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Human-induced and natural disturbances are an important feature of forest ecosystems. 

Disturbances influence forest structure and composition and can impact crucial ecosystem 

services.  However, deriving spatially explicit estimates of past forest disturbance across a large 

region can prove challenging. Researchers have recognized that remote sensing is an important 

tool for monitoring forest ecosystems and mapping land use and land cover change. One of the 

most important sources of remotely sensed imagery is the United States Geologic Survey’s 

Landsat program which has continuously acquired earth observations since 1972. This repository 

of imagery has the spatial, spectral, and temporal resolution necessary to produce maps of 

disturbance which are meaningful for the analysis of forested ecosystems.   

In this analysis, we utilize the imagery from the Landsat archive to produce maps of 

forest disturbance from 1985 to 2017 for the New England states and the Canadian Maritime 

provinces. The change detection maps were developed using stacked generalization, a modeling 

technique that fuses the outputs of an ensemble of individual change-detection algorithms 

through the use of a secondary classifier. To better understand the error associated with these 

                                                    



iv 
 

classifications, we quantified the spectral characteristics associated with different harvesting 

practices. Using two case studies, the 1998 ice storm and the 2016 gypsy moth outbreak in 

southern New England, we performed experiments to examine how the stacked generalization 

framework can be utilized to increase the accuracy of disturbance maps following large-scale 

natural disturbances. The change detection maps developed in this analysis possessed a 98.7% 

overall accuracy and a 27.5% balance of the errors of omission and commission. Our results 

indicated that adjusting the probability threshold associated with the secondary classifier in the 

stacked generalization framework increase the spatial coherence of disturbance patches and 

better capture the low- to moderate-severity disturbances. 

 Using the maps of disturbance for the New England states and Maritime Provinces, we 

derived metrics describing the spectral change magnitude, timing, and percent spectral recovery 

across the study region. Recent research has found that including metrics of disturbance and 

recovery processes, derived from the analysis of time-series satellite imagery, can improve the 

accuracy of AGB models. However, these studies have largely been conducted in regions with 

relatively homogenous forest composition and structure and disturbance regimes dominated by 

stand-replacing disturbances. This analysis expands upon the existing literature by exploring how 

disturbance and recovery metrics can improve the predictions of AGB models in a heterogeneous 

landscape with a complex land-use history. Gradient boosting models, a sophisticated machine 

learning technique, were used to produce regional AGB models using spectral, disturbance, and 

environmental (e.g., topographic, climatological, etc.) metrics. Additionally, we explore how 

adjusting the rate of mapped disturbance through modifications to the class-inclusion rate 

associated with the secondary classifier can impact estimates of AGB. We conclude that 
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landscape heterogeneity, as well as the general lack of stand-replacing disturbances, negatively 

impacts the predictive utility of disturbance and recovery metrics for modeling AGB.  
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CHAPTER ONE: 

ON DISTURBANCE DETECTION IN MIXED-SPECIES, STRUCTURALLY 

COMPLEX, FORESTS USING LANDSAT TIME-SERIES                                                      

CHANGE DETECTION 

 

Human-induced and natural disturbances influence forest structure and composition. 

Deriving accurate characterizations of past forest disturbance histories from remotely-sensed 

imagery is important for assessing ecosystem services and developing robust tools for carbon 

monitoring programs. In this analysis, we develop change detection maps for the forest area of 

the New England states and the Canadian Maritime provinces using stacked generalization, a 

modeling technique that fuses the outputs of an ensemble of individual change detection models 

through the use of a secondary classifier. We also quantify the spectral characteristics associated 

with different harvesting intensities, and we examine how the stacked generalization framework 

can be utilized to increase the disturbance map accuracy following large-scale natural 

disturbances. The classifier developed in this analysis produced a 98.7% overall accuracy and a 

27.5% balance of the errors of omission and commission. Our results indicate that adjusting the 

probability threshold associated with the secondary classifier can increase the spatial coherence 

of disturbance patches and better capture low-severity disturbances associated with partial 

disturbances. 

1.1. Introduction 

The spatial distribution and severity of forest disturbances are critical considerations for 

assessing forest productivity, wildlife habitat quality, and ecosystem services, such as carbon 

storage (Houghton, 2005; De Groot et al., 2010; Goetz et al., 2009). Satellite imagery provides 

the only efficiently means of assessing forest disturbances, in a spatially explicit manner, across 
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large spatial scales (Kennedy et al., 2014; Hansen et al., 2013; Powell et al., 2010a). Imagery 

from the United States Geologic Survey’s (USGS) Landsat program serves as the principal data 

source for characterizing historical disturbance because of its moderate spatial resolution and 

continuous acquisition over the past four decades (Cohen and Goward, 2004; Kennedy et al., 

2014). Due to computational limitations, early analyses of forest disturbances were restricted to a 

small number of images, temporally separated by several years (Coppin and Bauer, 1996; Wilson 

and Sader, 2002). These techniques have now been supplanted by sophisticated change-detection 

algorithms that can detect disturbances on an annual or sub-annual time-step using dense time-

series imagery (Kennedy et al., 2010; Huang et al., 2010; Zhu and Woodcock, 2014; Hughes et 

al., 2017). Recent advancements have led to ensemble change detection models using stacked 

generalization (Healey et al., 2018; Wolpert, 1992). Stack generalization improves the change 

detection accuracy by synthesizing the outputs of an of ensemble of individual models through 

the use of a secondary classifier, such  random forests (Cohen et al., 2018; Healey et al., 2018; 

Breiman, 2001).Previous remote-sensing studies have successfully utilized change detection 

techniques to reconstruct the history of forest disturbances. The resulting spatially extensive 

maps of forest disturbance have focused on high-severity disturbance events such as clear-

cutting, crown fire, and deforestation (Hansen et al., 2013; Hermosilla et al., 2015b). However, 

disturbance regimes dominated by low- to moderate-severity disturbances such as partial-

harvesting, wind storms, ice storms, or insect outbreaks may evade detection for change 

detection approaches due to low magnitude of change in the spectral values (Cohen et al., 2017). 

As a result, many of the current assessments of forest disturbance based on change detection may 

dramatically underestimate forest disturbance rates and spatial extents. Further, investigations 

that have incorporated disturbance mapping into the biomass modeling or carbon-stock change 
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analyses have been performed in generally homogenous forest types with relatively simple 

disturbance regimes (Pflugmacher et al., 2014; Frazier et al., 2014). Thus, research that clarifies 

the precision of change-detection algorithms in structurally diverse forests with mixed-severity 

disturbance regimes would provide needed insight into the suitability of using change-detection 

algorithms across a broader range of forest types and disturbance regimes. 

Our overarching objective in this study was to produce a focused analysis of forest 

disturbance across a broad-region that features a structurally complex, mixed-species forest, as 

well as mixed-severity disturbance regime. The specific objectives were to 1) recreate the history 

of forest disturbances (1986 – 2017) for the U.S. New England States and the Canadian Maritime 

provinces, 2) quantify and compare the omission and commission error associated with a range 

of disturbance severities, and 3) evaluate two large-scale mixed-severity natural disturbance 

events to assess how adjusting the class inclusion rates of the secondary classifier can improve 

change detection accuracy. This study used stacked generalization to combine outputs from the 

LandTrendr change-detection algorithm (Kennedy et al., 2010), run multiple times using spectral 

bands or indices as the input, to create a spectral-ensemble of modeling outputs (Cohen et al., 

2018). Our results will allow assess the performance of change-detection algorithms for 

estimating past disturbance severity and spatial extent over a broad region with a highly 

heterogeneous landscape composition. 

1.2. Methods 

1.2.1 Study area 

The study area is ~60,800,000 ha in size and is composed of the U.S. New England states 

and the Canadian Maritime provinces. Forest species composition transitions along a latitudinal 

gradient from the hardwood-dominated stands in southern New England to the conifer-
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dominated boreal forests in Northern Maine and throughout the Canadian Maritime provinces. 

The forest structure and composition are heavily influenced by natural regeneration, and mixed-

age forest stands are common. Partial harvesting regimes are common in the mixed-species 

stands in the New England states (Belair and Ducey, 2018; Canham et al., 2013). Clear-cutting is 

more commonly practiced in the conifer-dominated forest stands found throughout the Canadian 

Maritime province. Intensively managed, single-species plantations occur in portions of the New 

Brunswick province (Hennigar et al., 2016). The natural disturbance regime in the region is 

dominated by low- to moderate-severity, periodic events such as wind storms and insect 

outbreaks (Fraver et al., 2009; Seymour et al., 2002).  

Data from the U.S. Forest Inventory and Analysis program, Nova Scotia permanent 

sample plot database, and the New Brunswick permanent sample plot database indicate that 117 

tree species are present throughout the study area. The Acadian Forest region of the study area in 

the Maritime Provinces and northern New England feature conifer-dominated or mixed-species 

stands predominantly composed of balsam fir (Abies balsamea (L.) Mill.) red spruce (Picea 

rubens Sarg.), white spruce (Picea glauca), white pine (Pinus strobus L.), red maple (Acer 

rubrum L.), and American beech (Fagus grandifolia Ehrh.) (Hennigar et al., 2016). The 

hardwood-dominates species in the southern New England states are generally composed of oak 

(Quercus rubra L.), paper birch (Betula papyrifera Marsh.), yellow birch (Betula alleghaniensis 

Marsh.), eastern hemlock (Tsuga canadensis L.), and sugar maple (Acer saccharum Marsh.) 

(Seymour, 1994; Thompson et al., 2013).  

1.2.2. Image processing 

USGS Landsat Collections Tier 1 Thematic Mapper (TM), Enhanced Thematic Mapper 

Plus (ETM+), and Operation Land Imager (OLI) imagery from 1984 – 2017 with less than 85% 
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cloud cover were selected for analysis. Landsat Collections Tier 1 is considered suitable for 

time-series analysis with all images possessing a scene-wide radial geometric root mean square 

error ≤ 12m. Surface reflectance values were calculated using the Landsat Ecosystem 

Disturbance Adaptive Processing System algorithm and the Landsat 8 Surface Reflectance Code 

algorithm (Masek et al., 2006; Vermote et al., 2016). The surface reflectance values from the 

OLI sensor were cross-calibrated with the TM and ETM+ sensors using coefficients from Roy et 

al. (2016).  

Cloud and cloud shadow removal was performed using the FMASK algorithm (Zhu and 

Woodcock, 2012). The Temporal Dark Outlier Method (TDOM) was used to remove cloud 

shadows committed by the FMASK algorithm (Housman et al., 2015). The TDOM generates a 

population of clear-sky observations around each pixel in a Landsat scene. If the value of a pixel 

is 1.5 standard deviations lower than the pixel-population mean, the pixel is discarded. To 

account for variation in forest phenology throughout the study region, only pixels within ±32 

days of the peak of the growing season were included for further analysis. The peak of the 

growing season was estimated using information from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Land Cover Dynamics dataset (Ganguly et al., 2010).  

Prior to temporal segmentation using the LandTrendr algorithm, annual summer-time 

composited images were produced. Image compositing was performed using the medoid 

compositing method (Flood, 2013). Qualitative testing indicated the medoid method was more 

robust to noisy observations than was the pixel-scoring criteria proposed by White et al. (White 

et al., 2014) and Hermosillia et al. (2015a) and (2015b). The medoid method relies on calculating 

the Euclidian distance between observations in the spectral space. Consequently, if fewer than 

three observations were available, the mean spectral value of each band was used. All image 
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analysis and subsequent change detection analysis were performed using the Google Earth 

Engine (GEE) cloud-computing platform (Gorelick et al., 2017). 

Using the six spectral bands common to the TM, ETM+, and OLI sensors (i.e., the blue, 

green red, near-infrared, and the two shortwave infrared bands), eight spectral indices were 

calculated. The three primary components of the Tasseled Cap (TC) transformation, brightness, 

greenness, and wetness, were computed using the coefficients from Crist and Cicone (1984). 

Tasseled cap angle (Powell et al., 2014) and distance (Duane et al., 2010) were then derived from 

these TC components. Three additional vegetation indices, the Normalized Difference 

Vegetation Index (NDVI), the Normalized Difference Moisture Index (NDMI), and the 

Normalized Burn Ratio (NBR) were also computed (Rouse et al., 1974; Wilson and Sader, 2002; 

Key and Benson, 1999). This process yielded a total of 14 spectral bands and indices that were 

used to generate an ensemble of LandTrendr models.  

1.2.3. TimeSync reference data 

An historical record of forest disturbance over a set of reference plots was produced using 

the TimeSync image interpretation program (Cohen et al., 2010). This process allows the 

interpreter to visualize the time-series of spectral values, extracted from the Landsat archive, 

over a single pixel (hereafter referred to as a plot). TimeSync links the plot locations to historical 

acquisitions of high-resolution imagery in Google Earth to facilitate the interpretation of the 

time-series. The interpreter subdivides the time-series into a sequence of linear segments that 

correspond to changes observed in the imagery. At each segment, the interpreter labels the 

change process (e.g. no change, wind disturbance, forest harvesting, etc.), and the land use and 

land cover at the segment’s start and end dates. For this analysis, the image interpreters also 

classified each harvest event as either a “partial harvest” or a “clear-cut”. To ensure consistent 
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classifications, all of the plots were evaluated by two interpreters to ensure consistent 

classification and to avoid the omission of subtle change-events. Disagreements between two 

interpretations were resolved with the aid of a third interpreter.  

The reference dataset consisted of 4233 TimeSync plots that contained interpretations 

from 1984-2016. Of those plots, 797 were never forested and were excluded from subsequent 

analysis. Any segments that were not initially forested, indicated by the classification at the 

segments start date, were also removed from the dataset. The final database consisted of 105,339 

annual observations that were labeled as either disturbed or not-disturbed based on the change 

process indicated by the interpreter. These annual observation serve as the training and validation 

data for developing the stacked-generalization ensemble classifier. 

1.2.4 Training the base learners 

An ensemble of change detection models were developed using the GEE-implementation 

of the LandTrendr algorithm (Kennedy et al., 2010; Kennedy et al., 2018). LandTrendr uses a 

specified given band or index and partitions the time-series of values for an individual pixel into 

linear-segments using a regression-based vertex-identification procedure. Using the first and last 

observations within the pixel’s time-series as the initial vertices, the subsequent vertex is fit at 

the observation with the greatest absolute deviation from the fitted curve. Each of the new 

segments are then subset and retained based on the mean square error (MSE) of the fit. The 

process is iterated until a stopping criteria is reach. This maximally complex model is then 

simplified by iteratively removing the weakest vertices. From the resultant series of models, the 

p-value of the F-statistic for the curve fit is used to select a sufficiently complex model to 

characterize the pixel’s time-series (see Kennedy et al. (2010) for additional details). The 

LandTrendr algorithm was applied to all pixels across the study region using each of the shared 
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TM, ETM+, and OLI spectral bands and indices calculated during image processing. This 

resulted in each pixel containing the output from the ensemble of fourteen base-learners. 

Qualitative testing indicated that increasing the sensitivity of the base learners improved the 

secondary classifier’s accuracy at the cost of increasing the false-positive rate of disturbance 

detection for the individual base-learners. As suggested in Cohen et al. (2018), the segment 

filtering portion of the LandTrendr algorithm was disabled.  

The linear-segments in each of the trained base learners were used to calculate three 

metrics: 1) the fitted spectral value, 2) the difference in the fitted spectral values between the 

current year (t) and the previous year (t-1), and 3) a binary label that indicated if the slope of the 

fitted segment was greater than or equal to zero. This resulted in a total of 42 predictors produced 

by the base-learners. Prior to their inclusion in the ensemble-models, the conditional importance 

values (Strobl et al., 2008) of base-learner metrics were assessed using the Party package 

(Hothorn et al., 2015) in the R programming language (R Core Team, 2017). None of the metrics 

negatively influenced the secondary classifier performance; thus all metrics selected to develop 

the multi-spectral ensemble model.  

1.2.5 Training the ensemble classifier 

The outputs of the individual base-learners were combined using a secondary classifier, 

here the random forests (RF) algorithm (Breiman, 2001).  The modeling dataset consisted of all 

records in the TimeSync reference database and the corresponding base-learner outputs, for each 

year of each plot. The dependent variable was the binary “disturbed” or “not disturbed” label, 

derived from the TimeSync interpretations. Preliminary testing indicated that the RF’s out-of-bag 

(OOB) prediction stabilized after 500 decision trees were included in the RF ensemble.  The 

performance of the RF model was assessed using the RF OOB error. The OOB error reflects the 
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mean prediction error for a given sample xi across the all trees in the RF, where xi was withheld 

during the bootstrapped aggregation (“bagging”) procedure (Breiman, 1996). The error for the 

secondary classifier was derived from the GEE RF used to produce the wall-to-wall disturbance 

maps.  

The binary disturbance classes in the modeling dataset were highly imbalanced with only 

~2.6% of the records in the TimeSync reference dataset labeled as disturbances. Typically, one 

would either sub-sample the majority class or generate synthetic minority class data using a 

technique such as synthetic minority over-sampling technique (SMOTE) (Chawla et al., 2002) to 

balance the training dataset. However, because the sensitivity of the base-learners was increased 

in order to capture subtle disturbance events (e.g. wind disturbances, partial harvesting), the 

application of these techniques produced a significant increase in the commission error rate. 

Training across the entire dataset resulted in a more conservative RF classifier with fewer 

commission errors. The imbalance in the errors of omission and commission produced by the RF 

over an imbalanced dataset were accounted for by adjusting the probability threshold that 

determined class membership. The threshold was set at the point where the errors of omission 

and errors of commission were balanced. The errors for disturbance mapping were derived from 

the RF classifier that was used to produce wall-to-wall disturbance maps in Google Earth 

Engine.  

1.2.6 Annual estimates of disturbed forest area  

To derive annual estimates of forest disturbance, it was necessary to mask non-forested 

areas from our analysis. A binary forest mask was developed using the  2011 National Land 

Cover Dataset (NLCD) and the Agriculture and Agri-Food land cover datasets from 2011-2017 

(Fisette et al., 2013; Homer et al., 2015). To account for harvesting and land-use change that may 
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have influenced the land cover classifications in either dataset, areas of forest gain identified in 

the Hansen Global Forest Change (2000-2017) were labeled as forests (Hansen et al., 2013). This 

masking process reduced the chance of falsely attributing forest disturbances to agricultural and 

wetland ecosystems, which experience strong year-to-year changes in their spectral 

characteristics.  

1.2.7. Modifications to the mapped disturbance rate for capturing subtle disturbance events   

  Large-scale natural disturbances can vary in their intensity and patch-size across the 

landscape. A balancing the errors of omission and commission may omit a large portion of the 

disturbance area that was not impacted by stand-replacing disturbances. Additionally, due to the 

ensemble classifier being trained on data where the majority of disturbances are not natural in 

origin (e.g., harvesting, land-use change, etc.), there may be insufficient training data for natural 

disturbances to be correctly assigned. In this analysis, two case studies selected for analysis: the 

1998 ice storm that impacted the Northeastern United States and the 2016 gypsy moth 

(Lymantria dispar) outbreak in southern New England. For both disturbance events, the 

probability threshold of the secondary classifier was allowed to vary between 0% and -25% in 

increments of 5% around the balance point of the errors of omission and commission. 

Decreasing the probability threshold decreases the minimum probability required for 

membership in the disturbed category and thus increases the mapped area of disturbance. The 

analysis of the 1998 ice storm focused on forest disturbances that occurred throughout New 

Hampshire, because of the large portion of the forests which experienced storm-related damage. 

The analysis of the 2016 gypsy moth outbreak focused on Connecticut, Massachusetts, and 

Rhode Island. 
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1.3. Results 

1.3.1 Disturbance detection accuracy assessment 

The secondary classifier achieved a 98.7% overall accuracy on the samples in TimeSync 

reference dataset after balancing the errors of omission and commission. A comparison of the 

TimeSync reference data and the ensemble classifier’s predictions is presented in Table 1. 

Balancing the probability threshold of the secondary classifier produced a 27.2% balance of the 

errors of omission and commission. Cohen’s kappa (k=0.74), a comparison of the classifier’s 

accuracy with the expected accuracy (i.e, randomized predictions), indicated a strong agreement 

between the change detection results and the reference data. 

 

 

Table 1.1. Accuracy if the ensemble classifier’s prediction, based on accuracy to the TimeSync 

reference dataset.  
            

    TimeSync reference data 

    

Not-

disturbed 
Disturbed Row Totals 

Errors of 

Commission 

Ensemble 

Classification 

Not-disturbed 94734 700 95434 0.7% 

Disturbed 697 1867 2564 27.2% 

Column 

Totals 
95431 2567 - - 

Errors of 

Omission 
0.7% 27.3% - - 

 

 

1.3.2. Spectral characteristics of forest harvests 

Using the TimeSync interpretations, harvest information was extracted from the 

disturbance maps.  Harvesting events, which generally had lower changes in spectral 

magnitudes, were more frequently misclassified than disturbances with greater change 

magnitudes such as clear cutting or land use change (Figure 1). Partial harvesting events were 
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correctly classified 44.3% of the time. Clear-cuts were correctly classified 77.9% of the time. 

The general relationship identified between the NBR magnitude and change detection accuracy 

(i.e., lower change magnitudes produce greater rates of misclassification) was identified in other 

spectral bands and indices.  

1.3.4. Annual disturbance rates by state and province 

A summary of the annual forest disturbance rates is presented in Table 2. Across the 

entire study region, on average 0.93% ± 0.19% of all forested areas were disturbed each year 

amounting to an annual disturbance rate of 323097 ± 64457.20 ha. Plotting the individual trends 

in percent area disturbed (Figure 2) indicates large variations in the annual rates of disturbance 

between different states and provinces.  New Brunswick and Maine both possess the greatest 

rates of annual disturbance both in terms of the percentage of total forest area and in terms of 

absolute area. Sudden increases against the background disturbance rate during years of broad-

scale natural disturbances can be observed in Figure 2. The impact of the 1998 ice storm is 

prominent in New Hampshire and Maine, and the defoliation caused by the 2016 gypsy moth is 

observed in Connecticut, Massachusetts, and Rhode Island. Additionally, several other 

disturbance events are captured, including the impact of wind storm damage from the 2004 

nor’easter in Nova Scotia, for example. 
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Figure 1.1. Probability density distributions for the Normalized Burn Ratio (NBR) change 

magnitude of harvests events. The harvests are stratified by classification outcome and by the 

TimeSync interpreters’ classification of the harvest type.  

 

 

Table 1.2. A summary of the annual disturbance rates, derived from the time-series of 

disturbance maps (1985-2017), by state and province.  

 

 % of forest area Total area (ha) 

 Mean Std. dev. Mean Std. dev 

Connecticut 0.40% 0.68% 4855 8191 

Maine 1.12% 0.20% 102577 18622 

Massachusetts 0.40% 0.37% 7317 6609 

New Brunswick 1.19% 0.23% 115251 22570 

New Hampshire 0.65% 0.27% 17521 7413 

Nova Scotia 0.88% 0.29% 61204 20112 

Prince Edward Island 0.99% 0.50% 4266 2138 

Rhode Island 1.05% 3.63% 2183 7588 

Vermont 0.30% 0.09% 7885 2293 

Overall 0.93% 0.19% 323097 64457 
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Figure 1.2. Trends in the annual percentage of forest area disturbed by state and province. The 

two natural disturbances investigated in this paper are denoted with vertical dashed lines: the 

1998 ice storm (blue) and the 2016 gypsy moth outbreak (orange). Note that the scale for percent 

of forest area disturbed on the y-axis varies among panels. 

 

 

1.3.5. Impact of adjusting the mapped rate of disturbance to capture natural disturbances 

1.3.5.1 The 1998 Ice Storm 

When mapping disturbances using the balanced probability threshold, the mapped area of 

disturbance throughout New Hampshire, in 1998, increased by 52632 ha relative to the average 

annual rate of disturbance over the 1985-2017 time period. Adjusting the probability threshold of 

the secondary classifier (between 0% and -25%) produced a 28% – 277% (50039 ha - 128337 

ha) increase in total mapped disturbance area throughout the state of New Hampshire (Figure 3). 
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Decreasing the probability threshold improved the spatial cohesion of the disturbed areas (Figure 

4). This improvement occurred around the edges of disturbance patches where mixed-pixels 

were more likely to be classified as “not-disturbed.” 

1.3.5.2 The 2016 gypsy moth outbreak 

Gypsy moth defoliation in 2016 impacted 2.4% (28570 ha) of the forested areas in 

Connecticut and 1.4% (24,996 ha) of the forested areas in Massachusetts. In Rhode Island, where 

the outbreak was the most severe, 21.1% (44,030 ha) of the forested areas experienced 

defoliation. The defoliation in Rhode Island in 2016 was significantly larger than the total area 

disturbed through the remainder of the time series (28,024 ha). Decreasing the probability 

threshold (between 0% and -25%) increased the rate of mapped disturbance by 14 – 203% in 

Connecticut, 19 – 243% in Massachusetts, by 11 – 150% in Rhode Island (Figure 2). While 

increasing the rate of mapped disturbance improved the spatial cohesion of some disturbance 

patches, it also increased the number of small, scattered pixel clusters classified as disturbed at 

higher probability threshold settings (Figure 5). 
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Figure 1.3. Changes in the mapped area of disturbance as the probability threshold of the 

random forest secondary classifier is adjusted by a modifier, shown for major disturbance years 

for each state. 
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Figure 1.4. A sample of the 1998 Landsat summer-time composited image (left), located in 

northern New Hampshire, depicting ice storm damage. Change detection output varies as the 

probability threshold is modified from the balanced threshold (right).  
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 Figure 1.5. A sample of the 2016 Landsat summer-time composited image (left) detailing gypsy 

moth defoliation in Rhode Island. Change-detection output varies as the probability threshold is 

modified from the balanced threshold (right). 
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1.4. Discussion 

In this study we have developed maps of forest disturbances from 1985 to 2017 over a 

large region with a highly heterogeneous landscape and a complex disturbance regime. This 

allowed us to assess the practicality of the stacked generalization methodology for generating 

broad-scale regional estimates of disturbance and to assess the spectral characteristics associated 

with partial-harvests and clearcuts. Additionally, we explored one of the properties associated 

with the secondary classifier, i.e., the ability to modify the probability threshold that controls 

class inclusion rates, and evaluated the changes in classification accuracy of large-scale, mixed-

intensity disturbance events.     

1.4.1. Disturbance mapping 

The 98.7% overall accuracy and 27.5% balance of omission and commission errors found 

in the present study compares favorably to those of previous change detection analyses. 

Validation of the North American Forest Dynamics CONUS disturbance maps indicated an 

84.5% overall accuracy and with an average of 46.4% errors of omission and an average of 

46.7% errors of commission (Zhao et al., 2018).Healey et al. (2018) utilized stacked 

generalization to combine the outputs of an ensemble of change-detection algorithms and 

achieved a 40% balance of omission and commission errors. Cohen et al. (2018) utilized stacked 

generalization to combine the outputs from an ensemble of LandTrendr models, run using 

different spectral indices, and achieved a 29.6% balance of omission and commission error. The 

improvements observed in Cohen et al. (2018) and our results, relative to those presented in 

Healey et al., (2018), can be attributed to inclusion of the change in fitted spectral magnitude as a 

predictor of disturbance, alongside the spectral values and binary disturbance labels produced by 

the base-learners. The small improvement in accuracy in our study, may be attributed to subtle 
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improvements in the image pre-processing and optimization of the LandTrendr parameters for 

application in our study region. Our study demonstrates that across a broad range of forest 

ecosystems, stacked generalization robustly captures the general trends associated with clear-cut 

harvesting. However, as discussed in Cohen et al. (2017) and Healey et al. (2018), low-severity 

natural disturbances and partial harvesting remain challenging to reliably detect using these 

methods.  

1.4.2. Case-studies for modifications of the disturbance threshold 

In order to further explore the utility of these methods, we selected two case studies that 

highlight the challenges of disturbance detection in a region where high-severity, stand-replacing 

natural disturbances are rather uncommon. These disturbance events were selected for two 

reason: 1) the disturbances were highly-varied in their intensity across the landscape and 2) the 

disturbances were extensively documented and provide ample grounds for comparison.  The 

former is important for our analysis because the ability of moderate resolution satellite imagery 

to capture high-severity disturbances has been well documented (Cohen et al., 2017; Hansen et 

al., 2013). By selecting disturbances with a broad gradient in their impact across the landscape, 

we can assess 1) if adjustments made to the probability threshold associated with the secondary 

classifier can be used improve disturbance classification, and 2) the degree to which these 

improvements match reference information.   

1.4.2.1. Ice storm damage in New Hampshire 

The 1998 ice storm damaged 1,375,931 ha of forested area throughout New Hampshire 

(Irland, 1998). Aerial surveys conducted in 1998 estimated that approximately 161,874 ha of 

New Hampshire’s forests had experienced heavy damage, defined as damage to 50% or more of 

the canopies on the majorities of trees (Irland, 1998). The mapped area of disturbance produced 
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by the secondary classifier in the present analysis ranged 52,632 ha to 145,858 ha. The estimate 

of disturbed forest produced by the largest modification to the balanced probability threshold (-

25%) was closely aligned with those from the aerial surveys. Given the Landsat sensors’ 

moderate spatial resolution (30m), estimates of disturbance will emphasize moderate- to high- 

severity disturbances. Damage estimates produced by Quebec’s Department of Natural 

Resources categorized 64% of the 1998 ice storm damage as moderate to slight/trace (Irland, 

2000). Assuming a roughly comparable distribution of damage types throughout New 

Hampshire, it would not be reasonable to expect change-detection disturbance estimates 

comparable to 1,375,931 ha of cumulative damage estimate for that state. This is because 

approximately two thirds of the disturbances would correspond to a disturbance patch with a size 

or severity not observable by moderate resolution satellite imagery. Adjusting the probability 

threshold was a successful mechanism for increases the mapped area of disturbance to more 

closely align with estimates of storm damage derived from aerial survey data.  

1.4.2.2. Gypsy moth defoliation in Southern New England 

The United States Forest Service (USFS) Forest Health Technologies Enterprise Team 

(FHTET) produces yearly estimates of defoliation and mortality attributable to forest pests. In 

2016, the FHTET estimated 84,906 ha were disturbed in Connecticut, 145,540 ha were disturbed 

in Massachusetts, and 99,260 ha were disturbed in Rhode Island. Our tests found that using the 

greatest modification (-25%) to the balanced probability threshold, the model classified 57,984 

ha of disturbed forests in Connecticut, 60,823 ha of disturbed forests in Massachusetts, and 

66,210 ha of disturbed forests in Rhode Island. Our disturbance estimates appear to 

underestimate the area estimates by the FHTET, though it is difficult to compare the estimates of 

area disturbed from aerial sketch mapping to those the spatially explicit estimates of disturbance 
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derived from the Landsat imagery. Pasquarella et al. (2017) developed defoliation estimates for 

the 2016 gypsy moth-outbreak using the Landsat time-series data and the Continuous Change 

Detection and Classification (CCDC) algorithm. The Landsat CCDC outputs produced disturbed 

area estimates for Rhode Island between 22,000 ha and 61,800 ha, and was able to accurately 

capture the areas which had experienced defoliation. The disturbed forest area estimates for 

Rhode Island in this study show a strong agreement with the 2016 gypsy moth defoliation 

estimates of Pasquarella et al. (2017). As discussed above, limitations associated with the spatial 

resolution of the Landsat sensors and data-gaps produced by clouds and atmospheric conditions 

hamper the ability to detect low-severity disturbances. Modifying the probability threshold was 

an effective means to probabilistically increase the disturbed-class membership to produce 

disturbance estimates that better matched the results of other analyses.   

1.5. Conclusion  

Our analysis has demonstrated that stacked generalization can produce accurate estimates 

of disturbance in a heterogeneous forest landscape with a complex disturbance regime. Our 

results corroborate the challenges previously identified surrounding the use of moderate-

resolution imagery to capture low-severity disturbances, which typically have small changes in 

spectral magnitude (Cohen et al., 2018; Cohen et al., 2017). The benefit of utilizing Landsat data 

is programs long history of data acquisition, allowing for landscape dynamics to be 

characterized.  Fusing the Landsat archive with new satellite imagery with greater spatial or 

spectral resolutions, such as the European Space Agency’s Sentinel-2 A/B platforms, could 

improve the detection rate of low- to moderate- severity disturbance events.  

The results of our two case studies suggest that adjusting the probability threshold 

associated with the secondary classifier in a stacked generalization change detection framework 
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can increase the accuracy of disturbance detection for large-scale, natural disturbances with 

variations in severity. Our results also indicate that the stacked generalization framework has 

considerable flexibility when used to assess past disturbance in regions characterized by low- to 

moderate-severity disturbance regimes. Although our training data principally consisted of forest 

harvesting events, the ensemble classifier mapped gypsy moth defoliation with comparable 

accuracy to that of a change-detection methodology developed to target a specific disturbance 

agent. Our results also indicate that disturbance maps produced using the stacked generalization 

framework could be fine-tuned at specific years or across a specific sub-region to capture large-

scale, natural disturbances without inflating the commission errors across the remainder of the 

time-series.  
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CHAPTER TWO: 

ABOVEGROUND BIOMASS ESTIMATION IN A HETEROGENOUS, MIXED- 

SPECIES FOREST UTILIZING LANDSAT-DERIVED  

DISTURBANCE HISTORY 

Deriving regional estimates of aboveground biomass (AGB) from remotely sensed data is 

important for supporting carbon accounting initiatives and monitoring the status of ecosystem 

services. Recent research has found that including measures of disturbance and recovery 

processes, derived from the analysis of time-series satellite imagery, can improve the accuracy of 

spatially modeled AGB estimates. However, these studies have largely been conducted in 

regions with relatively homogenous forest composition and structure shaped by stand-replacing 

disturbance regimes. In this analysis, Landsat satellite imagery from 1984-2017 was used to 

develop disturbance history maps across the forested area of the New England states and the 

Canadian Maritime provinces. The maps were derived using stacked generalization, a technique 

that fuses the outputs from an ensemble of change-detection outputs from a time-series 

segmentation algorithm. This process was used to generate a series of metrics characterizing 

disturbance severity, timing, and post-disturbance recovery for each 30m pixel in the study 

region over the 33-year Landsat record. Then, using gradient boosting, regional AGB models 

were developed using spectral, disturbance, and environmental metrics. Finally, we analyzed 

how adjusting the probability threshold that controls the class-inclusion rates influenced AGB 

model performance. This enabled our analysis to test if increasing or decreasing the sensitivity of 

the secondary classifier could improve the predictive ability of the disturbance and recovery 

metrics and, consequently, AGB model performance. The AGB models developed in this 

analysis possessed normalized root mean squared errors between 61.5 and 52.4%. Our analysis 

indicated that incorporating environmental metrics provided the greatest improvements in model 
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performance. Including the disturbance metrics also improved AGB model performance. Our 

results indicate that adjusting the probability threshold could produce a 10.7 million ha increase 

or 7 million ha decrease in the mapped disturbance area. However, the changes in disturbed area 

had minimal impact on the AGB model performance.  We conclude that landscape 

heterogeneity, as well as the general lack of stand-replacing disturbances, diminishes the 

predictive utility of disturbance and recovery metrics for modeling AGB. However, 

incorporating the disturbance metrics still provided worthwhile increases in model performance.  

2.1. Introduction 

Considerable recent research has focused on improving the accuracy of spatially explicit 

aboveground biomass (AGB) estimation (Goetz et al., 2009; Powell et al., 2010b; Herold and 

Johns, 2007) in order to facilitate carbon accounting programs and manage ecosystem services 

(Pan et al., 2011; Dixon et al., 1994).  One outcome of this research has been the recognition that 

AGB estimates can be improved by including information on past disturbances (Pflugmacher et 

al., 2014; Frazier et al., 2014).  

The United States Geologic Survey’s Landsat program has been acquiring satellite 

imagery of Earth since 1972, with sensors continually being updated over time as technology 

improves. The resulting imagery has proven invaluable for a broad range of applications in 

ecological analysis (Cohen and Goward, 2004). For example, Landsat imagery has been used 

extensively to model AGB, as it enables large-scale estimates to be derived by modeling the 

relationship between the imagery and forest inventory measurements (Cohen and Goward, 2004; 

Lu, 2005; Luther et al., 2006). The amount of forest biomass at a given location is a function of 

the forest’s composition, the accrual of biomass through forest growth and development, and the 

loss of biomass caused by harvesting and natural disturbances.  However, using Landsat imagery 
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to estimate AGB faces two notable limitations. First, the spectral signal from moderate-

resolution satellite imagery saturates as forests approach their late-successional stages (Lu et al., 

2012).  Second, the value of spectral indices of a disturbed forests can return to pre-disturbance 

values rather quickly (~1.6 – 4.1 years), meaning that the spectral recovery in imagery will occur 

long before the disturbed system truly recovers (Pickell et al., 2016). 

Incorporating accurate information on forest disturbance into AGB estimates can 

alleviate the limitations associated with Landsat satellite imagery (Pflugmacher et al., 2014). 

Following the opening of the formerly privatized Landsat archive in 2009, sophisticated change-

detection algorithms (e.g LandTrendr, VCT, VeRDET) have been developed to extract 

disturbance information from dense time-series of imagery (Kennedy et al., 2010; Hughes, 2014; 

Huang et al., 2010). Spatially-explicit estimates of disturbance and recovery (DR) processes can 

be derived from these algorithms to characterize the pre-disturbance state, produce metrics of the 

disturbance event (eg. duration, severity), and identify spectral trends during recovery 

(Pflugmacher et al., 2012; Hermosilla et al., 2015a). For example, studies by Pflugmacher et al., 

(2014) and Frazier et al., (2014) demonstrated that incorporating DR metrics alongside spectral 

covariates into models of AGB significantly reduced model error and increased explanatory 

power. 

Given that change-detection algorithms have been developed with a specific use-case in 

mind, they tend to perform better in the specific ecosystems or disturbance regimes for which 

they were developed (Cohen et al., 2017). To exploit the individual strengths of each change 

detection algorithm and reduce the errors of omission and commission for disturbance detection, 

stacked generalization approaches have been developed (Wolpert, 1992). These approaches are 

based on an ensemble modeling technique where the outputs of individual change-detection 
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models, referred to as base-learners, are synthesized with the use of a secondary classifier, such 

as random forests (Breiman, 2001; Healey et al., 2018). Multi-spectral ensemble model 

approaches, which use a single base-learner algorithm run using different spectral bands or 

indices, have been shown to improve the accuracy of disturbance detection by making use of the 

subtle spectral variations associated with various disturbance severities and agents (Cohen et al., 

2018). Although ensemble modeling approaches have improved change-detection capabilities, 

the ability to adjust the rate at which disturbances are mapped, by modifying the class-inclusion 

rates, has not been explored. Increasing or decreasing the sensitivity of the ensemble model 

could improve the predictive strength of DR metrics, derived from the disturbance history maps.    

In this analysis, we aim to determine the extent to which the contemporary amount and 

distribution of forest biomass can be determined by characterizing the disturbance history. Our 

objectives are 1) quantify to what extent Landsat-derived DR metrics improves the prediction 

forest AGB; 2) determine the number of years of disturbance information required to 

meaningfully inform biomass estimation; and 3) explore how modifying the probability 

threshold associated with the secondary classifier alters the predictive strength of the DR metrics 

in models of AGB. This study expands upon existing research by attempting to develop broad-

scale AGB estimate across a structurally complex, mixed-species forested region with a complex 

disturbance regime and land-use history 

2.2. Methods 

2.2.1. Study Area 

The New England-Canadian Maritime describes the gradient of forest environments that 

exist across the study region. Forest inventory data compiled throughout the study area (see 

below) recorded 116 tree species. The forests stand within the Canadian Maritime Provinces and 
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northern Maine, USA, are conifer-dominated and principally composed of balsam fir (Abies 

balsamea (L.) Mill.) red spruce (Picea rubens Sarg.), black spruce (Picea mariana Mill.), white 

spruce (Picea glauca), white pine (Pinus strobus L.), red maple (Acer rubrum L.), and American 

beech (Fagus grandifolia Ehrh.) (Hennigar et al., 2016). Central Maine marks a transition from 

conifer-dominated stands towards mixed-species stand with greater abundances of American 

beech (Fagus grandifolia Ehrh.), paper birch (Betula papyrifera Marsh.), and yellow birch 

(Betula alleghaniensis Marsh.) (Seymour, 1994; Thompson et al., 2013). Forests of the Southern 

New England states are dominated by broadleaf trees including northern red oak (Quercus rubra 

L.), eastern hemlock (Tsuga canadensis L.) and maple species such as red maple and sugar 

maple (Acer saccharum Marsh.).  

2.2.2. Forest field plot data 

Recent forest inventory data (2011-2017) were compiled from national and provincial 

inventories (Figure 1) as reference data to develop models of AGB.  Trees with a diameter at 

breast height (DBH) ≥ 10 cm were selected for analysis. The AGB for each tree was estimated 

using version 2 of the component ratio method (CRM2.0) (Radtke et al., 2017). The CRM2.0 

was developed for the eastern United States; it reduces the bias and error of the allometric 

equations in the original CRM equations (Goodale et al., 2002). The CRM2.0 methodology 

requires height measurements for each tree (which was not available) to estimate AGB. To 

impute missing tree heights, a height-diameter model was constructed using gradient boosting 

models (Friedman, 2001), an ensemble machine learning technique, using the XGBoost package 

(Chen et al., 2015). DBH, species, elevation, slope, and climate site index (Jiang et al., 2014) 

were used as covariates in the height-diameter model. The plot-level data were used to estimate 



 

29 
 

biomass densities (Mg ha-1). Table 1 contains a summary of the AGB density estimates for each 

inventory dataset. 

 

 

Figure 2.1. The study area and distribution of the forest inventory plots used in this analysis. 
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Table 2.1. Summary statistics describing the national and provincial permanent sample plot 

forest inventories included in the analysis.  

Dataset 
Measurement 

years 

# plot 

locations 

# of  plot 

measurements 

AGB mean 

(Mg ha-1) 

AGB median 

(Mg ha-1) 

AGB SD            

(Mg ha-1) 

FIA 2011-2016 5,180 5,787 101.0 91.7 67.4 

NB  2017 1,355 1,355 84.7 72.4 79.3 

PEI 2011-2017 604 1,311 156.5 150.6 65.7 

NS  2011 - 2016 3,039 3,608 69.0 60.0 56.9 

Totals - 10,178 12,061 - - - 

* Dataset descriptions 

FIA - United States Forest Service’s Forest Inventory and Analysis phase II plots 

NB - New Brunswick provincial sample plots 

PEI - Prince Edward Island provincial sample plots 

NS - Nova Scotia Department of Natural Resources provincial sample plots 

 

2.2.3. Image processing 

Landsat Collection Tier 1 Landsat Thematic Mapper (TM), Enhanced Thematic Mapper 

plus (ETM+), and Operational Land Imager (OLI) scenes collected from 1984-2017 with less 

than 85% cloud-cover were collated for image processing. The United States Geologic Survey 

Earth Resources and Science Center requires all Landsat Collection Tier 1 scenes to possess a 

radial root mean square error (RMSE) of ≤ 12m to ensure a sufficient spatial accuracy for time-

series analysis. Surface reflectance values were calculated using the Landscape Ecosystem 

Disturbance Adaptive Processing System algorithm (Masek et al., 2006) and the Landsat 8 

Surface Reflectance Code (Vermote et al., 2016). Cross-sensor harmonization of the TM/ETM+ 

and OLI sensors was performed using the coefficients from Roy et al. (2016). Cloud and shadow 

contaminated pixels were removed using the Fmask algorithm (Zhu and Woodcock, 2012). An 

additional round of noise removal was performed using the temporal dark-outlier method 

(Housman et al., 2015) to remove the cloud shadows missed by the Fmask algorithm. To account 

for phenological variability across the study area, all pixel observation were constrained to a 38-

day (+/-) window around the peak-of-the growing season, derived via Moderate Resolution 
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Imaging Spectroradiometer (MODIS) observations. The pre-processed time-series of images 

were then composited into annual images using the medoid method (Flood, 2013). Preliminary 

tests indicated that smoothing the imagery (e.g. applying a 3x3 focal mean filter) to account for 

plot design and plot geolocation inaccuracies did not improve the subsequent models of AGB.  

Image processing was conducted in the Google Earth Engine cloud-computing environment 

(Gorelick et al., 2017).  

2.2.4. Spectral predictors 

In addition to the six spectral bands common to the TM, ETM+, and OLI sensors, eight 

additional spectral metrics were computed as covariates for AGB model development. The three 

primary components of the Tasseled Cap (TC) transformation, i.e., brightness, greenness, and 

wetness, were computed using the coefficients from Crist and Cicone (1984). Two indices were 

computed from the TC components: angle (Powell et al., 2014) and distance (Duane et al., 2010). 

Three additional vegetation indices, the Normalized Difference Vegetation Index (NDVI), the 

Normalized Difference Moisture Index (NDMI), and the Normalized Burn Ratio (NBR) were 

computed (Rouse et al., 1974; Wilson and Sader, 2002; Key and Benson, 1999). The 

formulations for the Tasseled Cap transformations and spectral indices and can be found in the 

Appendix.  

2.2.5. Environmental predictors 

Topographic and climatological predictors (collectively referred to as environmental 

predictors) were developed to help quantify the spatial variation across the landscape. Elevation, 

slope, and aspect were derived from the Shuttle Radar Topography Mission (SRTM) 1 arc-

second DEM. Climatological metrics were produced using the Daymet V3 daily weather and 

climatological dataset (Thornton et al., 2016). The daily datasets from 1980-2017 were masked 
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to isolate observations within the growing season using a MODIS-derived phenology dataset. 

The datasets were then annually aggregated to estimate the annual precipitation, growing degree 

days, average maximum, mean, and minimum temperature for each 1-km grid cell. The per-pixel 

average of the yearly metrics were used as predictors. A 1km estimate of climate site index was 

used to provide a spatial estimate of forest productivity (Jiang et al., 2014).  

2.2.6. Disturbance detection with generalized stacking 

2.2.6.1. TimeSync reference data 

A historical record of forest disturbance was produced using the TimeSync image 

interpretation program (Cohen et al., 2010). TimeSync allows an interpreter to visualize the time-

series of spectral values, derived from the Landsat archive, over a given pixel (hereafter referred 

to as a plot). TimeSync interfaces with Google Earth to provide access to historical high-

resolution imagery to aid the interpreter’s decisions. The interpreter subdivides the time-series 

into a sequence of linear segments that describe the change processes (e.g. no change, forest 

harvest, vegetation recovery, etc.). The start and end dates for a given segment were used to 

record information about land use and land cover. To improve the consistency of interpretations 

across different interpreters, all plots were re-assessed by a single interpreter.  

The reference dataset consisted of 4233 TimeSync plots interpreted for change type and 

timing over the 1984-2016 time-period. Of those plots, 797 were never forested and were thus 

excluded from subsequent analysis. The remaining plots were again filtered to exclude any 

segment that were not initially forested as indicated by the classification at the segments start 

date. This allowed for disturbances that produced a change in forest land use (e.g. road 

construction) to be incorporated into the subsequent analysis. The final database consisted of 

105,339 annual observations that were labeled as either disturbed or not-disturbed based on the 
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change process indicated by the interpreter. These annual observation serve as the training and 

validation data for developing the stacked generalization ensemble classifier. 

2.2.6.2. Training the base-learners 

The initial change detection process was conducted using the GEE-implementation of the 

LandTrendr temporal segmentation algorithm (Kennedy et al., 2010; Kennedy et al., 2018). 

LandTrendr outputs serve as the initial models, referred to as “base-learners”, whose outputs 

were then combined by the secondary classifier in the stacked generalization framework 

(Wolpert, 1992). LandTrendr identifies the temporal trajectory of each pixel’s spectral values 

within the time series through an iterative, regression-based curve-fitting process (see Kennedy 

et al. (2010) for details). A series of qualitative tests were used to determine the optimum 

parameterization for the LandTrendr algorithm across the range of forest conditions present 

within the study area. The testing indicated that increasing the sensitivity of the algorithm, thus 

increasing the commission rate for individual LandTrendr models, improved the performance of 

the random forests classifier during the stacking process (as detailed below). Following the 

suggestion of Cohen et al. (2018), the segment filtering portion of the LandTrendr algorithm was 

disabled, allowing all segments with a negative slope to be labeled as a disturbance. In total, 14 

LandTrendr models were developed, one for each of the spectral predictors used in this analysis.     

Each base-learner in the ensemble of LandTrendr models was used to calculate three 

metrics: the current spectral value as fitted by the LandTrendr algorithm, the difference in the 

fitted spectral values between the given year and the year prior (i.e., the magnitude of the 

spectral change), and a binary predictor (disturbed/not disturbed) based upon the slope of the 

fitted segment. This process resulted in 42 covariates produced by the ensemble of base-learners. 
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2.2.6.3. Stacking with the ensemble classifier 

Combining the outputs of the base-learners was performed using a secondary classifier, 

here the random forests (RF) algorithm with 500 trees (Breiman, 2001).  The modeling dataset 

consisted of all of the records in the TimeSync reference database and the corresponding base 

learner outputs, for each year of each plot. The dependent variable was the binary label, 

indicating “disturbed” or “not-disturbed”, assigned by the TimeSync interpreter. The out-of-bag 

(OOB) error rate was used to assess the RF classification performance. During the construction 

of each tree in the ensemble, approximately one-third of the original data were withheld in the 

bootstrapped aggregation (“bagging”) procedure (Breiman, 1996). Each sample within the 

original dataset received an OOB error estimate based on the average of instances in which it 

was withheld during bagging. For the purpose of the binary classification problem at hand, the 

OOB error, for a given sample, reflects the predicted probability that a given observation is a 

member of either class.  

The classes in the modeling dataset were highly imbalanced, with only ~2.6% of the 

records in the TimeSync reference dataset labeled as disturbances. Typically, one would either 

sub-sample the majority class or generate synthetic minority class data using a technique such as 

synthetic minority over-sampling technique (Chawla et al., 2002) to balance the training dataset. 

However, because the sensitivity of the base-learners was increased to capture subtle disturbance 

events (e.g. low severity wind disturbances, partial harvesting), the application of these 

techniques produced a significant increase in the commission error rate. Training across the 

entire dataset generated a more conservative RF classifier with fewer commission errors. The 

imbalance in the errors of omission and commission, produced by the RF over an imbalanced 

dataset, were accounted for by adjusting the probability threshold that determined class 
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membership. The threshold was set so as to balance the errors of omission (i.e., the number of 

disturbed TimeSync observations incorrectly classified as not disturbed divided by the total 

number of correctly classified disturbance in the TimeSync dataset) and errors of commission 

(i.e., the number of non-disturbed TimeSync observations incorrectly classified as a true 

disturbance divided by the total number of correctly classified disturbance in the TimeSync 

dataset). The errors reported here were derived from the RF classifier that was used to produce 

wall-to-wall disturbance maps in Google Earth Engine.    

2.2.7. Disturbance and Recovery Metrics 

After applying the trained secondary RF classifier across the study region, disturbance 

and recovery metrics (DR) were computed over the pixels classified as having been disturbed. 

The DR metrics were calculated using the fitted spectral values produced by the base-learners. 

Three classes of metrics were calculated for each of the fourteen spectral indices: 1) the 

magnitude of the greatest severity disturbance (MGSD), 2) the magnitude of the most recent 

disturbance (MMRD), and 3) the greatest magnitude disturbance percent recovery (PRGMD). 

The MGMD metrics quantifies the difference between the pre-disturbance and post-disturbance 

spectral values of a given spectral index, for the disturbance event with the greatest magnitude 

difference in a given pixel’s time-series. The MMRD represents the difference between the pre-

disturbance and post-disturbance spectral values for the most recent disturbance event. PRGMD 

represents the percent recovery of the current year’s spectral values to the pre- MGSD spectral 

values. In addition to these 42 metrics, the number of years since the MGSD and the MMRD 

were calculated and outputted for each pixel.  
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2.2.8. AGB model development and evaluation 

Models of AGB were developed using the gradient boosting machines with the XGBoost 

package in R (Chen et al., 2015). Gradient boosting is an ensemble machine learning technique 

where weak learners, here decision trees, are sequentially grown while optimizing a 

differentiable loss function (e.g. the mean squared error of the residuals) (Friedman, 2001). The 

loss function is paired with a regularization term to penalize the complexity of the decision trees 

and prevent overfitting (Chen et al., 2015; Friedman, 2001).  Dropouts, the random removal of 

decision trees from the boosting ensemble, were incorporated into the boosting process to avoid 

adding overly-specialized decision trees in later rounds of boosting (Vinayak and Gilad-

Bachrach, 2015). Four gradient boosting models were developed using different sets of 

covariates: Model 1 consisted of only the spectral covariates; Model 2 consisted of the spectral 

and environmental metrics; Model 3 consisted of the spectral and disturbance metrics; and 

Model 4 consisted of the spectral, environmental, and disturbance metrics. The structure of these 

four models allowed us to assess the benefit of adding environmental and disturbance metrics, 

singly, and in combination, to the standard models based on spectral covariates alone. The 

permuted variable importance of the predictors in each modeling dataset was assessed using the 

R package VSURF (Genuer et al., 2015). Variables with low permuted-importance values were 

removed to improve model parsimony. The gradient boosting models were evaluated using 

nested cross-validation. The model’s hyper parameters were selected using an inner five-fold 

cross-validation procedure with the outer ten-fold cross-validation procedure providing an 

estimate of the model’s generalized prediction error (Cawley and Talbot, 2010; Pryzant et al., 

2017).  
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The gradient boosting models were evaluated using the outer-fold predictions from the 

nested cross-fold validation.  Model performance was assessed using mean absolute error 

(MAE), root mean squared error (RMSE), normalized RMSE (nRMSE), bias (computed as the 

mean difference of the observed and predicted values), and R2.  

2.2.9. Assessing the influence of time-series length on biomass predictions 

To assess how time-series length influenced the ability to predict AGB, the DR metrics 

were iteratively recalculated, with the temporal depth of the satellite image time-series (D) used 

to calculate the DR metrics increased by one year with each iteration. Two series of RF models 

were developed using each set of the DR metrics. One series of RF models incorporate the 

spectral and recalculated DR metrics, the other also incorporated the environmental metrics. The 

changes in the predictive utility of the DR metrics were evaluated by changes in the nRMSE and 

R2 as D was varied. To account for potential changes in the predictive strength of individual DR 

metrics as the depth of the time-series was increased, all DR metrics were used during the 

modeling. To serve as a benchmark, when D=0, the DR metrics were removed from the 

modeling datasets.  

2.2.10. Applications of adjusting the secondary classifier’s probability threshold 

Although mapping disturbance with a balanced error rate may be suitable for general 

landscape analysis, increasing the rate at which low-severity disturbances are mapped (thus 

increasing commission error) or decreasing the rate at that they are mapped (thus increasing the 

omission error) may improve the accuracy of AGB models. The probability threshold of the 

secondary classifier was allowed to vary by ±25% in increments of 5% around the probability 

threshold that balanced the errors of omission and the errors of commission (hereafter referred to 

as the balanced probability threshold).  Increasing the threshold increases the number of 
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observations included in the not-disturbed class, thus decreasing the errors of omission. RF 

models were developed using the same set of predictors as in Model 4 but with the DR metrics 

recalculated for each variation of the probability threshold. The RF models with 2500 trees were 

developed in R using the “ranger” package (Wright and Ziegler, 2015). 

Regression-based equivalence tests were used to compare the predictions produced by the 

RF using DR metrics calculated with modified probability thresholds (collectively referred to as 

RFMOD) to the predictors of a baseline RF model (RFBAL) where DR metrics were calculated 

using a balanced probability threshold (Robinson et al., 2005). Equivalence testing inverts the 

traditional hypothesis test by assuming the dissimilarity of the populations being considered. A 

rejection of the null hypothesis indicates that the two populations are similar enough as to be 

considered equivalent (see Robinson and Froese, 2004). Regression-based equivalence tests 

expand upon the standard two one-sided t-test procedure by assessing the slope and intercept 

terms of a least-squares regression model fit between the two populations. Equivalence of the 

intercept term indicates a lack of bias and equivalence of the slope term indicates the degree of 

proportionality or association between the predictions (Robinson et al., 2005; Hudak et al., 

2012). The regression-based equivalence tests were computed using 1000 iterations of non-

parametric bootstrap with significance assessed at α = 0.05. If the proportion of significant 

results (p < 0.05) during the bootstrap exceeds 0.949, the null hypothesis is rejected. The 

equivalence interval was set at 5%, this value is quite conservative and ensures that significant 

test results indicates a high degree of similarity.  
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2.3. Results 

2.3.1. Change detection results. 

A 27.5% balance of omission and commission errors was achieved applying the 

secondary RF classifier in Google Earth Engine. The secondary classifier’s accuracy varied 

between partial harvests and clearcuts (Figure 2). Observations in the TimeSync database labeled 

as clearcuts were correctly classified 77.9% of the time. Observations labeled as partial harvests 

were classified correctly 44.3% of the time. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2. The secondary classifier’s prediction results over known harvested pixels in the 

TimeSync database. The true positives and false negatives were stratified by the harvest type.  
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Table 2.2. Model summary statistics describing the performance gradient boosting models. 

MAE, RMSE, and bias are expressed in Mg ha-1.  

 

  

 

 

 

* Dataset descriptions 

Model 1 – spectral covariates 

Model 2 – spectral and environmental covariates 

Model 3 – spectral and disturbance covariates 

Model 4 – spectral, environmental, and disturbance covariates 

 

 

Table 2.3. The ten most important variables in each of the AGB models. Importance was 

determined using the VSURF permuted importance values.  

 

 

 

 

 

 

 

 

Growing Degree Days (Annual GDD); Average minimum temperature (Avg. tmin); 

Annual growing season precipitation (Prcp.) 

 

 

 

Model bias MAE RMSE nRMSE pseudo-R2 

Model 1 1.25 44.15 58.14 61.5% 28.5% 

Model 2 1.49 38.49 51.47 54.5% 44.0% 

Model 3 0.78 41.06 55.12 58.3% 35.8% 

Model 4 1.21 36.38 49.55 52.4% 48.1% 

Rank Model 1 Model 2 Model 3 Model 4 

1 NBR B2     B2 B2 

2 B2 B3   NDMI NDMI 

3 B4 NDMI NBR NBR 

4 B5 NBR  TCW GDD 

5 B7 GDD TCA TCA 

6 NDMI TCW B5 B3   

7 NDVI B5 B7 Avg. tmin 

8 TCG B7 TCG TCW 

9 TCW Avg. tmin B3 CSI 

10 TCA Prcp.  NDVI Prcp.  
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Figure 2.3. Predicted vs. observed aboveground biomass values using the out-of-fold predictions 

from the gradient boosting models. The dashed line indicates the 1:1 relationship. The relationship 

between the observed and predicted values is summarized with a least-squares regression curve 

(solid line).  
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2.3.2. AGB model performance 

A summary of model performance across datasets is provided in Table 2.2. Utilizing 

spectral metrics (Model 1) alone yielded an RMSE = 58.1 Mg ha-1 and an R2 = 0.285. 

Incorporating environmental covariates (Model 2) improved model performance (RMSE = 51.5 

Mg ha-1 and R2 = 0.44) and improved the linear relationship between the predicted AGB values 

and the observed AGB values (Figure 3). The model developed using the spectral and DR 

metrics (Model 3), performed better then Model 1, though the gains in performance were not as 

notable as Model 2 (RMSE = 55.1 Mg ha-1 and R2 = 0.358).  The best performing model (Model 

4), contained the spectral, environmental, and DR covariates (RMSE = 49.6 Mg ha-1 and R2 = 

0.481). This indicates a 1.92 Mg ha-1 decrease in RMSE through the inclusion of the DR metrics 

relative to Model 2.  

The ten most important variables for each model, ranked using the permuted importance 

scores calculated by VSURF, are presented in Table 3. In all four models, green reflectance is 

ranked as the first or second most important predictor. Although model performance improved 

by incorporating the DR metrics (Model 3), none of the DR covariates were ranked among the 

top ten most important variables. The number of growing degree days, average minimum 

temperature during the growing season, and the annual precipitation were important predictors in 

both models that included the environmental metrics (Model 2 and 4). 

2.3.3. Impact of the time-series length on disturbance and recovery metrics 

Incorporating the disturbance metrics initially produced a decrease in model 

performance, compared to the benchmark models, which excluded the disturbance metrics 

(Figure 3). The nRMSE and R2 improved beyond the benchmark models at D=11 when using the 

spectral and DR metrics and at D=16 when using the spectral, environmental, and DR metrics.  
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At the full depth of the time-series (D=32), nRMSE decreased by 2.9% and the R2 increased by 

5.4% for the RF model using the spectral and DR metrics. The RF model that included 

environmental metrics indicated more subtle gains in model performance at the full time-series 

depth with nRMSE declining by 1.6% and R2 increasing by 2.7%, although overall model 

performance was enhanced by the addition of the environmental metrics. 

2.3.3. Model performance using adjusted disturbance metrics 

Mapping forest area disturbances from 1985-2017 using the balanced probability 

threshold produced 10.7 million ha of mapped disturbances. Increasing the balanced probability 

threshold by 25% produced a 7 million ha decrease in total mapped disturbance area, while 

decreasing the balanced threshold by 25% produced a 10 million ha increase in the mapped 

disturbance area. However, with the exception of two models, the changes in mapped 

disturbance area did not influence the RF model’s predictions of AGB (Table 2.3). The 

equivalence testing of the intercept terms indicated that the AGB predictions produced by the 

RFMOD models were equivalent to the RFBAL predictions and lacked bias. Equivalence testing 

also indicated that, with the exception of two models, the association of slope terms was 

equivalent. The RF models that utilized the -20, and -25% modifiers in the construction of the 

DR metrics had slope terms that were not equivalent to those of the predicted model. Decreasing 

the balances probability threshold by 20% reduced the RF model’s RMSE a 0.86 Mg ha-1, 

relative to the RFBAL model. Decreasing the balanced probability threshold by 25% further 

reduced the model error by 0.28 Mg ha-1. 
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Figure 2.4. Changes in nRMSE and R2 of random forests models, using two sets of covariates, 

as the number of images used as the depth of the image time-series (D) is increased.  The dots at 

(D=0) indicate the performance of the benchmark models that excluded the DR metrics. 

 

2.4. Discussion 

2.4.1 Change detection 

Relatively few publications in have utilized stack generalization for the creation of disturbance 

models. The 27.5% balance of omission and commission errors compares favorably to the results 

of Healey et al. (2018) whose best secondary classifier possessed a 40% balance of omission and 

commission errors. The improvements in our results can be attributed to inclusion of the spectral 

magnitude of the disturbance events alongside the spectral values and binary disturbance labels 

produced by the base-learners. Cohen et al. (2018) developed a secondary classifier with a 29.6% 

balance of omission and commission error. Our results indicate that stacked generalization, using 

an ensemble of LandTrendr models as the base-learners, is an effective technique for capturing 

forest disturbances. However, capturing low severity disturbance events still poses a challenge 
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for change-detection, as evidenced by the greater omission rate for partial harvesting compared 

to clearcutting. 

Table 2.4. Results from the regression-based equivalence tests. The AGB predictions of random 

forests (RF) models developed using disturbance and recovery (DR) metrics generated using the 

balanced probability thres4hold were compared with predictions derived from models using DR 

metrics generated using a modified probability thresholds. If the 95% confidence intervals for the 

slope (𝐶𝛽0

− ,𝐶𝛽0

+ ) and intercept (𝐶𝛽1

− ,𝐶𝛽1

+ ) terms are contained within their corresponding equivalence 

margins ( 𝐸𝛽0

− , 𝐸𝛽0

+ ) and (𝐸1
−, 𝐸𝛽1

+ ) the null hypothesis is rejected.   

 

2.4.2. AGB model assessment  

The AGB models developed in our analysis possessed nRMSEs ranging from 52.4 to 

61.5%. These results are similar to, or better than, those previously reported in the literature. 

Using Landsat spectral metrics, Deo et al. (2017) developed models of AGB with nRMSE 

between 50.8 - 69.8% in northern Minnesota. Frazier et al. (2014) developed an AGB models, 

with nRMSE of between 56-71%, using Landsat spectral metrics and LandTrendr-derived DR 

Threshold 

Modifier 
𝐶𝛽0

−  𝐶𝛽0

+  𝐸𝛽0

−  𝐸𝛽0

+  H0: β0=0  𝐶𝛽1

−  𝐶𝛽1

+  𝐸𝛽1

−  𝐸𝛽1

+  H0: β1=1 

-25 % 95.537 95.937 91.138 100.731 Reject 0.941 0.949 0.950 1.050 Not rejected 

-20 % 95.571 95.913 91.109 100.699 Reject 0.947 0.954 0.950 1.050 Not rejected 

-15 % 95.562 95.903 91.082 100.670 Reject 0.955 0.961 0.950 1.050 Reject 

-10 % 95.587 95.879 91.049 100.633 Reject 0.967 0.973 0.950 1.050 Reject 

-5 % 95.634 95.835 90.992 100.571 Reject 0.984 0.988 0.950 1.050 Reject 

5 % 95.641 95.824 90.920 100.491 Reject 1.001 1.005 0.950 1.050 Reject 

10 % 95.597 95.870 90.871 100.436 Reject 1.003 1.009 0.950 1.050 Reject 

15 % 95.556 95.901 90.814 100.374 Reject 1.005 1.012 0.950 1.050 Reject 

20 % 95.537 95.945 90.796 100.353 Reject 1.005 1.014 0.950 1.050 Reject 

25 % 95.491 95.970 90.804 100.363 Reject 1.008 1.019 0.950 1.050 Reject 
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metrics in unmanaged conifer stands in British Columbia. Powell et al. (2014) developed AGB 

models for individual Landsat scenes using Landsat spectral metrics, climatological metrics, and 

topographic metrics throughout the conterminous United States with nRMSEs between 32.5-

86.1%;  the AGB models developed using scenes in the northern portion of the Forest Inventory 

Analysis’s Northeastern region possessed nRMSE between 32.5-60.9%.  Given the spatially-

expansive and heterogeneous nature of the forests in our study region, as well as the expansive 

validation dataset used to develop the models, our results are comparable to or better than prior, 

single-date estimates of AGB using Landsat spectral data. 

2.4.3. Influential AGB covariates 

 The ranking of the most influential predictors for each model provides insight into future 

modeling needs. The spectral metrics, as a group, comprised the majority of most influential 

predictors in each model. Many of the spectral metrics that ranked among the most important 

predictors (e.g. TCW, TCA, NDMI) have previously been identified as being strongly correlated 

with AGB and forest canopy density (Frazier et al., 2014; Pflugmacher et al., 2012). 

Interestingly, green spectral reflectance (B2) was ranked highly (the most important metric in 

Models 2, 3, and 4) in all models. The green reflectance of a forest is strongly influenced by the 

presence of softwood species. Green reflectance could, effectively, be serving as a proxy for 

proportion of the AGB represented by conifer species. The environmental metrics that appeared 

in both Models 2 and 4 (i.e., average minimum temperature, annual precipitation, and growing 

degree days) all provide an estimate of site quality. Despite improving model performance, none 

of the DR metrics were included in the top ten influence metrics for either models in which they 

were included (Model 3 and 4). 
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2.4.4. Impact of time-series length on AGB prediction 

The initial decrease in the performance of the RF models, relative e to the baseline 

models (D=0), which excluded the DR metrics, can be explained by the random-feature selection 

process used to grow each tree in a RF ensemble (Breiman, 2001). Although RF is normally 

quite robust to the inclusion of uncorrelated features, the number of DR metrics calculated in this 

study (42) was considerably larger than the number of spectral metrics (14) or environmental 

metrics (8). When the full depth of the time-series was considered (D=32), 24.2% of the forest 

inventory plots had experienced a disturbance according to the classifier output. At low values of 

D, the number of plots that had experienced disturbance became negligible, thus reducing the 

metrics’ predictive strength and in turn reducing the models’ ability to correctly partition the 

data. Given the common-place use of RF or similar tree-based machine-learning algorithms to 

predict AGB (e.g. Powell et al., 2010a; Powell et al., 2014; Frazier et al., 2014; Pflugmacher et 

al., 2012), future studies should utilize robust feature selection in locations where the temporal 

depth of the Landsat archive is limited (see Wulder et al., 2016). Increasing the time-series depth 

by incorporating Landsat Multispectral Scanner (MSS, available back to 1972) data could 

potentially further improve model performance by extending the temporal depth of landscape 

disturbance an additional 14 years. Our results did not indicate that the rate of change in nRMSE 

and R2 reached a plateau as was observed in Pflugmacher et al. (2014).  

2.4.5. The influence of landscape heterogeneity on the disturbance metrics 

Our results indicate smaller increases in model performance when DR metrics are 

included in the modeling dataset than those found in previous studies. Our results showed that 

including DR metrics alongside spectral metrics improved nRMSE by 3.2% compared to the 

model developed using solely spectral metrics. In contrast, Pflugmacher et al. (2012) found a 
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16% improvement in nRMSE in models developed using Landsat-derived spectral and DR 

metrics over models developed using single-date Landsat spectral values. Similarly, the best 

model developed in Frazier et al. (2014) showed the 13% improvement in nRMSE when models 

incorporated Landsat spectral and DR metrics when compared to a model created using single-

date spectral predictors. Pflugmacher et al. (2014) compared models developed relating light 

detection and ranging (LiDAR) based estimates of AGB to Landsat spectral and DR metrics, 

reporting an 8.2% decrease in nRMSE when DR metrics were included compared to models 

utilizing solely single-date spectral metrics.     

Notably, previous studies that have explored AGB models developed using DR metrics 

have been conducted in relatively homogenous landscape (i.e., forests with simpler species 

composition and structure) and under disturbance regimes dominated by high-severity, stand-

replacing disturbances (Frazier et al., 2014; Matasci et al., 2018; Pflugmacher et al., 2014). By 

comparison, the NEMP region encompasses a much broader range of forest types and structures, 

and it exhibits a general lack of stand replacing disturbances. For example, the New England 

states have seen a transition from clear-cutting towards lower-severity, partial harvesting 

practices (Canham et al., 2013; Belair and Ducey, 2018). In addition, unlike many regions of the 

US, the natural disturbance regime in this region is dominated by low-severity disturbances that 

only remove a portion of the forest canopy; stand replacing natural disturbances are quite rare 

(Lorimer, 1977; Seymour et al., 2002). We suspect that this lack of stand-replacing disturbances 

weakens the utility of DR metrics for predicting AGB in these systems. Our results also suggest 

that complex interactions that influence the recovery following disturbance process may not be 

adequately captured by the spectral magnitude of the disturbance event alone. Including 

additional complementary datasets such as soils maps, forest composition maps, and additional 
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information regarding harvesting practices (e.g. reclassification classification of the disturbance 

map) may improve the predictive strength of the DR metrics. 

2.4.6. Using the probability threshold to adjust AGB predictions 

As proposed by Healey et al., (2018), our results suggest that variations in the probability 

threshold used to map disturbances can produce large variations in the extent of the mapped 

disturbance areas. Here, our tests indicated that adjusting the probability threshold ± 25% on the 

RF secondary classifier produced a 94% increase or a 66% decrease in the mapped disturbance 

area. If sufficient information were available, it could be possible to dynamically adjust the 

probability threshold on a year-to-year basis to capture the changes in annual disturbances 

produced by documented large-scale natural disturbances (e.g., hurricanes or ice storms) or to 

account for known changes in public policy (e.g., legislation that places limitations on clear-

cutting such as the 1989 Maine Forest Practices Act). However, it is not clear if this would 

benefit efforts for regional AGB modeling. Regression-based equivalence tests indicated that 

decreasing the probability threshold by 20% and 25% yield nominal, though significant changes 

in model predictions. This finding supports our conclusion that, for large heterogeneous 

landscapes, additional information is necessary to more completely understand the landscape-

level relationships between forest composition, forest structure, past disturbance, and AGB 

density. Our tests indicate that low predictive strength of the DR metrics cannot be attributed to 

the omission of disturbance events over forest plots. Our tests greatly increased the mapped rate 

of disturbance across the landscape and only yielded a 0.9 and 1.2% decrease in nRMSE 

compared to the baseline-model.  
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2.4.7. Implications for future regional biomass modeling 

DR metrics may improve AGB prediction accuracy, relative to the predictions of models 

developed using single-date Landsat spectral metrics; however, the benefits of the DR metrics 

are diminished because of region’s forest and landscape heterogeneity, as well as a disturbance 

regime dominated by low-severity events. Our results suggest that future AGB modeling efforts 

should combine data from various sources to more accurately quantify forest structure across 

ecological and climatological gradients and to overcome the challenges associated with spectral 

saturation in high biomass locations (Lu et al., 2012). LiDAR has been demonstrated as an 

effective tool for quantifying forest structure (Hudak et al., 2012; Lefsky et al., 2002) and has 

been combined with moderate-resolution spectral imagery and Landsat DR metrics to improve 

AGB model performance (Zald et al., 2016; Pflugmacher et al., 2014; Deo et al., 2017). 

Spaceborne- LiDAR acquired by the GLAS sensor carried onboard the ICESat platform has been 

used to develop AGB estimates for large regions (Boudreau et al., 2008; Mitchard et al., 2012). 

The Global Ecosystem Dynamics Investigation module and ICESat-2 spaceborne-LiDAR 

sensors, which are planned to be launched in late-2018, will provide new opportunities to explore 

how these data can be incorporated into AGB models.    

2.5. Conclusion 

This analysis developed AGB models for a structurally complex, mixed-species forested 

region with a complex disturbance regime using Landsat spectral and DR metrics as well as 

environmental predictors. Our modeling results indicate that the environmental metrics were 

better predictors of AGB than were the DR metrics, a finding that contrasts with previous results 

in the literature. Our results suggest that the biomass implications of a past disturbance event 

cannot be derived solely using the timing, spectral magnitude, and spectral recovery percentage. 
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Given these metrics were among the most informative in previous analyses, it does not appear 

that simply calculating different disturbance metrics would overcome the limitations identified in 

this study.  Prior studies had have been performed predominantly in landscapes with relatively 

homogenous species composition and disturbance regimes dominated high-severity, stand 

replacing disturbances. We therefore conclude that landscape and disturbance heterogeneity 

negatively impacts the predictive utility of DR metrics.  

Our results suggest that stacked generalization is a robust and flexible change-detection 

framework. Despite the heterogeneity of the landscape, it was possible to develop a secondary 

classifier with a 27.5% balance of the omission and commission errors, comparable to previous 

results in the literature. Additionally, using a secondary classifier allows for the rate of mapped 

disturbance to be adjusted probabilistically through modifications to the class inclusion rate 

meaning the technique can be adapted to suit diverse research objectives.   

Future research should emphasize incorporating additional sources of data to increase the 

accuracy of AGB models. In regions with heterogeneous forest composition, significant 

improvements in model performance will require more direct estimates of forest structural 

characteristics. Upcoming spaceborne-LiDAR sensors will provide an opportunity to incorporate 

direct measurements of forest structure into biomass models.  
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APPENDICES: 

Appendix A: 

 

Table A.1. The formulation and references for the spectral indices and transformations used as 

spectral covariates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spectral Index Formulation Reference 

Normalized Difference 

Vegetation Index 

(NDVI) 

(B3 – B4) / (B3 + B4) 
Rouse et al. 

(1974) 

Normalized Burn 

Ratio (NBR) 
(B4 – B7) / (B4 + B7) 

Key and 

Benson(1999) 

Normalized Difference 

Moisture Index 

(NDMI) 

(B4 – B5) / (B4 + B5) 
Wilson and 

Sader (2002) 

Tasseled Cap 

Brightness (TCB) 

0.2043*B1 + 0.4158*B2 + 0.5524*B3 + 

0.5741*B4 + 0.3124*B5 + 0.2303*B7 
Crist (1985) 

Tasseled Cap 

Greenness (TCG) 

-0.1603*B1 + -0.2819*B2 + -0.4934*B3 + 

0.7940*B4 + -0.0002*B5 + -0.1446*B7 
Crist (1985) 

Tasseled Cap Wetness 

(TCW) 

0.0315*B1 + 0.2021*B2 + 0.3102*B3 + 

0.1594*B4 + -0.6806B5 + -0.6109*B7 
Crist (1985) 

Tasseled Cap Angle 

(TCA) 
Arctan(TCG / TCB) 

Powell et al. 

(2010a) 

Tasseled Cap Distance 

(TCD) 
Sqrt(TCG2 + TCB2) 

Duane et al. 

(2010) 
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