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A significant challenge in learning science and mathematics is coordinating different 

types of mental models, such as mathematical and physical mental models, that represent 

different aspects of a given phenomenon.  This challenge is illustrated in the present study, in 

which we observed a small number of college students reasoning about forces as both physical 

and mathematical quantities as they reasoned about a physical system.   Using video analysis of 

the students’ gestures when they thought qualitatively and mathematically about the system, we 

documented the construction and coordination of participants’ physical and mathematical mental 

models. It was found that the participants readily constructed mathematical mental models as 

imagined vector arrows or lines, but they less readily constructed physical force mental models 

as imagined pulls.  Moreover, students rarely exhibited coordinated vector (mathematical) and 

force (physical) mental models needed to represent the force vector component, which was key 

to understanding the overall system. Taken together with the assumption that coordinated 

mathematical and physical mental models support robust understanding, these findings suggest 

that instruction in physical-mathematical quantities, such as force vectors, would benefit from 



 
 

 
 

greater emphasis on building mental models of physical aspects of such quantities and 

coordinating these with mental models of mathematical aspects. 
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INTRODUCTION 

In education, we are constantly looking for ways to enhance our practices and better 

ourselves as educators.  In education research, we strive to find information that can show us 

how best to teach science for understanding (National Resource Council’s Framework for K-12 

Science Education, 2012).  One of the common threads in such research is the study of what 

kinds of cognitive skills are needed to understand science concepts (Reif, 1987b).  Science has 

many difficult disciplines with which students struggle, and the more we learn, the better 

students will successfully learn such concepts (Glynn and Muth, 2006) One such area of 

difficulty is on the concept of force vectors in physics.  This topic constantly eludes students 

(Halloun, 1996).  Breaking this topic into its roots (vectors and forces) finds research that shows 

each components presents similar difficulties to students, as will be discussed in length in the 

literature review to follow.  Such difficulties lie most prominently at the intersection of 

mathematical and conceptual reasoning.   

One way to conceptualize student thinking is through mental models. Mental models are 

a reinstatement of a perceptual experience and are used to reason about systems (Hegarty and 

Waller, 2005).  The National Resource Council’s Framework also states, “Better mental 

models…lead to a deeper understanding of science and enhanced scientific reasoning.” (National 

Resource Council’s Framework for K012 Science Education, 2012)  This illustrates the 

importance of mental models in the learning of science, and necessitates further understanding 

therein. 

To better teach the topics of force vectors in physics, we must first learn more about the 

role of mental models in students’ understanding of force vector concepts. This study aimed to 

shed light on several different types of mental models that students generate when encountering 
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force vectors by observing the mental models generated by eight introductory physics students at 

a public university.  A video recording of the students performing a laboratory activity was 

transcribed and analyzed to discover the relationship between mental model generation and the 

difficulties students encounter at the intersection of mathematics and force concepts in 

introductory college physics.  A discussion of the variety, frequency, and effectiveness of these 

models, as well as several case studies of individual experiences, provide insight into the types of 

mental models exhibited by students learning force vectors in an introductory college physics 

course.   
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LITERATURE REVIEW 

Within this section existing research of mathematics and physics education and mental 

models will be presented and discussed. An emphasis is made on the juxtaposition of algebraic 

and conceptual understandings in each of the aforementioned topics.  However, the literature will 

show that this juxtaposition hinders student understanding in a variety of topics. The discussion 

of mental model research will suggest that such models be used as a theoretical framework to 

help the researcher understand student thinking, as they are useful in describing student spatial 

understanding. Using mental models to depict student comprehension could provide insight into 

why students struggle with the connection between algebraic and conceptual rationales, which 

would allow teachers to better address such difficulties.  

In mathematics research, there are data to suggest children have great difficulty 

structuring space when talking about math problems, as well as within specific spatial 

mathematics topics such as length, area, and statistics (Battista 1999; Cohn 1997; Clements 

1999; Curry 2005; Hollenbrand 2004; Sharma 1993; Tarte 1990; Yelland 1997).  In Harris’ 2011 

study on student understanding of area, the authors implemented experience-based activities 

instead of teaching the formula directly. They showed that students were more confident in 

calculating area when using a visual tool. This tool provided a spatial reference for the students 

when doing their calculations. Similarly, Lehrer et al. (2002) studied various instructional 

strategies when teaching students about similarity of rectangles. The author showed first how 

elementary students were able to use algebraic tools to determine “rules” for rectangle similarity. 

Students were then able to separately identify similar rectangles when they were able to plot 

them on a coordinate plane. The similarity line of the rectangles showed students that the line 

could “go on forever” which supported the students’ ability to consider similarity of 
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rectangles.  The students used the graphical model to improve their thinking beyond a simple 

mathematical sentence, yet never combined the ideas of algebraic notation and the graphical 

representation of similar rectangles. Rather, the graphical analysis was a tool used by the 

instructor to further children’s understanding of geometric concepts when they had not yet been 

taught the formal algebraic equivalent.  Frank (1991) further discussed these tools through the 

example of cardinal directions (e.g., “geometric intuition” similar to that of a coordinate plane), 

which the author states are an application of cognition outside of numbers. Beyond a coordinate 

plane with numerical foundations, students are aware of cardinal directions, showing that 

graphing (also directional) doesn’t necessitate numeric values. This adds evidence to the 

separation of algebraic concepts from Cartesian coordinates discussed in the Lehrer (2002) 

study.  The usage of both algebraic and spatial skills (that are simple suggestions in mathematics) 

is necessitated in subjects like physics where you are attempting to interpret or describe a 

physical quantity. Vectors exemplify this situation, as students must evaluate the magnitude and 

direction simultaneously.  

Though literature on vector understanding in math is limited, there are a few studies that 

demonstrate the difficulty vectors present. Neerings and Vergari (2008) discuss how procedural 

(algebraic) processes in vectors do not necessarily result in conceptual understanding. Vector 

concepts are inherently spatial, and their relationship with algebraic processes is disjointed. The 

Forster (2000) case study showed that even when vector problems were given in a real life 

spatial context (e.g., distance and direction from home), algebraic testing revealed a lack of 

understanding. The Maracci (2005) study pointed out that vectors present a duality between a 

spatial object and an algebraic process; students had trouble associating these two. This study 

illustrates that within math, even at the collegiate level, a cognitive separation occurs as students 
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attempt to apply vector objectivity with the use of vector processes. These studies repeatedly 

show a disconnect between spatial reasoning and algebra, as was noted earlier in more general 

mathematical topics. However, there have been studies that showed that students who initially 

struggled with the algebraic processes improved when taught using spacial (embodied) strategies 

(Watson et al. 2003). Reconciling this disconnect between algebraic and spatial aspects of 

mathematics is important to ensuring the success of students. This reconciliation is crucial in a 

two-dimensional force context in physics.  

It has been shown that students have historically had difficulty with static force problems 

in one and two dimensions (Minstrell 1982 and Clement 1982). Some authors seem to imply that 

the key to understanding vector quantities in physics is to achieve a high degree of fluency with 

vectors and vector operations in mathematics.  For instance Knight et al. (1995) explains the 

importance of student vector knowledge prior to force vector instruction:  “Regardless of the 

method or methods employed, beginning physics students need explicit instruction in and 

proactive use of vectors.  The majority do not bring a working knowledge of vectors with them 

to the course.”  So perhaps prior instruction is the reason students have such issues with force 

vectors. It should also be noted that students without high scores in math tend to struggle with 

introductory physics concepts (Meltzer 2002). Based on previous discussion about difficulties 

students have with vectors, it may be inferred that these students would also struggle with 

applications of vectors in physics. Indeed, in a study by Nguyen (2003), a significant amount of 

students who began a calculus-based college physics course with a rudimentary knowledge of 

vector quantities and manipulations saw no change in their level of understanding in vectors even 

after a full semester of instruction in physics. The course was one “in which students are 

assumed from the very first day to have considerable expertise with vector methods” (Nguyen 
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2003). The study shows that a physical context for vector knowledge is not sufficient for gains in 

this subject. Further, Shaffer and McDermott (2005) suggest one of the issues students have is 

“not associating the direction of the acceleration with that of the net force.” They also note “the 

difficulties that the introductory students had with kinematics extended beyond vector 

formalism.”  

There is currently, to the author’s knowledge, no study explicitly linking the dissociation 

between spatial and algebraic components seen within the mathematics literature, with the 

struggles experienced by students in force vector problems in physics. However, based on the 

analysis of the literature presented above, it may be possible that these two individually observed 

phenomena are related. Indeed, if this is the case, then the inability to associate algebraic and 

spatial quantities within vector contexts, may compound with the inability to understand vector 

applications in physics, further causing issues within the comprehension of two dimensional 

physics problems. In Flores’s study (2004) physics students were given a picture of a gymnast 

holding herself up by 2 ropes with her arms at an angle. The gymnast weighed 500N and 

students were asked if the force exerted by the left is less than, greater than or equal to 250N. 

Only 20% answered correctly, and 70% said it would be equal to 250N (results were similar in 

both algebra and calculus based physics courses). The results show students can find it difficult 

to reason about static force problems in two dimensions. Further, students in physics have 

increased difficulty transferring their vector knowledge into a physical context in two 

dimensions, again pointing to the historical lack of association between spatial and algebraic 

reasoning.  The teaching implication here is apparent: spatial reasoning is imperative in student 

comprehension of physics. Pallrand et al. (1984) studied the relationship between spatial 

reasoning and success in physics courses. Indeed, they found that students possessing spatial 
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reasoning skills did in fact perform better in physics courses, as expected. However, 

implementing teaching methods to emphasize student spatial reasoning skills will only be 

successful if it is understood how students envision these spatial concepts in physics. To do so, 

one can look at cognitive trends across students with regards to how they attempt to understand 

the subject matter being taught.  

Theoretical Framework 

Student cognition in the subject of physics has been studied in the areas of gesture, 

representations, embodied cognition, and spatial reasoning (Hegarty 1992; Schwartz 1996; 

Shapiro 2010; Nersessian 2008; Shepard and Metzler 1971). In Segal’s (2011) study continuous 

vs. discrete actions are discussed. Each is important for different tasks such as number line vs. 

counting.  Halloun (1998) describes a similar dichotomy; wherein schemata and constructs are 

non-visual and visual models, respectively, formed by students when attempting to explain 

phenomena. These models are composed of various stages and forms, and involve mathematical 

equations, organizations, etc. In a study by Shemwell (2012), the author defines the term 

cognitive representation as “thoughts by which a person’s conception of some aspect of a 

scientific entity or process takes on meaning.”  He discusses two types of representations: 

depictive, using pictorial and symbolic operators; and propositional, using rule based methods 

such as equations.  A consistent theme in the studies reviewed here is a divide within means of 

comprehension between algebraic and spatial understanding. As discussed previously, force 

vector quantities are a prime example of this, and must clearly use the non-visual models 

described above. Yet, these trends do not answer whether students can use discrete and 

continuous thinking together to solve problems at the intersection of these fields.  
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Symbolic (algebraic) operators in mathematical vector knowledge are only half of what 

students need in order to understand vector quantities in physics.  The other half is not being 

addressed and leads to an incomplete picture for students in many areas of science.  As will be 

discussed below, mental models are a neglected aspect of spatial reasoning in instruction.  

The National Resource Council’s Framework for K-12 Science Education states, “mental 

models are internal, personal, idiosyncratic, incomplete, unstable, and essentially functional” 

tools with which students generate ideas about concepts (National Resource Council’s 

Framework for K-12 Science Education, 2012).  These tools are, predictably, the missing piece 

for students to have a clear understanding of the vector knowledge mentioned above. According 

to theory, mental models are mostly depictive, or a “reinstatement of a perceptual experience 

(Schwartz and Black, 1996).”  They are used to reason about systems (Hegarty and Waller, 

2005) and are generated in perceptual systems, rather than language-based rules (Nersessian, 

2008), and are therefore not based on rules or equations. If mental models are tools that allow 

students to reason spatially, then there should be specific instructional materials that aid teachers 

in supporting student expression of mental models.  

As seen in studies about vectors and physics such as those noted above, many curricula, 

college level and before, include little to no strategies to aid students in the development of 

mental models.  If these strategies are present, it is most often the formulation of algebraic 

constructs.  Science classes will often give students objects, structures, and processes to aid them 

in their understanding of certain concepts (Doerr, 1996).  If these models could be observed and 

with algebraic and spatial coordination in mind, instructors could know what to look for and 

could therein apply teaching strategies based on their occurrence.  

Research Questions 
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As elaborated upon previously, the mental models that students generate while learning 

deeply influence their ability to learn. Indeed, the National Resource Council’s Framework 

states, “better mental models…lead to a deeper understanding of science and enhanced scientific 

reasoning” (National Resource Council’s Framework for K012 Science Education, 2012). The 

literature regarding mathematics and physics education and cognition, as has been discussed at 

length above, details that these mental models tend to align with either algebraic or spatial 

notions. To further understand the types of mental models observed during physics instruction, 

the goal was to reveal students’ mental models when solving a force vector problem within a 

model-rich instructional context, to observe the interactions between the mathematical 

(algebraic) and physical (spatial) reasoning skills of students. Therefore, the following research 

question was asked: 

• How do introductory physics students use mental models to produce explanations 

about force vector interactions? 

In an attempt to answer this question, the current study will look closer at students’ 

production of mental models and the categories that lie within, in the hopes of better 

understanding how students think about force vectors in introductory physics courses at the 

college level.  By placing students into a model-rich instructional context, there should be 

opportunities to observe a variety of mental models. Once addressed, a potential outcome is a 

productive inclusion of mental models into science curricula, which could be a partial solution to 

the problem of incomplete science understanding among students of all academic levels. 

Identifying students’ knowledge through their production of mental models would allow for 

individualized instruction. Additionally, instructors could incorporate a variety of teaching 

methods to allow for the production of specific commonly expressed mental models to better 
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facilitate student association of mathematical vector principles and their associated physical 

meaning.   

  



 
 

11 
 

METHODS 

Students were selected to participate in a laboratory activity for the purpose of 

determining the role of mental models in force vector understanding. Participant selection 

methods and laboratory activity instructions are detailed below. Guidelines for analysis of the 

results are also specified. 

Participants 

The study involved eight participants recruited from a calculus-based introductory 

physics course at a state university.  Participants were a few weeks into their course, and had 

covered a varied amount of topics in forces and vectors.  A class of 191 students answered a 

screening question, during lecture that tested their knowledge of two-dimensional force 

interactions.  The screening item was adopted from the gymnast question by Flores and Kanim 

(2004), as seen below in Figure 1. The question was also used in this study to gage student 

ability. Screening revealed students struggled to represent forces in two-dimensions, as 73% 

answered incorrectly, consistent with Flores and colleagues’ findings of about 70%.  Participants 

were recruited from this majority pool.  Emails were sent to the 150 students who answered the 

screening question incorrectly asking for their participation in this study. Twelve responses of 

interest were received, and eight participants were selected due to scheduling.  In return for their 

one hour of participation in the learning activity, one hour of physics tutoring was offered. 

However, only one of these eight participated requested tutoring as compensation.   
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Figure 1 The stationary hanging gymnast question from Flores (2004), used as a screening 
question to gauge student prerequisite understanding of force vectors in physics 

The rationale for taking participants who answered incorrectly was that engaging them in 

the learning activity would provide an opportunity to observe their construction of mental 

models.  Because this topic was difficult and relatively new to the learners, students would likely 

be constructing newer mental models, which, because of their newness, would be more visible 

than more expert models (Dixon, 2011). 

Overview and Rationale for the learning activity  

When participants arrived they completed a pretest, three activities, a posttest, and an exit 

interview, each of which will be described in detail in later sections.  The entire experience took 

approximately 45 minutes.  The first of the three activities will be henceforth referred to as the 

learning activity, as it is the focus of this study.  The learning activity used an apparatus 

constructed for the study in which each participant arranged a set of strings and force meters to 

measure the effects of a changing angle on a static force in two dimensions (Figure 2).  In 

situations like Figure 2, the tension in the angled string increases with a larger angle to the 

vertical of T2, because the horizontal component of the string’s tension increases.  The design of 

the learning activity assumed that a robust explanation for why the tension increased would 
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depend upon the construction of a mental model that accessed both the vector formalism of 

components and the organic physical idea of tension as a force (e.g., push or pull).   

 

Figure 2 Vector analyses of the physical apparatus set up in the learning activity.  T2 is broken 
into components along a superimposed axis. 

It was assumed that successful mental models would somehow embody this combination 

of the mathematical and the physical.  Such mental models may be displayed by gestures 

involving imagined lines of a horizontal and/or vertical component and increasing exerted force 

(e.g., pushes and pulls) balancing other forces in the system. This expectation was based on 

observations from preliminary work for this study using a similar apparatus. However, the 

mental models looked for were those that in any way pertained to participants reasoning about 

forces or vectors.   

Through the calculation of x and y components in the angled string for both situations 

(completed by the participant), participants had in front of them data that showed the x 

component of the tension was increasing with the increasing angle, while the y component 
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stayed more or less the same.  This was intended to decrease the cognitive demand of 

participants.  By seeing a declarative statement of the phenomenon in numerical form, there was 

no need to theorize about the x component of the angled string growing.  The participants were 

being shown via data that the tension in the angled string increased as the x component 

increased.  Their only task was to explain why the x component growing increased the tension in 

the angled string.  It was expected that the physical arrangement of the apparatus together with 

the measurements, values for the x and y components of the tension in the angled string, and the 

demand for verbal explanations (described below), would facilitate the construction and 

coordination of necessary mental models and that those models would be visible via participants’ 

gestures and speech.  

Instrumentation 

Pretest  

When participants arrived, they first completed a second pretest.  The pretest had one 

question similar to the screening test (Figure 1), but also asked students to decompose a vector 

given a magnitude and angle.  The purpose of this pretest was to determine each participant’s 

knowledge of vectors and vectors as forces at the time of the activity.  

Posttest   

The posttest asked students about a setup similar to the learning activity with some 

extensions.  There were two strings with one weight hanging between them, but unlike the 

learning activity, the two strings were of different lengths.  They were then asked, “Consider the 

above situation.  Angle A was less than angle B. Predict which string has more tension?”  String 

A is much shorter than string B (see Figure 3).  Once they answered this question, they were then 

given a second paper asking a similar question about the same setup.  This second question asked 
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them what is happening to the x and y components separately (e,g., Which is larger? String A x-

component or string B x-component).   

The purpose of this test was to see if students could take what they learned from the learning 

activity and apply it to another situation with a different set of criteria.  The reason this question 

is different is due to the differing angles off axis.  As seen in the figure below, these strings are 

not centered, causing unequal lengths and unequal angles.  This question was eventually 

removed from the analysis due to its complexity.  Students were generally not able to apply their 

knowledge to such a situation, resulting in low scores for all participants.  Instead, an analysis of 

participants’ level of understanding was conducted as will be described later.  

 

Figure 3 Picture presented to participants on posttest 

Procedure  

The learning activity involved strings hanging at two distinct angles. For both the small 

and large angle setup (A and B in Figure 4), participants recorded the force meter readings for 

both strings.  They also measured the angle to the vertical for the angled string in both 

situations.  They were then asked to calculate the x and y components of the angled string’s 

tension for both situations.  These measurements and calculations showed that, with the larger 

angle, the x component of the angled string’s tension increased. All of the participants were able 
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to make and record the necessary vector component calculations without intervention from the 

researcher.   

 

Figure 4 The two apparatus setups for the learning activity, showing an increasing angle from 
setup A to set up B, as well as an increasing x component. The y component remains more or 
less the same  

After this process was complete for both setup A and B, students were asked, “Comparing 

1A and 1B, explain what is happening to the tension in the angled string, and why? Please 

discuss with your partner.”  The partner in this case was the researcher present. 

Participants then verbalized their thinking about the situation.  The relationship between   

the x–components in each scenario sought by the question, was demonstrated by the numerical 

results previously calculated.  However, the question is really asking them why this phenomenon 

of increasing tension occurred.  This put a constraint on their thinking, as they didn’t require full 

range of thought about what could be happening physically.  They were only answering why 

based on the answer drawn directly from their data (that the x-component was growing while the 

y-component was not).   

 The researcher’s role in the learning activity was threefold.  First, the apparatus setup was 

not intended to cause the participant stress or be at all difficult, so the researcher aided in setup 

as needed.  Second, clarifying and elaborative questions during the explanation part of the 

learning activity were asked when the researcher felt it necessary.  These included phrases such 
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as: “What do you mean by that?” “Say more about that,” and “can you restate that?”  Finally, the 

researcher was also present to tell participants when to move on.  This was determined when the 

researcher felt the participant had answered the question to the best of his or her ability, and 

when elaborative questions had been exhausted.   

In the exit interview, participants were asked to discuss what they were learning about in 

their current physics class, and if any of that information (from lab or lecture) had informed their 

knowledge during the activity.  The information from this exit interview was not used in the 

present study.  The researcher also debriefed participants about the research project and 

answered any questions.  

The learning activity took anywhere from 10 to 15 minutes to complete.  Participants 

were asked to complete the activity to the best of their ability, and were assured that correct 

answers were not important.  The researcher present stated, “Remember, we aren’t looking for 

correct answers, but rather that you to describe your thinking in detail.”   

Each participant was videotaped while completing the learning activity. Two cameras 

recorded from two different angles, giving coders the ability to observe gesture from two 

perspectives when necessary to eliminate ambiguity.  

Methods of Analysis 

Rationale for Analysis - Mental Models  

The primary analysis of this study focused on observing mental models expressed when 

students were immersed in an intentionally model-rich learning activity focused on force 

vectors.  This analysis was adapted from research tradition for think aloud activities, in which a 

subject is asked to answer a question and detail his or her thinking out loud.  A researcher was 

present to support participants in expressing their ideas through speech and gesture.  This 
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strategy was consistent with Cohen’s finding that students tend to gesture more when discussing 

a topic face to face (Cohen, 1977).  Analysis of student behavior from the learning activity 

yielded similar results to Kita (2002), who inferred non-linguistic representations from gestures 

during a think aloud situation. Additionally, Alibali (2001) described a coding scheme similar to 

that used in this study.  Alibali distinguished between representational and beat gestures, where 

representational gestures depict semantic content, and beat gestures are non-explanatory gestures 

such as pointing and touching.  Specifically, Alabali’s study coded for iconic gestures, a sub-

category of representational, which are described as gestures that held both spatial and functional 

meaning.  The analysis of the present study will focus on these iconic gestures, referred to as 

expressed mental models, pertaining to force and vector content.  

Analysis Procedure - Observational Evidence.  

Each participant’s interview video was transcribed and segmented according to each 

gesture the participant made, along with the speech used when that gesture was 

expressed.  Gestures that were continuous, or periods of time over which the gesture is 

maintained, were grouped together using speech as an aid, defining the segment. This included 

all gestures and speech, even those that seemed to hold no meaning (as discussed 

below).  However, regardless of their quickness, consecutive gestures regarding new ideas or 

speech were segmented separately.  At times, this required the researcher to slow down the video 

to better observe certain series of gestures, or to better understand what was being said.  The 

segmented gestures and speech will be referred to as gesture reasoning units 

(GRUs).  Additionally, time spent on calculations, drawing diagrams, pauses, and speech without 

gesture were grouped with the previous GRU.  Grouping these non-gesturing times with the 

previous gestures allowed the researcher to focus on the gesture.  The reasoning units ranged in 
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length from less than a second up to 10 seconds.  This procedure yielded 124 total GRUs 

distributed across the eight participants.  

As analysis of these GRUs progressed, evidence was gathered based on gestures, hand 

placement, and speech, which led the emergence of variation between the GRUs. Two 

researchers segmented the 124 GRUs (see distribution between participants in   
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Table 1), where it was determined that 39 of the initial GRUs were non-explanatory 

gestures.  Non-explanatory gestures are analogous to the beat gestures observed by Alibali, 

described previously, in that they depicted no content, such as a flailing arms or crossing of the 

arms, or were merely indexical, such as pointing to a particular piece of the apparatus, touching 

the apparatus, drawing on paper, or flipping between pages.  From the 86 remaining GRUs, 30 

were discarded because they were merely comparisons or clarifications, such as big (arms 

stretched out wide) vs. small (arms in near body with hands close together), and were not 

pertinent to this study.  The remaining 56 GRUs were then determined to be either compelling or 

ambiguous.  Ambiguous gestures were those in which even one coder was uncertain that the 

gesture could be assigned to one of the mental models that were ultimately defined.  There were 

22 such gestures, all of which were discarded.   
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Table 1 The distribution of GRU variations between the participants in this study 

Participant 

Pseudonym 

Non-

explanatory Comparison/Clarification Ambiguous Compelling 

All 

Gestures 

Ashley 7 6 2 3 18 

Grace 3 1 5 2 11 

Jake 15 10 1 9 35 

Jennifer 2 0 3 6 11 

Karen 2 2 2 1 7 

Katherine 5 0 2 3 10 

Meredith 5 9 3 5 22 

Stanley 0 2 4 4 10 

Total 39 30 22 33 124 

  

Only 33 compelling GRUs were deemed applicable to this study. This meant that two 

researchers agreed that the reasoning unit fit a mental model and that the unit’s inclusion into 

another mental model type outside of those ultimately defined was implausible.    

Analysis Procedure - Coding for Frequency 

Once the 33 compelling GRUs were agreed upon, the units were coded into distinct 

categories of expressed mental models by each researcher. A third researcher independently 

coded a 20% random sample (eight units) to ensure appropriate categorization.  Agreement with 

the first two researchers was 87.5%. With the categorization of the researchers validated, it was 
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then possible to determine a frequency relation between participants, and to then define each 

category by representative characteristics found within, as will be described in the next chapter. 

Rationale for Analysis - Assessing Conceptual Understanding 

As a final method of analysis, participants’ level of conceptual understanding was 

determined. Level of conceptual understanding is a designation of how successfully participants 

reasoned about the system. This was obtained by the end of the learning activity based on speech 

alone, ignoring gesture. Gesture was neglected during this analysis to ensure the distinction 

between methods of analysis for the level of understanding and the observational evidence. To 

do so, line-by-line coding was used (Charmaz’ 1995). Line-by-line coding allowed the researcher 

to “defamiliarize the familiar” by forcing the researcher to actively interpret distinctive words 

within a transcript (as demonstrated in a later section).  This process forced a re-examination of 

the transcripts and ultimately determined further results. Once transcripts were analyzed, 

participants were assigned to tiered levels of understanding based upon how well they were able 

to verbalize and describe the results from the learning activity. 

Together, each of these methods of analysis contributed greatly to the discerning of the 

valuable results obtained in the current study. The next chapter presents an in depth description 

of the results of the analysis performed in this study, followed by a discussion of the overall 

impact and implications of these results. 
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RESULTS  

The method of analysis discussed in the previous chapter revealed that the participants in 

this study exhibited distinct mental models as they reasoned about the presented force vector 

scenario. Some key differences were observed regarding what these mental models represented. 

Some participants represented the lines or arrows showing the geometry of the situation before 

them, which will be referred to as mathematical models. Other participants represented the 

physical phenomenon of force as a pull or tug, which will be referred to as physical models. The 

specific gestures that occurred within each general subset of observed models are described 

below.  

Mathematical Mental Models 

 A representative depiction of a mathematical mental model is shown in Figure 5. Within 

Figure 5, the red circles were created using the program “Tracker” to track the motion of an 

object at a given frequency. It should be noted that this program was not used in the 

determination of mental models and was simply used to establish a visual aid for the reader. 

Participant Katherine is describing the similarity between force vectors in physics and the 

vectors without context that one would decompose in trigonometry class, as she attempts to 

calculate the x and y components of the tension in the angled string.  Her hand moves along 

these imagined x and y components of the angled string.  She is using her hands to describe 

where (in space) these components are located (see Figure 4, in previous section, of 

apparatus).  However, she is not discussing how these components are pushing or pulling, or how 

they relate to the tension force.  



 
 

24 
 

 

Figure 5 Participant Katherine exhibiting a mathematical mental model. The participant hand 
motion is steady and not rapidly accelerating, as seen easily by the consistent spacing of the red 
dots 

Because Katherine is moving her hand slowly and with even speed (as is visually 

apparent by the red circles in Figure 5) in the horizontal (not pictured) and vertical plane of the 

apparatus (as is visually apparent by the pink axes in Figure 5) while saying “x and y 

component,” she appears to be perceiving the projected lines of a triangle one would 

conceptualize while decomposing a vector.  As fits a definition of a mental model, it may be 

inferred that she is exhibiting one via her perception of the lines of the horizontal and vertical 

vector components. Such a mental model does not include a physical aspect, as are described in 

the section to follow, because there is no rapid acceleration embodying some push or pull, as her 

hands are moving slowly and steadily, and are within the defined vector component space of the 

apparatus. Further, in conjunction with the gesture, the participant vocalized a geometric 

monologue confirming the designation. Katherine’s mental model is defined as a line or arrow 

with some relative magnitude or number attached to it (i.e., a scalar quantity) and without any 

expression of physical exertion. 
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Additionally, it was noted that Katherine’s hand is flat as if she is tracing or drawing in 

the air.  Indeed, it was observed that some other participants who generated mathematical mental 

models had a flat hand, pointed finger, or used their writing utensil to trace out the geometric 

space, as seen in Figure 6.  

 

Figure 6 Examples of hands of participants exhibiting mathematical mental models. Flat hand, 
pointed finger, and utensil pointing are seen 

Katherine’s mathematical model occurred when calculating the components of the 

tension, and examining the collected data in regards to the tension’s components and attempting 

to explain the phenomenon.  The evidence above suggests that Katherine is generating a 

perceptual experience regarding imagined vector components in geometric space.  Her hand 

motion, hand position on the apparatus, hand shape, and the question they are addressing support 

this suggestion.  However, an important possibility is that the participant may also perceive a 

physical situation that is not observable through gesture and speech; this important possibility 

will be examined in a later section. 
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Physical Mental Models 

 In contrast to the example above, physical mental models include rapid hand movement, 

as depicted by participant Ashley in Figure 7. It is observed in Figure 7 that Ashley moves her 

hands rapidly accelerating downward motion (seen visually by the inconsistent spacing of the red 

circles) outside the defined geometric vector component space. During this expression, she uses 

the phrase “the force of gravity.”  Because of Ashley’s rapid acceleration of her hand, the 

location of her hands in regards to the apparatus, and her specific verbiage, it may be inferred 

that she is reinstating the perceptual experience of the exertion of force due to gravity on an 

object.  

 

Figure 7 Participant Ashley exhibiting a physical mental model. The rapid acceleration of the 
hands is represented by the varied spacing of the red circles 

In addition to rapid hand acceleration, Ashley had a distinct hand shape, in which her 

hands were cupped. Other participants even showed grasping or clenched, as depicted in Figure 

8. Such hand shapes were interpreted as attempts to physically move or manipulate some 

imaginary or perceived object.  The way, in which the hand was formed when these physical 
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mental models are expressed differed among participants, ranging from curled fingers, to 

touching fingers to thumb, or making a fist. Comparison of the hand shapes in Figure 6 and 

Figure 8 reveal stark differences in how participants were expressing their mental models, further 

affirming the differences between the observed mathematical and physical models. 

 

Figure 8 Examples of hand shapes of participants exhibiting physical mental models. Cupped, 
pinching, and clenched hands are seen 

It may then be inferred that Ashley is exhibiting a mental model capturing aspects of the 

physical situation in front of her. Though it is possible Ashley may be thinking about a vector 

(pointing downward with the motion of her hands), the motion does not exhibit the vector 

formalism previously described. Regardless, this instance seems to inform her knowledge about 

a force acting on the weight.  Alternatively, one could argue participants perceive a geometric 

vector component that is not observable.  This important possibility will be examined in a later 

section. However, there are instances in which simultaneous expression of mathematical and 

physical mental models was observed and will be described below. 
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Simultaneous Expression of Mental Models 

 In the two cases just presented, the models were not necessarily used to represent 

physical and mathematical ideas together. For the purposes of this work, the use of the phrase 

“simultaneous expression” with regards to mental models refers to a GRU wherein the 

participant coordinated components of both the mathematical and physical mental models 

described previously, when reasoning about the system. This does not mean that two distinct 

mental models were expressed simultaneously, but rather the expression of mathematical and 

physical elements was observed. When Katherine represented the vector component, there was 

no indication that she was also representing force. When Ashley represented the force of gravity, 

she may or may not have also been thinking of a vector component. In contrast to these cases, 

components of the two models were sometimes expressed simultaneously. Meredith provides an 

example.  

Meredith moves her hands in a quick accelerating motion (seen visually by the 

inconsistent spacing of the red circles in Figure 9) in an appropriate geometric space for the 

vector component (seen visually by the pink axes). During this expression, she clarified her 

statement about the horizontal component by saying, “because it’s pulling it further.”  The 

indicators of this combination of mental models included aspects of each of the two unique 

mental models when expressed separately. She was clearly moving her hand in the x direction 

while motioning a push or pull, classifying this mental model as both physical and mathematical. 
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Figure 9 Participant Meredith exhibiting the simultaneous expression of a mathematical and 
physical mental model.  The rapid acceleration of her hands is represented by the inconsistent 
spacing of the red circles on the defined axis. The pink axes show her exhibiting this model 
within the geometric space of the perceived x axis 

Meredith’s hand looks as if it were attempting to manipulate or move an imaginary 

object.  Like the physical model, participants often had a distinct hand position, in which their 

hands were cupped, grasping, or clenched, which is interpreted as an attempt to physically move 

some imaginary or perceived object. Also, similarly to the mathematical mental models, these 

hand motions were in a distinct x or y direction in regards to the apparatus. From the previous 

discussions of the mental model depictions, it is important to emphasize that these mathematical 

or physical mental models may be expressed individually or simultaneously. Further, it should be 

noted that these perceptual experiences - whether they be mathematical, physical, or both - are 

not isolated incidents, as they manifest throughout the population of students interviewed, as 

discussed below. 

Frequency of occurrence 

As previously mentioned, two distinct categories of mental models arose, one relating to 

vectors (mathematical) and the other to forces (physical), and that these models could be 

expressed either together or separately. With regards to mathematical models, observable 
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commonalities became apparent within a subset of gestures, specifically, participants who moved 

their hand(s) slowly and steadily in a straight line in space (without rapid acceleration). These 

lines were traced out via flat hand, pointed finger, or pointed object, within the constraint of the 

apparatus, and were often interpreted as the imagined components of the angled string’s tension 

within this space on the apparatus, as described in the following section. These fluid 

mathematical gestures and speech were in stark contrast to those that did not represent a vector 

component, as physical gestures in regards to force were not fluid. 

Gestures representing physical models were frequently observed and involved the rapid 

acceleration of the hand(s).  Participants exhibiting these gestures would move their hands in a 

way as if to represent a push or a pull.  One can imagine “shoving” or “tugging” on an object 

requires some acceleration of the hands for a force to be exerted (i.e., F=ma, where the mass is a 

constant). These forceful motions, in conjunction with specific verbal cues, helped to reinforce 

the differences between the two categories of mental models. 

Given the specific observations associated with each of these types of models, a coding 

process was utilized to enumerate the specific occurrences of each of these types of mental 

models (Alibali, 2001). The defining characteristics of each are presented in Table 2. Each of the 

33 GRUs were examined and placed into the corresponding category.   
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Table 2 Specific attributes of mental model categories to function as operational coding tools 

Mental 
Model Hand Shape Hand Speed Verbal Cues Position on apparatus 

Mathematical 
Flat, pointed, or 
utilizing utensil Slow/ Constant 

Component 
language 

Within confines of 
imagined components 

of tension 

Physical 

Cupped, clenched, 
pushing, pulling, or 

grasping Rapid/accelerating Force language 

Anywhere outside the 
imagined components 

of tension 

Simultaneous 

Cupped, clenched, 
pushing, pulling, or 

grasping Rapid/accelerating 

Force and 
Component 

language 

Within confines of 
imagined components 

of tension 
  

Analysis of the participants performing the learning activity did indeed result in the 

display of behaviors corresponding to the suggested categories of mental models throughout the 

GRUs. The frequency with which the different mental models occurred is presented in Table 3. It 

can be seen from the table that physical mental models were expressed far less often than were 

mathematical mental models in this context. Only half (4/8) of the participants exhibited a 

mental model involving force, while most (7/8) participants exhibited a mental model involving 

vector components (mental model occurrences for individual participants are discussed 

later).  This could suggest that mathematical mental models are easier, more prevalent, or more 

readily constructed then are physical mental models among the population studied here, as 

discussed later.  As stated above, it is also of note that four of the mental models simultaneously 

incorporated mathematical and physical components, and are therefore represented in both 

frequency categories.  
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Table 3 Frequency of exhibited mental models, four of which were simultaneously expressed and 
therefore represented in both columns 

Mental Model Mathematical Physical 

Total Occurrences 23 14 

Number of Participants 7 4 

Table 3 also provides evidence that the two categories of mental models were repeatedly 

observed and fairly well distributed among the participants.  The expressed mental models were 

not singular behaviors, but rather consistently recurring models.  Noting that the same categories 

of mental models, as identified previously, could be identified over a range of participants within 

this context, supports the validity of the observational evidence. 

Alternatively, one could conclude that, though these models have distinction and 

repetition, the categories are indeterminate of the participants’ understanding about vectors, 

forces, and their relationship. However, as previously discussed, learners who are unable to 

relate the mathematical and physical aspects of force vectors tend to have difficulties achieving 

high levels of understanding. Therefore, it is important to explore the relationship between 

mental model expressions and the effectiveness with which the participant reasons about the 

system in order to ascertain whether or not the perceived experience was mathematical, physical, 

or a combination of the two, as is addressed in the section to follow. 

Level of Understanding 

  In addition to coding through observation and frequency, the level of understanding of 

the participants was investigated and analyzed. The purpose of this analysis was to attempt to 

determine if students were thinking about mathematical or physical situations while expressing 

observable models about them. Line by line coding (as noted in previous chapter) consisted of 
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paraphrasing the portion of the transcript in which participants explained why the tension was 

increasing, for each sentence or phrase using video data to aid in the interpretation of pronouns 

(e.g., this, that), as depicted in Table 4.   

Table 4 Representation of line-by-line coding for the purpose of ascertaining a participant’s level 
of understanding 

Speech Paraphrase Narrative Level 
Ashley 
The tension need to be greater because there’s a 

Tension is more 
with a larger 
angle because of 
sine 

Something 
like a rule. 

Mid-
level  

greater difference in the angle so, whenever you 
take the sine of a bigger angle you get a smaller 
number. 
So the resultant tension The tension 

compensates for 
the force of 
gravity.  I'm 
getting confused 

Tries to say 
why; gets 
confused 

in order to compensate for the normal force of 
gravity that would be it just hanging alone. [Pause 
here]  I think I’m doing this wrong.  I’m getting 
confused now. Instructor: Ok, just talk it out. (Both 
giggle) Ashley: my, my, I was sick on Wednesday 
so my migraine is still somewhat 
befuddled.  Instructor: That’s ok, we can just talk 
through it 
Ashley: Cuz like, this is, probably 500 grams? 
Instructor: Yep it is 5 Newtons, so yep, 
approximately.  Ashley: Mmhm, so it just being 
down like that it is 5 newtons.  And so some 
something else is taking part of the weight off 
which is this one and so you have the component 
that is 5 Newtons.  Which it is each time because 
that is gravity on the block mumbles. 

Something is 
taking part of the 
weight off.  This 
one (horizontal 
string). 

Load sharing 
the weight 
from the two 
strings 

From these data, descriptive narratives of the participants’ thinking were developed for 

the purpose of ranking the participants’ levels of understanding. Analysis of the descriptive 

narratives revealed 3 distinct tiers of level of understanding. Two of the participants were 

deemed to possess a high-level understanding; four with a mid-level understanding, and the 

remaining two had a low-level understanding. Table 5 below shows the level of understanding of 

the individual participants alongside the types and frequency of mental model they exhibited. 

More detailed descriptions of these categories with examples are detailed to follow. 
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Table 5 Participants’ mental models by category, and their level of understanding reached during 
the first task of the learning activity 

Participant 
Pseudonym 

Physical Mathematical Mathematical and 
Physical 

Level of 
Understanding 

Katherine 0 3 0 Low 

Jennifer 0 6 0 Low 

Ashley 3 0 0 Mid 

Grace 0 2 0 Mid 

Stanley 0 4 0 Mid 

Karen 0 0 1 Mid 

Meredith 1 2 2 High 

Jake 6 2 1 High 

Total 10 19 4 -------------------- 

Low-level understanding 

One of the participants, Katherine, was assigned a low-level understanding because of her 

inability to discuss what was happening in regards to force in her explanation.  She eventually 

described the vector component situation correctly (visible in data collection), but was unable to 

use correct terminology and reach a complete analysis. She never came to a conclusion about 

what occurred: 
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 “If we’re doing [this calculation] like in like in the pretest where you use like a 

triangle to find like the x and y components, then maybe like this [string] would 

be just like the hypotenuse part and then, like the x and the y component [would 

be here]…But I’m not sure if you can do that with like forces if like the same as 

with measurements… I guess that the great, like the greater angle, the tension was 

greater.  But ya it seems like when we increase the angle the tension was greater 

for both strings…I guess, I guess it was ah, when you increase the angle the 

distribution of like of the mass is different… But I, I would think that it wouldn’t, 

the tension wouldn’t increase like that much. I would think that like the tension 

would be the same, I guess.  I don’t know…Cuz the mass is the same…I think the 

force would be the same.  But, for some reason it’s not so I don’t even know… Or 

maybe it’s just like an angle that makes a difference. Not really sure.”   

Katherine was constantly unsure of the statements she made as seen by her comments 

such as “I’m not sure” and “I don’t know” which appear often in her transcript.  She even 

expressed that she thought the forces should be the same as the angle increases, showing that she 

did not have a firm understanding of the situation.  She was not able to express her mathematical 

knowledge in a physical situation. Cases such as this were deemed low-level understanding.   

High-level understanding 

Participant Jake is an example of high-level understanding, because he explained the 

situation using correct terminology, accurate analyses, and used both the concept of force and 

vector components correctly.   

“It looks like the larger the angle the more weight or the more tension is in 

the rope… I know if you get to 120 degrees in the center [of the ropes], both of 
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them would equal 5 [Newtons], approximately.  Like if this [string] snapped right 

now … it would have a lot of force due to gravity which would put even more 

force on that [other] anchor, which would also possibly break due to that [extra 

force]… If [the strings] were really close to each other they would basically just 

be holding up the single load, but as they’re being pulled apart they’re each 

pulling it on the x axis compared to just the y… And its still holding up the same 

amount of weight um in the y direction just adding more force in the x direction.” 

Jake used his experience rock climbing to infer about the angle between the two strings, 

and then theorized the learning activity situation, coming to the correct conclusion that the x-

component of the tension increasing.  He used terminology like force, components, pulling, and 

direction to analyze the situation.  Unlike Katherine, Jake discussed the correct conclusion and 

was able to verbalize it completely.  Such cases were labeled high-level understanding.   

Mid-level understanding 

Participant Ashley reached a mid-level understanding due to her inability to use 

components in her answer.   

“The tension needs to be greater because there’s a greater difference in the 

angle so, whenever you take the sine of a bigger angle you get a smaller 

number… In order to compensate for the normal force of gravity that would be it 

just hanging alone.  I think I’m doing this wrong.  I’m getting confused now… 

with the bigger angle has the bigger force… I’m thinking with potential energy 

and kinetic energy… So being higher up it needs more energy to stay up.  I 

think… I know how to work things out very well, but I don’t know the theoretical 

stuff behind it.”  
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Here Ashley seemed to focus on the force concepts and the physical understand that the 

weight is being held up.  She did not come to a conclusion using this approach since she did not 

bring components into her answer, and then began to search for other plausible physics ideas 

(energy).  However, she did relate the angle to the increasing force when stating that the sine of a 

bigger angle will be a smaller number. It is evident that she had a higher level of understanding 

than Katherine, but she did not master the situation like Jake.  These cases were categorized as 

mid-level understanding. 

The data presented in Table 5 suggests that those who generated only mathematical 

mental models did not reason effectively about the system.  This reaffirms that mathematical 

models can exist independently from physical mental models, even in a situation discussing 

forces. The above data further support the claim that mathematical and physical mental models 

are unique categories.  Subsequently, these data also imply that students can generate 

mathematical or physical mental models without reasoning effectively about the situation.  It also 

appears as if, in the admittedly small sample size, students who exhibited simultaneous 

expression of components of mathematical and physical mental models reasoned more 

effectively about the system. The limitations of this evidence are not insignificant and will be 

discussed at length in the chapter that follows.  Annotated transcripts of select participants 

depicting the evolution and sequence various mental model exhibition are available in the 

Appendix. 

Summary 

 Analysis of student behavior when completing a laboratory activity demonstrates that 

students exhibited two distinct mental models (mathematical and physical) when thinking about 

force vectors in introductory physics contexts at the college level.  The data above presented 
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observational evidence of the existence of these mental models and their frequency of 

occurrence, along with an analysis of the level of understanding of participants. The 

observational evidence supported the differences between the two categories based on hand 

shape, hand motion, position in regards to the apparatus, and the question being addressed, while 

also presenting evidence that these two categories can be expressed independently or 

simultaneously (as previously described). The frequency of these occurrences as seen in Table 3 

provided evidence that the mental models were fairly well distributed across participants and that 

these models arose not as isolated occurrences, but rather as repeated observations, solidifying 

the distinctions of the categories of mental models exhibited. Finally, Table 5 shows that the 

effectiveness with which participants reasoned about the system and the type of mental models 

generated have some relation. The implications of these findings are discussed at length in the 

following chapter.  
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DISCUSSION 

The previous chapter highlighted the important results from the current study. These 

results include observational evidence, frequency data, and an analysis of participant level of 

understanding. Indeed, there are several claims that can be made from this data, along with 

abundant implications for instruction. The current chapter will discuss these in depth these while 

considering the potential for future work. 

It is most evident from the results discussed in the previous chapter that two distinct 

mental models (mathematical or physical) and ways of interpreting the learning activity were 

utilized by various participants in this study. As mentioned, there were various traits unique to 

each of these models, including specific language used, hand movement, hand shape, and 

position of the hands on the apparatus. Therefore, the following is a reasonable assertion: 

• Claim 1: Mathematical and physical mental models are two possible methods 

students may utilize in order to reason about a force vector problem presented to 

them. 

The observational evidence seen in the detailed examples from the previous chapter 

defends this claim. Specifically, participant Katherine expressed a mathematical mental model 

when she used a slowly and steadily moved a flat hand across the imagined component of the 

tension while discussing vector components. In contrast, Ashley generated a physical model 

when she used cupped hands in a rapidly accelerating motion outside the defined vector 

component space while talking about the force of gravity.  Indeed, these cases show that the 

participants reasoned about the system in distinct ways, either mathematical or physical, the 

mathematical being a tracing out of components of a vector, and the physical a rapid accelerating 
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motion to indicate a force. It should be noted, as seen in participant Meredith, that components of 

these distinct models may also be exhibited together, leading to the following claim: 

• Claim 2: The two observed mental models (mathematical and physical) can be 

utilized both separately and simultaneously. 

The attributes, similarities, and differences of the mathematical, physical, and 

simultaneous models are well characterized in the previous chapter. Specifically, participant 

Meredith used a clenched hand that rapidly accelerated (indicative of a physical model) within 

the defined vector component space on the apparatus (indicative of a mathematical model) while 

using language that applied to both physical and mathematical situations. An important 

implication of these claims involves the variety of ways participants reasoned about the system. 

In one case, a physical phenomenon was reasoned about solely using mathematical model, 

despite the presence of an apparatus that would tend to suggest students consider a physical 

reasoning; vector components representing the geometry of the given situation were modeled, 

but not necessarily with a corresponding physical mental model. In another case, when reasoning 

about the system, no particular attention was given to the nature of the geometric space 

(representing the mathematical aspect of the situation) the apparatus possessed as considerations 

were solely of a physical nature. It is important to note, again, that the students were placed into 

an intentionally model-rich instructional context. Even within this context, there were students 

who only expressed mental models referring to mathematical contexts.  

The methodology generating the data supporting these two claims does have some 

limitations. The participants’ precise thinking is never observable and must be understood as 

such; therefore, it is important to note that though this is an overall limitation of the methodology 

for data collection and interpretation, such techniques are widely accepted and applicable within 
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the field of education research. With that in mind, if participants only exhibit mathematical 

mental models, one might assume they are not able to reason effectively about the physical 

aspects involved in the system at the end of the learning activity. 

This reflects what was discussed in the literature, as described by Maracci (2005), Segal 

(2011), Halhoun (1998), and Shemwell (2012), wherein a separation exists between the 

mathematical and physical understanding. In the current work, it was demonstrated that 

Katherine expressed a uniquely mathematical model, while Ashley expressed a uniquely physical 

model. However, as the case of Meredith shows, a participant was able to simultaneously employ 

components of both mental models to analyze the situation that was occurring. These 

individualized scenarios speak to the three distinct ways in which learners may use mental 

models. Teachers can expect these models when approaching the topic of physics situations 

through an interactive scenario designed to support the understanding of both mathematical and 

physical aspects of, specifically those of force vectors in regards to the current work.  Each 

participant generated a unique set of mental models and developed his or her learning differently. 

This certainly shows the existence of the possible ways that students can respond to physics 

problem solving situations meant to support physical and mathematical thinking in combination.  

One question that arises in the three specific cases of mental model usage is whether they 

may have been idiosyncratic to those particular participants. Indeed, the frequency data 

generated supports the idea that these mental models were not isolated occurrences and that the 

models were present across the population of students interviewed. Extrapolating this idea 

further leads to another claim: 

• Claim 3: These types of mental models could possibly be expressed among a 

similar student body performing a similar learning activity. 
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 The frequency data derived from the coding methodology employed in the present work 

show that 7 out of 8 participants exhibited uniquely mathematical mental models, 4 out of 8 

expressed uniquely physical mental models, while 3 of the participants displayed a coordination 

of said models. Specifically, as noted in Table 2, there were differing hand shapes, hand 

movements, hand placement, and vocabulary used within the contexts of the mathematical and 

physical mental models employed by the participants. The mathematical models involved 

pointed fingers, slow and steady movements along the apparatus in the space of the 

geometrically imagined tension component space, while participants discussed the components. 

In contrast, the physical models involved cupped or clenched hands that rapidly accelerated 

outside the defined component space on the apparatus while the participants discussed force. 

This plurality suggests these models are not isolated occurrences, and could possibly present in a 

similar setting in which students are trying to make sense of a hands-on situation designed to 

help them reason about the physical aspects of force vectors. All of this evidence does indeed 

suggest that these mental models could be exhibited across an array of students when faced with 

similarly designed, intentionally model-rich, hands-on force vector situations. 

Further, there may be more mental models that we did not discover.  For example, more 

experienced learners may exhibit completely different mental models or even none at all, as 

suggested by research into so-called “expert learners” (Dixon, 2011).  Regardless, it is evident 

that these individualities exist and therefore instructors should make an effort to ensure that their 

curriculum supports these mental models.   

If physics learners are able to generate and reason about physical aspects of physics 

quantities such as force, then the support of mathematical and physical mental models may be 

necessary for the success and understanding of some students. Instructors should take note of the 
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mental models identified in this study because they show a glimpse of the individuality of the 

student. Further and more importantly, these findings show instructors that they cannot assume 

that students generate physical models even in situations optimized to support that type of model 

generation. Since these are models that could reasonably appear in any physics classroom in this 

context, there should be specific instructional materials that can be used with in a physics 

curriculum to support their development and usage. Standard textbook problems involving force 

vectors provided on a page are not designed to foster the usage of physical models. If students 

may not generate physical models in a context designed to elicit them, then instructors should not 

assume that students would generate said models when given a situation that does not support 

these models. When instructors construct lab exercises similar to the one in this study, designed 

to support the generation of models, those instructors will want to find a way to formally assess 

the generation of these models, as that model generation in this context cannot be assumed. 

Finally, as suggested in the National Research Council’s K-12 Framework for Science Education 

(2012), instructors should make pedagogical changes to further support the generation of mental 

models throughout this context. These could involve improvements to assignments that evoke 

physical movement, the inclusion of real world problems to reinstate experiences, and the 

formative assessment of students’ mental model generation throughout their learning process. 

Further analysis of the frequency of occurrence data reveals that in only four of the 

individual expressions of mental models did the participants utilize the simultaneous expression 

of the mathematical and physical models. These were also across only three of the eight 

participants. This low frequency may imply there is difficulty involved in the coordination of 

these mental models, and suggests the following:  



 
 

44 
 

• Claim 4: The ability to coordinate mathematical and physical mental models may 

be rarer than previously assumed in similar populations to those employed in the 

current study.  

 If coordination of mental models within the force vector situation presented in the context 

of the current work is difficult, and mental models aid in student understanding, it is worthwhile 

for instructors to develop curricula that aid students in the coordination of models at the 

intersection of these two topics (vectors and forces). One such way to do so, specifically with 

regards to force vector situations, is to modify the apparatus utilized in the present work. Perhaps 

if the participants could physically see the connective medium (strings in the current work) 

stretch, it would support them in constructing physical mental models.  This invokes the use of 

springs in lieu of strings on the apparatus.  Seeing the stretch of the spring could invite 

participants to imagine the tension better than the strings.  Imagining stretching a spring is easier 

than imagining stretching a string because the spring’s stretch is within participants’ experience. 

Further, in the focal part of the learning activity, there was no point at which the students were 

asked to reflect or reflect upon what they had done. Such a reflection could also aid the students 

in coming to a more complete conclusion about the force vectors.  Metacognition, thinking about 

one's thinking, can help students by forcing them to look within their reasoning about a 

situation.  Without this pause to reflect, it is plausible that students may not discover errors 

within their reasoning.  This reflection could lead to greater success, and/or new and notable 

outcomes.  

Indeed, the presented data may suggest that coordination of mental models of different 

topics in general is difficult for students within the population studied here, without this period of 

reflection. In this case, there is more to explore in other topics within and outside of physics and 
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mathematics. However, this idea does lead to an important observation from the data obtained in 

the present work, in that the students who were indeed able to coordinate the mathematical and 

physical models were more likely to have a higher level of understanding of the force vector 

situation presented to them. It may therefore be posited that: 

• Claim 5: Students who can utilize simultaneous expression of mathematical and 

physical mental models may be more successful in solving force vector situations. 

 The level of understanding data displayed in Table 5 of the results section also presents 

points of discussion involving how the participants reasoned about the situation. Though the 

claims brought about by this evidence are not central to the current study, they do provide 

potential insights into questions that deserve further exploration, and are worthy of initial 

articulation and discussion.  

The level of understanding data are evidence of several findings.  If there are distinct 

mental models as the current study suggests (via the observational and frequency data) then the 

type of mental model employed by the student should relate to their ability to reason about a 

particular situation; in this instance, force vectors. To reason effectively about force vectors in 

physics, one would assume students must utilize both mathematical and physical 

understanding.  If students who only displayed one of the mental models did reason effectively 

about this topic, one might wonder whether the participants’ mathematical mental models 

involved forces that were unobservable to the researcher. However, participants who solely 

utilized mathematical mental models were unable to effectively reason about the phenomenon. 

Additionally, it was also observed, as is true in the case of participant Ashley, that a solely 

expressed physical mental model is also not enough to come to an accurate conclusion about this 
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force vector situation. Therefore, the assumption that participants who only displayed 

characteristics of one mental model did not coordinate them is reasonable.  

It should be mentioned that a student’s mathematical/procedural vector ability did not 

define his or her success in this situation.  Every participant in this study was able to decompose 

a vector into components.  However, this was not enough to inform their thinking about forces in 

that context.  This could be an opportunity to refine the ideas presented in Knight et al. (1995), 

which proposed that vector knowledge was sufficient for success with force vectors.  Perhaps 

this skill is necessary for the learning of force vectors, but it may not be sufficient.   

The idea that vector knowledge isn’t sufficient background for success in force vector 

problems does not mean that mathematical knowledge did not aid these participants.  The ability 

to decompose these vectors supplied each participant with data that showed them the correct 

answer for the scenario; they knew that that x component of the tension was increasing, and 

merely needed to explain why this was so.  This mathematical ability narrowed the scope of 

possibility in their answers, which guided their explanation in part because they knew how the 

explanation would culminate.  

The limitations of claim 5 are not insignificant. The coding of the level of understanding 

is not necessarily reliable. Though it has been used in other research in other fields, the coding 

itself relies heavily on the researcher’s interpretations. Additionally, there is an interdependence 

of the mental models observed and the level of understanding of each participant. These mental 

models were determined within the same learning activity as was the level of understanding. 

This could lead to unreliable and circular observations. Indeed, this may be observed in instances 

wherein participants gesture concurrently with their vocalization, or there may be a slight pause 

between gesture and speech. Such instances may suggest dependence or interdependence 
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respectively, between the mental model assignment and level of understanding in the analysis 

methods. Finally, the sample size of this case is of concern. Eight participants may not be enough 

to make a larger claim about the understandings of students. However, this claim is only being 

stated preliminarily as further research is required. Additional studies could address claim 5 

within larger similarly derived samples, as well as samples of learners who did not initially 

struggle, as it would be of interest to examine the model expression of non-novice learners in this 

subject area.  

The implications of the presented claims abound. If the coordination of mathematical and 

physical mental models does lead to greater understanding of force vector situations, instructors 

could be trained to identify situations in which  these individual models were being utilized and 

adjust practices in real time to aid in student understanding.  

In further studies, participants could be asked to reflect about what they know about 

vectors as forces at the beginning, what they would need to know to solve the problem in front of 

them, and then what types of conceptions they utilized to arrive at their final conclusions. Doing 

so may allow the participants to reach a deeper level of thinking and, hopefully, lead to notable 

results.  

Summary 

The most significant claims from the data presented in this study are the presence of two 

types of mental models (mathematical and physical) and the ability of some students to 

coordinate them. Observation of the participants performing the learning activity demonstrated 

that these mental models were not isolated occurrences and most likely would manifest 

themselves throughout a class of students, although the coordination of these models may be rare 

among novice learners (such as those who participated in this study). The implications of these 
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claims present evidence that informing instructors of the individualization of learning that occurs 

amongst populations, and the recognition of particular classes of models that may occur in 

similar circumstances could be beneficial to student learning. Finally, the level of understanding 

data suggest further research on coordination of these mental models and successful reasoning 

therein.  
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APPENDIX - CASE STUDIES: SEQUENCE AND EVOLUTION   

The following section details the individual experiences of three participants.  What 

follows are narratives as described in the methods sections.  These case studies are of interest in 

that they tell a complete story of how mental models are sequenced and how learning evolves 

throughout the activity.  I have chosen three participants who illustrate the variety and 

uniqueness of each experience.  In each case, I will also be examining how the participant uses 

physical and mathematical reasoning, physical reasoning in regards to force, mathematical in 

regards to vector components (non-force).  Jake uses all three types of mental models frequently 

throughout the learning activity and is constantly evolving his learning from the mathematical to 

the physical.  Katherine expresses all of her mental models while calculating the components of 

the tension and the evolution of her learning is then halted by a misconception leaving her only 

able to regurgitate the mathematical descriptions detailed in her data.  Ashley used only three 

force exertion mental models in no particular sequence, and is thwarted by her confusion at 

regular intervals never expanding her thinking beyond the physical. Each of these is described in 

detail below. 

Jake. This case is an interesting one because the participant expressed mental models in each of 

the three variations of models.  Additionally, Jake uses his understanding of the physical and 

mathematical separately before combining these ideas in his final explanation.  As his 

understanding evolves so does his use of mental models and the abundance with which he 

expresses them. His mental models are underlined in the narrative below.   

1 

2 

3 

Jake begins his explanation by pointing out that the tension is increasing as the angle 

increases.  In this explanation, he discusses the internal angle’s importance in the tension on 

each of the strings.  When prompted for why he knows this, Jake then uses his experiences 
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4 

5 

rock climbing, and how the internal angle will affect force to explain the situation, and also 

exhibits his first mental model:  

6 

7 

8 

9 

10 

11 

“You wanna have the narrowest central angle so incase...so first off when you're 

attached to the rope both anchors have equal amount of weight compared to each 

other ...and also if one of the anchors snaps you don’t ...like if this [horizontal 

string] snapped right now then this [angled string] would come down and it would 

have a lot of force due to gravity1 which would put even more force on that anchor 

which would also possibly break due to that and that wouldn’t be good.”  

12 

13 

14 

15 

Jake expresses many gestures as he talks, but only some of them were classified as mental 

models in analysis.  As he discusses his rock climbing experience he exhibits one of his 

many force exertion mental models1.  Jake is then prompted for why this phenomenon 

occurs and then addresses the situation at the apparatus: 

16 

17 

18 

19 

20 

“It isn’t just holding up2 the, um, if [the strings] were really close to each other they 

would basically just be holding up the single load3, but as they’re being pulled apart 

they’re also pulling them4, they’re each pulling it on5 like the x-axis, compared to 

just the y6.  So you have two different um forces.  Or not forces, just two different 

directions that they’re pulling.”  

21 

22 

23 

During this discussion, he exhibits four more force exertion without vector component 

mental models2,3,4,5 as well as one of the two vector component without force exertion 

mental models6.   

24 

25 

26 

 Finally, Jake is prompted for his final explanation and sums up his explanation. He 

exhibits one more force exertion without vector component mental model7, his final vector 

component without force exertion mental model8, and his one vector component with force 
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27 exertion mental model9.  He states: 

28 

29 

30 

“The string would be pulling it more towards the left, and it’s still holding up the 

same amount of weight7 in the y direction8 just adding more force9 in the x 

direction.”   

31 

32 

He exhibits one of each type of mental model in this last section within a span of about ten 

seconds.   

 

Figure 10 Jake’s mental models over time during the focal part of the learning activity. These 
correspond to the underlined phrases in the text above 

 Jake’s mental models are spread throughout his explanation and occur often.  He begins 

his explanation with a real life experience of which he is familiar (lines 4-10).  He then applies 

this knowledge to the given situation making firm and explicit analogies (lines 14-17).  Finally 

he summarizes all of his thinking in one final and complete explanation (lines 26-27).   Jake’s 

narrative illustrates how abundant force mental models can be coordinated with prior knowledge 

and vector component mental models to ultimately produce a force vector component mental 

model.   

Jake is able to use both physical and mathematical reasoning to come to a conclusion 

about the situation.  In his final conclusion, he exhibits all three types of mental models, using 

both a physical understanding of the tension and mathematical thinking about the tension in the 

rope. The vector component with force exertion mental model is the last mental model exhibited, 
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after he was able to easily express the force exertion and vector component mental models 

alone.  It is as if the force vector component concept was difficult or less familiar, leading to the 

initial expression of the easier other two mental model types.  Once these more familiar ideas 

had been approached, he was able to use that knowledge to construct the final, more difficult, 

force vector component explanation.   

Katherine. Katherine’s case is of interest because she only constructs vector component mental 

models.  Her somewhat solid understanding of vector components is not enough to lead her to an 

explanation of what is happening to the tension in the strings.  Her mathematical knowledge at 

points leads her to question if certain physical situations can occur, and ultimately end in 

confusion.     

1 

2 

3 

During the focal part of the learning activity Katherine first had trouble calculating the x 

and y components of tension in the angled string.  She is initially confused about the 

similarities between basic trigonometry and calculating x and y components: 

4 

5 

6 

7 

8 

9 

10 

“If we’re doing it like in like in the pretest where you use like a triangle to find like the x 

and y components then maybe like this would be just like the hypotenuse part and then like 

the x and the y component and if we know like this is 30 degrees then and I guess we know 

that we could say like this is 5.4 for the tension. But I’m not sure if you can do that with like 

forces if like the same as with measurements. Um, cuz I know you can, you can, ah, with 

measurements and like a triangle you can have, you could use like the, the sides to find 

other sides for values but, I’m not sure if you can do that with forces or not.  ” 

11 

12 

13 

All three of Katherine’s mental models occur as she is calculating these 

components.  Katherine stumbles on the idea that a tension can be not only described as a 

vector but also decomposed as such. After a while, she decides to decompose the force as if 
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14 it were a vector and see what happens. 

15 

16 

17 

Once Katherine comes to the focal part of the activity and is asked why the tension 

increases she starts discussing the angle changing.  She then stops to discuss what her 

prediction would have been and how that compares to what she is seeing: 

18 

19 

20 

21 

22 

23 

“But I I would think that it wouldn’t the tension wouldn’t increase like that much. I would 

think that like the tension would be the same I guess.  I don’t know.... Cuz the mass is the 

same.  And the mass is the same and like the downward like the gravitational force is the 

same.  So like the mass and the acceleration are the same so I would like the gravitational 

force is the same.  So like the mass and the acceleration are the same so I would I think the 

force would be the same.  But for some reason it’s not (giggle) so I don’t even know.” 

24 

25 

26 

27 

28 

Here Katherine states that she would think the tension would remain constant regardless of 

the angle since the mass remains constant. After this Katherine then returns to her theory 

that the angle must have some effect on the tension but is unable to construct a coherent 

response by the end of the focal part of the learning activity.  Additionally, she expresses no 

more mental models in this part of the activity.   

 

Figure 11 Katherine’s mental models over time during the focal part of the learning activity 

Katherine’s narrative illustrates the sole use of vector component without force mental 

models.  Additionally, all of her mental models occur during the calculation of components of 

the tension.  Katherine’s thinking never evolves.  She has no resources to make any progress 
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with her understanding, so her evolution is stopped by her misconception and she is never able to 

reconcile.  She begins confused (lines 3-7) goes ahead with a guess, and then is contradicted by 

the data.  However, this contradiction is not enough to inform her knowledge.  Katherine can 

only access her mathematical knowledge, which she is uncertain can be applied to physical 

situations.  She is never able to use physical reasoning to make progress in her thinking.   

Ashley. This case is of interest because during the activity, Ashley expresses only force mental 

models representing the force of gravity on the hanging mass.  She seems to come to an accurate 

physical understanding, but is unable to apply mathematical reasoning to the situation and 

therefore unable to accurately explain the situation.   

1 

2 

3 

4 

5 

6 

7 

Ashley started off with some trouble using the spring scale, but after some aid was able to 

accurately collect data.  She had slight difficulty calculating the vector components but after 

checking her answer was able to correct her mistake and accurately calculate the 

components without aid. In the explanation section of the learning activity, Ashley begins 

by discussing the idea that the sine of a larger angle will always give you a larger number, 

followed by the discussion that the component of the tension will increase with a larger 

angle.  When asked why she thinks this is, Ashley states: 

8 “the resultant tension in order compensate for the normal force of gravity.”   

9 

10 

11 

This is when she generates two of her force mental models.  She then stumbles and says she 

is getting confused.  She then draws an accurate free body diagram, without the x and y 

components of force, for both situations on her paper.  She then states: 

12 

13 

“[The force] greater with the angle because you still want that fragment to come 

down.”  

14 This is when she expresses her final force mental model.  When asked once again why this 
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15 is she begins talking about energy (kinetic vs. potential).  Ashley then states: 

16 

17 

“I know how to work things out very well, but I don’t know like the theoretical stuff 

behind it.”  

18 She never states why the tension is increasing.   

 

Figure 12 Ashley’s mental models over time during the focal part of the learning activity 

Ashley’s sequencing is interesting because she uses few mental models, which are all 

force exertion without vector component.  She exhibits two quickly in a row at the very 

beginning of her explanation and then one more a bit later on.  These three mental models are in 

conjunction with her discussion of gravity (lines 13 and 18).  Additionally, her evolution of 

thinking is halted, in contrast to Katherine, by her inability to connect her physical thinking with 

a mathematical explanation.  She begins with the correct understanding that the weight is 

compensating for gravity, but then becomes confused the explanation for these phenomena 

beyond the simple idea that it must be compensating even more at larger angles (line 13).  She 

then attempts to find a new idea, but can only come back to her compensation idea.  Ashley’s 

thinking never evolves beyond this point.  As she mentions (lines 22-23), there is some aspect of 

her thinking that is missing.  This “theoretical stuff” she mentions she doesn’t know how to do is 

actually a mathematical understanding of the physical situation.   
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Summary. Each of these cases tells a different story about the experience this learning activity 

presented.  The sequencing and evolution was unique for each participant.  Jake used a plethora 

of mental models throughout his explanation, while Katherine and Ashley used only 3 each 

packed toward the beginning of their explanation.  This could have contributed to Katherine and 

Ashley’s lacking explanation about the situation, Katherine with a lack of physical reasoning and 

Ashley with a lack of mathematical thinking.  Jake’s explanation evolved nicely and used the 

overlapping of physical and mathematical reasoning.   
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