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 Fig. 3-6 depicts several product peaks. The proposed product is the exo-added 

thioether from DEG onto carbic diacid. The alkene is gone from the carbic group and the 

protons in the half of the DEG molecule on the side of the reaction is expected to express 

discernable peaks from those on a non-reacted side, which are expected to remain 

effectively unchanged from the starting DEG. Ha and Hb should be the least altered of the 

DEG protons, so they appear near 3.60 ppm and 3.65 ppm respectively. Hi and Hj are 

similar to the bridge protons in carbic diacid, which formed a paired system of peaks at 

1.28 ppm and 1.32 ppm. A new apparently paired system is seen at shifts of 1.37 ppm and 

1.61 ppm, so Hi and Hj are assigned to those peaks. The "most alkane" proton then available 

is He which is therefore believed to appear at 1.1 ppm. A new peak that could be attributed 

to the thio-ether appears at 3.21 ppm that is believed to be Hd while the other axial proton 

Hf is seen at 1.98 ppm. Bridgehead protons are in slightly different environments and split 

from one another with Hh and Hg at 3.08 ppm and 3.02 ppm. The remaining peaks at 2.72 

ppm, 2.50 ppm, and 2.43 ppm are expected to be attributable to Hc, Hl, and Hk. 

Fig. 3-6 Proton NMR Spectrum of Autogel Model Reaction. Chemical shift range 
andjusted to 1.0 ppm to 3.8 ppm. Red peaks are attributable to carbic diacid starting 
material and blue peaskes are attributable to DEG. Product peaks are uncolored. 
Magenta chemical structure depicts proposed product to correspond with magenta 
labels for proposed proton peak assignments.  
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 The exo product shown in Fig. 3-6 is expected as a result of the hyperconjugation 

of norbornene causing the slightly opened book on the exo side in addition to the endo 

carboxylic acids on the opposite side of the norbornene ring that would sterically hinder 

the endo approach (Spanget-Larsen and Gleiter 1982, 1983). The product peaks are 

consistent with such a product as shown, and support the formation of the same product in 

both the case of the autogelation and the UV-initiated gelation. 

3.3.3. Thiol and Norbornene Concentration Effects  

 In rheology, the loss modulus and storage modulus can be tracked to determine the 

point at which a mixture turns from a liquid to a solid. The loss modulus follows the energy 

that is lost to flow of material during deformation. The dependence on flow makes it 

analogous to the fluid character of the material. The storage modulus tracks the energy 

stored during deformation due to an elastic characteristic. The storage modulus is therefore 

tracks the solid character of the material. If the loss modulus is greater than the storage 

modulus the material can be considered predominantly fluid, but if the storage modulus is 

greater than the loss modulus, the material is predominantly solid. By tracking both moduli 

over time, the point at which the storage modulus overtakes the loss modulus is declared 

the point of gelation - the point where the material changes from a solid to a gel as shown 

in Fig. 3-7, indicated by a red circle. 
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 In the rheological plot shown in Fig. 3-7 three regions can be seen. Starting at the 

far left of the plot at early time points, the loss modulus is greater than the storage modulus 

at about 0.2 Pa and 0.05 Pa respectively (note that the y axis is logarithmic on most 

rheological plots). There is greater noise in the lower value as it is more difficult for the 

rheometer to effectively read the lower of the two values while measuring both at once. 

The storage modulus is slightly masked by the loss modulus, causing the noise. Moving 

along the time axis from this region, there is a brief point where the storage modulus 

increases very sharply. At this point, a critical crosslink density where the material is 

transitioning very quickly from a solution to a gel. There is a still sudden but less significant 

increase in loss modulus at the same time that can be attributed to greater energy loss to a 

more viscous fluid that is also the result of crosslinking. After this point of gelation, the 

Fig. 3-7 Autogelation Rheology Plot. A representative rheological plot of 
4 wt% 30% functionalized cCMC mixed with DEG to form a 
thiol:norbornene ratio of 1:1 in PBS  at 37 ºC. Note that the y axis is 
logarithmic. The red circle notes the point that the storage modulus 
crosses the loss modulus while increasing rapidly. 
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storage modulus continues to rise, though more slowly than during gelation. The loss 

modulus remains relatively stable though is obscured by some noise.  

 Autogels were measured by time to gelation - the amount of time required on the 

rheometer to observe gelation. while measuring effects on time to gelation, many of the 

parameters investigated were similar to those investigated in compression tests. Percent 

functionalization of cCMC was tested for effects on time to gelation with a consistent 

thiol:norbornene ratio of 1:2 shown in Fig. 3-8. 

 

 Increased carbic functionalization results in decreased time to gelation; gels formed 

faster with greater carbic functionalizations as would be expected. Greater concentration 

of carbic groups leads to greater chances for crosslinks to form, which form quicker as a 

result. Further, it would appear from Fig. 3-8 that the increase in cCMC functionality from 

29% to 40% reduces the time to gelation by 43% while a similar jump in functionalization 

Fig. 3-8 cCMC Functionalization Effect of Autogelation. Time to gelation 
measured using 4 wt% of various funtionalizations of cCMC using 
thiol:norbornene ratios of 1:2. Autogels formed at 37 ºC using the standard 
cone-plate geometry assembly. Error bars depict 95% confidence intervals 
(n≥4). 
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from 17% to 29% reduces the time to gelation by only 10%. Similar results are seen in Fig. 

3-9 with varied thiol:norbornene ratio. 

 

 Increasing the thiol:norbornene ratio - increasing the thiol concentration of the 

autogel formulation - increased the speed at which crosslinks formed and decreased the 

time taken for autogels to form. The time to gelation reduction for the increased thiol 

concentration is greatest for the first few equivalents, as doubling thiol from 1:2 to 1:1 

reduces the time to form an autogel by 73%, but after that, time decreases are less 

noticeable. Increasing thiol:norbornene ratio from 1:1 to 2:1 reduces the time to gelation 

by only 36%. Increasing even further to 5:1 results in another slighter time decrease of 25% 

At thiol ratios of 5:1 and higher for 30% functionalized cCMC, the solution becomes 

cloudy, indicating that DEG is not fully soluble at these concentrations. At this point, 

further increases in thiol concentration does not decrease autogelation time as only so much 

Fig. 3-9 Thiol Concentration Effect on Autogelation. Time to gelation 
measured in solutions of 4 wt% 30% functionalized cCMC that was mixed 
with varied thiol concentrations to achieve the thiol:norbornene ratios shown. 
Hydrogels were formed at 37 ºC. Error bars depict 95% confidence intervals 
(n≥5). 
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DEG is effectively in solution - making the high thiol:norbornene labels potentially 

misleading.  

 Both carbic functionalization and thiol concentration (expressed through 

thiol:norbornene ratio) result in an increased availability for crosslinking and therefore 

increase the overall rate of reaction, which decreases the time to gelation.  

3.3.4. Temperature Effects 

 It was noticed early on that temperature had an effect on the rate of autogelation. 

Preliminary autogels formed in microcentrifuge tubes seemed to form either over the 

course of hours at room temperature, but when placed in an incubator seemed to autogel 

after about 20 minutes. Similarly, some materials were partially used in other experiments 

and the remainder was then stored in the laboratory refrigerator at 2 ºC. It was found that 

those solutions in the refrigerator gelled after several days. A series of temperature-

controlled experiments were performed to confirm the effect of temperature on 

autogelation as shown in Fig. 3-9. 
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 As can be seen, increased temperatures correlate with decreased times to gelation. 

It is expected that the increase in temperature is a simple kinetic effect that drives the 

reaction forward, increasing the effective rate of reaction which leads to hydrogels forming 

more quickly. This follows the same pattern seen in increasing the reactant concentrations. 

Yet increasing the temperature should remove oxygen solubility from the mixture, which 

indicates that the TOCO reaction (introduced in section 1.4.2.)  is not necessarily at play 

here. The alternative is that the increase in kinetics overshadows the lost availability of 

oxygen in the system. 

3.3.5. Dissolved Oxygen Effects 

 Often times polymerization or crosslink reactions are affected by molecular oxygen 

dissolved in the reaction solution. Oxygen in its lowest energy state is a triplet which is 

technically a diradical, which makes it reactive with certain compounds through radical 

pathways. Unintended radical reaction beginning with molecular oxygen is not unheard of, 

Fig. 3-10 Temperature Effect on Autogelation. Temperature responses of autogelation 
of 4 wt% 30% functionalized cCMC with thiol:norbornene ratio of 1:1. Rheology 
performed with a 40 mm cone-plate assembly. Error bars represent 95% confidence 
intervals (n=5). 
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and is sometimes protected against, but it is more common that molecular oxygen inhibits 

radical reaction by reacting with and quenching other readily formed radical species (Lee 

et al. 2004).  

 Oxygen was removed from all the individual components of the autogel mixture as 

thoroughly as possible and components were mixed in a nitrogen environment. Oxygen 

could not be entirely excluded because the solution had to be exposed to atmosphere in 

order to be tested on the rheometer, however the deoxygenated solution likely had a lower 

oxygen content compared to the standard mixture. Fig. 3-10 shows the results of 

deoxygenation on autogelation.  

 

 Deoxygenation of solution did not stop autogelation, but did delay it. An increase 

in time to gelation of about 200 seconds was observed in autogels that had been 

deoxygenated prior to being placed on the rheometer. This increase in time to gelation in a 

Fig. 3-11 Dissolved Oxygen Effects on Autogelation. Effects of deoxygenation of solution 
on autogelation. Oxygen was removed using ultrasonication and nitrogen purging. 
solutions were both made with 4 wt% 30% functionalized cCMC and DEG crosslinker 
with a 1:1 thiol:norbornene ratio. Error bars depict 95% confidence intervals over time to 
gelation (n=4). 
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solution with less dissolved oxygen indicates that dissolved oxygen may have had a part in 

initiating or propagating a reaction between DEG and cCMC. The autogelation of the 

materials discussed in Fig. 3-11 is not solely a result of oxygen that was reintroduced during 

rheology experiments, as extra material that was not measured on the rheometer was also 

observed undergoing autogelation without reexposure to oxygen. The deoxygenation 

results do suggest that some TOCO reaction could be taking place, though if the TOCO 

reaction were the exclusive case, it would be expected that so much oxygen removal would 

have had a greater effect delaying autogelation, especially in the hydrogels not measured 

on the rheometer. Freeze-pump-thaw methods described in section 3.2.5. are common in 

effectively preventing oxygen reactions in other polymer/radical systems (Wallace and 

Bard 1979; Baum and Brittain 2002), so that they would have had such a small effect in 

the autogelation system is surprising.  

3.3.6. Hydroquinone Effects 

 Hydroquinone is often used as a radical inhibitor. It is capable of scavenging two 

moles of radical species per mole of hydroquinone as it oxidizes to benzoquinone. 

Hydroquinone was added by mass rather than by stock solution because hydroquinone 

readily oxidizes in water over the course of a couple hours. Making stock solutions would 

have been wasteful, so a scatterplot was created comparing gelation time to actual 

hydroquinone concentration in a 4 wt% of 30% functionalized cCMC and 1:1 

thiol:norbornene ratio autogel formulation to be analyzed with a linear regression as shown 

in Fig. 3-11. 
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 Fig. 3-11 does is not show an especially strong trend that demonstrates 

hydroquinone affecting the rheological properties of autogel formation, but the slope 

generated is statistically significant and demonstrates increased hydroquinone 

concentration results in increased time to. This experiment was originally conducted using 

hydroquinone:DEG equivalents of 0 to 10, but a later hydroquinone-saturated system was 

used to test the limits of the effect at 28 equivalents, which is roughly the equivalent of 1.3 

M hydroquinone, the saturation point of hydroquinone in water. In both cases - including 

and excluding the hydroquinone saturated case - the trend was significant. 

 The apparent effect of hydroquinone on autogelation indicates that the 

hydroquinone radical scavenging activity is able to inhibit the process to an extent and that 

autogelation is a radical process. However, hydroquinone is used typically in 

comparatively small amounts as a radical inhibitor. When hydroquinone was first patented 

Fig. 3-12 Effects of Added Hydroquinone on Autogelation. Added hydroquinone (as 
measured in molar equivalents to DEG) on the time to gelation of autogels that formed 
from 4 wt% 30% functionalized cCMC and DEG with 1:1 thiol:norbornene at 37 ºC.  



 83 

to use in inhibiting radical oxygen reactions in boiler feedstock waters, it was used with a 

"maximum" concentration of 35 ppm which was found to inhibit 97% of oxygen activity. 

The autogel with most concentrated hydroquinone had a hydroquinone concentration of 

77,000 ppm, which makes it seem unlikely that a hydroquinone saturated system would be 

able to react via a radical pathway - especially one in which the radical source is oxygen. 

This seems to suggest that there may only be a partial radical effect on autogelation, or that 

the radical species would have occurred as either a minor or tangential reaction 

intermediate. 

3.3.7. pH Effects 

 The effects of pH were investigated by mixing otherwise standard autogel solutions 

in aqueous solvents with various pH levels. The final pH values would be slightly different 

from the solvent due to the carboxylic acids of cCMC, but the general effect persisted as 

tested with disposable litmus paper strips. The effects of pH are shown in Fig. 3-13. 

 

Fig. 3-13 pH Effects on Autogelation. Autogels were prepared using 4 wt%  30% 
functionalized cCMC in solution with 1:1 thiol:norbornene ratio of DEG. Error bars 
depict 95% confidence intervals (n≥3) except for pH=12 condition in which n=1.  
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 Basicity slows autogelation as evidenced by the increase in time to gelation at 

higher pH - especially the sample mixed at a pH of 12. Time to gelation increases seem 

much more moderate at lower pH but beyond pH of 7.4 - PBS, the standard solvent for 

these cCMC hydrogels - gelation times appear to increase rapidly. Higher pH systems were 

not tested extensively and do not display error bars because the basic solution began to 

react with the rheometer hardware, but when autogelation was observed after such a long 

time with an otherwise acceptable rheological profile, the value was accepted.   

 This pH sweep indicates that the autogelation mechanism at play is either acid-

catalyzed or base-inhibited. It is unlikely that this is the result of an indirect oxygen content 

effect, because increased pH usually correlates with increased oxygen content (Makkaveev 

2009), which would have accelerated the autogelation. So, it does appear that there is a pH 

effect in the mechanism causing autogelation. The trend that increased pH inhibits 

autogelation finally wipes-out the case for Michael addition which is base and nucleophile 

catalyzed. This pH trend is also not supported by the TOCO reaction mechanism which is 

not directly pH sensitive, though it does not rule out a TOCO pathway at other reaction 

conditions. pH could be affecting the non-dissociated thiol concentration. If the complete 

thiol is needed for the reaction to proceed, in which case lower pH would promote the 

reaction by increasing the concentration of the reactant.  

3.3.8 Conclusions 

 Autogelation is accelerated by higher concentrations of thiol and norbornene, 

higher temperatures, dissolved oxygen in solution, and acidic conditions. Autogelation can 

also be slowed by hydroquinone, low temperatures, and degassing, but cannot be halted by 

these conditions. Michael addition is not the mechanism by which autogelation proceeds, 
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and TOCO is only supported by vaguely by dissolved oxygen content results, which 

indicates that it may play a role, but that other reactions are responsible for autogelation as 

well.   
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

4.1. Conclusions 

4.1.1. UV Hydrogels and cCMC  

 CMC can be functionalized with carbic anhydride to yield cCMC, a cellulose 

derivative with attached norbornene groups for added specialized reactivity. The extent to 

which CMC is converted to cCMC can be controlled using reaction parameters such as pH 

and carbic anhydride concentration and measured via proton NMR spectroscopy. 

Realistically, functionalizations between 10% and 40% are easy to achieve, though 

hydrolysis in water is a potential drawback. 

 Hydrogels based on cCMC can be made easily employing the thiol-ene reaction 

using DEG as a dithiol crosslinker and I2959 as a radical initiator. 365 nm UV light at 10 

mW/cm2 was sufficient for crosslinking after 30 seconds of exposure on samples that were 

about 2 mm thick with a microscope glass coverslip as a cover. Thiol:norbornene ratios of 

1:2 were mostly sufficient for creating hydrogels of usable stiffness (about 70 kPa) in range 

for biomedical applications (Denisin and Pruitt 2016) for sound dressings or drug delivery 

and with degradation rates under 0.2% MLOP per day. This material could also potentially 

be utilized in agriculture as a soil additive, especially if higher wt% hydrogels can be made 

even stiffer.   

4.1.2. Autogels 

 Solutions of cCMC and DEG are able to crosslink spontaneously despite previous 

literature indicating a general need for a radical initiator. These so-called autogels are 

usually less stiff (25 kPa) and more quick to degrade (0.5% MLOP per day) due to their 
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lesser effective crosslink density - roughly halved -  formed at the same reactant 

concentrations as UV-initiated hydrogels. Autogels with this lower effective crosslink 

density are also suitable for use as absorbents where products are distributed dry and 

swelling potential is paramount over mechanical durability (Sannino et al. 2009).  

 Regardless of the differences in the reaction, the same products appear to form in 

autogels as those made by the UV induced reaction. And mechanical properties can also 

be controlled by the same properties controlled in UV-initiated hydrogels - carbic 

functionalization and DEG crosslinker concentration.  

 The rate of gelation of autogels can also be controlled by temperature, solution pH, 

oxygen content, and hydroquinone concentration as an inhibitor. These may give insight 

into the mechanism of reaction between DEG and the carbic group, which is yet 

undetermined. Evidence such as oxygen removal and pH seem to support the conventional 

TOCO reaction scheme, however solution temperature doesn't necessarily follow suit. 

Hydroquinone radical inhibitor technically has the right relationship to seem to support the 

TOCO reaction, but the concentrations of hydroquinone were so great that it seems at first 

too slight an effect for TOCO to be wholly responsible as it is currently understood.  

4.2 Future Work 

 Future investigations into UV-initiated cCMC with DEG - or other conventional 

radically induced systems - should investigate biocompatability and drug loading of the 

cCMC-DEG hydrogels. This material would be especially simple to use as a wound 

dressing if it expressed beneficial traits in both these fields. The cellulose base also makes 

cCMC-DEG hydrogels very appealing for agricultural use if the hydrogels themselves and 

the byproducts of degradation showed to be compatible with plant life and other 
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environmental components. Other potential work could be investigated in growing cells 

within cCMC-DEG hydrogels. This system appears to be set for seeking application. 

 The autogels of the same material could presumably benefit from the same 

application-specific investigations as the conventionally-initiated system. However, the 

autogelation reaction is especially interesting and seems to be unique in the realm of thiol-

ene reactions. The first experiment that would be most useful for this investigation would 

be electron paramagnetic resonance (EPR) spectroscopy. EPR could help to determine the 

source of radical species in the hydrogel solution and potentially the location of radicals on 

intermediates in the autogelation reaction. This could determine the steps of the mechanism 

that are currently unclear, or eliminate possibilities that may currently be leading astray 

from reality.  

 Once the mechanism for autogelation can be determined, other uses for the system 

may prove very helpful. Investigations could be done into how this solution could be 

injected sub-dermally and how or if hydrogels would form, which may be a very helpful 

system in drug delivery without causing too much physical stress on a system and with the 

ability to create a hydrogel of any shape without further intervention to initiate gelation. 
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