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In this thesis, we explore the speed, power, and energy performance of the data process on the 

central processing unit (CPU) with and without the acceleration of the Graphics Processing Unit 

(GPU) on the microcomputer Raspberry Pi (RPI). We tested on the RPI in two different fields. 

The first was comparing speed, power, and energy usage with and without GPU acceleration in 

the image processing impacts on RPI model B+. The second was comparing speed, power, 

energy usage, and accuracy for scientific calculation with and without GPU acceleration on RPI 

model B+ and 3B.  

We used a novel method to correlate graphics processing, CPU load, power consumption, and 

total energy consumption. Three different benchmarks were utilized to play a short video. 

OMXplayer was used with GPU rendering while the Mplayer and VLC player were without 



 
 

GPU rendering. A 3 Dimensions model simulator (3D Slash) benchmark was also used to 

compare its power usage with the previous benchmarks’. We used system counter tool PERF and 

system usage monitor TOP for acquiring accurate system CPU and Random-Access Memory 

(RAM) usage information. The first study design included a comparison of the running time, 

frame rate, power usage, and the total energy consumed by the benchmarks. We used the 

Adafruit USB Power Gauge to log the power and energy consumed by the RPI, and its values 

were output to a CSV file for ease of graphing and calculation. 

The first study results showed that the number of frames rendered per second increased 

dramatically when hardware rendering was used, as did electrical power consumption. 

Interestingly, the hardware rendering takes less time than the software rendering, and the total 

energy consumed by the hardware rendering is lower than the software rendering despite the 

power during hardware rendering being higher. 

In the second study, we used the Fast Fourier Transform (FFT) as a calculation method for 

analyzing CPU and GPU performance. We developed six benchmark programs using three 

libraries that included: GPU_FFT, Fastest Fourier Transform in the West (FFTW) and Python 

SciPy FFTpack (SciPy FFT) [1-3]. They were used for running FFT in both one dimension (1D) 

and two dimensions (2D) using single precision floating point numbers as the primary data type. 

The study design includes:  the write-up of the involved code, a comparison of the accuracy of 

the results compared to the known solution, running time, power consumption during the 

calculation, and the total energy consumed. The Power Gauge was used to measure the power 

and energy consumed by the RPI as we did in the first field. 



 
 

In the second study, we found that General-purpose computing on graphics processing units 

(GPGPU) code was more energy efficient and faster than the serial code on both RPI models 

without much sacrifice of the precision.  

From the two studies, we interpreted that particular type of data processing like image processing 

and typical complex matrices value calculating would have numerous benefits in speed, energy 

expenditure with the GPU rendering. 
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1. INTRODUCTION AND MOTIVATION 

The creation of the Graphics Processing Unit (GPU) dates back to 1970s with 1976 to 1995 

being the early days of 3D consumer graphics [4]. The first developed display controllers, also 

known as video shifters and video address generators were the first to create authentic 3D 

graphics. The GPUs served as a pass-through link between the CPU and the display. In the late 

1970s, a flurry of designs that were developed gradually laid the foundation of the 3D graphics. 

The years between 1995 and 1999 marked the time the appearance of the 3Dfx Voodoo game-

changer [4]. At the turn of the 21st century, in the years from 2000 to 2006, the industry’s 

consolidation was led by two significant rivals: Nvidia and ATI. The modern GPU Stream 

processing units a.k.a. GPGPU came out in 2006.  Nvidia released their first graphics chip, the 

NV1, in May 1995, and the chip was the first commercial graphics processor capable of 3D 

rendering. In the same year, ATI had their first 3D accelerator chip on the market, the 3D Rage 

in November [4]. There were two different kinds of graphics cards in the market: dedicated 

graphics card and integrated graphics cards. A dedicated graphics card was neither defined as 

removable from motherboard nor was it necessary to interface with the motherboard in a 

standard process. The notion “dedicated” referred to the fact that the graphics card had RAM that 

was dedicated to the GPU usage [5]. Hardware graphics acceleration utilized computer hardware 

for performing some specific functions more efficiently in time than is possible in software 

running on a more general-purpose CPU [6]. The GPU could be used for hardware acceleration. 

Nowadays the GPU is very commonly used for 3D rendering. Figure 1.1 shows us the graphics 

card Geforce GTX Titan. 
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Figure 1.1 Gigabyte GeForce GTX Titan 

Nvidia’s CUDA platform was originally introduced to the world in 2007, and it was the most 

widely chosen programming model for GPU computing [5]. CUDA was the first API to grant 

CPU-based applications permission to directly access the resources of a GPU for more general-

purpose computing without the constraint of using a graphics API [5]. In recent years, OpenCL 

had grown to be broadly supported [5]. The benefit of using GPGPU is its drastic speedup 

against the CPU. The downside is that while 64-bit floating point values (double precision float) 

are regularly available on the CPU, they are not globally supported on GPUs. While the tradeoff 

of the calculation precision between the GPU and CPU is a potential concern,the increased speed 

often has more benefit than the decreased precision. The speed tradeoff for being faster should 

always be prioritized when considering placing the calculation load from the CPU to the GPU 

[7]. 

GPU is fast when accessing the memory and running the same instruction multiple times on 

many different data points which makes it efficient with specific types of large throughput 

workloads. As a result, graphics intensive applications typically prefer GPU rendering. Aside 
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from this, using a GPU to run GPGPU code is another method of tapping the potential 

computation power of the GPU, since the use of GPGPU code is suitable for massive data 

throughput processing. GPGPU code can run using the GPU on RPIs for processing large 

throughput data. In recent years, there has been relatively little research on the RPI computation 

performance with and without the GPU rendering, and none has correlated its power and energy 

consumption with its performance. 

The Raspberry Pi was introduced by the Raspberry Pi Foundation in April 2012 in the United 

Kingdom. The RPI is a brand of small-board computers aimed to promote the fundamental 

computer science knowledge in schools of developing countries. It was popular with its target 

market for uses such as robotics and it was the third best-selling "general purpose computer" by 

March 2017, and its sales reached 19 million by March 2018 [8]. Like other general-purpose 

machines, it is equipped with I/O ports, CPU, GPU, RAM, USB hub, ethernet, HDMI port, AUX 

jack, and SD card as ROM. It can run a lightweight Linux system and has most of the essential 

functions of the complete Linux system. The RPI’s features including small volume, low power 

consumption, and low price expenditure made it well-balanced and easy to access and program 

while also being an embedded system when it is linked with a larger electrical circuit. 

The RPI's GPU is integrated and shares the RAM with the CPU. Over the years, the RPI models 

have upgraded their CPUs (from 700 MHz single-core to 1.4 GHz 64-bit quad-core) but did not 

upgraded their GPUs as much (from 250 MHz to 3D part of the GPU @ 300 MHz, the video part 

of the GPU @ 400 MHz) [8]. It had OpenGL ES 2.0 and  V3D rendering. Therefore, its GPU 

could be used for 3D rendering, video rendering, and general-purpose calculation rendering. RPI 

could support a Full HD 1080p video playing. 
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Today, the decisions between power and performance between smartphones and PCs are 

remarkably different from decades ago. Smartphones today have powerful computing speed, are 

constrained to be a few millimeters thickness, and can fit in a person’s palm. Furthermore, 

smartphones usually rely on battery for a power supply rather than being wired. The limit on 

smartphones’ battery life caused power management to play a vital role [9]. Usually, the 

performance management relied on changing the CPU parameters including locking the CPU 

frequency and adding additional CPU cores for optimum performance [9]. With the thermal 

threshold that has been obeyed, there was a balance to reach for more performance with limited 

power and limited heat. 

Energy is power integrated over time, that is the fundamental electric knowledge. In the past, we 

saw many rival companies releasing faster and faster processors, and those processors usually 

consumed a lot of power. During that period, performance was the keyword. The speedup in 

processors could potentially save energy even as they consume more power by reducing the 

processing time to make the total energy less. Now, the need for  mobile and energy efficient 

devices is driving design decisions more than it had before. Mobile computers need to maintain 

the processing performance while being energy efficient. This trend is also present in the 

processors on laptops and smartphones. Their CPUs are not speeding up at the same rate as in the 

past. Some of the reasons for not focusing on speeding up the CPU are the memory wall limit 

[10] and the hard drive speed constraint. Moore’s law applies to the CPU generations [11], but 

the other computer components generations are not matching the dynamic growth predicted by 

the Moore's Law. The mobile battery life is a big consideration that affects the mobile device, 

since the battery improvements have occurred more slowly than CPU improvements. The 

speedup of the CPU can save energy if there is a reduction in processing time, but this is not 
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always the case. Sometimes, higher power uses more energy when shortening the processing  

time and is not enough to make up for the increased power. 

Chapter 3 discusses tests of the RPI  with many video-players and other graphical programs such 

as 3D model displaying. We had done this to better understand the tradeoffs between the RPI's 

graphics with and without GPU rendering and the way that this affects the performance of the 

CPU, GPU, graphics quality and power consumption. Our goal was to understand the energy 

implications of hardware vs. software rendering for an embedded system workload.  Obviously, 

faster performance and lower power were always desirable; however, faster performance at 

higher power can lead to lower total energy for a computational task. To measure the video 

performance, we recorded the frame rate. To measure the instructions processed by CPU while 

running benchmarks we used a performance counter that measured instructions per cycle. 

Chapter 4 discusses the work in which we sought to quantify and compare the energy and power 

usage of the RPI when it was performing an intensive calculation utilizing the GPU vs. the same 

calculation using only the CPU. The algorithm chosen was the Fast Fourier Transform (FFT) for 

a variety of input data set sizes. The FFT method used in Digital Signal Processing (DSP) was 

included in the top 10 algorithms of the 20th century by the IEEE journal Computing in Science 

& Engineering [12]. The use of GPGPU code was suitable when facing massive data throughput 

processing. GPGPU code could run using the GPU on RPIs for processing large throughput data. 

To find out the time elapsed, power, and energy usage, we wrote six benchmarks that used three 

libraries. The libraries included GPU_FFT for RPIs in C, FFTW in C, and SciPy.fftpack in 

Python. These benchmarks could do 1D and 2D FFT using these libraries processing single-

precision floating-point data. GPU_FFT used GPGPU code, FFTW used the standard CPU in C, 

and SciPy FFT used the standard CPU in Python to do FFT. Then, all of the runtimes of the 



6 
 

benchmarks were measured by their built-in time counter. Externally, the Power Gauge 

measured the test device RPIs’ power and energy. 

In chapter 5 of the current thesis, we discuss the results, draw conclusions and discuss possible 

future work. 
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2.  RELATED WORK 

2.1 GPU PERFORMANCE  

Abe, Sasaki, Peres, Inoue, Murakami, and Kato showed that system energy could be reduced by 

28% with a 1% decrease in performance by modifying the GPU and that energy reduction via 

CPU modification is trivial [13]. Y. Jiao, H. Lin, P. Balaji, and W. Feng have investigated energy 

saving mechanisms on GPU using a different approach [14]. They used three different 

applications with various degrees of computing and memory intensiveness. Their way of saving 

energy on GPU is a motivator for this and future work. 

2.2 GPGPU IN DSP  

In the paper “Accelerated FFT Computation for GNU Radio Using GPU of Raspberry Pi” [15], 

the authors also used the GPU_FFT library to run FFT. They compared the runtime of RPIs’ 

GPU and CPU as well as Intel-CORE i5 for different FFT length sizes and different batches. 

Compared with their paper, we focused more on bigger FFT lengths running on the RPI and 

using only the RPIs’ CPU and GPU computation for comparison. In the paper “Raspberry Pi 2 

B+ GPU Power, Performance, and Energy Implications” [16], we explored the GPU and CPU 

consuming power and energy behavior, but we did not step into the GPGPU code that did DSP 

work.  

2.3 POWER MEASUREMENT 

Desrochers, Paradis, and Weaver found that for integrated GPUs, there is no way to intercept the 

integrated GPUs’ input voltage and current [17]. They used SmallGPU2 as an OpenCL 

benchmark. Another study of the power of Pi is “PowerPi: Measuring and modeling the power 

consumption of the Raspberry Pi”. Their circuit had a shunt and USB A/D converter that logged 
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the power data points to the logging machine [18]. It had a resolution of 0.68mV. The paper 

"Sensing Power Consumption of Desktop Computer System Components." contains a detailed 

analysis of the Power Gauge. The Power Gauge had an INA219 high side current sensor that was 

capable of measuring up to 3.2A of current with 0.8mA resolution [19]. Figure 2.1 shows the 

ENERGY METER measuring the power and energy usage of the RPI, image from 

electrobob.com. 

 

Figure 2.1 ENERGY METER measures RPI  
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2.4 CONTRIBUTION OF THIS THESIS  

This work is inspired by and builds on the previous work outlined above. This work aims to 

quantify the power and energy to perform a task with a GPU vs CPU in an embedded controller 

situation, namely a RPI.  The use of a GPU for graphical processing (Chapter 3) was explored 

along with the use of a GPU for scientific calculation (Chapter 4).  Although generally the GPU 

caused a higher power consumption rate, the total energy to perform a task was typically lower 

because the results were obtained sooner. 
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3.  RASPBERRY PI B+ GPU POWER, PERFORMANCE, AND ENERGY 

IMPLICATIONS 

3.1 INTRODUCTION 

The RPI B+ is equipped with a relatively inexpensive and robust CPU and GPU [1]. RPI is 

famous for numerous embedded applications due to its low price and low power consumption in 

comparison to its capabilities. GPU rendering, often referred to as hardware rendering, is 

significantly faster than software rendering. As a result, graphics intensive applications typically 

prefer GPU rendering. This makes it necessary to know how to best utilize the GPU on RPI. 

Currently, there is not much research that is trying to characterize the graphical performance of 

the RPI, particularly in light of electrical demands. We had tested the RPI with many video-

players and other graphical programs such as 3D model displaying. We aimed to better 

understand the tradeoffs between the RPI's graphics with and without GPU rendering and the 

way that affects the performance of the CPU, GPU, graphics quality, and power consumption. 

Our goal was to understand the energy implications of hardware vs. software rendering for an 

embedded system workload. Faster performance and lower power are always desirable. 

However, speedier performance at higher power, can, at times, lead to lower total energy for a 

computational task. To measure the video performance, we recorded the frame rate. To estimate 

the instructions processed by CPU while running benchmarks we used a performance counter 

that measured cycles per instruction. 

A benchmark is a program used to test the system performance. Usually, a benchmark is 

intended to push the limits of the system. Performance counters are hardware registers that count 

events, such as instruction completion. The Linux utility Perf allows easy access to the 

performance counters. In this research, we had found that GPU rendering dramatically improved 
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graphics quality. GPU rendering also significantly increased power consumption and decreased 

the load on the CPU. Interestingly, for graphics-intensive applications, the energy per frame was 

lower when hardware rendering was applied. 

3.2 EXPERIMENTAL SETUP 

3.2.1 Hardware 

We used the following hardware as shown in Figure 3.1: Raspberry Pi B+, 1080p monitor, 

Adafruit USB Power Gauge A/D converter (Power Gauge), keyboard, mouse, speaker, and 

Ethernet. 

The Power Gauge is a micro-board that can measure the voltage and current. It has several LED 

lights on board that shows the output power at the rate of about 1.5s. Its LED lights are indicators 

of the instantaneous power and are accurate to 0.1 Watts. Additionally, it has a USB serial port 

that can transmit the voltage, current, and power usage message to another computer. The Power 

Gauge should be connected to the power supply with the input port, and the output port with the 

power port of the RPI, and plug the additional serial USB port to another computer. 

In a Windows machine, it is recommended to use putty serial port connection to read the serial 

port data. We used the Device Manager to find the USB port serial line that was currently 

connected. 
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Figure 3.1 Whole experimental setup 

3.2.2    Software 

We used the following software: System: Raspbian, Performance counters: Perf, System 

monitor: Top, SSH(Secure Shell), Serial connection software: putty, Benchmarks: OMXplayer, 

Mplayer, VLC player, 3D-slash 

3.2.2.1    Performance counters: Perf 

Perf is a tool that uses performance counters in Linux. Performance counters are CPU hardware 

registers that can count hardware events such as instructions executed and cycles elapsed. Perf 



13 
 

can output the instructions and cycles that the CPU has executed. In our research, we used Perf 

to access the counters before and after each benchmark. 

3.2.2.2    System monitor: Top 

Top is a system monitor that can watch the system load. Its refresh rate can vary. It can read the 

CPU and Memory use rate, but it cannot read the GPU use rate. For RPI, its GPU chip has been 

recently supported by OpenGL, and it hasn’t had a direct GPU monitor yet. In this research, we 

were using remote SSH connection with RPI, and ran TOP on a remote desktop to avoid 

unnecessary GPU operation on RPI that may increase the energy consumption. 

3.2.2.3    Benchmarks: 

Benchmarks are the software used to test performance.  In this research, we focused on 

benchmarks that exercise the GPU. 

3.2.2.3.1    OMXplayer 

OMXplayer is a built-in video player that comes with the Raspbian system, and it is specifically 

made for the RPI’s GPU. It relies on the OpenMAX hardware acceleration API, which is the 

Broadcom's VideoCore officially supported API for GPU video/audio processing [20].  It is a 

very small program and has OpenGL support and GPU rendering on the RPI. The OMXplayer 

does not have graphical user interface but is controlled by key bindings. It is capable of playing 

MP4, MP3, and MKV [21]. 

3.2.2.3.2    Mplayer 

Mplayer is available in the Linux APT (Advanced Packaging Tool) library. It is also very 

lightweight, but it does not have GPU rendering support on the RPI. 
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3.2.2.3.3    VLC player 

VLC player is relatively bigger than the OMXplayer and the Mplayer. It has a graphical user 

interface (GUI) and does not have GPU rendering support on the RPI. 

3.2.2.3.4    3D-slash 

3D-slash is a 3D modeling program that allows the user to modify 3D models. It has GPU 

rendering support and uses a considerable amount of RAM. To use it, the user must allocate 

more RAM for GPU after installation. It has EGL (Embedded-System Graphics Library) [22] 

and GLES (OpenGL for Embedded Systems) support [23]. 

3.2.2.4    Putty 

The Putty is a tool that allows SSH or serial port connection with Linux machines. Our research 

used both remote SSH desktop and serial port connection. The SSH was used to log in to the 

RPI, while the serial port was used for the PC to receive data from the serial port of the power 

meter as shown in Figure 3.2. 
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Figure 3.2 Putty setup for serial port recording. 

3.3 GATHERING DATA 

3.3.1    Perf 

The following is a representative use of Perf command ($sudo perf_3.16 stat -e 

instructions,cycles omxplayer ~/video file name), sudo -- we need sudo for security/permissions 

reasons (we could have instead set the perf_event_paranoid valid). For perf_3.16, we specify a 

version number due to how the Linux developers ship perf with the kernel source code. Even 

though it is usually backwards compatible, the Debian setup always tries to use a version 

matching the current kernel by default. 
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This command lets Perf access the performance counters when OMXplayer renders a video file 

and display the instructions and cycles after the program completes. Then the instructions per 

cycle can be calculated. The more data the CPU processes, the higher the instructions per cycle 

value. 

3.3.2    Putty  

3.3.2.1 Adafruit USB Power Gauge A/D converter  

We used putty to output a log file that records the real-time Adafruit USB Power Gauge A/D 

converter data. After we got the log file, we used a script to post-process it to get the voltage and 

current and calculate the power. 

3.3.2.2 Top 

We used Top running on RPI in the background using a remote SSH connection to capture CPU 

and memory usage.  We logged this output to a file with the following command ($top –b n30 

|grep omxplayer > omxplayer_top) 

This command recorded 30 updates of the Top output (approximately 60 seconds) and captured 

the OMXplayer CPU and memory usage of the system. 

3.4 RESULTS 

We ran the benchmarks and used the tools to assess the performance.  We used Top to measure 

CPU and memory usage, Perf to measure the number of cycles per instruction, and the Power 

Gauge to measure voltage and current (and therefore power).  The results from Top that 

measured various benchmarks are shown in Figure 3.3, the results from Perf are shown in Figure 
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3.4, and the power results are shown in Figure 3.5, Figure 3.6, and Figure 3.7.  The energy 

comparison between OMXplayer and Mplayer is shown in Figure 3.8. 

 

Figure 3.3 CPU and memory usage under different benchmarks 
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Figure 3.4 Instructions per cycle under different benchmarks 

3.4.1    OMXplayer 

OMXplayer is a built-in primary video player and is included with Raspbian. It is made 

explicitly for the RPI's GPU and uses little CPU and memory. With fast response speed and 

smoothness, it is highly recommended on Raspberry Pi. The results measured by Top showed 

CPU usage to be 18% and memory use at 7%. Perf reported the instructions per cycle to be 0.14 

(virtually identical to idle), and the average power for the run was 1.92W.  The total run time 

was 33 seconds. 
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3.4.2    Mplayer 

We tested the Mplayer; it played the video at a frame rate of 1fps. It did not drop frames; 

however, it simply played too slowly. It used no hardware acceleration and reported: "Your 

system is too slow to play this.". Top measured: CPU use: 86% and memory use: 18%. Perf 

reported the instructions per cycle to be 0.35 (indicating higher CPU usage compared to idle), 

and the average power for the run was 1.89W.  The total run time was approximately 10 minutes. 

3.4.3    VLC player 

VLC player ran poorly on the RPI. Its frame rate was 0.01fps. The VLC player was not hardware 

accelerated. The results measured by Top were CPU 78% and memory use 28%. Perf reported 

the instructions per cycle to be 0.4 and the average power for the ran was 1.87W.  Due to the 

prolonged frame rate the video was stopped before it finished. 

3.4.4    3D-slash 

Although 3D-slash is not a video player, we assessed its performance in manipulating 3D 

models.  We modified non-HD models and got the following performance values: Top measured 

CPU 52% and memory use 42%, Perf reported the instructions per cycle to be 0.38, and the 

average power for the run was 1.94W. 
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Figure 3.5 Power vs time for each benchmark. 

3.4.5 Discussion 

Looking at the instructions per cycle data in Figure 3.4, we can see that with idle and the 

OMXplayer the instructions per cycle was lower than Mplayer, 3D-slash, and VLC player. This 

means that the OMXplayer had relatively fewer instructions processed by the CPU compared to 

Mplayer, 3D-slash and VLC player. OMXplayer used hardware rendering while Mplayer and 

VLC player did not which resulted in the higher instructions per cycle value.  Since 3D-slash 

was using the CPU for calculation in addition to using the GPU for rendering, all of its usages 
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were high. The memory usage of 3D-slash was the highest, the VLC player used more memory 

than Mplayer, which in turn used more memory than OMXplayer. 

In Figure 3.5, the more time the benchmarks uses to render the video file, the Power Gauge 

would draw more sample points. Omxplayer had the least sample points, while mplayer had 

more sample points and VLC couldn't finish playing the video so it was cut off in the middle. 

One can see in Figure 3.7 that there was a power penalty when using the GPU as the power 

consumption by 3D-slash(1.94w) and OMXplayer(1.92w) was noticeably higher than the VLC 

player(1.87w) and Mplayer(1.88w).  Not surprisingly, all of the programs had significantly 

higher power than an idle board(1.72w).  One important consideration, however, was that even 

though the power consumption was lower for Mplayer than for OMXplayer, the time to render 

the whole video was considerably longer.  Thus, although the power was higher when the 

OMXplayer was used, the total energy to play the video was about 14 times less (see Figure 3.8) 

than for Mplayer.  The VLC player had such a poor performance that the total energy calculation 

could not be done, but would have been approximately 100 times higher than Mplayer. This ratio 

result was an unusual circumstance as the higher performance solution (OMXplayer), that used 

more power, ultimately used significantly less energy since it accomplished in 30 seconds what 

the lower power alternative took 10 minutes to perform. 
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Figure 3.6 Power for the first 24 sample times of each benchmark run. 
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Figure 3.7 Average power comparison between different benchmark 
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Figure 3.8 Total energy comparison between OMXplayer and Mplayer 

3.5 CONCLUSION AND FUTURE WORK 

From this research, we have shown that RPI with the GPU rendering had a significantly better 

performance than the software rendering.  Hardware rendering used more power than the 

software rendering. However, hardware rendering’s total energy efficiency can be higher than 

the software rendering’s because of the extended time that was taken by software rendering.  We 

tested several video playing applications as well as a 3D modeling program. Those that used 

software rendering used more CPU time and memory and slightly less power, while those that 
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used hardware rendering used more power but performed significantly better regarding rendering 

speed. Given that there was no GPU monitor for the RPI we inferred the GPU contribution and 

power draw using putty, Perf, Top, Power Gauge and wrote scripts to post-process the log files. 

RPI is a low power consumption microcomputer and studying its graphical performance and its 

power efficiency is vital in making intelligent design decisions where energy was limited.  

We found some limits in monitoring the system information about the GPU and the shared RAM 

between CPU and GPU. With OpenGL supporting the RPI’s graphics card, more graphics 

monitor programs could be written, as well as more power measure methods and additional 

benchmarks. 

  



26 
 

4.  COMPARING POWER AND ENERGY USAGE FOR SCIENTIFIC CALCULATION 

WITH AND WITHOUT GPU ACCELERATION ON A RASPBERRY PI MODEL B+ 

AND 3B 

4.1 INTRODUCTION 

In this work, we sought to quantify and compare the energy and power usage of a small, low-

power, single board computer, specifically the Raspberry Pi. The Raspberry Pi is a board that can 

be purchased for under $50 and contains a Graphics Processing Unit (GPU) as well as the 

Central Processing Unit (CPU). We were interested in comparing power and energy 

consumption when performing an intensive calculation utilizing the GPU vs. the same 

calculation using only the CPU. The algorithm chosen was the Fast Fourier Transform (FFT) for 

a variety of input data set sizes. The FFT method used in Digital Signal Processing (DSP) was 

included in the top 10 algorithms of the 20th century by the IEEE journal Computing in Science 

& Engineering [12]. 

Digital devices are pervasive in our lives. If a high-quality audio clip plays on a Bluetooth 

headphone, the delay-time of the transmitting audio signal is ideally shorter and the battery life 

should be longer. Also, the quality of sound is better with a higher sampling rate and with more 

bits of precision. Thus, there is a desire to be able to quickly complete the most calculations 

possible using the least total energy (battery life). 

The use of GPGPU code is suitable when processing massive data. GPGPU code can run using 

the GPU on RPIs for processing large data. To find out the elapsed time, power, and energy 

usage, we wrote six benchmarks that use three libraries: GPU_FFT for RPIs in C [1], FFTW in C 

[2], and SciPy.fftpack in Python [3]. These benchmarks can calculate 1D and 2D FFT using 
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these libraries to process single-precision floating point data. GPU_FFT used GPGPU code, 

FFTW used the serial code in C, and SciPy FFT used the serial code in Python to compute FFT. 

Then, the runtimes of the benchmarks were measured by their built-in time counter. Externally, 

the Power Gauge measured the test device RPIs’ power and energy. 

Before we considered this topic, we studied the power and energy usage of the RPI B+ when it 

played a short video using CPU and GPU [16]. We found that utilizing the GPU for video 

rendering not only greatly improved the video performance but also decreased the total energy 

used in rendering the video. 

We leveraged code for the Raspberry Pi that utilized the GPU for FFT calculation. The code, 

GPU_FFT, could be downloaded from GitHub [1]. Computing FFT with a microcontroller was 

not unique to a Raspberry Pi. There are other FFT implementations on DSP models: TMS320 

chips have FFT accelerators that promised excellent performance in DSP [24]. Despite this, if we 

were looking for a multimedia board that was capable of processing DSP while also functioning 

as a general-purpose Linux computer, RPIs were an excellent choice. This study will advance 

our understanding of how the utilization of the GPU for significant throughput data affects 

speed, energy efficiency. 

4.2 EXPERIMENTAL SETUP 

The experiment setup includes hardware and software setup. 

4.2.1 Hardware 

In this section, we are going to cover the hardware equipments and the hardware parameter 

setting. 
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4.2.1.1 Hardware specifics 

There were some hardware upgrades from RPI B+ to RPI 3B. In our experiment, we mainly 

focused on the performance of the benchmarks on CPU, GPU, and we listed them in Table 4.1. 

RPI SoC CPU GPU Memory 

(SDRAM) 

B+ Broadcom 

BCM2835 

700 MHz 32-bit 

single-core ARM, 

Arm1176JZ(F)-S 

Broadcom VideoCore IV @ 250 

MHz, OpenGL ES 2.0 (24 

GFLOPS) 

512 MB 

(shared 

with GPU) 

3B Broadcom 

BCM2837 

1.2 GHz 64-bit 

quad-core ARM, 

Cortex-A53 

(ARMv8) cluster, 

NEON. 

3D part of GPU @ 300 MHz, 

video part of GPU @ 400 MHz, 

OpenGL ES 2.0 (28.8 GFLOPS) 

1 GB 

(shared 

with GPU) 

Table 4.1 RPI B+ and 3B Key Hardware Information 

The hardware for the experimental setup consisted of the RPI B+ and RPI 3B under test and an 

Adafruit USB Power Gauge. The Power Gauge had its majority power measurement acquired 

from an INA210 high side current sensor to measure the current on each line broken out by the 

interceptor boards [19]. The INA219 could measure up to 3.2A of current with a resolution of 

0.8mA. The Power Gauge was connected between the power source and the RPIs power input. It 

has a serial to USB A/D converter that can connect to a machine in charge of logging data. When 
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connected to the host machine it presented itself as a serial port over which the data was 

transferred.  We used a Linux machine and Minicom software for capturing the logged data.  

 

Figure 4.1 Hardware and Software setups 

Figure 4.1 shows one of the benchmarks running and logging the voltage, current, and power. 

After we measured the power by Power Gauge, we tried to measure the power with a higher 

sample rate (for 4 seconds time span, we used 1 KHz sampling rate), higher voltage precision 

using Analog discovery 2 Digilent to prove the results are correct. Digilent needed a external 

circuit for measuring voltage values from channel 1 and channel 2. We used the Digilent 
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measured 1D FFT on RPI 3B for single run for comparing the results with Power Gauge 

measured results. Then we used the software Waveforms to output the sample points to CSV file. 

Figure 4.2 shows the RPI external circuit for powering and measuring power of the RPI. 

 

Figure 4.2 RPI external circuit for powering and measuring power 

4.2.1.2 Hardware System Settings 

4.2.1.2.1 Memory Split 

RAM (Random Access Memory) on RPI B+ and RPI 3B is shared by their CPUs and GPUs. We 

could allocate GPU_RAM customized in the command ($sudo raspi-config) under category 

Advanced Options, Memory Split. We needed to allocate more GPU_RAM when GPU_FFT was 

processing large FFT_length 1D and 2D FFT, and we needed to allocate less GPU_RAM when 

FFTW and SciPy FFT were processing sizeable FFT_length 1D and 2D FFT. The range for 
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setting the GPU_RAM was 16MB MIN (minimum), MAX (maximum) was depending on 

different RPI models. In our experiments, we used the command ($watch -n 1 free -h) to watch 

the system RAM usage. We got our RAM usage of the 6 benchmarks by subtracting RAM usage 

to idle. We set the benchmarks to do 1D FFT at a FFT_length of 2^22 and looped for 40 times, 

and then did 2D FFT at a FFT_length of 2^11 and looped for 20 times. In Figure 4.3, it showed 

the GPU_RAM and CPU_RAM needed for each benchmark to run a maximum FFT_length and 

loops. 

 

Figure 4.3 Maximum RAM usage for all benchmarks 
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4.2.1.2.2 V3D with OpenGL ES 

V3D must be enabled to run concurrently with the OpenGL ES when GPU_FFT is started [1]. 

The V3D was enabled using the command ($sudo raspi-config) under category Advanced 

Options, GL Driver, G3 Legacy. This GL Driver toggle switch was only enabled after RPI model 

2. There is a special case for RPI B+: The installation guide for GPU_FFT on RPI B+ must be 

followed because RPI B+ could not toggle GL options as mentioned. Installation command was 

($sudo apt-get install gpu-fft && sudo rpi-update && sudo reboot). 

4.2.2 Software 

The only key software on the data gathering machine was Minicom that was used to capture the 

data in CSV files.  The Raspberry Pi ran the Raspbian operating system.  Connections were made 

using SSH. We used the GPU_FFT library with the included "hello_fft" program to calculate the 

FFT in 1D and 2D [1]. We used Python version 2.7 with the SciPy and NumPy libraries with 

Python code that we developed using those libraries for computing the FFT in 1D and 2D [3]. 

Finally, we used the FFTW library and C code that we developed to also compute the FFT in 1D 

and 2D [2].  All FFT results were compared to the known correct values to verify the code. 

4.2.2.1 Minicom 

We set up Minicom for the logging of the power data points. We set a particular USB port that 

Power Gauge logs data to in Minicom settings. Then we ran Minicom and captured the recorded 

data to a text file as we did in Figure 4.1. In the end, we used Microsoft Office Excel to import 

the text file for easy plotting. 
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4.2.2.2 Input Settings 

In the 1D IFFT input array, we set the N input elements in a row array, where log2_N increased 

from 8 to 22. Therefore, the number of elements varied from 2^8 to 2^22. To generate a result 

that has a known exact solution, we set the input to be the FFT of a cosine function. Based on the 

known answer, we were able to get the REL_RMS_ERR by comparing the output with the 

known solution. In the testing, we had found that SciPy.fftpack had mistakenly confused the 

IFFT and FFT functions. When SciPy.fftpack was used to call the FFT function, a IFFT function 

was called instead and vice versa.  

In the 2D FFT input array, we set the N*N elements in a matrix. The input matrix varies with the 

following measurements: 2^16, 2^18, 2^20, 2^22. We set the coordinate (0,0) value to be 1. This 

is a Dirac delta function. In a DFT that has finite sample points, it will produce a result of all 

ones in the output. This Dirac delta function is considerably beneficial for the checking 

REL_RMS_ERR for simplifying the exact solution. 

4.2.2.3 Timing, REL_RMS_ERR, and Others 

We used command line arguments in the benchmarks scripts that allowed selecting specific FFT 

length range, loop times, option to skip REL_RMS_ERR, option to skip output Bitmap Image 

File (BMP). 

The benchmarks looped through different job sizes and got us a broad view of the libraries 

performances. When using the timing libraries that were built-in in C and Python languages, we 

considered the resolution of the time() function. So we checked the overhead of the function by 

running the time() function several times and printed out the time() values. Many dry run results 

showed a very high resolution, so the time() functions in C and Python was reliable. We used the 
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time() function for details checking each part of the FFT process, including initializing the input 

in every loop, calling for FFT function, and calculating REL_RMS_ERR. 

We considered wrapping the order of the loops for code efficiency. The outside loop was looping 

through the FFT_length from small to big; then in the inside loop, we ran the assigned 

FFT_length many times. This wrapping order would match more of the prediction of the CPU 

cache, producing fewer cache misses and making the runtime shorter. 

We also had switches for REL_RMS_ERR to check for the first few runs to debug the program 

and performance accuracy resolution check since the REL_RMS_ERR was taking much more 

time than the FFT process time. 

In the 2D FFT, GPU_FFT could produce an output BMP file. In the debugging section, we used 

the image for checking error in addition to the REL_RMS_ERR. 

The comparison of RPI B+ and 3B running the same 6 benchmarks will give us a more objective 

view of how the similar, but upgraded microcomputer board affects the libraries performance. 

4.3 RESULTS 

This section discusses the results that were obtained. The following time elapsed images are 

log/log scaled. On the Y label, time is also logarithmic. 

4.3.1 Benchmarks 1D and 2D FFT Time Elapsed 

The first criteria was the time that was required for the calculation to be completed.  The 

following figures show the times for the 1D and the 2D FFT calculations. 

In Figure 4.4, and Figure 4.5, the 1D FFT on RPI B+ and 3B, we can see that as the job size 

increases, the speedup ratios between 3 benchmarks remain stable. On RPI B+, the speed of 
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FFTW is about 10x slower compared with the speed of GPU_FFT, whereas SciPy FFT’s speed is 

around 15x slower than GPU_FFT’s. On RPI 3B, the speed of FFTW is about 2.8x slower 

compared with the speed of GPU_FFT, whereas SciPy FFT’s speed is around 3.7x slower than 

GPU_FFT’s. 

In Figure 4.6, and Figure 4.7, the 2D FFT on RPI B+ and 3B, we can see the pattern is similar to 

the pattern in Figure 4.4 and Figure 4.5. On RPI B+, FFTW and SciPy FFT are about 10x slower 

than GPU_FFT. However, SciPy FFT is taking less time than FFTW. On RPI B+, when running 

2D FFT, FFTW is not as good as SciPy FFT in speed, and the best is still GPU_FFT, which is 

roughly 10x faster. On RPI 3B, when running 2D FFT, FFTW is about 6x slower than 

GPU_FFT, whereas SciPy FFT is about 3.8x slower than GPU_FFT. 
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Figure 4.4 1D FFT RPI B+ time (in seconds) elapsed for each of the 3 libraries 
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Figure 4.5 1D FFT RPI 3B time (in seconds) elapsed for each of the 3 libraries 

Figure 4.8 shows us the output BMP file of 2D FFT. Using the 2D FFT output image can make 

FFT easier to visualize and understand. The BMP file pixel values are not easy to verify by 

checking the file. We eventually checked the output values by comparing all the pixel values to 1 

to get REL_RMS_ERR. 

In the GPU_FFT library, there was a function that could set batches to more than one batch that 

produced more throughput for the GPU. The library manual said it would trim down the time for 

each calculation as the batch size increased. However, we found that the total time for FFT 
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extended as we increased the batch size. In our experiments, we always set the batch size to be 1 

to get the best performance. 

 

Figure 4.6 2D FFT RPI B+ time (in seconds) elapsed for the 3 libraries 
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Figure 4.7 2D FFT RPI 3B time (in seconds) elapsed for the 3 libraries 

 

Figure 4.8 2D FFT output (pixel value all 1) by GPU_FFT 
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4.3.2 Power and Energy 

As was stated earlier, the speed of a calculation is important, especially for embedded devices. 

The power consumption and energy consumption are also important factors.  Energy usage is of 

particular importance in battery-powered applications as a battery is essentially capable of 

delivering a particular amount of energy. 

In Figure 4.9, and Figure 4.10, power measure of running 1D FFT on RPI B+ and 3B, we have 

the GPU_FFT, FFTW and SciPy FFT have different amounts of sample points. The sample 

points resolution is about 40 samples per minute [19]. GPU_FFT and FFTW run faster than 

SciPy FFT, so GPU_FFT and FFTW have the smallest amount and the second smallest amount 

of sample points, respectively. On RPI B+, the power consumption running FFTW and SciPy 

FFT reach their peak at just over 2W; however, the highest power usage is the GPU_FFT, and it 

reaches up to 2.1W maximum when calculating the 1D FFT. SciPy FFT and FFTW have about 

the same power usage as one another and less than the GPU_FFT. On RPI 3B board, SciPy FFT 

and FFTW are taking the most power peak at 4W and the second most power peak at 3.5W, 

which is considerably more than the GPU_FFT power peak at 2.8W. 
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Figure 4.9 Instantaneous power comparison of 3 libraries process 1D FFT 40 loops of 

FFT_length 2^22 on RPI B+ 
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Figure 4.10 Instantaneous power comparison of 3 libraries process 1D FFT 40 loops of 

FFT_length 2^22 on RPI 3B 

In Figure 4.11, it’s Digilent measured power of RPI 3B doing 1D FFT for a single run. The 

power data points are very similar with the Power Gauge measured in Figure 4.10. That proves 

that Power Gauge has enough resolution for measuring power. 
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Figure 4.11 Digilent measured RPI 3B 1D FFT instantaneous power usage 

In Figure 4.12, and Figure 4.13, 2D FFT on RPI B+ and 3B, the pattern is similar with the 1D 

FFT on 2 different boards. On RPI B+, the power consumption is led by GPU_FFT that has its 

power peak at 2.2W, FFTW and SciPy FFT have their peak around 1.8W. On RPI 3B, FFTW 

and SciPy FFT have about the same 3.5W power usage, and GPU_FFT uses about 2.8W. 
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Figure 4.12 Instantaneous power comparison of 3 libraries process 2D FFT 20 loops of 

FFT_length 2^11 on RPI B+ 
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Figure 4.13 Instantaneous power comparison of 3 libraries process 2D FFT 20 loops of 

FFT_length 2^11 on RPI 3B 

In Figure 4.14, we calculated the sum of the data points from Figure 4.9, Figure 4.10, Figure 

4.12, and Figure 4.13 and generated the energy usage graph. In Figure 4.14, 1D FFT part, we can 

see GPU_FFT is using the least total energy whether on RPI B+ or 3B among 3 libraries. When 

doing 1D FFT on RPI B+, the power is higher (2.1W) when doing GPU_FFT than the other two 

libraries (1.8W), but the time for processing makes up the disadvantage and makes its total 

energy less than the other two libraries’. 
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Figure 4.14 Energy comparison of 3 libraries process 1D, 2D FFT 
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Figure 4.15 Energy-Delay comparison of 3 libraries process 1D FFT 
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Figure 4.16 Energy-Delay comparison of 3 libraries process 2D FFT 
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Figure 4.17 Digilent measured RPI 3B 1DFFT energy usage  
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Figure 4.18 Power Gauge measured RPI 3B 1DFFT energy usage  

When doing 1D FFT on RPI 3B, the power is lower when doing GPU_FFT (2.8W) than the 

other two libraries (FFTW 3.1W, SciPy FFT 3.8W) and its time for processing is shorter than the 

other libraries. Therefore, GPU_FFT on RPI 3B uses less energy than the other two libraries. In 

Figure 4.14, 2D FFT part, it shows that GPU_FFT is using the least total energy whether on RPI 

B+ or 3B among 3 libraries. When doing 2D FFT on RPI B+, the power is higher when doing 

GPU_FFT (2W) than the other two libraries (FFTW, SciPy FFT 1.7W), but GPU_FFT’s less 

processing time makes up for the disadvantage and causes its total energy to be less than the 

other two libraries’. The power on RPI 3B is significantly higher for FFTW (3W) and SciPy FFT 
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(3.3W) when doing 2D FFT, and their powers are higher than GPU_FFT’s power (2.6W). 

GPU_FFT still runs faster than the other two libraries on RPI 3B, so the GPU_FFT's total energy 

is lower because the GPU_FFT also uses less power. In 2D FFT, SciPy FFT takes less time and 

less energy than FFTW on both RPI B+ and 3B. 

In 1D, 2D FFT, the upgrade of RPI B+ to 3B have reduced the energy usage of FFTW and SciPy 

FFT more than 50% by powering up and reducing the processing time. However, the increase in 

power feeding for CPU and GPU on RPI 3B also causes GPU_FFT on RPI 3B uses more energy 

than on RPI B+ since the time elapsed for GPU_FFT has not significantly shortened to make up 

the disadvantage in the higher power usage. Overall, whether on RPI 3B or B+, using the 

GPU_FFT to calculate the FFT uses less than 2/3 to 1/3 of the energy of any other method of 

computing the FFT. 

In Figure 4.15, and Figure 4.16, 1D and 2D FFT Energy-Delay values are compared. The 

Energy-Delay values of GPU_FFT are the smallest in 1D and 2D FFT, and that is less than 1/2 

of other libraries’ Energy-Delay values on both RPI B+ and 3B. 

In Figure 4.17, and Figure 4.18, Digilent and Power Gauge measured energy usage per run when 

running 1D FFT at FFT_length equals to 2^22, We can see that FFTW and GPU_FFT energy 

usage are very similar on both graphs. The SciPy FFT energy usage is higher in Digilent than in 

Power Gauge because when using Digilent to measure, we have single run that has overhead. 

When we use the Power Gauge to measure, we have multiple runs that average values brings 

down the overhead. It proved that the Power Gauge has enough resolution for power. 
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4.3.3 Total Time and Init-Time 

The previous sections focused on the time to do the FFT calculations; however, the FFT requires 

setting up the input buffer, which requires a non-trivial amount of time.  We measured this 

initialization time as well as the time to calculate the error in the calculation. 

Figure 4.19, Figure 4.20 shows the 1D FFT initializing time elapsed on RPI B+, 3B. Figure 4.21, 

Figure 4.22 shows the 2D FFT initializing time elapsed on RPI B+, 3B. Though in 3 libraries, the 

initializing array does not has a GPU rendering support, it’s all CPU processed. Its time elapsed a 

significant portion of the total time elapsed. We can see FFTW performs very well when the 

FFT_length is small, as the FFT_ length increases to 2^22, the GPU_FFT has the greatest time 

elapsed, about 1000X more than SciPy FFT on RPI B+, and more than 5000X on RPI 3B. Scipy 

FFT has the smallest time usage.  FFTW is in the middle, about 1000X more than SciPy FFT on 

RPI B+ and 3B. We can see that in 2D FFT, as the FFT_ length increases to 2^22, the GPU_FFT 

has the greatest time elapsed, about 1000x more than SciPy FFT on RPI B+, over 5000x more 

than SciPy FFT on RPI 3B. FFTW is in the middle, about 1000x more than SciPy on RPI B+, 

more than 500x on RPI 3B. Scipy FFT has the smallest time usage.  
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Figure 4.19 1D FFT RPI B+ time (in seconds) elapsed for each of the 3 libraries 
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Figure 4.20 1D FFT RPI 3B time (in seconds) elapsed for each of the 3 libraries 
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Figure 4.21 2D FFT RPI B+ time (in seconds) elapsed for each of the 3 libraries 
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Figure 4.22 2D FFT RPI 3B time (in seconds) elapsed for each of the 3 libraries 
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Figure 4.23 1D FFT total time compare of 3 libraries on RPI B+ and RPI 3B 
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Figure 4.24 2D FFT total time compare of 3 libraries on RPI B+ and RPI 3B 

In Figure 4.23, we have the total time comparison of the 1D FFT, FFT_length 2^22 of 3 libraries 

on RPI B+ and 3B. On RPI B+, the total time ranking for the 3 libraries order from greatest to 

smallest is: SciPy FFT, FFTW, and GPU_FFT. FFTW has a bigger portion of initializing time 

when compared with SciPy FFT’s. GPU_FFT has the greatest portion of initializing time of the 3 

libraries. However, FFTW and GPU_FFT  have shorter FFT time that make over the 

disadvantage in INIT-time and caused the total time to be less than SciPy FFT’s total time. 

Python is good at allocating memory, and that benefits the SciPy to have less Init-time. On RPI 

3B, the pattern is still the same after the upgrade of the hardware. One thing to notice is that on 
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RPI 3B the FFTW is the second fastest and takes more than 2 seconds for the total time but is 

still slower than GPU_FFT and runs the same job on RPI B+ in less than 2 seconds. 

In Figure 4.24, we have the total time comparison of the 2D FFT, FFT_length 2^11 of 3 libraries 

on RPI B+ and 3B. On RPI B+, the pattern is similar to the Figure 4.23, but the SciPy FFT is 

faster than FFTW in 2D FFT, so we have the total time rankings from least to greatest as 

GPU_FFT, SciPy FFT, and FFTW. FFTW’s total time has a larger portion of initializing time 

compare with SciPy FFT’s. GPU_FFT’s total time has the largest portion of Init-time in the 3 

libraries. 2D FFT have bigger matrices that need to be initialized. The RPI 3B has the same 

pattern, where SciPy FFT (less than 2s) on RPI 3B is taken little time but still requires more time 

than GPU_FFT on RPI B+ and also on RPI 3B. 

4.3.4 REL_RMS_ERR Value 

In this section, we discuss the error in the FFT calculation.  We calculated the relative root mean 

square error (REL_RMS_ERR) of the FFT result.  The error values were all very low. 
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0000

 

Figure 4.25 REL_RMS_ERR comparison of 3 libraries process 1D FFT 

In Figure 4.25, FFTW shows the least REL_RMS_ERR, SciPy FFT has the second least 

REL_RMS_ERR, and GPU_FFT has the highest REL_RMS_ERR. The REL_RMS_ERR range 

is from 1e-5 to 1e-8. When considering the scale of the error, the REL_RMS_ERR is at a level of 

1 parts per million or less This precision would satisfy most daily needs. 

4.4 CONCLUSION AND FUTURE WORK 

By comparing the FFT elapsed time, total time, power and energy consumption of six 

benchmarks using three libraries on two similar RPI models, we can say that: the GPGPU code 
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processes large data throughput FFT arrays quickly and as the FFT length size increases, the 

speedup is easier to see. This speedup does not sacrifice too much precision in REL_RMS_ERR. 

Also, it benefits the energy efficiency because even though it consumes more power for 

computing when we are running benchmarks on the single core RPI B+, the significant speed 

increase results in less total energy usage and less energy delay. When we have the benchmarks 

running quad-core RPI 3B with faster CPU and GPU, the speed up of the serial code is 

tremendous, and it does save energy by reducing the computing time; however, on RPI 3B, the 

power feed for the CPU is greater than the feed for GPU, so RPI 3B still needs more power and 

more energy to process serial code than parallel code. Nevertheless, GPU_FFT runs on RPI B+, 

and 3B are still faster and take less energy than FFTW and SciPy FFT run on RPI 3B. Generally 

speaking, the GPU_FFT library is a successful library that runs FFT on RPIs with excellent 

accuracy, fast speed, and greater energy efficiency compared with other FFTW and 

SciPy.fftpack libraries. In the future study, we might follow the pattern and study more about 

parallel programming including MPI, CUDA, power, energy implication and apply it on a heavy-

duty machine. 
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5.  RESULTS, CONCLUSION, AND FUTURE WORK 

The first study was performed on Raspberry Pi model B+. We managed to quantify the different 

video player benchmarks’ (the OMXplayer, 3D slash with, and the Mplayer, the VLC player 

without GPU rendering) performance when they were handling the same job and correlate their 

frame rendering performance with their power and energy performance. We also had a 3D model 

simulator running for power and energy comparison. We used various system tools to read the 

system details. The results showed that the benchmarks OMXplayer with GPU rendering had a 

visible difference in power consumption higher than the benchmarks the Mplayer, the VLC 

player without GPU rendering. However, the process time for the same job size process by 

benchmark with GPU rendering was significantly shorter than the benchmarks without GPU 

rendering. The time difference had made up for the disadvantage in higher power usage and 

made the benchmark with GPU rendering more power efficient. 

The second study was conducted on the Raspberry Pi model B+ and 3B. We ran comparisons 

between 3 libraries doing a scientific calculation using complex values. The DSP method we 

used in the three libraries was the FFT. The calculations were in both 1D and 2D. We had the 

single precision floating point numbers set as the primary data type. Also, we correlated the 

performance of the benchmarks (GPU_FFT with GPU render, and FFTW, SciPy.FFT without 

GPU rendering) speed, accuracy, power, and energy. On both RPI models, the results showed the 

benchmark GPU_FFT with GPU rendering took less energy than the other benchmarks without 

GPU rendering. On RPI B+, GPU_FFT used more power, less time, and less total energy than 

the FFTW, SciPy.FFT libraries. On RPI 3B, GPU_FFT used less power, and less time, and less 

total energy than the FFTW, SciPy.FFT libraries. 
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In this thesis, we found that on a small single-board computer Raspberry Pi, in some fields like 

processing video files, processing 3D models, and calculating complex values using a scientific 

method, using a GPU rendering significantly shortens the process time and also saves energy. 

We interpret that using GPU for rendering in some suitable fields that required multiple threads 

doing the same instructions are fast and energy efficient. 

The results described in this thesis are highly intriguing in that repeatedly, we found 

circumstances in which the fastest processing also consumed the least total energy.  For the 

Raspberry Pi model B+, the method that used the least total energy consumed the most power 

(but for a much shorter time).  For the Raspberry Pi model 3B, however, when performing FFT 

calculations the GPU used less total energy, finished computing in less time, and consumed less 

power while the computation was occuring. 

We find these results on the RPI very interesting and hypothesize that similar testing on CUDA 

or more massive machines in the future may yield comparable results. Further work may include  

a double precision calculation on the RPI GPU. It may also include different benchmarks that 

implement the looping order inside the function differently to test the cache misses penalty on 

CPU and GPU. 
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APPENDIX A. CODE FOR FFT BENCHMARKS 

GPU_FFT 

 

1d_hello_fft_t4.c 

 

/* 

BCM2835 "GPU_FFT" release 3.0 

Copyright (c) 2015, Andrew Holme. 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are met: 

    * Redistributions of source code must retain the above copyright 

      notice, this list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright 

      notice, this list of conditions and the following disclaimer in the 

      documentation and/or other materials provided with the distribution. 

    * Neither the name of the copyright holder nor the 

      names of its contributors may be used to endorse or promote products 

      derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND 
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ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS 

BE LIABLE FOR ANY 

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND 

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 

*/ 

/* 

Created: 2/17/2018 

desciption: 

hello_fft with function of auto size and output to .csv 

Author:Qihao He 
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*/ 

 

#include <stdlib.h> 

#include <unistd.h> 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

#include <string.h> 

#include "mailbox.h" 

#include "gpu_fft.h" 

 

char Usage[] = 

    "Usage: hello_fft.bin log2_N [log2_M [jobs [loops [RMS_C]]]]\n" 

    "log2_N = log2(FFT_length),       log2_N = 8...22\n" 

    "log2_M = log2(FFT_length),       log2_M > log2_N\n" 

    "jobs   = transforms per batch,   jobs>0,        default 1\n" 

    "loops  = number of test repeats, loops>0,       default 1\n" 

    "RMS_C  = number of test repeats, T(1),F(0),     default 0\n"; 

 

struct GPU_FFT_COMPLEX *base; 

struct GPU_FFT *fft; 

double **REL_RMS_ERR; 
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unsigned Microseconds(void); 

void RMS_malloc(int span_log2_N, int loops); 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR); 

void input_buffer(struct GPU_FFT *fft, struct GPU_FFT_COMPLEX *base, int N, 

  int jobs); 

void output_RMS(struct GPU_FFT *fft, struct GPU_FFT_COMPLEX *base, int jobs, 

  int span_log2_N, double **REL_RMS_ERR, int N, int j, int k); 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR); 

 

int main(int argc, char *argv[]) { 

    int i, j, k, l, ret, loops, log2_N, log2_M, log2_P, jobs, N, 

    mb = mbox_open(), RMS_C, span_log2_N; 

    unsigned t[4]; 

    double tsq[2]; 

 

    log2_N = argc>1? atoi(argv[1]) : 12; // 8 <= log2_N <= 22 

    log2_M = argc>2? atoi(argv[2]) : log2_N + 1; // 8 <= log2_N <= 22 

    jobs   = argc>3? atoi(argv[3]) : 1;  // transforms per batch 

    loops  = argc>4? atoi(argv[4]) : 1;  // test repetitions 

    RMS_C  = argc>5? atoi(argv[5]) : 1;  // RMS_controller 

 

    if (!(argc >=2 && argc <= 6) || jobs < 1 || loops < 1 || 

    !(RMS_C >= 0 && RMS_C <=1 ) || log2_N >= log2_M ){ 
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        printf(Usage); 

        return -1; 

    } 

 

    span_log2_N = log2_M - log2_N; 

    RMS_malloc(span_log2_N, loops); 

    // initializing 2D, 3D array to 0 

    REL_RMS_ERR_init(span_log2_N, loops, (double **)REL_RMS_ERR); 

    // print out lables for .csv file 

    printf("log2_N,Init_T,FFT_T,RMS_T,Total_T\n"); 

 

    for(l = 0; l < span_log2_N; l++){ 

        log2_P = log2_N + l; 

        N = 1 << log2_P; // FFT length 

        ret = gpu_fft_prepare(mb, log2_P, GPU_FFT_REV, jobs, &fft); // call once 

 

        switch(ret) { 

            case -1: printf("Unable to enable V3D. Please check your firmware is up to date.\n"); 

return -1; 

            case -2: printf("log2_N=%d not supported.  Try between 8 and 22.\n", log2_P);         

return -1; 

            case -3: printf("Out of memory.  Try a smaller batch or increase GPU memory.\n");     

return -1; 
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            case -4: printf("Unable to map Videocore peripherals into ARM memory space.\n");      

return -1; 

            case -5: printf("Can't open libbcm_host.\n");                                         return -1; 

        } 

 

        for (k = 0; k < loops; k++) { 

            t[0] = Microseconds(); 

            input_buffer(fft, base, N, jobs); 

 

            usleep(1); // Yield to OS 

            t[1] = Microseconds(); 

            gpu_fft_execute(fft); // call one or many times 

            t[2] = Microseconds(); 

 

            if (RMS_C ==1){ 

              output_RMS(fft, base, jobs, span_log2_N, REL_RMS_ERR, N, l, k); 

            } 

 

            t[3] = Microseconds(); 

            printf("%i,%d,%d,%d,%d\n",log2_P,t[1] - t[0],t[2] - t[1], 

            t[3] - t[2],t[3] - t[0]); 

        } 

        gpu_fft_release(fft); // Videocore memory lost if not freed ! 
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    } 

    if (RMS_C == 1) print_RMS(span_log2_N, loops, log2_N, REL_RMS_ERR); 

    return 0; 

} 

 

unsigned Microseconds(void) { 

    struct timespec ts; 

    clock_gettime(CLOCK_REALTIME, &ts); 

    return ts.tv_sec * 1000000 + ts.tv_nsec / 1000; 

} 

 

void RMS_malloc(int span_log2_N, int loops){ 

    int i; 

    REL_RMS_ERR = (double **)malloc(span_log2_N * sizeof(double *)); 

    if(REL_RMS_ERR == NULL){ 

        printf("Malloc failed\n"); 

        exit(-1); 

    } 

    for (i = 0; i < span_log2_N; i++){ 

        REL_RMS_ERR[i] = (double *)malloc(loops * sizeof(double)); 

        if(REL_RMS_ERR[i] == NULL){ 

           printf("Malloc failed on loop %d",i); 

           exit(-1); 
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        } 

    } 

} 

 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR){ 

    int i, j; 

    for(i = 0; i < span_log2_N; i++){ 

        for(j = 0; j < loops; j++){ 

            REL_RMS_ERR[i][j] = 0; 

        } 

    } 

} 

// input buffer 

void input_buffer(struct GPU_FFT *fft, struct GPU_FFT_COMPLEX *base, int N, 

   int jobs){ 

  int i, j, freq; 

    for (j = 0; j < jobs; j++) { 

        base = fft->in + j * fft->step; 

        for (i = 0; i < N; i++) base[i].re = base[i].im = 0; 

        freq = j+1; 

        base[freq].re = base[N - freq].re = 0.5; 

    } 

} 
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// output REL_RMS_ERR 

void output_RMS(struct GPU_FFT *fft, struct GPU_FFT_COMPLEX *base, int jobs, 

  int span_log2_N, double **REL_RMS_ERR, int N, int l, int k){ 

    int i, j, freq; 

    double tsq[2], a, b; 

    tsq[0] = tsq[1] = 0; 

    a = 2 * GPU_FFT_PI / N; 

    for (j = 0; j < jobs; j++) { 

        base = fft->out + j * fft->step; 

        freq = j + 1; 

        b = freq * a; 

        for (i = 0; i < N; i++) { 

            double re = cos(b * i); 

            tsq[0] += pow(re, 2); 

            tsq[1] += pow(re - base[i].re, 2) + pow(base[i].im, 2); 

        } 

        REL_RMS_ERR[l][k] = sqrt(tsq[1] / tsq[0]); 

    } 

 

} 

// print out REL_RMS_ERR 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR){ 

    int i,j; 
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    for (i = 0; i < span_log2_N; i++) { 

      printf("REL_RMS_ERR for log2_N:%d\n", log2_N + i); 

        for (j = 0; j < loops; j++) { 

          printf("%.10e,",REL_RMS_ERR[i][j]); 

        } 

        printf("\n"); 

    } 

    printf("\n"); 

} 

 

2d_hello_fft_t3.c 

/* 

BCM2835 "GPU_FFT" release 2.0 

Copyright (c) 2014, Andrew Holme. 

All rights reserved. 

 

Redistribution and use in source and binary forms, with or without 

modification, are permitted provided that the following conditions are met: 

    * Redistributions of source code must retain the above copyright 

      notice, this list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright 

      notice, this list of conditions and the following disclaimer in the 

      documentation and/or other materials provided with the distribution. 
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    * Neither the name of the copyright holder nor the 

      names of its contributors may be used to endorse or promote products 

      derived from this software without specific prior written permission. 

 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 

CONTRIBUTORS "AS IS" AND 

ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

IMPLIED 

WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

ARE 

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS 

BE LIABLE FOR ANY 

DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 

DAMAGES 

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 

SERVICES; 

LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 

CAUSED AND 

ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 

TORT 

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 

USE OF THIS 

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
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*/ 

/* 

Created: 2/24/2018 

desciption: 

hello_fft with function of auto size and output to .csv 

Author:Qihao He 

*/ 

 

#include <string.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <time.h> 

#include <math.h> 

 

#include "gpu_fft_trans.h" 

#include "hello_fft_2d_bitmap.h" 

 

#define GPU_FFT_ROW(fft, io, y) ((fft) -> io + (fft) -> step * (y)) 

 

char Usage[] = 

    "Usage: hello_fft.bin log2_N [jobs [loops [RMS_C]]]\n" 

    "log2_N = log2(FFT_length),       log2_N = 8...11\n" 

    "log2_M = log2(FFT_length),       log2_M > log2_N\n" 
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    "loops  = number of test repeats, loops>0,       default 1\n" 

    "RMS_C  = RMS_controller, T(1),F(0),     default 0\n" 

    "BMP_C  = BMP_controller, T(1),F(0),       default 0\n"; 

 

struct GPU_FFT_COMPLEX *row; 

struct GPU_FFT_TRANS *trans; 

struct GPU_FFT *fft_pass[2]; 

double **REL_RMS_ERR; 

 

unsigned Microseconds(void); 

void RMS_malloc(int span_log2_N, int loops); 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR); 

void output_RMS(struct GPU_FFT *fft, struct GPU_FFT_COMPLEX *base, 

  int span_log2_N, double **REL_RMS_ERR, int N, int j, int k); 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR); 

 

int main(int argc, char *argv[]) { 

    int x, y, i, j, k, l, ret, mb = mbox_open(), log2_N, log2_M, log2_P, 

    span_log2_N, loops, N, RMS_C, BMP_C; 

 

    // FILE *fp; 

    unsigned t[6]; 

    double tsq[2]; 
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    log2_N = argc>1? atoi(argv[1]) : 8; // 8 <= log2_N <= 11 

    log2_M = argc>2? atoi(argv[2]) : log2_N + 1; // 8 <= log2_N <= 11 

    loops  = argc>3? atoi(argv[3]) : 1;  // test repetitions 

    RMS_C  = argc>4? atoi(argv[4]) : 0;  // RMS_controller 

    BMP_C  = argc>5? atoi(argv[5]) : 0;  // BMP_controller 

    // 

    if (!(argc >=1 && argc <= 6) || loops < 1 || log2_N >= log2_M || 

    !(log2_N >= 8 && log2_N <= 11 && log2_M <= 12) || 

    !(RMS_C >= 0 && RMS_C <= 1) || !(BMP_C >= 0 && BMP_C <= 1)){ 

        printf(Usage); 

        return -1; 

    } 

 

    span_log2_N = log2_M - log2_N; 

    RMS_malloc(span_log2_N, loops); 

    // initializing 2D, 3D array to 0 

    REL_RMS_ERR_init(span_log2_N, loops, (double **)REL_RMS_ERR); 

    // print out lables for .csv file 

    printf("log2_N,init_T,1_FFT_T,Transpose_T,2_FFT_T,RMS_T,totalFFT_T,total_T\n"); 

 

    for(l = 0; l < span_log2_N; l++){ 

        log2_P = log2_N + l; 
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        N = 1 << log2_P; // FFT length 

 

        BITMAPFILEHEADER bfh; 

        BITMAPINFOHEADER bih; 

 

        // Create Windows bitmap file 

        // if (BMP_C == 1){ 

        FILE *fp = fopen("hello_fft_2d.bmp", "wb"); 

        if (!fp) return -666; 

 

        if (BMP_C == 1){ 

            // Write bitmap header 

            memset(&bfh, 0, sizeof(bfh)); 

            bfh.bfType = 0x4D42; //"BM" 

            bfh.bfSize = N*N*3; 

            bfh.bfOffBits = sizeof(bfh) + sizeof(bih); 

            fwrite(&bfh, sizeof(bfh), 1, fp); 

 

            // Write bitmap info 

            memset(&bih, 0, sizeof(bih)); 

            bih.biSize = sizeof(bih); 

            bih.biWidth = N; 

            bih.biHeight = N; 
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            bih.biPlanes = 1; 

            bih.biBitCount = 24; 

            bih.biCompression = BI_RGB; 

            fwrite(&bih, sizeof(bih), 1, fp); 

        } 

 

        // Prepare 1st FFT pass 

        ret = gpu_fft_prepare(mb, log2_P, GPU_FFT_REV, N, fft_pass+0); 

        if (ret) { 

            return ret; 

        } 

        // Prepare 2nd FFT pass 

        ret = gpu_fft_prepare(mb, log2_P, GPU_FFT_REV, N, fft_pass+1); 

        if (ret) { 

            gpu_fft_release(fft_pass[0]); 

            return ret; 

        } 

        // Transpose from 1st pass output to 2nd pass input 

        ret = gpu_fft_trans_prepare(mb, fft_pass[0], fft_pass[1], &trans); 

        if (ret) { 

            gpu_fft_release(fft_pass[0]); 

            gpu_fft_release(fft_pass[1]); 

            return ret; 
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        } 

 

        for (k = 0; k < loops; k++) { 

            t[0] = Microseconds(); 

            // Clear input array 

            for (y=0; y<N; y++) { 

                row = GPU_FFT_ROW(fft_pass[0], in, y); 

                for (x=0; x<N; x++) row[x].re = row[x].im = 0; 

            } 

 

            // Setup input data 

            GPU_FFT_ROW(fft_pass[0], in, 0)[0].re = 1; 

 

            // ==> FFT() ==> T() ==> FFT() ==> 

            usleep(1); /* yield to OS */   t[1] = Microseconds(); 

            gpu_fft_execute(fft_pass[0]);  t[2] = Microseconds(); 

            gpu_fft_trans_execute(trans);  t[3] = Microseconds(); 

            gpu_fft_execute(fft_pass[1]);  t[4] = Microseconds(); 

 

            if (RMS_C == 1){ 

              output_RMS(fft_pass[1], row, span_log2_N, REL_RMS_ERR, N, l, k); 

            } 

            t[5] = Microseconds(); 
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            printf( "%i,%d,%d,%d,%d,%d,%d,%d\n", log2_P, t[1] - t[0], t[2] - t[1], 

            t[3] - t[2], t[4] - t[3], t[5] - t[4], t[4] - t[1], t[5] - t[0]); 

        } 

        // Write output to bmp file 

        if (BMP_C == 1){ 

            for (y = 0; y < N; y ++) { 

                row = GPU_FFT_ROW(fft_pass[1], out, y); 

                for (x = 0; x < N; x ++) { 

                    fputc(128 + row[x].re, fp); // blue 

                    fputc(128 + row[x].re, fp); // green 

                    fputc(128 + row[x].re, fp); // red 

                } 

            } 

            printf("hello_fft_2d.bmp generated. log2_N:%i,Size:%u\n", log2_P, 

             bfh.bfSize); 

        } 

        // Clean-up properly.  Videocore memory lost if not freed ! 

        gpu_fft_release(fft_pass[0]); 

        gpu_fft_release(fft_pass[1]); 

        gpu_fft_trans_release(trans); 

    } 

    if (RMS_C == 1) print_RMS(span_log2_N, loops, log2_N, REL_RMS_ERR); 
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    return 0; 

} 

 

unsigned Microseconds(void) { 

    struct timespec ts; 

    clock_gettime(CLOCK_REALTIME, &ts); 

    return ts.tv_sec*1000000 + ts.tv_nsec/1000; 

} 

 

void RMS_malloc(int span_log2_N, int loops){ 

    int i; 

    REL_RMS_ERR = (double **)malloc(span_log2_N * sizeof(double *)); 

    if(REL_RMS_ERR == NULL){ 

        printf("Malloc failed\n"); 

        exit(-1); 

    } 

    for (i = 0; i < span_log2_N; i++){ 

        REL_RMS_ERR[i] = (double *)malloc(loops * sizeof(double)); 

        if(REL_RMS_ERR[i] == NULL){ 

           printf("Malloc failed on loop %d",i); 

           exit(-1); 

        } 

    } 
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} 

 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR){ 

    int i, j; 

    for(i = 0; i < span_log2_N; i++){ 

        for(j = 0; j < loops; j++){ 

            REL_RMS_ERR[i][j] = 0; 

        } 

    } 

} 

// output REL_RMS_ERR 

void output_RMS(struct GPU_FFT *fft_pass, struct GPU_FFT_COMPLEX *row, 

  int span_log2_N, double **REL_RMS_ERR, int N, int l, int k){ 

    int i, j; 

    double tsq[2], a; 

    tsq[0] = tsq[1] = 0; 

    tsq[0] = N * N; 

    for (j = 0; j < N; j ++) { 

        row = GPU_FFT_ROW(fft_pass, out, j); 

        for (i = 0; i < N; i++) { 

            tsq[1] += pow(1 - row[i].re, 2) + pow(row[i].im, 2); 

        } 

    } 
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    REL_RMS_ERR[l][k] = sqrt(tsq[1] / tsq[0]); 

} 

// print out REL_RMS_ERR 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR){ 

    int i, j; 

    for (i = 0; i < span_log2_N; i++) { 

        printf("REL_RMS_ERR for log2_N:%d\n", log2_N + i); 

            for (j = 0; j < loops; j++) { 

                printf("%.10e,",REL_RMS_ERR[i][j]); 

            } 

            printf("\n"); 

    } 

    printf("\n"); 

} 
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FFTW 

 

1D_fftw3.c 

/* 

Created: 2/17/2018 

desciption: 

hello_fftw3.c with function of auto size and output to .csv 

Author:Qihao He 

*/ 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <time.h> 

#include "fftw3.h" 

// #include <unistd.h> 

#define REAL 0 

#define IMAG 1 

 

char Usage[] = 

    "Usage: hello_fftw3.bin log2_N [log2_M [loops [RMS_C]]]\n" 

    "log2_N = log2(FFT_length),       log2_N = 8...22\n" 

    "log2_M = log2(FFT_length),       log2_M > log2_N\n" 

    "loops  = number of test repeats, loops>0,       default 1\n" 
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    "RMS_C  = number of test repeats, T(1),F(0),     default 1\n"; 

 

double **REL_RMS_ERR; 

 

unsigned Microseconds(void); 

void RMS_malloc(int span_log2_N, int loops); 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR); 

void input_buffer(fftwf_complex* in, int N); 

void output_RMS(fftwf_complex *out, int span_log2_N, double **REL_RMS_ERR, 

  int N, int j, int k); 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR); 

 

int main(int argc, char *argv[]){ 

    int i, j, k, l, loops, freq, log2_N, log2_M, log2_P, N, RMS_C, span_log2_N; 

 

    unsigned t[4]; 

 

    fftwf_complex *in, *out; //in, out buffer 

    fftwf_plan p; //fftwf_plan prepare 

 

    log2_N = argc>1? atoi(argv[1]) : 12; // 8 <= log2_N <= 22 

    log2_M = argc>2? atoi(argv[2]) : log2_N + 1; // 8 <= log2_N <= 22 

    loops  = argc>3? atoi(argv[3]) : 1;  // test repetitions 
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    RMS_C  = argc>4? atoi(argv[4]) : 1;  // RMS_controller 

 

    if (!(argc >= 2 && argc <= 5) || loops < 1 || !(RMS_C >= 0 && RMS_C <= 1) 

    || log2_N >= log2_M) { 

        printf(Usage); 

        return -1; 

    } 

 

    span_log2_N = log2_M - log2_N; 

    RMS_malloc(span_log2_N, loops); 

    // initializing 2D, 3D array to 0 

    REL_RMS_ERR_init(span_log2_N, loops, (double **)REL_RMS_ERR); 

    // print out lables for .csv file 

    printf("log2_N,Init_T,FFT_T,RMS_T,Total_T\n"); 

 

    for(l = 0; l < span_log2_N; l++){ 

        log2_P = log2_N + l; 

        N = 1<<log2_P; // initializing FFT length: N 

        in = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * N); 

        out = (fftwf_complex *)fftwf_malloc(sizeof(fftwf_complex) * N); 

        p = fftwf_plan_dft_1d(N, in, out, FFTW_BACKWARD, FFTW_ESTIMATE); 

 

        for (k = 0; k < loops; k++) { 



91 
 

            t[0] = Microseconds(); 

            input_buffer(in, N); 

 

            t[1] = Microseconds(); 

            fftwf_execute(p); /* repeat as needed */ 

            t[2] = Microseconds(); 

 

            if(RMS_C == 1) output_RMS(out, span_log2_N, REL_RMS_ERR, N, l, k); 

            t[3] = Microseconds(); 

            printf("%i,%d,%d,%d,%d\n",log2_P,t[1] - t[0],t[2] - t[1], 

            t[3] - t[2],t[3] - t[0]); //print for .csv file 

        } 

        fftwf_destroy_plan(p); 

        fftwf_free(in); 

        fftwf_free(out); 

    } 

    // print out REL_RMS_ERR 

    if(RMS_C == 1) print_RMS(span_log2_N, loops, log2_N, REL_RMS_ERR); 

    return 0; 

} 

 

unsigned Microseconds(void) { 

    struct timespec ts; 
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    clock_gettime(CLOCK_REALTIME, &ts); 

    return ts.tv_sec * 1000000 + ts.tv_nsec / 1000; 

} 

 

void RMS_malloc(int span_log2_N, int loops){ 

    int i; 

    REL_RMS_ERR = (double **)malloc(span_log2_N * sizeof(double *)); 

    if(REL_RMS_ERR == NULL){ 

        printf("Malloc failed\n"); 

        exit(-1); 

    } 

    for (i = 0; i < span_log2_N; i++){ 

        REL_RMS_ERR[i] = (double *)malloc(loops * sizeof(double)); 

        if(REL_RMS_ERR[i] == NULL){ 

           printf("Malloc failed on loop %d",i); 

           exit(-1); 

        } 

    } 

} 

 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR){ 

    int i, j; 

    for(i = 0; i < span_log2_N; i++){ 
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        for(j = 0; j < loops; j++){ 

            REL_RMS_ERR[i][j] = 0; 

        } 

    } 

} 

// input buffer 

void input_buffer(fftwf_complex *in, int N){ 

    int i; 

    for (i = 0; i < N; i++) in[i][REAL] = in[i][IMAG] = 0; 

    in[1][REAL] = in[N - 1][REAL] = 0.5; 

} 

// output REL_RMS_ERR 

void output_RMS(fftwf_complex *out, int span_log2_N, double **REL_RMS_ERR, 

  int N, int j, int k){ 

    int i; 

    double tsq[2], a; 

    tsq[0]=tsq[1]=0; 

    a = 2 * M_PI / N; 

    for (i = 0; i < N; i++) { 

        double re = cos(a * i); 

        tsq[0] += pow(re, 2); 

        tsq[1] += pow(re - out[i][REAL], 2) + pow(out[i][IMAG], 2); 

    } 
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    REL_RMS_ERR[j][k] = sqrt(tsq[1] / tsq[0]); 

} 

// print out REL_RMS_ERR 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR){ 

    int i,j; 

    for (i = 0; i < span_log2_N; i++) { 

      printf("REL_RMS_ERR for log2_N:%d\n", log2_N + i); 

        for (j = 0; j < loops; j++) { 

          printf("%.10e,", REL_RMS_ERR[i][j]); 

        } 

        printf("\n"); 

    } 

    printf("\n"); 

} 

2D_fftw3.c 

/* 

Created: 2/27/2018 

desciption: 

hello_fftw3.c with function of auto size and output to .csv 

Author:Qihao He 

*/ 

#include <stdlib.h> 

#include <stdio.h> 
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#include <math.h> 

#include <time.h> 

 

#include "fftw3.h" 

 

#define REAL 0 

#define IMAG 1 

 

char Usage[] = 

    "Usage: hello_fftw3.bin log2_N [log2_M [loops [RMS_C]]]\n" 

    "log2_N = log2(FFT_length),       log2_N = 8...22\n" 

    "log2_M = log2(FFT_length),       log2_M > log2_N\n" 

    "loops  = number of test repeats, loops>0,       default 1\n" 

    "RMS_C  = RMS_controller, T(1),F(0),     default 0\n"; 

 

fftwf_complex *in, *out; //allocate arrays of in, out buffer 

fftwf_plan p; //fftwf_plan prepare 

double **REL_RMS_ERR; 

 

unsigned Microseconds(void); 

void RMS_malloc(int span_log2_N, int loops); 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR); 

void input_buffer(fftwf_complex* in, int N); 
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void output_RMS(fftwf_complex *out, int span_log2_N, double **REL_RMS_ERR, 

  int N, int j, int k); 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR); 

 

int main(int argc, char *argv[]){ 

    int i, j, k, l, loops, freq, log2_N, log2_M, log2_P, N, RMS_C, span_log2_N, 

    sizeofblock; 

    unsigned t[4]; 

 

    log2_N = argc>1? atoi(argv[1]) : 12; // 8 <= log2_N <= 22 

    log2_M = argc>2? atoi(argv[2]) : log2_N + 1; // 8 <= log2_N <= 22 

    loops  = argc>3? atoi(argv[3]) : 1;  // test repetitions 

    RMS_C  = argc>4? atoi(argv[4]) : 0;  // RMS_controller 

 

    if (!(argc >= 2 && argc <= 6) || loops < 1 || !(RMS_C >= 0 && RMS_C <= 1) 

    || !(log2_N >= 8 && log2_N <= 11 && log2_M <= 12)){ 

        printf(Usage); 

        return -1; 

    } 

 

    span_log2_N = log2_M - log2_N; 

    RMS_malloc(span_log2_N, loops); 

    // initializing 2D, 3D array to 0 
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    REL_RMS_ERR_init(span_log2_N, loops, (double **)REL_RMS_ERR); 

    // print out lables for .csv file 

    printf("log2_N,Init_T,FFT_T,RMS_T,Total_T\n"); 

 

    for(l = 0; l < span_log2_N; l++){ 

        log2_P = log2_N + l; 

        N = 1 << log2_P; // initializing FFT length: N 

        sizeofblock = N * N; 

        in = (fftwf_complex *) fftwf_malloc(sizeofblock * sizeof(fftwf_complex)); 

        out = (fftwf_complex *) fftwf_malloc(sizeofblock * sizeof(fftwf_complex)); 

 

        p = fftwf_plan_dft_2d(N, N, in, out, FFTW_BACKWARD, FFTW_ESTIMATE); 

 

        for (k = 0; k < loops; k++) { 

            t[0] = Microseconds(); 

            input_buffer(in, sizeofblock); 

 

            usleep(1); 

            t[1] = Microseconds(); 

            fftwf_execute(p); /* repeat as needed */ 

            t[2] = Microseconds(); 

 

            if(RMS_C == 1) output_RMS(out, span_log2_N, REL_RMS_ERR, 
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              sizeofblock, l, k); 

            t[3] = Microseconds(); 

            printf("%i,%d,%d,%d,%d\n",log2_P,t[1] - t[0],t[2] - t[1], 

            t[3] - t[2],t[3] - t[0]); //print for .csv file 

        } 

        fftwf_destroy_plan(p); 

        fftwf_free(in); 

        fftwf_free(out); 

    } 

    if(RMS_C == 1) print_RMS(span_log2_N, loops, log2_N, REL_RMS_ERR); 

    return 0; 

} 

 

unsigned Microseconds(void) { 

    struct timespec ts; 

    clock_gettime(CLOCK_REALTIME, &ts); 

    return ts.tv_sec * 1000000 + ts.tv_nsec / 1000; 

} 

 

void RMS_malloc(int span_log2_N, int loops){ 

    int i; 

    REL_RMS_ERR = (double **)malloc(span_log2_N * sizeof(double *)); 

    if(REL_RMS_ERR == NULL){ 
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        printf("Malloc failed\n"); 

        exit(-1); 

    } 

    for (i = 0; i < span_log2_N; i++){ 

        REL_RMS_ERR[i] = (double *)malloc(loops * sizeof(double)); 

        if(REL_RMS_ERR[i] == NULL){ 

           printf("Malloc failed on loop %d",i); 

           exit(-1); 

        } 

    } 

} 

 

void REL_RMS_ERR_init(int span_log2_N, int loops, double **REL_RMS_ERR){ 

    int i, j; 

    for(i = 0; i < span_log2_N; i++){ 

        for(j = 0; j < loops; j++){ 

            REL_RMS_ERR[i][j] = 0; 

        } 

    } 

} 

// input buffer 

void input_buffer(fftwf_complex *in, int sizeofblock){ 

    int i; 
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    for (i = 0; i < sizeofblock; i++) in[i][REAL] = in[i][IMAG] = 0; 

    in[0][REAL] = 1; 

} 

// output REL_RMS_ERR 

void output_RMS(fftwf_complex *out, int span_log2_N, double **REL_RMS_ERR, 

  int sizeofblock, int j, int k){ 

    int i; 

    double tsq[2], a; 

    tsq[0] = tsq[1] = 0; 

    tsq[0] = sizeofblock; 

    for (i = 0; i < sizeofblock; i++){ 

        tsq[1] += pow(1 - out[i][REAL], 2) + pow(out[i][IMAG], 2); 

    } 

    REL_RMS_ERR[j][k] = sqrt(tsq[1] / tsq[0]); 

} 

// print out REL_RMS_ERR 

void print_RMS(int span_log2_N, int loops, int log2_N, double **REL_RMS_ERR){ 

    int i,j; 

    for (i = 0; i < span_log2_N; i++) { 

      printf("REL_RMS_ERR for log2_N:%d\n", log2_N + i); 

        for (j = 0; j < loops; j++) { 

          printf("%.10e,", REL_RMS_ERR[i][j]); 

        } 
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        printf("\n"); 

    } 

    printf("\n"); 

} 

SciPy_FFT 

 

1D_scipyfft_test7.py 

#!/usr/bin/python 

""" 

Created: 2/14/2018 

desciption: 

scipy doing FFT and calcualte Relative RMS 

Author:Qihao He 

""" 

# import libraries 

import sys 

import gc 

import numpy as np 

import scipy as sp 

import math 

from scipy.fftpack import ifft, fft 

import time 
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# Usage 

Usage = """Usage: hello_scipy_fft.py log2_N [log2_M [loops [RMS_C]]] 

        log2_N = log2(FFT_length),       log2_N = 1...28 

        log2_M = log2(FFT_length),       log2_M > log2_N 

        loops  = number of test repeats, loops>0,       default 1 

        RMS_C = True(1), False(0),    default 0""" 

 

# Default values for optional arguments 

log2_N = 8 #default value to be 8 

if len(sys.argv) > 1: 

    log2_N = int(sys.argv[1]) 

 

log2_M = log2_N + 1 #default value to be 9 

if len(sys.argv) > 2: 

    log2_M = int(sys.argv[2]) 

 

loops = 1 #default value to be 1 

if len(sys.argv) > 3: 

    loops = int(sys.argv[3]) 

 

RMS_C = 0 

if len(sys.argv) > 4: 

    RMS_C = int(sys.argv[4]) 
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if (not 2 <= len(sys.argv) <= 5 or log2_M <= log2_N  or loops < 1 or not 

0 <= RMS_C <= 1): 

    print(Usage) 

    sys.exit() 

 

gc.enable() 

if not gc.isenabled(): 

    print"garbage collect not enabled." 

    sys.exit() 

 

span_N = log2_M - log2_N 

if RMS_C == 1: 

    REL_RMS_ERR = np.zeros((span_N, loops), dtype = np.float64) # 2D array 

 

print "log2_N,","Init_T,","FFT_T,","RMS_T,","Total_T" 

 

for j in range(span_N): 

    log2_P = j + log2_N 

    N = 1 << int(log2_P) #fft length 

    for k in range(loops): 

        t0 = time.time()# Time counter 

        # input buffer 
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        x = np.zeros((N, ), dtype = np.complex64) 

        x.real[1] = x.real[N - 1] = np.float32(0.5) 

 

        time.sleep(1/1000000.0) 

        # fft execute 

        t1 = time.time() 

        y = fft(x) 

        t2 = time.time() 

        # output buffer and rel_rms_err 

        if RMS_C == 1: 

            tsq0 = 0 

            tsq1 = 0 

            l = 2 * math.pi / N 

            for i in range(N): 

                re = np.cos(l * i) # True solution 

                tsq0 += re * re 

                a = re - y.real[i] 

                b = y.imag[i] 

                tsq1 += a * a + b * b 

            REL_RMS_ERR[j][k] = math.sqrt(tsq1 / tsq0) 

 

        t3 = time.time() 

        print  log2_P,",",t1 - t0,",",t2 - t1,",",t3 - t2,",",t3 - t0 
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        del x,y 

        time.sleep(1/1000000.0) 

        gc.collect() 

 

if RMS_C == 1: 

    print"rel_rms_err = ", REL_RMS_ERR 

 

2D_scipyfft_test1.py 

#!/usr/bin/python 

""" 

Created: 2/14/2018 

desciption: 

scipy doing FFT and calcualte Relative RMS 

Author:Qihao He 

""" 

# import libraries 

import sys 

import gc 

import numpy as np 

import scipy as sp 

import math 

from scipy.fftpack import ifft2, fft2 

import time 
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# Usage 

Usage = """Usage: hello_scipy_fft.py log2_N [log2_M [loops [RMS_C]]] 

        log2_N = log2(FFT_length),       log2_N = 8...11 

        log2_M = log2(FFT_length),       log2_M > log2_N 

        loops  = number of test repeats, loops>0,       default 1 

        RMS_C = True(1), False(0),    default 0""" 

 

# Default values for optional arguments 

log2_N = 8 #default value to be 8 

if len(sys.argv) > 1: 

    log2_N = int(sys.argv[1]) 

 

log2_M = log2_N + 1 #default value to be 9 

if len(sys.argv) > 2: 

    log2_M = int(sys.argv[2]) 

 

loops = 1 #default value to be 1 

if len(sys.argv) > 3: 

    loops = int(sys.argv[3]) 

 

RMS_C = 0 
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if len(sys.argv) > 4: 

    RMS_C = int(sys.argv[4]) 

 

if (not 2 <= len(sys.argv) <= 5 or log2_M <= log2_N  or loops < 1 or not 

0 <= RMS_C <= 1): 

    print(Usage) 

    sys.exit() 

 

gc.enable() 

if not gc.isenabled(): 

    print"garbage collect not enabled." 

    sys.exit() 

 

span_N = log2_M - log2_N 

if RMS_C == 1: 

    REL_RMS_ERR = np.zeros((span_N, loops), dtype = np.float64) # 2D array 

 

print "log2_N,","Init_T,","FFT_T,","RMS_T,","Total_T" 

 

for l in range(span_N): 

    log2_P = l + log2_N 

    N = 1 << log2_P #fft length 

    for k in range(loops): 
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        t0 = time.time()# Time counter 

        # input buffer 

        x = np.zeros((N, N), dtype = np.complex64) 

        # print "refcount:",sys.getrefcount(x) 

        x.real[0,0] = np.float32(1) 

 

        time.sleep(1/1000000.0) 

        # fft execute 

        t1 = time.time() 

        y = fft2(x) 

        t2 = time.time() 

 

        # output buffer and rel_rms_err 

        if RMS_C == 1: 

            tsq0 = 0 

            tsq1 = 0 

            tsq0 = N * N 

            for i in range(N): 

                for j in range(N): 

                    a = 1 - y.real[i][j] 

                    b = y.imag[i][j] 

                    tsq1 += a * a + b * b 

            REL_RMS_ERR[l][k] = math.sqrt(tsq1 / tsq0) 
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        t3 = time.time() 

        print  log2_P,",",t1 - t0,",",t2 - t1,",",t3 - t2,",",t3 - t0 

        # print gc.get_count() 

        del x,y 

        time.sleep(1/1000000.0) 

        gc.collect() 

 

if RMS_C == 1: 

    print"rel_rms_err = ", REL_RMS_ERR  
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