sour and didn’t taste like sauerkraut. Some panelists 

thought that 50% SK tasted better and had more flavor than the 25% SK. The 25% WK was 

described as more bitter, sour, and too seaweedy/smelly. However, the 50% WK was described 

as having a pleasant seaweed flavor. Overall, consumers had varying opinions when describing 

the flavor of the samples that were both positive and negative, making it difficult to draw 

conclusions about flavor attributes. 
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All sensory attributes tested were significant and positively related (Table 14). 

Additionally, “Overall liking” and “flavor” were strongly related (0.89), showing that panelists 

who rated the sample higher for overall liking also liked the flavor of the sample. “Overall 

liking” and “texture” were also strongly related (0.63), meaning that panelists that liked the 

texture also liked the product more, overall.   Panelists who rated the flavor higher seemed to like 

the aroma more, making these attributes strongly related (0.63).  

 
Table 14. Spearman Correlation table of sensory attribute scores.   
 

 Color Aroma Flavor Texture Overall 
Liking 

Color 1 .506** .498** .422** .495** 
Aroma .506** 1 .628** .419** .649** 
Flavor .498** .628** 1 .593** .892** 

Texture .422** .419** .593** 1 .632** 
Overall 
Liking 

.495** .649** .892** .632** 1 

 
**=p<0.01 
 

3.10.3. Color 
  

The results from instrumental color analysis indicated the seaweed sauerkrauts were 

significantly different in color, with SK samples being more red and yellow, while WK samples 

were more green and blue in color.  In addition, seaweed samples were detectably different in 

color based on observation. The mean hedonic scores for color ranged from 5.86 to 6.18 among 

treatments. Panelists noted that they liked the vivid colors of the seaweed and disliked the 

bleached color of the cabbage.  However, the panelists did not rate the acceptability of color 

differently among the samples.  
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3.10.4. Aroma  
 
The aroma of seaweed and fermented products is unique. A majority of the panelists’ 

comments were related to aroma. Despite this, there were no significant differences found among 

samples with regard to aroma. However, aroma had the lowest hedonic scores across all 

attributes with a mean range of 5.13-5.48 among samples, indicating that panelists had stronger 

reactions to this attribute. One reason for this is that panelists had different opinions on what they 

liked about the aroma. The 50% WK was described as having the best aroma by some panelists, 

while other panelists thought that the smell was too strong and ocean-y. Consumers commented 

that the 25% SK and 50% SK smelled nice. The 25% WK was described as having an off-putting 

smell that was not as good as the other samples.  

3.10.5. Saltiness 
 
Seaweed grows in a saline environment and the process of making seaweed sauerkraut 

required adding more salt for preservation purposes. Panelists were asked to rate the salt 

intensity on a 5-point “Just about Right Scale” from 1 = “not nearly salty enough” to 5 = “much 

too salty.” Overall, there were no significant differences in saltiness ratings among treatments. 

Consumers rated the amount of salt in the samples as “Just about right,” with mean scores 

ranging from 2.92-3.14 among samples and an average mean for all the samples of 3.03 + 0.63. 

The mean scores were surprising since a few panelists commented that all the samples, besides 

25% SK, were too salty. 

3.10.6. Texture 
   
Texture is an important sensory property that was positively correlated with overall liking 

in the seaweed sauerkrauts. Panelists rated the texture scores highest among all hedonic scores. 

Panelists rated the texture similarly for each of the samples with mean scores ranging from 6.47-
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6.73.  This result is interesting because the shear force analysis indicated that there was a 

significant difference among seaweed species. SK treatments had lower shear force values, 

indicating softer texture. The higher shear force values in WK treatments could be from 

structural difference among the species because WK has a firm midrib on its blade. Differences 

in texture were also clearly apparent based on observation. While filling the sample cups, the 

mushier texture of the SK treatments was evident. Therefore, it was expected that panelists 

would rate the samples differently. Panelists described both the SK and WK samples as having a 

nice texture and crunch. The 25% SK sample was described as having a good seaweed to 

cabbage ratio. However, some panelists mentioned that the 50% SK treatment was slimy.  

 
Figure 20. Frequency of texture scores for four seaweed sauerkrauts treatments. 
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Almost 80% of panelists rated the texture as “Like slightly” or higher for all the tested 

samples (Figure 20). The panelists’ frequency of choosing “Like slightly” or above ranged from 

77%-83% among all samples.  Overall, the hedonic scores for texture were highest among all 

attributes.  

The hedonic scores for the seaweed sauerkraut samples could have been improved. 

Typically, sauerkraut is made with caraway seeds or other spices. Adding spices could have 

resulted in higher flavor scores and helped to mask some of the seaweed aroma that some 

panelists did not like.  Also, sauerkraut is frequently consumed as a condiment along with 

sausages, not by itself. Furthermore, this product is something new that consumers have never 

tried before. This could have created a bias against the samples because panelists could have had 

preexisting expectations about how the product might, or should, have tasted. Additionally, the 

results may have been different if there had been more screening of consumers. Although we 

tried to recruit panelists who enjoy consuming seaweed and sauerkraut, if more panelists who 

frequently consume seaweed and sauerkraut had tested the product, the acceptability scores may 

have been higher.   
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4. OVERALL CONCLUSIONS AND RECOMMENDATIONS 
 

This study is the first report in the scientific literature on lactic acid fermentation of 

seaweed to produce seaweed sauerkraut, with a specific focus on Maine seaweed species 

incorporated at various levels.  

The results indicate that kelps can be fermented successfully and that seaweed species 

and incorporation level affect different attributes of the fermented products. Visually, the WK 

sauerkraut was slightly darker green and produced more brine. In the SK treatments, seaweed 

and cabbage were clumped together and were somewhat slimy to the touch.  LAB grew fastest in 

WK treatments, with all products reaching the goal pH of less than 4.6 within three days. In 

contrast, the SK treatments did not achieve a pH of 4.6 until day 14. Titratable acidity was 

significantly correlated with pH values and was also significantly different between species. 

Furthermore, all treatments had high (≈106 CFU/g) lactic acid bacteria populations, showing the 

potential of this product as a probiotic. The use of the starter cultures, Lactobacillus plantarum 

and Leuconostoc mesenteroides, was likely responsible for the successful fermentation of the 

seaweed to produce sauerkraut. However, the fermentative success of several different species of 

lactic acid bacteria could be studied to result in a quicker fermentation time and increased shear 

firmness in the SK treatments, as LAB influenced these variables. Also, the addition of more 

than two species of LAB could be useful in improving the fermentation success and texture. 

While the inoculation level was based on typical LAB populations found in sauerkraut, it could 

have been increased to possibly increase the probiotic benefits of the seaweed sauerkraut. 

Furthermore, there are some LAB that are particularly known for their probiotic benefits such as 

Lactobacillus acidophilus, that could be further investigated.  Typical to most fermentations, the 

lactic acid concentration increased over time with the highest concentration found on day 14, 
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while low concentrations of acetic acid were found. As the seaweed concentration in the 

sauerkraut treatments increased, sugar concentrations in the brine decreased. Glucose and 

fructose were present in higher amounts in the brine compared to sucrose concentrations, which 

were negligible throughout the study. Although measurement of lactic acid and sugars was 

important for characterizing the extent of fermentation, quantifying additional carbohydrates 

may have provided more insight. Seaweeds contain a variety of polysaccharides, and it would be 

useful to analyze those carbohydrates and their potential derivatives to better understand how 

they are utilized during fermentation.  

Pathogens and coliforms were detected in the sauerkraut, despite seaweeds’ reported 

antimicrobial activity. The SK treatments had higher levels of coliforms and Vibrio sp. was 

detected in the 75% SK treatment, making Vibrio sp. the only pathogen confirmed out of the four 

(Vibrio, Salmonella, Staphylococcus aureus, Listeria) that were tested. Despite these results, 

contamination by Vibrio may possibly be avoided in the future, as the time and location of 

harvest could have effected these results. The presence of Vibrio sp. may have been because the 

seaweed was harvested at the end of May, towards the end of the harvesting season. Vibrio is 

typically more prominent in the summer/warmer months, although there is a concern that Vibrio 

levels might increase in the Gulf of Maine due to the changing climate. Overall, the results 

indicate that the main safety concern in the seaweed sauerkraut could be the coliforms and 

possibly the presence of E. coli. We recommend that the industry collects seaweed earlier in the 

season whenever possible and monitors the water quality of growing/harvesting sites. If seaweed 

becomes contaminated with pathogens while making seaweed sauerkraut, fermentation is the 

only step to kill the pathogens. This would not be a reliable method of pathogen control since not 
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all pathogens are killed by acidic environments. Additionally, concerns about biogenic amines in 

fermented products have arisen and their evaluation may be another aim for future studies. 

While physicochemical and microbial differences were found in the different seaweed 

sauerkrauts, consumers did not rate the samples differently for acceptability of color, aroma, 

overall liking, flavor, saltiness, and texture.  The mean scores for overall liking of all the 

seaweed sauerkraut samples were just under “Like slightly.” To improve these scores, more 

testing could be done on the sauerkraut formulation, which was a very basic recipe. Garlic, 

caraway seed, other spices, or other ingredients could be added, which may increase consumer 

acceptability of the product. Furthermore, it would have been interesting to ask consumers 

whether they typically consumed sauerkraut plain or as a condiment. Additionally, many 

panelists who tried the seaweed sauerkraut did not consume sauerkraut frequently. The samples 

may have been rated as more acceptable if more frequent sauerkraut consumers had evaluated 

the products.  

Seaweed sauerkraut could offer important health benefits to consumers, helping to create 

a niche market for this product. In addition to probiotic benefits, seaweed sauerkraut is rich in 

antioxidants. Although there were no differences in DPPH and TPC of SK vs WK treatments, 

increasing the seaweed concentrations improved TPC, FRAP values, and radical scavenging 

activity in the sauerkraut. Furthermore, seaweed sauerkraut may offer consumers more nutrients 

than dried seaweed. The heat treatment required to dry seaweed can decrease the nutrients in the 

products. In contrast, seaweed sauerkraut is produced using a non-thermal preservation process 

that could be a lower cost alternative to creating shelf stable products.  

In conclusion, the different concentrations of seaweed and species of seaweed influenced 

the fermentation success of the product. The WK treatments seemed to be the better fermentative 
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substrate. WK had shear firmness values similar to cabbage and the product was crisp and 

crunchy. WK also fermented quicker.  In regard to concentrations, the 75% SK treatment was the 

least successful of the six treatments, as it took the longest to ferment, had high coliform counts, 

and Vibrio was detected. Overall, the 25% and 50% treatments seemed to be the most consistent 

throughout the study with each concentration having important strengths. For example, the 25% 

treatments fermented more quickly, while 50% treatments mostly had higher antioxidant 

capacities. 

While the common variables that were tested throughout fermentation and storage 

provided important information on the fermentation dynamic, further variables could be tested to 

improve quality, safety, or shelf life. Extending the shelf life of the sauerkraut may be useful for 

commercial sales. This study lasted 60 days and the product remained stable during this time and 

showed no signs of spoilage. These results indicate that the shelf life of fresh seaweed was 

extended considerably, as the shelf life of fresh seaweeds is typically less than one week.   

The recent rise in consumption of seaweeds, probiotics, and fermented products suggests 

that this product could be well received by consumers, and local companies believe there is 

market potential for seaweed sauerkraut in Maine. This study evaluated the potential for creating 

seaweed sauerkraut and assessed the shelf life and safety of this novel product. The results 

obtained offer important information to help the seaweed industry to create value-added products 

and diversify markets. 
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APPENDICES 
 
Appendix A: Recruitment Notice  
 

SEAWEED SAUERKRAUT TASTING 
 

 
Are you interested in trying seaweed sauerkraut? 

 
If you are at least 18 years old and like eating sauerkraut, please help evaluate seaweed 
sauerkraut as part of MS thesis research at the University of Maine. 
 
Testing will take about 15 minutes to complete. Participants will be provided with 3 dollars cash 
for tasting the seaweed sauerkraut and completing a survey. 
 
Testing will be held on: March 27, 2018. 
 
Testing will take place between the hours 11:00am-3:00pm at the Sensory Evaluation Center 
located in Hitchner hall (Room 158A and 158B). 
 
Please e-mail sarah.brochu@maine.edu for more information. 
 
If you do not like eating sauerkraut or seaweed, or have an allergy to seafood, we ask that you 
please do not participate. 
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Appendix B: Seaweed Sauerkraut Informed Consent 
 
Dear Seaweed Sauerkraut Consumer, 
 
You are invited to take part in a Master’s thesis project titled “Development and Evaluation of 
a Novel Fermented Sea Vegetable Product Using Commercially-important Maine Sea 
Vegetables” by Sarah Brochu and Denise Skonberg, in the School of Food and Agriculture at 
the University of Maine. The purpose of this research is to learn about consumer acceptability of 
seaweed sauerkraut. You must be at least 18 years of age to take part in this survey. 
Please do not participate if you do not like sauerkraut or seaweed or if you are allergic to 
seafood 
 
What Will You Be Asked to Do? 
If you decide to take part in this survey, you will be asked to answer a few questions about 
yourself. Then, you will be served four seaweed sauerkraut samples. It may take up to 15 
minutes to answer all questions. 
 
Risks: 
The risks of this study are minimal, just the loss of your time and inconvenience. Risks are no 
greater than those associated with typical eating. 
 
Benefits: 
You may enjoy eating the different seaweed sauerkraut samples. The overall potential benefit of 
the research is the development of seaweed products with health benefits for consumers. 
 
Compensation: 
Upon completion of today’s test, you will receive 3 dollars for your completion of the survey. No 
compensation will be provided if you decide not to complete the test. 
 
Confidentiality: 
Your name will not be on any files that contain your answers to our questions. Data will be kept 
in the Sensory Evaluation Center’s locked office. All data will be destroyed by June 2019 or 
after the research is published, whichever comes first. 
 
Voluntary 
Participation is voluntary. If you choose to take part in this study, you may stop at any time, 
however compensation may not be granted. You may skip any questions you do not wish to 
answer. 
 
Contact Information 
If you have any questions about this study, please contact Sarah Brochu at (802) 917-3028 or 
sarah.brochu@maine.edu for more information. You may also reach the faculty advisor of this 
study at Denise.Skonberg@umit.maine.edu. If you have any questions about your rights as a 
research participant, please contact Gayle Jones, Assistant to the University of Maine’s 
Protection of Human Subjects Review Board, at 581-1498 (or e-mail gayle.jones@umit.maine. 
edu). 
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Appendix C: Seaweed Sauerkraut Questionnaire 
 
Thank you for taking the time to participate in our research. 
 
Please indicate your gender: 
o Male 
o Female 
o Would prefer not to say 
 
Please indicate your age range: 
o 18-24 
o 25-31 
o 32-38 
o 39-45 
o 46-52 
o 53-59 
o 60+ 
 
About how often do you consume sauerkraut? 
o Less than once per year 
o 1-4 times per year 
o 1-2 times per month 
o 1-2 times per week 
o 3+ times per week 
 
About how often do you consume seaweed? 
o Less than once per year 
o 1-4 times per year 
o 1-2 times per month 
o 1-2 times per week 
o 3+ times per week 
 
About how often do you eat foods containing probiotics? Probiotics are live bacteria that 
provide health benefits when consumed. 
o Less than once per year 
o 1-4 times per year 
o 1-2 times per month 
o 1-2 times per week 
o 3+ times per week 
 
Did you know that fermented foods, such as sauerkraut, contain probiotics that are 
associated with disease prevention and improved digestion? 
o Yes 
o No 
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Please evaluate the samples in the order indicated on your screen, and verify that the three-digit 
code matches the current sample being tested as you rate each sample. Please take a sip of water 
before tasting each sample. 
 
How much do you like the color of this sample? 
o Dislike extremely 
o Dislike very much 
o Dislike moderately 
o Dislike slightly 
o Neither like nor dislike 
o Like slightly 
o Like moderately 
o Like very much 
o Like extremely 
 
How much do you like the aroma of this sample? 
o Dislike extremely 
o Dislike very much 
o Dislike moderately 
o Dislike slightly 
o Neither like nor dislike 
o Like slightly 
o Like moderately 
o Like very much 
o Like extremely 
 
How much do you like the flavor of this sample? 
o Dislike extremely 
o Dislike very much 
o Dislike moderately 
o Dislike slightly 
o Neither like nor dislike 
o Like slightly 
o Like moderately 
o Like very much 
o Like extremely 
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How much do you like the texture of this sample? 
o Dislike extremely 
o Dislike very much 
o Dislike moderately 
o Dislike slightly 
o Neither like nor dislike 
o Like slightly 
o Like moderately 
o Like very much 
o Like extremely 
 
Please rate the intensity of saltiness 
o Not nearly salty enough 
o Not salty enough 
o Just about right 
o Too salty 
o Much too salty 
 
Please rate the intensity of sourness: 
o Not nearly sour enough 
o Not sour enough 
o Just about right 
o Too sour 
o Much too sour 
 
How much do you like this sample overall? 
o Dislike extremely 
o Dislike very much 
o Dislike moderately 
o Dislike slightly 
o Neither like nor dislike 
o Like slightly 
o Like moderately 
o Like very much 
o Like extremely 
 
Is there anything else you would like to tell us about this sample? If you refer to other 
samples in this test, please use the sample’s three-digit code. 
 
Thank you very much for your time and opinions. Please raise the window slightly to let the staff 
know that you are done, and do not forget to pick up your incentive. 
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