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The marine red alga Porphyra umbilicalis (Rhodophyta, Bangiaceae) has ideal 

traits to allow it to become a model organism, including its economic value, reproduction 

in the northwestern Atlantic through asexual neutral spores (NS), and availability of 

fully-sequenced nuclear and organelle genomes. Research on the bacterial component of 

the Porphyra microbiome is ongoing. To advance model organism development and 

support microbial studies, data on natural reproductive trends and early embryonic 

development are needed, along with a system for genetic transformation, and ways of 

visualizing the attached microbial community.  To meet these needs, two years of 

phenological data were analyzed, revealing seasonal reproductive trends and some 

location-based effects. Early development of P. umbilicalis from neutral spores is mostly 

linear. Blades bearing neutral spores were frozen (-20 ºC) for 4 weeks to determine if 

freezing influences early development. Freezing had minor effects on early development 

compared to the rate and pattern of germination from NS in untreated controls. Attempted 

genetic transformation of P. umbilicalis using biolistics was successful, but whether it 

was a stable transformation is unknown; hygromycin B was demonstrated to be an 



 

effective antibiotic to use in selection of transformants. Use of scanning electron 

microscopy (SEM) revealed that microbial communities on the surface of P. umbilicalis 

are often diverse, complex, and vary between different groups of specimens. Together, 

these studies support continuing development of P. umbilicalis as a model organism and 

a valuable aquaculture crop. 
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      CHAPTER 1 

INTRODUCTION 

The red alga Porphyra umbilicalis is part of an ancient eukaryotic lineage 

(Butterfield, 1990), a wild-harvested human food that is a promising aquacultural food 

crop (Rhatigan, 2009), is available as a fully sequenced nuclear genome (Prochnik et al., 

2017), and a macroalgal model for studies of the macroalgal microbiome (Miranda et al. 

2013; Kim et al., 2016). The research presented here sought to further development of P. 

umbilicalis as a model organism in these areas by accomplishing the following goals: 1) 

determining the reproductive seasonality of P. umbilicalis at three sites in Maine, 2) 

testing the effects of frozen storage of blades on development of embryos developing 

from asexual spores, 3) developing a system for genetic transformation using particle 

bombardment, and 4) supporting studies of this alga’s microbiome by documentation of 

the coverage and microarchitecture of bacteria and other microbes on the blade of P. 

umbilicalis with scanning electron microscopy. 

Systematics of the Rhodophyta 

Marine algae in the genus Porphyra are members of the family Bangiaceae, in the 

class Bangiophyceae of the phylum Rhodophyta (Sutherland et al., 2011). The 

rhodophytes evolved from (a) primary endosymbiotic event(s) in which a free-living 

cyanobacterium was engulfed by a heterotrophic eukaryote; the cyanobacterium was not 

digested and evolved into the chloroplast of the red algal cell (Keeling, 2010; Knoll, 

2011; Burki et al., 2016, Graham et al., 2016, Hug et al., 2016;). The Archaeplastida 

supergroup includes glaucophytes and the red and green algal lineages, but the sister 

group of the red algae within this lineage is debated. Earlier phylogenetic studies 
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indicated that glaucophytes diverged from the Archaeplastida ancestor before divergence 

of red and green algae, which have been considered to be sister lineages (Yoon et al., 

2006; Qiu et al., 2015). Recent research, however, has challenged this placement (Burki 

et al., 2016). Newly available genomic sequences for 4 centrohelids (phylum Sarcodina) 

were used to assemble an updated eukaryotic phylogenetic tree. This analysis indicated 

that the rhodophytes had diverged before green algae and glaucophytes, tentatively 

placing the latter two groups as sister lineages. This is an active, continuing area of 

research. 

Fossil evidence confirms that red algae in the Bangiophyceae are ancient 

organisms. A 1.2 Ga fossil of Bangiomorpha pubescens (Butterfield, 1990) has a 

remarkable similarity to an extant bangiophyte, Bangia atropurpurea. This fossil is the 

oldest taxonomically-resolved multicellular eukaryote known. Recently, even older (1.6 

Ga) multicellular red algal fossils were discovered (Bengtsson et al., 2017).  These could 

be bangiophyte sporophytes, but they could also belong to one of two other rhodophyte 

classes that also have pit plugs. Another fossil bangiophyte, Paleoconchocelis starmachii, 

was dated to 425 Myr (Campbell, 1980), and closely resembles a modern Porphyra 

sporophyte (“conchocelis”). The combination of this fossil evidence and the new support 

for the early divergence of the rhodophytes make studies of Porphyra and related species 

especially relevant to understanding eukaryotic evolution and development.
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Porphyra umbilicalis 

Porphyra umbilicalis Kützing is found on rocky substrates in the high-mid 

intertidal zone throughout its range in the North Atlantic (Fig. 1.1, Brodie et al., 2008; 

Teasdale and Klein, 2010; Guiry and Guiry, 2015). Populations of P. umbilicalis in the 

eastern Atlantic in Europe and England are known to reproduce both sexually and 

asexually (Brodie and Irvine, 2003). Sexual P. umbilicalis exhibits the typical 

bangiophyte alternation of generations (Drew, 1949; Graham et al., 2016). The haploid 

gametophytic phase is a monostromatic, foliose thallus, usually with separate male and 

female individuals. After fertilization, zygotospores settle and grow into the filamentous 

sporophyte (2N), and they burrow and grow within calcareous substrates such as mollusc 

shells (Fig. 2A). The sporophyte was originally classified as a separate species, 

Conchocelis rosea, until Kathleen Drew Baker demonstrated that it was the sporophyte of 

P. umbilicalis (Drew, 1949). This discovery revolutionized aquaculture of Japanese nori 

(Pyropia yezoensis), creating an industry that is worth 1.5 billion USD today 

(www.fao.org). Porphyra umbilicalis in the western Atlantic, however, is only known to 

reproduce asexually (Fig. 2B, Blouin, 2007; Blouin & Brawley, 2012). Cells at the blade 

margin develop into neutral sporangia, which divide mitotically to form packets of 

asexual neutral spores surrounded by mucilage.  Rewetting of dried thalli causes release 

of neutral spores into the seawater. These spores settle and germinate, growing directly 

into new gametophytes; no sporophyte seems to be present in the northwestern Atlantic 

portion of the Atlantic metapopulation of P. umbilicalis. This is an advantageous trait for 

development of this alga as an aquaculture crop, because economically-costly culture of 

the sporophytic phase is unnecessary (Blouin et al., 2011).

http://www.fao.org/
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Figure 1.1 Porphyra umbilicalis 

A. Photograph of wild P. umbilicalis at low tide at Dark Harbour, New Brunswick 

(Compliments of S. Brawley). The monostromatic thallus grows as a foliose blade, often 

drying to the rocks during low tide. Upon resubmergence at high tide it will quickly 

rehydrate. B. Cultured P. umbilicalis strung into lines.

A 

B 
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Figure 1.2 Porphyra umbilicalis reproductive cycle 

Sexual life cycle of P. umbilicalis is shown in the bottom panel. Foliose 

gametophytes are monostromatic and dioecious. After fertilization, zygotospores settle 

onto calcareous substrates and grow into the filamentous sporophyte (“conchocelis”). 

Diploid sporophytes release conchospores that settle and divide meiotically, producing 

new haploid gametophytes. Asexual life cycle of P. umbilicalis gametophytes is shown in 

the top panel. Cells at the edge of the blade margin differentiate into neutral spores via 

mitosis. Neutral spores are released from the degraded margin, settle, and grow directly 

into new gametophytes.  
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Porphyra umbilicalis is affected by many stressors in the intertidal zone, such as 

desiccation, high light, extreme and rapid changes of temperature, and salinity changes, 

but it is well-adapted to these conditions. Gametophytes can lose most of their water 

content every six hours with the tidal cycle, but recover quickly upon resubmergence by 

the incoming tide. Carotenoids and mycosporine-like amino acids protect the 

photosystems from excessive visible and UV radiation (Korbee et al., 2005; Blouin et al., 

2011; Yang et al., 2014). This alga can withstand a broad seasonal range (-20 to 25 °C) of 

aerial temperatures at low tide (Lüning, 1990; Blouin et al., 2007) and salinities up to 6 

times that of full seawater (Wiencke and Läuchli, 1980). These tolerances make P. 

umbilicalis an ideal aquacultural candidate, because nets with seeded germlings can be 

frozen for extended periods before outgrowth on farms (as in P. yezoensis, Tseng, 1981; 

Fei et al., 1999; Sahoo and Yarish, 2005).  

Years of research have demonstrated that algal morphology, development, and in 

some cases, stress tolerance, are influenced by the associated microbial epiphytes (Fries, 

1975; Provasoli and Pintner, 1980; Morris et al., 2011; Helliwell et al., 2016). Research 

on the P. umbilicalis microbiome is an active subject (Miranda et al., 2013, Kim et al., 

2016), but the community associations and microarchitectures of bacteria on the blade are 

unknown. Understanding community organization is an important facet of this research 

that needs more investigation. The availability of the assembled nuclear genome 

(Prochnik et al., 2017) provides another avenue for continuing studies of the effect of 

bacterial communities on this alga. Some algae that depend on bacterial “helpers” lack 

some genes or synthetic pathways that epiphytic bacteria provide to them (Morris et al., 

2011; Helliwell et al., 2016). Studies of gene function in P. umbilicalis, however, are 
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greatly inhibited by a lack of a genetic transformation system. These systems have been 

established in several model algal species (reviewed in Qin, 2012), and allow researchers 

to insert or delete genes of interest. Development of a transformation system in P. 

umbilicalis would advance understanding of the biology of this bangiophyte. 

Porphyra umbilicalis as a model organism 

Porphyra umbilicalis has ideal traits for becoming a true model organism, due to 

its easy culture via neutral spores, and a fully-sequenced genome. Continuing studies of 

its microbiome and interest in genetic function make P. umbilicalis the subject of 

important ecological and evolutionary research, and its economic value make it a 

commercial aquaculture candidate.  My primary goal for this thesis was to continue to 

develop P. umbilicalis as a model organism by investigating its seasonal reproduction 

and development, establishing a foundation for genetic transformation, and contributing 

to research on host-microbiome interactions. In Chapter 2, I describe my findings from 

analysis of two years of phenological survey data on P. umbilicalis at three locations in 

Maine, and pair this with results from my study of the effects of freezing on the 

development of early germling development. Together these studies contribute to a 

continuing effort to commercialize P. umbilicalis aquaculture in the US. In Chapter 3, I 

describe the process by which I attempted to transform P. umbilicalis using particle 

bombardment, and the development of an antibiotic selection protocol for this species. In 

Chapter 4, I present a study of microbial communities on the surfaces of both wild-

collected and lab-cultured P. umbilicalis, as revealed by imaging with scanning electron 

microscopy. Chapter 5 contains my final conclusions and my suggestions for further 

research involving Porphyra umbilicalis.
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    CHAPTER 2 

 

PHENOLOGICAL SURVEY OF WILD PORPHYRA UMBILICALIS  

IN MAINE AND EFFECTS OF COLD STORAGE ON  

DEVELOPMENT OF YOUNG SPORELINGS 

 

Introduction 

 

Japanese nori (Pyropia yezoensis) is valued at 1.5 billion USD per year 

(www.fao.org), making it the most valuable algal crop in the world. Development of a 

native Porphyra species in the United States is of particular interest because demand for 

nori and related foods is increasing (Wells et al., 2016). In New England, the red alga 

Porphyra umbilicalis (laver) is a candidate for expanding sea vegetable markets in the 

US, because laver has a long history of wild harvest across the north Atlantic as human 

food (Rhatigan, 2011), and P. umbilicalis has several advantageous traits for aquaculture. 

In the northwestern Atlantic, unlike the northeastern Atlantic, laver reproduces only 

asexually through the production of neutral spores from the blade margin. Neutral spores 

settle on rocks and grow directly into new blades (Blouin et al., 2007; Blouin et al., 

2011). The typical alternation of generations in Porphyra sensu lato (Sutherland et al., 

2011) between a filamentous sporophyte (2N) and a blade-forming gametophyte (N) 

through sexual reproduction appears to be absent in P. umbilicalis in the northwestern 

Atlantic (Blouin et al., 2011). This gives P. umbilicalis an advantage over other species 

for aquacultural development because expensive culture of a conchocelis phase is not 

required (Blouin, 2006; Blouin et al., 2007). In addition, Maine’s growing aquaculture 

industry would benefit from the development of integrated multitrophic aquaculture 

http://www.fao.org/
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systems (IMTA), and laver could be a useful component that would be fertilized by 

animal wastes, consequently serving as a value-added product that performs 

bioremediation (Chopin and Sawhney, 2009). Porphyra umbilicalis outperforms other 

New England Porphyra sensu lato in terms of nitrogen uptake (Yarish et al., 1998, 

Carmona et al., 2005; Kim et al., 2007). In these studies, P. umbilicalis consistently has 

the highest rate of ammonia and nitrate uptake of the tested species. This, coupled with 

neutral spore production, makes P. umbilicalis a strong candidate for aquaculture in 

Maine. Development of seed stock storage and harvesting techniques, and documentation 

of the reproductive phenology of this species, remain critical next steps to bringing this 

aquaculture crop to a commercial level in the US.   

In the nori aquaculture industry, nets seeded with spores are frozen as a common 

storage practice (Tseng, 1981; Fei et al., 1999; Sahoo and Yarish, 2005). Freezing live 

plants bearing neutral spores would extend the viability of seed stocks and possibly 

provide a benefit over frozen nets, because plants could be stored as soon as spores are 

produced, eliminating the labor and space required for storing nets. Green and Neefus 

(2014) demonstrated that P. umbilicalis blades (~5.0 mg) could be frozen at -20°C and -

80°C for 1, 3, 6, or 12 months with almost no effect on growth when plants were thawed 

and returned to normal culture conditions. The effects of low temperature storage on 

tissues bearing neutral spores, and the subsequent growth and development of these 

spores, however, was not examined. 
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Porphyra and Pyropia conchospores typically follow set patterns of development 

while undergoing meiosis to produce the first four cells of the blade (see Fig 1.1, Chapter 

1). Some species, such as P. haitanensis, P. yezoensis, and P. oligospermata, essentially 

form a filament of four cells with periclinal divisions of each of the first daughter cells 

(Ohme and Miura, 1988; Wang et al., 2010; Yan et al., 2010). Other species, such as P. 

katadai var. hemiphylla and P. purpurea undergo an anticlinal division of the upper cell 

of the 2-cell stage, whereas the bottom cell divides periclinally (Mitman and van der 

Meer, 1994; Wang et al., 2010). In this study, I refer to periclinal divison as “linear” (Yan 

et al., 2010) and anticlinal division as “bilateral” (Wang et al., 2010). 

Wang et al. (2010) found that higher percentages of sporelings of P. katadai var. 

hemiphylla developed as filaments through linear divisions in experimental groups 

subjected to higher temperatures than those maintained at standard culture temperatures 

for this species. The pattern of early development from conchospores in P. umbilicalis in 

the northeastern Atlantic appears to be unknown.  I wanted to determine what the pattern 

of early development of germinating neutral spores is in P. umbilicalis from Maine, 

because this could affect selection for cultivars of different shapes, and will contribute to 

understanding of the Atlantic metapopulation when European phycologists document the 

division pattern in germinating conchospores.  

Understanding the effects of different environmental factors on development of 

young sporelings is of importance to aquaculture development. Blouin et al. (2007) 

demonstrated that the spore release of P. umbilicalis was highest during the winter 

months, when freezing of blades at low tide is common, but since this study took place at 

only one site in Maine and across only one year, additional phenological study is needed. 
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These investigators also showed that P. umbilicalis readily reproduces in water 

temperatures of approximately 10-12⁰C. Establishing a seasonal reproductive cycle 

across multiple years for wild P. umbilicalis would give further insight into seasonal 

effects of temperature on P. umbilicalis, as well as provide useful information to 

aquaculturists on when to collect fertile blades from different regions of the Maine coast 

for seed stock. 

Recently a P. umbilicalis strain with excellent aquaculture potential was 

identified. This strain was produced from wild stock collected in Lubec, ME in 2015 

(strain “CCAR. P.um.2”, hereafter as “Pum2”). In the first study, I tracked the daily 

development of P. umbilicalis neutral spores released from Pum2, including both early 

division patterns and germination rates. In a follow-up study, I tracked the same 

parameters for spores released from Pum2 blades that were stored at -20 ºC for 6 weeks 

to observe the effects of freezing on spore development. I also analyzed two years of P. 

umbilicalis phenological data collected from three sites across Maine to evaluate monthly 

reproductive trends and determine the effects of site and season on P. umbilicalis 

reproduction in Maine.   

Finally, P. umbilicalis must have specific culture conditions to grow normally and 

produce large numbers of neutral spores. Here I define those conditions based on my 

work and earlier studies in the Brawley laboratory, because many biologists need this 

information following the recent sequencing of the nuclear genome of P. umbilicalis 

(Prochnik et al., 2017).  Absent this understanding, several culture collections (e.g., 

SAMS, Scotland; UTEX, USA) have lost the P.um1 accession that was provided to them 

by the genome project in 2013 (Brawley, pers. comm.).
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Methods 

Phenological survey of P. umbilicalis in Maine 

A bimonthly phenological survey was conducted by members of the Brawley lab 

from July 2014 to May 2016. Three main sites at Lubec (44°51'24.9"N, 66°59'04.0"W), 

Schoodic Point (44°22'04.8"N, 68°03'31.3"W), and Pemaquid Point (43°55'30.4", N 

69°29'35.5"W) were used, and each site included two sub-sites 0.5-1.5 km apart to 

evaluate local variability.  Carrying Place Cove Rd. (44°48'16.2"N, 66°58'55.8"W) and 

Quoddy Head Lighthouse (44°48'55.0"N, 66°57'02.1"W) were part of the greater Lubec 

site;  Schoodic Point (44°20'58.0"N, 68°02'45.8"W) and Blueberry Hill (44 ° 20′ 

20.39″N, 68 ° 2′ 42.03″ W) were part of the greater Schoodic Point site; and Pemaquid 

Lighthouse (43°50'13.9"N, 69°30'22.6"W) and Chamberlain (43°53'06.2"N, 

69°28'31.3"W ) were part of the greater Pemaquid Point site (Fig. 2.1).    

Approximately thirty P. umbilicalis specimens were collected at each sub-site at 

randomly selected positions along a 60 m transect at low tide, and returned to the 

laboratory in plastic bags. Occasionally, a subsite had so few P. umbilicalis individuals in 

a particular season that n=30 was not achievable through random sampling. The 

reproductive state of each plant was determined by excising a 1cm x 1cm piece of blade 

margin and examining it using light microscopy. Plants were designated as either 

vegetative (VEG, no neutral spores, Fig. 2.5, A), subdifferentiated (SUB, margins with 

immature neutral sporangia, Fig. 2.5, B), or as reproductively mature (NS, 

having/releasing mature neutral spores Fig. 2.5, C). The SUB category was added for 

Year 2. 



 

13 
 

 
 

Figure 2.1 Locations of collection of phenological data for P. umbilicalis in Maine 

The black circle marks the Pemaquid area (subsites Pemaquid Lighthouse and 

Chamberlain); the black diamond, the greater Schoodic area (subsites Schoodic Point and 

Blueberry Hill); and the black square, the Lubec area (subsites Quoddy Head Lighthouse 

and Carrying Place Cove). Base map provided by Maine GIS 

(http://www.maine.gov/megis/maps/) 

 

Subsite descriptions 

The overall sites and their corresponding subsites had unique features. At the 

Blueberry Hill subsite, where the previous phenology study was conducted, the intertidal 

zone is composed of large cobble and granite benches (Fig 2.2, A-B). Porphyra 

umbilicalis is common in the mid-zone boulder field, where storm waves often turn the 

smooth cobbles, removing epiphytes. The Schoodic Point subsite consists primarily of 

granite benches, but some Fucus-covered boulder field occurred near one transect, and 

this site is also exposed (Fig 2.2 C-D).  Both subsites at Lubec are foggy in warmer 

weather, especially the Quoddy Head Lighthouse; they tend to be cooler and foggier than 

http://www.maine.gov/megis/maps/
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Schoodic and Pemaquid overall (Fig 2.3, A-C). The Quoddy Head Lighthouse subsite of 

Lubec is an exposed cliff with base cobble; here, P. umbilicalis is prominent except in the 

hottest part of summer (Fig 2.3, A-B). Palmaria palmata and Fucus spp. make up much 

of the macroalgal biomass above the kelp zone at Quoddy Head. The sister Lubec subsite 

at Carrying Place Cove is more sheltered and consists of a wider intertidal zone, 

primarily dominated by A. nodosum in the midzone, but supporting kelps, P. palmata, 

and others in lower regions of the shore. The Pemaquid region was the southernmost site, 

and both subsites supported larger numbers of the gastropod Littorina littorea and the 

low intertidal red alga Chondrus crispus, when compared to Lubec and Schoodic (Fig 

2.4, A-C). At Chamberlain, large granite benches, and some boulders and cobbles form 

the substratum, and masses of P. umbilicalis can be found growing on them in the upper 

intertidal zone (Fig 2.4, A-B). At Pemaquid Lighthouse (Fig 2.4, C) the intertidal zone is 

composed of solid granite, and slopes sharply downward towards the strong incoming 

waves. The P. umbilicalis transect is high in the intertidal zone, in a fissure within the 

bench.  
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Figure 2.2 Schoodic subsite photos 

Schoodic subsite locations Blueberry Hill (A-B) and Schoodic Point (C-D). 

Photos A and C feature P. umbilicalis growing on rocky substrate in their respective 

locations, while B and D show overall views of each subsite. 

A B 

C D 
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Figure 2.3 Lubec subsite photos 

Lubec subsite locations Pemaquid Lighthoue (A-B) and Carrying Place Cove (C). 

Panel A shows the overall view of Pemaquid Lighthouse, and B shows a close-up of one 

of the sampling transects. In C, an overall view of Carrying Place Cove is featured, with 

P. umbilicalis growing in the lower right corner (black arrows) and with the large amount 

of Ascophyllum nodosum present in this semi-sheltered site apparent. 

A B 

C 
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Figure 2.4 Pemaquid subsite photos 

Pemaquid subsite locations Chamberlain (A-B) and Pemaquid Lighthouse (C). 

Porphyra umbilicalis can be seen in the bottom right in panel A (black arrow). The 

Chamberlain site with its well-developed Chondrus zone in the lower intertidal zone is 

featured in B. In C, an overview of the Pemaquid Lighthouse site is shown. The P. 

umbilicalis transect is to the right of this photograph. 

 

A B 

C 
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Figure 2.5 Reproductive stages of the P. umbilicalis blade margin 

Representative photos of three reproductive stages of P. umbilicalis observed 

during phenological survey. A. Vegetative blade margin (VEG). Cells are single or in 

pairs, with a vegetative greenish color. Scale bar = 50 µm B. Subdifferentiated blade 

margin (SUB). Neutral spore packets are forming but are not mature. Scalloped blade 

margin indicates possible amphipod grazing (black arrows). Scale bar = 50 µm C. Mature 

neutral spore margin with neutral spores that are being released from the blade (NS, 

arrows). Scale bar = 30 µm

A B 

C 
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Culturing blades for neutral spore production 

Neutral spores obtained from cultured P. umbilicalis were seeded onto 400 µm 

glass beads (Polysciences, Fig 2.6, A, B) and grown to reproductively mature adults. 

Three plastic cylinders (3L), each holding two plants (n=6 plants), were set up to produce 

spores. Blades ~ 5 cm long were clipped to the sides of each cylinder using plastic 

aquarium clips (Ocean Nutrition, Newark, CA, Fig. 2.6, C). Maintaining normal polarity 

of the blade by tethering it by its holdfast appears especially helpful compared to tumble 

cultures of blades, which begin to float at a vessel’s surface and deteriorate as they get 

larger (Fig. 2.6, D). Cylinders were filled with sterile seawater enriched with West-

McBride nutrient solution (Andersen et al., 2005), 10 ml stock enrichment/L seawater. 

This nutrient solution is a variant of Provasoli’s enriched seawater (PES) and supplies 

more iron than PES.  Germanium dioxide (250 mg/L culture medium) was used to 

prevent nuisance diatom growth (Stein, 1973). Blades were grown under a 10:14 L: D 

cycle, 60-80 µmol photons m-2 s-1, at 12 °C with vigorous bubbling. Under these 

conditions, NS were released after ~ 3 mo, but can be forced (Brawley, pers comm.) to 

times as short as 62 days (Fig 2.6, E). 
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Figure 2.6 New technology for lab culture of P. umbilicalis 

A. Plants grown for spore production. Adult blades of ~5 cm in length are clipped 

to the inside of a 3 L plastic cylinder and grown with vigorous aeration to produce spores. 

Plants pictured are approximately 15 cm long. Plants that are not clipped float and 

become curled, making them unsuitable for spore production. B. Neutral spores (arrows) 

of P. umbilicalis are seeded onto glass beads (~400 µm diameter). C. Juveniles after 

approximately 1 month of growth. When sporelings are visible at a few mm of length on 

beads, they are placed into culture in 2 L flasks or 4 L bottles and cultured as described. 

D. Neutral spores being released from ripe blade margins. 

A 

B 

C 

D 
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Obtaining neutral spores for development experiments  

Four plants with large NS margins were selected for the research on NS 

development. The NS-rich margins from half of each plant were removed to 1.5 cm 

depth, and cut into pieces of 3 cm length. The remaining whole plant tissues were blotted 

with Kimwipes, double-bagged in Ziploc freezer bags, and placed at -20°C for the second 

half of the experimentThe removed NS margins were dragged through 0.5% seawater 

agar in petri dishes, to remove any adherent diatoms or cyanobacteria (Tatewaki and 

Provasoli, 1964). Then, each cleaned piece was rinsed in sterile seawater to remove 

agarose, then placed in a sterile 100 ml beaker and allowed to partially dry until rubbery 

in consistency.  

When NS margin pieces felt “rubbery”, 10 ml of sterile seawater containing ¼ 

West-McBride nutrient solution were added to them. The seawater solutions were 

vigorously mixed by hand to promote release of neutral spores, with not more than 10 

min between each agitation. After agitation, each spore solution was poured through a 20 

µm mesh (Nitex, Wildlife Supply, Yulee, FL) to remove the blade and any small pieces 

of tissue that separated from the margin during agitation. Neutral spores are 

approximately 10 µm in diameter, so a 20 µm mesh is appropriate for filtering them. 
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Spore growth conditions 

After filtration, approximately 2 ml of each spore solution was added to three 30 

mm sterile petri dishes with 2 mm grids, each with 8 ml of sterile seawater containing ¼ 

West-McBride stock enrichment solution and 0.75 mg/L germanium dioxide. Spores 

were added to three petri dishes from each of the four donor plants, for a total of n=12 

dishes. Medium was gently rotated, side to side, to prevent spores from settling in one 

dense clump.  

One dish from each plant was then placed into a black Plexiglas lightbox (TAP 

Plastics, San Leandro, CA) that I made (Fig. 2.7), with a total of three light boxes used. 

Each box was placed inside a growth chamber (Percival Scientific, Perry, IA, model 

I3GLLVLC8) with one box on each shelf in the chamber. Each box was placed next to its 

own T8 12” light strip that provided ~ 60 µmol photons m-2 s-1 along the length of the 

box.  The purpose of the light box was to produce a unidirectional light gradient to 

encourage horizontal growth of germinating NS, which enabled assessment of 

developmental patterns.  

Spore development observations 

Spores were allowed 2 days to adhere to the dish, and, afterwards, observation of 

spore development began. Forty spores were selected from within a 1x 4 grid at the 

center of each dish (10 spores per square, 16 mm2 total area) and were assigned numbers. 

These individuals were observed daily over a 10-day period, and every 5th individual was 

photographed daily. The germination status and cell division pattern of each individual 

was noted. If a sporeling died before day 5, a new ungerminated or germinated individual 

was selected to replace it. After day 5, no replacements were made. 
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Frozen spore experiments 

After approximately 6 weeks of storage at -20 °C, blades were thawed over the 

course of ~20 minutes at 4°C in their bags. Spores were immediately released as above.  

 

 

 

Figure 2.7 Light box used for spore development experiments 

Light boxes were designed to hold 4 x 30 mm petri dishes. A T8 light strip was 

placed directly in front of the light box to provide a unidirectional light source for 

embryonic growth. Three light boxes, each with one dish from each donor plant, were 

used in both frozen and control spore experiments. Dishes from different parents were 

arranged randomly with respect to position in the boxes.
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Spore development experiments 

Of the 960 total sporelings observed daily, 181 were eliminated before analysis. 

These germlings had been scored inconsistently; for example, a sporeling that was 

determined to be 2-celled at one point of observation, then 1-celled the following day. A 

series of one-way ANOVAs were used to determine whether donor plant and 

experimental treatment influenced key developmental stages at three time-points (days 1, 

5, and 10).  A group of 383 control sporelings was compared to 396 -20 ºC stored 

sporelings for this analysis. 

Multinomial linear regression was then used to determine the effect of donor 

parent and frozen storage on the final developmental outcomes. Each sporeling was 

assigned a final developmental “path” based on the changing patterns of cell division. An 

additional 86 sporelings were eliminated from this analysis because their full patterns of 

development could not be observed, resulting in a final comparison of n = 349 control 

sporelings to n = 344 -20 ºC stored sporelings. A very large number of possible unique 

combinations of developmental patterns occurred at later embryonic stages; therefore, 

statistical analysis of patterns in this study was limited to the appearance of the first 

bilateral division (i.e., the 4-5 celled embryo). 

Statistical analyses 

Both the phenology data and the spore development data were analyzed using 

logistic regression models. R statistical software was used to conduct these analyses, and 

the functions lm or multinom were used to run the models. The regression models 

determined the effects of experimental parameters on outcomes by analyzing the 

relationship between a baseline outcome and all other outcomes. These relationships were 
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then compared between different experimental parameters, using a baseline for each 

independent variable and comparing the other variables to this baseline. For example, in 

the phenology data, the relationship between the baseline VEG and the outcome NS is 

compared for all sites to the Blueberry Hill baseline site. In R, the model produces a set 

of coefficients that explain the relationship between the outcomes for each independent 

variable examined. A Wald z-test (command coeftest) can be performed on the model 

coefficients to determine if the relationship is significantly different from the baseline. 

All subsequent p-values given for the phenology and developmental models were 

determined by this test. 

Results 

Phenological survey – differences by date 

Mean spore production was highest in November, January, and March for both 

years (Fig 2.8, A-1, A-2).  Analysis with binomial logistic regression (BLR) compared 

the relationship between VEG and NS for each month to the January baseline VEG-NS 

relationship. The BLR indicated that the VEG-NS relationship is significantly different 

for all months except March (p < 0.001 all samples, Table 2.1). Due to a data storage 

error, recorded data for Blueberry Hill, Schoodic Point, and Chamberlain were lost for 

September 2014. Dried herbarium samples from these sites were reconstituted in 

seawater and analyzed, resulting in an n = 3 samples for each of these sites during this 

month instead of the ~30 samples that were originally collected.
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In Year 2, the subdifferentiated (SUB) category was added to the analysis. The 

subdifferentiatied region of the P. umbilicalis blade contains immature neutral sporangia 

that have not finished dividing to produce and release neutral spores. In many cases, 

blades at the edge of the peak season of production had margins that were SUB stage, not 

NS stage. The blade margins had small scalloped edges, indicative of amphipod grazing 

(Fig. 2.5, B). The addition of this category gave further information about the transition 

from winter NS-bearing tissues to VEG tissues in the spring and summer. SUB tissues 

were found to dominate in May, between the March NS peak and the VEG July peak. 

Otherwise, the shift from VEG to NS was similar to that of Year 1. 

Analysis with multinomial logistic regression (MLR) compared the Year 2 

relationships between VEG and SUB plants, and VEG and NS plants for each month to 

the same January baseline relationships. The MLR determined the VEG-SUB 

relationship differed significantly from the January baseline trend in July and September, 

when VEG tissues are very high (p = 0.001) (Table 2.2). This analysis also determined 

that the VEG-NS relationship was significantly different from January in July, 

September, and May (p = 1.26 x 10-15, p = 2.20 x 10-16, p = 0.02, respectively).
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Figure 2.8 Representative means (± SEM) for phenological data 

Year 1 data represented in column A, Year 2 in column B. (A-1, B-1) Means of 

reproductive stages across all sites for each sampling month. A clear trend of higher NS 

production in winter and spring (November- March) emerged for both sampling years. 

(A-2, B-2) Means of tissues types across all months for each site. Trends fluctuated 

across each site between the two sampling years. (A-3, B-3) Yearly trends for 

reproductive stage averaged across the entire year and all sites. More plants were found 

across both years to have NS than to be VEG or SUB.

VEG     SUB       NS   
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Table 2.1 Binomial logistic regression table for Year 1 phenology 

  NS 

 Coeff. S.E. 

Mar 0.2775 0.4184 

May -4.4779 0.3658 *** 

July -3.2228 0.3314 *** 

Sept -4.0944 0.3962 *** 

Nov -1.6511 0.3331 *** 

SCP 0.3734 0.3207 

CHA -0.0580 0.3502 

PLH 0.3000 0.3100 

CPC 0.4067 0.3094 

QHL 0.6280 0.3231 * 
 

 

Model coefficients and standard errors (S.E) from BLR for year 1 phenology data. 

NS column represents VEG-NS comparisons. First block of rows represents months 

March (Mar), May, July, September (Sept) and November (Nov), each compared to 

January. Second block of rows represents sites Schoodic Point (SCP), Chamberlain 

(CHA), Pemaquid Lighthouse (PQL), Carrying Place Cove (CPC) and Quoddy Head 

Lighthouse (QHL), each compared to Blueberry Hill. Model built using base R statistical 

software. Significances were determined by Wald z-test on model coefficients. 

Significant values are in boldface. Significance codes:  p = 0 ***, p = 0.01 *
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Table 2.2 Multinomial logistic regression table for Year 2 phenology 

  SUB NS 

 Coeff. S.E. Coeff. S.E. 

Mar 0.1618 0.3939 0.3363 0.3553 

May 0.5330 0.3503 -0.8162 0.3388 * 

July -2.4763 0.3469 *** -6.0735 0.7593 *** 

Sept -1.8426 0.3229 *** -5.1400 0.5265 *** 

Nov 0.2683 0.3634 -0.2259 0.3371 

SCP 0.1427 0.3173 0.0456 0.3663 

CHA -1.0915 0.3344 ** -0.3463 0.3534 

PLH -1.4980 0.3306 *** -1.0396 0.3454 ** 

CPC -0.1119 0.3060 -0.9710 0.3633 ** 

QHL 0.1325 0.3487 1.0777 0.3912 ** 

 

 
 

Model coefficients and standard errors (S.E) from MLR for year 2 phenology data. SUB column represents VEG-SUB 

comparisons, NS column represents VEG-NS comparisons. First block of rows represents months March (Mar), May, July, September 

(Sept) and November (Nov), each compared to January. Second block of rows represents sites Schoodic Point (SCP), Chamberlain 

(CHA), Pemaquid Lighthouse (PQL), Carrying Place Cove (CPC) and Quoddy Head Lighthouse (QHL), each compared to Blueberry 

Hill. Model built using R statistical software using package nnet. Significances were determined by Wald z-test on model coefficients. 

Significance codes:  p = 0 ***, p = 0.001 **, p = 0.01 *
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Phenological survey, differences by site 

There were some differences in the overall reproductive trends between sites (Fig 

2.8, B-1, B-2). In Year 1, the VEG-NS relationship at Quoddy Head Lighthouse was 

slightly different from the Blueberry Hill baseline VEG-NS relationship (p = 0.052), 

having lower amount of VEG plants compared to NS. (Table 2.1). In Year 2, Pemaquid 

Lighthouse differed the most from Blueberry Hill, having more VEG plants compared to 

both NS and SUB (p = 5.88 x 10-6; p = 0.003, respectively). The VEG-NS relationship at 

Quoddy Head Lighthouse was again significantly different from the Blueberry Hill VEG-

NS relationship (p = 0.006) because Quoddy Head Lighthouse had more NS plants 

compared to VEG. Several other sites also differed from the baseline in terms of VEG-

SUB and VEG-NS relationships (Table 2.2). Aside from Quoddy Head Lighthouse 

having a higher proportion of NS plants for both sampling years, no other consistent 

trends were observed. The overall annual trend for both years showed NS as being the 

most common reproductive stage (Fig 2.8, C-1, C-2). 

Amphipod collection 

Because we observed grazing on P. umbilicalis collected during the phenology 

survey, we collected amphipods from P. umbilicalis in October 2016 to try and identify 

what species were present. Amphipods collected from P. umbilicalis at this time were 

identified as Apohyale prevostii (Milne-Edwards, 1850), formerly called Hyale nilssoni.  
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Spore development patterns 

Sporelings followed several different developmental paths across the 10 days of 

the study (Figs. 2.9-2.10, Table 2.3). Nearly all spores germinated and reached the two-

celled stage (Fig. 2.10, A). Most sporelings continued linear division to the three-celled 

stage, but ~10 % of all sporelings in both the -20 ºC and control groups exhibited bilateral 

division of the upper cell (Fig. 2.10, B1). Linear, three-celled sporelings exhibited a 

variety of subsequent division patterns, including some instances of double divisions in 

both linear and bilateral directions (Fig. 2.10, E-F), the most common being a single 

division producing a linear 4-celled sporeling (Fig. 2.10, E1). This outcome represented ~ 

25% of -20 ºC stored sporeling development and ~32% of control sporeling development.  

There were many sporelings that did not reach the four-celled stage. In both the -

20 ºC and control groups, ~18% exhibited only linear 3-celled development by the end of 

the study (Fig. 2.10, B2). These sporelings were healthy and growing properly, but did 

not achieve development to the 4-celled stage by the 10-day cutoff. Some sporelings 

grew slowly, and, by the end of the 10-day observation period, were either ungerminated, 

germinated with no additional growth, or had only reached the 2-cell stage. 

Approximately 15% of control sporelings and 18% of -20 ºC stored ones fit into these 

categories. Numbers of dead sporelings were low, representing ~1 % of control 

sporelings and ~2 % of -20 ºC stored ones. A small group of ~2 % of both -20 ºC and 

control sporelings grew in a “rhizomatous” pattern (Fig. 2.7, D), where a long rhizoid 

was produced but the single celled-embryo did not divide. 



 

32 
 

 
 

 
 

Figure 2.9 Examples of embryonic development from NS 

A. Sporeling exhibiting multiple bilateral and linear divisions. A1. Sporeling on 

first day of observation. A2. Sporeling has completed linear division on day 5 and has 

two in-line cells. A3. Sporeling has completed another linear division on day 7, forming a 

3-celled linear sporeling. A4. On day 8, sporeling begins bilateral division of upper two 

cells. The basal cell is diving linearly at the same time. A5. The 6-celled embryo (See 

Fig. 2.7, path F4). B. Sporeling exhibiting multiple linear divisions. B1. Germination is 

complete on day 2. B2. By day 5, the embryo has completed linear divison resulting in 

two in-line cells. B3. On day 7, sporeling has begun linear division of both upper and 

lower cells. Note the chloroplasts have fully divided but the cell walls have not 

completely split. B4. Completed linear divisions resulting in a linear 4-celled sporeling. 

Linear sporelings were the most common type of pattern at the 4-celled stage (See Fig. 

2.7, path F1). Scale bars = 10 µm

A 1 3 2 4 5 

4 3 2 1 

B 

1                     2                     3                           4                             5 

1                            2                               3                                4 



 

33 
 

 
Figure 2.10 P. umbilicalis sporeling division patterns 

Panel (A) represents the germination pattern followed by nearly all spores. A 

single-celled spore germinates and divides along a horizontal plane into a sporeling with 

two in-line cells. In panels B-F the small graphic on the left represents the sporeling pre-

division, and the larger graphic represents the sporeling post-divisoin. Two celled 

sporelings may undergo bilateral division (B1) or continue with linear division (B2). 

Both cells may also divide simultaneously (C), producing either a 4-celled linear 

sporeling (C1) or a sporeling with an upper bilateral divison and a lower linear division 

(C2). Single-celled sporelings may also produce long rhizoids instead of dividing (D). 

Linear 3-celled sporelings may divide again along a to produce a linear 4-celled sporeling 

(E1, most common outcome) or along a vertical plane to produce a bilateral 4-celled 

sporeling (E2, E3). Linear three-celled sporelings may also have double divisions that 

produce a linear 5-celled sporeling (F1), or a bilateral one (F2). Finally, these sporelings 

may undergo a combination of both linear and bilateral division, though these patterns are 

rare (F3, F4).  Diagrams not to scale.  
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Table 2.3 Developmental outcomes of sporelings  

CONTROL R U G A B1 B2 C1 C2 E1 E2/E3 F2 F1 F3 F4 D 

Donor A 1 1 0 1 13 10 8 7 32 0 1 0 3 1 2 

Donor B 2 0 4 9 6 25 9 4 21 1 0 1 5 1 1 

Donor C 2 0 0 7 6 14 11 1 33 4 1 1 2 1 1 

Donor D 0 2 2 28 8 14 10 2 25 3 1 0 0 0 1 

Total 5 3 6 45 33 63 38 14 111 8 3 2 10 3 5 

% total control 1.43 0.86 1.72 12.89 9.46 18.05 10.89 4.01 31.81 2.29 0.86 0.57 2.87 0.86 1.43 

                
-20 ºC storage R U G A B1 B2 C1 C2 E1 E2/E3 F2 F1 F3 F4 D 

Donor A 1 0 4 8 15 13 8 5 15 5 1 3 0 3 5 

Donor B 2 1 1 8 1 16 18 2 35 2 2 0 0 0 2 

Donor C 3 1 0 15 10 19 12 1 22 0 1 2 1 0 0 

Donor D 1 3 8 13 13 12 5 1 17 3 1 0 1 2 1 

Total 7 5 13 44 39 60 43 9 89 10 5 5 2 5 8 

% total -20 ºC  2.03 1.45 3.78 12.79 11.34 17.44 12.50 2.62 25.87 2.91 1.45 1.45 0.58 1.45 2.33 

 

 

Raw total of spores from donor plants A, B, C, and D for both the control group (upper block, total n = 349) and the -20 

ºC storage experimental group (lower block, total n = 344). “Total” rows represent the total n of sporelings from each donor 

plant combined, and “% total” rows represent the percentage of that outcome out of the total for the respective treatment group. 

Columns represent final developmental outcomes, which correspond to the patterns displayed in Fig. 2.10, A-E, 

R=rhizomatous, U = ungerminated, G= germinated, D = dead.  
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Effect of donor plant and cold storage on developmental outcomes 

Multinomial logistic regression (MLR) was used to test whether donor plant and 

treatment (control or -20 ºC storage) influenced the relationships between developmental 

outcomes, using developmental pattern E1 (Fig. 2.10) as a baseline (Table 2.4). Donor 

plant D had significantly higher numbers of spores that only reached the 2-celled stage 

(Fig. 2.10 A) compared to the other donor plants over the 10-day period of observation (p 

= 0.001). Donor plant D did not produce any sporelings that exhibited the F1 

developmental pattern, which the model determined was significant (p = 2.26 x 10-16), 

but the number of plants in this category was low overall (~1.0%). Plant A had greater 

numbers of sporelings that exhibited bilateral division in the 3-cell stage (Fig. 2.10, B1) 

compared to plant B (p = 0.001) and greater numbers of sporelings with bilateral division 

in the 4-celled stage (Fig. 2.10, E2, E3) compared to plant C (p = 0.01).  

One of the major goals of this study was to see if freezing influenced the growth 

and development of neutral spores. Interestingly, the only significant difference was 

found for the number of spores that germinated, but did not continue to grow or divide. 

The frozen storage group had more of these sporelings compared to the control group. 

However, such sporelings made up ~2% of the total experimental results, so the treatment 

had only a small inhibitory effect (p = 0.03).  

Differences at key developmental stages   

One-way Analysis of Variance (ANOVA) was used to determine whether - 20 ºC 

storage influenced sporelings at key stages of development on days 1, 5, and 10. No 

significant effects were found for any of the stages or time points examined. (Table 2.5) 
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Table 2.4 Multinomial logistic regression table for final spore patterns 

 
 

Coefficients and standard errors (S.E.) from the MLR conducted on the spore development data. Columns represent final 

development patterns, which correspond to the patterns displayed in Fig. 2.10, A-E, R=rhizomatous, U = ungerminated, G= 

germinated, D = dead.  First block of rows represents Donor plants B, C, and D, each compared to plant A. Final row represents frozen 

spores compared to unfrozen ones. Model built using R statistical software using package nnet. Significances determined by Wald z-

test on model coefficients. Significant values are bolded.  Significance codes:  p = 0 ***, p = 0.001 **, p = 0.01 *

Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E.

Donor B 0.5220 0.8890 -0.1742 1.4285 0.0505 0.7018 0.4615 0.4575 -1.5604 0.4671*** 0.4033 0.3273 -0.8689 0.5379

Donor C 0.7605 0.8610 -0.1568 1.4286 -13.1857 337.6507 0.7371 0.4430 -0.7161 0.3718 0.2041 0.3367 -1.9497 0.7894 *

Donor D -0.5404 1.2500 1.7848 1.1179 1.1086 0.6326 1.6495 0.4258 *** -0.1441 0.3597 0.2481 0.3570 -1.2915 0.6804

Frozen 0.5220 0.6040 0.8589 0.7502 1.0933 0.5197 * 0.2744 0.2606 0.4121 0.2797 0.1736 0.2305 -0.2469 0.4545

Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E. Coeff. S .E.

Donor B 0.3489 0.3729 -0.6849 0.7571 -0.1727 1.0204 -1.2716 1.1730 0.3323 0.7594 -1.5601 1.1362 -1.0210 0.7188

Donor C 0.2063 0.3818 -0.3796 0.7001 -0.1550 1.0205 -0.1556 0.8423 -0.1596 0.8429 -1.5426 1.1364 -2.1021 1.0880

Donor D 0.0735 0.4184 0.3311 0.6434 0.1692 1.0247 -13.9119 0.0000 *** -1.0699 1.1763 -0.5253 0.8943 -1.0897 0.8313

Frozen 0.3388 0.2649 0.4821 0.4974 0.7464 0.7457 1.0738 0.8505 -1.4272 0.7885 0.7441 0.7476 0.6741 0.5914

E2/E3

C1 C2 F2 F1 F3 F4 Dead

Rhizo. Ungerm. Germ. A B1 B2
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Table 2.5 One-way ANOVA tables for key developmental stages  

Day 1 DF Sum Sq. Mean Sq. F P 

u - Treatment 1 703.1 703.1 2.749 0.148 

u - Residuals 6 1534.7 255.8   

g - Treatment 1 480.5 480.5 2.009 0.206 

g - Residuals 6 1435 239.2   

Day 5 DF Sum Sq. Mean Sq. F P 

2 - Treatment 1 72 72 1.442 0.275 

2 - Residuals 6 299 49.92   

Day 10 DF Sum Sq. Mean Sq. F P 

3 - Treatment 1 21.13 21.13 0.631 0.457 

3 - Residuals 6 200.75 33.46   
4 - Treatment 1 78.12 78.12 2.173 0.191 

4 - Residuals 6 215.75 35.96   
 

One-way ANOVAs were used to determine whether the -20 ºC storage 

(Treatment) had a significant effect on key developmental stages on days 1, 5, and 10 of 

the study. No relationships were found to be significant. Development stages: u = 

ungerminated, g = germinated, 2 = 2-celled, 3 = linear 3-celled, 4 = linear 4-celled. 

 Discussion 

The results from the phenological survey of P. umbilicalis in Maine indicate that 

season has the most influence on reproduction in this alga. Plants are reproductive from 

fall through the early spring, when ample nutrients and cold temperatures support neutral 

spore production. During the summer months, depleted nutrients and high temperatures 

cause plants to die back and become mostly vegetative.  Blouin et al. (2007) found that P. 

umbilicalis collected from Blueberry Hill in 2006 were reproductive throughout the year 

except in summer, and that spore release was highest from fall to spring. In the present 

study, we observed many blades in the spring and fall with subdifferentiated margins, not 

NS-rich margins. The presence of broken, scalloped blade edges, staged as SUB, 



 

38 
 

indicated that grazers appeared to restrict the environmentally determined reproductive 

season to a smaller period of achieved annual reproduction. We observed Apohyale 

prevostii, gammarid amphipods, on wild P. umbilicalis collected in October 2016. From 

the viewpoint of this study, the time when aquaculturists could collect wild seed stock 

might be constrained by these grazers.  McBane & Croker (1983) reported that A. 

prevostii (as H. nilssoni) often grazed Vertebrata lanosa (as Polysiphonia lanosa) and 

other ephemeral algae on rocky shores of New England. The investigators also reported 

that A. prevostii in lab tests frequently swam to P. umbilicalis, and chose P. umbilicalis 

only slightly less than V. lanosa. The investigators did not examine whether amphipods 

consumed P. umbilicalis tissue, but based on the grazing evidence from the P. umbilicalis 

phenology study, this is a strong possibility. Determining the effect of the nutritious spore 

diet from P. umbilicalis on the biology of this amphipod (and possibly other species) 

would be an important direction for a future study. 

Analysis of regression coefficients indicated that site did have some influences on 

the observed reproductive outcomes.  The Quoddy Head Lighthouse site had more plants 

with NS compared to VEG for both sampling years compared to Blueberry Hill, and had 

the highest overall NS for Year 2. Porphyra umbilicalis at this site is highly exposed to 

incoming wave action, something that appears to benefit reproduction. In laboratory 

conditions, vigorous bubbling of plants is necessary to induce neutral spore production, 

so the influence of heavy wave action on the plants of Quoddy Head Lighthouse may 

result in their increased production of neutral spores. Overall, the phenology study 

expands on earlier phenological work by including additional samples and study sites, 

and provides a clear demonstration of annual reproductive trends in P. umbilicalis. 
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The most significant influence on embryonic division patterns was found between 

individual donor plants. Plant A appeared to produce more bilateral development in the 3- 

and 4-cell stages, and donor plant D appeared to grow more slowly than the other plants, 

having significantly more sporelings remaining at the 2-cell stage on the final day of 

observation. These categories combined to make up ~26% of the total outcomes, so these 

may be significant effects for aquacultural applications. Wang et al. (2010) showed that 

adult plants tended to retain their defining shape from their sporeling stages. Initially this 

was not considered relevant to my study, because I chose plants of similar shape and size. 

A next step would be to culture the young sporeling with known developmental patterns 

to mature size and do comparisons of their final shapes. A next generation of spores 

could then be collected from these adults, and another comparison done on the young 

sporelings produced.  

Ohme and Miura (1988), Wang, (2010), and Yan et al. (2010) showed that early 

development in P. oligospermata, P. haitanensis and P. yezoensis is linear, and produces 

a linear adult plant. Mitman and van der Meer, (1994) observed that P. purpurea 

sporelings had early bilateral division. In the case of P. purpurea, some of this bilateral 

development may be because the adult gametophyte is bilaterally divided into male and 

female halves, so early differentiation of the blade occurs. The Porphyra and Pyropia 

species examined in these studies were derived from conchocelis cultures, not asexual 

spores. Development in asexual P. umbilicalis seems to trend towards linear 

development, but a significant portion of sporelings had early bilateral development.  A 

comparison between western Atlantic asexual P. umbilicalis and conchospores from 

sporophytes in the northeastern Atlantic P. umbilicalis would be useful.  
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Overall, it is surprising that there are differences in developmental pattern of NS 

from a single parent, because meiosis did not produce these parents and all NS should be 

the same. This opens the possibility, as well, that other, microbiotic influences (e.g., 

particular bacteria near some but not all NS) would affect pattern of development and/or 

rate of development. 

Interestingly, - 20 ºC storage only showed a significant effect in the number of 

sporelings that germinated but did not divide. The small number of sporelings affected by 

this difference from controls, however, means that it is not a negative indicator for 

storage of frozen seedstock for aquaculture. This promising result indicates that short 

periods of freezing may have little effect on spore viability when reproductively mature 

P. umbilicalis blades are frozen for storage. Now, the storage space for frozen seedstock 

vs already seeded nets should be compared as part of establishing freezing of ripe blades 

bearing neutral spores as a standard industry technique. Future studies could freeze 

blades for longer periods of time and examine the effect this has on sporeling 

development.  

Sporelings that had unclear developmental paths made up a notable amount of the 

observed individuals. Sporelings would sometimes grow in a twisted form, or 

perpendicular to the field of view, preventing clear visualization of their development 

patterns.  Investigators who studied developmental patterns in other Porphyra and 

Pyropia species made use of color mutants to aid in differentiation between cell division 

patterns.  Color mutants are currently unavailable for asexual P. umbilicalis. Mitman and 

van der Meer, (1994) observed that use of nitrosoguanadine produced some color mutants 

in P. purpurea, so this method might be applied to P. umbilicalis to produce color 
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mutants. Due to the asexual nature of P. umbilicalis reproduction, however, continuation 

of genetic color mutants could pose a challenge because mutagenized neutral spores 

could grow into single color-mutant blades, with no contrasting wild-type cells. Use of 

chlorophyll a fluorescence or a destructive assay of sporelings at different time points 

could be used to improve visualization of development.  

It should be noted that the analyses of both the phenology and developmental data 

using multinomial regression present some limitations. Because all comparisons involve 

choosing a baseline as an independent variable, not all possible combinations of 

comparisons are performed. For example, all sites in the phenological survey are 

compared to the Blueberry Hill baseline, but no other inter-site comparisons were made. 

To determine the sensitivity of these analyses, I changed the baseline month and site in 

alternative phenological models, and changed the baseline developmental outcome in the 

developmental study. I found that some other site-site or month-month comparisons were 

significant in the phenology data, but that changing the developmental outcome baseline 

for the developmental dataset did not have much effect. Using regression models with a 

baseline comparison is useful for preliminary analysis, but because alternative 

comparisons between independent variable parameters are not possible, an alternative 

analysis is planned soon.  

The studies presented here will benefit researchers interested in conducting 

experimental studies in P. umbilicalis by providing detailed methods for laboratory 

culture, and a guide to basic early development of sporelings. Applied scientists 

interested in commercial aquaculture can use our findings of P. umbilicalis seasonal 

reproduction in Maine to further commercial aquaculture development in this species.   
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CHAPTER 3 

GENETIC TRANSFORMATION OF PORPHYRA UMBILICALIS 

Introduction 

Genetic transformation is one of the most valuable tools for understanding gene 

function. Through a variety of methods, foreign DNA constructs are introduced into cells, 

remaining there for hours or days (transient transformation) or becoming fully 

incorporated into the genome (stable transformation). More than 20 algal species have 

been transformed using delivery systems that include glass needles, electroporation, 

transfection with Agrobacterium, and biolistic particle bombardment (reviewed in Qin et 

al., 2012). More recently, CRISPR technology was successfully applied to transform the 

diatom Phaeodactylum (Nymark et al., 2016), and similar efforts are being made in other 

microalgae (Shin et al., 2016).  Out of the many microalgal species with available 

transformation protocols, the green flagellate Chlamydomonas is the most widely used 

algal model system, and much of our knowledge of its biology is dependent upon 

extensive transformation studies (Boynton et al., 1988; Kindle, 1990; Grossman, 2000; 

Jinkerson and Jonas, 2015). Interest in using microalgae for biofuel production has also 

motivated transformation efforts (Radakovits et al., 2010; Kilian et al., 2011). A few 

macroalgae were transformed, including Pyropia yezoensis (stable), Saccharina japonica 

(stable), and Ulva lactuca (transient) (Huang et al., 1996; Qin et al., 1999; Fukuda et al., 

2008; Mikami, 2013; Uji et al., 2014), but transformation of macroalgae proved more 

challenging than that of microalgae, and few successes are documented (Qin et al., 2012; 

Mikami, 2013; Lin and Quin, 2014).  
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Codon optimization and promoter selection are two critical steps for improving 

transformation success in algae. Viral promoters such as the Cauliflower Mosaic Virus 

35s promoter (CaMV-35s) were used to transform higher plants and other organisms, and 

sometimes increased expression of target microalgal genes (Santos et al., 2013; Lin and 

Quin, 2014).  Endogenous promoters support much higher levels of transcription, 

especially in species where heterologous promoters were unsuccessful (Fukuda et al., 

2008). Codon optimization of target genes is important because differences in the genetic 

code used by different organisms (Alberts et al., 2014) means that translation of a mRNA 

can occur by different codons for the same amino acids in different groups of organisms 

(Bulmer, 1988; Higgs and Ran, 2008). The nuclear genomes of many microalgae and a 

few macroalgae are now available, including that of the red macroalga Pyropia yezoensis 

(Nakamura et al., 2013). The availability of sequenced genomes provides a wealth of 

important information necessary to produce codon-optimized genes and to locate 

promoters best suited for supporting transcription of particular genes (Qin et al., 2012; 

Mikami, 2013; Lin and Quin, 2014).  

Both transient and stable transformation were achieved in P. yezoensis after years 

of study by a Japanese research group at Hokkaido University (Fukuda et al., 2008; 

Takahashi et al., 2010; Uji et al., 2009; Uji et al., 2012; Hirata et al., 2014; Uji et al., 

2013). These investigators determined that the CaMV-35s promoter (part of the 

commercial pBI221 plasmid vector) was insufficient to achieve expression of the codon-

optimized β-glucuronidase (GUS) system in P. yezoensis, and instead achieved GUS 

expression using an endogenous GAPDH promoter (Fukuda et al., 2008). In addition, 

codon-optimization was found to be necessary to get efficient GUS and selectable marker 
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expression, because the genome of P. yezoensis has high G + C-content (Fukuda et al., 

2008; Hirata et al., 2014; Uji et al., 2013) compared to the A + T bias found in E. coli. 

With these important parameters met, the group achieved several successful 

transformations of P. yezoensis, and some of these were stable transformations.  

The availability of a complete sequence for the nuclear genome of P. umbilicalis 

(Prochnik et al., 2017) and the close relationship between this alga and P. yezoensis 

prompted my attempt to develop a successful genetic transformation system. This 

research was proposed in collaboration with Prof. Hiroyuki Mizuta and Dr. Toshiki Uji of 

Hokkaido University in Hakodate, Japan, as part of an East Asia and Pacific Summer 

Institute (EAPSI) fellowship sponsored by the NSF and the Japan Society for the 

Promotion of Science. Dr. Uji and his colleagues had previously used biolistic particle 

bombardment to achieve stable transformation of P. yezoensis. In this method, plasmids 

are purified and mixed with microscopic gold particles, to which they adhere, and these 

are ejected at high speed into the subject tissue using biolistic technology (Sanford, 

2000).  Particle bombardment was applied successfully in P. yezoensis to achieve ~2.3 % 

transformation efficiency (i.e., 700 cells per 1 cm diameter disc of P. yezoensis blade that 

contained ~ 3 x 105 cells, Fukuda et al., 2008; Takahashi et al., 2010). 

The goals of my project were to establish a protocol for stable transformation in 

P. umbilicalis using pre-prepared plasmids, which testing the efficiency of the antibiotic 

hygromycin B previously used by Dr. Uji’s team to select transformants. Hygromycin B 

interferes with translocation, effectively stopping transcription (Lackie, 2015). In the 

event that a stable transformation system was established, the system would be tested 

further by creating an overexpression study of heat shock factor (HSF) in the tissue. 
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HSFs are highly conserved transcription factors (TFs) that are found across all domains 

of life. There is some variation in sequences between organisms, but the DNA binding 

domain remains highly conserved (Riechmann et al., 2000; Zhou et al., 2011). The 

primary function of HSFs is to induce heat shock protein (HSP) expression, which 

prevents misfolding and denaturation of proteins under conditions such as high heat ((Lis 

J and Wu C, 1992; Wu, 1995; Lin et al., 2001). Several studies of HSP expression and 

function were conducted in Pyropia (Zhou et al., 2011; Choi et al., 2012; Choi et al., 

2015), but the expression of HSF genes remains largely unexplored in macroalgae. 

Because HSFs are highly conserved and control the system of HSP expression, they are 

ideal targets for testing a protocol for stable genetic transformation in P. umbilicalis.  

Here, I demonstrate successful transformation of P. umbilicalis using particle 

bombardment under several different conditions.  I also determined the sensitivity of P. 

umbilicalis to the antibiotic hygromycin B.  

Methods 

Plasmid construction 

The PyAct1-PyGus plasmid was used for GUS expression in P. umbilicalis. This 

plasmid was previously constructed from an E. coli pBI221 backbone containing the 

CaMV-35s promoter upstream of the bacterial GUS gene. The bacterial GUS gene was 

removed and replaced with an artificial GUS gene codon-optimized for use in Pyropia 

(PyGUS) to create p35s-PyGUS (Fukuda et al., 2008).  Takahashi et al. (2010) later 

removed the CaMV-35s promoter and replaced it with the P. yezoensis Actin1 promoter 

(PyAct1) to create PyAct1-PyGus for GUS expression in Pyropia.  
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Culture conditions 

Samples for particle bombardment were taken from neutral spore margins of 

cultured P. umbilicalis, which was isolated in 2015 from a wild blade collected in Lubec, 

ME (strain “CCAR. P.um.2”, hereafter as “Pum2”). To produce neutral spores, plants 

were grown in 3 L transparent plastic cylinders (n=2 plants/cylinder) in sterile seawater 

with full-strength West-McBride nutrient solution (Andersen et al., 2005, 10 ml stock 

enrichment/L seawater) and 250 mg/L germanium dioxide (Stein, 1973) to prevent 

nuisance diatom growth. Plants were grown under conditions of 10:14 L:D cycle, 60-80 

µmol photons m-2 s-1,  at 12 °C with vigorous bubbling to produce good growth and 

development of a reproductive (NS) margin.  

Tissue preparation 

Because of the promising result of a preliminary 5-day sulfatase treatment (see 

Appendix A), a full trial of particle bombardment on sulfatase-treated tissues was used. I 

incubated sections of P. umbilicalis neutral spore margins, measuring 1 cm across the 

margin edge and 1 cm deep into the blade (final sections: 1cm x 1cm) for 1, 5, or 10 days 

in sulfatase from Helix pomatia (S9626, Sigma-Aldrich, St. Louis) under standard culture 

conditions (n=4 tissue sections each). A group of freshly-cut, marginal sections with no 

sulfatase treatment was used as a control (n=4).  

I also conducted a second bombardment on newly released neutral spores, which 

did not incorporate sulfatase pre-treatment because neutral spores do not have cell walls. 

For this trial, reproductive blade margins from whole plants (cultured as above) were 

removed and shredded with forceps to produce a loose slurry of spores and tissue. Large 
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ripe packets of neutral spores were also squeezed from blade margins and added to this 

mixture to provide as many naked NS as possible (referred to as “NS treatment” 

hereafter). Approximately 1 ml of this solution was placed in a 35 mm petri dish 

containing a layer of 2.0 % agarose (Seachem LE, Madison, GA) with a 0.5 cm central 

divet for the spores (n=4 aliquots).  

Particle preparation and bombardment 

The Particle Delivery System – 1000/He (PDS-1000/He, Bio-RAD, Hercules, 

CA) was used to deliver PyAct1-PyGUS into the P. umbilicalis tissues. Plasmids were 

prepared following Uji et al. (2013). A stock solution of 0.6 µm gold particles (Bio-RAD, 

60 mg/ml in 50% glycerol) was vortexed in a microcentrifuge tube for 3 min to break up 

particle aggregations. This was then diluted by adding 200 µl of stock to 600 µl of 50% 

glycerol in Milli-Q deionized H2O (EMD-Millipore, Darmstadt, Germany). The diluted 

gold solution was vortexed, and 40.0 µl was added to 20.0 µl of plasmid (1 µg/µl). The 

tube was vortexed, and 100 µl of 2.5 M CaCl2 and 40.0 µl of 0.1M spermidine (S2626, 

Sigma, St Louis, MO) were added to the solution and vortexed. After 2-3 min of 

vortexing, the solution stood for 5 min at room temperature, and was quick-spun at 5000 

rpm in a microfuge (Eppendorf 5145). The supernatant was removed, and 140 µl of 70% 

reagent-grade ethanol (EtOH) was added and quickly removed by pipetting to wash the 

particles. Immediately, 140 µl of absolute EtOH (Pharmco) was added and removed 

again using the same method. Finally, 15.0 µl of absolute EtOH was added to the pellet, 

and the tube flicked and vortexed to break aggregation. From this final solution, 3.3 µl 

were withdrawn and spread across a plastic macrocarrier and allowed to dry. This 

produced enough solution of particles for four macrocarriers (#1652335, Bio-RAD).  
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The tissue sections from the sulfatase treatment groups were placed on 2 cm x 2 

cm sections of seawater-dampened filter paper, and blotted with light pressure using a 

Kimwipe. This ensured that the tissue remained affixed to the target tray and was not 

displaced within the chamber when the system fired. For the NS treatment, excess 

seawater was carefully blotted from the dishes using Kimwipes. All treatment groups 

were bombarded at 1550 psi helium pressure at 6.0 cm distance with a 28” Hg vacuum 

inside the firing chamber.  

GUS staining  

Following particle bombardment, P. umbilicalis tissues were recovered under 

standard culture conditions. After two days, tissue sections were placed into 1.5 ml 

microcentrifuge tubes and incubated in 100-200 µl of 5-bromo-4-chloro-3-

indolylglucuronide (X-Gluc) staining solution as specified in Uji et al. (2013). The 

solution included 2.0 mM X-gluc, 5.0 mM potassium ferricyanide, 5.0 mM potassium 

ferrocyanide, 0.5% Triton X-100, 1.5 M D-sorbitol and 50.0 mM sodium phosphate 

buffer (product numbers RES1177B, 702587, 455989, T8787, S1876, S-9763, Sigma, pH 

7.0). In the neutral spore trials, a disc of agarose with the settled spores was excised from 

the dish, trimmed, and placed into a 96-well culture plate with 200 µl of X-Gluc solution 

(as above). Tissues were incubated in this solution at 37 ⁰C overnight in a Fisher Isotemp 

culture chamber (model 6842, in darkness) with slow shaking on a New Brunswick 

Scientific gyrotory shaker (model G2, 100 rpm), then placed onto slides and examined at 

a light microscope. Transformed regions showed intense blue staining due to GUS 

expression (Fig. 3.1). 
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Hygromycin B resistance test 

To determine the effect of hygromycin B on P. umbilicalis, neutral spores were 

released from cultured strain Pum2 (Lubec, Maine) in 10 ml of sterile seawater. Two ml 

of spore solution were added to 10.0 ml plastic petri dishes containing sterile seawater 

with hygromycin B, for final concentrations of 0.5 mg/ml, 1.0 mg/ml or 2.0 mg/ml 

hygromycin B (10 ml final volume). Dishes containing no hygromycin B were used as 

controls. A total of n=3 dishes per treatment were used. Final spore density was ~ 1 x 103 

cells/ml.  Spores were grown in standard culture conditions (10:14 L:D cycle, 60-80 

µmol photons m-2 s-1,  at 12°C, ¼ West-McBride enrichment).  After a 2 d culture period, 

50 spores were chosen randomly for observation.  Development stage and number of 

dead individuals were recorded. These individuals were observed a total of 5 times (every 

2-3 days) using an inverted microscope (Zeiss IM-35) over a total incubation time of 

approximately 14 days (Uji et al., 2013).
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HSF sequence confirmation 

To create an overexpression study of HSF in P. umbilicalis, a HSF sequence was 

needed. The P. umbilicalis project’s genome assembly was searched for sequences 

matching heat stress transcription factors (HSTFs) found in Arabidopsis thaliana. 

Although A. thaliana is a higher plant, the conservation of the DNA-binding domain 

sequence allowed for identification of HSF genes in P. umbilicalis that closely matched 

those of A. thaliana (A-1a, P41151, e-value = 3e-38; HSTF A-1d, Q9LQM7, e-value= 3e-

39; HSTF A-9, Q9LVW2, e-value= 4e-27, www.uniprot.org). This search was followed by 

a blastp (NCBI/NIH, http://blast.ncbi.nlm.nih.gov) against sequences of two red algae, 

Chondrus crispus and Galdieria sulphuraria (CDF34110.1, e-value=1e-69, EME27275.1, 

e-value=4e-61). The high fidelity of these matches indicated that the target HSF sequence 

in P. umbilicalis was a likely match and a good choice for a target sequence for stable 

genetic transformation.  

cDNA generation 

To produce cDNA of the HSF sequence for cloning, two large Pum1 blades 

(approx. 18 cm) were divided into sections (n=8 sections/plant) after removing the 

reproductive margins and holdfast. Tissue sections were placed in sterile petri dishes with 

sterile SW, and sealed with parafilm. After a 24 h recovery period at 12 C, tissue sections 

were divided into four groups (n=2 sections per plant, per group), a control group at 12 C 

(no heat shock [HS]) and 1, 3, and 6-h experimental HS groups. The HS experimental 

groups were placed in culture at 25 ºC and incubated for 1, 3, and 6 h, respectively, to 

induce HSF expression (Xu et al., 2014; Sun et al., 2015). After the indicated incubation 

periods, samples were removed from petri dishes, wrapped in aluminum foil, and quickly 
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dropped into liquid nitrogen (LN2) to preserve expressed mRNAs. Samples were stored 

overnight at -80°C, and ground using a mortar and pestle. Samples were kept cold with 

LN2 when not in -80°C storage, and ground tissue was quickly frozen again after 

processing. Extraction of RNA was done with an RNeasy Plant Mini Kit (Qiagen) 

following the manufacturer’s instructions; 30 µl of RNA was eluted in RNase free water. 

The qScript cDNA SuperMix kit (Quanta) was used to generate cDNA according to the 

manufacturer’s instructions. Products were run on a 1.5% agarose gel to confirm the 

presence of cDNA and products were amplified and confirmed using qPCR. 

PCR conditions 

To produce DNA for cloning, PCR was done on the cDNA produced as described 

using a GeneAmp 9700 thermocycler (ThermoFisher, USA). The initial denaturation step 

was 98 ºC for 10 s, followed by 38 repetitions of 98 ºC for 10 s, annealing at 55 ºC for 5 

s, and extension at 72 ºC for 2 min. Per reaction, 100 ng of cDNA were used with LATaq 

(TaKaRa, Japan).   

Results 

Particle bombardment 

GUS expression was visible in both sulfatase and NS treatments (Fig 3.1, Table 

3.1). Numbers of GUS-expressing cells were lower in the 5-d sulfatase treatments (M = 

4.50, SD = 3.11) and 10-d sulfatase treatments (M = 3.50 SD = 4.36) compared to the NS 

treatment (M=10.00, SD = 6.00). Controls (no sulfatase) lacked GUS-positive staining 

(as expected). In the sulfatase treatments, polysaccharide fragments from the blade 

margins appeared in petri dishes during the treatment period. Some of the spores in the 

NS treatment appeared to have lysed during the X-Gluc incubation (Fig 3.1 D). A one-
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way analysis of variance (ANOVA) determined that treatment (including both sulfatase-

treated tissue and NS treatment) did affect the transformation efficiency (Table 3.2, F4, 15 

= 4.9, p = 0.01). A Tukey test indicated that the transformation efficiency was 

significantly different between the NS treatment compared to both the control and 1-d 

sulfatase treatment (p = 0.01 for both), but that no other relationships were significant. 

Overall, the transformation efficiency observed in P. umbilicalis across all treatments 

was low compared to efficiencies achieved in P. yezoensis. A 1 cm x 1 cm section of P. 

umbilicalis tissue has ~3.7 x 105 cells, making the transformation efficiency less than 

0.00003 %.
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Figure 3.1 GUS expression of P. umbilicalis under different treatment conditions 

A. GUS-expressing neutral spore at the edge of a neutral spore margin (5-day 

sulfatase treatment). There were few other transformed regions nearby. B. Transformed 

vegetative cell on the edge of reproductive margin section (10-day sulfatase treatment). 

C. GUS-expressing germlings. GUS expression is clearly leaky in this image, especially 

in the germling furthest to the left. (fully exposed spore trial). D. GUS-expressing neutral 

spores still partially bound to adult tissue (right). A number of fully released spores that 

have lysed can be seen in the lower half of the micrograph, indicated by black arrows.  

Scale = 30 µm.

C D 

B A 
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Table 3.1 Means and standard deviations for particle bombardment outcomes 

Treatment 

N 

(samples) 

  

Mean S.D. 

Control  4 0.00 0.00 

1-d sulfatase 4 0.50 1.00 

5-d sulfatase 4 4.50 3.11 

10-d sulfatase 4 3.50 4.36 

NS treatment 4 10.00 6.00 

    

 

 

 

Table 3.2 One-way ANOVA for treatment effect on transformation efficiency 

 DF       Sum Sq.    Mean Sq. F P 

Treatment 4.0 257.0 64.3 4.9 0.01* 

Residuals 15.0 197.0 13.1   
 

 

Hygromycin resistance test 

Hygromycin B had a clear effect on P. umbilicalis neutral spores (Fig. 3.2). By 

day 5 of observation (~14 days after the start of treatment) higher numbers of dead spores 

were found in the hygromycin B treated samples compared to controls (Table 3.3). 

Comparing outcomes for the 50 spores/dish (n=3 dishes, all groups) that were tracked 

daily, in the control group, an average of 3.7 spores (SE ± 1.2) had died. By comparison, 

an average of 14.34 (SE ± 2.34) died in the 0.5 mg/ml treatments, 28.34 (SE ± 3.84) died 

in the 1.0 mg/ml treatment, and 37.34 (SE ± 3.34) died 2.0 mg/ml treatments, 

respectively.  A Shapiro-Wilk test indicated these data were non-normal (p = 0.02) so a 

Kruskal-Wallis test was used to analyze the data. This test determined that hygromycin B 

level had a significant effect on the number of dead spores (p = 0.02), and a Dunn test 
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with Bonferroni correction was used and produced pairwise significance values. The 

Dunn test indicated that the 2.0 mg/ml treatment was significantly different from the 

control group (p = 0.03), and no other relationships were found to be significant. 

 

   

   

Figure 3.2 Germling condition on day 14 of 14-d hygromycin B experiment 

 

A. Healthy algal spore; the red stellate chloroplast is evident. B. Healthy spore in the 0.5 

mg/ml hygromycin B treatment. C. Dead spore from the 2.0 mg/ml treatment group; 

~75% of spores in this treatment had died by the final day of observation. D. Dead spore 

from the 2.0 mg/ml treatment group. In both C and D, numerous bits of dead algal debris 

were spread throughout the medium. Scale bars = 30 µm. 

A B 

C D 

A 

D C 
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Table 3.3 Means and S.E. of dead germlings in hygromycin B treatment 

Hygromycin n Mean S.E. 

Control 3 3.66 1.21 

0.5 mg/ml 3 14.34 2.34 

1.0 mg/ml 3 28.34 3.84 

2.0 mg/ml 3 37.34 3.34 

 

HSF overexpression assay 

Multiple rounds of PCR failed to amplify the P. umbilicalis HSF sequence from 

cDNA generated from heat shock treatments. Initially, a PCR using the primers NdeI-

PuHSF-F1 and SpeI-PuHSF-R1 was performed. This primer set targets a NdeI restriction 

site 3 bp upstream of the ATG start codon and an SpeI site just before the stop codon. 

The results from PCR produced indistinct, blurred bands (data not shown). A second 

PCR used two primer sets, Pum-HSF-F1 and Pum-HSF-R1 to target the first exon, and 

Pum-HSF-F2 and Pum-HSF-R2 to target the second exon. The goal was to amplify this 

section of the gene as two products, and upon successful product recovery, ligate the 

fragments and clone them into the expression plasmid. However, results from this PCR 

also resulted in low product and blurred bands. A third attempt to recover the entire HSF 

open reading frame by PCR was made, again using two primer sets to amplify this region 

in two separate parts. Primer set PuHSF-ORF-F1 and Pu-HSF-ORF-R2 began at the first 

ATG codon and ended at an SphI site approximately 1240 bp from the start. The second 

primer set Pu-HSF-ORF-F2 and Pu-HSF-ORF-R1 began downstream of the SphI site and 

ended at 2520 bp, at the final stop codon of the ORF. The results from this third PCR 

were similar to my previous trials, and I concluded that the cDNA concentration was too 

low to produce enough PCR product for cloning. A second cDNA production and 
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purification was done using the methods described above, and cDNA was recovered 

using a TaKaRa PrimeScript II First Strand kit, and PCR using the ORF primer sets was 

conducted. Repeated PCRs on the second cDNA product produced results like those of 

the first group, so no further progress could be made toward a HSF overexpression assay. 

A complete list of primers can be found in Table 3.4.  

 

Table 3.4 P.umbilicalis HSF primers 

Gene ID Primer ID Sequence 

P. umbilicalis HSF NdeI-PuHSF-F1 5’-GGAATTCCATATGATGTCCACTAAAAACTCCTC-3’ 

“ SpeI-PuHSF-R1 5’-GACTAGTTCACACTGTTTTCCGCAGAG-3’ 

“ Pum-HSF-F1 5’-ACGACACAGCGCCTCTTTAC-3’ 

“ Pum-HSF-R1 5’-CAAACGTCCAGCGATCAGG-3’ 

“ Pum-HSF-F2 5’-AAAGCCGCTCAACTACATGG-3’ 

“ Pum-HSF-R2 5’-CTCACCATCATTTGGCGCAT-3’ 

“ PuHSF-ORF-F1 5’-ATGTCCACTAAAAACTCCTCGAC-3’ 

“ PuHSF-ORF-R1 5’-TCACACTGTTTTCCGCAGAG-3’ 

“ PuHSF-ORF-F2 5’-GCATGCGTTAAGGGTGTGG-3’ 

“ PuHSF-ORF-R2 5’-GCATGCATTCAAAATGCATG-3’ 
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Discussion 

This study made significant progress towards creating a transformation system for 

P. umbilicalis. The hygromycin B assay indicated that this antibiotic inhibits P. 

umbilicalis development, although it did not completely kill all P. umbilicalis spores.  

These results differ from those in Pyropia where 100 % of germlings had died at the end 

of a 2-week hygromycin B treatment at all concentrations studied (Uji et al., 2013). The 

fact that ~75 % of germlings in the 2.0 mg/ml treatment died is promising, but 

hygromycin B may need to be applied at a higher concentration to select transformants. 

An additional ~20 % of spores remained ungerminated in this treatment, compared to 

~3.0 % in the control group. These spores were alive, but slow growing, and it is likely 

that the high level of hygromycin B in the 2.0 mg/ml treatment caused inhibition of 

growth.  Neutral spores successfully transformed with a plasmid containing the Aph7 

hygromycin B resistance gene would continue to grow and divide during hygromycin B 

treatment, making it easy to distinguish them from non-transformed spores that remained 

as single cells or died.  

The results from the particle bombardment trials emphasize the difficulty of 

achieving successful genetic transformation in macroalgae. Even when tissues were 

treated with sulfatase or a solution of NS were used, genetic transformation efficiency 

remained low compared to the efficiency of 700 cells per 1 cm diameter tissue disc 

achieved in P. yezoensis (Fukuda et al., 2008; Mikami et al., 2009; Uji et al., 2013). This 

is also interesting in the context of the thicker cell wall in P umbilicalis compared to P. 

yezoensis, and may be an evolutionary consequence of their positions in the intertidal 

zone. Porphyra umbilicalis occupies the mid to high zones in the Atlantic, whereas P. 
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yezoensis occurs in the low intertidal zone of Japanese shores.  ANOVA indicated that 

the type of treatment had some effect on the transformation efficiency; in particular, 

transformation of NS was significantly more successful than control or 1-day sulfatase 

treated whole blade margins bearing neutral spores. However, the NS treatment did not 

produce significantly more transformed regions than the 5-day and 10-day sulfatase 

treatments. 

One consideration is that the concentration of transformed regions in the NS 

treatment was much higher compared to using whole blade margins, because of the small 

amount of spore slurry used. However, one downside of this treatment was that many of 

the fully exposed spores seemed to lyse during the treatment unless they were still 

partially bound to the blade margin. It is possible that some of these spores had been 

transformed, but that any GUS expression had leaked out and dispersed when the spores 

lysed. Further attempts to expose and concentrate spores might yield better results, 

particularly if the osmotic conditions required to prevent lysis of spores can be 

maintained. When a suitable selectable marker is found, such as an antibiotic resistance 

gene, it would be possible to select even small numbers of transformants from the 

agarose dishes because the spores in these treatments were highly concentrated. These 

could then be grown to adult size, and stimulated to produce neutral spores which would 

carry the desired mutation if they had been stably transformed. In this way, it would be 

possible to grow high levels of transformants from a small number of transformed spores.
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Codon optimization and promoter selection are critical to achieving successful 

genetic transformation. Codon optimization of the GUS genes is likely sufficient because 

P. yezoensis and P. umbilicalis are both G + C-rich (Nakamura et al., 2013; Brawley et 

al., submitted), but promoter selection may need improvement. Further analysis of P. 

umbilicalis actin genes using RT-PCR would be beneficial in determining whether this 

promoter or another is best suited for expression of GUS. Fukuda et al. (2008) used a 

GAPDH promoter with success in Pyropia, so this is a possible alternative to Act1. 

Repeated attempts to amplify the HSF gene with PCR were unsuccessful. This 

suggests that the high G + C-content requires longer primers or higher primer 

concentration and/or that some sequence is inaccurate.  If the HSF sequence can be 

optimized and successfully cloned, transformed P. umbilicalis could be selected using a 

concentrated NS solution as described above, and the HSF expression test could be 

conducted on germlings from this experiment. 

Overall, this study has laid a foundation for developing a system of stable genetic 

transformation in P. umbilicalis. With the availability of a fully-sequenced genome, it 

will also be possible to develop additional promoters for improved expression of GUS 

and other genes in P. umbilicalis. These techniques provide a valuable tool for any 

scientist interested in conducting genomic studies in this important model organism, and 

the particle bombardment protocol developed here will also be applicable to CRISPR 

development, because biolistics were used for CRISPR studies of the diatom 

Phaeodactylum (Nymark et al., 2016).



 

61 
 

CHAPTER 4 

USE OF SCANNING ELECTRON MICROSCOPY (SEM) TO VISUALIZE 

INTERACTIONS BETWEEN PORPHYRA UMBILICALIS  

AND ITS MICROBIOME 

Introduction 

Bacteria and algae have many interactions (reviewed in Goecke et al., 2010, 

Goeke et al., 2013).  Some bacteria feed on algal cell walls for their carbon source, 

including some pathogens (Barbeyron et al., 2001; Egan et al., 2001; Uppalapati et al., 

2001; Kim et al., 2016), but many provide benefits to their host algae (reviewed by 

Miranda et al., 2013). Many freshwater and marine eukaryotic algae use vitamin B12-

dependent methionine synthase, but only prokaryotes synthesize this vitamin (Croft et al., 

2005; Kazamia et al., 2012, Helliwell et al., 2016).  The cyanobacterium 

Prochlorococcus depends on bacterial associates to detoxify the hydrogen peroxide 

(H2O2) that forms from photooxidation of dissolved organic carbon in oceanic habitats at 

shallow depths (Morris et al., 2011). In both examples, the algae do not have the required 

genes to accomplish what is done for them by their bacterial “helpers”.  

Bacteria also affect algal morphology and development. Fries (1975) 

demonstrated that the green alga Ulva linza (as Enteromorpha) lost its normal 

morphology after one year of axenic (bacteria-free) culture. Enrichment of seawater with 

vitamins did not restore the lost morphology, and the alga persisted in a filamentous state 

for years afterwards. Provasoli and Pintner (1980) later produced a foundational study in 

this field examining the effects of different bacterial mixtures on Ulva lactuca grown in 

axenic conditions for 15+ years. From the beginning of axenic culture, this Ulva strain 
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exhibited abnormal growth and morphology. Bacterial mixtures and filtrates taken from 

normal Ulva and “Enteromorpha” cultures produced ribbon-like growth from the axenic 

Ulva strain, and readdition of different, single bacterial colonies produced different 

degrees of recovery, assayed by morphological changes. Filtrates from the bacterial 

cultures had no effect on growth, indicating the necessity for bacteria to grow with the 

algae to influence their morphology, possibly in order to induce the bacteria to produce 

the growth regulator. A later study of M. oxyspermum demonstrated that only specific 

bacterial cultures could rescue normal morphology (Matsuo et al., 2005) and so could 

culture medium that had a Cytophaga-like bacterium growing in it. A plant growth 

regulator (PGR), termed “thallusin”, was isolated from culture of a single bacterium 

obtained from the surface of M. oxyspermum, and thallusin had significant restorative 

effects on the abnormal growth displayed by this alga under axenic conditions. When 

conchocelis was cultured axenically in the red alga Pyropia yezoensis, conchospores 

differentiated normally but as they germinated into tiny blades, development became 

disorganized, and abnormal blades became callus-like under axenic conditions 

(Yamazaki et al., 1998). Normal growth of axenic P. yezoensis gametophytic protoplasts 

was mostly restored after 6 weeks of co-culture with specific bacterial isolates (Fukui et 

al., 2014), indicating the importance of bacteria to early algal development. 

Despite the observed importance of bacteria to most algae at all life stages, little is 

known about their physical associations and community structures on the macroalgal 

surface. Many studies demonstrate that bacterial populations on host algae are highly 

diverse (Burke et al., 2011; Spoerner et al., 2012; Miranda et al., 2013; Fukui et al., 

2014), and that direct contact with the host may sometimes be essential for algal survival 
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(Provasoli and Pintner, 1980). Because of Porphyra’s ancient origins as a member of the 

Bangiaceae (1.2 Ga Bangiomorpha fossil, Butterfield, 1990), the relationships between P. 

umbilicalis and its microbial communities have evolved over long periods of time, and 

some of these interactions may be quite specific.   

Scanning electron microscopy (SEM) is a tool for understanding the physical 

relationships between microbes and their host organisms. A SEM scans the surface of 

metal-coated specimens and produces a three-dimensional image of fine structures 

(Alberts et al., 2014). SEM was used to image microbial communities on both microalgae 

(Kaczmarska et al., 2005) and macroalgae (Cundell et al., 1977; Goecke et al., 2010; 

Goecke et al., 2012). In Pyropia, SEM helped elucidate interactions between host and 

parasites (Uppalapati et al., 2001) and the development of reproductive structures (Mei et 

al., 2005; Yang et al., 2012). To my knowledge, no SEM studies of the microbial 

community of Porphyra are available. Conventional light microscope techniques rarely 

resolve these communities adequately, although DAPI staining can confirm the presence 

or absence of bacteria along the algal surface, and FISH techniques can resolve spatial 

relationships if the bacteria are taxonomically resolved to allow FISH labels to be 

developed.  Often, however, structural information is needed when such taxonomic 

information is unavailable, and SEM techniques are ideal to reveal structural interactions 

at high magnification and resolution.
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 In this study, I used SEM to visualize the location and community structure of 

microbes on the P. umbilicalis blade, and I made comparisons between the microbial 

component of the holdfast and blade margin using both wild-collected and unialgal 

cultures of the host. I also used SEM to determine whether bacteria were present on 

neutral spores, as they are being released from blades, and to determine whether there 

were differences between wild and cultured specimens. 

Methods 

Wild specimen collection  

SEM was conducted on both wild- and cultured specimens. Wild P. umbilicalis 

(n= 6 individuals) were haphazardly collected from the high intertidal zone at Schoodic 

Point, Acadia National Park, in late December 2016 (under permit ACAD-2017-SCI-

0006) for SEM (n = 6 plants). Temperature was approximately -10 ºC, with full sun. 

Whole plants were carefully scraped from the rock face using a sterile razor blade, placed 

in sterile, autoclaved foil packets, and returned to the lab on ice. One piece of 

reproductive margin (ranging from 0.5 mm2 to 1 cm2) and the holdfast were removed 

from each plant with sterile scissors and forceps, and placed immediately into fixative 

(see below)
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Preparation of cultured P. umbilicalis  

Neutral-spore margins of cultured P. umbilicalis (strain Pum2, see Chapter 2) 

were isolated from a wild blade in Lubec, ME in May 2015 and were used in SEM. To 

produce neutral spores, plants were previously grown in 3 L plastic cylinders (n=2 plants 

per cylinder) in sterile seawater with full-strength West-McBride nutrient solution 

(Andersen et al., 2005, 10 ml/L) and 250 mg/L germanium dioxide to prevent nuisance 

diatom growth. Plants were grown under conditions described in Chapter 2. 

Blade margins from two groups of these lab grown specimens were used for 

SEM. In the first group, a single plant bearing NS, ~15 cm long, was selected, and blade 

margins were removed using the same methods as for wild specimens. The second group 

of cultured specimens was of similar size, with large neutral spore margins from three 

plants. Large pieces of spore margin (~5 cm long x 1 cm deep) from each plant were 

removed and placed into sterile Petri dishes with sterile seawater. Areas with large 

pockets of mature neutral spores were cut into smaller pieces (0.5 mm2 to 1 cm2) with 

sterile tools and placed into fixative. 

Tissue processing for SEM 

Fixation procedures were similar to those of Babuka and Pueschel (1998). All 

specimens were fixed in 5% glutaraldehyde, 0.1 M sodium cacodylate buffer (pH 7.0), 

and 0.2 M sucrose for 2 h on ice. Specimens were rinsed 3 x for 15 min in the same 

buffer without sucrose, then post-fixed in 1% OsO4 and 0.07 M sodium cacodylate for 1 

h on ice. Specimens were rinsed again in the same buffer as before (3 x, 15 min each). 

Tissues were dehydrated in a graded ethanol series (7 min each step, 30 %, 50 %, 70 % [x 
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2], 80 %, 85 %, 90 %, 100 %[x 4]). A small portion of one blade margin from a cultured 

individual was freeze-fractured using liquid N2 by cooling the specimen and cracking it 

with a cooled razor blade. Tissues were processed in a Tousimis-Samdri critical-point 

dryer until no trace of ethanol remained. Specimens were mounted on stubs using double-

sided carbon tape and sputter-coated with gold-palladium at 0.08 mBar, with 40 mA of 

current for 70 s to give a final coating that was 27 nm thick (Cressington 108 Auto 

Sputter Coater) before imaging with an AMRAY-1820 SEM (AMRAY Inc., MA, USA). 

Final images were analyzed in ImageJ (www.nih.gov/). 

Results 

Basic host structure 

Multiple regions of the Porphyra blade were examined (Fig. 4.1). The cells in the 

monstromatic P. umbilicalis blade ranged from 20-30 µm long (Fig. 4.2A). In many 

cases, it was possible to observe a cell wall ~ 2-3 µm thick surrounding the adult cells 

(Fig. 4.3). Neutral spores were typically ovoid spheres of approximately 10 µm diameter 

(Fig. 4.2B). A mucilage with a spongy appearance could be seen coating all neutral 

spores (Fig. 4.4). 

Variability in microbiome 

 Microbial communities had different structures on the holdfast and blade margin 

tissues from wild-collected P. umbilicalis (Figs. 4.5-4.8). Holdfast communities were 

complex, diverse, and covered nearly all the holdfast within 200-500 µm of the main 

attachment point (Figs. 4.5-4.6). Microbial abundance decreased on parts of the blade 

further from the holdfast and became patchy. Mounds of spherical unicellular organisms 

were observed, ranging in size from 45-100 µm. The large spherical cells in Figs. 4.9-
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4.12 appear to be members of the cyanobacterial family Chroococcaceae (Humm and 

Wicks, 1980).  Endospores appear to occur within many of these cells.  In Fig 4.9 a 

ruptured colony is visible. Numerous bacilli and cocci colonized areas near these putative 

cyanobacteria.  Diatoms and a possible non-geniculate coralline alga (Leptophyllum-like) 

were also observed (not shown).   

Morphologically diverse bacteria occurred in all regions of the holdfast. 

Filamentous and chain-forming bacteria were ubiquitous on all specimens, and were 

often surrounded by or covered with bacilli and cocci. Some of these also appeared to be 

damaging the algal tissue (Fig. 4.13). Holdfast communities appeared to be made of 

many layers of these different organisms. 

In contrast, microbial communities at the blade margin were sparser than those 

found on holdfasts, although diverse patches of microbes were observed along the blade 

margin and the adjacent portions of the blade (Figs. 4.7-4.8). Community patchiness 

differed between and within specimens. Some areas of the blade margin were virtually 

empty of microbes (Fig. 4.7), but others contained dense clusters of microbes that 

appeared similar to the microbes on holdfast communities (Figs. 4.8-4.9). Overall, 

composition of holdfast communities appeared to be more diverse than those of blade 

margins, particularly in terms of putative eukaryotic organisms. Taxonomic diversity of 

such communities is under investigation with hypervariable regions of the 16S rDNA in 

the Brawley lab (pers. comm. to CR).
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Figure 4.1 Schematic diagram of a P. umbilicalis blade 

A. Photograph of cultured P. umbilicalis specimen. B. Diagram of P. umbilicalis 

based on photographed blade. Box 1: tattered blade margin edge releasing neutral spores 

(small circles, corresponds to Figs 2B, 4, 7, 8, 16, 17, and 18). Box 2: intact blade margin 

and surrounding area (corresponds to Figs 2A, 3, 10, 14, and 15) Box 3 represents the 

holdfast (dashed line) underneath the blade, the attachment point for the alga onto the 

substrate (hidden in photograph, corresponds to Figs 5, 6, 11, and 13). Not to scale. 

 

 

   
 

Figure 4.2 Light micrographs of adult P. umbilicalis cells 

 In A, a hand-cut cross-section of the monostromatic P. umbilicalis thallus shows 

the pigmented, large chloroplasts. The cell wall is composed of a thick layer of sulfated 

polysaccharides. In B, neutral spores are seen separating from the edge of the blade 

margin (arrows). Scale bars = 30 µm.
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Figure 4.3 SEM micrograph of adult cultured P. umbilicalis 

Adult cells were only exposed along edges that had been cut or freeze-fractured 

(shown). White arrow indicates recently dividing cell. A diverse lawn of bacteria is 

growing on the outer surface of the thallus in the upper portion of the image.  
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Figure 4.4 Wild P. umbilicalis neutral spores 

Neutral spores (arrows) as they are being released from thick mucilage at the edge 

of the blade. Neutral spores were smaller than vegetative cells, and were usually covered 

with mucilage with a distinctive spongy appearance. The large flat object in the upper 

right corner appears to be debris embedded in blade margin mucilage. Note the apparent 

absence of bacterial colonies on the edge of this blade margin.
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Figure 4.5 Overall holdfast community on a wild P. umbilicalis specimen 

In this image, the main holdfast disc (Hf) and surrounding edge (marked with 

white arrows) are observed. These are the main attachment points for the alga, and they 

make direct contact with the rock at all times.
B 

H
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Figure 4.6 Holdfast community on the wild P. umbilicalis specimen from Fig. 3 

At higher magnification, extensive aggregations of spherical organisms occur on 

the regions closest to the holdfast. Filamentous bacteria are evident on portions of the 

blade, but some regions of the blade surface were relatively clear of epiphytes. In the 

bottom, right, the community becomes patchier in areas further away from the holdfast 

edge. 
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Figure 4.7 Sparse microbial community on blade margin of wild P. umbilicalis 

This image shows a view directly into the edge of the blade margin, which is 

tearing open as neutral spores are released. The bacterial community was sparse on this 

part of the blade margin, though some small colonies are visible on the protruding edge 

fragments. Note the tattered edges of the margin and the neutral spores being released on 

the left of the image (white arrows). The thallus in this region has an overall bumpy 

appearance caused by bulging, mature neutral sporangia (black arrows). 
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Figure 4.8 Diverse microbial community on blade margin of wild P. umbilicalis 

This image was taken from a different region of the blade margin from the plant 

in Fig. 7. This image provides another direct view into the edge of the torn blade margin. 

In this region, dense colonies of rod-shaped, chain-forming, and filamentous bacteria can 

be seen growing directly on and near the blade margin opening (black arrows). A neutral 

spore is in the process of releasing on the right side of the photo (white arrow).
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Figure 4.9 Blade margin community of wild P. umbilicalis 

Cyanobacteria from the family Chroococcaceae on blade margin of wild P. 

umbilicalis. Black arrows indicate internal endospores. One of the large colonies has 

ruptured and appears to have lost endospores (white arrow). Chain-forming bacteria, 

bacilli, and sarcinic cocci can be seen surrounding these larger organisms (black 

arrowheads).  
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Figure 4.10 Putative cyanobacteria on wild P. umbilicalis blade margin 

Endospores of this cyanobacterium appear to divide after settling, leaving a 2 x 2 

“grid” of cells. A dense community of prokaryotic bacilli and cocci can be seen growing 

around these ruptured cells, revealing the endospores..  



 

77 
 

 

 

Figure 4.11 Putative cyanobacteria on wild P. umbilicalis 

These were found growing on a flat part of the thallus near the holdfast 

attachment point. Ruptured colonies with putative exposed endospores (arrows) could be 

found growing in colonies (as shown) or singly on the holdfast or blade margin regions.



 

78 
 

 

 

Figure 4.12 Magnified view of putative cyanobacteria  

An enlarged view of exposed endospores Fig. 11 shows smaller bacteria 

colonizing the inner surface of this structure. White arrow indicates a smaller 2 x 2 “grid” 

of cells that appears to be the result of a larger cell dividing. 
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Figure 4.13 Bacteria on wild P. umbilicalis 

This image was taken on a flat region near the holdfast of the alga. Bacterial 

chains (black arrows) appear to be embedded within the outer polysaccharide layer of the 

alga, and smaller rod-shaped bacteria and cocci appear to have colonized the exposed 

surface (white arrows).
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Community differences between cultured and wild P. umbilicalis 

Noticeable differences between the microbial community of wild and cultured P. 

umbilicalis (strain Pum2) were also observed (Figs. 4.14 – 4.15). Cultured blades had 

abundant rod-shaped bacteria measuring ~1.0 µm in length. These bacteria were found 

across the entire blade surface, but most densely covered an area of the blade that had a 

small lesion (Fig. 4.14). A large filamentous cyanobacterium also occurred on the surface 

of Pum2 (Fig. 4.15). Filaments were covered with clusters of smaller bacteria in some 

areas. Undulating or helical bacteria measuring ~15 µm were also observed on one of the 

cultured specimens in association with the common rod-shaped bacteria (Fig. 4.15). 

These bacteria were largely absent from wild individuals. Overall, microbes were 

abundant on cultured hosts, but their diversity appeared to be smaller than that of wild 

blades. 

Some differences between the first and second groups of cultured specimens were 

also observed. A small sarcinic bacterium approximately 0.5 µm in diameter that was not 

seen on the first specimen was observed on the second group of specimens. In addition, 

the undulating or helical bacteria from the first specimen were not observed in the second 

group of cultured specimens. The abundant bacilli described above were present on both 

groups of specimens.  In general, the two groups of cultured specimens appeared to have 

similar microbiomes from a morphological perspective.
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Bacteria-spore interactions  

Bacteria adhered to the neutral spore surface in both wild collected and lab grown 

specimens (Figs. 4.16-4.18). Interestingly, these bacteria were quite similar in 

appearance; they were usually rod-shaped, ranging in size from 0.5 – 1.0 µm in length. 

Most neutral spores with bacteria had just one or two cells on them, and some bacteria 

could be seen embedded within the thick mucilage of the spore surface. Spores from 

blade margins with large numbers of microbes did not appear to have higher numbers of 

bacteria on them compared to spores coming from margins with relatively few attached 

bacteria. Accurate estimates of the number of spores with bacteria were impossible to 

obtain, however, because most of the regions bearing spores had high electron emission, 

and tended to have bright, distorted images. 
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Figure 4.14 Common rod-shaped bacteria on the surface of cultured P. umbilicalis 

This image was taken on the edge of a small lesion that had appeared near the 

edge of the blade margin. These bacteria were common across the entire surface of 

cultured specimens, but were especially dense on this lesion. These organisms appear to 

have possible attachment stalks (black arrows) by which they adhere to the algal surface.
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Figure 4.15 Filamentous cyanobacterium on cultured P. umbilicalis 

These cyanobacteria (arrowheads) were common on cultured specimens. The 

common rod-shaped bacterium with possible attachment stalk can be seen growing on the 

cyanobacterium surface (white arrow). A dense lawn of smaller bacteria, including 

undulating or helical bacteria (black arrows), surrounds the larger cyanobacteria. This 

image was taken near the blade margin of this cultured specimen. 
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Figure 4.16 Bacterium on neutral spore from cultured P. umbilicalis 

Arrow indicates bacterium. Note the dense coating of mucilage with a spongy 

appearance on neutral spore surface.

A 
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Figure 4.17 Multiple bacteria on neutral spores from cultured P. umbilicalis 

 Here, multiple bacteria on the surface of a neutral spore ejected from a cultured 

blade of P. umbilicalis. 
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Figure 4.18 Neutral spores releasing from a wild P. umbilicalis blade margin 

This view is pointing directly into the blade margin, where three neutral spores 

(black arrows) can be seen.  White arrows indicate possible bacteria on spore surfaces. 

Note the proximity of a diverse community of bacteria growing near the edge where 

neutral spores are being released.  
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Discussion 

This study demonstrates a diverse and frequently abundant microbiome on the 

surface of the P. umbilicalis blade. Many different bacteria and eukaryotic organisms 

were observed on wild algal tissue. Cyanobacteria from the family Chroococcaceae were 

seen on both the holdfast and blade margin regions of wild P. umbilicalis. These 

cyanobacteria appeared to produce large clusters of endospores, which settled and grew 

in a tetradic formation on the P. umbilicalis surface after colonial rupture. The P. 

umbilicalis cell wall (gametophyte) is composed of complex polysaccharides, primarily 

mannans, porphyrans, and agarobiose (Frei and Preston, 1961; Ficko-Blean et al., 2015). 

It is therefore likely that some of these associates are unique to P. umbilicalis because 

they would require specific forms of enzymes such as porphyranases to break down the 

P. umbilicalis cell wall (Goecke et al., 2010; Kim et al. 2016). Members of the bacterial 

phyla Bacteroidetes, Planctomycetes, and Proteobacteria are of interest because many 

possess enzymes required to break down red algal polysaccharides. Members of these 

phyla occur in association with Porphyra (Hehemann et al., 2012; Miranda et al. 2013; 

Kim et al., 2016).  

Of interest is the contrast between the bacteria-dense holdfast region and the more 

sparsely populated blade margin of wild P. umbilicalis. Staufenberger et al. (2008) found 

that bacterial community diversity was higher on the holdfast regions of the kelp 

Saccharina latissima.  Cundell et al. (1977) also observed differences in bacterial 

populations on different parts of Ascophyllum nodosum. The investigators found that the 

holdfast and tips of A. nodosum had few bacteria compared to the regions near nodes. 

They concluded this was due to high tannin production in the holdfast and tip regions, 
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preventing colonization by many bacteria. Other brown algae such as Fucus can shed an 

outer cuticle to remove fouling organisms (Moss, 1982; Rickert et al., 2016). I observed 

the holdfast region of wild P. umbilicalis to have the highest density of both prokaryotic 

and putative cyanobacteria, and although the blade margin’s microbes were sparser 

overall, I observed patches of bacteria and putative cyanobacteria right up to the blade 

edge. Porphyra species do not produce tannins, and I did not observe shedding of the 

outer cell wall on my specimens, so other factors may contribute to differences between 

microbial communities of the holdfast and blade margin.  

One explanation is that P. umbilicalis is a high-mid intertidal species that is 

exposed to long periods of desiccation during low tide. During this period, the algal 

blades lie prone upon bare rock faces, and the exposed surfaces may lose up to 90% of 

their water content (Blouin et al., 2011). Some bacteria may be unable to survive this 

harsh desiccation, and are eliminated. The holdfast region of P. umbilicalis can be 

densely foliose, and is less likely to dry out during exposure. This would support a higher 

diversity of both bacteria and fouling eukaryotes in the holdfast region, and provide 

shelter for grazers such as amphipods. Organisms growing on the rock surface may also 

grow onto the algal holdfast, explaining the encrusting nature of this community.  The 

blade surface is subjected to more wave motion and turbulence than the holdfast surface, 

which may prevent some organisms from colonizing there. In the future, I would image 

rock scrapings of the area immediately next to the holdfast and compare these 

communities to ones attached to the alga. In addition, filtered seawater samples should be 

imaged. This would provide valuable information to accompany DNA-based taxonomic 

studies about which kinds of microbes may be unique to the P. umbilicalis surface. 
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Wild P. umbilicalis also appeared to have much higher microbial diversity than 

cultured specimens. Cultured Pum2 specimens were never treated with antibiotics, but 

drift during culture changes and production of a new generation may have led to loss of 

some organisms. Cultured Pum2 was also collected during May, while the wild 

specimens I examined were collected in December. Differences in the microbiome during 

these two seasons may have affected the observed bacteria. Another collection of wild 

specimens in May could provide a better comparison between these two groups. 

The discovery of bacteria adhering to neutral spores of P. umbilicalis is one of the 

most interesting outcomes of this study. Spores had bacterial associates regardless of 

whether they were from areas of the blade margin with large bacterial communities or 

bare patches, or whether they were cultured or wild-collected. Similar observations were 

made in Fucus (Goecke et al., 2012) where oogonia in the process of being released from 

the conceptacle pore were covered by bacteria.  Because bacteria are important to algae 

during their early life stages (Yamazaki et al., 1998, Fukui et al., 2014) it is possible that 

the bacteria observed on P. umbilicalis neutral spores are part of an essential group 

needed for development. The observation that bacteria were present on all samples is 

quite interesting, particularly because they appear to be similar rod-shaped bacteria (0.5 – 

1.0 µm). Staufenberger et al. (2008) found that bacterial communities on S. latissima 

were most similar on the youngest parts of the alga, such as the meristem, and that they 

differed the most on the oldest parts such as the holdfast.  This may indicate a core 

microbiome of bacteria important to young algal spores and developing germlings. A 

further investigation would involve isolating freshly-released neutral spores from both 

wild and lab cultures, with attempts to culture any bacteria adhered to them. If colonies 
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formed, bacteria could be identified with 16S rDNA sequencing 

(http://rdp.cme.msu.edu/), and a reconstitution of the bacteria onto axenic neutral spores 

could be conducted. This could determine whether the bacteria observed on neutral 

spores in SEM photos are important for early algal development. These methods could 

also be used to identify the bacteria that appear to be breaking down the algal thallus. 

The intricacies of the relationships between bacteria and algae are still being 

determined. This study revealed differences in diversity and the structural architecture of 

the microbial community between the holdfast and blade margin of wild P. umbilicalis. I 

have demonstrated that bacteria are present on neutral spores as they are released from 

the blade, something that may be critical to understanding how bacteria affect algal 

germlings. The type of analysis presented here supports sequence based studies of the 

microbiome of this important organism.
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      CHAPTER 5 

CONCLUDING REMARKS 

This research contributes to development of P. umbilicalis as an aquacultural crop 

and model organism on several fronts. The phenological survey confirmed the peak times 

of year for P. umbilicalis reproduction, and I discovered the interesting issue of 

amphipod grazing and its impact on the reproductive season. Identification of one 

Porphyra-associated amphipod, Apohyale prevostii, which has been known to graze on 

other algae in the New England intertidal zone (McBane and Croker, 1983), is important 

to investigating this phenomenon further. A full survey of amphipod presence in P. 

umbilicalis in different locations in Maine should be conducted throughout the year to 

determine the diversity of amphipods that may be spore-feeders and to determine how 

this affects the amphipods’ own biology. A further complement to this survey would be 

to collect amphipods and culture them in the laboratory. After a short starvation period, 

amphipods could be released into cultures with P. umbilicalis bearing mature neutral 

spores, and then analyze their fecal pellets and/or gut contents for living and dead NS 

after a set period of grazing. Examining preference of A. prevostii for vegetative P. 

umbilicalis compared to P. umbilicalis producing neutral spores would also be 

interesting.  

Analysis of spore development showed that germlings from asexual neutral spores 

do not appear to follow set paths of division. Most these germlings followed a linear 

division pattern, but there were many bilateral paths as well. Additional research should 

include isolating and tracking germlings whose early division patterns are known, and 

determining how this affects their adult shape. Wang et al. (2010) concluded that adult 
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plants of different Porphyra and Pyropia species tend to retain the basic shape they 

displayed as germlings. Because the Wang et al. (2010) plants were all from sexually 

derived conchospores, the relationship between germling and adult shapes should be 

investigated in asexual P. umbilicalis. If adult shape is dependent on early cell division of 

germlings, it would be possible to select plants with different shapes for aquaculture, 

after checking that it is a stable trait in the following generation of plants. 

In Chapter 3, I presented results from my attempted genetic transformation in P. 

umbilicalis. This is the first successful demonstration of genetic transformation using 

biolistics in this alga. Completing development of this system would help advance studies 

of P. umbilicalis in a variety of ways. Investigation of the P. umbilicalis asexual pathway 

could be conducted through genetic transformation assays. Blouin (2010) reported that 

some cell wall genes are expressed in asexual tissues taken from P. umbilicalis, and that 

these may be important for asexual reproductive pathways. Pyropia yezoensis 

gametophytes that formed archeospores were found to have expression of two novel 

genes (Kitade, et al., 2008), and a cell wall protein from this study was similar to one 

investigated by Blouin (2010). If these gene sequences could be isolated and amplified, it 

would be possible to create an expression assay for understanding their functions more 

clearly.  

Development of a consistent transformation protocol, however, needs further 

work. I hypothesize that the obstruction of P. umbilicalis cells’ thick cell walls plays a 

role in the low transformation efficiency that I achieved. Fully-exposed “naked” spores 

had a higher transformation efficiency compared to spores that were still bound within 

adult blades. An improved method to release neutral spores or to make protoplasts and 
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concentrate them in a small area may improve transformation efficiency further. 

Increasing the particle size to 1 µm may also improve efficiency, but this might also 

increase damage to the NS, because they are only ~10 µm in diameter. The addition of a 

native P. umbilicalis promoter may be another step in improving transformation 

efficiency in this alga. The Pyropia GAPDH promoter was used with success in P. 

yezoensis (Fukuda et al., 2008) so the possibility of using a P. umbilicalis GAPDH 

promoter should be considered. The availability of the P. umbilicalis genome will 

provide the information needed to identify and target promoters of interest in this alga.  

The study I presented in Chapter 4 revealed the complex and diverse interactions 

between P. umbilicalis and its microbiome.  It was clear that differences exist between 

wild-collected and lab-cultured specimens, and that different parts of the alga had more 

microbial epiphytes than others. One major gap in this study is the limited ability to 

identify any of the organisms present on the algal surface. Therefore, I think this type of 

SEM work is best suited for a reconstitution study, where specific bacterial isolates are 

added to axenic P. umbilicalis spores or germlings. This would enable pairing of the 

observed microbia to an identification produced from 16S rDNA sequencing, making it 

possible to further study a known bacterium’s affinities for different areas of the blade. 
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A reconstitution study, or any future SEM work in P. umbilicalis, would benefit 

from companion work with brightfield light microscopy and transmission electron 

microscopy (TEM). It is possible that some of the microbes I observed on the surface of 

P. umbilicalis were burrowing into the thallus, but this cannot be confirmed because it is 

impossible to see below the surface with SEM. TEM would allow these regions to be 

studied better. It would also be prudent to section and image neutral spores using TEM, 

to visualize how bacteria are attach to the spore surface. The use of TEM to complement 

the neutral spore SEMs I produced in lab-cultured tissue is currently underway.  

Overall, these studies have made significant contributions to advancing P. 

umbilicalis as a model organism and as an aquacultural crop. The information provided 

by these studies will benefit researchers interested in the P. umbilicalis genome project 

and microbial studies, and those interested in commercial aquacultural development. 
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APPENDIX  

ESTABLISHMENT OF BOMBARDMENT CONDITIONS 

For the first rounds of bombardment of vegetative P. umbilicalis blade margins, 

650 and 1100 psi were used. When minimal transformation (0-2 regions per section) was 

observed, firing pressure was increased to 1550 psi. It became apparent after several 

more trials on untreated tissue at 650, 1100 and 1550 psi that the thick outer portion of 

the Porphyran cell wall of vegetative P. umbilicalis was tough and appeared to impede 

penetration.  Following this discovery, blade margins producing neutral spores were used 

to attempt to overcome this issue, because the polysaccharide layer was looser, and 

neutral spores are naked (Blouin et al., 2011). When a similar set of trials failed to 

increase the number of transformed regions, treatments to weaken the tissue surrounding 

the neutral spores were explored. Uji et al. (2016) showed that the plant hormone 1-

aminocyclopropane-1-carboxylic acid (ACC) weakened the cell walls of P. yezoensis, so 

this was used to produce the same effect in P. umbilicalis. The use of sulfatase was also 

tried because this enzyme is found in the guts of animals that eat algae and plants, and 

because the P. umbilicalis cell wall contains a variety of sulfated polysaccharides (Popper 

et al., 2011; Kim et al., 2016). 

For these trials, tissues bearing neutral spores were incubated in sulfatase for 5 

days under standard conditions or ACC for 12 days. Bombardment of sulfatase tissues 

was at 650 psi (n=1) and 1550 psi (n=1), and ACC tissues at 1550 psi (n=3) and 650 psi 

(n=1) at 6 cm distance. The sulfatase-treated tissue bombarded at 1550 psi had 37 

transformed regions in total, a large increase from the 2-3 transformed regions previously 

observed. The 650 psi bombardment on the remaining sulfatase-treated tissue did not 
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result in any transformation. ACC treated tissues bombarded at 1550 psi had 17, 2 and 21 

transformed regions, whereas the tissue bombarded at 650 psi had 1 transformed region. 

Because the yield from the sulfatase treatment was so high, and because the ACC 

treatment took nearly two weeks, I decided to pursue additional sulfatase treatments to 

elucidate whether this treatment was truly effective at increasing transformation 

efficiency.
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