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probably has the best quantification of early outbreak (low-level) cumulative defoliation, and 

found that young balsam fir trees with 80-100% defoliation of a single age-class of foliage during 

the first year of defoliation (i.e., cumulative defoliation of 80-100%) had about 20% reduction of 

stem volume growth, and a loss of two age classes of needles (i.e., cumulative defoliation of 

200%) resulted in about 50% reduction of the stem volume growth. Our predicted absolute DBH 

increments were generally lower than that of balsam fir of 0.06 to 0.17 cm yr-1 reported by 

MacLean (1988), as well as those of balsam fir, black spruce, and white spruce of 0.10-0.28, 

0.10-0.24, and 0.10-0.36 cm yr-1, respectively, indicated by Steinman and MacLean (1994). 

Second, our modifier indicates 79%, 100%, and 100% reductions in height increment of balsam 

fir, red spruce, and white spruce, respectively, which all correspond to predicted mean height 

increment of <0.05 m yr-1. Although records of height increment influenced by SBW defoliation 

were not found in previous studies, our predictions agree with the large number of height 

growth cessations (76% of the observations) due to widespread top-kill observed in this study as 

well as suggested by Van Sickle (1987) and Ostaff and MacLean (1989). However, these previous 

data on top-kill were at higher cumulative defoliation levels. Similarly, there are no other 

references for measures of height to crown base and ingrowth influenced by SBW defoliation. In 

addition, our modifier suggests 7.4 trees ha-1 yr-1 ingrowth observed during the last SBW 

outbreak compared to the 22.8 trees ha-1 yr-1 ingrowth reported by Li et al. (2011) mainly for the 

period after the outbreak. 

Finally, our modifier indicates 3.3, 2.4, and 25.8 times increases in mortality probability of 

balsam fir, red spruce, and white spruce, respectively, which correspond to predicted mean 

annual mortality probabilities of 2.0%, 0.3%, and 0.8% of respective average-sized trees 

indicated above. These are much lower than the cumulative mortality probabilities of 73%-100% 

for balsam fir and 27%-66% for spruce species under 336%-840% cumulative defoliation 
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reported by a number of previous studies (e.g., Blais 1958, MacLean and Ostaff 1989, Piene 

1989, MacLean et al. 1996). SBW-caused tree mortality is typically minimal until at least 3-4 

years of severe (>70% current) defoliation have occurred (MacLean 1980), and thus at 100% 

cumulative defoliation should reflect normal, undefoliated mortality rates. 

Overall, our results in Figure 5.1 indicate much higher reductions of growth and increases of 

mortality than other SBW impact literature (e.g., MacLean 1980, Piene 1980, Ostaff and 

MacLean 1989, 1995, Erdle and MacLean 1999, Pothier et al. 2005). Previous studies have 

generally showed little effect of annual defoliation less than 30% on growth or mortality. Mean 

needle longevity of balsam fir has been shown to range from a mean of 5.5 years on 22-27 year-

old fir in Cape Breton, Nova Scotia (Fleming and Piene 1992) to 9.5 years on 50-year-old balsam 

fir with low defoliation in Quebec (Doran et al. 2017). Cumulative defoliation of 100% would 

equate to removal of only one age class out of approximately five to nine age classes of foliage 

on the tree, so our modifiers predict surprisingly strong effects on growth reduction and 

mortality for relatively low defoliation levels. This could reflect unusually large impacts given 

stand conditions during the 1970s-1980s SBW outbreak in Maine. 

In general, SBW defoliation had a more significant influence on height growth than on diameter 

growth and had a more important role in affecting both mortality and ingrowth than survivor 

growth. The large percentage changes of FVS-ACD components under the influence of 

defoliation partly reflect the fact that FVS-ACD was calibrated using data collected after the SBW 

outbreak. Therefore, baseline values (i.e., without the influence of defoliation) in FVS-ACD likely 

are greater than those in studies conducted during SBW outbreaks. Nevertheless, these large 

changes confirmed that even low levels of SBW defoliation had significant effects on various 

components of forest dynamics (Chen et al. 2017a, 2017b). Therefore, species- and equation-

specific modifiers developed for each component of FVS-ACD and each SBW host species likely 



 

118 
 

have improved this model's ability to accurately represent the highly variable influences of SBW 

defoliation on forest development. In comparison, changes in ingrowth and height to crown 

base as well as differences in DBH and height increments among SBW host species were not 

previously considered in the STAMAN modifiers. 

Projections by FVS-ACD and its STAMAN-modified version comprised significant and consistent 

over-prediction (Figure 5.2 and 5.3). This is understandable for the unmodified FVS-ACD, in 

which the reduced tree growth and survival due to SBW defoliation was not accounted for. It is 

also expected for FVS-ACD refined by STAMAN modifiers, which were calibrated using higher 

levels of severe defoliation data than ours from Canada (Erdle and MacLean 1999, MacLean et 

al. 2001). Consequently, mean defoliation was considered to start reducing tree survival at 

levels >30%, and this effect of reduced survival was also consistently smaller than that in our 

refined FVS-ACD at comparable defoliation levels (Hennigar et al. 2013a). In contrast, observed 

individual tree defoliation averaged 28% and 22% in Maine and New Brunswick, respectively, 

which means that SBW defoliation appeared to have no effect on predicted tree survival in 

many cases in FVS-ACD refined by STAMAN modifiers. This did not seem to agree with the 

observations, which suggest that even low levels of defoliation resulted in significant increases 

in mortality (Chen et al. 2017a, 2017b). 

While projections of the volume of susceptible trees by our refined FVS-ACD were not 

significantly different from the observations, relatively small over-predictions existed in 

projections involving trees of all species in Maine (Figure 5.3). Possible causes could be the 

growth of living trees (that are not modified in the model) was not as fast as indicated by the 

model because their growth may still be limited by the standing dead trees recently killed by 

SBW defoliation, and growth of non-susceptible trees like eastern hemlock (Tsuga canadensis 

(L.) Carrière) may also have been slightly influenced by defoliation. 
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Overall, these biases (over-prediction) are believed to be the cause of the increasing errors of 

predictions over time, and could severely affect the accuracy of long-term projections by the 

models. These biases may be reduced by introducing additional modifiers, which are built upon 

predictions of these biases using some potential tree, stand, and defoliation variables as 

predictors. Subsequently, the above predicted values (i.e., modifier values) will be subtracted 

from the biases and consequently reduce them. For the mortality component in our refined FVS-

ACD, we currently kill a tree when its mortality probability exceeds a threshold, which is the 

value that maximized the ratio of true positive rate over false positive rate of mortality. This 

could be an alternative to the approach that kills fractions of trees by reducing the expansion 

factors by the predicted mortality probability, which uses no criterion to protect against 

potential errors in predictions considering the fact that many trees lived through the projection 

period (i.e., the predicted mortality did not happen despite part of a tree being killed in the 

model). However, we believe that a stochastic component, which kills a tree based on a well-

designed random process and the predicted mortality probability, may be developed to evaluate 

its ability to further reduce biases in the predictions of mortality. 

Limitations in our refined FVS-ACD that require further improvements are mainly in four 

important aspects. First, FVS was developed for use in a static climate, and are generally 

incapable of reflecting the effects of climate change on stand dynamics (Crookston et al. 2010). 

In addition, climate change may also directly affect the dynamics of SBW defoliation (e.g., Gray 

2008), which may already be evolving in response to changes of the Acadian forests. However, it 

is challenging to separate the changes of SBW defoliation dynamics from its usually high spatial 

and temporal variations, and update it in growth models. Second, it is important for growth 

models like FVS-ACD to incorporate the effects of SBW defoliation with forest management and 

protection activities, considering various silvicultural techniques have been proposed as long-
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term solutions to alleviating the influence of defoliation, as well as the control of SBW has 

largely relied on the application of insecticide (Baskerville 1975, Mott 1980, Blais 1983). Such 

data on effects of management (such as species composition changes from thinning or salvage 

activities) and protection activities (e.g., Hennigar et al. 2013b) could be incorporated into FVS-

ACD. Third, the data used to develop the modifiers may not be fully representative of SBW 

outbreaks. As highlighted previously, the data in Maine were initiated after defoliation reached 

epidemic level and a significant portion of the landscape was sprayed with insecticide, which 

complicates the interpretation of our findings. Also, ground-based estimates of defoliation can 

be difficult and the observations in Maine were made by multiple observers, which could 

increase bias and underlying variability. Finally, the modifiers were developed using the base 

FVS-ACD equations, which are primarily based on data from more recent conditions. 

Consequently, the modifiers may be adjusting for additional factors above and beyond SBW 

defoliation. Ideally, the base and modifier equations would be developed using the same data to 

reduce this potential confounding influence. However, as mentioned above, the available data 

for this analysis were only after the start of the SBW outbreak and there were relatively few 

observations for non-defoliated trees. All of these above issues in addition to sampling design 

limitations may have contributed to large differences in defoliation dynamics of white spruce 

between this study and some previous studies (Table 5.1; Chen et al. In press). 

In general, the refined FVS-ACD showed significant improvement compared to previous works 

like FVS-NE refined by STAMAN modifiers. This improvement includes more accurate predictions 

of volume, species composition, and diameter distribution, as well as a much closer 

resemblance of the patterns in volume increment (Figure 5.2 and 5.3). We believe that our 

refined FVS-ACD is suitable to predict forest stand dynamics and support management as well as 

protection activities against SBW defoliation in the Acadian region during future outbreaks 
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similar to the one during the 1970s-1980s. Given the significant differences between the 

previous model and the model developed here, prior analyses (e.g. Hennigar et al. 2011) 

examining economic viability of insecticide spraying and potential growth losses in Maine may 

need to be further examined. To our knowledge, data used in this analysis are the best available 

data for assessing the effects of SBW defoliation on individual trees for this region. Only after 

the next SBW outbreak, new data for testing the developed relationships will be available. Until 

that time, we must assume that modifiers developed in this analysis reflect the general trends 

following SBW defoliation. The R code and parameters to run FVS-ACD with these developed 

modifiers are provided in Supplemental Materials D.1 and D.2. Overall, this work highlights the 

need and importance of effectively accounting for defoliation in growth and yield models.
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CHAPTER 6 

EPILOGUE 

It was found in this dissertation that species was the primary factor in affecting both trees' 

growth responses and susceptibility to spruce budworm (Choristoneura fumiferana (Clem.); 

SBW) defoliation. Specifically, what levels of defoliation trees sustained and how much growth 

reduction as well as mortality occurred under these levels of defoliation were more determined 

by species than the common tree, stand, and site attributes examined. Although growth 

reduction and mortality observed in this dissertation appeared to be lower than those reported 

by many previous SBW studies, these effects of defoliation seemed to be relatively more 

significant considering our data represented relatively low levels of defoliation observed during 

the last SBW outbreak. Overall, our findings are largely consistent between Maine and New 

Brunswick with regional differences being primarily related to the fact that New Brunswick data 

were in the end of the last SBW outbreak. As more accurate and precise predictions of forest 

development were achieved using findings from this dissertation than a similar work from 

Canada, these findings appeared to be generally valid and will help advance our understandings 

of SBW defoliation dynamics and its influence on the Acadian forest. 

This dissertation was based on extensive data from Maine and New Brunswick, which had large 

spatio-temporal extents and comprised wide ranges of forest conditions as well as detailed 

individual tree measurements and defoliation observations. Consequently, these data provided 

strong support to the findings of this dissertation. In the meantime, differences in scales and 

resolutions of data likely played an important role in the discrepancies in the findings among 

SBW studies. In particular, many studies based their conclusions on data disproportionally 

incomparable to the extents and variability of SBW defoliation during its outbreaks. Insufficient 

data are a general limitation of SBW studies including this dissertation mainly in the following 
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aspects: 1) data do not have a temporal extent to cover the transition from extremely low levels 

of defoliation (endemic SBW populations) to high levels of defoliation (endemic SBW 

populations), and to show how the development of forests have modified after defoliation 

subsides; 2) data generally cannot facilitate the investigation of the effects of forest 

management and protection activities like insecticide spraying and salvage (pre-salvage) cutting 

on defoliation and consequent forest development; and 3) sampling designs such as the spatial 

distribution and size of sample plots are insufficient to investigate the spatio-temporal dynamics 

of defoliation, which are highly variable at a range of scales. 

While the influences of SBW defoliation on the growth and mortality of trees have been rather 

intensively studied, the dynamics and variation of defoliation have been less investigated. 

Recent hypothesis of SBW population dynamics suggests that SBW defoliation was more 

synchronized at regional scale and more variable at smaller scales, and immigration as well as 

emigration played an important role in both the synchrony and variation of defoliation hence 

the high fluctuation in its temporal dynamics. Therefore, it is unrealistic to predict local 

defoliation risk (or development) and its influences without understanding the spatial dynamics 

of defoliation. Although we have discussed the variation in individual tree defoliation in Chapter 

4 from a non-spatial perspective, it is worth further investigating how this variation in 

defoliation changes spatially and how this spatial dynamics interact and influence local 

defoliation and its temporal developments in the future. 

Our data contain relatively large numbers of wind throws of trees, which may be partly related 

to the fact that sustained SBW defoliation has weakened trees and made them more prone to 

wind damage. It is also likely that defoliation has affected the regimes of other forest 

disturbances such as disease and fire by weakening trees and accumulating dead wood as fuel. It 

is beneficiary to forest protection and management planning to understand how different forest 
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disturbances interact with each other and potentially cause secondary impacts following SBW 

outbreaks. Likewise, forest management activities like salvage (pre-salvage) cutting, which 

resembles natural disturbances, are also important elements in helping understand the 

interactions and consequences of human and natural disturbances proceeding and ensuing SBW 

outbreaks. 

SBW defoliation probably has as much influences on the growth and mortality of trees as on 

forest ecosystems. SBW defoliation likely has influences on forest development at a much larger 

temporal scale considering SBW has a longer history in the Acadian region than its current hosts. 

It will be interesting to know whether spruce-fir (Picea-Abies) forests and SBW together are in a 

stable state or just transit to such a state. In addition, would human activities and/or climate 

change significantly alter this long-term forest development? Consequently, whether some 

species or forest ecosystems are dependent on periodic SBW outbreaks, how these outbreaks 

affected forest carbon and nutrition cycles, and how these altered cycles affect future climate 

and its interactions with the Acadian forests are also interesting and important topics worth 

investigation following this dissertation. 
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APPENDIX A: SUPPLEMENTAL MATERIALS OF CHAPTER 2 

A.1. Temporal Variation in Defoliation 

The following graph presents how annual spruce budworm (SBW) defoliation changed at each of 

our sample plots over time, where each line represents one sample plot and n is the year that 

defoliation peaked at this sample plot. It shows that there is a large amount of temporal 

variation in defoliation. Despite this variation, there is a rather clear pattern such that 

defoliation rises, peaks, and declines rapidly, and unlikely remains at high levels over time in 

contrary to some previous assumptions (Intermittent insecticide spraying at different locations 

may also have contributed to this pattern). In addition, the graph indicates that New Brunswick 

was mainly in the later phase of the SBW outbreak. 

 

Figure A.1. Temporal variation in defoliation. 

A.2. The Effects of Insecticide Spraying on the Stand Growth Components 

The following graph compares stand growth components of net growth, mortality, and ingrowth 

between sample plots with and without insecticide spraying in Maine during the last spruce 

budworm (SBW) outbreak, and shows that the effects of insecticide spraying were minimal and 

not significant. MacLean et al. (1984) also found that spraying did not result in significant 

difference in mortality rates of black, red spruce, and their hybrids in New Brunswick. However, 

since spraying was more likely to be applied to areas facing higher defoliation pressure, it was 
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possible that such areas would otherwise have been more influenced by SBW defoliation 

without the protection of spraying. 

 

Figure A.2. The Effects of Insecticide Spraying on the Stand Growth Components. 
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A.3. A Summary of the Data 

A summary of the attributes derived from the data used in this analysis is shown in the following table. 

Table A.1. A summary of the data. 

 Maine (n = 3 846)  New Brunswick (n = 753) 

Attributes Mean Median SD Min. Max.  Mean Median SD Min. Max. 

Net growth (m3 ha-1 year-1) 3.70 3.09 2.88 0.00 41.13  5.36 4.93 3.36 0.00 55.32 
Mortality (m3 ha-1 year-1) 4.96 0.00 13.76 0.00 231.68  3.11 0.00 5.85 0.00 59.73 
Mortality rate in volume (% year-1) 2.42 0.00 7.03 0.00 100.00  1.69 0.00 3.55 0.00 44.64 
Ingrowth (m3 ha-1 year-1) 0.53 0.00 1.76 0.00 40.20  0.80 0.00 2.62 0.00 43.42 
Ingrowth rate in volume (% year-1) 0.40 0.00 2.27 0.00 82.52  0.47 0.00 1.49 0.00 20.34 
Standing volume (m3 ha-1) 224.58 214.56 112.00 1.93 625.78  193.89 190.46 69.23 23.61 393.60 
Stand density index 583.17 586.79 237.20 15.73 1394.51  618.62 622.33 186.14 97.19 1226.12 
Relative density 0.30 0.30 0.12 0.01 0.66  0.30 0.30 0.09 0.05 0.61 
Dominant height (m) 19.23 19.20 2.85 6.71 28.04  17.93 17.61 3.00 12.64 31.97 
Cumulative defoliation (%)  84.98 58.51 86.36 0.00 585.63  64.28 47.18 53.50 5.31 321.87 
Proportion of balsam fir in volume 0.26 0.21 0.24 0.00 1.00  0.33 0.30 0.24 0.00 0.89 
Proportion of white spruce in volume 0.03 0.00 0.11 0.00 1.00  0.09 0.04 0.14 0.00 0.78 
Proportion of black spruce in volume 0.03 0.00 0.13 0.00 1.00  0.11 0.00 0.24 0.00 1.00 
Proportion of red spruce in volume 0.25 0.15 0.27 0.00 1.00  0.22 0.10 0.26 0.00 0.98 
Proportion of hardwood in volume 0.19 0.11 0.21 0.00 1.00  0.10 0.04 0.13 0.00 0.50 
Biomass growth index 1.95 2.00 0.34 0.94 2.74  -- -- -- -- -- 
Climate Site Index 13.47 13.37 1.37 9.23 19.03  11.63 11.59 1.26 8.61 14.90 
Wetness Index 7.27 7.37 2.86 0.75 15.84  10.60 10.61 1.49 7.07 14.02 
Slope (%) 9.76 5.24 14.04 0.00 132.70  6.59 2.62 6.10 0.00 27.97 
Aspect (degree) 174.00 174.51 113.11 0.00 360.00  176.20 186.34 98.17 0.00 358.80 
Elevation (m) 263.20 284.57 129.62 41.02 691.30  202.40 188.75 133.97 0.00 577.50 
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A.4. Comparisons between Our Mortality and Ingrowth Models with Zero-one-inflated Models 

We built zero-one-inflated beta regression models for mortality and ingrowth in the following 

customary way to compare with our mortality and ingrowth models: 

[ ]        (    )  (    )    (    )       

where y is the proportion of mortality/ingrowth;    and (    )     are the probabilities of y = 

0 and y = 1, respectively; and   is the mean of a beta distribution.  

   ,   , and   were all modeled through logit link functions, while the precision parameter φ of 

the beta distribution was modeled by a log link function as follows: 
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where   ,   ,  , and    are predictors for   ,   ,  , and  , respectively; and   ,   ,  , and    

are corresponding parameters. 

Parameter estimation was conducted in the following Bayesian setting using R package "zoib" 

(Liu and Kong 2016): 
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where      ;    (   ) ; I indicates an indicator variable; and  (      ) is the 

multivariate normal prior distribution of the parameters. 

Different combinations of predictors derived from various tree, stand, and site attributes were 

tested in Equations [2] – [5]. The root mean squared error (RMSE) of the predictions on 
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mortality using parameters estimated from Equation [6] ranged from 0.0998 (where x 

comprised only cumulative defoliation; and   ,   , and    comprised only intercept) to 0.0750 

(where x comprised standing volume, relative density, proportion of balsam fir ∙ cumulative 

defoliation, and proportion of spruce ∙ cumulative defoliation;    comprised cumulative 

defoliation and proportion of hardwood; and   , and    comprised only intercept). In 

comparison, RMSE of our mortality model was 0.0682 and 0.0584 (with random effects). 

More importantly, our model outperformed the above zero-one-inflated beta model in terms of 

predicting excessive zero and over-dispersed observations. First, our model had 904 close-to-

zero predictions ( ̂       when y = 0) comparing to 385 the zero-one-inflated beta model has 

(albeit being named as zero-one-inflated beta model, predicted values of the above specific 

model obviously cannot be either zero or one). Second, the maximum predicted value of our 

model is 0.41, which is 0.23 in the zero-one-inflated beta model. 

The following graphs compare the predictions of mortality between the zero-one-inflated beta 

model and our model. Specifically, Graph A shows that predictions from our model better 

resembles the distribution of the observed mortality. Graphs A and B both show that our model 

yields closer predictions of large observed values. Graph C shows that our model has a larger 

number of close-to-zero predictions. In Graphs B and C, x-axis values were jittered by Uniform (-

0.01, 0.01) and Uniform (-0.0005, 0.0005), respectively, to show overlapping observations. 
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Figure A.3. Comparisons between our mortality and ingrowth models with zero-one-inflated 

models. 

Similarly, consistent findings as for mortality in terms of model performance were also found for 

ingrowth analysis. The minimum RMSE of the predictions on ingrowth from zero-one-inflated 

beta model was 0.0262 comparing to 0.0233 and 0.0222 (with random effects) of our model. 

Overall, we evaluated the more traditional zero-inflated approach and found it to not be 

superior to our approach. More importantly, our findings in terms of parameter significance and 

magnitude of influence were consistent with the zero-inflated approach. 

A.5. The Effects of Site Characteristics on the Stand Dynamics Examined 

Site characteristics represented by the variables of Slope, cos(Aspect), Slope ∙ cos(Aspect), 

Elevation, Wetness index, Climate site index, and Biomass growth index were initially tested in 

our models. However, none of them yielded significant effects or accounted for more than 1% of 

the variation in the response variables in both regions. The following table shows correlations 

between these characteristics and the response variables (and their residuals) in our models. It 

demonstrates that the correlations were generally negligible (especially with the residuals) and 

sometimes contradicting between the two regions. After these tests, dominant height appeared 

to be a better proxy of site potential productivity than the other covariates mentioned above. 

Hence, dominant height was used in our models.
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C.2. Locations of Sample Plots and Some Characteristics of Samples 

 

Figure C.1. Locations of sample plots as well as distributions of white spruce (WS) sample 

density (trees per plot) and mean stand-level defoliation (%) by region. Ideally, white spruce 

samples would be uniformly distributed over the regions and ranges of defoliation (i.e., 

balanced samples). However, white spruce sample density was slightly higher in southeastern 

Maine (where defoliation was lower), and was much higher in northern New Brunswick (where 

defoliation was also much higher). These patterns in samples likely contributed to the observed 

regional difference in white spruce' susceptibility.
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C.3. Standard Deviation in Individual Tree Defoliation 

 

Figure C.2. Observed distribution of trees in different defoliation classes with various 

percentages of non-host trees by region (left axes; shown by shaded background). Predicted 

standard deviation of individual tree defoliation (%) as a function of stand-level defoliation (%) 

by percentage of non-host trees at a location (right axes; shown by lines, with all the other 

covariates at their means). 
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APPENDIX D: SUPPLEMENTAL MATERIALS OF CHAPTER 5 

D.1. Developed R code to implement the Forest Vegetation Simulator Acadian variant (FVS-

ACD) refined by our spruce budworm modifiers 

# FVS_ACD(): performing growth and yield projections using FVS-ACD. 

# Usage: FVS_ACD(PLOT, SPP, DBH, HT, CR, DEF, CSI, EXPF, CutPoint, T=0, 

N_YEAR) 

# Arguments: 

# PLOT: numeric or character (do not use factor), sorting is not 

required; 

# SPP: species, numeric or character (do not use factor); 

# DBH: diameter at breast height (cm), numeric; 

# HT: height (m), numeric; 

# CR: crown ratio, numeric; 

# DEF: cumulative defoliation observed (%), 0 if not defoliated, 

numeric; 

# CSI: climate site index, numeric; 

# EXPF: expansion factor of each plot, numeric; 

# CutPoint: the cut point DBH of ingrowth (cm), numeric; 

# T: years into defoliation, default value of 0 indicates the 

first year of defoliation, value of 999 indicates not applying 

defoliation modifiers, numeric; 

# N_year: duration of projection (year), numeric. 

# Value: return a list of the length indicated by N_YEAR, each element 

of the list is a data.frame representing projections at that year with 

columns of PLOT, SPP, DBH, HT, CR, and DEF. 

FVS_ACD <- function(PLOT, SPP, DBH, HT, CR, DEF, CSI, EXPF, CutPoint, 

T=0, N_YEAR) 

{ 
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PROJ <- vector("list", N_YEAR) 

N <- MORT <- ING <- 0 

DEF_I <- DEF 

HW_SPP <- c("YB","RM","SM","BT","AB","OH","PB") 

SW_SPP <- c("EH","RS","WC","BF","BS","WP","OS","WS") 

while(N_YEAR-N >= 1) 

{ 

m <- match(SPP, PARA$SPP) 

m[is.na(m)] <- 1 

n <- length(PLOT) 

ID <- ID.new <- ID.int <- 1:n 

MCW <- PARA$b1.MCW[m]*DBH^PARA$b2.MCW[m] 

PBA <- BAL.SW <- BAL.HW <- BA.SW <- BA.HW <- tph <- topht <- SDI <- 

SDImax <- CCF <- numeric(n) 

for(i in 1:n) 

{ 

PBA[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP==SPP[i]]^2)/10^4*EXPF 

BAL.SW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & DBH>DBH[i] & 

SPP%in%SW_SPP]^2)/10^4*EXPF 

BAL.HW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & DBH>DBH[i] & 

SPP%in%HW_SPP]^2)/10^4*EXPF 

BA.SW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP%in%SW_SPP]^2)/10^4*EXPF 

BA.HW[i] <- 0.25*pi*sum(DBH[PLOT==PLOT[i] & 

SPP%in%HW_SPP]^2)/10^4*EXPF 

tph[i] <- length(DBH[PLOT==PLOT[i]])*EXPF 

topht[i] <- max(HT[PLOT==PLOT[i]]) 

SDI[i] <- sum((DBH[PLOT==PLOT[i]]/25.4)^1.605)*EXPF 
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SDImax[i] <- -6017.3*mean(PARA$SG[m][PLOT==PLOT[i]]) + 4156.3 

CCF[i] <- 100*0.25*pi*sum(MCW[PLOT==PLOT[i]]^2)/10^4*EXPF 

 } 

BAL <- BAL.SW + BAL.HW 

BA <- BA.SW + BA.HW 

RS <- sqrt(10000/tph)/topht 

BAperc <- 1 - BAL/BA 

BALmod <- (1-BAperc)/RS 

pBAL.SW <- BAL.SW/(BAL+0.1) 

RD <- SDI/SDImax 

PBA <- PBA/BA 

PLOT_add <- data.frame(PLOT=PLOT, SPP=SPP, CSI=CSI, ID=ID, 

stringsAsFactors=FALSE)[!duplicated(data.frame(PLOT=PLOT, SPP=SPP, 

CSI=CSI, ID=ID, stringsAsFactors=FALSE)[,1:2]),] 

if(T!=999) 

{ 

dDEF <- T*(1-exp(PARA$p1.DEF[m]*(T-PARA$p2.DEF[m]))) + 

PARA$p3.DEF[m]*T*exp((PARA$p4.DEF[m]*DEF_I+PARA$p5.DEF[m]*CR)*T) 

+ (SPP=="WS")*T 

DEF <- DEF + dDEF 

DEF[dDEF<0] <- DEF[dDEF<0]-dDEF[dDEF<0]-100 

DEF[DEF<0] <- 0 

mod_DBH <- exp(PARA$p.DBH[m] * DEF) 

mod_HT <- exp(PARA$p.HT[m] * DEF) * 

ifelse(runif(n)>PARA$p.HTc[m], 1, 0) 

mod_HCB <- exp(PARA$p1.HCB[m]*DEF + PARA$p2.HCB[m]*CR) 

mod_MORT <- PARA$p.MORT[m] * DEF 

mod_IPH <- PARA$p1.IPH[1] * c(unlist(by(DEF, list(PLOT), 

function(x) rep(mean(x),length(x))))) + PARA$p2.IPH[1] 
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names(mod_IPH) <- ID[match(c(unlist(by(PLOT, list(PLOT), 

function(x) x))), PLOT)] 

mod_IPH <- mod_IPH[match(ID[!duplicated(PLOT)], names(mod_IPH))] 

mod_IPH[mod_IPH==0] <- 1 

mod_Icomp <- PARA$p1.Icomp[1] * c(unlist(by(DEF, list(PLOT,SPP), 

function(x) rep(mean(x),length(x))))) + PARA$p2.Icomp[1] 

names(mod_Icomp) <- ID[match(c(unlist(by(PLOT, list(PLOT, SPP), 

function(x) x))), PLOT)] 

mod_Icomp <- mod_Icomp[match(rownames(PLOT_add), 

names(mod_Icomp))] 

mod_Icomp[mod_Icomp==0] <- 1 

mod_DBH[is.na(mod_DBH)] <- mod_HT[is.na(mod_HT)] <- 

mod_HCB[is.na(mod_HCB)] <- mod_IPH[is.na(mod_IPH)] <- 

mod_Icomp[is.na(mod_Icomp)] <- 1 

mod_MORT[is.na(mod_MORT)] <- 0 

} else 

{ 

mod_DBH <- mod_HT <- mod_HCB <- mod_IPH <- mod_Icomp <- 1 

mod_MORT <- 0 

} 

dDBH <- exp(-1.6331538+PARA$b0.DBH[m] + (0.0070441+PARA$b1.DBH[m])*DBH 

-0.0002784*DBH^2 + 0.1257197*log(CR+0.001) + (-

0.2705499+PARA$b4.DBH[m])*log(BALmod+0.001) + 0.2941056*log(CSI) + (-

0.0616965+PARA$b6.DBH[m])*sqrt(BA*RD) -0.1465285*sqrt(pBAL.SW)) * 

mod_DBH 

dDBH[dDBH<0] <- 0 

dHT <- exp(-3.925083+PARA$b0.HT[m] + (-0.061691+PARA$b1.HT[m])*HT + 

0.255589*log(HT) + 0.199307*log(CR+0.001) + (-

0.091328+PARA$b4.HT[m])*log(BALmod+0.001) + 1.025877*log(CSI) + 
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(0.115358+PARA$b6.HT[m])*log(BA*RD) + 

(0.098963+PARA$b7.HT[m])*sqrt(pBAL.SW) + 0.003199*BA*RD) * mod_HT 

dHT[dHT<0] <- 0 

HCB <- HT/(1+exp((0.29070+PARA$b0.HCB[m])+0.00636*DBH-

0.02288*HT+0.08232*DBH/HT-0.03086*log(CCF+1)-

0.01701*(BAL.SW+BAL.HW+1))) * mod_HCB 

ID.index <- ID[ID%in%ID.int] 

HCB[ID.index][HCB[ID.index]<(1-CR[ID.index])*HT[ID.index]] <- ((1-

CR[ID.index])*HT[ID.index])[HCB[ID.index]<(1-

CR[ID.index])*HT[ID.index]] 

dMORT <- 

1/(1+exp(PARA$b0.MORT[m]+PARA$b1.MORT[m]*DBH+PARA$b2.MORT[m]*DBH^2)) * 

(0.010591127*BALmod + 0.049789571*sqrt(pBAL.SW) - 0.124299218*CR - 

0.199434641*log(CSI) + 0.523150752 + mod_MORT) 

CR <- (HT-HCB)/HT 

CR[CR<0] <- 0 

DBH <- DBH + dDBH 

HT <- HT + dHT 

MORT <- MORT + dMORT 

link1 <- -0.2116-0.0255*(BA.SW+BA.HW)-0.1396*BA.HW/(BA.SW+BA.HW)-

0.0054*(tph/1000)+0.0433*CSI+0.0409*CutPoint 

PI <- 1/(1+exp(-link1)) 

eta <- 3.8982-0.0257*(BA.SW+BA.HW)-

0.3668*BA.HW/(BA.SW+BA.HW)+0.0002*(tph/1000)+0.0216*CSI-0.0514*CutPoint 

IPH <- exp(eta)*PI 

names(IPH) <- 1:n 

IPH <- IPH[match(ID[!duplicated(PLOT)], names(IPH))] * mod_IPH 
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perc <- 

PARA$b0.ING[m]+PARA$b1.ING[m]*(BA.SW+BA.HW)+PARA$b2.ING[m]*PBA+PARA$b3.

ING[m]*CSI+PARA$b4.ING[m]*CutPoint 

perc <- 1/(1+exp(-perc)) 

names(perc) <- 1:n 

perc <- perc[match(rownames(PLOT_add), names(perc))] * mod_Icomp 

IPH <- IPH[match(names(perc), names(IPH))] 

dING <- IPH*perc/EXPF 

dING[is.na(dING)] <- 0 

names(dING) <- names(perc) 

if(length(ING)==1) 

{ 

ING <- ING + dING 

names(ING) <- names(dING) 

ING.new <- data.frame(PLOT=PLOT_add$PLOT[match(names(ING), 

rownames(PLOT_add))], SPP=PLOT_add$SPP[match(names(ING), 

rownames(PLOT_add))], ING=ING) 

} else 

{ 

dING <- data.frame(PLOT=PLOT_add$PLOT[match(names(dING), 

rownames(PLOT_add))], SPP=PLOT_add$SPP[match(names(dING), 

rownames(PLOT_add))], ING=dING, ID=names(dING)) 

ING.new <- merge(ING.new, dING, by=c("PLOT","SPP"), 

all=FALSE) 

ING <- ING.new$ING <- ING.new$ING.x + ING.new$ING.y 

rownames(ING.new) <- ING.new$ID 

ING.new <- ING.new[,c("PLOT","SPP","ING")]  

} 

ING.add <- which(ING>=1) 
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if(length(ING.add)>0) 

{ 

DBH <- c(DBH, rep(CutPoint, sum(trunc(ING[ING.add]))))  

HT <- c(HT, rep(11.10, sum(trunc(ING[ING.add]))))  

CR <- c(CR, rep(0.204, sum(trunc(ING[ING.add])))) 

MORT <- c(MORT, rep(0, sum(trunc(ING[ING.add]))))  

ID.new <- c(ID, (n+1):(n+sum(trunc(ING[ING.add]))))  

CSI <- c(CSI, rep(PLOT_add$CSI[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING.new$ING[ING.add]))) 

SPP <- c(SPP, rep(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING.new$ING[ING.add])))  

PLOT <- c(PLOT, 

rep(PLOT_add$PLOT[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))], trunc(ING[ING.add]))) 

if(sum(DEF==0)<n) 

{ 

DEF <- c(DEF, 

rep(ifelse(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))]%in%c("BF","BS","RS","WS"), 29, 0), 

trunc(ING[ING.add]))) 

DEF_I <- c(DEF_I, 

rep(ifelse(PLOT_add$SPP[match(rownames(ING.new[ING.add,]), 

rownames(PLOT_add))]%in%c("BF","BS","RS","WS"), 29, 0), 

trunc(ING[ING.add])))} else 

{ 

DEF <- c(DEF, rep(0, sum(trunc(ING[ING.add])))) 

DEF_I <- c(DEF_I, rep(0, 

sum(trunc(ING[ING.add])))) 

}} 
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ING[ING.add] <- ING.new$ING[ING.add] <- ING[ING.add] - 

trunc(ING[ING.add]) 

MORT.drop <- which(MORT>=0.214) 

if(length(MORT.drop)>0) 

{PLOT <- PLOT[-MORT.drop]; SPP <- SPP[-MORT.drop]; DBH <- DBH[-

MORT.drop]; HT <- HT[-MORT.drop]; CR <- CR[-MORT.drop]; MORT <- MORT[-

MORT.drop]; DEF <- DEF[-MORT.drop]; DEF_I <- DEF_I[-MORT.drop]; CSI <- 

CSI[-MORT.drop]; ID.new <- ID.new[-MORT.drop]} 

ID.int <- intersect(ID, ID.new) 

ID <- ID.new 

N <- N+1 

T <- T+1 

PROJ[[N]] <- data.frame(PLOT=PLOT, SPP=SPP, DBH=DBH, HT=HT, CR=CR, 

DEF=DEF, stringsAsFactors=FALSE) 

} 

PROJ 

}
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D.2. Parameters (PARA) used in the R code for the Forest Vegetation Simulator Acadian 

variant refined by our spruce budworm modifiers 

PARA <- rbind( 

data.frame(SPP="All of the others", SG=0.3, b0.DBH=0, b1.DBH=0, 

b4.DBH=0, b6.DBH=0, b0.HT=0, b1.HT=0, b4.HT=0, b6.HT=0, b7.HT=0, 

b0.MORT=2.6967072576, b1.MORT=-0.001250889, b2.MORT=0.0007521152, 

b1.MCW=2.24262, b2.MCW=0.462653333, b0.HCB=0, b0.ING=0, b1.ING=0, 

b2.ING=0, b3.ING=0, b4.ING=0, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, 

p5.DEF=0, p.DBH=0, p.HT=0, p.HTc=0.8948422, p1.HCB=0, p2.HCB=0, 

p.MORT=0, p1.IPH=-0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, 

p2.Icomp=1.245914), 

data.frame(SPP="AB", SG=0.64, b0.DBH=-0.034977457, b1.DBH=0.007276127, 

b4.DBH=0.117697955, b6.DBH=-0.0382661, b0.HT=-0.415979307, 

b1.HT=0.0274010197, b4.HT=0.196582208, b6.HT=-0.164287184, 

b7.HT=0.17710536, b0.MORT=2.152681379, b1.MORT=-0.0269825907, 

b2.MORT=0.0002203177, b1.MCW=2.93, b2.MCW=0.434, b0.HCB=-0.218384027, 

b0.ING=-2.9832, b1.ING=-0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-

0.0167, p1.DEF=0, p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, 

p.HT=0, p.HTc=0.9226306, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-

0.0011637, p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BF", SG=0.35, b0.DBH=0.124494862, b1.DBH=0.00123841, 

b4.DBH=0.021706955, b6.DBH=-0.012162306, b0.HT=-0.252382258, 

b1.HT=0.0100278394, b4.HT=-0.115915182, b6.HT=-0.019904875, 

b7.HT=0.35826384, b0.MORT=2.5743949775, b1.MORT=-0.0851930923, 

b2.MORT=0.0015971909, b1.MCW=1.37, b2.MCW=0.572, b0.HCB=0.093585699, 

b0.ING=-3.0291, b1.ING=0.0027, b2.ING=2.7779, b3.ING=0.0211, 

b4.ING=0.0221, p1.DEF=0.0175090638, p2.DEF=11.9561909843, p3.DEF=-

0.0442501199, p4.DEF=-0.0009501345, p5.DEF=-0.2969766902, p.DBH=-
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0.0116125, p.HT=-0.0155001, p.HTc=0.8689313, p1.HCB=0.007474090, 

p2.HCB=-0.929648888, p.MORT=0.002153933, p1.IPH=-0.0011637, p1.Icomp=-

0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BS", SG=0.46, b0.DBH=-0.032226829, b1.DBH=-0.01442781, 

b4.DBH=-0.021477635, b6.DBH=-0.001507636, b0.HT=0.09727877, b1.HT=-

0.0270708651, b4.HT=0.034082833, b6.HT=0.023416841, b7.HT=-0.27796473, 

b0.MORT=1.9568828063, b1.MORT=0.0535388009, b2.MORT=-0.0010376306, 

b1.MCW=0.535, b2.MCW=0.742, b0.HCB=-0.227771445, b0.ING=-1.2500, 

b1.ING=-0.0132, b2.ING=2.0470, b3.ING=-0.0514, b4.ING=0.0351, 

p1.DEF=0.004462929, p2.DEF=18.161944433, p3.DEF=-0.021691545, p4.DEF=-

0.003606711, p5.DEF=-0.087007898, p.DBH=-0.0236663, p.HT=-0.1373007, 

p.HTc=0.9119572, p1.HCB=0.007364462, p2.HCB=-0.627453191, 

p.MORT=0.007823319, p1.IPH=-0.0011637, p1.Icomp=-0.007686, 

p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="BT", SG=0.39, b0.DBH=0.107871306, b1.DBH=-0.0004487118, 

b4.DBH=-0.049918635, b6.DBH=0.049907667, b0.HT=0.097631862, b1.HT=-

0.0019892345, b4.HT=-0.033205181, b6.HT=0.178102299, b7.HT=-0.42712909, 

b0.MORT=2.1791849646, b1.MORT=-0.0125375225, b2.MORT=0.0008529794, 

b1.MCW=4.04, b2.MCW=0.308, b0.HCB=0.010040571, b0.ING=-2.9832, b1.ING=-

0.0020, b2.ING=2.4837, b3.ING=0.0673, b4.ING=-0.0167, p1.DEF=0, 

p2.DEF=0, p3.DEF=0, p4.DEF=0, p5.DEF=0, p.DBH=0, p.HT=0, 

p.HTc=0.9171139, p1.HCB=0, p2.HCB=0, p.MORT=0, p1.IPH=-0.0011637, 

p1.Icomp=-0.007686, p2.IPH=0.1397053, p2.Icomp=1.245914), 

data.frame(SPP="EH", SG=0.4, b0.DBH=-0.073679869, b1.DBH=0.01541532, 

b4.DBH=0.176123957, b6.DBH=-0.070655479, b0.HT=-0.338641101, 

b1.HT=0.0149152575, b4.HT=0.042828473, b6.HT=-0.023914376, b7.HT=-

0.02984288, b0.MORT=4.5205542708, b1.MORT=-0.0670350692, 

b2.MORT=0.0012041907, b1.MCW=2.44, b2.MCW=0.408, b0.HCB=0.403937729, 

b0.ING=-4.7182, b1.ING=0.0070, b2.ING=3.2269, b3.ING=0.1000, 
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