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  Individual tree growth and mortality drive forest stand dynamics and are important, 

universal metrics of tree success. Studying the factors that affect growth and mortality is 

particularly challenging in mixed-species, uneven-aged systems due to their defining 

heterogeneity and strong temporal and spatial variability. However a better understanding of the 

factors driving growth and mortality in mixed-species, uneven-aged forest is crucial to managing 

and maintaining these valuable systems for the future.  

The goal of this study was to determine the relative importance of individual tree attributes (e.g., 

species, size, neighborhood crowding, crown position) and environmental characteristics (e.g., 

soil moisture) in driving growth and survival. In particular we aimed to test if the factors 

regulating growth were the same as those regulating mortality, as is often assumed. Due to its 

large size and intensive sampling, the 3-ha, stem-mapped plot (established in 1989) at Howland 

Research Forest in central Maine allowed us to address additional relevant questions regarding 

the influence of sapling crowding, neighbor species identity, and past disturbance.  



 
 

Growth and survival of over 3000 plot trees was assessed after 25 years and modeled using 

multiple linear regression (growth) and binary logistic regression (survival). We found that 

species, neighborhood crowding, and diameter, in that order, were the top predictors of both 

growth and survival. Growth, but not survival, was inhibited by soil moisture, especially in 

poorly-drained portions of the plot.  Growth was also inhibited for individuals that grew in 

neighborhoods with more conspecific neighbors, which likely have more similar resource 

requirements when compared to those of heterospecific neighbors. In individual species growth 

analysis, we found that not all species are equivalent competitors, namely white pine (Pinus 

strobus) was more competitive, and red maple (Acer rubrum) was less competitive than would be 

expected if all species were equivalent competitors. Unexpectedly, we found that individuals 

with greater crowding from sapling neighbors were more likely to survive. For both growth and 

survival, we found a significant interaction between crowding and soil moisture, suggesting that 

within a single stand, individual success can be limited by both excess and insufficient water, 

depending on the crowding neighborhood. We also found that the growth of larger trees was 

enhanced when they were surrounded by more cut stumps, implying that the effects of a 100-

year-old disturbance were surprisingly persistent.  

These results demonstrate the broad range of variables driving growth and survival in uneven-

aged mixed-species forests, as well as the benefit of differentiating between metrics of success 

when assessing stands and individuals. Given the importance of uneven-aged, mixed-species 

forests in storing and sequestering carbon, maintaining biodiversity, and providing resistance and 

resilience to an uncertain future, we suggest studies such as this that address a full range of 

interacting drivers of success are necessary to better manage and maintain these complex 

systems. 
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PROLOGUE 

Forest provide important ecosystem services by storing and sequestering carbon (Pan et 

al. 2011), sourcing forest products, protecting water resources (Welsch 1991) and acting as 

repositories for biodiversity (Liang et al. 2016). However, forests’ continued ability to provide 

these services remains uncertain, given changing climate realities and novel disturbance regimes 

and is dependent in part on their composition and structure as well as their continued 

productivity.  

In all forested systems, changes in composition, structure and productivity are driven by 

three major processes: growth, mortality and recruitment (Oliver 1981).  This study focuses on 

two of these processes, namely growth and mortality. Variability in growth is inherently closely 

related to productivity but can also affect structure and composition by leading to differentiation 

in tree size and canopy position. Differentiation in size or canopy position (between individuals 

or species) can in turn alter access to resources and lead to variation in individual or species 

success (i.e., increased growth and survival). Tree mortality alters forest composition in a wide 

variety of ways. When individuals die they open space in the canopy, which may lead to the 

recruitment of new individuals or species (Watt 1947), which in turn increases structural 

diversity (Franklin et al. 2002, Stockland et al. 2012). Because of the major roles growth and 

mortality play in stand dynamics, continuing to improve our understanding of factors that drive 

these processes will allow us to better anticipate future forest change.  

Driving factors of growth and mortality are possibly most uncertain in mature, uneven 

aged, mixed-species forests. These processes are challenging to study in these heterogeneous 

systems because of inherently high spatial and temporal variability; to capture this variability 

studies must to be spatially large and temporally long. Studies of mature, mixed-species forests 
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are particularly relevant as it becomes clear that their structural and compositional diversity may 

make them more successful under a changing climate. These heterogeneous forests may be more 

resilient, or have a greater ability to resist change, thus avoiding major loss of function 

(Thompson et al. 2009, Oliver et al. 2015, Cantarello et al. 2017). Uneven-aged, mixed-species 

forest are more resilient because the diversity of structures and species makes it unlikely that all 

individuals will be affected by changes or disturbances in the same way. Thus, if some 

individuals are catastrophically affected, others are likely to remain. Mixed-species forest may 

also be more likely to adapt, as their diversity acts as a repository of traits that have the potential 

to be equally or better suited to novel conditions (D’Amato et al. 2011). In addition, in some 

cases mixed-species forests have been found to be more productive (Paquette and Messier 2011, 

Zhang et al. 2012), and large, older trees of mature forests have the ability to store and sequester 

large amounts of carbon (Sillett et al. 2010, Keeton et al. 2011). These characteristics for climate 

adaptation and mitigation, as well as continued productivity, highlight the need for a better 

understanding of the factors governing growth and mortality of mature, mixed species forests.   

The large mapped and intensively sampled permanent plot at Howland Research Forest 

of central Maine provides an ideal place to study the factors driving tree growth and mortality. 

Furthermore, the mixed-species composition is similar to other forests of the region, meaning 

that findings likely have implications for the broader region. This study can contribute to our 

understanding of interacting forest characteristics and processes, which may allow us to better 

anticipate forest productivity and carbon dynamics in an uncertain future.  
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1. INTRODUCTION 

Variability in tree growth and mortality rates control the composition, structure, and 

productivity of forests stands as they develop through time (Oliver 1981, Franklin et al. 2002) 

and dictate distribution and abundance of individual trees across landscapes. In natural forests, 

individual tree growth and mortality rates vary considerably within and between species, as well 

as spatially within a stand. In uneven-aged, mixed-species forests, this variability is even more 

pronounced and is essential to maintaining heterogeneity in these systems. Improved 

understanding of the factors regulating variability in growth and mortality rates, as well as the 

interactions among these factors, can lead to better anticipation of individual tree success and 

community dynamics and allow us to better assess vulnerability of these systems to changing 

environmental conditions.  

Numerous factors contribute to the variability in growth rate and mortality risk of 

individual trees in uneven-aged, mixed-species systems. Factors may include individual-tree 

characteristics such as species, size, crowding, or canopy position, or stand-level characteristics 

such as stand density, soil properties, or past disturbance. While the variability in individual 

success across species, sizes, and crowding has been extensively investigated (Biging and 

Dobbertin 1992, Canham et al. 2004, Coomes and Allen 2007a), more recent work has focused 

on the added influence of variability in climate (Rollinson et al. 2015, Copenhaver-Parry and 

Cannon 2016) and the species identity of crowding neighborhoods (Uriarte et al. 2004b, Fichtner 

et al. 2017, Vitali et al. 2018). However, due to the spatial and structural heterogeneity of mixed-

species forests, as well as the time frame required to observe growth and mortality in these 

systems, studies addressing a full range of factors effecting an individual tree’s success are 

uncommon. As a result, the relative importance of these factors is not fully understood.  
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The broad range of tree sizes in late successional, mixed-species forests presents a 

particular challenge for identifying factors most strongly influencing growth and mortality. The 

detrimental influence of overstory trees on saplings growth and mortality is well documented 

(Lorimer et al. 2001, Ramage et al. 2017); however, the potential detrimental influence of 

saplings on overstory trees has not been well explored, despite suggestions that it could be 

substantial (Giuggiola et al. 2018). This lack of information is due, in part, to the scarcity of 

long-term studies that include mapped sapling and tree data needed to assess growth and 

mortality risk using standard spatially explicit crowding indices.  

In addition, current tree growth and mortality risk may be influenced by disturbances that 

occurred in the past.  Non-stand replacing disturbances create canopy gaps that increase resource 

availability and alter the growth of surrounding individuals (Whitmore 1989, Runkle 1998). 

Most studies of gap-forming disturbances are temporally limited to the short-term effects of gap 

formation or gap closure (Fraver et al. 1998, Gray et al. 2012). However, increasing interest in 

the legacy of past disturbance (e.g. Johnstone et al. 2016) suggests a need to better understand 

the long-term (i.e., many decades) effects canopy gaps may have on growth rates and mortality 

risks of the post-disturbance community. This topic may be addressed by incorporating structural 

legacies, such as stumps or standing dead trees, into crowding indices to assess the effects of 

associated disturbances on individual tree growth and mortality.  

Finally, although both tree growth and mortality serve as useful proxies for forest vigor 

and productivity, the two metrics may be driven by distinct ecological factors (Brooks 1994, Zhu 

et al. 2017). The commonly accepted negative association between growth and mortality 

suggests that slow growing trees have an increased risk of mortality (Keane et al. 2001, Suarez et 

al. 2004, Battles et al. 2007). However, a positive association can be found, for example, on the 
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edge of canopy gaps where individuals experience both increased growth, due to more favorable 

light conditions, and increased risk of mortality, due to root damage or in environmental 

conditions that favor tree productivity but also favor insects and pathogens (Worrall et al. 2005, 

Gray et al. 2012, Das et al. 2016). Despite the indeterminate association between growth and 

mortality, as well as evidence of growth independent mortality (Wunder and Reineking 2007, 

Holzwarth et al. 2013), few studies have attempted to differentiate the factors driving growth and 

mortality. The need for this distinction may be particularly important in late-successional forests, 

due to the boarder range of both density-independent and density-dependent mortality agents 

(Larson et al. 2015). Given projections regarding future environmental change and novel 

disturbance regimes, a more detailed understanding of the factors influencing growth and 

mortality may be necessary to better address questions regarding individual-tree and stand-level 

dynamics (Bond-Lamberty et al. 2014).  

Our primary objective was to identify the factors most strongly influencing tree growth 

and mortality rates in a red spruce (Picea rubens) – eastern hemlock (Tsuga canadensis) forest of 

the Acadian Forest region of northeastern North America. Specifically, we tested the relative 

influence of species, individual tree size, canopy position, neighborhood crowding, within-

neighborhood species composition, soil moisture, disturbance legacies on tree growth and 

survival rates. Doing so allowed us to ask, are the factors that limit tree growth the same as those 

that increase mortality risk? We conducted this work using repeated inventories of a 3-ha, fully 

mapped plot (all tree stems ≥ 3 cm diameter, as well as decayed stumps) at the Howland 

Research Forest of central Maine, USA. The richness of this data set allowed us to ask additional 

question not typically addressed in otherwise similar studies of growth and mortality, namely (1) 

to what extent do saplings influence growth and mortality rates of canopy trees? and (2) can the 
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lingering effect of a long-ago harvest, now evident as decayed stumps, continue to influence 

growth and mortality of canopy trees? Answers to these questions can shed light on stand 

development in this forest type and allow us to better predict future changes by identifying areas 

of vulnerability. 
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2.  METHODS 

2.1 Study site 

This work was conducted at the Howland Research Forest of central Maine, USA 

(45°12’N, 68°45’W) (Figure 1), where average annual precipitation is 1142 mm, and the average 

temperature is 6.2º C (Daly et al. 2008). Data was collected from a three-hectare (150 × 200 

meter) permanent plot in Howland Forest established in 1989 by Laboratory for Terrestrial 

Physics at NASA’s Goddard Space Flight Center (Weishampel et al. 1994); we refer to this as 

the NASA plot (Figure 2). The canopy is comprised mainly of red spruce (Picea rubens) and 

eastern hemlock (Tsuga canadensis) with scattered emergent white pine (Pinus strobus) (Table 

1). Patches of advance regeneration of red spruce, eastern hemlock and balsam fir (Abies 

balsamea) are well developed in the understory.  

 

Table 1: Descriptive statistics for the 3-ha Howland Forest NASA plot based on the initial (1989) 
inventory. Includes all trees ≥ 10 cm DBH. (N = number of trees, BA = basal area, DBH = 
diameter at breast height, sd = standard deviation, CI = neighbor crowding index).   

 N BA Mean DBH (sd) Mean CI (sd) 
Species (ha-1) (m2 ha-1) (cm)  
Picea rubens  511 13.3 17.2 (5.8) 8.4 (4.0) 
Tsuga canadensis  265 7.6 17.9 (6.6) 8.1 (4.2) 
Thuja occidentalis  111 2.9 17.3 (5.9) 8.2 (3.5) 
Acer rubrum  77 1.9 16.8 (5.9) 8.8 (4.2) 
Pinus strobus  36 2.7 28.7 (10.8) 5.5 (3.3) 
Abies balsamea  14 0.3 14.7 (3.7) 9.7 (4.2) 
Betula papyrifera 5 0.1 15.1 (4.4) 11.0 (4.0) 
Betula alleghaniensis 4 0.2 24.9 (13.5) 6.6 (2.5) 

     
Total  1023 29.0 17.8 (6.6) 8.3 (4.0) 
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Figure 1: Howland Research Forest is located in the Acadian forest region in central Maine. The 
NASA plot is a 3-ha stem-mapped permanent plot established in in 1989. Black boarder 
surrounds contiguous minimally disturbed spruce-hemlock forest with in the boundary of the 
Research Forest.  

 

SPRUCE-HEMLOCK FOREST IN 
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Growth releases evident in tree-ring records, as well as well-decayed cut stumps, suggest 

partial harvests occurred in the 1890s and the 1920s (unpublished data). No other major 

disturbances have occurred since these harvests, and the stand has since developed 

characteristics typical of late successional forests including large old trees (> 200 years), a range 

of tree diameters, and abundant coarse woody debris. At the plot level, soil drainage ranges from 

large well drained areas to poorly drained forested wetlands (Figure 2). At a smaller scale, 

hummock and hollow topography results in more localized variability in soil moisture.   

Figure 2: Map of NASA plot at Howland Research Forest showing plot boarders, subplot 
corners, transect markers, and wetland delineation. We note that the plot was established as a 
slight parallelogram and was not oriented directly north-south, east-west; however, for ease of 
presentation in subsequent Figures, we show it as a rectangle with standard orientation (north 
toward top).  
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2.2 Field procedures 

In 1989 when the NASA plot was established, all trees greater than 3 cm in diameter at 

breast height (1.37m, DBH), approximately 7800 individuals living and standing dead, were 

mapped and tagged with a unique identifier (Figures 3 & 4). Species, DBH, height, and position 

in the canopy were recorded for all trees. Canopy position was visually classified into seven 

categories; however, for this study those classes were collapsed to match the more conventional 

four-class system of dominant, codominant, intermediate, and suppressed positions (Smith et al. 

1997).   

Figure 3: Spatial location of all NASA plot trees with diameter greater than 10 cm in 1989 when 
the plot was established. Point size is proportional to diameter in 1989 (north toward top). 
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Figure 4: Spatial location of all NASA plot saplings (diameter less than 10 cm and greater than 3 
cm) in 1989 when the plot was established. These saplings were used to develop a sapling 
crowding index but were not included as focal trees in models of growth and survival. Point size 
is proportional to DBH. 

 

Between 2015 and 2017, we re-inventoried all trees and saplings to assess growth and 

mortality (Figure 5). DBH and canopy position were recorded, and species assignments and 

mapped locations were corrected when necessary. We relocated the larger trees, whether 

standing or fallen, with remarkable success; however, many of the dead and fallen smaller 

(generally < 10 cm DBH) trees had become moss-covered and partially decayed (Figure 4). 

Preliminary field work using a metal detector and forest floor excavations demonstrated that tags 

from these smaller trees could be found, but were buried as deep as 5 cm below litter and moss. 
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Therefore, to avoid disturbing the forest floor on this permanent plot, we assumed if a previously 

tagged tree could not be found after a thorough search, the tree had died, fallen, and its tag was 

buried. In order to better understand the influence of past harvests, we measured (top diameter, 

height) and mapped all cut stumps (N=722). We attempted to identify stump species; however, 

this was possible for only ca. 25% of the stumps, owing to advanced decay.   

 

Figure 5: Spatial location of all NASA plot trees, living and dead, with diameter greater than 10 
cm DBH. Point size is proportional to diameter in 1989. X symbol placed over individuals that 
died between 1989 and 2015.    
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2.3 Explanatory variables   

Previous work has shown tree size to be a strong predictor of both growth (Enquist et al. 

1999) and mortality (Coomes and Allen 2007b). In the current study, diagnostics of preliminary 

candidate models indicated that tree diameter provided the best size metric for directly predicting 

both growth (basal area increment, see below) and mortality, based on Akaike’s information 

criterion (AIC) (Burnham and Anderson 2003), as well as graphs of residual-versus-predicted 

values. Other size metrics tested included tree basal area, and tree stem volume derived from 

Honer’s (1967) regional allometric equations. All size metrics refer to the initial (1989) size.	

The detailed mapping of the NASA plot allowed us to use spatially explicit indices to 

estimate the crowding intensity any tree may experience from its neighbors. Based on its success 

in previous work, as well as preliminary analyses of NASA plot data, we chose the crowding 

index (CI) proposed by Heygi (1974), which incorporates both the size and proximity of 

neighboring trees relative to a focal tree. The CI is calculated as follows:  

𝐶𝐼# = ∑ & '( ')⁄

+,-./012()
	4 	5

067    

where CIf  is the crowding index for an individual focal tree, with larger CIs indicating greater 

crowding; N is number of trees in a fixed-radius neighborhood around the focal tree, Sn and Sf  are 

the size of a neighboring tree and the focal tree, respectively; and Distancenf is the distance 

between the focal tree and a neighboring tree. All trees ≥ 10 cm DBH (in 1989) were used as 

focal and neighbor trees (Figure 3). DBH, basal area, and volume estimated using Honer’s 

(1967) regional allometric equations were considered as potential size metrics for the CI (Sn and 

Sf). Preliminary candidate model diagnostics, including AIC and graphs of residual-versus-

predicted values, indicated that CIs with DBH as the size metric yielded the best model 
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performance regarding tree growth. DBH has been used commonly in past studies of crowding 

(Lorimer 1983, Canham et al. 2004, Coomes and Allen 2007a).  

To determine the optimal neighborhood radius for the index above, we compared the 

goodness of fit (R2) for a series of regression models predicting growth with CIs using a range of 

radii from 4 to 24  meters in 2-meter increments, following a procedure similar to that of Lorimer 

(1983). We ultimately chose a 10-m radius, as little predictive power was gained by further 

increasing the neighborhood size (Figure 6). CIs for focal trees located within 10 m of the plot 

border required edge correction; thus, their CIs were adjusted upward based on the proportion of 

their neighborhood that fell outside the plot (Haase 1995). Preliminary analyses demonstrated 

that models including this edge correction produced results similar to those in which edge trees 

(those within 10 m of plot border) were excluded as focal trees, thus providing support for this 

correction method.  
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 Figure 6: Goodness of fit (R2) relating basal area growth and the Hegyi crowding index (CI) 
across a range of neighborhood radii. Demonstrating the marginal benefit of increasing the radius 
beyond ca. 10 m. 

 

To test the potential crowding effect that neighboring saplings have on focal trees, we 

calculated an additional CI (as above) that included saplings only as neighbors. Saplings are 

defined here as stems < 10 cm DBH (He and Duncan 2000) (Figure 4). To account for high 

sapling mortality rates over the study period, crowding effects of sapling neighbors that died 

during the study period (1989 – 2017) were down-weighted using the following structure (Fraver 

et al. 2014).  

𝐶𝐼8 = ∑ & '( ')⁄

+,-./012()
	 ∗ 	𝑤;4 	5

067   

where	𝑤;	is the estimated proportion of the study period the neighbor tree survived, based on 

intermediate inventories conducted in 2010 and 2011 and the most recent inventories. An 

Neighborhood radius (m) 

G
oo

dn
es

s 
of

 fi
t (
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individual’s mortality date was taken as the midpoint of the inventory interval in which it died. 

The crowding effect of larger trees was not down-weighted as such because preliminary analysis 

suggested it did not improve model performance, perhaps because far fewer larger trees died and 

because large standing-dead trees, particularly conifers that retain needles, may still shade their 

neighbors (Fraver et al. 2014). 

Given that previous studies in mixed-species forests report that neighbors of different 

species can exert varying crowding effects on the focal tree (Goldberg and Landa 1991, Uriarte 

et al. 2004b, Vitali et al. 2018), we calculated an additional explanatory variable to test this 

effect.  To avoid a more complex species-by-species analysis when comparing all explanatory 

variables, we simply calculated for each focal tree the conspecific proportion of CI intensity as 

follows:  

𝑃1	 = 	𝐶𝐼1/𝐶𝐼#    

where 𝑃1	represents the proportion of a focal tree’s crowding neighborhood associated with 

conspecific neighbors; 𝐶𝐼1 is the CI based on conspecific neighbors only; and CIf  is as shown 

above. As such, focal trees with larger 𝑃1	values are growing with a greater proportion of 

conspecific neighbors; a 𝑃1	equal to 1 means all neighbors are conspecific. Because this 

intraspecific crowding index differentiates between conspecific and heterospecific neighbors it 

allowed us to assess potential differences between intra- and interspecific species interactions. 

To assess the potential lingering influence of long-ago harvests on recent growth and 

mortality, we developed an index based on the mapped cut stumps. Diagnostics of preliminary 

candidate models indicated that the number of cut stumps within the neighborhood (10-m radius) 

of each focal tree provided the best index, based on AIC scores, as well as graphs of residual-
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versus-predicted values. Other potential indices included stump proximity and size metrics tested 

in the form of Hegyi’s index. 

We developed a soil moisture index for each tree location based on moisture 

measurements taken at subplot corners forming a 25-m grid covering the entire plot, including 

borders, for a total of 63 locations (Figure 2). During the summer of 2017, we measured soil 

moisture at 10-cm depth using Fieldscout TDR 100 (Spectrum Technologies, Inc.) at each 

location on seven dates, ranging from 1 June to 29 August.  To account for seasonal dry-down 

over the sampling period, moisture measurements at each location were converted to Z-scores 

(units of standard deviation) for each sampling date. The mean Z-scores at each location for all 

seven sampling dates were then used to create an interpolated soil moisture surface, and a mean 

Z-score was extracted at each tree location. Z-scores were taken as a relative index of soil 

moisture, with higher values indicating greater moisture. Interpolation, for this portion on the 

analysis, was done using a simple kriging method in ArcGIS (v. 10.4.1, ESRI, Redlands, CA, 

USA). 

2.4 Growth and survival model analysis  

We chose annual basal area increment (BAI, cm2 yr-1) as our growth metric, instead of 

radial growth, to minimize the confounding effects of assessing growth among trees with 

markedly different diameters (Biondi 1999). BAI was estimated by subtracting initial basal area 

(1989 inventory) from the final basal area (recent inventories) for each tree and dividing by the 

number of years in the study period. Individuals that slightly decreased in diameter (suggesting 

measurement error) were assumed to have zero growth.  

The annual mortality rate was calculated by dividing the percent of trees that died by the 

length of the study period. We recognize that this method for calculating mortality rate is not 
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independent of the study period length; however, our purpose was simply to summarize mortality 

for this study, and not to make comparisons with other studies of different lengths (Sheil and 

May 1996). For clarity in presentation we chose to model survival (the complement of mortality) 

to better parallel our growth analyses, so that an increase in either metric is associated with 

greater individual success. Individual survival was based on whether trees living in 1989 were 

still living at the end of the inventory period.  

Individuals that died during the study period were not included in growth models, such 

that we modeled survival of 3043 individuals and growth of 2552 individuals. Birch species 

(Betula alleghaniensis and B. papyrifera) were not included in either analyses given their low 

abundance (N < 20). 

To assess the importance of our potential explanatory variables, we developed a series of 

candidate models using multiple linear regression for growth and binary logistic regression for 

survival. A modified hierarchical (or sequential) modeling approach was followed due to strong 

collinearity between explanatory variables (correlations coefficients of r > 0.6) (Graham 2003). 

Any degree of collinearity confounds our ability to assess the importance of individual 

explanatory variables because the partitioning of their shared explanatory power effects each 

explanatory variable’s marginal statistics (such as the regression coefficient) and the ability to 

test for significance. With the common stepwise modeling approach, shared explanatory power is 

assigned arbitrarily, which may lead to the exclusion of important but highly collinear variables 

(Harrell 2015). To avoid this problem, we followed a hierarchical modeling approach whereby 

explanatory variables were added sequentially based on a pre-established order of importance. 

With this approach any shared explanatory power among collinear variables is assigned to the 

variable that was added first (the more important variable) (Graham 2003). This approach allows 
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us to determine what additional variability can be explained by each added explanatory variable 

that was not already explained by previously added, more important explanatory variables. We 

note that this approach would not be necessary if our intent were to develop an optimal, 

parsimonious model for predicting growth and mortality for other sites. Our intent was rather to 

address the importance of specific explanatory variables of interest, some of which have not been 

well tested in previous studies. The initial ranked importance of the explanatory variables was 

established using a random forest algorithm, relying on regression and classification techniques 

to assess growth and mortality, respectively (Grömping 2009). The parameters for random forest 

regression and classification were the same, such that importance values were calculated based 

on 500 regression trees with three variables per node. Random forest procedures were conducted 

in R software package ‘randomForest’ (Liaw and Wiener 2002). Finally, given the importance of 

species in these analyses, all significant explanatory variables for growth and mortality were also 

evaluated separately by species. 

Plots of residuals versus explanatory variables from the regression models constructed as 

above showed no clear trends that would demand the inclusion of interactions among 

explanatory variables (Zuur et al. 2009). However, we chose to include two biologically relevant 

interaction terms to test specific questions and to assist in the interpretation of the results. First, 

we tested the interaction between crowding and soil moisture, as recent studies have 

demonstrated that competition may modify the relationship between a tree’s success and local 

environmental variables (Martin-Benito et al. 2011, Rollinson et al. 2015, Buechling et al. 2017, 

Gleason et al. 2017). Second, we tested the interaction between the number of neighborhood 

stumps and tree diameter. Given that the harvest occurred nearly 100 years ago, we reasoned that 



18 
 

a tree’s recent size (as of the first inventory in 1989) may reflect its previous response to this 

long-ago harvest, which could be explored through this interaction.  

In all analyses, BAI, DBH, tree CI, soil moisture and number of stumps were natural log 

transformed to better meet assumptions of normality and heterogeneity. Spatial correlation 

structures were added to all multiple linear regression (for growth) and binary logistic regression 

(for survival) models using the ‘nlme’ package (Pinheiro et al. 2017) in R software to test for 

spatial autocorrelation; however, no violations of residual independence were found. All models 

were compared using Akaike information criterion (AIC) (Burnham and Anderson 2003) to 

determine which models were best supported by the data. ΔAIC was calculated in reference to 

the model with the lowest AIC (top model). P values £ 0.05 were deemed statistically 

significant. All analyses were conducted using R statistical software (R Core Team 2016). 

2.5 Spatial pattern analysis 

To better understand plot-level variability and the importance of explanatory variables, 

we produced interpolated surfaces of all explanatory and response variables. Visually comparing 

the spatial patterns of growth variability with those of explanatory variables allowed us to better 

assess the strength of these relationships. We used ordinary kriging as our method of 

interpolation, conducted in R using packages ‘sp’ and ‘gstat’ (Pebesma and Graeler 2018, 

Pebesma et al. 2018). All default parameters were retained, and semivariograms were used to 

compare and select the best model shape (spherical, exponential or Gaussian) for each variable.   

2.6 Neighbor species identity analysis 

The mixed-species nature of this forest also allowed us to test for interspecific 

interactions related to crowding, asking if the success of a focal tree of a given species is 

influenced by the species identity of its neighbors. The large number of species–species 
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combinations in the NASA plot led us to use a simplified method when identifying the most 

important explanatory variables of growth and survival (as outlined above). Given the 

significance of intraspecific CI in predicting growth, we fit growth models for species 

individually to further address the influence of neighbor identity. Each species model included 

all the top explanatory variables as determined by the previous analysis. We then added neighbor 

species-specific CIs to these top models one at a time to test the added explanatory ability of 

neighbor identity. The neighbor species-specific CIs were simply subsets of Hegyi’s index 

calculated independently for each neighbor species around the focal tree, such that all neighbor 

species-specific CIs would sum to the to the original Hegyi’s index (CI) for that focal tree. To 

evaluate the effect of neighbor identity, each model with an added neighbor species-specific CI 

was compared to the top models from the previous analysis using AIC. That is, if the growth 

model of species A were improved by adding the CI associated with neighbor B, it would 

suggest that the influence of neighbor species B on focal species A was not fully explained by 

neighborhood crowding that included all species. This approach of adding the crowding of each 

neighbor species as independent explanatory variables is similar to that used by Vitali et al. 

(2018), and it allowed us to efficiently assess all species pair-wise combinations.  
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3. RESULTS 

3.1 Plot overview 

Total plot-level basal area growth equaled 0.29 m2 ha-1 yr-1 for the study period. Mean 

annual tree growth rates differed markedly among species, ranging from 2.9 cm2 yr-1 for northern 

white-cedar to 30.0 cm2 yr-1 for white pine (Table 2). In fact, despite representing only 9.4% of 

the total plot basal area, white pine growth accounted for 22.8% of total plot basal area growth 

during the study period (Table 2). Despite the presence of some larger trees, the diameter 

distribution is skewed towards smaller size classes, particularly in 1989 (Figure 7).  

 

Table 2: Summary of growth (basal area increment) and mortality for most abundant species. 

(DBH: diameter at breast height of trees that died between 1989 and 2015, sd: standard 
deviation) 

 

Of the original 3043 individuals >10 cm DBH, 490 (16.1%) died during the study period 

(Figure: 5), equivalent to a loss of 0.11 m2 ha-1 yr-1 of basal area. As with growth, mortality rates 

varied markedly among species, ranging from 4.6% mortality for white pine to 100% mortality 

for balsam fir. Mortality occurred primarily in the smaller size classes; the mean and median 

DBH of trees that died were 14.4 (sd=4.4) and 13.1 cm respectively. Yet, we found no U-shaped 

  Growth   Mortality 

Species  Mean (sd) 
(cm2yr-1) 

Total  
(m2ha-1yr-1)    Rate 

 (%)   
Mean DBH (sd) 

(cm)  
Picea rubens  4.0 (3.7) 0.17  19 14.2 (4.2) 
Tsuga canadensis  5.4 (4.5) 0.13  9 14.6 (4.7) 
Thuja occidentalis  2.9 (2.4) 0.03  15 14.8 (4.2) 
Acer rubrum  4.2 (2.8) 0.03  16 13.9 (4.0) 
Pinus strobus  30.0 (17.3) 0.10  5 20.1 (9.6) 
Abies balsamea  - -  100 14.7 (3.7) 
Total  5.3(7.2) 0.29   19 14.4 (4.4) 
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mortality trend (i.e., high mortality rates for both small and very large trees) associated with 

increased mortality probability of very large individuals (Figure 8). For all species except white 

pine, the mean diameter of trees that died was significantly smaller than that of trees that 

survived, based on t-tests (Figure 9). 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Diameter distribution of living trees in 1989 and 2015, by species.   

1989 2015 
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Figure 8: Diameter distribution of mortality. Demonstrating that smaller diameter classes had 
higher percent mortality in the NASA plot. No evidence for the theoretical U-shaped mortality 
pattern (high mortality rates for small and very large trees) was found, perhaps because this stand 
has not reached the developmental stage in which this trend becomes evident. 
 
 

Figure 9: Diameter of all living and dead individuals by species. Mean diameter of trees that 
survived the study period (living in 2015) was larger than the mean diameter of trees that died 
for all species except white pine. Error bars represent standard errors. (PIRU: Picea rubens, 
TSCA: Tsuga canadensis, THOC: Thuja occidentalis, ACRU: Acer rubrum, PIST: Pinus 
strobus.)   



23 
 

 

Figure 10: Relationship between growth (A, B) and survival (C, D) and the three most important 
explanatory variables: species, crowding (B, D) and initial diameter (A, C). Generally larger and 
less crowded individuals grow faster and are more likely survive, but not all species responses 
are identical.  
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3.2 Explanatory variables  

All species showed a significant positive relationship between basal area growth and 

initial diameter (Figure 10A). As above, eastern white pine had the greatest growth across all 

diameters. Of the two most abundant species, eastern hemlock grew faster than red spruce across 

all diameters. Eastern hemlock was also more likely to survive than red spruce in smaller size 

classes (Figure 10C). With the exception of balsam fir, which experienced complete mortality, 

all species were more likely to survive with increasing initial diameter. Trees located toward the 

center of the plot, away from the wetter areas (Figure 11), were generally larger (Figure 11), 

which corresponded with greater growth rates toward the center of the plot (Figure 11). After 

species, tree crowding was the most important explanatory variable of growth (Table 3) and 

mortality (Table 4). Tree crowding had a significant negative effect on both growth and survival 

(Figure 10B&D). Again, eastern white pine had the greatest basal area growth across all levels of 

crowding. Eastern hemlock outgrew red spruce across all levels of crowding and was the species 

most likely to survive at high levels of crowding.  Crowding intensity varied spatially across the 

plot, with areas of very high and very low intensity (Figure 11).  

Crowding from saplings did not explain any additional variability in growth (Table 3), 

but was significantly positively related to survival (Table 4). Surprisingly, this finding suggests 

that focal trees with more sapling crowding in their neighborhood were more likely to survive. 

Generally, sapling crowding was relatively evenly distributed across the plot, except for the 

northeast corner where it was very intense (Figure 11).  

Canopy class explained significant variability in both growth and mortality (Table 3, 

Table 4). Growth rates increased with increasing canopy class, from 2.3 (sd = 2.4) cm2 yr-1 for 

suppressed trees to 7.4 (sd = 9.0) cm2 yr-1 for dominant trees.  
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Table 3: Models of growth (basal area increment, cm2 yr-1). Models were developed by 
sequentially adding explanatory variables compared using Akaike information criterion (AIC). Δ 
AIC shows differences in model performance as compared to top model (model with lowest 
AIC, bold). Model predictive power estimated with R2. (CI: crowding index, N stumps: number 
of cut stumps within a neighborhood, β: estimated coefficient, se: standard error; β and se 
provided for continuous variables only.) 

Growth Models k β (se) AIC Δ AIC R2 
Species 1  5434 1178 0.23 
  + Crowding (CI)* 2 -0.9 (0.0) 4537 281 0.46 
  + Diameter* 3 0.6 (0.1) 4384 128 0.49 
  + Soil Moisture* 4 -0.1 (0.0) 4350 94 0.50 
  + Canopy Class* 5  4272 16 0.51 
  + Intraspecific CI*  6 -0.3 (0.1) 4256 - 0.52 
  + Sapling CI  7 0.0 (0.0) 4256 0 0.52 
  + N Stumps 8 0.0 (0.0) 4256 0 0.52 

   *significant explanatory variables (p-value < 0.01) 

 

Table 4: Logistic regression models of survival. Models were developed by sequentially adding 
explanatory variables compared using Akaike information criterion (AIC). Δ AIC shows 
differences in model performance as compared to top model (model with lowest AIC, bold). 
Model predictive power estimated with area under the receiver operating curve (AUC). (CI: 
crowding index, N stumps: number of cut stumps within a neighborhood β: estimated coefficient, 
se: standard error; β and se provided for continuous variables only.) 

Survival Models  k β (se) AIC Δ AIC AUC  
Species 1  2691 510 0.63 
  + Crowding (CI)* 2 -1.8 (0.1) 2489 308 0.75 
  + Diameter* 3 1.3 (0.3) 2301 120 0.76 
  + Sapling CI* 4 0.7 (0.1) 2275 94 0.76 
  + Canopy Class* 5  2181 - 0.78 
  + Soil Moisture 6 -0.1 (0.1) 2182 1 0.78 
  + Intraspecific CI  7 -0.4 (0.3) 2183 2 0.78 
  + N Stumps  8 0.2 (0.1) 2182 1 0.79 

   *significant explanatory variables (p-value < 0.01)  
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Figure 11: Interpolation of NASA plot variables. Kriged images provide a visual assessment of 
the strength of the relationships between growth and diameter, soil moisture, crowding, number 
of cut stumps in 10-m neighborhood, and sapling crowding on the NASA plot in Howland 
Research Forest. Dots indicate location of trees ≥ 10 cm diameter.  

 

Growth (cm2yr-1, darker=higher) 
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In most cases, tree growth was negatively related to the proportion of crowding due to 

conspecific neighbors (Table 3), meaning that focal tree growth improved in neighborhoods 

comprised of species different from that of the focal. However, this general finding did not hold 

for all species. Eastern hemlock grew better in neighborhoods comprised of hemlock, and 

northern white-cedar showed no significant response related to neighborhood species 

composition (Figure 12). In contrast to growth, neighborhood species composition was not 

significantly correlated with survival.   

Figure 12: Relationship between growth and the proportion of an individual’s crowding 
neighborhood associated with conspecific neighbors. Growth is expressed as basal area 
increment (BAI) and crowding is estimated with the Heygi index. Most species grew best with 
more heterospecific neighbors, while hemlock grew best with more conspecific neighbors. 

  

ln
 G

ro
w

th
 (c

m
2 

yr
-1

) 

Proportion conspecific crowding 



28 
 

The number of cut stumps in a 10-m neighborhood around each focal tree ranged from 0 

to 21. We found no significant relationship between growth or survival and the number of 

stumps (Table 4). However, the interaction between initial diameter and number of stumps was 

significant for both growth (p-value < 0.01) and mortality (p-value < 0.05) (Figure 13). Adding 

the number of stumps and the stumps × diameter interaction resulted in a large (>10 unit) 

decrease in AIC in the growth model but not the survival model (Table 5).  

 

Tree growth was significantly negatively related to soil moisture (Table 3). Mortality was 

not related to soil moisture alone; however, adding the soil moisture × crowding interaction 

improved model performance for both growth and mortality (Table 5). Soil moisture interacts 

with crowding such that at high levels of crowding, growth and survival are positively related to 

soil moisture, but at low levels of crowding, growth and survival are negatively related to soil 

moisture (Figure 13). Interpolated surfaces of growth and soil moisture clearly show the trend of 

lower growth where soil moisture is higher (Figure 11).  

 

Table 5: Significant biologically relevant interactions. Interactions demonstrate that the 
relationship between an individual’s successes (growth and survival) and soil moisture varies 
according to crowding environments, and the relationship between an individual’s success and 
the number of cut stumps in its neighborhood (indicating past disturbance) varies with individual 
size. Models compared using Akaike information criterion (AIC). (CI: crowding index, AUC: 
area under curve) 

 

  Growth          Survival        

Model AIC  ΔAIC  p-value R2  AIC  ΔAIC  p-value AUC 

Full Model 4256 - - 0.52  2181 - - 0.78 

CI × Soil Moisture  4114 -142 <0.01 0.54  2173 -8 <0.01 0.79 

Diameter × N Stumps  4209 -47 <0.01 0.52   2179 -2 0.04 0.78 
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Figure 13: Depiction of biologically relevant interactions in the NASA plot. Where 
neighborhood crowding (based on Heygi index) is low, high soil moisture is associated with 
decreased individual growth and survival; however, where crowding is high, low soil moisture is 
associated with decreased individual growth and survival. The growth and survival of small trees 
decrease with increasing number of neighborhood cut stumps, while the growth and survival of 
large trees increases with the number of cut stumps. An individual’s size may reflect its past 
and/or present ability to respond to the increase in available resources following harvest.   

  

Gr
ow

th
 (l

n 
BA

I c
m

2 
yr

-1
) 

Pr
ob

ab
ili

ty
 o

f m
or

ta
lit

y 
Pr

ob
ab

ili
ty

 o
f m

or
ta

lit
y 



30 
 

3.3 Comparing growth and survival models   

The top three explanatory variables for growth and survival models were identical: 

species followed be crowding, then size. Canopy class was also in the top models of growth and 

survival and was the fifth ranked variable in both. Soil moisture and intraspecific neighborhood 

crowding were both in the top model of growth but not survival, while sapling crowding was in 

the top model of survival but not growth.   

3.4 Neighbor species identity effect  

Our analyses of species-specific interactions revealed striking differences among species. 

As a focal tree, red spruce was most effected by the identity of its neighbors: its growth was 

significantly inhibited by red spruce and white pine neighbors but enhanced by northern white-

cedar and red maple neighbors (Table 6). Hemlock neighbors had no additional effect (i.e., effect 

beyond what would be expected if all neighbor species competed equivalently) on red spruce. 

Like red spruce, hemlock and white pine growth was both additionally inhibited by conspecific 

neighbors and enhanced by red maple neighbors. White pine growth was also additionally 

enhanced by hemlock neighbors. Northern white-cedar and red maple were less affected by the 

identity of their neighbors; the only significant relationship was the additional inhibition of 

northern white-cedar growth by white pine neighbors. These results can be viewed both from the 

perspective of the responsiveness of focal tree species to the identity of their neighbors, as stated 

above, and from the influence of each species as neighbors. From this latter perspective, white 

pine generally had the most additional negative effect as a neighbor, while red maple most often 

had an additional competitive reduction or complementary effect as a neighbor.  
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Table 6: Added influence of neighbor species identity on growth of focal tree species. (+) 
indicates the focal species grew better than expected when more crowded by the stated neighbor 
species, while (–) indicates the focal species grew less than expected when more crowded by the 
stated neighbor species.  

  Neighbor Species        
Focal Species  P. rubens  T. canadensis  P. strobus  A. rubrum  T. occidentalis  
Picea rubens  -  - + + 
Tsuga canadensis   -  +  
Pinus strobus   + - +  
Acer rubrum       

Thuja occidentalis      -     
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4. DISCUSSION 

4.1 Effects of species, size and neighborhood crowding  

This study capitalized on a large, fully-mapped permanent plot to assess and compare the 

factors driving growth and survival in an uneven-aged, mixed species forest. As in previous 

studies, we found that the most important factors for predicting both growth and survival were 

tree species, neighborhood crowding and tree size (Canham et al. 2004, Zhao et al. 2006, 

Coomes and Allen 2007a, Das et al. 2011, Gómez-Aparicio et al. 2011, Das 2012).  

We found large differences in growth and survival by species, likely associated with 

species’ autecologies in relation to continued stand development. For red spruce and hemlock, 

the two most abundant species, we found that in all size classes and crowding environments 

hemlock grew faster than red spruce. This finding may be explained by the slightly more shade-

tolerant advantage of hemlock (Baker 1949), particularly when both species are growing among 

canopy-dominant white pines, as in this study. These differences in shade tolerance would also 

explain our finding that in high crowding environments, where there may be more competition 

for light, hemlock was much more likely to survive than red spruce. Due to its rapid growth and 

lower shade tolerance (relative to red spruce and hemlock), white pine often attains canopy 

dominant or emergent positions in these mixed species stands (Fajvan and Seymour 1993, 

Abrams and Orwig 1996), as we found in our study. The extremely high mortality rate of balsam 

fir may be attributed to balsam fir’s much shorter longevity as compared to all co-occurring 

species (Hett and Loucks 1976, Seymour 1992), as well as the non-native balsam fir woolly 

adelgid (Adelges piceae) (Hain 1988). Given its expected longevity, had balsam fir become 

established following harvests of the 1890s or 1920s (see Methods), we would expect it to now 

be dropping out of the sta nd. 
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For all species, we found that larger trees grew faster and were more likely to survive, a 

finding well supported by previous studies (MacFarlane and Kobe 2006, Russo et al. 2007). 

Increasing growth of larger trees is likely associated with increased access to resources; for 

example, larger trees generally have a more prominent position in the canopy and greater leaf 

area and therefore have more access to light. Several previous studies of mature or old-growth 

forests report that very large or old trees may experience growth declines or high rates of 

mortality as a result of reduced efficiency, accumulated stress, or senescence (Larson and 

Franklin 2010, Holzwarth et al. 2013, Fraver et al. 2014).  However, despite the presence of 

several larger (presumably older) trees, we did not find a decrease in growth or survival of the 

largest individuals, perhaps because this stand has not reached the advanced developmental stage 

in which such trends become evident.  

We found that for all species, reduced growth and lower probability of survival were 

related to increased crowding. These findings are in agreement with abundant evidence that 

neighboring plants compete for growing space and resources including light, water and soil 

nutrients (Welden and Slauson 1986, Keddy 2001). Our findings support the ability of distance-

dependent crowding indices to explain significant variability in growth and mortality. Although 

more complex crowding indices have been proposed (Stadt et al. 2007, Weiskittel et al. 2011), 

we chose the distance-dependent Hegyi index because of its simplicity and strong performance 

in numerous previous studies (Biging and Dobbertin 1992, Contreras et al. 2011, Fraver et al. 

2014). Further, our intent was not to identify an ideal crowding index for these data, but rather to 

assess the importance of crowding relative to a set of other explanatory variables of growth and 

survival; the simplicity of the Hegyi index made it appropriate for this purpose. One persistent 

challenge in constructing spatially-explicit crowding indices is the selection of the neighborhood 
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radius. By testing the goodness-of-fit for a series of models with increasing neighborhood radii, 

we demonstrated that radii greater than 10 m conferred little additional improvement in model 

fit, and that this finding was fairly consistent among species. However, we note that the ideal 

neighborhood radius may be a function of canopy radius and therefore may vary among systems 

(Lorimer 1983).  

4.2 Additional effects  

Though our research was limited to one plot, the large size, heterogeneity, and sampling 

intensity of the plot allowed us to answer a series of less frequently addressed and currently 

relevant questions to add to previous understanding of variability in growth and survival.  

First, we assessed how crowding from understory saplings may affect overstory tree 

success, as few previous studies have quantified this effect with spatially explicit indices. 

Although we found no effect of sapling crowding on tree growth, we found that trees with 

greater sapling crowding were more likely to survive. This finding was contrary to our 

expectation that saplings would decrease overstory tree success due to competition for below-

ground resources. Some understory removal studies have found limited benefits for the overstory 

(Kelty et al. 1987), while other studies have demonstrated that removal of the understory can 

increase soil moisture resulting in more favorable conditions for the overstory (Kelliher et al. 

1986, Giuggiola et al. 2018). These findings suggests one possible explanation for the facilitative 

effects of saplings. In more mesic forests, such as the one under study here, saplings may draw 

down soil moisture via transpiration, thereby ameliorating the detrimental effects of saturated 

soils and thus increasing overstory tree success. However it is also possible that high sapling 

crowding is associated with some other beneficial factors we have not measured. Additional and 
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more-detailed studies of the understory are needed to better differentiate these effects, especially 

given the influence of changing water availability on tree mortality (Allen et al. 2010).  

Second, we attempted to understand how species identity within a neighborhood affects 

focal tree growth and survival. The dynamics of mixed-species stands has recently gained 

interest given the growing recognition that stands with more mixed-species may provide 

structural diversity and elevated productivity (Paquette and Messier 2011, Zhang et al. 2012, 

Forrester and Bauhus 2016, Liang et al. 2016) and confer resistance and resilience to climate 

fluctuations (Thompson et al. 2009, D’Amato et al. 2011, Oliver et al. 2015, Cantarello et al. 

2017). Our findings suggest that the species identity within a neighborhood is not correlated with 

focal tree survival. However, species identity did affect growth – for most species, focal trees 

with heterospecific neighbors grew better than those with conspecific neighbors. This finding 

may be attributed to complementary functional traits and resources requirements, such that 

potentially competing species with slightly different requirements, heterospecific individuals, 

can better share resources (Uriarte et al. 2004b, Canham et al. 2006, Ramage et al. 2017). 

However, this finding did not hold true for eastern hemlock, which grew better in neighborhoods 

with more hemlock. As an explanation, we found that increases in hemlock neighbors was 

associated with decreased crowding; therefore, a neighborhood with abundant hemlock would 

tend to be less crowded and presumably favor growth. Hemlock may be associated with less 

crowded environments because of the soil moisture conditions in those sites as hemlock grows 

most successfully on moist but well-drained sites (Rogers 1978), a requirement that might 

exclude hemlock from the poorly drained, lower elevation areas here that tended to have higher 

crowding.  
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Third, we assessed the extent to which soil moisture affected individual tree success over 

the study period. In general water is less limiting in northeastern U.S. forests than in other parts 

of the world, due to abundant precipitation that is evenly distributed throughout the year. We 

found that tree growth was inhibited by abundant soil moisture in the wettest areas of our study 

area. The lack of oxygen in water-saturated forests restricts root and microbial respiration, 

thereby limiting root functioning and microbial organic matter decomposition (Ernst 1990, 

Davidson et al. 1998). By addressing the interacting effect of soil moisture and crowding on both 

growth and survival, we found that even within this three hectares of contiguous forest, tree 

success is negatively correlated with both excess and insufficient moisture. That is, when 

crowding is low and soil moisture is elevated, tree growth and survival may be inhibited. 

However, when crowding (and potentially competition for water) is high, tree growth and 

survival may be inhibited by a lack of soil moisture. Interestingly, this interaction suggests 

inherent resilience in this system to uncertain environmental change (Trenberth 2011), as some 

individuals would be more successful in drier conditions while others would be more successful 

in wetter conditions.  

Finally, given evidence of partial harvesting in the distant past (i.e., presence of scattered 

cut stumps), we tested if the legacy of such harvests that occurred over 100 years ago (harvests in 

the 1890s and 1920s) was still evident as persistent increased tree growth and survival. The 

short-term growth increases following gap creation are quite well studied (Watt 1947, Brokaw 

1982, Runkle 1982); however, the long-term responses have rarely been addressed (but see 

Hytteborn and Verwijst 2014). Small canopy gaps, such as those likely created by the past partial 

harvests at our study site, affect forest structure and species composition and are therefore 

important drivers of forest stand dynamics in this forest type (Fraver and White 2005, Worrall et 
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al. 2005). By testing the interacting effects of tree size and number of stumps on growth and 

survival, we found that larger trees were more successful with more cut stumps in their 

neighborhood. In contrast, smaller trees were less successful with more cut stumps in their 

neighborhood. The favorable association between cut stumps and success for some trees, but not 

all, suggests that presently, larger trees had superior ability to take advantage of increased 

resource availability following gap creation (Uriarte et al. 2004a). The variability in response to 

gap formation may be associated with tree size at the time of the harvest. That is, trees that were 

larger than their neighbors immediately following harvest were apparently better able to take 

advantage of newly available resources and remain larger and more successful at present, when 

compared to smaller trees less able to take advantage of increased resource availability. The 

persistent elevated growth and survival (1989 to present) of trees able to take advantage of 

canopy gaps – even ca. 100 years following gap creation – highlights a remarkable legacy of past 

disturbance on current forest dynamics, and the interaction of size and number of cut stumps 

suggests this legacy is context dependent.    

4.3 Neighbor species identity 

In mixed-species forests, the numerous pair-wise combinations of focal tree species and 

neighbor species makes it difficult to comprehensively address the extent to which multiple 

species interact. This is further confounded by the dual roles each species may play in these 

interactions. That is, species can vary both in their response to the identity of neighbor species 

and in the effect they have as neighbors on a given focal tree species (Goldberg and Landa 

1991). By modeling the growth of each species individually, we were able to determine how 

much additional variability neighbor identity explained beyond overall crowding alone (i.e., 

ignoring neighbor identity). By doing so, we are able to answer the question, if crowding were 
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held constant, would species A grow better or worse with more abundant species B in its 

neighborhood?  

Our findings support our intraspecific crowding analysis (above) in that three of the five 

species (red spruce, hemlock and white pine) were more negatively affected by crowding from 

conspecific neighbors than would be expected with crowding alone. Conspecific neighbors 

surrounding a given focal tree may be more inhibitory to focal tree growth than are 

heterospecific neighbors, simply because heterospecifics likely differ more in their resource 

requirements (Uriarte et al. 2004b, Ramage et al. 2017). This beneficial interaction between 

heterospecific neighbors has been referred to as a complementary or a competitive reduction 

interaction, because it is not necessarily the result of facilitation between individuals, rather the 

result of less competition than would be expected if all species competed equivalently (Forrester 

and Bauhus 2016). White pine had the greatest inhibitory effect, which is likely associated with 

its tendency, on this plot and in this region, to occupy dominant and often emergent canopy 

positions, making it a strong competitor for light (Fajvan and Seymour 1993). Red maple 

neighbors commonly had a complementary effect on focal tree growth: red spruce, white pine 

and hemlock trees growing in equal crowding environments grew better if more of their 

neighbors were red maple. This finding could possibly be explained by the observed tendency 

for red maple to occur in small clumps in this plot. If neighbors are clumped in one portion of a 

neighborhood, available growing space for the focal trees may not be as severely restricted as 

when neighbors are dispersed throughout the neighborhood. The inclusion of a metric describing 

arrangement of competitors within a neighborhood has been shown to improve models for focal 

tree growth (Fraver et al. 2014). We note that the lack of a significant neighbor-identity effect 

between two species should not be taken as evidence against competition between those two 
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species; instead, it simply means that species identity does not add additional explanatory ability 

beyond what we would expect if neighbor species were equivalent competitors. Species-by-

species analyses such as these represent a rather simple approach for exploring the potentially 

complex interactions among species. Our findings suggest more work is needed to better 

understand how competitive interactions play out within mixed-species forests.  

4.4 Conclusions 

The inherent heterogeneity of uneven-aged, mixed-species forests makes them well 

suited to meet a variety of environmental and societal expectations of forests ecosystems; 

however, this heterogeneity also presents analytical and interpretive challenges. Our findings 

demonstrate the variety of ways in which individuals of various species and sizes may respond to 

their surroundings. We found that the most influential factors driving individual tree growth and 

survival (species, crowding, and size) were the same, yet additional factors, including soil 

moisture, sapling crowding and neighbor identity, suggest dissimilarities. This finding warns 

against conflating growth and survival (as well as recruitment) as metrics of success. 

Understanding the factors affecting dynamic and complex processes, such as growth and 

mortality, are necessary to successfully manage uneven-aged, mixed-species forest systems for 

continued resilience and productivity.   
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