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In this study, we compared the osmotic stress response of larval and juvenile blue 

mussels (Mytilus edulis) at the transcriptomic, metabolomic, and whole organism levels. 

Blue mussels inhabit coastal areas, where they face climate-induced reductions in 

nearshore salinity. Despite their ecological and economic importance, scientists do not 

fully understand the underlying transcriptomic and cellular mechanisms of the osmotic 

stress response in blue mussels or how the ability to respond to stress changes throughout 

development. Blue mussels spend the first weeks of life developing through several larval 

stages in the plankton. These early life history stages are more vulnerable to 

environmental stress than juvenile or adult mussels, yet these stages are grossly 

understudied. Thus, an increased knowledge of how mussels at all developmental stages 

cope with low salinity is imperative for predicting how climate change will affect the 

distribution of M. edulis.  

In a series of experiments, we evaluated adjustments of molecular, cellular, and 

physiological processes in larval and juvenile blue mussels during short-term, low 

salinity exposure to elucidate stage-specific divergence in the osmotic stress response. 



We found that larval mussels differ from juveniles in the composition of their 

metabolome and in the differential expression of genes involved in the stress response. 

These differences in the larval response to low salinity exposure likely play a role in the 

increased susceptibility of these stages to stress and suggest that larvae may need to 

expend more energy relative to juvenile or adult mussels to mount a response.  

Additionally, we evaluated the effects of larval stress on later developmental 

stages and found that larval stress carries through metamorphosis and yields smaller 

juvenile mussels, potentially affecting the subsequent growth and size distributions of 

adult mussels. While larval exposure to low salinity generally had negative impacts on 

juvenile growth, there was evidence the previous exposure to stress may condition 

juvenile mussels for future low salinity events, depending on the timing of exposure. 

More studies on larval tolerance and the impacts of larval stress on juvenile fitness will 

be necessary for making accurate predictions of the effects of climate change on M. 

edulis distribution and abundance. 
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CHAPTER 1 

INTRODUCTION 

 

1.1.  Background and Rationale 

Physiologists have traditionally studied organismal adaptations in form and 

function with respect to challenges posed by the environment. However, with the 

accelerating pace of global climate change there is a critical need for studies investigating 

whether species possess the innate physiological and genetic capacity to acclimate and 

adapt to long-term changes in the environment (Osovitz and Hofmann 2007, Jones et al. 

2010, Somero 2011). Among marine species, those inhabiting the intertidal zone are 

particularly at risk from climate-change variability; due to the inherent high-stress nature 

of the habitat the habitat, intertidal species are already living under conditions close to 

their physiological limits (Tomanek and Helmuth 2002) and may become climate-change 

losers (Somero 2010).  

Most climate change studies have focused on the physiology of marine organisms 

in response to increasing ocean temperatures or to ocean acidification (Somero 2011). 

Another less studied threat is shifting ocean salinity. Studies have documented a 

freshening of water in the upper 700 m of the ocean in the past 50 years, caused by 

anthropogenic activity (Antonov et al. 2002, Pierce et al. 2012). This freshening is 

expected to continue (Durack et al. 2012) and future changes in the hydrological cycle 

will undoubtedly lead to widespread variability in sea surface salinity. Understanding the 

capacity of marine organisms to respond to shifts in salinity will therefore be an 

important component in assessing the ability of species to adapt to climate change.  
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Four species of mytilid mussels, Mytilus californianus, M. edulis, M. 

galloprovincialis, and M. trossulus (Koehn 1991), are dominant members of coastal 

communities in North America where they have a profound impact on intertidal and 

subtidal community structure (Arribas et al. 2014). Mussels are keystone species; their 

dense aggregations offer essential refuges for small marine invertebrates leading to 

increased species diversity along coastlines (Tsuchiya and Nishihira 1985, Petes et al. 

2008). They are also an important prey species for many organisms, including shore 

birds, sea stars, lobsters (Seed 1969), and humans, who value mussels for their economic 

importance. Additionally, blue mussels serve as bioindicators for detection of pollutants 

and trace metals in coastal systems (Phillips and Segar 1986).  

Variation in salinity plays an important role in structuring the distribution of 

mussel species (Gardner and Thompson 2001). For example, M. californianus is a 

relatively stenohaline species restricted to open coast habitats on the Pacific coast of 

North America (Suchanek 1979), whereas M. trossulus is considered the most euryhaline 

of the congeners and can be found in habitats with highly variable salinities (Qiu et al. 

2002, Braby and Somero 2006, Gardner and Thompson 2001). Thus, shifts in weather 

patterns due to climate change and associated changes in sea-surface salinities in coastal 

regions are likely to cause widespread shifts in the geographic range of Mytilid mussels 

and consequently altering community structure and function (Tsuchiya and Nishihira 

1985) In addition, abrupt or prolonged changes in salinity are known to reduce growth 

(Qiu et al. 2002, Westerbom et al. 2002, Riisgård et al. 2012) and immune function 

(Bussell et al. 2008) in mussels. Species-specific differences in tolerance among mussel 
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congeners provides a unique opportunity to evaluate the evolutionary underpinnings of 

the response to low salinity stress. 

Blue mussels have a complex life history, consisting of a benthic adult stage and a 

series of planktonic larval stages (Figure 1.1). Mytilid larvae spend a minimum of 3 w in 

the plankton before settling into adult mussel beds (Widdows 1991), though the duration 

of larval development can be increased if metamorphosis is delayed due to unfavorable 

environmental conditions (Bayne 1965). Mortality in mussel larvae is inherently high and 

increases considerably when larvae are stressed and larval duration is increased (Bayne 

1965, Young 1990, Widdows 1991). Several studies have shown that larval stages are 

more sensitive than juvenile or adult mussels to changing environments (Hrs-Brenko and 

Calabrese 1969, Qiu et al. 2002, Gazeau et al. 2010, Rayssac et al. 2010), possibly 

resulting from high-energy demands for growth (Sprung 1984) or increased surface-area 

to volume ratio (Manahan 1983). Despite the importance of larval settlement to 

sustaining populations and, thereby dictating the distributions of adult mussels, little 

research has addressed the genetic and attendant physiological capacity of larvae to 

tolerate various environmental stressors.   

Blue mussels, like many other marine invertebrates, are osmoconformers, 

meaning they remain isosmotic to seawater (Costa and Pritchard 1978, Davenport 1979). 

When fluctuations in environmental salinity occur, mussels mount an osmotic stress 

response (Kültz 2005) to prevent cellular damage from changes in their cell volume and 

salt concentration (Bowlus and Somero 1979, Yancey et al. 1982). Several studies have 

evaluated the physiological responses of adult blue mussels to low salinity exposure, 

although only a few have attempted to uncover the molecular underpinnings responsible 
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Figure 1.1. Life cycle of M. edulis. Adult blue mussels are sessile marine invertebrates 

that reproduce through broadcast spawning. Gametes are released into the water column 

and fertilization is external. Within 24 h, embryos have developed to a ciliated 

trochophore stage, which transitions to the veliger stage and the larva begins to secrete 

the larval shell and develop the velum. The veliger is the longest of the larval stages, 

lasting 2 – 3 w, and is a period of marked growth. Eventually, a mussel larva develops a 

pedal organ and transitions into a pediveliger, the final larval stage. Upon contact with a 

suitable substrate, the pediveliger can settle and undergo metamorphosis, marking the 

final transition back into the benthos as a juvenile.  
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for these physiological changes (Evans and Somero 2010, Lockwood and Somero 2011, 

Tomanek et al. 2012). Even less is known about the genetics and physiology of larval 

mussels and their ability to mount an osmotic stress response.  

1.2.   Project Overview  

The purpose of this study was to broaden our understanding of the osmotic stress 

response in M. edulis, by evaluating how aspects of the response differ across 

developmental stages and among tissue types in juvenile mussels. We examined these 

responses at the organismal, cellular, and molecular levels and an important aspect of our 

research was a consideration of how the response changes as a function of the duration of 

exposure. Although this research focused on Mytilus edulis, as it is the predominant 

mussel species in the Gulf of Maine, inclusion of the congeners M. trossulus and M. 

galloprovincialis in portions of this study has allowed us to put some of our findings into 

an evolutionary context. Our goal was to provide insight into the regulation of gene 

expression during osmotic stress, how changes in expression may affect the responses 

observed at different levels of organization, and how these processes may vary among 

life history stages and different tissues. 

This research included a series of experiments in which we evaluated 1) the 

effects of larval exposure to low salinity on post-metamorphic size and growth, 2) stage- 

and tissue- specific metabolite compositions and changes in organic osmolytes during 

hypoosmotic exposure, 3) the relationship between patterns of gene expression and 

cellular-level changes in low salinity-challenged mussels, 4) the role of important cellular 

signaling genes (calmodulin) in the hypoosmotic stress response, and 5) the catabolism of 

ornithine during low salinity exposure in closely related mussel species. These studies 



 

 6 

highlight important differences in the physiology and transcriptome observed in early 

developmental stages and juveniles as well as the complexity of the osmotic stress 

response in blue mussels.  
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CHAPTER 2 

 

CARRYOVER EFFECTS FROM LARVAL EXPOSURE TO REDUCED 

SALINITY ON GROWTH OF JUVENILE BLUE MUSSELS  

(MYTILUS EDULIS) 

 

2.1. Abstract  

Among species with complex life histories, larval experience can have a profound 

impact on the phenotype of later developmental stages. Although exposure to low salinity 

is known to negatively impact both larval and juvenile blue mussels (Mytilus edulis), the 

carryover effects of low salinity experienced by mussel larvae on juvenile performance is 

unknown. To test if the effects of exposure to hypoosmotic conditions has an impact on 

mussel phenotypes across metamorphosis, we compared the size at metamorphosis and 

the size and growth at 35 d post-metamorphosis (dpm) for mussels that experienced 

short-term, hypoosmotic treatment at two different larval stages. Additionally, we looked 

at the effect of repeated low-salinity exposure across developmental stages on the size 

and growth of juvenile mussels. Exposed veligers showed significant reductions in size 

and growth rate, while pediveligers from the treatment group showed significant 

reductions in growth, but not in size at 35 dpm, compared to control animals. We also 

found that growth was negatively impacted for mussels that experienced repeated 

exposure as both veligers and juveniles; in contrast, there was a positive effect on growth 

in mussels exposed as pediveligers and juveniles. Our data indicate that stress from low 
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salinity exposure carries over to later developmental stages in M. edulis, but that the 

response to stress may vary depending on when the larval exposure occurs.  

2.2.  Introduction  

The distribution of marine species depends heavily on their tolerance to abiotic 

stressors. Changes to the physical environment associated with global climate change, 

including increased sea temperature, decreased pH, and altered salinity (Doney et al. 

2012), have heightened the need for studies on the ability of species to respond to 

increased stress associated with climate variability and to acclimate to a changing 

environment (Somero 2010). Beyond simply documenting how species cope with 

environmental stress, several studies have shown that previous exposure to stress is an 

important factor influencing the subsequent stress response (e.g., Bertram and 

Strathmann 1998, Maltby 1999, Buckley et al. 2001, O’Connor et al. 2014). For species 

having complex life history strategies, such as many marine invertebrates, exposure to 

stressors early in development may carry-over into other developmental stages and 

impact the fitness, growth, or survival of the animal (Padilla and Miner 2006, Pechenik 

2006). A better understanding of such legacy or carryover effects is critical for predicting 

how the response of individual species to climate change will affect their distribution and 

abundance.  

Blue mussels (Mytilus edulis) are important constituents of intertidal and subtidal 

communities in temperate and subarctic regions. They are considered ecosystem 

engineers (Arribas et al. 2014) because they increase habitat complexity and reduce stress 

for other inhabitants, and are prey for many other marine species. In coastal areas, 

salinity fluctuation is a primary stressor experienced by M. edulis (Gardner and 
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Thompson 2001). Given that changes in global climate are projected to increase the 

frequency and severity of salinity fluctuations nearshore (Antonov et al. 2002, Durack et 

al. 2012), the ability to tolerate salinity stress is an increasingly critical factor affecting 

whether mussel populations will persist. The persistence of mussel populations, however, 

depends on their tolerance to salinity stress not only as adults but throughout 

development because exposure during larval stages will impact the fitness of juveniles 

that are recruiting back into the mussel beds (Grosberg and Levitan 1992). While studies 

have examined the effects of chronic low salinity on larval (Bayne 1965, Hrs. Brenko and 

Calabrese 1969, His et al. 1989, Qiu et al. 2002) and post-metamorphic (Bøhle 1972, 

Almada-Villela 1984, Gardner and Thompson 2001, Riisgård et al. 2012, Landes et al. 

2015) growth and survival, to our knowledge, none have tested the carryover effects of 

low salinity exposure during larval development in blue mussels.  

The role that larval experience may play in dictating the phenotype of post-

metamorphic individuals is not well understood (Marshall and Morgan 2011). In many 

instances, stress experienced at early life history stages has negatively impacted post-

metamorphic success (see Pechenik 2006 for a review), although there are also instances 

in which previously experienced stress benefits the individual (Bacon 1971, Qiu and Qian 

1999, Parker et al. 2015). Only one study has looked at carryover effects in blue mussels 

(Phillips 2002), so we know very little about how stress experienced during development 

influences post-metamorphic fitness or alters the response to repeated stress in M. edulis.  

The goal of this study was to evaluate how the exposure of larvae to acute, low-

salinity conditions (as would be experienced during a flood event) affects juvenile 

performance and tolerance to the same stressor. We used larval and juvenile size 
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(measured as shell area), as well as juvenile growth rate, as proxies for carryover effects 

across metamorphosis. Additionally, we examined the influence of larval stress on later 

developmental stages to see if juvenile growth was further impacted by repeated stress. 

Finally, we compared these responses using two different larval phases, the veliger and 

pediveliger, to see if expression of carryover effects depends on when during larval 

development the stress occurs.  

Low salinity stress stunts both larval (Bayne 1965, Hrs-Brenko and Calabrese 

1969, Innes and Haley 1977) and post-metamorphic (Bøhle 1972, Almada-Villela 1984, 

Riisgård et al. 2012, Landes et al. 2015) growth in blue mussels. Therefore, we expected 

that mussel larvae exposed to low salinity would show reductions in larval growth that 

would carryover through metamorphosis and yield smaller juveniles. Similarly, we 

hypothesized that individuals subjected to repeated exposure to short-term, low salinity 

across life history stages would show greater reductions in growth than mussels that were 

not treated or that did not experience repeated exposure. We expected that the overall 

effect of low salinity exposure on size would be similar in mussels treated as veligers to 

those treated as pediveligers, but that there would be slight variations in the response due 

to differences in the metabolic demands of the two larval stages (Sprung 1984).  

2.3.    Methods 

2.3.1.   Mussel Collection and Larval Culture 

Adult Mytilus edulis were collected from the intertidal zone at Pemaquid Point 

(Bristol, ME) and from a subtidal population on the underside of the dock at the Darling 

Marine Center (Walpole, ME) on June 7, 2015. The mussels were held overnight in a 

refrigerator (4 °C) and the following day were induced to spawn by exposing them to 
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cyclic thermal shock (Helm et al. 2004). Briefly, animals were placed at 14 °C in 1 µm 

filtered, UV-sterilized seawater (UV-FSW), allowed to warm slowly to 21 °C, and 

quickly reimmersed in 14 °C UV-FSW. This “thermal shock” protocol was continued 

until individual mussels began to spawn. Five replicate groups of embryos were 

produced; each replicate was constructed using the eggs from four females fertilized with 

the sperm from two males, thus ensuring that each replicate contained distinct, but 

genetically heterogeneous populations of larvae.  

Embryos developed overnight at ambient conditions (13.5 °C, 32 ppt UV-FSW) in 

20 l buckets and were transferred as trochophores into 350 l larval tanks at densities 

ranging from 100–500 individuals·ml-1. Larvae were maintained in tanks with UV-FSW 

supplemented with probiotic bacteria (Dr. Tim’s Aquatics, LLC) that was gently aerated 

to ensure proper mixing and to prevent larvae from settling. Once larvae had transitioned 

to the feeding D-stage (at approximately 2 d post-fertilization, dpf), they were fed daily 

mixtures of Monochrysis sp., Chaetoceros muelleri, C. calcitrans, Tetraselmis chuii and 

Isochrysis galbana (clone T-Iso). As the larvae grew, food rations were adjusted 

following the guidelines for larval bivalve culture in Helm et al. (2004). Every other day, 

the water in each of the five larval tanks was changed, the larval density was estimated, 

and shell lengths were measured on a small subsample of larvae. Water changes were 

conducted using a 48 µm sieve to ensure that smaller individuals would be retained in the 

cultures so the size variation in our larval populations would be representative of natural 

size variability.  
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2.3.2.   Acute Exposure to Low Salinity 

To test the effects of larval stress on post-metamorphic growth, we exposed larvae 

to short-term hypoosmotic conditions in two separate experiments. In the first experiment 

the treatment was applied to larvae at the veliger stage (14 dpf) when larvae had 

developed the velum and an umbo on the shell (Stafford 1906). A subset of 

approximately 100,000 veligers was removed from each stock culture and placed in 

individual 1 l beakers containing ambient, UV-FSW (controls). A second subset of 

100,000 veligers was sampled from each stock culture and placed in five separate beakers 

containing a low salinity treatment (20 ppt) made by mixing RO water and UV-FSW. All 

beakers were kept at the same density (10 individuals·ml-1) and fed. After 24 h the larvae 

from the five control and five low-salinity treatment beakers were restocked into separate 

350 l tanks at 13.5 ºC and 32 ppt (as detailed in the section above). Due to space 

limitations, we could only stock one tank with the larvae from the five control beakers 

and one tank with the larvae from the five experimental beakers. Thus, while larvae 

sampled from each stock tank were independently exposed to control and hyposaline 

conditions, they were pooled for the remainder of larval development. After pooling, 

however, the tanks were kept at the same densities, received water from same source 

following water changes, and were fed algae from the same source; the only factor 

differentiating the two tanks was the 24 h exposure to water of different salinity. In the 

second experiment, the larvae were treated at the pediveliger stage (26 dpf), indicated by 

the development of a large pedal organ (Bayne 1965). Again, roughly 100,000 

pediveligers were removed from each stock culture and placed into either a control or 

treatment beaker for 24 h, as previously described. Following the treatment, the 
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pediveligers were restocked in separate larval tanks at ambient conditions and permitted 

to continue development.   

Mussel larvae had become competent at 32 dpf. Individual racks consisting of eight 

settlement plates (15 x 9 cm PVC plates with an affixed Scotch-Brite® Scour Pad) were 

placed into each of the treatment tanks that contained veliger-control, veliger-treated, 

pediveliger-control, or pediveliger-treated larvae. The water in each tank was vigorously 

bubbled to promote the settlement of larvae on the plates rather than on the sides of the 

tanks. Visual observations of the tanks (i.e., absence of swimming larvae) and the 

absence of larvae on a sieve during water changes indicated that most larvae had settled 

and undergone metamorphosis. The settlement plates were then transferred to the 

University of Maine in Orono, ME, where the juvenile mussels were kept on the 

settlement plates in a recirculating seawater system for the duration of the experiment. 

Plates from each treatment were placed into separate tanks filled with artificial seawater 

(15 °C, 32 ppt, Instant Ocean®) and each tank was fed 0.5 x 109 cells·d-1 of Shellfish 

Diet 1800 (Reed Maricutlure, Inc.).  

2.3.3.   Juvenile Repeated-Exposure Experiment 

To test whether low-salinity exposure during early life history stages affects the 

response of the juvenile mussel to the same conditions, we exposed a subset of juveniles 

at 7 d post-metamorphosis (dpm) to acute hypoosmotic conditions. Four plates from each 

of the four larval treatments were randomly selected and placed into containers 

containing ambient (15 ºC, 32 ppt) or low salinity (15 ºC, 20 ppt) seawater. After 24 h, 

plates were placed back into the recirculating system where they were maintained for an 

additional 28 d. This secondary treatment yielded four different treatment combinations 
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for each of the two larval experiments: mussels that had never been exposed, mussels that 

were exposed only as juveniles, those that were exposed only as larvae, and those that 

were exposed as both larvae and juveniles.  

On August 12, 2015 (35 dpm), the scour pads were removed from the settlement 

plates, with the animals intact, and fixed in 70 % ethanol. Post-fixation, the pads were 

placed into an 80 µm sieve and gently rinsed to remove the attached mussels. Samples 

were stained in Rose Bengal and juveniles with intact gill filaments (indicating that they 

were healthy and had developed normally up to the point of fixation; see Fig. 1), were 

imaged using an Olympus SZ-PT stereomicroscope with an ocular-mounted HDR-

CX150 Sony Handycam. All images were taken at 40X. 

2.3.4.   Size Measurements and Data Analysis 
 

The larval shell of M. edulis is composed entirely of aragonite, while the juvenile 

shell contains a mixture of calcite and aragonite (Fuller and Lutz 1988). The transition 

from the larval shell, the prodissoconch II, to the dissoconch or the juvenile shell occurs 

at metamorphosis (Bayne 1965) and the two shell types are easily distinguished (Figure 

2.1). We used the line demarking the transition between the two shells to estimate the 

size at metamorphosis. Additionally, we measured the size of individuals at 35 dpm and 

used the two measures to estimate the specific growth rate over the first 35 dpm. Growth 

in mussels is often measured as a change in the length of the shell (Widdows 1991). 

However, the axis along which the shell elongates changes between pre- and post-

metamorphic mussels. Thus, to get a better estimate of the size of each mussel, we 

recorded the two-dimensional area of the shell in mm2. The areas (A) of the larval and 

juvenile shell for an individual were measured using the “magnetic lasso” tool in Adobe  
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Figure 2.1. Photomicrograph of a juvenile M. edulis. The larval shell is distinguished 

from the juvenile shell by change in color and texture; a ridge that demarcates the 

boundary of the two shell layers and is highlighted by the arrows. The gills (labeled) are 

an indication of the health of individual larvae at the time of fixation; only juveniles with 

clearly evident gills and pronounced ridge between the larval and juvenile shells were 

analyzed in this study.  

500 µm 

Gills 
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Photoshop. The area of the shell was calculated as the number of pixels within the 

highlighted region calibrated to a stage micrometer imaged at 40X. The larval and 

juvenile areas were then used to calculate the specific growth rate (µ, d-1), a commonly 

used metric for growth in studies of mussels (Bayne 1965, Gardner and Thompson 2001, 

Riisgård et al. 2012), using the equation: 

    µ  = 𝑙𝑛 $%
$&

𝑡()        [1] 

where Aj is the area of the juvenile shell, Al is the area of the larval shell, and t is the 

number of days from metamorphosis to the end of the experiment (modified from Fisher 

1921). Only images in which the larval shell was clearly discernable were used in this 

analysis.  

All statistical analyses were conducted using SPSS Statistics 22.0 (IBM 

Corporation). Our analyses focused on variation among larvae on replicate plates post-

settlement. The effects of larval exposure to low-salinity on the area of the larval shell at 

metamorphosis were tested using a two-factor, nested ANOVA with variability among 

settlement plates nested within larval treatment (low-salinity versus control for each of 

the veliger and pediveliger experiments). This analysis allowed us to test whether larvae 

on different replicate plates had consistent shell areas at the time of settlement. We tested 

the effects of larval and juvenile salinity exposures on the size of the juvenile mussel 

(shell area at 35 dpm) and on the growth of the mussel following metamorphosis (specific 

growth rate) using three-factor, nested ANOVA. In these models, larval and juvenile 

treatments were the main effects, with settlement plate nested within the larval by 

juvenile treatment interaction term, and settlement plate treated as a random term. For 

each model, hypotheses were tested using a Type III Sum of Squares model with an 
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overall model-wide a = 0.05. In the veliger experiment, one plate was excluded from all 

analyses because only one juvenile mussel was recovered from this plate.  

2.4. Results 

Throughout larval development, larvae in all treatment groups actively swam and 

showed no outward signs of stress. We did not observe any differences in the timing of 

metamorphosis among any of the four treatment groups, although we could not monitor 

individuals post-settlement because they settled within the fibers of the scour pads. We 

did not directly measure survivorship within treatment groups, however, we observed 

differences in the number of individuals found on the settlement plates at the end of the 

experiment, which may indicate variation in survival. We collected only 155 individuals 

that had survived the veliger experiment, while we recovered 775 individuals from the 

settlement plates of the pediveliger experiment. However, we observed no difference in 

either experiment between the numbers of individuals found on the control versus the 

salinity challenged plates, suggesting that any variation in survival was attributable to 

handling effects rather than salinity treatment.    

2.4.1.   Veliger Salinity Experiment  

We observed a significant reduction in the area of the shell at metamorphosis for 

veligers that were exposed to acute hypoosmotic conditions (Figure 2.2) compared to 

veligers held under control conditions (Table 2.1). The small size at metamorphosis 

carried over to the juvenile stage in mussels that had been subjected to short-term 

hypoosmotic exposure at the veliger stage. Shell area in mussels treated as veligers was 

significantly reduced relative to shell area for mussels that had not been exposed as larvae 

(Figure 2.3). In the veliger experiment, neither juvenile treatment nor the interaction of  
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Figure 2.2. Effects of low salinity treatment on size at metamorphosis. The size at 

metamorphosis was calculated as the marginal mean shell area (mm2 ± SE), for veliger 

(left) and pediveliger mussels (right). Veliger larvae that experienced acute hypoosmotic 

exposure (grey bars, at left; n = 84) were significantly smaller at metamorphosis than the 

controls (open bar; n = 70; F = 5.221, df = 1, p = 0.034), while exposed pediveligers (n = 

360) were significantly larger than the controls at metamorphosis (at right; F = 17.909, df 

= 1, p = 0.001; n = 410). 
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 Source df MS F p 

Veliger  
Larval treatment 1 0.001 5.221 0.034 
Plate (larval treatment) 13 0.000 1.095 0.368 
Error 139 0.000   

Pediveliger  

Larval treatment 1 0.003 17.909 0.001 

Plate (larval treatment) 14 0.000 1.653 0.061 

Error 754 0.000   
      

Table 2.1. ANOVA results for larval exposure on size at metamorphosis. We ran a 

nested, two-factor ANOVA examining the effect of 24 h hyposaline exposure (larval 

treatment) on the total area of the larval shell for larvae stressed as veligers (top) and 

pediveligers (bottom). The effects of treatment on size at metamorphosis and the nested 

effect of settlement plate within treatment are included for both models.  
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Figure 2.3. Effects of veliger low-salinity exposure on size at 35 dpm. The plot shows 

mean juvenile shell area at 35 dpm (mm2 ± SE) for mussels exposed to control (solid 

line) or low salinity (dashed line) treatments as veligers and exposed again to either 

control (left) or low salinity (right) conditions at 7 d post-metamorphosis. There was no 

effect of juvenile treatment on the mean size of juvenile mussels, but there was a 

significant decrease in size for mussels that had been exposed to hypoosmotic conditions 

as veligers relative to the control groups (F = 7.595, df = 1, p = 0.016).  
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Source df MS F p 

Larval treatment 1 0.006 7.595 0.016 
Juvenile treatment 1 7.43 x 10-5 0.101 0.756 
Larval x juvenile treatment 1 0.000 0.181 0.677 
Plate (larval, juvenile treatment) 11 0.001 1.425 0.168 
Error 139 0.001   

     
Table 2.2. ANOVA results for veliger exposure on juvenile shell area. We ran a three-

factor, nested ANOVA examining the salinity effects of veliger exposure on juvenile 

shell area. The ANOVA model includes the main effects of low-salinity exposure during 

the veliger stage (larval treatment), salinity exposure at 7 dpm (juvenile treatment), the 

interaction of the main effects, and the nested effect of settlement plate on the area of the 

juvenile shell at 35 dpm.  

 

  



 

 22 

 
 
 
 
 
 

 
 

Figure 2.4. Veliger-exposed size at metamorphosis versus at 35 dpm. There is a strong 

correlation between size at metamorphosis and size 35 dpm for each of the treatment 

blocks, which include mussels that were never exposed (open squares; y = 1.7575x – 

0.0013, r2 = 0.65), mussels that were exposed 7 dpm (gray squares; y = 1.7744x + 0.0014, 

r2 = 0.84), mussels exposed only as veligers (open circles; y = 1.8132x – 0.0078, r2 = 

0.86), and those exposed both as veligers and 7 dpm (gray circles; y = 1.6513x + 0.001, r2 

= 0.73). 
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larval and juvenile treatment had a significant effect on juvenile shell area (Table 2.2). 

However, mussels that experienced exposure at both larval and juvenile stages were the 

smallest at 35 dpm (Figure 2.3).  

We observed a strong correlation between the size of the mussel at 

metamorphosis and at 35 dpm (Figure 2.4), which suggests that there was no  

compensatory growth by smaller mussels. Therefore, any reduction in size associated 

with larval stress persists through metamorphosis and yields smaller juveniles. As such, 

the growth rate of juveniles that had been exposed as veligers was reduced compared to 

the controls (Figure 2.5), although this effect was not significant (Table 2.3). There was 

no significant effect from juvenile treatment on the specific growth rate of juveniles 

stressed as veligers nor a significant interaction effect between larval and juvenile 

treatments on specific growth rates.  

2.4.2.   Pediveliger Salinity Experiment  

Pediveligers that were exposed to acute hypoosmotic conditions had significantly 

larger shell areas at metamorphosis than the control group (Table 2.1), which is the 

opposite of what we observed in the veliger experiment (Figure 2.2). We also observed a 

significant increase in the area of juvenile mussels that had been treated as pediveligers 

relative to the control group (Figure 2.6). Contrary to what we observed in mussels 

treated as veligers, those that were exposed at both the pediveliger stage and 7 dpm had 

the largest shell area at 35 dpm, while those exposed only as juveniles were the smallest. 

However, the effects from juvenile treatment, the interaction of larval and juvenile 

treatment, and the effect from settlement plate were not significant (Table 2.4).  
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Figure 2.5. Effects of veliger low-salinity exposure on the specific growth rate. The 

marginal mean specific growth over a 35-d period (d-1, ± SE) are shown for mussels 

exposed to control (solid line) or low salinity (dashed line) conditions as veligers and to 

control (left) or treatment (right) conditions as 7 dpm juveniles. Mussels exposed as 

veligers showed reduced specific growth rates compared to the control groups, although 

there were no significant effects of either larval or juvenile treatment on the specific 

growth rate.  
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Source df MS F p 

Larval treatment 1 4.15 x 10-5 3.214 0.097 
Juvenile treatment 1 7.92 x 10-7 0.062 0.808 
Larval x juvenile treatment 1 1.29 x 10-5 0.783 0.393 
Plate (larval, juvenile treatment) 11 1.41 x 10-5 2.243 0.015 
Error 139 6.29 x 10-6   

     
Table 2.3. ANOVA results for veliger exposure on specific growth rate. We ran a three-

factor, nested ANOVA examining the effects of low salinity exposure during the veliger 

stage on specific growth rate. The ANOVA model includes the main effects of salinity 

exposure during the veliger stage (larval treatment), salinity exposure at 7 dpm (juvenile 

treatment), the interaction of the main effects, and the nested effect of settlement plate on 

the specific growth rate over 35 dpm. 
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Figure 2.6. Effects of pediveliger low-salinity exposure on size at 35 dpm. The plot 

shows the marginal means for juvenile shell area (mm2 ± SE) for mussels exposed to 

control (solid line) or low salinity (dashed line) treatments as pediveligers and exposed 

again to either control (left) or low salinity (right) conditions at 7 dpm. There was no 

effect of juvenile treatment on the mean size of juvenile mussels, but there was a 

significant increase in size for mussels that had been exposed to hypoosmotic exposure as 

pediveligers relative to the control groups (F = 8.086, df = 1, p = 0.012).  
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Source df MS F p 

Larval treatment 1 0.004 8.086 0.012 
Juvenile treatment 1 9.97 x 10-7 0.002 0.963 
Larval x juvenile treatment 1 0.000 0.639 0.436 
Plate (larval, juvenile treatment) 12 0.000 0.908 0.538 
Error 754 0.000   
     

Table 2.4. ANOVA results for pediveliger exposure on juvenile shell area. We ran a 

three-factor, nested ANOVA examining the effects of low salinity exposure during the 

pediveliger stage on juvenile shell area. The ANOVA model includes the main effects of 

salinity exposure during the pediveliger stage (larval treatment), salinity exposure at 7 

dpm (juvenile treatment), the interaction of the main effects, and the nested effect of 

settlement plate on the area of the juvenile shell at 35 dpm. 
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Figure 2.7. Pediveliger-exposed size at metamorphosis versus 35 dpm. There is a strong 

correlation between size at metamorphosis and size 35 dpm for each of the treatment 

blocks, which include mussels that were never exposed (open squares; y = 1.809x + 

0.002, r2 = 0.88), mussels that were exposed 7 dpm (gray squares; y = 1.7913x – 0.4 x 10-

5, r2 = 0.83), mussels exposed only as pediveligers (open circles; y = 1.8336x – 0.0051, r2 

= 0.71), and those exposed both as pediveligers and 7 dpm (gray circles; y = 1.7155x + 

0.0022, r2 = 0.69). 
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Figure 2.8. Effects of pediveliger low-salinity exposure on specific growth rate. The 

marginal mean specific growth rate in the 35 dpm (in d-1 ± SE) for mussels that were 

exposed to control (solid line) or low salinity (dashed line) as pediveligers and control 

(left) or low salinity (right) as 7 d post-metamorphic juveniles. There was no significant 

effect of larval or juvenile treatment on the specific growth of mussels, although mussels 

exposed to low salinity as pediveligers showed significant reductions in growth rates 

relative to the control groups.  
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Similar to what we observed in the veliger experiment, there was a strong 

correlation between the area at metamorphosis and the area 35 dpm in the pediveliger-

treated groups (Figure 2.7). Despite this, mussels that were treated as pediveligers had 

lower specific growth rates than the control groups (Figure 2.8). Mussels that were never 

exposed had higher growth rates than those exposed at the pediveliger or juvenile stage, 

and those treated as both pediveligers and juveniles grew faster than those stressed only  

as larvae. However, these trends were not significant, due to the high variance among 

settlement plates within treatment, which masked any treatment-level or interaction 

effects in this experiment (Table 2.5).  

2.5.  Discussion 

This is the first study to our knowledge that documents carryover effects from 

reduced salinity in blue mussels. Mussels that were treated at the veliger stage were 

significantly smaller than control mussels despite that the larval stress was applied at 14 

dpf and for only a 24 h duration (Figure 2.2). This effect was consistent across settlement 

plates. At similar rearing temperatures, Hrs-Brenko and Calabrese (1969) reported that 

mean length of Mytilus edulis early-veliger larvae was reduced 66.5 % after prolonged 

(16–17 d) exposure to 20 ppt seawater. We detected smaller reductions in overall size of 

the shell (7.3 %), though our animals were only exposed to 20 ppt for 24 h and the 

differences in size between treatment groups would likely become more divergent with 

prolonged exposure. The mean size at 35 dpm and specific growth-rate of juveniles were 

also reduced in mussels briefly exposed as veligers (Figure 2.3 and Figure 2.5, 

respectively), demonstrating that the effect of larval experience persists through 

metamorphosis. Phillips (2002) reported similar findings in that larval diet influenced  
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Source df MS F p 

Larval treatment 1 0.000 2.386 0.148 
Juvenile treatment 1 1.11 x 10-6 0.020 0.890 
Larval x juvenile treatment 1 4.00 x 10-5 0.718 0.413 
Plate (larval, juvenile treatment) 12 6.18 x 10-5 11.581 < 0.001 
Error 754 5.33 x 10-6   
     

 

Table 2.5. ANOVA results for pediveliger exposure on specific growth rate. We ran a 

three-factor, nested ANOVA examining the effects of low salinity exposure on the 

specific growth on pediveliger- and juvenile-treated mussels. The effects of pediveliger 

treatment and juvenile treatment on the specific growth rate over 35 dpm, their 

interaction, and the nested effect of settlement plate within each of the treatments are 

displayed.   



 

 32 

post-metamorphic size in a congener, M. galloprovincialis, and other studies have found 

low-salinity stress reduces juvenile growth in the marine invertebrates, such as Capitella 

sp. (Pechenik et al. 2001), Amphibalanus impovisus (Nasrolahi et al. 2012), and 

Crepidula fornicata (Bashevkin and Pechenik 2015).  

The effects of reduced salinity experienced by pediveligers on juvenile size were 

inconsistent with the effects we observed in our veliger-stress experiment. Mussels  

stressed as pediveligers had larger shell area at metamorphosis (Figure 2.2) and at 35 

dpm (Figure 2.6) than those in the control groups. This trend toward an increase in size in 

pediveliger-stressed mussels is likely an artifact resulting from unexpectedly small size at 

metamorphosis in the control group (Figure 2.2, open bar on the right) and could have 

resulted from early settlement of larger individuals in the control tanks. However, the 

larvae in each tank were monitored daily and we found no evidence of differential 

settlement. Innes and Haley (1977) found a genetic basis for variation in growth for blue 

mussel larvae when larvae were exposed to salinity stress, yet both the treatment and 

control groups in our pediveliger and veliger experiments were drawn from the same pool 

of larvae and thus variation in size at metamorphosis in this experiment was unlikely to 

be genetically-based. Regardless, the smaller mussels at metamorphosis under ambient 

conditions confounds our analysis of the effects of salinity stress on size at this stage.  

Despite the small size of control animals, the overall growth rate of mussels treated 

as pediveligers was lower than in the controls (Figure 2.8, solid versus the dashed lines). 

While the size of juvenile mussels at 35 dpm is correlated to the size at metamorphosis 

(Figure 2.7), mussels that experienced stress as pediveligers on average grew slower than 

those that were unstressed as larvae. This is consistent with what we observed in mussels 
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exposed as veligers and supports our hypothesis that larval stress carries through 

metamorphosis and negatively impacts post-metamorphic growth.  

Within each of our larval studies, we also looked at the interaction of a repeated, 

hyposaline exposure on the growth of juvenile mussels. In some cases, studies on other 

marine invertebrates have shown that previous experience may either help to increase 

tolerance at other life history stages (Bacon 1971, Qiu and Qian 1999, Parker et al. 2015) 

or may further reduce juvenile performance (Emlet and Sadro 2006, Hettinger et al. 2012, 

Nasrolahi et al. 2012) depending on the stressor. We found that the effects of repeated 

hypoosmotic exposure on juvenile growth was stage-specific but also dependent on the 

metric used to assess the effects of stress (size versus growth).  

We hypothesized that repeated exposure to low salinity would cause reductions in 

the overall growth and size of mussels compared to those that were unexposed or only 

exposed to salinity stress once. Qiu et al. (2002) found that mussel larvae are more 

sensitive to low salinity stress than juveniles, so we also expected that exposure during 

larval development would have a greater impact on the growth and size of juveniles 

compared to exposure experienced post-metamorphosis. In the veliger experiment, the 

smallest mussels at 35 dpm were those that experienced repeated exposure to low 

salinity. Mussels that were exposed only as veligers were smaller than both groups of 

mussels that were never exposed and those exposed only as juveniles, as we expected 

(Figure 2.3). These trends were also reflected in the growth rate, but to a lesser extent 

(Figure 2.5). The largest and fastest growing mussels from our veliger experiment were 

those that were exposed to acute, low salinity conditions only at 7 dpm. These findings 
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suggest that the response to low salinity stress varies for pre- and post-metamorphic blue 

mussels.  

The effects of repeated exposure on pediveliger-treated mussels differed from the 

veliger experiment. With respect to size at 35 dpm, mussels that were not exposed to 

larval stress were the smallest of any treatment group, which makes comparisons to 

mussels that did experience larval stress more difficult. If we evaluate only mussels in the 

treatment groups, those that received repeated exposure (i.e., as pediveligers and 7 dpm) 

were slightly larger than those that were only exposed at the pediveliger stage (Figure 

2.6). This trend is also reflected in the specific growth measurements (Figure 2.8). While 

unexpected, these findings are similar to what has been reported in other marine 

invertebrates (Bacon 1975, Qiu and Qian 1999, Fischer and Phillips 2014), where 

previous exposure may help to condition the individual and perhaps even increase the 

capacity to respond to the stress when experienced at later life-history stages. Unlike the 

mussel response in the veliger experiment, mussels in the pediveliger experiment that 

were treated only as juveniles were smaller and had lower growth rates than mussels that 

were never exposed to hyposaline conditions.  

  Our results indicate that the timing of stress experienced in early life stages is an 

important determinant of the response of post-metamorphic mussels, as indicated by 

variation in the size and growth of the treatment groups from each experiment. This 

finding is not surprising when considering the physiology of each larval stage. For 

example, veligers have the highest mass-specific metabolic rate of any larval phase and 

show marked increases in size-specific growth (Sprung and Widdows 1986), while 

pediveligers are energetically preparing to undergo metamorphosis (Sprung 1984). One 
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might then expect that when actively growing veligers are exposed to a stressor that may 

limit feeding or energy allocated towards growth, the residual effects from this stress 

would be more pronounced than when the same stress is experienced at later larval phase.  

Mussels that are exposed to low salinity as veligers are smaller than those exposed 

as pediveligers. At the time of metamorphosis pediveligers from the treatment group are, 

on average, 3.1 % larger than those treated as veligers (Figure 2.2) and 4.5 % larger 35 

dpm (Figure 2.6). The specific growth rate of the treated pediveligers is 9.0 % higher than 

the treated veligers, suggesting that veligers may be more susceptible than pediveligers to 

low salinity stress. We also observed some evidence that the mussels from the veliger 

experiment experienced higher mortality than those from the pediveliger experiment, as 

our sample sizes in the latter study were 4-5x higher than those in the former. However, 

the experimental design prohibited direct measurement of survival, so these findings 

should be interpreted with caution. Nonetheless, our study is the first to suggest that 

veliger and pediveliger mussel larvae differ in their ability to tolerate low salinity 

exposure.   

Mussel larvae spend the majority of their development in the veliger stage which, 

depending on environmental conditions, can last many weeks (Bayne 1965, Widdows 

1991). The growth of mussels during this stage is critical for developing adequate 

nutritional stores to undergo metamorphosis (Crisp 1976). Thus, any event, such as a 

flood event, that would negatively impact larval growth will have an effect on 

recruitment success. In this study, veligers that were exposed to acute, low salinity were 

smaller at metamorphosis and had reduced growth compared to other treatments. This 

reduction in growth is likely the result of decreased filtration rates and nutritional status 
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that accompanies osmotic stress (Bøhle 1972), which Phillips (2002, 2006) showed was 

critical to juvenile success. On the other hand, Martel et al. (2014) found that smaller size 

at metamorphosis was correlated to an increase in settlement success and may be an 

indication of an ecological tradeoff to cope with non-lethal stress. However, this is 

contrary to what we observed and to what has been reported in similar studies on the 

effects of salinity stress on successful larval development in barnacles (Qiu and Qian 

1999, Qiu et al. 2002). In either case, because size at metamorphosis is correlated with 

juvenile size (this study and Phillips 2002), short-term exposure of veligers to osmotic 

stress may shift the size structure of persisting populations towards smaller individuals, 

as is commonly observed in populations adapted to low salinity (Riisgård et al. 2012, 

Landes et al. 2015).  

The exposure of larval mussels to salinity stress may also have implications for the 

resilience of local mussel populations if, as our data from pediveligers suggest, the 

mussels are better equipped to deal with repeated exposure. Other studies have observed 

epigenetic modifications following exposure to stress, including significant changes in 

the levels of protein phosphorylation in adults of blue mussel congeners during acute 

osmotic shock (Evans and Somero 2010) and in other bivalves during larval exposure to 

elevated CO2 (Dineshram et al. 2013), which may help prepare young mussels for the 

natural fluctuations in salinity that they will encounter in intertidal systems. Other types 

of epigenetic modifications, such as DNA methylation, have been reported in the 

honeybee Apis mellifera, where the developmental fate of the animal is mediated by 

DNA methylation patterns triggered by larval diet (Cameron et al. 2013). The role of 

DNA methylation or other post-translational modifications has not been studied in larval 
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mussels, but it is possible that these changes would persist through metamorphosis and 

condition mussels for future stressful events. If present, these molecular mechanisms may 

help blue mussels cope with a rapidly changing environment (Somero 2010). Further 

studies should be conducted to better understand how early life experiences may alter the 

gene expression of later developmental stages.  
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CHAPTER 3 

 

NUCLEAR MAGNETIC RESONANCE SPECTROCOPY (NMR) PROFILING 

OF METABOLITES IN LARVAL AND JUVENILE BLUE MUSSELS (MYTILUS 

EDULIS) UNDER AMBIENT AND LOW SALINITY CONDTIONS 

 

3.1   Abstract 

NMR-based studies can provide important foundational information on the 

metabolic baselines of understudied species. We used 1D 1H nuclear magnetic resonance 

spectroscopy (NMR) and 2D total correlation spectroscopy (TOCSY) to describe baseline 

metabolite pools in larval and juvenile blue mussels under ambient conditions and to 

quantify changes in the abundance of common osmolytes in larval and juvenile blue 

mussels during low salinity exposure. Blue mussels (Mytilus edulis) are ecologically and 

economically important marine invertebrates whose populations are at risk due to 

climate-change induced variation in their environment, such as decreased coastal salinity. 

Blue mussels are osmoconfomers and use components of the metabolite pools (free 

amino acids) to help maintain osmotic balance and cellular function during low salinity 

exposure. Metabolite studies in species such as blue mussels can help improve our 

understanding of the physiology, as well as the capacity of the study organism to respond 

to environmental stress. Furthermore, NMR-based metabolomic studies provide an easy 

and inexpensive tool to evaluate changes in metabolites that may occur among different 

tissue types or across developmental stages. Mussels have a complex life history and little 

is known about the capacity of blue mussel larvae to regulate metabolites during osmotic 
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stress. We found evidence for stage- and tissue-specific differences in the baseline 

metabolic profiles of blue mussels, which likely reflect variation in the function and 

morphology of each larval stage or tissue type. These differences impacted the utilization 

of various osmolytes during low salinity exposure within the different stages and tissues, 

again likely stemming from innate physiological differences of these samples. This study 

highlights the importance of foundational metabolomic studies that include multiple 

tissue types and developmental stages to adequately evaluate organismal responses to 

stress and better place these findings in a broader ecological context. 

3.2  Introduction 

The blue mussel (Mytilus edulis) is an important marine species that is commonly 

found in intertidal and subtidal habitats of the temperate and sub-boreal regions of the 

North Atlantic. From an ecological perspective, M. edulis is considered a foundational 

species, as it provides habitat and structure within coastal ecosystems (Arribas et al. 

2014). Additionally, mussels are of importance because they are commercially fished and 

cultured and used in environmental monitoring programs (Goldberg 1975). Thus, any 

factor that threatens the health of mussel populations also poses a risk for other species 

within the community and impacts the quality of mussels as food sources or as 

bioindicators. Given their ecological and economic significance and the increasing pace 

of environmental change, there is substantial interest in the physiological tolerances of M. 

edulis and the effects of environmental stress on the persistence of blue mussel 

populations (e.g., Tuffnail et al. 2009, Ellis et al. 2014, Lesser 2016).  

To adequately understand the capacity for species to respond to environmental 

stress, there is a critical need for foundational metabolomic studies that provide the 
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baselines for future comparisons. While some studies have presented data on the 

metabolomic signatures of unstressed mussels (Hines et al. 2007, Jones et al. 2008, 

Tuffnail et al. 2009), these studies have often focused on a single tissue and did not 

address the naturally occurring variation in the metabolome among tissue types. In 

addition, mussels have a complex life cycle that includes a protracted planktonic period 

of larval development so that studies on adult mussels are only representative of the 

physiological state of post-metamorphic, benthic stages. The energetic demands of larvae 

differ from post-metamorphic mussels, as they must obtain adequate energy stores to 

reach competency and undergo metamorphosis (Sprung 1984, Sprung and Widdows 

1986).  Thus, a comprehensive metabolomic study of species with complex life-histories, 

like M. edulis, must also account for developmental changes in physiology.  

Ontogenetic variation in the metabolome may also impact the ability of mussels to 

respond to osmotic stress. Adult mussels selectively retain free amino acids (FAA), 

which function as osmolytes, within their metabolite pools as a means of intracellular 

osmotic regulation (Lange 1963, Bowlus and Somero 1979, Yancey et al. 1982, Somero 

1986). Variation in the composition and utilization of FAA pools in response to osmotic 

stress have been widely studied in many marine bivalves (e.g. Shumway et al. 1977, 

Davenport 1979, Livingstone et al. 1979, Deaton et al. 1985, Neufeld and Wright 1996). 

However, there have been no studies to date that have looked broadly at the metabolic 

changes that occur across developmental stages or across tissues in juvenile mussels 

when subjected to osmotic stress. Bivalve larvae differ from juveniles in their uptake and 

metabolism of FAAs (Manahan 1983, Welborn and Manahan 1995), so it is likely that 
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the larval response to changes in environmental salinity differs from that of juvenile and 

adult mussels.   

Nuclear magnetic resonance spectroscopy (NMR) is a commonly used tool for 

studying the metabolic profiles of bivalve molluscs (Hines et al. 2007, Jones et al. 2008, 

Tuffnail et al. 2009, Tikunov et al. 2010, Capello et al. 2013, Ellis et al. 2014). NMR is 

relatively inexpensive, rapidly generates extensive, quantitative metabolomic data, and 

can be used to detect the presence of solutes in low concentrations or in small samples. 

We capitalized on these advantages to study the ontogenetic variation in the metabolome 

of mussels during control and low salinity treatment. We used NMR spectroscopy to 

examine the baseline composition of the metabolome, with attention to the composition 

of the FAA pools, in larval (veliger and pediveliger stages) and juvenile blue mussels 

reared under ambient conditions. Additionally, we monitored changes in the FAA pools 

of hypoosmotically challenged larval and juvenile mussels to assess how ontogenetic 

variation in the metabolome affects the ability of mussels to respond. This study provides 

important physiological baseline data on M. edulis that are integral to understanding the 

cellular changes that occur during hypoosmotic stress.   

3.3.  Methods 

3.3.1   Sample Collection  

The larval Mytilus edulis used in this study were cultured at the Darling Marine 

Center Hatchery in Walpole, ME, under at a standard temperature and salinity (13.5 °C, 

32 ppt). Briefly, adult mussels were induced to spawn by exposure to cyclic thermal 

shock in June 2015 (see Section 2.3.1), and their gametes were used to create five 

genetically-distinct replicate pools of larvae (2 males and 4 females per pool). The larval 
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cultures were fed daily a mixture of Monochrysis sp., Chaetoceros muelleri, C. 

calcitrans, Tetraselmis chuii, and Isochrysis galbana (clone T-Iso), per the 

recommendations for bivalve aquaculture (Helm et al. 2004). At 14 d post-fertilization 

(dpf), when the larvae had developed to the veliger stage, a subsample of approximately 

100,000 larvae was removed from each replicate tank and placed into a 1 l beaker 

containing either control (32 ppt) or low salinity (20 ppt) UV-sterilized, filtered seawater 

(UV-FSW; 13.5 °C). Larvae were held in the control or low salinity treatments for 24, 48, 

or 72 h (n = 5 replicates each time point). We conducted water changes every 24 h and 

starved the larvae for the 24 h prior to sampling. At the end of each treatment, the larvae 

were isolated on a 48-µm sieve, transferred to a sterile 1.5 ml Eppendorf tube, flash 

frozen in liquid N2, and stored at -80 °C until analysis. At 26 dpf when the remaining 

larvae had transitioned to the pediveliger stage, another subsample containing 

approximately 100,000 pediveligers was placed into 1 l beakers containing control (32 

ppt) or low salinity (20 ppt) UV-FSW (13.5 °C). As before, the pediveligers were sieved, 

flash frozen, and stored at -80 °C. Unfortunately, prior to 26 dpf, there was high mortality 

in one of the larval replicate tanks so only four replicates were taken at the pediveliger 

stage.  

Juvenile M. edulis (26–45 mm in length) were collected from a subtidal 

population at the Darling Marine Center and transported to the University of Maine, 

Orono, ME, in September 2015. The mussels were held in a recirculating tank containing 

artificial seawater (Instant Ocean®) and fed a daily ration of Shellfish Diet 1800 (Reed 

Maricutlure, Inc.). Following a 3-wk acclimation to 15 °C and 32 ppt, the mussels were 

placed in 1 l beakers containing control (32 ppt) or low (20 ppt) salinity artificial 
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seawater for 24, 48, or 72 h. As with the larval experiments, the water was changed daily 

and all mussels were starved for 24 h prior to sampling for metabolic profiling. At the 

end of each exposure, juvenile mussels were sacrificed (n = 5) and the gill, mantle edge, 

and posterior adductor muscle of each were dissected out; the tissues were flash frozen in 

liquid N2 upon dissection and stored at -80 °C. To avoid gamete-specific differences in 

the metabolic signatures (Hines et al. 2007) for the mussels used in this study, we 

avoided using the gametogenic portion of mantle. The gonad of mussels forms in the 

visceral mass but during reproductive periods it extends significantly into the mantle 

(Newell 1989), so we sampled tissues from young mussels that did not show signs of 

gonad production.  

3.3.2  NMR Spectroscopy 

The larval and juvenile tissue samples were processed to examine the metabolic 

profile of each sample using 1H nuclear magnetic resonance spectroscopy (NMR). A 

small section of each tissue or a subset of each larval sample was placed into a pre-

weighed, sterile, 1.5 ml tube. The tissue was dried overnight at room temperature in a 

Savant™ SpeedVac™ Concentrator (Thermo Scientific™). The dried samples were 

ground using a mortar and pestle and the dry weight of each sample was measured. 

Metabolites were extracted by adding 30 ml·g-1 dry weight of 2:1 acetonitrile-water 

mixture to the sample and vortexed to mix (Lin et al. 2007). Samples were spun at 13,000 

g for 10 m at 4 °C and the supernatant, containing the extracted metabolites, was 

removed and stored at -80 °C. We used 100 µl of the supernatant from each to 

standardize across samples; each 100 µl sub-sample was dried in the SpeedVac™, 

resuspended in 500 ml deuterium (D2O), and dried again to remove residual water. Two 
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D2O exchanges were conducted before the samples were redissolved in 500 ml D2O 

containing 2 mM trimethylsilylpropanoic acid (TSP) and 1.96 mM maleic acid, which 

were used as internal reference standards for relative quantification. The extracts were 

then transferred into Wilmad® 5 mm glass NMR tubes and stored at 4 °C until analysis.  

Samples were run on a 400 MHz Varian Inova NMR Spectrometer at room 

temperature. We acquired data using the instrument’s default parameters, modified to 

include a 5000 Hz spectral width, 13.5 µs pulse width, 1 Hz exponential line broadening, 

and 64 transients. The transmitter was offset to the D2O peak and chemical shifts were 

referenced to TSP (0 ppm). Standards containing the amino acids betaine, glycine, 

taurine, proline, glutamate, and ornithine were also run under the same specifications to 

aid in the identification of common metabolites.  

A representative sample from each larval stage or tissue type was analyzed using 

2D total correlation spectroscopy (TOCSY) to observe the coupling patterns of the 

components within each sample. These data provided structural information that helped 

verify the presence of amino acids and other metabolites in the corresponding 1D NMR 

data. The 2D spectra were obtained on the Varian 400 NMR Spectrometer at 30 °C. We 

acquired the 2D NMR using a 2.8 s recycle delay, a 30 µs pulse width, 1 Hz line 

broadening, and 64 transients over 512 t1 increments, for a total of 2048 t2 data points.  

3.3.3   Data Analysis 

The 1D NMR spectra were processed using ACD/NMR Processor Academic 

Edition Software. Data were Fourier transformed with a backward linear prediction for 

the first 2 points and then baseline corrected, phased, and calibrated to the TSP peak prior 

to analysis. For relative quantification, we manually selected and integrated the peaks for 
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TSP, alanine, b-alanine, taurine, glycine, betaine, homarine, and maleic acid (Table 3.1). 

For each compound of interest, we calculated the concentration following the method of 

Bharti and Roy (2012): 

   𝑀+	
   = 	
  

𝐼𝑖
𝐻𝑖

𝐼𝑠
𝐻𝑠

∗ 	
  𝑀2    [2] 

where M is the relative concentration, I is the integral of the peak(s), and H is the number 

of protons contributing to the signal for the peak of interest (i) relative to the maleic acid 

standard (s). The concentrations for the metabolites of interest were then standardized to 

the mean TSP concentration and adjusted for dry weight, to yield the relative 

concentration in µmole g-1 dry tissue weight.  

To make direct comparisons of the metabolites quantified from the larval and 

juvenile samples, we adjusted the dry weights for the larval samples to account for the 

mass contributed by the larval shell. For this analysis, we prepared Whatman GF/C™ 

Glass Microfiber filters (25 mm diameter) by soaking in reverse osmosis (RO) water for 

1 h and drying them overnight at 65 °C. The filters were then ashed at 350 °C overnight 

in a Thermo Isotemp® Muffle Furnace and weighed. We placed a subset of larvae from 

each larval sample onto a filter and rinsed using 10 ml of 0.5 M ammonium formate to 

remove any residual salts from the seawater. The prepared samples were dried overnight 

at 65 °C and weighed (total dry weight), prior to ashing at 350 °C overnight to determine 

the ash-free dry weight (AFDW). The ratio of AFDW relative to dry weight was used to 

determine the proportion of the dry weight accounted for by the tissue (and not shell). 

The amino acid concentrations for each of the larval samples were then scaled by this 

proportion.  
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Compound Shift (ppm) Type H 

TSP 0 s 9 

Alanine 1.46 d 3 

b-Alanine 2.54 t 2 

Taurine 3.43 t 2 

Glycine 3.55 s 2 

Betaine 3.91 s 2 

Homarine 4.36 s 2 

Maleic Acid 6.32 s 2 
 
 

Table 3.1. Chemical shifts of key osmolytes detected by 1D 1H NMR. We calculated the 

concentration of six amino acids and amino-acid derivatives relative to our two internal 

standards, TSP and maleic acid. The type of each peak exhibited by each compound is 

also indicated, where s = singlet, d = doublet, and t = triplet, as well as the number of 

protons (H) contributing to the signal. 
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The 2D NMR spectra were processed using SpinWorks 3.1 NMR data processor. 

We Fourier transformed the data using complex forward linear prediction, predicting 

from 2,048 to 4,096 points in the F2 dimension and from 512 to 2,048 points in the F1 

dimension. Spectra were baseline corrected, phased, and calibrated to the TSP peak at 0 

ppm. The coupling partners were recorded for each peak from the representative veliger, 

pediveliger, gill, mantle, and adductor samples and put into an Excel spreadsheet. The 

identification of metabolites was completed manually through reference to the primary 

literature and the Human Metabolome Database (Wishart et al. 2013).  

Metabolic baselines were determined by analyzing the solute concentrations for 

larval and juvenile mussels from our 24 h control groups using 1H NMR spectroscopy. 

To test for tissue-specific or stage-specific differences in the relative quantities of key 

metabolites such as alanine, taurine, glycine, betaine, and homarine, we ran a one-way 

ANOVA in SPSS Statistics 22.0 (IBM Corporation). For the juvenile samples, we tested 

the tissue-type as a fixed-factor, main effect using a Type III Sum of Squares model with 

a = 0.05. To test for differences between larval stages, we used a one-way ANOVA with 

larval stage as a fixed-factor and tested stage as a main effect against a Type III Sum of 

Squares model. Two replicates of the baseline veliger samples were removed from 

analysis because of errors during extraction.  

We also investigated temporal variation for the five most abundant metabolites 

contributing to the FAA pool under hypoosmotic conditions, glycine, alanine, taurine, 

betaine, and homarine. To test for the effects of low-salinity exposure on the 

concentrations of alanine, b-alanine, betaine, glycine, homarine, and taurine we used a 

series of two-factor ANOVAs. In each model, the effects of treatment (low and control 
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salinity) and length of exposure (24, 48 or 72 h) were fixed-factor, main effects. We 

included an interaction term and tested against a Type III Sum of Squares model with a = 

0.05. Four cases were excluded from analysis because of sample loss during preparation.  

3.4.  Results 

3.4.1.   Baseline Metabolic Profiles 

We detected 99 distinct metabolite signatures using NMR on extracts from two 

larval stages and from the gill, mantle, and adductor tissues of juvenile Mytilus edulis. 

We confirmed the identity of 16 of these 99 metabolites (Table 3.2) using information 

obtained from the 2D TOCSY scans (Figure 3.1). Interestingly, only 9 of the 16 

identified metabolites were common to both larval stages and all three tissues of the 

juvenile mussels: alanine, aspartate, betaine, glycine, homarine, hypotaurine, isoleucine, 

taurine, and threonine (Table 3.2, metabolites 1–9). Arginine, b-alanine, glutamate, 

glutamine, leucine, lysine, as well as four unknown metabolites, were found in larval and 

juvenile mussels, but were not always present in both larval stages or samples from all 

three tissues of the juveniles (metabolites 10–19, Table 3.2). Among these metabolites 

are amino acids and other amino acid derivatives that appear to be the major constituents 

of the M. edulis intracellular FAA pool, regardless of developmental stage.   

We found several metabolites, however, whose presence or relative concentration 

varied across developmental stages. We observed 2 prominent peaks at 2.92 and 2.96 

ppm that were present in the veliger and pediveliger samples, but were not detected in 

any of the juvenile samples (Figure 3.2a). These compounds likely comprise a large 

portion of the metabolite pool in larvae, but could not be identified with information  
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1Listed by identity from Tikunov et al. (2010) 
 
Table 3.2.  Table of common metabolites identified in Mytilus edulis. For each 

compound, the chemical shift (in ppm) and the type of peak are listed, where s = singlet, 

d = doublet, dd = doublet of doublets, t = triplet, and m = multiplet. The table is divided 

into metabolites that were common to all sample types (veliger, pediveliger, gill, mantle, 

and adductor), those common to larvae and juveniles (but not all juvenile tissues), those 

found in both larval stages, but not in juveniles (larvae-specific), and those found only in 

the juvenile samples (juvenile-specific). The numbers in the first column correspond the 

peak numbers in Figure 3.2. 

 

No Metabolite Chemical shift (multiplicity) 
Common to all samples 
1 Alanine 1.46 (d), 3.77 (t) 
2 Aspartate 2.68 (dd), 2.82 (dd), 3.87 (dd) 
3 Betaine 3.26 (s), 3.91 (s) 
4 Glycine 3.55 (s) 
5 Homarine 4.36 (s), 7.96 (m), 8.03 (d), 8.53 (m), 8.69 (d) 
6 Hypotaurine 2.63 (t), 3.36 (t) 
7 Isoleucine 0.98 (m), 1.03 (m) 
8 Taurine 3.25 (t), 3.43 (t) 
9 Threonine 1.32 (d), 3.58 (d), 4.25 (t) 
Common to larvae and juveniles 
10 Arginine 1.73 (m), 1.93 (m), 3.23 (m), 3.76 (m) 
11 β-Alanine 2.56 (t), 3.18 (t) 
12 Glutamate 2.05 (m), 2.14 (m), 2.38 (m), 3.76 (m) 
13 Glutamine 2.14 (m), 2.42 (m), 3.76 
14 Leucine 0.96 (t), 1.72 (m) 
15 Lysine 1.73 (m), 1.88 (m), 3.02 (t) 
16 Unknown #21 1.24 (s) 
17 Unknown Metabolite 0.87 (m) 
18 Unknown Metabolite 3.66 (m), 4.28 (d) 
19 Unknown Metabolite 3.75 (d), 4.27 (t) 
Larvae-specific  
20 Unknown Metabolite 2.92 (s) 
21 Unknown Metabolite 2.96 (s) 
22 Lactic acid 1.32 (d), 4.12 (m) 
Juvenile-specific 
23 Unknown #11 1.09 (s) 
24 Unknown Metabolite 2.25 (s) 
25 Unknown Metabolite 2.56 (s) 
26 Unknown Metabolite 3.11 (s), 3.28 (s) 
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Figure 3.1. Representative 2D-TOCSYspectrum. Each peak in the 1D spectrum 

corresponds to a peak along the diagonal over 0–5 ppm, referenced to the chemical shift 

of TSP (0 ppm). The box on the 2D plot connects the cross-peaks contributed by the 

resonances of the hydrogen atoms within alanine, where there is a doublet at 1.46 ppm 

and a triplet at 3.77 ppm. These coupling patterns are used to verify the identity of the 

compounds in Table 3.2; the complete list of all coupling partners generated from the 

TOCSY experiments is provided in Table A.1. 
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Figure 3.2. Representative 1H NMR spectra. The 1D spectra for larval (a) and juvenile 

(b) mussels are shown over the 0–4.5 ppm range, where the chemical shifts for most of 

the metabolites we detected are found. The numbers above each peak correspond to the 

metabolites listed in Table 3.2. Spectra are referenced to the chemical shift of TSP (0 

ppm). 
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present in the literature or online databases. Lactic acid also appeared to be specific to 

larvae, although, the chemical shift of lactic acid overlaps with that of threonine (and 

other metabolites at 1.32 ppm). Thus, it is possible that lactic acid was present in the 

juvenile samples, but that the concentrations were too low to see the long-range coupling 

protons at 4.12 ppm. In addition to the larval-specific metabolites, we observed four 

unknown metabolites at 1.09, 2.25, 2.56, and 3.11 ppm only in the juvenile samples 

(Figure 3.2b). The intensity of the peaks was high in some tissues, suggesting there are 

tissue-specific variations in concentration for these metabolites in post-metamorphic 

mussels.  

While we observed the presence of stage-specific and tissue-specific metabolites, 

we could not determine the identity of most of the metabolites we detected (Table A.1). 

There were 13 metabolites found only in veligers and an additional 13 found only in 

pediveligers. In juvenile mussels, we observed 15 metabolites that were unique to the gill, 

9 that were found only in the mantle tissue, and 12 in the adductor muscle. Surprisingly, 

we did not observe b-alanine or another metabolite, identified as “Unknown #2” by 

Tikunov et al. (2010), in the mantle of juvenile M. edulis even though these metabolites 

were present in our other samples. Similarly, unknown metabolite #18 (Table 3.2) was 

absent from the adductor muscle, but present in the gill and mantle tissue, as well as in 

veliger and pediveliger larvae. Other metabolites were detected in our pediveliger 

samples and samples from juvenile tissues, but not in profiles from veliger larvae (Table 

A.1). In contrast, we did not detect any metabolites common to veligers and juveniles but 

missing in the pediveliger profiles.  
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We used our 1D NMR data to investigate changes in the relative concentrations of 

six metabolites, alanine, b-alanine, betaine, glycine, homarine, and taurine, in more 

detail. These compounds play an important role in the FAA pool of mussels (Shumway et 

al. 1977, Davenport 1979, Livingstone et al. 1979, Deaton et al. 1985, Neufeld and 

Wright 1996), with taurine, betaine, and glycine being the most abundant (Figure 3.3). 

The composition of the FAA pools of veliger and pediveliger larvae were similar, 

although the concentrations of these metabolites in pediveligers tended to be higher than 

what we measured in veligers. However, there were no significant differences in the 

concentrations of these six metabolites among the two larval stages (Table 3.3).  

We also measured the concentrations of these metabolites in the gill, mantle, and 

adductor muscle from juvenile mussels. In juveniles, the FAA pools were dominated by 

taurine and betaine, and to a lesser extent, glycine and alanine (Figure 3.3). Surprisingly, 

we observed tissue-specific differences in the concentrations of many of these solutes. 

The alanine content in the gill was significantly lower than the concentrations in the 

mantle and adductor muscle (F2,12 = 4.988, p = 0.027). Glycine abundance was 

significantly higher in the adductor than in the gill or the mantle (F2,12 = 5.24, p = 0.023); 

a similar pattern was observed for the variation in homarine (F2,12 = 9.544, p = 0.003). 

There was no variation in the abundance of taurine (F2,12 = 1.701, p = 0.224) or betaine 

(F2,12 = 1.967, p = 0.182) among the tissues of juvenile mussels.  

The concentrations of metabolites measured in the larvae varied from those in the 

tissue samples of juveniles, suggesting stage-specific differences in the composition of 

FAA pools in blue mussels (Figure 3.3). Pediveligers had higher concentrations of taurine 

and betaine than any other stage or tissue and both larval samples had higher 
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Figure 3.3. Relative concentrations of six intracellular osmolytes. The mean (± SE) 

concentrations of alanine, b-alanine, taurine, glycine, betaine, and homarine are shown 

for larval and juvenile mussels. Larval samples were analyzed for both veliger- (white 

bars; n = 3) and pediveliger-staged (black bars; n = 4) larvae, while data from the gill 

(horizontal-lined pattern), mantle (checked pattern), and adductor muscle (diamond 

pattern) were obtained from the tissues of individual juveniles (n = 5). Letters denote 

significant differences between the samples (a = 0.05). 
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 Veliger Pediveliger F1,5 p 

Alanine 13.5 ± 2.6 29.3 ± 9.3 1.953 0.221 

b-Alanine 77.9 ± 23.5 91.1 ± 23.3 0.151 0.713 

Betaine 251.9 ± 36.7 408.7 ± 87.1 2.125 0.205 

Glycine 248.4 ± 42.1 384.6 ± 83.9 1.671  0.253 

Homarine 75.2 ± 12.4 70.0 ± 11.8 0.088 0.778 

Taurine 349.5 ± 49.8 537.5 ± 114.2 1.796 0.241 

 

Table 3.3. Relative concentrations of free amino acids in larval mussels. Stage-specific 

variation in the mean concentration of six metabolites (µmole g-1 dry tissue weight ± SE) 

is presented for veligers (n = 3) and pediveligers (n = 4). For each metabolite, the F 

statistic and associated p-value from a one-way ANOVA testing the significance of the 

difference in means among larval stages are provided. 
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concentrations of glycine and homarine than we observed in the tissues of juvenile 

mussels. The accumulation of b-alanine also appeared to be stage-specific as the 

concentrations were so low in the juvenile tissue samples that they could not be reliably 

quantified. Alanine was the only FAA that we observed in higher abundance in the 

juvenile samples relative to the larval samples, although this trend was restricted to the 

mantle and adductor tissues.  

3.4.2.   Metabolite Concentrations During Hypoosmotic Exposure 

There was a general trend of decreasing concentration for the five predominant 

amino acids—taurine, betaine, glycine, homarine, and glycine—in the gill, mantle, and 

adductor muscle of juvenile M. edulis when the mussels were exposed to low salinity 

treatment (Table 3.4). We observed a significant decrease in glycine concentration in the 

gill and mantle tissues; for these tissues, there was a 72 % and 35 % drop in glycine 

concentration over the first 24 h of exposure, respectively. In addition to glycine, we also 

observed a significant decrease in the concentration of alanine in the adductor muscle; for 

both glycine and alanine the largest drop in concentration in the adductor muscle (39–49 

%) occurred after 48–72 h of exposure to low salinity conditions. 

Duration of exposure had a significant effect on the concentration of glycine (F2,24 

= 4.746, p = 0.018), betaine (F2,24 = 4.198, p = 0.027), and homarine (F2,24 = 4.129, p = 

0.029) in the gill tissue. However, this effect was driven by a decline in the concentration 

of these metabolites in the control mussels at 48 h and not resulting from low salinity 

exposure. This trend was also observed in the mantle tissue, with significant effects from 

the length of exposure on the concentrations of taurine (F2,24 = 10.278, p = 0.001),   
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glycine (F2,24 = 7.100, p = 0.004), betaine (F2,24 = 4.053, p = 0.030), and homarine (F2,24 = 

3.506, p = 0.046). In the mantle, there was a significant interaction between treatment and 

length of exposure on the concentrations of taurine (F2,24 = 5.756, p = 0.009), glycine 

(F2,24 = 4.655, p = 0.020), and betaine (F2,24 = 5.440, p = 0.011). For the adductor muscle 

samples, we detected a significant effect of the length of exposure (F2,24 = 5.789, p = 

0.009) and the interaction between treatment and length of exposure (F2,24 = 5.752, p = 

0.009) on the concentrations of taurine. The taurine content in the control groups 

increased from 24 to 72 h, while the concentration of taurine in the treatment groups was 

similar to the controls until 72 h when it dropped by roughly 33 %.   

In addition to taurine, betaine, homarine, glycine, and alanine, we monitored 

changes in the concentration of b-alanine in larval mussels, which was more abundant in 

veliger and pediveliger mussels compared to juveniles (Figure 3.3). Veliger and 

pediveliger larvae that were exposed to low salinity had decreased concentrations of all 

six osmolytes at all time points tested (Table 3.5). In the both veliger and pediveliger 

larvae, glycine and b-alanine concentrations were significantly reduced in the low salinity 

treatment groups. There was no evidence for either a duration of exposure or an 

interaction between salinity treatment and duration of exposure on the concentrations of 

FAAs in veliger mussels. In contrast, in the pediveligers there was a significant effect of 

the length of exposure on the concentrations of b-alanine (F2,18 = 4.750, p = 0.025), 

glycine (F2,18 = 5.671, p = 0.012), betaine (F2,18 = 3.733, p = 0.044), and homarine (F2,18 = 

4.311, p = 0.030). We observed a decrease in the concentrations of all six osmolytes, 

regardless of treatment, at 72 h compared to 24 h in the pediveligers. 
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3.5.  Discussion 

Our 1H NMR-based metabolite study in Mytilus edulis resolved 99 metabolites in 

two larval stages and three tissues sampled from juvenile mussels (Table A.1). Overall,  

we were successful in positively identifying 22 metabolites (Table 3.2), which is 

comparable to what has been identified in other metabolomic studies of blue mussels, 

such as Tuffnail et al. (2009) and Ellis et al. (2014). However, only 50 % of the 32 total 

metabolites identified across all three studies were observed in more than one study. 

These 16 metabolites have also been reported in NMR-based studies of M. 

galloprovincialis (Hines et al. 2007, Jones et al. 2008, Cappello et al. 2013) and oysters 

(Tukinov et al. 2010). 

The difference in the metabolites detected by each study is likely to have a 

methodological basis. For example, Lin et al. (2007) demonstrated that solvents differ in 

their extraction efficiency for certain amino acids; Ellis et al. (2014) used a methanol/ 

chloroform mixture, while we used an acetonitrile/water extraction. Furthermore, our 

studies also varied in the methods that were used to identify metabolites. Tuffnail et al. 

(2009) only used information from 1D NMR referenced to other published research to 

identify metabolites in their study, while Ellis et al. (2014) ran homonuclear J-resolved 

(JRES) 2D spectroscopy experiments. We used 2D TOCSY experiments, which generally 

have higher resolution and provide more structural information that can be used to 

confidently identify metabolites (Dona et al. 2016). Further, analysis of our 1D spectra 

suggested the presence of many of the metabolites found in the other two studies; even so 

we were unable to confirm these findings using the data generated from the TOCSY 

studies and spectral information available from Wishart et al. (2013). Differences in the 
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metabolites reported may also be related to functional characteristics of the type or 

portion of the tissue (i.e. gametogenic versus mantle edge) used in each study.  

Regardless of the reason for the discrepancies among studies, the metabolite data 

we collected from M. edulis using NMR spectroscopy indicate there are striking 

differences in the metabolite pools across developmental stages and among tissues of 

post-metamorphic mussels acclimated to ambient conditions (13.5 ºC, 30 ppt). Of the 99 

metabolites that were detected in our study, only 9 were common among both larval 

samples and within the three tissues we sampled from juvenile blue mussels (Table 3.2). 

An additional 10 metabolites were present in larval and juvenile mussels, but were not 

detected in one or more stages or tissues. However, the prevalence of these metabolites 

(many of which are osmolytes) among tissues and throughout development reveals their 

importance to cellular function in M. edulis.  

3.5.1.   Composition of FAA Pools in Juvenile Mussels 

A primary goal of our project was to document stage- and tissue-specific 

differences in the abundance of free amino acids (FAA). FAAs typically function as 

osmolytes in marine invertebrates, in addition to maintaining a stable intracellular 

environment (Lewis 1952) and serving as stores for protein synthesis or energy 

metabolism (Somero 1986). A number of studies have examined variation in the FAA 

pools of post-metamorphic M. edulis (e.g., Shumway et al. 1977, Livingstone et al. 1979, 

Deaton et al. 1985); our inclusion of more tissue types and larval stages complements and 

builds on their foundation. 

In juvenile mussels, we found that taurine and betaine were the most prevalent 

organic osmolytes found, regardless of tissue type (Figure 3.3). Taurine and betaine act as 
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counterbalancing solutes and promote cellular stability (Bowlus and Somero 1979, 

Yancey 2005), so relatively high concentrations of these metabolites are important to the 

maintenance of cellular function in both stressed and unstressed mussels. Furthermore, 

these solutes are not synthesized by post-metamorphic mussels and must be taken up 

from the environment or obtained through the diet (Bishop et al. 1983), so retention at 

high concentrations is likely to be energetically advantageous and osmotically important. 

Taurine is often cited as the most abundant osmolyte in blue mussels, and overall, the 

concentration of taurine in the tissues we examined were similar to that observed in 

previous studies of the adductor muscle (Bricteux-Grégoire et al. 1964, Shumway et al. 

1977) and digestive gland (Livingstone et al. 1979) of M. edulis. Although Lange (1963) 

claimed that the concentrations of taurine were 50 % higher in the adductor muscle than 

the gill or mantle, we did not observe significant differences in taurine concentration 

among tissues (Table 3.3). Several studies suggest that taurine constitutes 28–83 % of the 

FAA pool (Lange 1963, Livingstone et al. 1979, Wright and Secomb 1986, Wright et al. 

1987, Rice and Stephens 1988); however, betaine was not measured in those studies. In 

all three tissue types that we studied, we detected similar concentrations of taurine and 

betaine, which Bricteux-Grégoire et al. (1964) had also reported in the adductor muscle 

of M. edulis. Our findings suggest that taurine and betaine are important osmolytes in M. 

edulis and that previous studies, such as those of Wright et al. (1992) and Deaton (2001), 

may have overestimated the contribution of taurine and underestimated the contribution 

of betaine to FAA pools. 

We observed significant differences in the concentration of glycine among three 

tissues of juvenile mussels (Figure 3.3). Glycine is a common osmolyte found in mussels. 
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High concentrations of this metabolite do not affect enzyme stability (Bowlus and 

Somero 1979, Yancey et al. 1982), it is naturally abundant in seawater (Stephens and 

Schinske 1961, Crawford and Webb 1968, Péquignat 1973), and it is synthesized via 

multiple metabolic pathways (Manahan 1983). The concentrations of glycine we 

observed in the adductor are comparable to that reported in Shumway et al. (1977). Our 

results are consistent with Zandee et al. (1980), who found that concentrations of glycine 

in the adductor are higher than in the gill or mantle in M. edulis, and with Wright et al. 

(1987) who reported low concentrations of glycine in the gill and mantle tissue of M. 

californianus. Wright et al. (1987), however, found that the glycine content of the mantle 

was roughly 4-fold higher than in the gill, whereas in our study, the difference in glycine 

concentration between these two tissues was on the order of 30 %. Tukinov et al. (2010) 

and Ellis et al. (2014) also reported differences in the amount of glycine among tissue 

blocks of oysters and in the mantle of male and female M. edulis, respectively, which 

both authors attributed to glycine’s role in energy metabolism via oxidation or conversion 

to pyruvate. Overall, variation in glycine content among the tissues of M. edulis is likely 

a reflection in different aerobic metabolic demands of the tissue. 

The concentrations of alanine also differed among tissue types in our study, with 

the alanine content of the adductor and mantle approximately 2-fold higher than that of 

the gill (Figure 3.3). The concentration of alanine in the adductor muscle reported by 

Shumway et al. (1977) was 25 % of what we found. Although Wright et al. (1987) did 

not find any differences in the alanine concentrations in the gill and mantle of M. edulis, 

Rice and Stephens (1988) observed that alanine concentrations in the gill were 10-fold 

higher than the mantle and 50-fold higher than in the adductor, which is the opposite of 
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what we found. Combined, these results suggest that concentrations of alanine are likely 

highly variable and context-specific and likely reflect tissue-specific metabolism. Alanine 

is an end-product of anaerobic metabolism (De Zwaan and Wijsman 1976), and 

accumulations of alanine have also been associated with prolonged starvation in mussels 

(Bayne 1973).  

We also detected homarine (N-methyl picolinic acid), a compound that is 

typically considered a metabolic byproduct in marine invertebrates (Gasteiger et al. 

1960). Although not commonly studied in bivalves, studies in crustaceans suggest that 

homarine is derived from glycine and may be involved in methylation reactions to create 

betaine (Netherton and Gurin 1982) or may itself function as an osmolyte (Nishitani et al. 

1995). The concentrations of homarine were highest in the adductor muscle and lowest in 

the gill (Figure 3.3). Given the gill is one of the first tissues to respond to osmotic stress 

(Silva and Wright 1992), our observation suggests that homarine does not play a leading 

role in osmoregulation. Instead, because glycine concentrations were also high in the 

adductor, we propose that homarine variation reflects differences in betaine metabolism 

among the tissues we sampled.  

In addition to tissue-specific differences in the FAA pools, we also observed 

numerous tissue-specific metabolites (Table A.1), likely resulting from the specific 

metabolic demands of a particular tissue type. For instance, the gill had the highest 

diversity of solutes among the tissues included in our study; 42 % of all metabolites we 

catalogued were detected in this tissue type. In mussels, the gill functions in 

osmoregulation (Rice and Stephens 1988) and maintenance of intracellular FAA pools 

(Wright et al. 1987), so it is perhaps not surprising that we observed a high number of 
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metabolites in the gill. At the same time, many of the FAAs we quantified were in lower 

concentrations in the gill. This tissue-specific variation may stem from leakage of the 

amino acids out of the gill (Wright et al. 1987), given that the gill is more permeable than 

mantle or adductor muscle, or from differences in metabolism to meet tissue-specific 

cellular energy demands. 

Variation in the baseline composition of the metabolite pool was also observed in 

the mantle margin, which functions in secretion of the shell (Wilbur and Saleuddin 1983). 

With the exception of alanine, the concentrations of all amino acids within the mantle 

were intermediate to those in the gill and mantle. Wilbur and Saleuddin (1983) suggest 

alanine is associated with the production of succinate to sequester H+ created as a 

byproduct from secretion of the bicarbonate shell, so the increased levels of alanine 

observed in this tissue may result from processes associated with biomineralization.  

Surprisingly, we also detected cysteine-S-sulfate (Table A.1) in the mantle, an 

intermediate in the biosynthesis of taurine from cysteine (Bishop et al. 1983). Taurine is 

normally obtained from the diet, though low levels of biosynthesis are possible (Bishop et 

al. 1983). The levels of taurine in the mantle were lower than that of betaine, so this may 

be a mechanism used to increase intracellular concentrations when uptake from the 

environment is not adequate.  

Our data from the posterior adductor muscle suggest that under ambient 

conditions, the tissue utilized anaerobic metabolism. Alanine, which is created during 

anaerobiosis (De Zwaan and Wisjman 1976), was significantly increased in the adductor 

compared to the gill. We also detected citric acid in the adductor (Table A.1), which 

accumulates as the TCA cycle slows (Bishop et al. 1983). Shick et al. (1986) found 
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increases in anaerobic end products, including alanine, were related to valve movements 

in mussels recovering from aerial exposure. Given that the adductor regulates opening 

and closing of the valves (Lowy 1953), our results suggest that anaerobic pathways are 

likely an important mechanism for generating energy in this tissue under baseline 

conditions. These findings are further supported by the increased glycine content and 

decreased taurine in the adductor (Figure 3.3), which Zandee et al. (1980) suggested 

results from negative nitrogen balance, which may result from increased amino acid 

catabolism during stress.  

3.5.2.   Composition of Larval FAA Pools 

The composition of the FAA pools in larvae are relatively similar to those we 

observed in juvenile mussels (Table 3.3). In both veliger and pediveliger larvae, taurine, 

betaine, and glycine were the most abundant metabolites identified and accounted for 

over 80 % of the total quantified. Previous studies suggest that taurine constitutes 

approximately 70 % of the FAA pool of bivalve larvae (Manahan 1989, Widdows 1991). 

In contrast, we found that taurine accounts for approximately 40 % of the baseline FAA 

concentrations in veliger and pediveliger larvae and that the concentration of taurine was 

only 30 % higher than those of betaine and glycine. Although we were not able to 

measure the concentration of all metabolites found within larval mussels, our study 

suggests that taurine abundance is lower than previously reported and that glycine and 

betaine are also found in high abundance. The concentrations of taurine and betaine were 

notably higher in the pediveligers than in the veligers or juvenile tissues (Figure 3.3). We 

attribute this to higher rates of taurine biosynthesis at this stage, because larvae, unlike 
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post-metamorphic mussels, obtain taurine through de novo synthesis (Welborn and 

Manahan 1995).  

Glycine concentrations in the larval samples were over 40 % higher than what has 

reported for any of the tissues of the juvenile mussels (Figure 3.3). Manahan (1983) 

found that the uptake of glycine, which could be used as an energy source, was quicker in 

bivalve larvae was quicker than in juveniles. Considering the metabolic demands for 

growth in veliger and pediveliger larvae, it would be advantageous for larvae to retain 

high intracellular levels of glycine. M. edulis larvae are also capable of taking up alanine 

rapidly from the environment and incorporating it into protein (Manahan 1983), so the 

low levels of alanine we observed in our larval samples may reflect the transfer of alanine 

out of the FAA pool into proteins.   

Interestingly, we only observed appreciable concentrations of b-alanine in mussel 

larvae. b-alanine can act to stabilize proteins (Bowlus and Somero 1979), is important for 

redox balance (Yancey 2005), and often serves as an osmolyte in a variety of marine 

invertebrates (Kasschau et al. 1984, Yancey 2005). Given these functions, it is surprising 

that we did not detect b-alanine in the juvenile samples. Livingstone et al. (1979) 

reported that b-alanine made up only 0.3 % of the total FAA pool in the digestive gland 

of M. edulis, while in larvae, we found it was more abundant and accounted for more 

than 7 % of the metabolites quantified. The presence of b-alanine is shown to block 

uptake of taurine in the gill of M. californianus (Neufeld and Wright 1995). Thus, we 

interpret the higher concentrations of b-alanine in larvae as further evidence of high 

levels of taurine synthesis, rather than uptake, in the larval stages. 
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To our knowledge, this is the first NMR-based metabolomic study to examine the 

composition of FAA pools in blue mussel larvae. We observed numerous metabolites that 

were unique to veliger and pediveliger larvae, including two unknown metabolites at 2.92 

and 2.96 ppm. The intensity of these peaks was comparable to that of glycine or 

homarine, so it is likely that these unknown metabolites are important functional 

components of mytilid larvae. Unfortunately, both peaks had a single resonance and did 

not appear to have any coupling partners, so determining their identity using online 

databases was not possible. We also identified other metabolic signatures that were 

unique to each larval stage (Table A.1), but again, the identities of these metabolites are 

unknown. As veligers, mussels invest substantial amounts of energy into tissue growth 

and deposition of the larval shell (prodissoconch II; Sprung 1984), so it is likely that 

many of these metabolites are byproducts of energy metabolism or shell secretion. 

Pediveligers, on the other hand, are preparing for metamorphosis (Sprung 1984), are 

rapidly increasing in size (Widdows 1991), and have developed a pedal organ. The 

unidentified solutes found with pediveliger may reflect metabolic differences associated 

with the developmental maturation, tissue growth, or the abundance of neurotransmitters.  

3.5.3.   Effects of Low Salinity on FAA Pools 

In both larval and juvenile mussels, changes in the free amino acid pools during 

hypoosmotic exposure resulted from large decreases in glycine content (Tables 3.4 and 

3.5). Previous studies on the fluxes of free amino acids from the tissues of low salinity-

challenged M. edulis have reported the utilization of various FAAs, although these 

studies differed in the tissue sampled, duration of exposure, and how the low salinity 

treatment was applied. The role of glycine during the salinity response in blue mussels 
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has been evaluated in other studies (Bricteux-Grégoire et al. 1964, Gilles 1972, Shumway 

et al. 1977, Livingstone, et al. 1979, Deaton et al. 1985), although glycine has received 

less attention compared to taurine. In studies of larval blue mussels, we found that the 

glycine content began to decrease after 6 h of exposure to low salinity (Tables C.1 and 

C.2); this decrease persisted in all stages and tissues through 72 h (Tables 3.4 and 3.5). 

As mentioned above, glycine is an important osmolyte and its prevalence in the cell, 

along with low energy content, makes loss during hypoosmotic stress relatively 

energetically inexpensive. Glycine concentrations vary seasonally in blue mussels, which 

Kluytmans et al. (1980) suggested was due to its incorporation into pyruvate via serine as 

a means of generating cellular energy. It is likely serving a similar role during 

hypoosmotic exposure.  

 The changes in the concentrations of betaine or taurine we noted for larval and 

juvenile blue mussels during low salinity exposure were not statistically significant. 

Bricteux-Grégoire et al. (1964) observed decreases in betaine and taurine in the adductor 

muscle after 48 or 72 h of exposure, while other authors have reported that changes in the 

intracellular concentrations of taurine in M. edulis only begin after prolonged exposure 

(weeks) to low salinity (Gilles 1972, Hoyaux et al. 1976, Livingstone et al. 1979). Losses 

of taurine and betaine are likely energetically expensive and both metabolites may 

provide a benefit to the cell during osmotic stress (Bowlus and Somero 1979, Huxtable 

1992), so loss of these osmolytes only occurs during longer exposures when the mussel is 

experiencing higher levels of stress. 

 The adductor muscle responds differently compared to the gill and mantle tissue 

with respect to variation in the concentrations of glycine, betaine, and taurine. These 
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tissues vary in their permeability (Wright et al. 1987), in the number of solute 

transporters found within each of the tissues (Rice and Stephens 1988), and in the indirect 

effects of osmolytes on cellular function (Yancey 2005). For instance, Babarro and 

Fernández-Reiriz (2006) speculated that taurine plays a role in mucus formation on the 

gills, which may explain why variation in taurine concentrations was reduced in the gill 

relative to the adductor muscle. We observed a significant decrease in the concentration 

of alanine along with glycine in the adductor muscle, whereas only glycine changed 

significantly in the gill and mantle tissues of juvenile mussels during low salinity 

exposure (Table 3.4). The adductor mussel had the highest concentrations of alanine, 

which likely results from anaerobic metabolism within this tissue, making it more readily 

available as an osmolyte. In any case, it is apparent that tissue-specific differences in the 

flux of osmolyte concentrations are not necessarily reflective of the whole organism.  

 This is the first study to evaluate changes in the FAA pools of larval mussels 

under hypoosmotic conditions. In addition to glycine loss, there was a decrease in the 

concentration of b-alanine in larval mussels during low salinity exposure (Table 3.5). 

Although the presence of b-alanine in FAA pools of M. edulis was reported by 

Livingstone et al. (1979), to our knowledge, decreases in b-alanine during low salinity 

exposure have not previously been observed. As discussed above, we did not observe 

appreciable concentrations in b-alanine in juvenile mussels, indicating that this response 

is unique to larval mussels. In bivalves, b-alanine is synthesized from aspartate or from 

the polyamine spermine (Meng et al. 2013) making it relatively easy to replace following 

low salinity exposure. As with the tissue-specific differences in the utilization of FAAs, 
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the flux of b-alanine likely stems from differences in larval metabolism that lead to its 

accumulation in cells.  

We also observed stage-specific differences in the response of other components 

of the FAA pools in larval mussels compared to juveniles. For instance, the magnitude of 

the glycine flux was much larger than what we observed in juvenile mussels. In salinity-

treated veligers and pediveligers, there was a roughly 70 % decrease in glycine compared 

to its 50 % decrease in the adductor and mantle tissues of juvenile mussels. Larvae have 

higher rates of leakage than juvenile mussels because of their increased surface area to 

volume ratio (Manahan 1983), which increases the likelihood of FAA loss to the 

environment relative to juveniles. Larvae also expend considerable amounts of energy on 

growth (Sprung and Widdows 1986), which may be accounted for by increased energy 

metabolism though glycine (Kluytmans et al. 1980).  

Changes in the taurine concentrations in treatment versus control groups also 

varied developmentally and was greater in larvae after 24 and 48 h of exposure to low 

salinity, but not at 72 h. In larval bivalves, taurine is synthesized de novo (Welborn and 

Manahan 1995), but in post-metamorphic mussels it must be obtained from the diet 

(Allen and Awapara 1960, Bishop et al. 1985). Thus, it is surprising from an energetic 

standpoint that larvae would have greater decreases in taurine relative to juveniles. 

However, the dietary need for taurine increases with age in C. gigas larvae (Welborn and 

Manahan 1995), so it is possible that increases in metabolism during stress contribute to a 

greater taurine loss in larvae. Relative to juvenile mussels, the high energy demands of 

larvae may lead to increased susceptibility to hypoosmotic stress.  
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This study contributes to our understanding of the metabolic baselines of veliger 

and pediveliger larvae and highlights important biochemical differences in the FAA pools 

of various tissues of post-metamorphic M. edulis. We found variations in the composition 

and utilization of FAAs within larval and juvenile mussels, which provides insight into 

the role of these metabolites in energy metabolism and maintaining osmotic balance 

within the cell. Furthermore, many of the metabolites measured in this study function as 

osmolytes, so understanding their distribution and abundance across tissues and life-

history can improve our understanding on the capacity of different developmental stages 

to respond to salinity and other environmental stressors. 

Variation in the baseline concentrations of these osmolytes among various tissues 

and developmental stages likely plays a role in the observed responses to hypoosmotic 

stress. Larval mussels—which vary from post-metamorphic mussels in form, function, 

lifestyle, and habitat—showed differences in their utilization of osmolytes during low 

salinity exposure. A better understanding of the larval metabolome, as well as their 

ability to regulate FAA pools provides insight into why larval mussels are more 

susceptible to hypoosmotic stress than juvenile or adult mussels (Qiu et al. 2002). 

Similarly, tissue-specific variations in in the utilization of metabolites during low salinity 

treatment in juveniles reflected variation in the function of these tissues, which helps 

improve our understanding of the osmotic stress response in post-metamorphic mussels. 

Together, these observations highlight the importance of foundational metabolomic 

studies that include multiple tissue types and developmental stages to adequately evaluate 

organismal responses to stress and better place their findings in a broader ecological 

context.
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CHAPTER 4 

 

COMPARING CELLUAR RESPONSES OF LARVAL AND JUVENILE BLUE 

MUSSELS (MYTILUS EDULIS) TO LOW SALINITY EXPOSURE 

 

4.1    Abstract  

Blue mussels (Mytilus edulis) live in coastal estuarine and marine habitats that 

may be threatened by decreases in nearshore salinity associated with global climate 

change. Mussels are osmoconfomers and exposure to low salinity conditions triggers an 

organismal response that may be mediated by changes in transcription. Previous studies 

have evaluated the tissue-level responses to osmotic stress in M. edulis or transcriptomic 

responses in blue mussel congeners, but there has not yet been an attempt to monitor 

changes in the levels of gene expression in osmotically challenged M. edulis or to link 

patterns of expression to cellular-level responses. Using a combination of techniques, we 

evaluated transcriptomic responses of juvenile M. edulis during short-term low-salinity 

treatment, while also monitoring changes in O2 consumption and NH3 excretion. We 

expanded this study to include two larval stages (veliger and pediveliger), since blue 

mussels have a complex life history and little is known about how larval mussels respond 

to low salinity. We found tissue- and stage-specific responses in the expression of genes 

that may be involved in regulation of the FAA pools—betaine-homocysteine S-

methyltransferase (BHMT) and the taurine transporter (TAUT)—though it is possible that 

transcription of these genes is related to retention of the counterbalancing osmolytes, 

betaine and taurine. These results, along with variation at the organismal level, suggest 
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that the response to osmotic stress in M. edulis is highly dependent on tissue- and stage-

specific differences in metabolism and morphology.  

4.2  Introduction 

Blue mussels in the Mytilus edulis species-complex are marine and estuarine 

invertebrates that inhabit coastal areas in North America and Europe. These species are 

osmoconfomers and respond to decreases in environmental salinity by reducing the 

concentrations of intracellular ions and osmolytes to maintain an osmotic pressure 

equilibrated to the environment (Costa and Pritchard 1978, Davenport 1979). 

Fluctuations in nearshore coastal salinity are projected to increase in frequency and 

severity as a consequence of global climate change (Antonov et al. 2002, Durack et al. 

2012), potentially threatening the persistence of local mussel populations. The species 

within the Mytilus complex, M. edulis, M. trossulus, and M. galloprovincialis (Koehn 

1991), differ in their tolerance to low and fluctuating salinity (Gardner and Thomson 

2001, Qiu et al. 2002, Braby and Somero 2006) and have been the subjects of 

comparative studies to better understand species-specific differences in low-salinity 

resilience. A deeper understanding of the blue mussels’ capacity to cope with altered 

salinity will be important for predicting how mussel abundance and distribution may shift 

with changing climate. 

The response to hypoosmotic exposure in blue mussels can be measured at 

multiple levels of organization (Pierce 1982). In mussels, the changes at the organismal 

level include altered behavior (i.e. valve closure; Davenport 1979) and increases in O2 

consumption (Stickle and Sabourin 1979) and NH3 excretion (Bishop 1976, Livingstone 

et al. 1979). At the cellular-level, mussels decrease the concentration of free amino acids 
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(FAA), including methylamines, amino acids, and amino acid derivatives (Bowlus and 

Somero 1979). Organic osmolytes such as these are utilized during periods of decreased 

salinity because they can be lost without altering the pH or inorganic ionic balance and, 

therefore, help to maintain function of the cell (Somero 1986, Yancey et al. 1982). These 

cellular-level responses, including amino acid transport and catabolism, are mediated by 

changes in gene expression (Burg et al. 1996, Kültz 2005, Lockwood and Somero 2011). 

Several studies have evaluated the organismal and cellular-level responses in mytilids 

(e.g., Bricteux-Grégoire et al. 1964, Shumway et al. 1977, Davenport 1979, Livingstone 

et al. 1979, Neufeld and Wright 1996), yet only one to date by Lockwood and Somero 

(2011) has studied transcriptomic responses of blue mussels during low salinity exposure. 

Their study, however, did not include M. edulis. In the western North Atlantic, M. edulis 

is one of the predominant mussel species where its range overlaps with that of M. 

trossulus (Koehn 1991, Rawson et al. 2001); these species are important members of 

intertidal and subtidal communities throughout the region (Arribas et al. 2014).  

To improve our understanding of the underlying molecular mechanisms of the 

osmotic stress response in blue mussels, we compared the transcriptomic responses of M. 

edulis and M. trossulus during hyposaline exposure. Using an oligonucleotide 

microarray-based approach, we identified differentially expressed genes in M. edulis and 

M. trossulus at a salinity where the two species begin to show divergence in their 

tolerance (Qui et al. 2002). Blue mussels are considered ‘non-model’ species due to the 

lack of detailed genomic information. As Kültz et al. (2007) have discussed, this places 

constraint on efforts to clearly annotate transcriptomic data and ascribe function to 

differentially expressed genes. Thus, we used the microarray data to identify and further 
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study candidate genes involved in amino acid metabolism and transport of two important 

osmolytes, betaine and taurine. Using real-time quantitative polymerase chain reaction 

(qPCR), we monitored the expression of betaine-homocysteine S-methyltransferase 

(BHMT, which codes for an enzyme involved in betaine metabolism) and taurine 

transporter (TAUT) in salinity challenged M. edulis. In this study, we link patterns of 

gene expression of BHMT and TAUT to changes we observed on the cellular and 

organismal level by monitoring changes in the FAA pools using nuclear magnetic 

resonance spectroscopy (NMR; see Chapter 3), as well as O2 consumption and NH3 

excretion.  

A full understanding of a species’ ability to respond to environmental change 

must consider how the capacity varies throughout development. Blue mussels have a 

complex life history and spend several weeks or more developing through a series of 

larval stages in the plankton before settling, metamorphosing, and becoming benthic 

juveniles. Studies of blue mussel larvae suggest that they are more sensitive to low 

salinity exposure than post-metamorphic mussels (Hrs-Brenko and Calabrese 1969, Qiu 

et al. 2001) and there is evidence that low salinity tolerance among larvae is genetically 

regulated (Innes and Haley 1977). Furthermore, mussel larvae differ from juvenile 

mussels in their uptake and transport of amino acids (Manahan 1983, Welborn and 

Manahan 1995), which likely impacts larval tolerance to low salinity. However, to our 

knowledge, there have not been any studies that evaluate transcriptomic or cellular-level 

responses of M. edulis larvae to hypoosmotic stress.  

Transcriptomic studies on mussel larvae are relatively rare; in one, Mitta et al. 

(2000) showed that the larvae of M. galloprovincialis lack expression of antimicrobial 
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peptides commonly expressed by post-metamorphic mussels. Their results suggest that in 

M. galloprovincialis, the capacity to express certain genes varies among early life history 

stages. To our knowledge, however, there have not been any studies that evaluated 

transcriptomic or cellular-level responses of the larvae of any blue mussel species when 

exposed to hypoosmotic stress. We conducted a series of experiments using veliger and 

pediveliger larvae to compare patterns of BHMT and TAUT expression to those of 

juvenile mussels exposed to low salinity treatment. These studies expand our 

understanding of the osmotic stress response in blue mussels and particularly improve our 

knowledge on how these responses vary across life history stages.  

4.3  Methods 

4.3.1   Preliminary Microarray Study 

We conducted a microarray-based study to evaluate temporal patterns of gene 

expression in response to low salinity for M. edulis and M. trossulus. Mussels (50–60 mm 

shell length) were collected from floating docks at the Darling Marine Center, Walpole, 

ME (M. edulis), and Newport Harbor, Newport, OR (M. trossulus), and transported to 

and held in recirculating seawater tanks the University of Maine, Orono, ME. After a 3-w 

acclimation to common garden conditions of 16 ºC and 30 ppt, experimental mussels 

were exposed to a gradual decrease in salinity to 20 ppt over an 8 h period by adding 

distilled water, while control mussels were kept at 30 ppt. Four mussels from each 

species were sampled from the experimental treatments after 5 h when the salinity 

reached 24 ppt, after 8 h when the salinity reached 20 ppt, and after 32 and 56 h (i.e., 24 

and 48 h after the salinity had reached 20 ppt). An identical number of mussels were 
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sampled from the control conditions at the same time points. At sampling, gill tissue from 

each individual was dissected, flash frozen in liquid N2, and stored at -80 ºC. 

Total RNA was extracted from gill tissue of each specimen using a RNeasy Kit 

(QIAGEN); each isolation included on-column digestion of DNA following the 

manufacturer’s recommendations. Total RNA for each mussel was quality checked and 

concentration determined using a Bioanalyzer and RNA 6000 Nano Kit (Agilent 

Technologies). The isolated RNA was used to probe a microarray containing long oligo 

(60-mer) probes corresponding to stress-induced expressed sequence tags (ESTs) from 

M. californianus and M. galloprovincialis. The development of this microarray has been 

described in Gracey et al. (2008). Briefly, the microarray is a 105,000-feature microarray 

that was in situ synthesized by Agilent Technologies and includes 44,524 unique probes 

representing 12,961 and 1,688 ESTs from M. californianus and M. galloprovincialis, 

respectively. The baseline ESTs used in developing the microarray were isolated by 

Suppression Subtractive Hybridization enrichment for transcripts expressed under several 

different types of environmental stress. We used a reference hybridization protocol to 

probe the microarray, as per Lockwood and Somero (2011), to reduce problems 

associated in transcript binding due to the heterologous nature of the microarray relative 

to the test RNAs. Due to time and funding constraints, we did not use individual RNAs in 

our experiment, but pooled RNAs from all 4 individuals of each species sampled from 

each time by treatment (control versus low salinity) combination. 

For the reference design, we first created reference RNAs to co-hybridize on the 

microarray chip with RNA preps of interest to control for slide-to-slide variation in 

hybridization to a heterologous array. The reference RNAs for both species were 
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constructed by combining approximately 700 ng total RNA from mussels sampled from 

the low salinity treatment at 8, 32, and 56 h and mussels sampled from the control 

treatment at 5, 32 and 56 h. We generated double stranded complementary DNA (cDNA) 

from 1 µg reference total RNA using the Ambion Aminoallyl MessageAmpII Kit 

(Thermo Fisher Scientific, Inc.). Each reference RNA preparation was “spiked” with 

control RNA supplied by Agilent for hybridization to test probes included on the 

microarray chip. For each sample, we added 1 µg total RNA to cDNA reactions to create 

16 sets of double stranded cDNA “spiked” with a second control RNA supplied by 

Agilent. The cDNAs were purified by spin-column, frozen overnight, and then used in 

amplified RNA reactions to produce aminoallyl UTP–modified RNA (aRNA).   

The aRNA from reference (555 nm emission) and experimental samples (647 nm 

emission) were labeled with Alex Fluor fluorescent dyes (Life Technologies™) with 555 

nm and 647 nm emission spectra, respectively. Dye incorporation was assessed on a 

NanoDrop 2000 UV-Vis Spectrophotometer; 750 ng of labeled aRNAs from reference 

and experimental samples were then competitively hybridized to the microarray. For M. 

edulis we conducted eight total hybridizations that included aRNA from the four low 

salinity treatments (aRNA from pooled samples at 5, 8, 32, 56 h) and four control 

treatments from the same time points, each co-hybridized with the reference aRNA for 

M. edulis. An identical set-up was used for the eight M. trossulus hybridizations. Each 

hybridization slide contained two copies of the microarray and the low salinity and 

control hybridizations for each time point were conducted simultaneously on the same 

slide. All hybridization and washing steps followed protocols from Agilent. 



 

 80 

Post-hybridization, the slides were scanned with an AXON GenePix® 4000B 

Microarray Scanner (Molecular Devices, LLC). As per Lockwood and Somero (2011), 

the signal intensities for each spot were extracted and LOWESS normalized within each 

slide using Feature Extraction Software 9.5.3.1 (FES; Agilent Technologies). Only spots 

that FES indicated had good hybridization among all samples were included in further 

analysis. Due to low signal quality, the hybridization data for the M. edulis control RNA 

at the 5 h time point had to be discarded. 

The microarray data were analyzed using Microsoft Access to look for ESTs 

whose relative expression differed in M. edulis compared to M. trossulus after 8 or 32 h 

of low-salinity exposure. We limited our analysis to ESTs where the FES detected a good 

hybridization signal for 3 or more of the probes (array oligos). For these ESTs, we 

calculated the median value of the raw expression values; the median values for each 

treatment were log2 transformed and the treatment groups were normalized to the 

controls. Data were imported into TM4’s MultiExperiment Viewer (MeV; Saeed et al. 

2003) for cluster analysis and genes were clustered using a Pearson Correlation, with 

2000 iterations and α = 0.05. Each cluster was sorted again using K-means Clustering to 

identify subsets of genes having similar expression patterns. We identified ESTs from 

each cluster and performed a functional analysis of the ESTs using Blast2GO (Conesa et 

al. 2005). Finally, we searched the dataset for groups of ESTs having similar expression 

patterns over time and treatment that may highlight differences in the response of low 

salinity between M. edulis and M. trossulus (Table B.1).  

Analysis of our microarray data indicated that the taurine transporter gene (TAUT) 

and the gene coding for betaine-homocysteine S-methyltransferase (BHMT) were  
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Figure 4.1. Differentially expressed genes potentially involved in cell volume regulation. 

Expression values are coded by color for M. trossulus (left) and M. edulis (right) exposed 

to 8, 32, and 56 h of low salinity, where yellow indicates an upregulation and blue a 

downregulation of the gene in the gill tissue. Gene annotations were determined in 

Blast2GO by sequence homology of the corresponding EST to online databases.  
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differentially expressed among the gill tissues of M. edulis and M. trossulus exposed to 

low salinity conditions for 32 h (Figure 4.1). We found a strong downregulation (> 2-

fold) of BHMT in M. trossulus during prolonged low-salinity exposure and no change in 

expression in M. edulis. Expression of TAUT showed the opposite pattern and was 

downregulated 1-fold in salinity treated M. edulis at 32 h, while its expression did not 

vary between the treatment and control groups in M. trossulus. 

4.3.2   Marker Development 

To validate the patterns of expression for BHMT and TAUT we observed in the 

microarray data, we developed gene-specific primers to monitor patterns of expression 

during low salinity exposure using real-time, quantitative polymerase chain reaction 

(qPCR). Primers were initially created using information from the M. californianus EST 

database to generate sequences from M. edulis and M. trossulus for the genes of interest 

by amplification using polymerase chain reaction (PCR). We developed species-specific 

primer sets for the two target genes, BHMT and TAUT, and four potential reference genes 

(see below). More details on the primer and assay development for each of the genes used 

in this study and sequence information for M. edulis, are provided in Appendix B. 

We selected two reference genes to use for normalization in our qPCR assay by 

evaluating the stability of potential genes using the Excel add-on NormFinder (Anderson 

et al. 2004). Our analysis included elongation factor 1a (EF1a), a-tubulin (TUB), and 18S 

ribosomal RNA (18S), which have been used as normalizing genes in qPCR studies in 

mytilids (Caponera and Rawson 2008, Cubero-Leon et al. 2012, Lacroix et al. 2014), as 

well as 40S small ribosomal subunit (40S), which was designed in our lab (Appendix B). 

qPCR data from multiple treatments, lengths of exposure, stage and/or tissue were chosen 
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and the Ct values were log2 linearized for analysis in NormFinder. 40S and EF1a were 

the best combination of genes found by the NormFinder algorithm, with a stability value 

of 0.211, and were therefore selected as normalizing genes for our qPCR studies.  

4.3.3   Salinity Experiments on Juveniles 

 We examined how blue mussels responded at three levels of organization by 

sampling tissues for gene expression studies and for analysis of intracellular FAA 

concentrations (see Chapter 3), and by monitoring oxygen (O2) consumption and 

ammonia (NH3) excretion over the course of a 72-h exposure to low salinity. Juvenile M. 

edulis (25–45 mm length) were collected from the underside of the dock at the Darling 

Marine Center (Walpole, ME) and acclimatized to control conditions in a recirculating 

system (13.5 °C, 30 ppt) at the University of Maine, Orono, ME. Mussels were fed 

approximately a 4 % daily ration of Shellfish Diet 1800 (Reed Mariculture, Inc.) of 

estimated dry tissue weight during the acclimatization period. 

Following acclimation, juvenile mussels were placed into 1 l beakers containing 

filtered, artificial seawater at control (30 ppt) or low (20 ppt) salinities for 1, 2, 4, 24, 48, 

or 72 h (13.5 °C, n = 5). We conducted daily water changes for mussels in the 48 and 72 

h exposures and starved all animals for 24 h prior to sampling. At 1 h prior to sampling, 

the mussels were placed into 35-ml, acid-washed glass chambers containing either 20 or 

30 ppt seawater. The chambers were sealed and 2 ml of water was periodically removed 

through the septa using a syringe. Each water sample was injected into a water cooled 

(13.5 °C), Microcell Respirometer (Strathkelvin Instruments Model MC100) in which O2 

concentration was measured by a Clark-type microcathode oxygen electrode 

(Strathkelvin Instruments Model 1302) connected to a Strathkelvin Instruments 782 
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Oxygen Meter. After the 1 h incubation, 15 ml of water was sampled from each chamber 

and stored at 4 °C for determination of NH3 production (described below). The mussels 

were then dissected and the gill, mantle margin, and posterior adductor muscle were 

removed, flash frozen in liquid N2, and stored at -80 °C.  

4.3.4   Salinity Experiments on Larvae 

We conducted parallel experiments with veliger and pediveliger larvae. Larval M. 

edulis from a controlled spawn conducted in June 2015 at the Darling Marine Center’s 

Hatchery in Walpole, ME, were reared in five replicate tanks from fertilization onward at 

13.5 °C and 32 ppt (details of rearing densities and feeding methods are provided in 

Section 2.3.1). At 14-d post-fertilization (dpf), the larvae had developed to the veliger 

stage and a subset of approximately 100,000 larvae was removed from each replicate tank 

and placed into a 1 l beaker containing either control (32 ppt) or low-salinity (20 ppt) 

UV-sterilized, filtered seawater (UV-FSW; 13.5 °C). One set of veligers from each tank 

was exposed to the control conditions and one set to treatment conditions for 1, 2, 4, 24, 

48, or 72 h (thus, n = 5 for each time point by treatment combination). We conducted 

daily water changes for the larvae in the 48 and 72 h exposures and starved the larvae for 

24 h prior to sampling.  

One hour prior to the end of each incubation (i.e., 0, 1, 3, 23, 47, and 71 h), a 

smaller subset of approximately 10,000 larvae from each experimental and control beaker 

was placed into 35 ml, acid-washed, glass containers (n = 5) containing either 20 or 32 

ppt and the chambers were sealed. We attempted to measure larval O2 consumption 

during these incubations using the NeoFox-GT FOSPOR Red-Eye® Oxygen Sensing 

System (Ocean Optics, Inc.), but due to difficulties calibrating the system to the 
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chambers, the data were excluded from analysis. Following the 1 h incubation, the larvae 

and water were placed into a sterile, 50 ml centrifuge tube and gently spun down. An 

uncontaminated water sample was removed from each and used for NH3 determinations 

(described in Section 4.3.5). The remaining larval samples from each chamber were 

frozen at -20 °C and processed later to determine weights of the larvae. At the same time 

(i.e., end of treatment), the contents of each beaker were sieved onto an 80 µm sieve and 

the larvae were transferred to a sterile, 1.5 ml Eppendorf tube and flash frozen in liquid 

N2. All samples were stored at -80 °C. This experimental protocol was repeated using 

pediveliger larvae at 26 dpf. Unfortunately, one of our larval cultures crashed following 

our veliger experiments, so the pediveliger experiments were conducted using the 

remaining, healthy cultures (n = 4).  

4.3.5   Ammonia Measurements 

For the larval samples, NH3 concentration was determined using a modification of 

the salicylate-hypochlorite method described by Bower and Holm-Hansen (1980). For 

each sample, we added 300 µl of the salicylate-catalyst solution and 500 µl of the 

alkaline-hypochlorite solution to 5 ml of seawater. The reactions were incubated in the 

dark at room temperature for 1 h and absorbance read on a CARY 50 Scan UV-Vis 

spectrophotometer at 640 nm. The concentrations of NH3-N were determined by 

comparison to an ammonia-nitrogen standard curve incubated in parallel to the samples.  

The production of NH3 in our low salinity experiment on juveniles was 

determined using the phenolhypochlorite method described by Solórzano (1969). Briefly, 

we mixed 1 ml of the water from each experimental chamber with 40 µl 10 % phenol-

alcohol solution, 40 µl of 0.5 % sodium nitroprusside, and 100 µl of the oxidizing 
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solution (20 % Chlorox® bleach, 80 % alkaline-citrate solution). The reactions were 

incubated in the dark at room temperature for 1–3 h and absorbance was read at 630 nm 

on a Beckman DU 600 Series UV/VIS spectrophotometer. Concentrations of NH3-N 

were determined by comparison to a standard curve incubated in parallel to the samples. 

Ammonia production was calculated as µg NH3-N·h-1·g-1 dry tissue weight. The 

dry weight of each juvenile mussel was estimated using the measured dry weight of the 

mussel’s tissue, adjusted to account for the tissues that had been dissected out. The larval 

dry weights were measured by transferring the larvae onto a clean, 25 mm Whatman 

GF/C™ Glass Microfiber filters. The larval samples were rinsed with 10 ml of 0.5 M 

ammonium formate to remove any residual salts from the seawater and dried overnight at 

65 °C. We then determined the ash free dry weight (AFDW) of the larvae by drying 

samples overnight in a muffle furnace at 350 °C. The dry tissue weight of the larvae was 

calculated by removing the proportion of the dry weight contributed by the shell or the 

difference between the dry weight and AFDW.  

4.3.6   Gene Expression Studies Using qPCR 

We monitored stage-specific expression of TAUT and BHMT during a 72-h 

exposure to low salinity using qPCR. Total RNA was purified from approximately 50 mg 

of wet tissue weight using PureLink® RNA Mini Kit (Life Technologies™) following 

the manufacturer’s protocol, but with the following modifications. We pipetted 600 µl of 

the Lysis Buffer with 1 % b-mercaptoenthanol into a 2-ml flat-bottom tube and added a 

section of the tissue or a pooled sample of roughly 50,000 larvae. The samples were 

homogenized in the buffer for 10 s using a RNase-free Tissue Tearor (Biospec Products, 

Inc.); the sample was centrifuged at 13.2 g for 5 m (4 °C) to pellet cell debris. RNA 
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concentrations were determined by measuring the absorbance at 260 and 280 nm on a 

NanoDrop 2000 UV-Vis Spectrophotometer. The RNA samples were stored at -80 °C. 

We constructed double-stranded cDNA strands from the RNA extracts using a iScript™ 

cDNA Synthesis Kit (Bio-Rad Laboratories, Inc.). Each reaction included 50 ng of total 

RNA and followed the manufacturer’s protocol. To confirm successful production of 

cDNA, we amplified a portion of the a-tubulin gene using regular PCR and 1 µl of each 

cDNA reaction. 

For the qPCR assays, we set up 15 µl reactions in 96 well PCR plates; each well 

contained 7.5 µl iTaq™ Universal SYBR Green Supermix (Bio-Rad Laboratories, Inc.), 

300 nM of the forward and reverse primers (see Table 4.1), 2 µg of cDNA, and nuclease-

free water. We ran the assays for two normalizing genes (40S and EF1a) and both of our 

target genes (BHMT and TAUT) using three technical replicates for each sample in each 

assay. The qPCR reactions were run on a CFX96 Touch™ Real-Time PCR Detection 

System (Bio-Rad Laboratories, Inc.). The cycling protocol involves of 3 m at 95 °C, 40 

cycles of 10 s at 95 °C, 20 s at 60 °C, and 30 s at 72 °C, an additional 60 s at 95 °C, 

followed by a melt-curve analysis. Our melt-curve analysis was performed by running 30 

s cycles beginning at 60 °C and increasing by 1 °C until reaching 95 °C. Each plate 

included the qPCR reactions for 10 cDNA templates (i.e., the control and treatment 

samples from one time point; n = 5 each), a no-template control for each gene, and a 

normalizing control, consisting of pooled cDNA amplified with a-tubulin to ensure that 

there was limited variability in Ct values for a common sample among plates across 

experiments. Following qPCR amplification, we set the threshold for every plate to 250 

RFU (relative fluorescence units) in the CFX Manager software (Bio-Rad Laboratories, 
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Inc.) and exported the data into an Excel Spreadsheet. Changes in BHMT and TAUT 

expression were analyzed using the DCt method as described in Bustin et al. (2009), 

normalized to 40S and EF1a.  

4.3.7.   Data Analysis  

We examined the temporal variation in BHMT and TAUT expression as a function 

of low salinity treatment using two-factor ANOVA on the DCt values. For each larval 

stage (veliger and pediveliger larvae) and juvenile tissue sample (gill, mantle, and 

adductor muscle), individual ANOVA models included salinity treatment and duration of 

exposure as main effects, and their interaction. The hypotheses that gene expression 

varied over time and treatment were tested using Type III Sum of Squares with an overall 

model-wide a = 0.05. Similarly, two-way ANOVA was used to assess the effects of low 

salinity exposure on NH3 excretion (all stages) and O2 consumption (for juveniles only). 

These analyses were conducted using SPSS Statistics 22.0 (IBM Corporation). 

4.4  Results 

4.4.1.   Microarray Analysis 

We identified more than 60 transcripts potentially involved in cell volume 

regulation (based on Blast2Go annotation) that exhibited divergent patterns of expression 

in the gills of M. edulis and M. trossulus mussels after prolonged exposure to reduced 

salinity. For example, after 32 h at 20 ppt, several ESTs corresponding to transporter 

genes were more highly upregulated in M. edulis compared to M. trossulus (Figure 4.1; 

lower right). Overall, however, the differences in gene expression for this subset of genes 

among the two species were subtle, with few genes showing greater than 1- or 2-fold 

change in expression across the three time points analyzed. For BHMT, the microarray 
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analysis suggest that it was downregulated after 32 and 56 h of low salinity exposure in 

M. trossulus while the expression of BHMT was relatively unchanged in M. edulis. In 

contrast, the microarray results suggested that TAUT was downregulated to a greater 

degree in M. edulis compared to M. trossulus at 32 h post-exposure. 

4.4.2.   qPCR-based Analysis of BHMT and TAUT Expression 

Our qPCR-based analysis of BHMT expression in M. edulis indicated that this 

gene was predominantly downregulated at all three life history stages and in all tissues of 

the juveniles during 24–72 h exposure to low salinity (Figure 4.2). Overall, salinity 

treatment, length of exposure, and their interaction had no significant effect on BHMT 

expression (Table 4.2). One notable exception was in the gill, where the decrease in 

salinity resulted in an approximately 20 % reduction in BHMT expression that was 

statistically significant. Although there was no significant effect of length of exposure on 

BHMT expression among the three tissues we sampled from juvenile mussels, expression 

in the mantle and gill tissues showed the greatest degree of downregulation after 48 h of 

exposure. 

The expression of BHMT in the larval samples was also generally downregulated 

but, for the most part, the changes due to exposure to low salinity, the length of exposure, 

or their interaction were not statistically significant (Table 4.2). In the veligers, there was 

almost no change in expression between control and treatment animals at 24 and 72 h 

(Figure 4.2a) and a slight, but non-significant, downregulation at 48 h. In pediveligers, 

there was no effect of treatment on expression, but we observed a significant effect on the 

duration of exposure on BHMT expression. This effect appears to have been driven by 

changes in the raw Ct values in both the control and treatment groups, which decreased   
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Figure 4.2. BHMT expression in M. edulis during low salinity exposure. Our qPCR 

results are plotted as the DDCt (fold induction, bars) and the mean DCt (± SE) for control 

(solid line) and low salinity (dashed line) treated veligers (a), pediveligers (b), and the gill 

(c), mantle (d), and adductor (e) tissues of juvenile mussels. The fold induction shows the 

log2 expression of the treatment groups relative to the control, thus, a value of 1 (dotted 

line) indicates that there was no difference in expression between. BHMT expression was 

significantly downregulated in the gill tissue (a) but not in the other samples.  
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from the 24 to 72 h samples by 2 cycles, indicating that the expression of the gene, 

regardless of treatment, was upregulated at 72 h compared to the earlier time points. 

We observed a much larger degree of tissue- and stage-specific variation in the 

expression of TAUT (Figure 4.3). Expression of this gene increased by about 20 % in the 

gill and nearly 50 % in the adductor muscle, but decreased by 40 % in the mantle after 24 

h of exposure to low salinity. Interestingly, TAUT expression in the adductor muscle 

remained elevated at 48 h but decreased to control levels by 72 h post-exposure. 

However, as with BMHT expression, salinity treatment, length of exposure, and their 

interaction had no significant effect on TAUT expression in the juvenile adductor muscle 

and mantle tissues (Table 4.3). Expression in gill tissue was the notable exception, where 

the 20 %, on average, increase in expression in the low salinity treatment across all time 

points was statistically significant.  

The two larval stages showed differential patterns of TAUT expression when 

exposed to low salinity (Figure 4.3). In veliger mussels, there was a significant 

upregulation of TAUT (approximately 36 %) during low-salinity exposure relative to the 

control groups. In contrast, TAUT was downregulated during low salinity exposure in 

pediveligers, although the effects of treatment on expression were not significant. As with 

the expression of BHMT, we observed a significant effect of the duration of exposure on 

TAUT expression among pediveliger larvae (Table 4.3), where there was more gene 

product at 72 h compared to 24 or 48 h (Figure 4.3b). 

4.4.3.   NH3 excretion and O2 consumption 

Ammonia excretion increased in mussels exposed to low salinity at all stages of 

development. Among juvenile mussels, the effect of salinity treatment on excretion was   



 

 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. TAUT expression in M. edulis during low salinity exposure. TAUT expression 

is plotted as the DDCt (fold induction, bars) and the mean DCt (± SE) for control (solid 

line) and low salinity (dashed line) treated veligers (a), pediveligers (b), and the gill (c), 

mantle (d), and adductor (e) tissues of juvenile mussels. The fold induction shows the 

log2 expression of treatment groups relative to controls, thus, a value of 1 (dotted line) 

indicates no difference in expression between groups. TAUT was significantly down-

regulated in salinity-treated veliger larvae (a) and in the gill tissue (c) of juvenile mussels. 
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significant (F1,48 = 6.120, p = 0.017) as was the length of exposure (F5,48 = 4.550, p = 

0.002). Ammonia excretion peaked at around 70 µg NH3-N·h-1·g-1 dry tissue weight and 

was upwards of 7-fold higher (e.g., after 4 h exposure) in salinity-stressed mussels 

compared to control animals (Figure 4.4). Ammonia excretion in both groups declined in 

the first 4 h of exposure and values in the two groups were very similar by 72 h of 

exposure. O2 consumption, on the other hand, did not differ significantly between control 

and treatment groups (Figure 4.5; F1,43 = 2.595, p = 0.115). There was a significant effect 

of the length of exposure on oxygen consumption (F5,43 = 5.909, p < 0.001), but no 

interaction between treatment and length of exposure (F5,43 = 1.084, p = 0.383).  

Ammonia excretion when measured on a dry weight basis, was an order of 

magnitude higher in larval mussels than in juvenile mussels. In veligers, the effects of 

low salinity treatment (F1,48 = 21.498, p < 0.001), length of exposure (F5,48 = 11.492, p < 

0.001), and their interaction (F5,48 = 4.912, p = 0.001) were all statistically significant. 

Although there was considerable variation in the rate of excretion in both groups over the 

first 4 h, by 24 h of exposure the rate of excretion peaked in veliger larvae at > 1800 µg 

NH3-N·h-1·g-1 dry tissue weight, a rate that was eight time higher than what we observed 

in control larvae (Figure 4.6). However, after 48–72 h of exposure the rate of excretion 

was equal in control and stressed veligers. In pediveligers, the rate of NH3 excretion was 

significantly greater (F1,33 = 32.646, p < 0.001) in animals exposed to low salinity (Figure 

4.7). Ammonia excretion in the control groups was relatively constant until 72 h, while 

the rate of excretion for pediveligers in the low salinity treatment was 400 % higher after 

1 h of exposure and decreased to levels similar to the control treatment by 24 h. This 

variation resulted in significant effects for the length of exposure  
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Figure 4.4. NH3 excretion in juvenile mussels during low salinity exposure. The 

production of ammonia-nitrogen (µg NH3-N·h-1·g-1 dry weight ± SE) was significantly 

higher in animals exposed to low salinity (20 ppt; circles; F1,48 = 6.12, p = 0.017) than in 

the control group (squares).
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Figure 4.5. O2 consumption in juvenile mussels during low salinity exposure. There were 

no significant differences in the O2 consumption (µM O2·h-1·g-1 dry weight ± SE) 

between mussels in the control (squares) and low salinity treatment groups (circles; F1,43 

= 2.595, p = 0.115). 
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Figure 4.6. Ammonia excretion in veligers exposed to low salinity. There was a 

significant effect of low salinity exposure on the mean ammonia-nitrogen production (µg 

NH3-N·h-1·g-1 dry weight ± SE) in veligers (F1,43 = 21.498, p < 0.001). Veligers in the 

treatment group (circles) had higher ammonia production than the control groups 

(squares).  
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Figure 4.7. Ammonia excretion in pediveligers exposed to low salinity. Exposure to low 

salinity had a significant effect (F1,33 = 32.646, p < 0.001) on the production of ammonia 

in pediveliger relative. Rates of ammonia produces (µg NH3-N·h-1·g-1 dry weight ± SE) 

at 1, 2, 4, 24, 48, and 72 h of exposure to control (30 ppt; squares) or low salinity (20 ppt; 

circles) treatments.  
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(F5,33 = 3.399, p = 0.014) and the interaction between treatment and the length of 

exposure (F5,33 = 5.870, p = 0.001) on NH3 production. 

4.5  Discussion 

We employed a microarray-based approach to identify candidate genes involved 

in the blue mussel response to low salinity exposure. Two of the genes that appeared to 

be differentially expressed, particularly in comparisons between Mytilus edulis and M. 

trossulus, were betaine-homocysteine S-methyltransferase (BHMT) and taurine 

transporter (TAUT). These genes are involved, respectively in metabolism of betaine and 

transport of taurine. While our microarray data suggested that expression of BHMT in the 

gill tissue of M. edulis was unaffected by exposure to low salinity (Figure 4.1), we found 

a significant downregulation of BHMT in the gill of juvenile M. edulis using qPCR 

(Figure 4.2). Similarly, TAUT appeared to be downregulated in M. edulis after 32 h of 

low salinity in our microarray study, but was upregulated in the gill of M. edulis in our 

qPCR assays, especially after a 72-h exposure to low salinity (Figure 4.3).  

These conflicting results are likely the consequence of combination of factors 

derived from the systematic differences of the two experiments. Both studies monitored 

gene expression after 24 h and 48 h of exposure to 20 ppt, although the mussels used in 

the microarray study were slowly acclimated to low salinity over an 8 h period whereas 

the mussels used in the qPCR study experienced an abrupt change in salinity. The 

differences in the application of the treatment may have altered the expression of BHMT 

and TAUT, either by shifting the expression of the genes or the timing of the response. 

The latter is more plausible given that we sampled in 24 h increments and the acclimation 

of the mussels in the microarray study may have offset the patterns of expression, 
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precluding measurement in the narrow window we sampled. Additionally, the mussels 

used in these studies were collected from separate populations and studies have shown 

that previous experience can impact transcriptional responses (Li et al. 2010, Lockwood 

et al. 2015) to low salinity treatment. Finally, the design of our microarray study, in 

which cDNA was hybridized to pooled samples from multiple time points, resulted in 

low signal resolution. This method of hybridization against an average, collective level of 

gene expression was employed to reduce costs, but may have masked any individual 

variation in expression; given such, the data from our microarray study should be 

interpreted with caution. In contrast, we are confident that the results from our more 

targeted qPCR approach generated reflect the dynamics of BHMT and TAUT expression 

in the gills (and other tissues) of M. edulis under this low-salinity exposure regime.  

4.5.1.   Transcriptional Response to Low Salinity 

The regulation of BHMT in M. edulis was significantly affected by exposure to 

low salinity, although this response was not consistent across tissues or developmental 

stages. We observed a significant downregulation of BHMT in the gill tissue of salinity-

challenged juvenile mussels, but minimal changes in expression in other tissues (Figure 

4.2). In humans, BHMT codes for a betaine-homocysteine methyltransferase, which 

catalyzes the methylation of homocysteine from betaine to create methionine (Li et al. 

2008) and may be involved in protein-protein interactions (Pajares and Pérez-Sala 2006). 

During low salinity exposure, we would expect an upregulation of BHMT as a 

mechanism of controlling intracellular betaine concentrations, as has been observed for 

BHMT in rats (Schäfer et al. 2007) and fish (Qian and Song 2011). In rats, induction of 

BHMT seems to be triggered by a decrease in betaine (Schäfer et al. 2007); a similar 
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mechanism is thought to drive regulation of the BHMT protein in the cyanobacterium, 

Aphanocthece halophytica (Incharoensakdi and Waditt 2000), and in the gills of ayu, 

Plecoglossus altivelis (Lu et al. 2010), during salinity stress.  

While we had expected to see an upregulation of BHMT in our experiment, when 

evaluated in the context of the cellular level response, our findings are perhaps not 

surprising. In a related experiment (see Chapter 3), we did not observe measureable or 

consistent effects of low salinity treatment on the concentration of betaine in the gill, 

mantle, and adductor muscle of juvenile mussels or in mussel larvae. If, as in other 

species, intracellular betaine concentrations are an important driver of BHMT expression 

in M. edulis, then the relative steady-state concentration of betaine under low salinity 

exposure is unlikely to trigger increases in transcription.  

Instead, we observed subtle downregulation of BHMT in the gill and mantle tissue 

of juvenile mussels. Although our previous study on osmolyte concentrations in M. edulis 

under low salinity stress found an apparent increase in betaine concentration, this was 

mostly due to corresponding decreases in the concentrations of betaine seen in the control 

groups and may reflect an experimental artifact. Betaine counterbalances the negative 

impacts changes in intracellular ion concentrations resulting from osmotic pressure 

changes (Bowlus and Somero 1979), so high concentrations are beneficial, particularly 

during short-term low salinity exposure. The downregulation of BHMT in larval and 

juvenile blue mussels, which would result in decreases in betaine concentration, is likely 

the cell acting to selectively maintain betaine to offset damaging changes in the internal 

milieu (Somero 1986). Alternatively, transcription of the gene may be regulated by 
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changes in methionine metabolism or other downstream pathways, as has been suggested 

by Zhang et al. (2015).  

At the same time, we have an incomplete picture of the function of BHMT in blue 

mussels, for which an annotated genome is presently unavailable. There have been no 

detailed studies linking BHMT expression with protein function or with cellular-level 

effects, so we can only assume that the role of BHMT in M. edulis is similar to other 

species. The 780 base pairs of sequence information we gathered in M. edulis (Appendix 

B) only covers a portion of the gene, and BLAST searches against the C. gigas database 

identify the sequence as a paralog of BHMT, BHMT2. In humans, BHMT2 has 73% 

sequence homology to BHMT and lacks a portion of the C-terminus and has a small 

deletion near the N-terminus (Li et al. 2008, Szegedi et al. 2008). The regulation of 

human BHMT2 does not respond to betaine concentrations and instead acts on S-

methylmethionine to methylate homocysteine in the same pathway (Szegedi et al. 2008). 

It is possible that the gene we targeted in this study is BHMT2 and, that as in humans, is 

unaffected by the presence of betaine. However, the BHMT sequence from M. edulis has 

only 32% sequence homology to human BHMT or BHMT2, so it is difficult to say 

whether both paralogs occur in the mussel genome, which paralog our gene codes for, or 

what the function of the enzyme is in M. edulis. Additional studies should be conducted 

to characterize this gene and its role, if any, in hypoosmotic stress in blue mussels.  

The taurine transporter gene, on the other hand, has been extensively 

characterized in M. galloprovincialis by Hosoi et al. (2005). We observed significant 

increases in TAUT expression in the gill tissue and in veligers (Figure 4.3), large, but 

inconsistent, increases in expression in the adductor muscle, and slight downregulation in 
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the mantle and pediveligers under the same conditions. The taurine transporter is in the 

solute carrier 6 family of transporters and is responsible for the Cl--dependent uptake of 

taurine and other amino acids (Toyohara et al. 2005, Koito et al. 2010). Given its role in 

uptake of taurine, it may seem surprising to see an upregulation of TAUT during exposure 

to low salinity, when the cell decreases the FAA concentrations to remain isosmotic to 

the external environment. However, similar to our findings, Hosoi and colleagues 

observed an upregulation of TAUT in the mantle tissues of M. galloprovincialis (Hosoi et 

al. 2005) and C. gigas (Hosoi et al. 2007) during hypoosmotic exposure. Taurine, like 

betaine, acts as a counterbalancing solute so decreases in intracellular taurine trigger an 

induction of TAUT (Hosoi et al. 2005, Hosoi et al. 2007), which Toyohara et al. (2005) 

suggest is transcribed into a smaller molecular weight transporter to provide for increased 

uptake and counteract losses of taurine to the environment. The response of TAUT to low 

salinity may change during periods of prolonged exposure when the cell shifts to using 

taurine as the predominant osmolyte (Pierce and Warren 2001, Meng et al. 2013).  

Consistent with this proposed role for TAUT in stabilizing intracellular taurine 

concentrations, we observed little change in taurine abundance during the 72-h exposure 

to low salinity (see Chapter 3). There was an apparent increase in taurine concentrations 

in the gill and mantle of mussels held at low salinity for 48 h. As we observed with 

betaine, however, this change was predominately due to an unexpected drop in taurine 

concentration in the control mussels at 48 h, rather than from decreased salinity, per se. 

Overall, the patterns of TAUT expression appear unrelated to changes in the intracellular 

concentrations of taurine, at least over the time frame covered in this study. Perhaps 

TAUT acts over longer time scales, its post-translational activity is regulated by other 
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means, or these differences reflect tissue- or stage-specific differences in metabolism, as 

we reported in Chapter 3.  

4.5.2.   Organismal Reponse to Low Salinity 

Decreases in the FAA pool associated with low salinity exposure can result from 

the catabolism of FAA or transport of the FAAs out of the cell (Bishop 1976, Hoyaux et 

al. 1976, Shumway et al. 1977, Livingstone et al. 1979). The increased metabolism of 

FAAs is often manifested at the organismal level through increases in excretion of NH3 

and O2 consumption in salinity-treated individuals. Increases in NH3 excretion have been 

reported in M. edulis as soon as 1 h of exposure to low salinity (Sadok et al. 1997), with 

high excretion rates persisting for up to 8 d (Livingstone et al. 1979). We did not observe 

appreciable differences in the excretion of NH3 until 4 h among juvenile mussels (Figure 

4.4), and by 48 h excretion had returned to near-control conditions. Concomitant 

decreases in the concentration of FAAs in juveniles occurred from 24 through 72 h (see 

Chapter 3), suggesting both increased FAA leakage and catabolism are responsible for 

osmolyte declines during hypoosmotic stress.  

Surprisingly, we found no evidence that O2 consumption was impacted by salinity 

exposure in this study (Figure 4.5). Previous studies have found that O2 consumption 

nearly doubled in low salinity conditions (Stickle and Sabourin 1979) to match the O2 

demands from increased amino acid catabolism. It is possible that NH3 production 

occurred via anaerobic pathways (Zurburg and De Zwaan 1981), which would explain 

the increase in NH3 without a corresponding decrease in O2. Alternatively, the mussels 

from both groups may have been consuming enough oxygen to meet the metabolic 

demands from increased amino acid catabolism and transport, so there was not an 
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observed increase in the treatment group. The mussels appeared to be actively pumping 

so it is doubtful that these responses were from shell-closures.   

In larval mussels, NH3 excretion was over an order of magnitude greater than in 

juveniles and similar to excretion levels in larval Perna perna reported by Lemos et al. 

(2003). In veligers, there were small increases in NH3 excretion during short-term 

exposure and a spike in production at 24 h (Figure 4.6). Declines in FAA concentrations 

during osmotic exposure were relatively consistent through time, so the increases in 

excretion at 24 h may have resulted from unrelated metabolic degradation pathways, such 

as the purine cycle or serine dehydrase (Bishop 1976). Similarly, pediveligers increased 

their rates of excretion during short-term exposure (Figure 4.7), when there were no 

observable decreases in the concentrations of FAAs (Table C.2). These findings support 

the hypothesis that greater reductions in FAA concentrations in larvae result from their 

highly permeable tissues and inability to exhibit shell closing behavior for any 

considerable length of time. In both cases, it seems likely that rapid turnover of osmolytes 

not measured in this study or an increase protein catabolism cause an increase in NH3 

excretion that is not reflected in declines in FAAs.  

Overall, variation in transcription, composition of the FAA pools, and excretion 

suggests that larval responses to low salinity differ from those of juvenile M. edulis. In 

juveniles, we saw a consistent response at the organismal level that may be explained by 

decreases in glycine at the cellular level (see Chapter 3). While we did not monitor 

expression of genes related to glycine metabolism using qPCR, we can use information 

from the microarray study to look for upregulation of genes involved in glycine 

metabolism or transport. In studies of Modiolus demissus (Ellis et al. 1985) and C. gigas 
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(Meng et al. 2013) decreases in glycine during hypoosmotic exposure were attributed to 

increased glycine metabolism through dehydrogenation to serine. We did not observe 

differences in expression of serine hydroxymethyl-transferase, but did see increases in 

expression of glycine transaminase and in Na+-dependent glycine transporters (Table 

B.1), again indicating that both transport and metabolism (possibly via incorporation into 

glutamate), are likely responsible for reductions in glycine and that these changes are 

regulated at the transcriptomic level.  

The variation we observed in gene expression likely indicates tissue- or stage-

specific differences in metabolism. In juvenile mussels, retention of taurine and betaine 

may be linked to expression of TAUT and BHMT, respectively, but that these responses 

are tissue-specific. So, while the tissues responded similarly on a cellular level during 

exposure to low salinity, they differed in patterns of gene expression. Often, 

transcriptomic studies focus on a single tissue or a single time point, although the 

expression of some genes, like TAUT and BHMT may be dynamically changing in both 

space and time. Given the variability in the response of these genes to low salinity 

exposure, it is difficult to make predictions about the role of transcriptional regulation 

during the stress responses without looking more closely at the changes in expression 

within each tissue.  

In larval mussels, excretion of NH3 only occurs during short-term exposure, 

which might indicate that this stage acclimates to environmental change relatively 

quickly (Bartberger and Pierce 1976). However, analysis of the changes in the FAA 

composition during stress (see Chapter 3) contradicts this hypothesis and instead suggests 

that larvae depend heavily on transport of amino acids, rather than catabolism. If loss of 
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osmolytes is occurring at high rates in larval mussels, then larvae must either risk 

substantial loss of FAAs or mount a response to combat these cellular-level changes. 

Given the transcriptional patterns of BHMT and TAUT in larvae, it is likely that decreases 

of betaine and taurine, respectively, regulated changes in expression. With respect to 

BHMT, betaine decreased slightly during low salinity exposure, which may have 

triggered a downregulation of BHMT to slow betaine metabolism and limit overall losses 

that occur through transport. The same was observed in the relationship of taurine and 

TAUT. In veligers, declines in taurine were accompanied by an upregulation of TAUT at 

all time points. Pediveligers downregulated the expression of TAUT and experienced a 

drop in intracellular taurine at 24 h; however, by 48 h taurine began to stabilize, without 

increases in TAUT expression. This result suggests that veligers may be actively 

transporting taurine into the cells to counteract loss, but because of metabolic differences 

between the stages (as per Sprung and Widdows 1986), pediveligers may have relied on 

taurine synthesis (Welborn and Manahan 1995) rather than uptake to restore taurine 

levels within the cell.  

This study highlights developmental and tissue-specific variability in the response 

to low salinity stress in M. edulis. Larval-specific morphology and metabolism may lead 

to increased susceptibility to osmotic stress and require that larval mussels increase 

energy expenditures to offset environmental change. Our results demonstrate that stage-

specific differences in the response do occur and elucidating larval responses is important 

for a thorough understanding how the mussel populations, and the species as a whole, 

respond to increasing runoff and the freshening of coastal waters. We have also observed 

important tissue-level differences in the response to osmotic stress in M. edulis, again 
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associated with morphology and metabolism of the tissue, demonstrating that a focus on a 

single tissue limits our understanding of the response to environmental stress and that 

broader, more comparative approaches are more appropriate and inclusive.  
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CHAPTER 5 

 

UNDERSTANDING THE ROLE OF CALMODULIN AND OTHER 

CALMODULIN-LIKE GENES IN THE ACUTE HYPOOSMOTIC STRESS 

RESPONSE OF THE BLUE MUSSEL, MYTILUS EDULIS 

 

5.1   Abstract 

Our preliminary microarray studies on the transcriptomic responses of blue 

mussels (Mytilus edulis) during hypoosmotic exposure have suggested the calmodulin 

(CaM) and two calmodulin-like genes (CAML1 and CAML2) are upregulated in 

response to low salinity treatment. CaM is an important calcium-binding molecule that 

plays a role in numerous cell-signaling pathways and, along with CaM-like proteins, is 

involved in cellular stress responses. The role of CaM and CaM-like proteins in the 

osmotic stress response of blue mussels remains largely under investigated. This study 

was undertaken to improve our understanding of expression of CaM and CAML genes in 

M. edulis during low salinity exposure, as well as to look at variation in their spatial 

expression within various tissues and across developmental stages. We used structural 

analysis of the CaM, CAML1, and CAML2 genes, as well as variation in the temporal 

and spatial distribution of these genes, to gain a better understanding of the putative 

protein function. Additionally, we used real-time quantitative PCR (qPCR) to monitor 

the dynamics of expression during short-term, hypoosmotic exposure. This is the first 

study to identify calmodulin-like genes in M. edulis and the first to examine variation in 

the expression of CaM and other related genes across developmental stages as well as 
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during low salinity treatment. We found evidence for stage- and tissue-specific patterns 

of expression in CaM and CAML genes in salinity-challenged mussels and in those 

acclimated to control conditions. These findings implicate CaM and closely related 

genes in decreased salinity tolerance of early-life history stages of the blue mussel.  

5.2   Introduction 

Blue mussels (Mytilus edulis) are an ecologically important species in the Gulf of 

Maine and inhabit both estuarine and marine intertidal and subtidal habitats. As such, 

mussel populations are periodically exposed to salinity fluctuations caused by an 

interplay between terrestrial runoff, precipitation, and tidal changes. When faced with 

changes in environmental salinity, mussels regulate intracellular inorganic ionic and 

organic osmolyte concentrations to remain isosmotic to the external environment without 

extensive cellular damage (Lange 1963, Davenport 1979). The ability to tolerate these 

changes in salinity by both larval and juvenile mussels determines their distributions 

along salinity gradients (Qiu et al. 2002, Westerbom et al. 2002). Human-induced 

changes to global climate are predicted to alter nearshore salinity (Antonov et al. 2002, 

Durack et al. 2012), so understanding the capacity of blue mussels to respond to 

hypoosmotic exposure at all developmental stages is important for predicting how local 

mussel communities will be affected by climate-induced salinity variations.  

The physiological response of mussels to salinity perturbations has been 

extensively studied over the past several decades (e.g. Lange 1963, Costa and Pritchard 

1978, Deaton et al. 1985, Garnder and Thompson 2001, Qiu et al. 2002). However, the 

genetic mechanisms that underlie salinity tolerance in blue mussels have received far less 

attention. Comparative transcriptomic studies can be used to evaluate patterns of 
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divergence between closely related species in order to provide information on the 

evolutionary underpinnings of tolerance and the capacity for the evolution of tolerance in 

mytilids (Lockwood and Somero 2011). Previous studies by Qui et al. (2002) and 

Westerbom et al. (2002) have suggested that M. edulis is less adapted to low salinity 

stress than its congener M. trossulus and that these differences in salinity tolerance have 

impacts on the distributions of these two species. We conducted a microarray-based study 

to investigate species-specific differences in the transcriptional response of these two 

species when exposed to an acute hypoosmotic stress (Chapter 4). We found that during 

low salinity treatment, calmodulin (CaM) and two calmodulin-related genes (CAML1 and 

CAML2) were upregulated in M. edulis but not in M. trossulus.  

Calmodulin (calcium-modulated protein) is the predominant calcium-binding 

protein in Eukaryotes. It functions as a cellular signaling molecule and through protein-

protein interactions plays a role in growth, metabolism, and various other cellular 

functions (Cheung 1980, Klee et al. 1980, Vogel 1994, Zielinski 1998, Chin and Means 

2000). Because of its importance in regulating cellular processes, the structure of CaM is 

highly conserved (Zielinski 1998); CaM contains four EF hand domains (helix-loop-helix 

structures) that allow it to bind up to four Ca2+ in a highly-regulated manner (Finn and 

Forsén 1995, Lewit-Bentley and Réty 2000). Calmodulin proteins also contain conserved 

protein-binding sites that allow complexation with over 50 other proteins (Klee et al. 

1980, Méhul et al. 2000). Several studies, spanning a broad range of species, have shown 

that CaM is also functionally important in cellular stress responses (Snedden and Fromm 

2000, Calabrese et al. 2010). CaM is suspected to play a role in the osmotic stress 

response in humans (Falktoft and Lambert 2004), plants (Perochon et al. 2011), and 
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mollusks (Pierce et al. 1989, Pierce and Warren 2001), where it mediates efflux of taurine 

from the cells.  

In many plant and animal species, there are also numerous calmodulin-like 

proteins, named because of structural similarity to calmodulin (Snedden and Fromm 

1998, Perochon et al. 2011). Calmodulin-like proteins are relatively common among 

plant taxa where their function may differ from calmodulin due to structural changes that 

affect calcium-binding (Snedden and Fromm 1998, Perochon et al. 2011). Although they 

are not as widely characterized in animals, recent studies have shown that calmodulin-

like proteins may be common in both vertebrate (Rhyner et al. 1992, Méhul et al. 2000) 

and invertebrate systems (Li et al. 2005, Jackson et al. 2007, Ren et al. 2013). The 

calmodulin-like proteins characterized in these studies are thought to have novel roles 

and are often localized in a specific tissue or cell type, and some may be involved in 

salinity stress responses (Reddy et al. 2011, Zeng et al. 2015). 

The purpose of this study was to evaluate the expression of CaM and two, novel 

calmodulin-like genes, CAML1 and CAML2, during short-term, hypoosmotic exposure. 

Our preliminary microarray study was limited in that we were unable to capture 

transcriptional changes that occurred during the early- and intermediate- response to low 

salinity stress and we only evaluated the response in the gill tissue of juveniles (see 

Chapter 3). Qui et al. (2002) have shown that larvae are more susceptible to low salinity 

exposure than are juveniles, so we have expanded our investigation of the dynamics of 

expression during salinity stress to include multiple tissues and several life-history stages. 

Given the functional importance of CaM within the cell and its potential role in amino 
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acid efflux and osmoregulation, we predicted that the expression of CaM would increase 

in low salinity-challenged M. edulis as we observed in our microarray study.  

We also analyzed the temporal variation in the expression of CaM along with the 

novel calmodulin-like genes, CAML1 and CAML2, that were identified in the microarray 

study. Finally, we used information from the nucleotide sequences of CaM, CAML1, and 

CAML2 to analyze the secondary structure of the predicted protein products with gene 

expression data. We also used an in situ hybridization approach to assess the spatial 

distributions of these genes within the gill tissue of M. edulis and to explore the potential 

functional significance of these genes in developmental and tissue-specific processes.  

5.3   Methods 

5.3.1   Sequencing and Marker Development 

We developed primers to target calmodulin (CaM) and two calmodulin-like 

genes, CAML1 and CAML2 in M. edulis using information from our microarray study and 

the M. californianus EST database. These primers were used with complementary DNA 

(cDNA) isolated from M. edulis to generate PCR products for direct sequencing. The 

sequence information supported the development of internal primers and the use of 5’ 

and 3’ Rapid Amplification of cDNA Ends (RACE) to obtain full-length coding sequence 

information for CaM, CAML1, and CAML2. More details on the marker development can 

be found in Appendix B. Gene sequences from other species homologous to CaM in M. 

edulis were identified through BLAST (Basic Local Alignment Search Tool) against the 

NCBI (National Center for Biotechnology Information) nucleotide database. The 

retrieved sequences were aligned with our CaM sequence from M. edulis using the 

Clustal Omega Multiple Sequence Alignment Tool (EMBL-EBI). We analyzed the 
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sequences to identify base-pair substitutions that may provide insight into functional 

changes that occur at the level of the protein and modeled these changes using the UCSF 

ChimeraX Molecular Modeling System and MODELLER programs. A similar approach 

was used to develop sequence alignments and model changes in the predicated protein 

structure for M. edulis CAML1 and CAML2.  

Sequence information for M. edulis CaM, CAML1, and CAML2 was also used to 

design primer sets for gene expression analysis using real-time quantitative polymerase 

chain reaction (qPCR) and for cloning reactions used in mRNA in situ hybridizations. 

Given regions of high sequence similarity between CaM and CAML genes, the qPCR 

primers were designed to target areas where the nucleotide sequences diverged among 

paralogs, and the polymerase chain reaction (PCR) products were sequenced to ensure 

that we were only amplifying our gene of interest and not other CAML-genes. The 

complete list of primers for sequencing is given in Table B.6. 

5.3.2   Salinity Challenge Experiments 

Larval and juvenile M. edulis were exposed to acute, low salinity treatment to 

evaluate the response of CaM, CAML1, and CAML2 during osmotic stress. Larvae were 

exposed to control (32 ppt) or low salinity (20 ppt) UV-sterilized, filtered seawater (UV-

FSW at 13.5 ˚C) for 1, 2, or 4 h at either the veliger or pediveliger stage, as described in 

Section 4.3.4. and sampled for gene expression studies. In another experiment, juvenile 

mussels were similarly exposed to 20 ppt or 32 ppt artificial seawater for 1, 2, or 4 h 

before the gill, mantle, and adductor muscle tissues were removed and frozen as 

described in Section 4.3.3. The gill, mantle, and adductor samples were used to evaluate 

tissue-specific differences in the expression of CaM and CAML-genes.  
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5.3.3   Gene Expression Studies 

Using a small portion of each tissue sample or a subset of each larval pool, we 

extracted RNA and synthesized cDNA templates (Section 4.3.6) for qPCR amplification. 

Expression of CaM and CAML2 during low salinity treatment was monitored in veliger 

and pediveliger mussels following the protocol in Section 4.3.6, using our CaM- and 

CAML2-targeted qPCR primers (Table 5.1). Preliminary studies indicated that CAML1 

was not expressed in larval mussels; we conducted standard PCR reactions using the 

CAML1 qPCR primer sets and larval cDNA for 40 cycles at a 60 ˚C annealing 

temperature to confirm this observation. The reactions were analyzed for presence or 

absence of CAML1 products using agarose gel electrophoresis. In the tissue samples of 

juvenile M. edulis, qPCR assays were run for CaM, CAML1, and CAML2, except for the 

adductor muscle tissues from 1 h treatment because of poor RNA recoveries. Expression 

of CaM and the two CAML genes were normalized to our reference genes 40S ribosomal 

subunit (40 S) and elongation factor 1a (EF1a) and analyzed using the DCt method 

(Bustin et al. 2009). 

5.3.4   In Situ Hybridizations 

We developed digoxigenin (DIG)-labeled RNA probes to evaluate spatial patterns 

of expression of CaM, CAML1, and CAML2 using in situ hybridization in the gill tissue 

of juvenile M. edulis. Probes for each gene were developed by initial PCR amplifications 

with gene specific primers (see Table 5.1); the standard PCR reactions were run for 30 

cycles using a 52 °C annealing temperature (see Section B.2. for more detailed analysis 

of the PCR protocol). The resulting PCR products were purified using PureLink® PCR 

Purification Kit (Life Technologies™) following the manufacturer’s protocol. Purified 
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products were ligated into pGEM®-T Easy Vector (Promega Corporation) by mixing 5 µl 

2X ligation buffer, 1 µl T Easy vector, 2 µl purified PCR product, 1 µl T4 DNA ligase, 

and 1 µl nuclease-free H2O and allowing the reaction to run overnight at 4 °C. 

Recombinant plasmids (2 µl of the ligation reaction) were used to transform 25 µl One 

Shot® TOP10 Chemically Competent E. coli (InvitrogenÔ) cells. The transformation 

reaction was kept on ice for 20 m and heat shocked for 45 s at 42 °C before we added 950 

µl S.O.C. medium, incubated the reaction at 37 °C for 90 m, and plated 100 µl of the 

transformed cells on LB plates containing 500 µg ampicillin, 10 µmoles of isopropyl β-

D-1-thiogalactopyranoside (IPTG), and 1 mg X-Gal. Colonies were permitted to grow at 

37 °C for 24 h before being held at 4 °C for an additional 24 h. We transferred a single 

blue colony (indicating that transformation had occurred) into 1.5 ml LB broth with 

ampicillin (100 µg/ml) and incubated at 37 °C overnight. The clones were checked by 

PCR amplification using the vector-specific M13 forward and reverse primers and 

sequencing the purified PCR product at the University of Maine DNA Sequencing 

Facility (Orono, ME).  

The cloned PCR products were used to develop gene-specific DIG-labeled RNA 

probes. For each gene, additional primers were designed that matched the original PCR 

primers but to which we added sequences for the T7 RNA polymerase promotor region to 

the 5’ end (Table 5.2). These modified primers were paired with unmodified primers to 

amplify PCR products corresponding to the sense and antisense strands of each gene 

using the gene-specific plasmid DNA as the template. PCR products for the sense and 

antisense strands were purified using the PureLink® PCR Purification Kit (Life 

Technologies™). The DIG-labeled probe was generated by mixing 2 µl of 10X DIG 
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RNA labeling mix, 2 µl 10X transcription buffer, 2 µl T7 RNA polymerase, and 1 µl 

RNase Inhibitor (Roche Diagnostics) with 200 ng purified PCR product in 20 µl reaction. 

Following a 2 h incubation at 37 °C, we added 2 µl DNase I and incubated for an 

additional 15 m at 37 °C before stopping the reaction with 2 µl 0.2 M EDTA. The probe 

was precipitated by incubating the product in 2 µl LiCl and 75 µl pure EtOH at -80 °C, 

centrifuging the mix at 13,200 rpm for 10 m, and washing the pellet with 70 % EtOH. 

The RNA pellet was resuspended in 10 ml nuclease-free H2O and incubated at 37 °C for 

10 m before the probe concentrations were determined using a NanoDrop 2000 UV-Vis 

Spectrophotometer. 

We used longitudinal sections through the gill tissue for in situ hybridizations. A 

section of gill tissue was dissected from juvenile M. edulis and fixed in 0.1 M PBS with 4 

% formaldehyde. Prior to embedding, the tissue was dehydrated and cleared by 3 x 10 m 

washes in 0.1 M PBS, 3 x 5 m exchanges in 50 % EtOH, 3 x 5 m in 70 % EtOH, 3 x 5 m 

in 95 % EtOH, 2 x 5 m in 100 % EtOH, 1.5 h in 100 % EtOH, and 2 x 10 m in xylene. 

The cleared tissue was infiltrated with paraffin by soaking 3 x 10 m in paraffin baths. We 

then took 7 µm sections through the block on a rotary microtome and adhered sections to 

nuclease-free SuperBlock microscope slides.  

Slides were prepared for hybridization by deparaffinization in 3 x10 m toluene 

washes, rehydrated through an EtOH series, rinsed in water, and transitioned into 0.1 M 

phosphate buffered saline (PBS) solution. The slides were post-fixed in 0.1 M PBS with 

0.1 % TWEENÒ 20 (PBS-T) and 4 % formaldehyde for 25 m and rinsed 4 x 5 m washes 

in PBS-T, 1 x 5 m wash in PBS-T with 10 µg/ml Proteinase K, and 4 additional 5 m 

washes in PBS-T at room temperature. The slides were transitioned into hybridization 
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buffer (5X SCC buffer, 50 % formamide, 0.1 mg/ml salmon testes DNA, and 0.1 % 

TWEENÒ 20) in a series of incubations at 55 °C. For each in situ hybridization, 

individual RNA probes were added to the hybridization buffer (500 ng/ml) and denatured 

at 80 °C for 2 m before being applied to the slides. All hybridizations were incubated 

overnight at 55 °C.  

The following day, the probe was removed and the tissue sections were rinsed in 

hybridization buffer (2 x 30 m) and 0.1 M PBS-T (4 x 5 m). We used the DIG Wash and 

Block Buffer Set following the manufacturer’s protocol to prepare the slides for DIG 

detection. We applied a 1:300 dilution of the Anti-Digoxen antibody (Roche Diagnostics) 

in 1X Blocking solution and incubated overnight at 4 °C. The antibody was removed and 

the pH of the slides adjusted using the 1X detection buffer before bathing the slides in 1-

Stepä NBT/BCIP (Thermo Scientific) for 5 – 60 m until color developed. We stopped 

the reaction by rinsing the slides in TE buffer and immediately mounted a coverslip using 

Permount Mounting Medium. The slides were imaged on an Olympus BX41 compound 

microscope with a ZEISS Axiocam ERc 5s camera at 100X.  

5.3.5   Data Analysis 

Gene expression data were analyzed in SSPS Statistics 22.0 (IBM Corporation). 

Tissue- or stage-specific differences in the expression of CaM, CAML1, and CAML2 

were tested using a series of two-factor ANOVAs. In each model, we used normalized 

gene expression values from our control groups of each experiment (DCt) and evaluated 

the effects of tissue (which included larval stage) and a time component on expression. 

These were tested as main effects with an interaction term. We tested pairwise 

comparisons using Fisher’s Least Significant Difference (LSD) post-hoc analyses to 
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distinguish the effects of each tissue from one another. To test for the effects of low-

salinity treatment on expression of CaM, CAML1, and CAML2, we ran an additional two-

factor ANOVA model. Each gene was run as the dependent variable, with treatment and 

duration of exposure as main effects. These, along with an interaction term, were tested 

against a Type III Sum of Squares model with a = 0.05 for each developmental stage or 

tissue.  

Images taken of the in situ hybridizations were examined in ImageJ (Schneider et 

al. 2012) to investigate whether there were differences in the color development between 

the sense and antisense hybridizations. Briefly, we created a stack containing a 

comparable grayscale image of the sense and antisense strands and used the threshold 

function in Image J to determine areas in the antisense strands containing digoxigenin 

stain (see Figure 5.6d for an example). Given the preliminary nature of the in situ 

hybridization experiment, no statistical analyses were conducted. 

5.4   Results  

5.4.1   Structural Analysis of CaM and CAML genes 

We identified and sequenced calmodulin (CaM) and two calmodulin-like genes 

(named CAML1 and CAML2) in Mytilus edulis. Like calmodulin in other species, CaM is 

149 amino acids in length and contains four EF hand domains that function in Ca2+ 

binding (Figure 5.1). The amino acid sequence for CaM in M. edulis is highly conserved 

in mytilid congeners (Figure 5.2) and has 91.9 % sequence similarity with humans 

(Figure 5.1) and 93.2 % similarity to CaMs from other invertebrate species (Figure 5.3). 

For M. edulis, we observed five amino acid substitutions in the central alpha helix 

domain between EF-Hand domains two and three. We also detected several substitutions   
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Figure 5.1. Comparison of M. edulis and human calmodulin. The predicted protein 

structure for M. edulis (black ribbon) is overlain on the structure in humans (white 

ribbon). Calmodulin is highly conserved, with 91.89 % sequence similarity between the 

two species; regions of overlap are indicated by the gray bar above the sequence 

alignment. CaM contains four EF-hand domains (positions 19–25, 56–61, 93–98, 128–

134) each containing a calcium-binding domain, which are demonstrated visually in the 

protein model surrounding the blue Ca2+ ions. The alignment shows the predicted 

secondary structure, with helices (white bar) and beta sheets (teal bar) of CaM, and 

depicts where amino acid substitutions result in a positive (red) or negative (blue) charge 

variation.   
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Figure 5.2. Multiple sequence alignment of Mytilid CaM. The sequence alignment shows 

the high homology among the four species in the Mytilid species complex, M. edulis, M. 

trossulus, M. galloprovincialis, and M. californianus. Sequence information for M. 

galloprovincialis was incomplete, but otherwise, there are no amino acid substitutions 

among the four congeners. 
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Figure 5.3. Multiple sequence alignment of invertebrate calmodulins. The amino acid 

sequence of CaM identified in M. edulis has > 93 % homology with 11 other invertebrate 

species. In the alignment, a dot indicates that there is no change in amino acid between 

species, while a letter indicates a change in the amino acid sequence between M. edulis 

and another species.  
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at the 3’ end of the gene. Although these substitutions are unique to Mytilus, our 

modeling efforts indicate these changes are unlikely to disrupt the protein tertiary 

structure common to CaM. 

The predicted structure for CAML1 and CAML2 are strikingly different from CaM 

in M. edulis. CAML1 is 150 amino acid residues and only shares 30.9 % sequence 

homology with M. edulis CaM; there are numerous amino acid substitutions that resulted 

in charge variations in the secondary structure and very few regions that are conserved 

between the two genes (Figure 5.4). Even so, modelling suggests that at least three of the 

EF hand domains in CAML1 are intact. CAML2 was more similar to CaM than was 

CAML1 (Figure 5.5), with 87.9 % similarity at the amino acid level. The EF hand 

domains and calcium binding sites were intact in CAML2, although there are some amino 

acid substitutions and charge differences within these functional domains. Interestingly, 

there is a substitution in CAML2 that may act as an alternate start codon and result in a 

protein that is 23 amino acids longer than CaM at the N-terminus.  

5.4.2   Baseline Expression of CaM and CAML genes  

We evaluated the spatial distribution of CaM, CAML1, and CAML2 transcripts 

within the gill tissue of juvenile M. edulis using digoxigenin-labeled mRNA in situ 

hybridizations. CaM was highly expressed and had a relatively broad distribution within 

the gill tissue (Figure 5.6). The abundance of CaM mRNA appeared to be higher in the 

cytoplasm compared to the nuclei and was concentrated near the membranes of the cells. 

We did not see high levels of CaM expression in the cilia or in cartilaginous regions near 

the basement membranes of the epithelial cells. The expression of CAML1 and CAML2 

was much lower than that of CaM in the gill and the distribution of mRNA for these  



 

 128 

 
 

Figure 5.4. Comparison of M. edulis CaM and CAML1 predicted proteins. CAML1 

(black ribbon) shares only 30.2 % sequence homology with CaM (white ribbon) and 

likely only has three functioning EF-hand domains (regions before the teal highlight). As 

indicated by the gray bars, there are very few regions where the amino acid sequences are 

similar between these two genes, and many places where amino acid substitutions result 

in charge variation (red and blue bars) that will affect protein stability and folding.  

  



 

 129 

Figure 5.5. Comparison of M. edulis CaM and CAML2 predicted proteins. There is 87.9 

% sequence homology between CaM (white ribbon) and CAML2 (black ribbon), with 

most of the Ca2+-binding (teal highlighted area) and EF hand domains conserved between 

proteins. It is unclear where CAML2 is initiated, as there are two start codons within the 

first 20 amino acids. Conserved regions are highlighted in gray, while charge differences 

in the amino acid sequence are shown in red or blue. 
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Figure 5.6. Visualization of CaM expression in the gills of M. edulis. An example of 

background staining in the sense strand (b) is shown in contrast to the dark staining seen 

in the antisense strand (c). The widespread distribution of CaM found in the cytoplasm of 

the gill cells is depicted in the binary image (d). For reference, image a shows the 

longitudinal section of the gill filament (running from the apex of the gill to the branchial 

axis), with nuclei stained dark purple with hematoxylin (arrow) and the collagenous 

matrix lining the epithelial cells of the gill stained with alcian blue. All micrographs were 

imaged at 100 X.  
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Figure 5.7. Visualization of CAML1 in M. edulis gill tissue. Expression of digoxigenin- 

labeled CAML1 can be seen by the faint purple spots within the epithelial cells in the 

antisense strand (b); the sense strand (a) is shown for reference. Gene expression studies 

indicate that expression of this gene is low in the gill tissue and is not as widespread as 

that of CaM (Figure 5.6).   
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Figure 5.8. Visualization of CAML2 in M. edulis gill tissue. Expression of digoxigenin- 

labeled CAML2 can be seen by the purple areas that line the membranes of the epithelial 

cells marked by the arrow in the antisense strand (b); the sense strand (a) is shown for 

reference. Gene expression of CAML2 is low in the gill and is not as widespread as that 

of CaM (Figure 5.6). 
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genes was more localized. CAML1, which had the lowest levels of expression, only 

appeared in dense pockets surrounding the nuclei within the cytoplasm of epithelial cells 

(Figure 5.7), while CAML2 expression tended to localize at the perimeter of the cells 

(Figure 5.8). Overall, staining was light due to low baseline expression of both genes, 

making it difficult to draw firm conclusions about the patterns of expression. However, it 

was apparent that neither gene is expressed at the same high level as CaM.  

There were similar trends in the copy number of each gene in our qPCR studies. 

Evaluation of the baseline gene expression data indicated that there was stage- and tissue-

specific patterns of expression under normal conditions for CaM, CAML1, and CAML2. 

CaM expression was significantly lower in larval mussels compared to juveniles (Figure 

5.9), although expression did not vary between veligers and pediveligers. Within the 

juvenile, CaM expression in the adductor differed from the copy numbers observed in the 

mantle or gill tissue. CAML1 appears to be developmentally regulated, as we were unable 

to amplify the gene in veliger or pediveliger mussels. Within juvenile mussels, CAML1 

expression varied significantly (Figure 5.10) among all three tissues, being highest in the 

gill. CAML2 also showed stage- and tissue-specific patterns of expression, but most of 

these differences stemmed from relatively high rates of expression in the adductor muscle 

(Figure 5.11).  

5.4.3   CaM and CAML expression during hypoosmotic exposure 

We observed stage-specific and tissue-specific patterns of CaM, CAML1, and 

CAML2 expression for larval and juvenile mussels exposed to acute, low salinity 

treatment. In veliger mussels, CaM expression decreased slightly over a 4 h exposure to 

low salinity relative to the controls, although the effect of treatment was not significant  
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Figure 5.9. Baseline CaM expression in M. edulis. The mean DCt values (± SE) for the 

control veliger (open squares) and pediveliger (open circles) larvae were significantly 

lower than what we observed in the gill (closed squares), mantle (closed triangles), or 

adductor (closed circles) tissues of juvenile M. edulis.  
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Figure 5.10. Baseline CAML1 expression in juvenile mussels. The mean DCt values (± 

SE) for CAML1 expression in juvenile mussels was significantly higher in the gill tissue 

(closed squares) than in the mantle (closed triangles) or adductor (closed circles) tissues. 

This gene was not expressed in larval mussels.  
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Figure 5.11. Baseline CAML2 expression in M. edulis. The mean DCt CAML2 expression 

(± SE) was low in veligers (open squares), pediveligers (open circles), and the gill tissue 

(closed squares) relative to the mantle (closed triangles) and the adductor muscle (closed 

circles). There was a significant effect of stage or tissue type on CAML2 expression, as 

well as an effect of time (F2,51 = 4.231, p = 0.020) and from the interaction term (F7,51 = 

3.488, p = 0.004), resulting from the large increase in copy number in the adductor 

muscle of juvenile M. edulis.  

  

0.0000

0.0025

0.0050

0.0075

0.0100

1 2 4

CA
M

L2
 D

C
t V

al
ue

Duration of Exposure (h)

Veliger
Pediveliger
Gill
Mantle
Adductor

F4,51 = 141.04, p < 0.001  



 

 137 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12.  CaM expression in M. edulis during low-salinity exposure. CaM was significantly 

downregulated in pediveligers (b), but not in veliger (a) larvae or in the gill (c), mantle (d), or adductor (e) 

tissues of juveile M. edulis. Gene expression is plotted as the fold induction of CaM during low-salinity 

exposure, relative to the controls, on a log2 scale (bars), where the dotted line at 1 indicates that there was 

no change in expression and a value of greater than 1 represents an upregulation of the gene. The 

normalized mean DCt values (± SE) for CaM that are used to calculate the fold induction and for statistical 

analyses are shown on the secondary axis for the control (solid line) and low-salinity treatment (dashed 

line) groups over the 4 h duration of the experiment. 
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(Figure 5.12a). The duration of exposure (F2,24 = 10.264, p = 0.001) and the interaction of 

treatment and duration of exposure (F2,24 = 3.400, p = 0.050) significantly affected CaM 

expression in veliger mussels, as the expression in the control groups at 1 h was reduced 

compared to the other time points. In pediveligers, we observed a significant 

downregulation of CaM in the low salinity treatment (Figure 5.12b), as well as a 

significant effect from the duration of exposure (F2,24 = 4.488, p = 0.017). In this case, 

expression of the gene declined in both the control and treatment groups over the 4 h 

course of the experiment. There was no interaction effect on CaM in pediveligers.  

CaM expression was unaffected by low salinity treatment in any of the tissues 

examined in juvenile mussels. In the gill tissue (Figure 5.12c), CaM expression was 

variable and ranged from a slight upregulation at 2 h to an approximately 1-fold 

downregulation in the treatment group at 4 h. This resulted in a significant effect from 

duration of exposure on CaM expression (F2,24 = 5.894, p = 0.008); there was no 

interaction effect. In the mantle tissue, CaM showed an initial downregulation and began 

to increase in the treatment groups as the length of exposure increased (Figure 5.12d). 

This pattern was more extreme in the adductor muscle (Figure 5.12e), where we observed 

a downregulation at 2 h followed by an upregulation at 4 h. CaM expression in the mantle 

and adductor muscle were unaffected by length of exposure and there the interaction term 

was not significant in either tissue.  

There was no evidence of changes in the abundance of CAML1 mRNA in juvenile 

mussels during low salinity exposure. CAML1 was slightly upregulated over the first 2 h 

of low salinity exposure and then began to decrease in the gill tissue, while the opposite 

trend was observed in the mantle and adductor muscle (Figure 5.13). We found no  
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Figure 5.13. CAML1 expression in M. edulis during low-salinity exposure. Expression of the calmodulin-

like gene, CAML1 was not affected by low-salinity treatment in the gill (a), mantle (b), or adductor muscle 

(c) of juvenile M. edulis. Each plot shows the fold induction of CAML1 during low-salinity exposure, 

relative to the controls, on a log2 scale (bars); the dotted line at 1 indicates that there was no change in 

expression, where a value of greater than 1 represents an upregulation of the gene. The normalized mean 

DCt values (± SE) for CAML1 are shown on the secondary axis for the control (solid line) and low-salinity 

treatment (dashed line) groups over the 4 h duration of the experiment. We were unable to measure 

expression of this gene in the 1 h adductor samples because of poor RNA recoveries. 
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significant effects of treatment, duration of exposure, or the interaction of the two on 

expression of CAML1 in the gill or mantle tissue. We did, however, find that duration of 

exposure significantly affected CAML1 expression in the adductor muscle, where 

expression in both the treatment and control groups decreased from 2 to 4 h.  

The expression of CAML2 was significantly affected by low salinity treatment, 

although this effect varied among stages and tissues of M. edulis. In veligers, CAML2 

expression was slightly downregulated at all time points sampled (Figure 5.14a), but this 

was not significant. We did not observe differences in CAML2 expression in veligers 

from the duration of exposure or the interaction term. CAML2 expression was 

significantly decreased in pediveligers during hypoosmotic exposure, especially at 2 h 

(Figure 5.14b). We observed a significant effect from the duration of exposure (F2,24 = 

5.869, p = 0.008), but not the interaction of the two, resulting from an increase in 

expression of CAML2 in the control group at 2 h.  

 An upregulation of CAML2 was also observed in the gill tissue of low-salinity 

treated juvenile mussels (Figure 5.14c). In addition to a treatment effect, expression of 

CAML2 was significantly affected by the duration of exposure (F2,24 = 4.636, p = 0.020) 

and the interaction of duration and treatment (F2,24 = 3.463, p = 0.048). The raw 

expression values in the treatment group varied over the course of the experiment, as can 

be seen by the 2-fold increase in expression at 2 h. In the mantle tissue, CAML2 varied 

with duration of exposure and was downregulated more than 1-fold at 2 h but then 

upregulated by 4 h (Figure 5.14d). However, the expression was unaffected by treatment, 

duration of exposure, or the interaction term. In the adductor muscle, expression of  
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Figure 5.14. CAML2 expression in M. edulis during low-salinity exposure. We observed a significant 

upregulation of CAML2 in pediveligers (b) and in the gill tissue (c) of juveniles exposed to low salinity. 

CAML2 expression was unaffected by salinity treatment in veligers (a) or in the mantle (d) or adductor (e) 

tissues of juveniles. We were unable to monitor expression of CAML2 in the 1 h adductor samples because 

of difficulties with RNA extraction. Each plot shows the fold induction of CAML2 during low-salinity 

exposure, relative to the controls, on a log2 scale (bars); the dotted line at 1 indicates that there was no 

change in expression, where a value of greater than 1 represents an upregulation of the gene. The 

normalized mean DCt values (± SE) for CAML2 are also shown on the secondary axis for the control (solid 

line) and low-salinity treatment (dashed line) groups over the 4 h duration of the experiment. 
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CAML2 in the treatment groups was similar to that of the controls (Figure 5.14e) and was 

not significantly affected by treatment, duration of exposure, or the interaction of the two. 

5.5   Discussion 

To our knowledge, this is the first study to provide the complete coding sequence 

for calmodulin (CaM) from Mytilus edulis. Mussel CaM has high sequence homology to 

other invertebrate calmodulins (Figure 5.3) and, like other invertebrate CaMs, the 

predicted protein is 149 amino acids in length and only contains one tyrosine residue 

(Jamieson et al. 1980, Toda et al. 1981, Swanson et al. 1990, Li et al. 2004, Chen et al. 

2012a, Chen et al. 2012b, Ren et al. 2013). In contrast, while most invertebrate 

calmodulins vary from human CaM by three residues (Simpson et al. 2005), we observed 

11 residues that varied between M. edulis and human CaM (Figure 5.1) and from 9 to 11 

that varied between M. edulis and other invertebrate species (Figure 5.3). Cysteine 

residues typically are rare in mature CaM proteins; however, we observed a substitution 

of cysteine for threonine at residue 79 and a valine to cysteine substitution at residue 142 

that is conserved among all mytilid species (Figure 5.2). These substitutions have not 

been reported in vertebrate or invertebrate calmodulins (Li et al. 2004). The substitution 

from a tyrosine in human CaM at residue 99 (which acts as a phosphorylation site) to 

phenylalanine in Mytilus was also observed in the freshwater mussel Hyriopsis cumingii; 

Ren et al. (2013) suggested this substitution may alter the translational regulation of CaM 

in H. cumingii. Like other calmodulins, M. edulis CaM does not contain tryptophan (Li et 

al. 2004).   

In other species, calmodulin is widely distributed in the nucleus and cytoplasm of 

cells and can constitute up to 0.1 % of the total protein pool (Chin and Means 2000, 
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Perochon et al. 2011). CaM mRNA expression in the gills of M. edulis, as observed from 

in situ hybridization (Figure 5.6), show similar patterns of widespread distribution in the 

cytoplasm and relatively lower expression in the nuclei. Interestingly, Strommel et al. 

(1983) estimated that CaM constituted 0.4 % of the protein pool within the cilia of 

Aequipecten irradians and Reed and Satir (1980) found calmodulin played an important 

role in regulating ciliary activity in the Elliptio sp. gills. We did not find any evidence for 

expression in the cilia of gills, although it is possible that the protein is translocated into 

the cilia from the cytoplasm following translation (Toutenhoofd and Strehler 2000). 

Although we did not have an opportunity to examine the distribution of CaM expression 

in the mantle tissue or adductor mussel, our qPCR-based evaluation of the copy number 

of CaM transcripts suggests that expression of this gene in the mantle tissue and adductor 

muscle is similar to what was observed in the gill. This is contrary to what Sailer et al. 

(1990) reported on the distribution of calmodulin proteins in M. edulis, although there is 

evidence that CaM transcripts in vertebrates may remain stable in the cytoplasm and that 

tissue-specific regulation of translation modulates intracellular CaM pools (Toutenhoofd 

and Strehler 2000).  

We did, however, detect a significant decrease in the copy number of CaM 

transcripts in larval blue mussels relative to the juvenile tissue samples (Figure 5.9). 

Ontogenetic regulation of CaM expression has been reported in other species, such as the 

polychaete Hydroides elegens (Weinman et al. 1991, Yang et al. 1998, Jackson et al. 

2007, Chen et al. 2012a, 2012b), and, as we observed in M. edulis, generally results in 

lower abundance of CaM mRNA in precompetent and competent larval worms relative to 

juveniles (Chen et al. 2012b). Bassim et al. (2014) reported developmental regulation of 
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numerous ‘calmodulin’ genes in M. edulis in their RNAseq-based study. However, the 

high sequence homology among small partial reads, common in RNAseq data, makes it 

difficult to determine clearly how many of the transcripts they detected code for 

calmodulin versus calmodulin-like genes. Several previous studies have shown that CaM 

may be important in regulating developmental transitions (Chen et al. 2012a), as well as 

playing a role in shell secretion (Jackson et al. 2007), detection of settlement cues, and in 

regulating calcium stores in larvae (Chen et al. 2012b). It is somewhat surprising then, 

that a gene with such a crucial role in the cell would be found in lower abundance in 

developing larvae than in post-metamorphic juveniles. 

The calmodulin-like gene CAML1 is also developmentally regulated in M. edulis 

and was not detected in veliger or pediveliger larvae. In comparison to the predicted 

protein sequence for mussel CaM, CAML1 has very low sequence homology to CaM 

(Figure 5.4). Even so, three of the four EF-hand domains have minimal substitutions. 

Jamieson et al. (1980) suggested that the glycine residues within the EF-hand domains 

help form the helical structure where calcium-binding occurs and those within the 

CAML1 EF-hand domains 2-4 are unaltered (residues 58-63, 96-101, and 132-137; 

Figure 5.4). Our modeling work suggests the EF-hand domains of CAML1 maintain their 

structure and may still function to bind calcium, although the affinity to Ca2+ may be 

altered. It is unlikely, however, that this protein is involved in protein-protein interactions 

to the same extent as CaM. We found substitutions in methionine at residue 126 and 

toward the C-terminus, which in mammalian systems are the sites of CaM-protein 

interactions (Chin and Means 2002). CAML1 was more locally distributed in the gill cells 

of M. edulis compared to CaM and was less abundant (Figure 5.7). These differences, 
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together with the lack of expression in larvae, suggest that this protein is functionally 

distinct from calmodulin and plays a novel, but perhaps less extensive, roll in cellular 

function or signaling.  

CAML2 has higher sequence homology to CaM (Figure 5.5) than does CAML1 

and structural analysis suggests that all four EF-hand domains in CAML2 are functional. 

Furthermore, there were no substitutions of the methionine residues that may facilitate 

interaction with calcium-binding proteins (Chin and Means 2000). The major structural 

difference between CaM and CAML2 is an insertion at the 5’ end of the gene that extends 

the open reading frame by 36 to 69 base pairs (Figure 5.5) and results in an elongation of 

the protein at the N-terminus, prior to the first EF-hand domain. In CaM, the N-terminal 

may interact with other proteins when Ca2+ is not bound because of the structural 

flexibility in this region (Chin and Means 2000); undoubtedly, this insertion will impact 

the stability of the protein and the protein-protein interactions that may occur at this site.  

As with CaM and CAML1, we observed both tissue- and stage-specific 

differences in the baseline expression CAML2. In situ hybridization suggested that the 

expression of CAML2 was lower than CaM in the gill tissue and appeared to be localized 

around the perimeter of the gill cells and within regions of the cytoplasm (Figure 5.8). 

Copy-number analysis indicated that while expression within the gill tissue was relatively 

low, on average CAML2 expression increased by16-fold in the mantle tissue and by over 

100-fold in the adductor muscle. We also found higher baseline expression of CAML2 in 

veliger and pediveliger larvae relative to the gill tissue. Given the patterns of expression 

observed from in situ hybridization and in qPCR studies, it is likely that CAML2 is 

involved in a calcium-mediated role that may be more targeted than that of CaM.  In 
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other mollusk species, some CAML genes are thought to play a role in shell formation 

(Jackson et al. 2007, Ren et al. 2013). Further studies are needed to determine the 

function of CAML1 and CAML2 in M. edulis, although it is unlikely that either of these 

genes is involved in biomineralization. 

Data from our previous microarray study (Chapter 4), suggested that expression 

of CaM, CAML1, and CAML2 may be induced by low salinity exposure in blue mussels 

(Figure 4.1). During hypoosmotic exposure, calmodulin is thought to help regulate 

taurine efflux from cells and, therefore, maintenance of osmotic balance (Pierce et al. 

1989, Pierce and Warren 2001, Falktoft and Lambert 2004) and its upregulation has been 

observed during short-term hypoosmotic stress in M. trossulus and M. galloprovincialis 

(Lockwood and Somero 2011). Calmodulin-like proteins are also known to have a role in 

plants response to osmotic stress, where they function in cell signaling pathways and 

regulation of transcription factors (Snedden and Fromm 1998, Perochon et al. 2011, 

Reddy et al. 2011, Zeng et al. 2015).   

It was somewhat surprising, then, to find that CaM, CAML1, and CAML2 were 

generally downregulated in M. edulis during low salinity exposure. In juvenile M. edulis, 

we observed distinct gene- and tissue-specific patterns of expression. Overall, expression 

of CaM was reduced in all tissue of juvenile mussels, except the adductor muscle after 4 

h of exposure (Figure 5.12). In the adductor muscle, an increase in CaM expression may 

aid in the behavioral response of mussels to hypoosmotic stress, helping to isolate the 

mussel from the external environment through closure of the valves (Sailer et al. 1990). 

As a cellular signaling molecule, CaM may play a role in osmosensing and early signal 

transduction pathways (Kültz 2005, Zhao et al. 2012) in other tissues. As such, we 
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expected that our qPCR results from this study would support our observations from a 

microarray study (Figure 4.1) and from preliminary qPCR studies in the gill tissue 

(Figure C.5). However, it is possible that CaM upregulation only occurs during longer 

term salinity exposure (e.g., greater than 4 h) or that translational regulation controls the 

response of CaM (Toutenhoofd and Strehler 2000). Zhao et al. (2012) found that oysters 

decreased CaM expression during low salinity exposure in the gill tissue as a response to 

declines in intracellular calcium concentrations, but this would not explain why CaM 

expression in M. edulis varied among our different gene expression studies.   

Unlike CaM, we found significant increases in the expression of CAML2 in the 

gill tissue of juvenile M. edulis and decreases in expression in the adductor muscle 

(Figure 5.14). As discussed above, it is possible that this gene functions in calcium-

binding and may play a similar role to CAML genes in plants that are involved in salt-

stress related signaling pathways (Zeng et al. 2015). If so, the tissue-specific patterns in 

expression suggest this role may be restricted to the gill tissue. We observed marked 

increases in the expression of CAML2 in the adductor muscle in control animals 

suggesting that CAML2 exhibits tissue-specific functions and is not necessarily 

implicated in the stress response. Similarly, CAML1 may have developed novel functions 

that are specific to post-metamorphic mussels. Differential patterns of expression in 

CAML1 among the gill and adductor muscle (Figure 5.13) may also suggest that the role 

of this protein varies among tissue types.  

Surprisingly, larval mussels differed from juveniles in the regulation of CaM and 

CAML2 during low salinity exposure. We found decreases in the expression of both 

genes at multiple time points, stages, and tissues. In pediveligers, there was a significant 
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effect of treatment on the expression of CaM and CAML2 (Figures 5.12 and 5.14). CaM 

is known to play an integral role in growth (Weinman et al. 1991), shell formation 

(Jackson et al. 2007), and larval settlement (Chen et al. 2012a, Chen at al. 2012b), 

suggesting that the role of CaM in these processes in mussel larvae is not related to 

increases in transcript abundance. On the other hand, bivalve larvae are known to delay 

metamorphosis when exposed to environmental stressors (Bayne 1965) and 

downregulation of genes involved in Ca2
+ signaling may help to mediate this response. 

Furthermore, larvae are more sensitive to low salinity exposure than juvenile mussels and 

show marked reductions in growth when reared at low salinity. Variations in the 

expression of CaM and CAML genes during osmotic stress across developmental stages 

may signify a divergence in metabolic regulations pre- and post-metamorphosis that 

account for reduced growth and increased susceptibility in early life history stages.  

 To our knowledge, this study is the first to identify and sequence calmodulin-like 

genes in M. edulis and to explore tissue- and stage-specific patterns of expression during 

normal and low salinity conditions. It appears that blue mussels, like other species, have 

numerous genes that code for calmodulin-like proteins and that these genes and 

calmodulin may be developmentally regulated and differentially expressed among tissues 

of post-metamorphic mussels and during short-term hypoosmotic exposure. Despite the 

importance of these calcium-binding proteins in other species, we know very little about 

their role in the cellular function, during osmotic stress, or in larval development of blue 

mussels. Further research should be conducted to better understand the physiological 

implications of the stage- and tissue-specific patterns of CaM, CAML1, and CAML2 

expression found in this study.  
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CHAPTER 6 

 

ORNITHINE METABOLISM AND THE OSMOTIC STRESS RESPONSE:  

A COMPARATIVE STUDY OF CONGENERIC SPECIES 

 

6.1   Abstract 

Previous studies of transcriptomic responses in blue mussels (Mytilus spp.) to 

hypoosmotic exposure have suggested differential utilization of the amino acid ornithine 

among congeneric species. Ornithine catabolism is used to generate glutamate or proline 

through the activity of ornithine aminotransferase (OAT), or to create putrescine and 

other polyamines through activity of ornithine decarboxylase (ODC). Variation in 

expression of genes involved in ornithine metabolic pathways may help to explain 

differences in the salinity tolerances of M. galloprovincialis, M. trossulus, and M. edulis. 

This study was undertaken to better understand the potential role of OAT and ODC in 

blue mussels during exposure to altered salinity, as well as to look for variation in gene 

expression across developmental stage and among species. We found evidence that OAT 

gene expression increases during low salinity exposure in all three species, and that in M. 

edulis increased expression manifested in increased OAT activity. We did not observe 

consistent changes in the expression of ODC during hypoosmotic exposure, although it 

tended to be downregulated. During hyperosmotic stress, the patterns of expression of 

these two genes reversed, suggesting that synthesis of proline or glutamate is important 

during low salinity exposure but that polyamine synthesis may be more important during 

hyperosmotic exposure. The three species responded similarly to osmotic stress with 
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respect to ODC and OAT expression, although the magnitude or timing of expression 

varied slightly among species.  

6.2   Introduction 

Blue mussels (Mytilus spp.) are dominant members of coastal habitats and play an 

important role in intertidal and subtidal community ecology by providing habitat (Arribas 

et al. 2014) and food (Seed 1969) for other species. Numerous studies have documented 

how tolerance to environmental stressors, including stress caused by changes in salinity, 

affects the distribution and abundance of species in this genus (e.g., Garnder and 

Thompson 2001, Qiu et al. 2002, Westerbom et al. 2002, Braby and Somero 2006). 

Climate change is predicted to cause a freshening in sea-surface salinities in the coastal 

regions where mussels live (Antonov et al. 2002, Durack et al. 2012), creating potential 

shifts in the geographic range of these species. Understanding the molecular mechanisms 

underlying variation in mussels’ capacity to tolerate low salinity stress is important for 

predicting how mytilid species will be affected by climate change-associated salinity 

fluctuations, as well as their capacity to adapt to shifting environments (Somero 2010).  

Two mytilid species, M. edulis and M. trossulus, inhabit the Gulf of Maine 

(Koehn 1991, Rawson et al. 2001) and these congeners are affected differently by 

lowered salinity (Gardner and Thompson 2001, Qiu et al. 2002). For example, the studies 

of Qiu et al. (2002) and Westerbom et al. (2002) suggest that M. trossulus is more 

euryhaline than M. edulis. Thus, comparative studies of the osmotic response in these 

closely related species provide a unique opportunity to evaluate the evolutionary 

underpinnings of the response to low salinity stress. Using a microarray-based approach 

(see Chapter 4), we compared how the patterns of gene expression for these two species 
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respond to short-term, low salinity exposure. We observed differential expression of a 

gene coding for ornithine aminotransferase (OAT; Figure 4.1), a key enzyme in the 

ornithine cycle that catalyzes the conversion of ornithine into glutamate or proline 

(Andrews and Reid 1971, Bishop et al. 1994; Figure 6.1). In a similar study comparing 

the low salinity response in of M. trossulus and another congener, M. galloprovincialis, 

Lockwood and Somero (2011) found evidence for differential expression for a gene 

coding for ornithine decarboxylase (ODC). This enzyme shunts ornithine through an 

alternative pathway catalyzing the decarboxylation of ornithine to produce the 

polyamine, putrescine (Pegg 2006). We conducted a series of follow-up experiments 

using quantitative real-time polymerase chain reaction (qPCR) to monitor gene 

expression in M. edulis and found that expression of OAT (Figure C.3) is upregulated, 

while that of ODC (Figure C.4) is downregulated at multiple time points over a 48-h 

exposure to reduced salinity. Together, our studies and that of Lockwood and Somero 

(2010) indicate there is divergence among mussels in the genus Mytilus with respect to 

the utilization of ornithine during low salinity stress.   

To better understand regulation of OAT and ODC during hypoosmotic exposure, 

and to make direct comparisons among species, we exposed individuals of M. edulis, M. 

trossulus, and M. galloprovincialis to hypoosmotic conditions and monitored changes in 

expression of OAT and ODC using qPCR. As part of these studies, we investigated the 

variation in the regulation of OAT and ODC across developmental stages and different 

tissues in M. edulis. Typically, larval stages are more sensitive than juveniles and adults 

to environmental stress and thus determining capacity of larval stages to respond is  

essential for a thorough understanding of species-specific differences in low salinity  
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Figure 6.1.   Overview of ornithine metabolism. Ornithine catabolism occurs via two 

pathways, through the activity of ornithine aminotransferase (OAT) which converts 

ornithine into proline or glutamate via pyrroline-5-carboxylate (P5C) or through ornithine 

decarboxylase (ODC) which breaks down ornithine into polyamines. Redrawn from 

Bishop et al. (1985) and Bishop et al. (1994). 
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tolerance (Qiu et al. 2002, Lockwood and Somero 2001). We also monitored activity of 

OAT using a colorimetric enzyme assay to determine if OAT activity is transcriptionally 

regulated in M. edulis and whether that regulation varies across developmental stages. 

Finally, we monitored OAT and ODC expression in individuals of the three species 

exposed to hyperosmotic stress. A primary goal of this study was to use qPCR-based 

assays to validate patterns of OAT and ODC expression during low salinity exposure to 

validate patterns observed in microarray studies (Chapter 4, Lockwood and Somero 

2011). Our gene expression studies, with the use of enzyme assays, allow us to place the 

differential patterns of expression into a broader physiological context that will increase 

our understanding of how mytilid species deal with osmotic stress.  

6.3   Methods 

6.3.1   Hyposalinity Experiments 

We examined the variation in OAT and ODC expression among larval and 

juvenile M. edulis when exposed to short-term low salinity conditions. The larvae were 

reared in ambient conditions (13.5 ˚C, 32 ppt) at the shellfish hatchery at the Darling 

Marine Center in Walpole, ME, as outlined in Section 2.3.1. Larvae were exposed to 

control (32 ppt) or low salinity treatments (20 ppt) for 24, 48, and 72 h at both the veliger 

and pediveliger stages, as described in Section 4.3.4. Field collected juvenile M. edulis 

were acclimated to common garden conditions (13.5 ˚C, 32 ppt) for 3 w before they were 

exposed to a similar control and experimental treatments, as detailed in Section 4.3.3. We 

sampled the gill, mantle, and adductor muscles from juveniles in both treatments at three 

different durations of exposure, 24, 48, and 72 h. We also sampled gill tissue from a 

separate set of M. edulis held in control or experimental treatments for only 4 h. 
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We repeated the low salinity experiments using M. galloprovincialis and M. 

trossulus. M. galloprovincialis mussels were supplied by Catalina Sea Ranch, CA, a 

mussel culture facility located on the San Pedro Shelf. The mussels were shipped 

overnight to the University of Maine, Orono, ME, in September 2016 and acclimated to 

control conditions (13.5 °C, 32 ppt) in a recirculating seawater system for 3 w, during 

which they were fed an approximately 3 % ration of Shellfish Diet 1800 (Reed 

Mariculture, Inc.). One day prior to the salinity-challenge experiments, we inserted a 

small spacer (slit airline tubing) between the valves of the mussels to prop them open and 

ensure that they were bathed in the external medium for the duration of the experiment. 

Individual mussels were placed into 1 l beakers containing treatment (20 ppt) or control 

(32 ppt) seawater and held at 13.5 °C for 4, 24, or 48 h before they were dissected; the 

gill and mantle tissues were flash frozen in liquid N2 and stored at -80 °C.  

The adult specimens of M. trossulus used in this experiment were part of a 

previous project that were obtained from the underside of a dock in Newport, OR, in 

February 2012. The mussels were shipped overnight to the University of Maine, Orono, 

ME, acclimated to control conditions (32 ppt, 12 °C), and fed for 3 w prior to low salinity 

treatments, similar to the culture of M. edulis and M. galloprovincialis described above. 

The M. trossulus mussels were exposed to a low salinity (20 ppt) or control (32 ppt) 

treatment for 24 or 48 h, but rather than shocking the mussels by direct salinity transfer, 

we slowly lowered the salinity by 1.25 ppm h-1 to allow the mussels to adjust to the 

treatment conditions. Following each experiment, the gill tissue was removed, flash 

frozen in liquid N2, and stored at -80 °C.  
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6.3.2   Hypersalinity Experiments 

Mussels from all three species were also exposed to high salinity conditions for 4 

and 24 h. For this experiment, the M. galloprovincialis and the M. edulis were from the 

same population samples described above, while a new sample of M. trossulus was 

obtained from Newport, OR, in 2017. All mussels were acclimated to control conditions 

(13.5 °C, 30 ppt) in a recirculating system at the University of Maine. Prior to 

experimentation, we inserted plastic spacers into the M. gallorpovinicialis and M. 

trossulus, but not M. edulis, to prop open the valves during treatment. The mussels were 

then placed into 1 l beakers containing control (30 ppt) or high salinity treatment (40 ppt) 

seawater (Crystal Sea®, Marine Enterprises, LLC) and held at 13.5 °C for 4 and 24 h. 

The gills from each mussel were dissected, flash frozen in liquid N2, and stored at -80 °C.  

6.3.3   Gene Expression Studies 

We used qPCR to monitor the expression of two genes involved in ornithine 

metabolism, ornithine aminotransferase (OAT) and ornithine decarboxylase (ODC), 

during low salinity treatment. Primers for qPCR analysis of OAT and ODC expression 

were designed from expressed sequence tags (ESTs) identified from our microarray study 

(Appendix B). A portion of the tissue from each sample was used to extract total RNA; 

the methods for the sample preparation, including the RNA extraction, cDNA synthesis, 

and the qPCR assays can be found in Section 4.3.6. Due to sequence divergence among 

the congeners at the OAT gene, an alternative reverse primer was used for the OAT qPCR 

assays with M. galloprovincialis and M. trossulus (Table 6.1). Expression of OAT and 

ODC was normalized to 40 S ribosomal protein (40S) and elongation factor 1a (EF1a) 

and analyzed using the DCt method (Bustin et al. 2009). 
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6.3.4   Ornithine Aminotransferase Activity Assays 

We used a modified end-point colorimetric assay, described by Peraino and Pitot 

(1963) to monitor the activity of ornithine aminotransferase (via production of pyrroline-

5-carboxylic acid, P5C; Figure 6.1) during low salinity exposure in larval and juvenile M. 

edulis. Proteins were extracted from a subset of each tissue sample or pool of larvae by 

placing roughly 50 mg of wet tissue into a 1.5 ml tube containing 200 µl of 

homogenization buffer (25 mM HEPES, 5 mM EDTA, 10% glycerol, 1% Triton X, 4 

µg/ml pyrroxidal phosphate, 1X PMSF, and cOmpleteÔ EDTA-free (Roche Diagnostics) 

Protease Inhibitors) and manually grinding with a pestle. The homogenized samples were 

spun at 13,2000 g for 10 m at 4 °C and the supernatants were removed and stored at -80 

°C. Protein concentrations were determined against a standard bovine serum albumin 

(BSA) curve using the Bradford Protein Assay (Bradford 1976). 

The ornithine aminotransferase assay was run by combining 200 ng of total 

protein with the enzyme assay mixture, which contained 7.5 µl 1M KPO4 buffer, 24 µl 

150 mM ornithine, 2.5 µl 200 mM aminobenzaldehyde, and 2 µl a-ketoglutarate. For 

each sample, we ran two replicate reactions as well as two control reactions that 

contained H2O instead of the enzyme substrate, a-ketoglutarate. The reactions were 

incubated at 20 °C for 2 h before the reaction was terminated by heat shock at 95 °C for 

10 m. The absorbance of the 100-µl sample was read at 440 nm on a UV-3100PC 

Scanning Spectrophotometer (VWRÒ) for the juvenile tissue samples and a DU-640 UV-

VIS Spectrophotometer (Beckman Coulter, Inc.) for the larval samples. We also ran a 

‘control’ protein sample with each assay that allowed us to standardize absorbance values 

and control for run-to-run variability. We quantified OAT activity with respect with 
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respect to the increase in P5C as a function of the total mass of protein added to each 

assay (µmoles P5C·g-1·protein h-1); activity estimates included adjusting the absorbance 

of our positive (containing a-ketoglutarate) reactions to that of the controls, multiplied 

the molar extinction coefficient of P5C  (2.71 x 103; Herzfeld and Knox 1968), and 

adjusted for the duration of the incubation and total protein added. 

6.3.5   Data Analysis 

All statistical analyses were performed in SSPS Statistics 22.0 (IBM 

Corporation). For the M. edulis qPCR data, the effects of low-salinity treatment on the 

DCt expression of OAT and ODC were tested using a two-factor ANOVA, with treatment 

and duration of exposure as the main effects, with an interaction term. We were also 

interested in understanding differences in the expression of these genes among closely 

related species, so we also ran a two-factor ANOVA for the 4, 24, and 48 h data with 

salinity treatment and species as the main effects, as well as the interaction of these 

variables. For the hypersalinity experiments, we designed a similar model to evaluate the 

effects of high-salinity treatment on the species-specific patterns of OAT and ODC 

expression. We ran two-factor ANOVAs for the 4 h and 24 h exposure data with high 

salinity treatment and species as main effects and an interaction term. All statistics for the 

qPCR data were run on the normalized DCt values and the hypotheses for each model 

were tested using a Type III Sum of Squares with an overall a = 0.05. The effects of low-

salinity treatment on ornithine aminotransferase activity in larval and juvenile M. edulis 

were also tested using a two-factor ANOVA. For each stage, we tested the low-salinity 

treatment and duration of exposure main effects on enzyme activity against a Type III 

Sum of Squares model with a = 0.05. For the models comparing responses among 
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species, we ran Fisher’s Least Significant Difference (LSD) post-hoc analyses to discern 

which species diverged in their regulation of OAT and ODC.  

6.4    Results  

6.4.1.   Regulation of Ornithine in Hyposaline-Challenged M. edulis 

The regulation of ornithine aminotransferase (OAT) and ornithine decarboxylase 

(ODC) is significantly affected by exposure to low salinity in larval and juvenile M. 

edulis. In veliger larvae, we observed a significant two- to four-fold increase in OAT 

expression (Figure 6.2a) and a one- to three-fold decrease in ODC expression (Figure 

6.3a) during low salinity exposure, as well as a significant decline in ODC expression in 

both control and treatment groups with prolonged exposure (F2,24 = 8.296, p = 0.002). 

OAT expression was unaffected by duration of exposure and, for both OAT and ODC, 

there were no significant interactions between treatment and duration of exposure in 

veligers. Ornithine aminotransferase enzyme activity mirrored OAT expression and was 

significantly higher in veligers from the low salinity treatment group (Figure 6.4a). 

Pediveligers also upregulated expression of OAT (Figure 6.2b) and increased OAT 

activity (Figure 6.4b) during low salinity treatment, although the expression of ODC was 

not significantly altered in treated pediveligers (Figure 6.3b). Neither length of exposure 

nor interaction between treatment and exposure affected the expression of OAT or ODC, 

or the activity of OAT in pediveligers.  

In juvenile mussels, the regulation of OAT and ODC during low salinity exposure 

was similar to larval mussels, although there were slight variations among tissues. The 

expression of OAT was significantly upregulated in the gills of treated mussels (Figures 

6.2c) and increased over 4-fold during low salinity exposure. This corresponded to an 
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Figure 6.2. OAT expression in hyposalinity-challenged M. edulis. OAT was upregulated more than 2-

fold in veliger (a) and pediveliger (b) larvae, and greater than 4-fold in the gill (c), mantle (d), and 

adductor tissues (e) of juvenile mussels exposed to low salinity. OAT expression is displayed as the 

fold induction on the primary y-axis, where the expression of the salinity treated groups is plotted 

relative to the controls on a log2 scale (bars) and the dotted line at 1 indicates no change in expression 

between treatments. The secondary y- axis shows the normalized DCt expression values for the control 

(solid line) and the low salinity (dashed line) treatments (± SE). 
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Figure 6.3. ODC Expression in M. edulis during low-salinity exposure. In veligers (a) and in the 

mantle tissue (d), ODC expression was significantly downregulated, but in pediveligers (b) and the 

gill (c) and adductor tissues (e) of juvenile mussels, ODC expression was unaffected by low salinity 

exposure. ODC expression is displayed as the fold induction on the primary y-axis, where the 

expression of the salinity treated groups is plotted relative to the controls on a log2 scale (bars) and the 

dotted line at 1 indicates no change in expression between treatments. The secondary y-axis shows the 

normalized DCt expression values for the control (solid line) and the low salinity (dashed line) 

treatments (± SE). 
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Figure 6.4. Ornithine aminotransferase activity in M. edulis. OAT activity was measured as the 

production of pyrroline-5-carboxylate (P5C) in µmoles·g-1 protein·h-1 ± SE. OAT activity was 

significantly increased in the veliger (a) and pediveliger (b) larvae and in the gill tissue (c) of juvenile 

mussels from the low salinity treatment (closed circles) relative the control groups (open squares). We 

did not observe increased OAT activity in the mantle (d) or adductor tissues (e) of low salinity-treated 

juveniles. Due to limited tissue availability from the 24 h exposure, OAT activity was only measured 

at 48 and 72 h in the adductor muscle. 
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increase in the OAT enzyme activity in the gill tissue (Figure 6.4c), which we observed at 

48 and 72 h of low-salinity exposure, resulting in a significant effect of the duration of 

exposure (F2,21 = 3.574, p = 0.046). The expression of ODC was not significantly 

different in the gills of treated animals relative to the controls (Figure 6.3c) and did not 

differ among the time points sampled.  

In the mantle tissue, we observed an upregulation of OAT during low-salinity 

exposure (Figure 6.2d), as well as a significant decrease in the expression of ODC 

(Figure 6.3d). There was no effect of duration of exposure or an interaction between 

treatment and duration of exposure on the expression of either gene. While we did 

observe a 3.5- to 7-fold increase in the expression of OAT in the mantle, the activity of 

the enzyme was not significantly increased in the treatment group (Figure 6.4d). There 

was no effect of duration of exposure nor the interaction between treatment and duration 

on the expression of OAT or ODC in the mantle tissue of juvenile M. edulis. 

We observed slightly different patterns in the expression of OAT and ODC in the 

adductor muscle. OAT was strongly upregulated during low-salinity treatment (Figure 

6.2e), with almost a 10-fold increase in expression at 48 h. Expression of ODC, on the 

other hand, was not significantly affected by low salinity exposure, although there was a 

slight upregulation at 24 h, which was not observed in the other tissues (Figure 6.3). 

There was no effect of duration of exposure or the interaction between treatment and 

length of exposure on OAT or ODC expression in the adductor. As observed in the 

mantle, increases in OAT gene expression did not correspond to increased activity of the 

OAT enzyme (Figure 6.4e). However, we were unable to measure OAT activity in the 

adductor after 24 h low salinity exposure because of limited tissue quantities. Overall, our 
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data indicate that OAT gene expression and OAT activity in M. edulis are generally 

increased during low salinity exposure, while ODC expression tends to be downregulated 

in the same individuals.   

6.4.2.   Ornithine Regulation in Congeners Exposed to Low Salinity 

We compared patterns of gene expression for OAT and ODC among the gill tissue 

of three mytilid congeners, M. edulis, M. trossulus, and M. galloprovincialis after 4, 24, 

and 48 h of low salinity treatment (Figures 6.5 and 6.6). For both genes, we observed 

significant differences in expression within the gill tissue of the three species, regardless 

of salinity treatment. At 4 h, we were unable to measure gene expression in M. trossulus, 

but found that OAT expression significantly differed between M. edulis and M. 

galloprovincialis (Figure 6.5a). In both species, low-salinity treatment results in a 

significant increase in OAT expression (F1,16 = 28.724, p < 0.001), although the 

magnitude of the response in M. galloprovincialis was 4 times greater than in M. edulis, 

which is reflected in the significant interaction term in the ANOVA between species and 

treatment (F1,16 = 18.102, p = 0.001). ODC was downregulated in treated M. edulis at 4 h, 

but not in M. galloprovincialis (Figure 6.6a), however, the effect of low salinity on 

expression in the two species was not significant (F1,16 = 1.002, p = 0.332).  

At 24 h of low-salinity exposure, there were also species-specific differences in 

OAT expression in the gill tissue (Figure 6.5), stemming from variation in the magnitude 

of the response to salinity treatment. OAT expression in M. galloprovincialis increased 

almost 20-fold (Figure 6.6b) during low salinity treatment, and to a lesser extent in the 

other species (F1,22 = 22.600, p < 0.001) leading to a significant interaction effect (F2,22 = 

11.572, p < 0.001) on OAT expression at 24 h. ODC expression also varied among  
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Figure 6.5. OAT expression in the gill of congeneric mussels exposed to low salinity. At 4 (a) and 24 h (b) 

of exposure, there were species-specific patterns of expression of OAT during low salinity stress. The F 

statistic and p values for each time point indicate differences in the response among species and not the 

effect of low salinity treatment. At 4, 24, and 48 h (c) or low salinity treatment, we observed a significant 

effect of treatment on OAT expression relative the control groups. Gene expression is graphed as the 

relative OAT fold induction (bars) for the low-salinity treatment (dashed line) relative to the controls (solid 

line). The fold induction is plotted on a log2 scale, where the dotted line at 1 indicates that there is no 

change in expression during low salinity exposure. The DCt values are the mean, normalized expression (± 

SE) for each species; letters indicate significant differences in expression among species at a = 0.05. 
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Figure 6.6. ODC expression in the gill of congeneric mussels exposed to low salinity. The expression of 

ODC during 4 h (a), 24 h (b), and 48 h (c) low salinity exposure was significantly different among species, 

although the effects of low salinity treatment on expression were not significant. M. edulis showed slight 

down-regulations of the gene (approximately 1-fold) at 4 and 48 h of exposure, while the other two species 

did not alter ODC expression during low salinity treatment. The F statistic and p values for each time point 

indicate differences in the response among species and not the effect of low-salinity treatment. Gene 

expression is graphed as the relative ODC fold induction (bars) for the low salinity treatment (dashed line) 

relative to the controls (solid line). The fold induction is plotted on a log2 scale, where the dotted line at 1 

indicates that there is no change in expression. The DCt values are the mean, normalized expression (± SE) 

for each species; the letters indicate significant differences in expression among species at a = 0.05. 
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species at 24 h, resulting from increases in the copy number of ODC in both control and 

treated M. galloprovincialis relative to the other two species and not from low salinity 

treatment (F1,22 = 3.407, p = 0.078). In all three species, the expression of ODC in the low 

salinity treatment was similar to that of the controls.  

As the length of exposure increased to 48 h, we observed a shift in the response 

among the three species, with respect to OAT expression (Figure 6.5c). At 4 and 24 h of 

exposure, OAT expression was significantly increased in M. galloprovincialis relative to 

the other two species, yet at 48 h the three species were more similar in their regulation of 

the gene during low salinity treatment. There was a significant effect of low-salinity 

exposure on expression of OAT among the three species (F1,22 = 10.023, p = 0.004). As 

was observed at 24 h, there was no effect of low salinity treatment on ODC expression in 

the three species, but a significant species-effect (Figure 6.6c) resulting from fewer 

copies of ODC in both control and treated M. edulis. The tendency to upregulate OAT 

and downregulate ODC during low salinity exposure was similar across species, although 

the timing and magnitude of gene regulation did vary, especially between M. 

galloprovincialis and the two other species.  

6.4.3.   Ornithine Regulation During Hypersalinity Exposure 

During high salinity exposure, the regulation of OAT and ODC appeared to be 

opposite of what we observed during low salinity exposure in M. edulis, M. trossulus, and 

M. galloprovincialis. There were significant differences in the patterns of OAT and ODC 

expression among species. After 4 h at 40 ppt, there was a slight, but non-significant, 

decrease in OAT expression (F1,24 = 3.810, p = 0.068) in all three species (Figure 6.7a). 

At the same time, ODC expression was increased in M. galloprovincialis, decreased in  
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Figure 6.7. OAT expression in the gill of congeneric mussels exposed to high salinity. Expression of OAT 

differed among the three species, but was not significantly affected by high salinity exposure. OAT 

regulation was significantly different in M. trossulus compared to the other species and showed patterns of 

upregulation at 24 h (b), but had reduced copy numbers compared to the other two species, regardless of 

treatment at 4 h (a). OAT expression is displayed as the fold induction on the primary y-axis, where the 

expression of the salinity treated groups is plotted relative to the controls on a log2 scale (bars) and the 

dotted line indicate at 1 indicates no change in expression between treatments. The secondary axis shows 

the normalized DCt expression values for the control (solid line) and the low salinity (dashed line) 

treatments (± SE). 
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Figure 6.8. ODC expression in the gill of congeneric mussels exposed to high salinity. There were species-

specific patterns of expression of ODC at 4 h (a) and 24 (h) of high salinity exposure, indicating that the 

copy number of ODC varies between species, with M. trossulus varying from the other two. There was also 

a significant effect of treatment at 4 h, where ODC was upregulated in response to high salinity conditions. 

ODC expression is displayed as the fold induction on the primary y-axis, where the expression of the 

salinity treated groups is plotted relative to the controls on a log2 scale (bars) and the dotted line indicate at 

1 indicates no change in expression between treatments. The secondary axis shows the normalized DCt 

expression values for the control (solid line) and the low salinity (dashed line) treatments (± SE).  
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M. trossulus, and showed no difference among the treatment and control groups in M. 

edulis (Figure 6.8a; F1,24 = 2.208, p = 0.150). We also observed a significant interaction 

effect from treatment and species on the expression of ODC. Overall, expression of OAT 

and ODC was greater in M. trossulus compared to its congeners at 4 h, regardless of 

salinity treatment.  

After 24 h in hypersalinity conditions, the species-specific OAT and ODC 

expression patterns became more apparent. In M. edulis and M. galloprovincialis exposed 

to 40 ppt seawater, OAT expression decreased relative to the controls, while it increased 

after the same exposure in M. trossulus (Figure 6.7b). The effects of treatment and the 

interaction of treatment and species were not significantly different for OAT expression in 

these three species. With respect to ODC expression, we observed significant increases in 

expression resulting from low salinity treatment (F1,22 = 15.823, p = 0.001), with the 

largest increase in M. galloprovincialis and the lowest in M. edulis (Figure 6.8b), and a 

significant interaction between species and salinity treatment (F2,22 = 3.727, p = 0.040). 

As seen in our other experiments, all three species differed in the copy number of ODC 

regardless of treatment, with the lowest mRNA abundance in M. edulis and the highest in 

M. trossulus. However, many of the M. trossulus specimens in the control and treatment 

groups spawned during the experiment, so these results need be interpreted with caution.  

6.5   Discussion 

We found that OAT is typically upregulated when blue mussels (Mytilus spp.) are 

acutely exposed to low salinity, while ODC is downregulated. Our findings suggest that 

changes in ornithine metabolism are an important part of the osmotic stress response in 

blue mussels, although the exact role of ornithine metabolism in invertebrates during 
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hypoosmotic exposure is not well understood. Lockwood and Somero (2011) suggested 

that an increase in ODC expression in M. galloprovincialis after 4 h at low salinity could 

potentially be important for maintaining cell volume through pathways involved 

polyamine synthesis. In other species, Lovett and Watts (1995) noted declines in 

polyamine levels in the blue crab, Callinectes sapidus, while Watts et al. (1996) found 

increased activity of ODC in brine shrimp, Artemia franciscana. In both studies, the 

authors speculated that inhibition of Na+, K+ ATPase activity by putrescine may be 

important during hypoosmotic stress, but were undecided on whether the response would 

be beneficial or harmful to the cell (Lovett and Watts 1995, Watts et al. 1996). In 

mammals, increases in polyamine levels during cellular hypoosmotic stress are thought to 

regulate ion concentrations through control of ion and membrane channels (Rhee et al. 

2007, Miller-Fleming et al. 2015). In plants polyamines can serve as osmolytes (Groppa 

and Benavides 2008, Tiburcio et al. 2014) and in other species are thought to help 

maintain cellular homeostasis (Hird 1986, Kournoutou et al. 2014). 

The role of OAT in the response to osmotic stress has received more attention. 

Meng et al. (2013) attributed an increase in OAT and proline dehydrogenase expression in 

the oyster, Crassostrea gigas, to the importance of proline catabolism during low salinity 

exposure. On the other hand, during hyperosmotic exposure, there is more evidence that 

OAT activity may be important for combatting cellular stress. In studies of the ribbed 

mussel Geukensia demissa, OAT activity during hypersalinity exposure led to increased 

concentrations of proline (Greenwalt and Bishop 1980, Bishop et al. 1981), which help 

maintain osmotic balance. A similar response is well documented in plants (Delauney 

and Verma 1993, Kishor et al. 2005, Liang et al. 2013), where proline accumulation not 
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only serves a role in intracellular isosmotic regulation but also in stabilizing the cells and 

as a source of energy. However, there is also evidence that polyamine accumulations 

occur in plants during hyperosmotic stress, by acting as osmolytes and helping to 

stabilize the cell from osmotically-induced damage (Groppa and Benavides 2008, 

Tiburcio et al. 2014). It is possible that utilization of ornithine through both pathways is a 

necessary component of osmotic stress responses.  

The increased expression of OAT and decreased expression of ODC in larval and 

juvenile M. edulis, suggests that conversion of ornithine into glutamate or proline and not 

the alternative decarboxylase pathway leading to polyamine production, is utilized by this 

species during hypoosmotic exposure. We observed a significant upregulation of OAT 

over a 1–3 d exposure to low salinity in veliger and pediveliger larvae and within the gill 

and adductor muscle of juveniles (Figure 6.2), as well as an increase in OAT enzyme 

activity in larvae and in the gill tissue of juveniles (Figure 6.4). Interestingly, we did not 

observe increases in OAT activity in the adductor and mantle tissue, despite these tissues 

heavily upregulating OAT gene expression during low salinity treatment. It is possible 

that regulation of ornithine aminotransferase differs across developmental stage (i.e. 

transcriptionally regulated in larvae and not in juveniles) or among various tissues, as has 

been reported in rats (Meuckler et al. 1984). Alternatively, these observations may be the 

result of a time lag between increases in gene expression and protein concentrations. In 

our preliminary study, we found that larvae upregulated OAT after only 2 h of low 

salinity exposure, while the response was somewhat delayed in the gill tissue of juveniles 

(Figure C.3). There is evidence for rapid turnover of OAT enzyme in rats (Swick et al. 

1968), so a lack of enzyme activity during low salinity treatment may have stemmed 
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from increased turnover that had not been compensated for by changes in gene 

expression until after 48 h. In either case, there is strong support that OAT plays an 

important role during hypoosmotic exposure in M. edulis.  

The physiological significance of these findings, however, is difficult to predict, 

because either glutamate or proline can be synthesized by activity of OAT (Figure 6.1). 

We were unable to reliably quantify the abundance of proline or glutamate via NMR-

based metabolomics (Chapter 3), indicating that the concentrations of both were 

relatively low in our larval and juvenile M. edulis samples. Even so, glutamate may be 

rapidly utilized under hypoosmotic conditions as glutamate catabolism through glutamate 

dehydrogenase (GDH) activity is a means of reducing intracellular osmolyte 

concentrations while generating energy (Livingstone et al. 1979, Burcham et al. 1983, 

Moyes et al. 1985). Similarly, the standing stock of proline may be low as it can be 

incorporated into collagens (Hird 1986) or used as in intermediate to be shunted into the 

Krebs cycle (Bishop et al. 1994). Additional studies need be conducted to determine the 

broader implications of OAT activity during hypoosmotic stress.  

The expression of ODC during low salinity exposure in M. edulis was more 

variable than that of OAT. In veligers and the mantle tissue of juveniles, we observed a 

significant downregulation of the gene, but no effect of treatment in pediveligers, the gill, 

or adductor muscle (Figure 6.3). For the most part, ODC expression did not change 

relative to the controls or expression declined during low salinity treatment. Ornithine 

decarboxylase is highly regulated in mammals at the level of transcription and 

translation, as well as by changes in the abundance and activity of the ornithine 

decarboxylase antizyme (Pegg 2006). Although we did not observe changes in expression 
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of the ODC antizyme (unpublished microarray data), it is difficult to make firm 

conclusions about whether variation in ODC expression during low salinity stress has an 

impact on polyamine concentrations in M. edulis. 

The response of OAT and ODC expression to low salinity exposure within the gill 

tissue of M. edulis is similar to what we observed in other mytilids species. There was a 

significant effect of low salinity treatment on OAT expression among the three species, as 

OAT was upregulated 1.5- to 2.5-fold in M. trossulus and 4- to 17-fold in M. 

galloprovincialis (Figure 6.6). ODC expression, on the other hand, was largely 

unaffected by low salinity exposure in M. trossulus and M. galloprovincialis (Figure 6.7), 

contradictory to the findings of Lockwood and Somero (2011). Together, these studies 

suggest that all three species of mussels rely on the conversion of OAT-mediated 

conversion of ornithine to glutamate or proline rather than ODC-mediated production of 

polyamines during low salinity exposure, mytilids, as has been observed in oysters (Meng 

et al. 2013). These patterns of expression were reversed during high salinity exposure in 

all three species. 

Interestingly, we found that the baseline expression of ODC was generally higher 

in M. galloprovincialis compared to M. edulis or M. trossulus, regardless of salinity 

exposure (Figure 6.6). Lockwood and Somero (2011) found that there were relatively few 

changes in the transcriptomic response to low salinity between M. galloprovincialis and 

M. trossulus, although gene expression values are always normalized to controls. It is 

possible that differential expression does not occur because there are already adequate 

mRNA stores to serve as templates for effector proteins. Alternatively, higher levels 

ODC expression in M. galloprovincialis compared to M. edulis or M. trossulus may 
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indicate that polyamine levels are higher in this species. An abundance of polyamines 

may play a role in the success of M. galloprovincialis at invading new habitats or may 

lower their tolerance to low salinity by necessitating greater increases in OAT expression 

to mount the same osmotic response as M. edulis and M. trossulus.  

Overall, our results indicate that utilization of ornithine during osmotic stress may 

be an adaptive response in mytilids congeners. We have provided evidence that during 

low salinity exposure, the activity of ornithine aminotransferase increases the production 

of either glutamate or proline and that this response decreases during hyperosmotic 

exposure. The activity of ornithine decarboxylase may be inversely related to the changes 

observed in OAT, suggesting a coordinated shift in the fate of ornithine from hypo- to 

hyper-osmotic conditions. However, given the complexity of ODC regulation, further 

studies should be conducted to determine the role of polyamines in the osmotic stress 

responses of mytilid mussels. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

 Low salinity exposure affects larval and juvenile mussels at all levels of 

biological organization. At the organismal level, we have shown that exposure to low 

salinity conditions early in development carries through metamorphosis and negatively 

impacts the size at metamorphosis and the size of early post-settlement juvenile mussels. 

Larval exposure to low salinity also affects post-metamorphic mussels’ tolerance to low 

salinity conditions, although it appears this effect depends on when larval stress in 

incurred. Mussels that were exposed to low salinity as veligers and as juveniles had 

reduced growth rates relative to other treatment groups, while those treated as 

pediveligers and juveniles had higher growth rates, suggesting that previous exposure, in 

some cases, may help condition mussels for repeated low salinity events (Chapter 2). The 

varying effects of low salinity exposure on veliger and pediveliger larvae likely results 

from metabolic differences and variation in the developmental complexity among these 

stages. Interestingly, we found that pediveligers share more metabolites with juvenile 

mussels than veligers do, suggesting that the pediveliger stage is a morphological and 

metabolic transition between veligers and juveniles. 

 Our comparisons of metabolite baselines under ambient conditions indicates there 

are appreciable the stage- and tissue-specific differences in osmolyte concentrations in 

the cells of blue mussels. Likewise, gene copy number variation among stages and tissues 

was notable; establishing the inherent variability that exists at these levels. These studies 

provided us with an appropriate physiological context for interpreting the transcriptomic 
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responses we observed during hypoosmotic exposure. Not surprisingly, many of the 

differences we observed in the composition of the free amino acid pools seem to reflect 

variation in function and morphology of the different stages or various tissues (Chapter 

3). In some cases, this trend was also observed in patterns of expression for genes that 

likely play a role in maintaining cellular homeostasis (Chapter 4). There were other 

instances where analysis of baseline expression provided insight as to why larval stages 

are more susceptible to low salinity exposure than juvenile mussels (Chapter 5) or why a 

species is less tolerant to low salinity than its congers (Chapter 6). These results highlight 

the need for more comprehensive baseline studies of the cellular and molecular 

mechanisms of blue mussel physiology, especially at early life history stages.  

 We are just beginning to scratch the surface in our understanding of how blue 

mussels respond to short-term, low-salinity exposure. Previous studies of the 

hypoosmotic stress response in blue mussels provided limited information because they 

focused on a single tissue, a single time point, or evaluated a single process. By using 

comparative and integrative approaches, we have found evidence that the osmotic stress 

response in blue mussels is developmentally, spatially, and temporally dynamic and 

incorporates levels of complexity that cannot be observed or appreciated without a 

broader context. For instance, we observed that both larval and juvenile blue mussels 

utilize glycine as the predominant osmolyte during low salinity exposure, suggesting that 

the response of these stages is similar. However, further analysis of excretion rates, the 

magnitude of glycine efflux, other changes in the free amino acid pools, and gene 

expression data suggest that juveniles may be much better at regulating intracellular 

osmolytes. Larvae, on the other hand, may have to expend more energy to combat 
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leakage of important osmolytes from their cells because of increased surface area to 

volume ratios and the absence of a behavioral avoidance to low salinity (Chapter 3). We 

also observed differences in the regulation of calmodulin and calmodulin-like genes 

during low salinity exposure (Chapter 5), as well as in the expression and activity of 

genes involved in ornithine catabolism (Chapter 6) in early life history stages. 

Collectively, our findings suggest that larval mussels do not have the same capacity to 

respond to low salinity exposure as their post-metamorphic counterparts. 

 A common goal of ecophysiological studies is to improve our understanding of 

how the physiology of a species might permit acclimation and even adaptation to climate 

change-induced shifts in their natural environment. This includes identifying the ‘weak 

links’ in the system where physiological limits are reached, and increasing knowledge of 

the mechanisms that control these limits. While we are far from forecasting what the 

effects of decreased salinity will have on blue mussel populations, it is apparent that the 

vulnerability of blue mussel larvae will be a critical factor for making these predictions. 

Without further consideration of how larval stages respond to environmental stress, we 

will never be able to fully understand the effects of climate change on the resilience of M. 

edulis.   
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APPENDIX A: SUPPLEMENTAL MATERIAL FOR CHAPTER 2 

Table A.1. Supplemental table containing complete dataset for peaks identified in M. 

edulis. The peaks listed here indicate the chemical shift (in ppm, relative to TSP) for each 

metabolite observed using 2D-TOCSY (Figure 3.2), as well as the multiplicity for each 

peak when it could be determined (s = singlet, d = doublet, dd = doublet of doublets, t = 

triplet, and m = multiplet), as a continuation from Table 3.2. When appropriate, the 

possible identity for the metabolite is included and the tissue or sample from which the 

metabolite was identified (P = pediveliger, G = gill, M = mantle, A = adductor).  

No Chemical Shift (ppm) Possible Identity 
Veliger-specific metabolites 
27 1.33, 1.57  
28 1.73, 4.18  
29 2.14, 2.23  
30 2.70, 3.58 Sarcosine 
31 2.74, 3.27, 3.44  
32 2.97, 4.30  
33 3.02, 4.19  
34 3.09, 3.57  
35 4.13, 4.18  
36 4.36, 5.97, 7.95  
37 4.39, 4.49, 6.13  
38 4.43, 6.68  
Pediveliger-specific metabolites 
39 1.4 (d)  
40 1.78, 3.12  
41 2.22, 2.24  
42 2.72, 3.46  
43 3.60, 5.39  
44 3.61, 3.84  
45 3.63, 3.96  
46 3.75, 4.65  
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Table A.1, continued… 
No Chemical Shift (ppm) Possible Identity 
Pediveliger-specific metabolites, cont. 
47 3.90, 4.10  
48 4.17, 4.28  
49 4.27, 4.58  
50 5.32, 7.03  
51 7.85 (m)  
Other larval-specific metabolites 
52 3.37, 4.44  
53 3.79, 3.90  
Gill-specific metabolites 
54 1.86, 3.70  
55 2.35 (m)  
56 3.23, 4.65  
57 3.38, 3.43  
58 3.41, 3.69  
59 3.42, 3.80  
60 3.46, 3.71  
61 3.46, 4.64  
62 3.52, 3.70, 3.82, 5.22 Glucose 
63 3.69, 3.72  
64 4.48, 5.13  
65 6.90  
66 7.19 (m)  
Mantle-specific metabolites 
67 1.47, 1.90  
68 3.07, 3.19  
69 3.11, 3.41  
70 3.17  
71 3.34, 4.02  
72 3.48 (dd), 3.68 (dd) Cysteine-S-sulfate 
73 3.90, 3.96  
74 5.23, 5.30  
75 7.31  
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Table A.1, continued… 
No Chemical Shift (ppm) Possible Identity 
Adductor-specific metabolites 
76 0.95 (m)  
77 1.08, 1.13  
78 1.19  
79 1.49, 3.70  
80 2.46, 3.41  
81 2.68, 2.73 Citric acid 
82 2.76, 2.81  
83 2.86, 3.44, 3.59, 3.80 Unknown #31 
84 3.13, 3.24  
85 3.18, 3.22  
86 3.23, 3.75  
87 3.9 (m)  
No Chemical Shift (ppm) Possible Identity Source of Metabolite  
Juvenile-specific metabolites 
88 2.25, 3.88, 4.12, 4.64  M, A 
89 6.59  G, M 
90 7.39 (m)  G, M 
Other metabolites 
91 5.21 (d) a-glucose P, A 
92 5.38 (d) Allantoin P, A 
93 6.54 (s)  P, A 
94 3.08, 3.41  P, G 
95 4.11, 4.38  P, G 
96 4.49, 6.14  P, G 
97 3.06 (m)  P, G, M 
98 8.29 (m)  P, G, A 
99 8.33 (m)  P, G, M 
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APPENDIX B: 
 

SUPPLEMENTAL MATERIAL FOR GENE EXPRESSION STUDIES 

 

B1. Microarray Analysis 

 There were 10,241 putative genes where we observed signal from 3 or more of 

the probes for the M. edulis dataset and 10,448 in the M. trossulus dataset, resulting in a 

total of 10,880 genes. A subset of these genes was selected from each dataset in which 

there was a greater than 1-fold change in expression between the treatment and control 

groups at 8 or 32 h of exposure to 20 ppt. This refined the number of genes of interest to 

4,697 from M. edulis and 5,055 from M. trossulus, for a total of 5,817 genes. We then 

identified 416 that were differentially expressed between the two species (Table B.1) and 

looked at the functional annotation to determine which of these may play an important 

role in the cellular response to salinity stress. Of the 62 genes of interest (Figure 4.1), we 

selected a small subset, including betaine-homocysteine S-methyltransferase, taurine 

transporter, ornithine aminotransferase, and calmodulin, to study further using a more 

targeted qPCR approach.  

B2. Marker Development 

Markers were developed using sequence information in the M. californianus EST 

database, targeting those that showed differential expression in the microarray study. 

Primer sets were tested by amplification using the polymerase chain reaction (PCR), in a 

25-µl reaction. The PCR master mix contained 2.5 µl 10X PCR buffer, 0.75 µl MgCl2, 

0.5 µl 10 mM dNTP mix, 0.25 µl of the reverse and forward primers, 0.2 µl Taq-DNA 

polymerase (Invitrogen), and 19.6 µl nuclease-free water. For each reaction, we added 1 
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µL of cDNA template to 24 µl mix and ran the PCR in an Eppendorf 5333 MasterCycler 

thermal cycler. PCR amplifications followed a standard protocol, with a denaturing step 

at 94 °C for 2 m, 30 cycles consisting of 20 s denaturing step at 94 °C, 30 s annealing at 

50 °C, and 2 m elongation at 72 °C, followed with a final incubation at 72 °C for 5 m. 

Products were run on a 2 % agarose gel containing ethidium bromide at 75 V for 45 m 

and visualized with UV-light. 

 cDNA samples that were used for sequencing and PCR amplifications were 

prepared by the protocol outlined in Section 4.3.6. We used tissue samples from adult M. 

edulis and M. trossulus that had been collected for other studies; some of the animals 

were untreated, while others had been exposed to varying degrees of low salinity 

exposure. We attempted to obtain sequence data from multiple individuals of each 

species to develop primer sets and to ensure that we were confident that the sequences we 

were amplifying were coming only from our gene of interest.  

 We also used 3’ and 5’ RACE (rapid amplification of cDNA ends) to obtain full 

sequence information for many of our genes of interest. For the 3’ RACE reactions, we 

mixed 20 units RNase Inhibitor, 1 µg of total RNA, and 12 mM CDSP1 Oligo dT primer 

(5’ AAGCAGTGGTATCAACGCAGA 3’) in 64 µl nuclease-free H2O, incubated the 

reaction for 10 m at 65 °C, and cooled to 42 °C. We then added 20 µM 5X First Strand 

Buffer (Invitrogen), 2 µl 0.1 M DTT, 10 µl 10 µM dNTPs, and 0.5 µl RNase Inhibitor 

and continued to incubate at 42 °C for 2 m. Finally, we added 2 ml of Superscript II 

Reverse Transcriptase (Invitrogen), incubated for 90 m at 42 °C, before inactivating the 

reaction by heating to 85 °C for 15 m. The product was cleaned up using a PCR 

purification kit (Promega Corporation) and eluted in 40 µl. The first strand cDNA was 
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amplified using Touchdown PCR. The master mix for the reaction is described above and 

used a gene specific primer with a PII upstream adaptor primer (5’ AAG CAG TGG TAT 

CAA C 3’). The cycling protocol for the touchdown PCR is as follows: 1 m at 94 °C, 10 

cycles of 94 °C for 30 s, 60 °C for 30 s, with a 1 °C decrease every cycle, followed by 2 

m at 72 °C, 30 cycles of 94 °C for 30 s, 50 °C for 30 s and 72 °C for 2 m, and a final 

incubation at 72 °C for 5 m. We then performed a nested PCR amplification using 1:100 

dilution from the 1st strand amplification as template, a PII short adapter primer (5’ GGT 

ATC AAC GCA GAG T 3’), and an internal gene specific primer. Products were cleaned 

up using the Wizard Gel Purification Kit (Promega Corporation) and sequenced by the 

DNA Sequencing Facility at the University of Maine (Orono, ME).  

The 5’ RACE reactions were performed following the 3’ RACE protocol, with the 

following modifications to the initial reverse transcriptase reactions. We mixed 1 µg total 

RNA with 1 µL of 12 µM gene specific primer, 1 µl 12 µM PRS IIA adapter primer (5’ 

AAG CAG TGG TAT CAA CGC AGA GTA CC 3’) and 0.5 µl RNase OUT in a 5 µl 

reaction and incubated at 65 °C for 2 m. The reaction was cooled to 42 °C and then we 

added 5 µl of 5X ImProm-II Reaction Buffer (Promega Corporation), 1 µL 0.1 M DTT, 

and 1 µl ImProm II Reverse Transcriptase (Promega Corporation). The reaction was 

incubated at 42 °C for 1 h and then heated to 65 °C for 10 m. We then added 40 µl of 

nuclease-free water to the reaction before proceeding to the 1st strand cDNA synthesis.  

Betaine-homocysteine S-methyltransferase  

Primers were designed using sequence information from the M. californianus 

EST that corresponded to our analysis of the microarray study (ES402453; Table B.1). 

Using BHMT FOR2 and BHMT REV 2 (Table B.2), we obtained 750 bp of sequence 
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information from both M. edulis and M. trossulus. We targeted areas conserved between 

the two species to develop qPCR for BHMT. There is 99% homology between our 

sequence, which covers the middle portion of the coding region, and Crassostrea gigas 

(EKC27615.1; Figure B.1). Our sequence data, as well as the position of the primers we 

developed can be found in Figure B.2.  

Taurine Transporter 

The taurine transporter gene has been described in M. galloprovincialis by Hosoi 

et al. (2005). We used sequence data available from M. galloprovincialis (GenBank 

AB190909) to design qPCR primer sets (Table B.2). The position of the qPCR primers 

can be found in Figure B.3. Amplification of this gene using genomic DNA can also be 

used as a marker for species identification between M. edulis and M. trossulus because of 

variations in introns between the congeners.  

40S Ribosomal Protein 

 We used ES387615 from the M. californianus database to develop primers 

targeting the 40S Ribosomal Protein (Figure B.4). This gene was targeted as a 

normalizing or reference gene for qPCR; the primer sets are listed in Table B.3.  

Ornithine Aminotransferase 

 Ornithine aminotransferase (ES398776) was upregulated over 2-fold in M. edulis 

after 24 and 48 h low salinity exposure, while showed less of an upregulation in M. 

trossulus at the same time points (Table B.1). Primers were developed to target OAT in 

M. edulis (Table B.4) and to obtain sequence information for developing qPCR primers. 

The sequence for OAT, as well as the position of the primers can be found in Figure B.5. 

Ornithine Decarboxylase 
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 Ornithine decarboxylase was identified by Lockwood and Somero (2011) in a 

similar microarray study using M. trossulus and M. galloprovincialis. Because ODC also 

functions in ornithine metabolism, opposite of OAT, we designed primers to look at the 

role of this pathway in the stress response out the of M. californianus database targeting 

ES390663 (Table B.5). There are two other ESTs that BLAST as ODC in the M. 

californianus database and it is probable that there are two genes, although we were 

unsuccessful in amplifying the other targets. The partial sequence information for ODC 

with position of the primers can be found in Figure B.6. 

Calmodulin 

We identified calmodulin in the M. californianus database (ES394383) by 

sequence homology to CaM in other species. Initially, we designed CaM For to amplify 

with one of the reverse primers for CAML2 (Table B.7). We also used 3’ RACE to obtain 

sequence for the entire gene and then designed our qPCR primers. The sequence 

information is in Chapter 5, but the position of the primers within the sequence are in 

Figure B.8.  Our primer sets were designed in areas of dissimilarity between the CaM-

like genes to ensure we were targeting calmodulin and not a similar gene. Calmodulin 

was differentially expressed in the microarray study and was downregulated in M. 

trossulus and upregulated in M. edulis (Table B.1). 

Calmodulin-like 1 

 CAML1 was initially identified from the microarray (Table B.1) because it was 

differentially expressed between M. edulis and M. trossulus during low salinity exposure. 

The EST from the microarray (ES392136) was identified as calmodulin using the Basic 

Local Alignment Search Tool (BLAST®, National Library of Medicine) because of 
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overlap in the EF-hand domains, although there is only 31% sequence homology between 

CaM and CAML1. We developed a series of primer sets (Table B.6, Figure B.8) using 

PCR amplifications and 3’ RACE to obtain sequence information, which is detailed in 

Chapter 5. These primer sets do not amplify a gene in larval samples; using 3’ RACE 

three bands of approximately 1000, 650, and 200 bp would amplify but the sequences do 

not contain an open reading frame. We were not able to obtain full sequence information 

from M. trossulus because there seemed to be a lot of variability in the CAML1 sequence 

between the two species.  

Calmodulin-like 2 

To identify another CaM-like gene in M. edulis, we aligned all of the CAML 

sequences in M. californianus and chose one EST that had the most sequence homology 

to CaM (ES406016). We called this gene calmodulin-like 2 and then designed primers to 

obtain sequence information (Table B.6). We used PCR amplifications using our primer 

sets as well as 3’ and 5’ RACE to sequence the entire CAML2 gene (Figure B.9).  Our 

qPCR primers were designed to target areas that differed in sequence from CaM to ensure 

we were amplifying the appropriate gene of interest.  

Dermatopontin  

Dermatopontin (DPT) was initially chosen as a gene of interest because of its 

differential expression between M. edulis and M. trossulus in the microarray study (Table 

B.1). We designed primers (Table B.7) from M. califonianus using ES737940. We had 

trouble amplifying more than 100 bp in either M. edulis or M. trossulus and decided not 

to continue developing the marker. The sequence for DPT can be found in Figure B.10. 

Sarcoplasmic Calcium Binding Protein  
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Sarcoplasmic calcium binding protein or SCBP was also differentially expressed 

between M. edulis and M. trossulus (Figure B.1). We were interested in this gene because 

of its role in calcium signaling and buffering, so we developed primers using an EST 

from M. californianus (ES390981, reverse compliment sequence; Table B.7). We 

developed qPCR assays for this gene and we able to obtain roughly 300 bp of sequence 

information from M. edulis. We ran some preliminary qPCR studies of SCBP expression 

in larval mussels and it was upregulated after 24 and 48 h of exposure. However, we did 

not use this marker in our more recent studies and further assays should be run to 

determine the role of SCBP during low salinity exposure. The sequences for M. edulis 

and M. trossulus was not very similar, so primer sets only target M. edulis (Figure B.11).  

T-complex Testes-specific Protein 1  

T-complex testis-expressed-1 (TCTEX) is a dynein light chain protein involved in 

cytoskeletal reorganization. This gene was strongly upregulated in M. edulis during low 

salinity exposure (Figure B.1) so we used information from the microarray (ES738040) 

to develop species-specific primer sets (Table B.7). We have most of the gene sequenced 

(Figure B.12) and ran some preliminary qPCR assays using the primers we developed. 

The gene was upregulated in larvae after 48 h of exposure to low salinity, but the marker 

was never used in other qPCR assays.  
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Figure B.1. Multiple sequence alignment of BHMT in bivalves. The sequence alignment 

shows the similarity of BHMT in M. californianus and C. gigas, as well as the overlap for 

the 260 amino acids that we have sequenced in M. edulis. Areas where we observed 

differences in the amino acid sequence are shown; changes in C. gigas are shown in blue, 

while the variation between M. edulis and M. californianus are shown in orange and red, 

respectively. There is a conserved metal binding domain that is highlighted in gray. The 

sequences highlighted in blue are areas we targeted from probe development in M. 

californianus.  
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Figure B.2. BHMT sequence information from M. edulis. The nucleotide and 

corresponding amino acid sequence for BHMT in M. edulis are shown with the positions 

of the primers used for sequencing and qPCR (Table B.2).  
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Figure B.3. Position of TAUT qPCR primers in the M. galloprovincialis coding 

sequence. Primers were designed from the sequence in Hosoi et al. (2005), but because of 

the size of the coding sequence, only the 3’ region of the gene that the qPCR primers 

target is shown. The position of an intron that occurs between M. edulis and M. trossulus 

is also shown.
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Figure B.4. 40S Ribosomal Protein coding sequence from M. californianus. Our 40S 

Ribosomal Protein primers were designed out of the M. californianus database 

(ES387615). The position of the primers within the gene are indicated.  
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201 
ggttgttttgtatgggatgtagaaggcaaccgatactttgactaccttagtgcatatagt 
 G  C  F  V  W  D  V  E  G  N  R  Y  F  D  Y  L  S  A  Y  S  
 
261            OAT Q3F>>>>>>>>>>>>>>>>>>> 
gcatgtaaccaaggacattgtcatccaaagattgtcaaggcattaaatgaccaagcatcc 
 A  C  N  Q  G  H  C  H  P  K  I  V  K  A  L  N  D  Q  A  S  
 
321 
aagttaaccttracctcaagagcattctacaatgatgtgttgggagaatttgaggaatat 
 K  L  T  X  T  S  R  A  F  Y  N  D  V  L  G  E  F  E  E  Y  
 
381 
atcacaaaaatgttcaaatatgataaagttcttcctatgaatacaggtgtagaaggagga 
 I  T  K  M  F  K  Y  D  K  V  L  P  M  N  T  G  V  E  G  G  
 
441<<<<<<<<<<<<<<<<<<<<<<OAT Q1F 
gaaacagcctgtaaattagccaggaagtgggcttataatgtgaagaaagttccagataac 
 E  T  A  C  K  L  A  R  K  W  A  Y  N  V  K  K  V  P  D  N  
 
501    <<<<<<<<<<<<<OAT Q2F 
caagccaagattgtgtttgctgctggtaatttctggggtcgtaccctagctgcaatctca 
 Q  A  K  I  V  F  A  A  G  N  F  W  G  R  T  L  A  A  I  S  
 
561 
tcatctacaga 
 S  S  T       
 

Figure B.5. Sequence information for OAT from M. edulis. The amino acid sequence for 

M. edulis BLASTS as the mitochondrial isoform of OAT and has 76 % similarity to that 

of Homo sapiens.  Our sequence only covers a portion of the gene, which is 439 aa long 

in humans. 
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Figure B.6. ODC sequencing primers in the M. edulis coding sequence. This gene only 

shares 50 % sequence homology to humans and 58 % similarity to Haliotis diversicolor. 

In humans, ODC is 461 aa so the region depicted is toward the 3’ end of the gene. There 

are likely 2 ODC genes in M. edulis but we specifically targeted this region to compare 

our result to Lockwood and Somero (2011), using the primers found within the sequence.
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CAM FOR>>>>>>>>>>> 
CAM Q1F>>>>>>>>>>>>>>>> 
atggctgatcagctgacagaagaacaagttgctgagtttaaagaggctttcagtctgttc 
 M  A  D  Q  L  T  E  E  Q  V  A  E  F  K  E  A  F  S  L  F  
 
61 
gacaaagatggcgacggtaccattaccacaaaagaactaggaacagtcatgagatctctc 
 D  K  D  G  D  G  T  I  T  T  K  E  L  G  T  V  M  R  S  L  
 
121 
ggacaaaatccaacagaggcagaactacaagacatgattaacgaagtagatgctgatgga 
 G  Q  N  P  T  E  A  E  L  Q  D  M  I  N  E  V  D  A  D  G  
 
181                                                       << 
aatggaacaatagatttcccagaattcttgacaatgatggccaggaaaatgaaagattgt 
 N  G  T  I  D  F  P  E  F  L  T  M  M  A  R  K  M  K  D  C  
 
<<<<<<<<<<<<<CAM Q1R 
gacaatgaggatgagttacgagaagcattcaaagtttttgataaagacggtaatggattc 
 D  N  E  D  E  L  R  E  A  F  K  V  F  D  K  D  G  N  G  F  
 
301 
atcagtgcagctgaacttagacacgtgatgacaaatcttggagaaaaattaacagacgaa 
 I  S  A  A  E  L  R  H  V  M  T  N  L  G  E  K  L  T  D  E  
 
361 
gaggtagatgagatgatcagggaggcagatattgacggtgacggacaagttaactatgac 
 E  V  D  E  M  I  R  E  A  D  I  D  G  D  G  Q  V  N  Y  D  
 
421         <<<<<<<<<<<<<<<<<<<CAM REV 
gaattctgcaagatgatgacaaataaatgaaaacaacga 
 E  F  C  K  M  M  T  N  K  -  K  Q  R   
 

Figure B.7. Position of CaM primers in the M. edulis coding sequence. Calmodulin is 

149 amino acids long and is highly conserved among Eukaryotes. 
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1     CAML1 FOR4>>>>>>>>>>>>> 
atgcaagcaggtgatatatcgaaagtcaacttgtcagaaattcaaacttcatttgaatgt 
 M  Q  A  G  D  I  S  K  V  N  L  S  E  I  Q  T  S  F  E  C  
 
                             CAML1 FOR1>>>>>>>>>>>>>>>>> 
61                               CAML1 QIF>>>>>>>>>>> 
ctgcaaaagaatgtggataacaaagtatcagtcgaggagtgtgttagaggcgggcaactt 
 L  Q  K  N  V  D  N  K  V  S  V  E  E  C  V  R  G  G  Q  L  
 
121 
attggaattcaaatgacaatcaaagaagcactaaaattgatatcaaaaataaaygctgat 
 I  G  I  Q  M  T  I  K  E  A  L  K  L  I  S  K  I  X  A  D  
 
181 
ggtaaaggtttgattacatatgaacagtacsgacaattaatgaattcaaagttgaagaaa 
 G  K  G  L  I  T  Y  E  Q  Y  X  Q  L  M  N  S  K  L  K  K  
 
241      CAML1 FOR2>>>>>>>>>>>>> 
gtggaaaaagagaaagcaatgcatctggctaactttaggaaattcgataaagatgggaac 
 V  E  K  E  K  A  M  H  L  A  N  F  R  K  F  D  K  D  G  N  
 
                                     <<<<<<<<<<<<<CAML1 REV1 
301                                        <<<<<<<CAML1 QIR 
ggttctataagcttcgatgaattaaaaatggttcttggtcggtcaggatatggtatgaca 
 G  S  I  S  F  D  E  L  K  M  V  L  G  R  S  G  Y  G  M  T  
 
<<<                           <<<<<<<<<<<<<<CAML1 REV2 
gaaaaagcagttttagagcatttcaataatgcagacacagatggtgacggggaaatctca 
 E  K  A  V  L  E  H  F  N  N  A  D  T  D  G  D  G  E  I  S  
 
421                      <<<<<<<<<<<<<<<<CAML1 REV3 
ttcaatgaatttgttaaatacttttgcgaaatatgatctatttgtatccata 
 F  N  E  F  V  K  Y  F  C  E  I  -  S  I  C  I  H     
 

Figure B.8. Position of CAML1 primers in the M. edulis coding sequence. CAML1 is a 

calmodulin-like gene that was identified in our microarray study because it is 

differentially expressed between M. edulis and M. trossulus during low salinity stress. 

There is roughly 30 % homology at the nucleotide level between CAML1 and CaM. 
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                                     CAML2 3L>>>>>>>>>>>>> 
1           CAML2 5L>>>>>>>>>>>>>>>> 
atgaagaaagctaaacagaaaaacaaagctcatatggacgatatagtctaccttaaaatt 
 M  K  K  A  K  Q  K  N  K  A  H  M  D  D  I  V  Y  L  K  I  
 
CAML2 QIF>>>>>>>>>>> 
aacgcagaccaggtgatagcattaacagaagaacaagtagcagaatttaaagaagcattc 
 N  A  D  Q  V  I  A  L  T  E  E  Q  V  A  E  F  K  E  A  F  
 
121   CAML2 F>>>>>>>>>>>>> 
tcgttatttgataaagatggcgatggaaccatcacgacaagtgaacttggcacagtcatg 
 S  L  F  D  K  D  G  D  G  T  I  T  T  S  E  L  G  T  V  M  
 
181 
cgctctctaggtcaaaatccaacggaagcagaacttcaagatatgattaacgaagtagat 
 R  S  L  G  Q  N  P  T  E  A  E  L  Q  D  M  I  N  E  V  D  
 
  CAML2 1L>>>>>>>>>                   CAML2 2L>>>>>>>>>>>>>> 
gctgacggtaatggaacaatcgattttgaagaatttttgcttatgatggcaaggaaaatg 
 A  D  G  N  G  T  I  D  F  E  E  F  L  L  M  M  A  R  K  M  
 
301  <<<<<<<<<<<<<<<CAML2 Q1R 
aaagacactgatagtgaagaagaacttcgagaggcattcagagttttcgataaagatggg 
 K  D  T  D  S  E  E  E  L  R  E  A  F  R  V  F  D  K  D  G  
 
   <<<<<<<<<<<<<CAML2 1R 
aatggatttataagtgcggcagagttaaggcatgtaatgacaaatttaggtgaaaaatta 
 N  G  F  I  S  A  A  E  L  R  H  V  M  T  N  L  G  E  K  L  
 
 <<<<<<<<<<<<<<<CAML2 NR 
acggacgaagaagttgatgaaatgataaaagaagcagatttggatggtgatggattagta 
 T  D  E  E  V  D  E  M  I  K  E  A  D  L  D  G  D  G  L  V  
               
               <<<<<<<<<<<CAML2 4R 
481                  <<<<<<<<<<<<CAML2 3R 
aactatgaagagttcgtgacaatgatgacggccaaatgaagttacaattttactgtttac 
 N  Y  E  E  F  V  T  M  M  T  A  K  -  S  Y  N  F  T  V  Y  
 
 
Figure B.9. Position of CAML2 primers in the M. edulis coding sequence. CAML2 is 

another calmodulin-like gene identified in M. edulis and has high sequence homology 

(approximately 78 %) to CaM. There is a substitution to an asparagine (N) where the 

CaM sequence begins to overlap, so it is unclear which of the two methionines in the first 

20 amino acids initiates translation of this gene; in either case, this gene is larger than 

CaM.  
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159 
aggtttaaatgcaacaattatggcatagtagttggtatgcagatcctccatcaccaccat 
 R  F  K  C  N  N  Y  G  I  V  V  G  M  Q  I  L  H  H  H  H  
 
219 
ttggaggacagaagattcaggtttaaatgcaacaattatggattcatagttggtatgcag 
 L  E  D  R  R  F  R  F  K  C  N  N  Y  G  F  I  V  G  M  Q  
 
279 
agcatccatcacaaccactatgaggacagaagattcagatttaaatgttgctcaattgct 
 S  I  H  H  N  H  Y  E  D  R  R  F  R  F  K  C  C  S  I  A  
 
339 
ggaaaggatcttagtcagtgtcataaaaccttcaggaatcagtttgacaaacccaataca 
 G  K  D  L  S  Q  C  H  K  T  F  R  N  Q  F  D  K  P  N  T  
 
399 
gtgcatgtaccaactggttccgttgtaaga 
 V  H  V  P  T  G  S  V  V  R   
 

Figure B.10. Partial nucleotide and amino acid sequence for DPT in M. edulis. The 

nucleotide and amino acid sequence of DPT only covers a portion of the gene from 

nucleotide 159-429, which is roughly 530 bp in Haliotis diversicolor. There is very low 

sequence homology between our sequence and DPT in other invertebrates. 
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405 
atcacacgtgctgacgttgattacacactcaagaaattccctcttgtagaaggcataagc 
 I  T  R  A  D  V  D  Y  T  L  K  K  F  P  L  V  E  G  I  S  
 
465 
aaatctaagggaaagttggaatgcgctaaaatagaagcatggtgggagaaatatatcctt 
 K  S  K  G  K  L  E  C  A  K  I  E  A  W  W  E  K  Y  I  L  
 
505 
aaagggaataataaaattaccaaggttgacctcttaaaagatttagagaaagggtatacc 
 K  G  N  N  K  I  T  K  V  D  L  L  K  D  L  E  K  G  Y  T  
 
565 
gaaaacaagaaaaacttwatcgcaaaaatgaaagccttgtgtgaagacattatttgcatt 
 E  N  K  K  N  X  I  A  K  M  K  A  L  C  E  D  I  I  C  I  
 
615 
ctggatacagacaagactaaaatgatttcactggataactacgtcaaggcatataaggta 
 L  D  T  D  K  T  K  M  I  S  L  D  N  Y  V  K  A  Y  K  V  
 
675 
tatggtcatgcaacgaggcc 
 Y  G  H  A  T  R       
 

Figure B.11. Partial nucleotide and amino acid sequence for SCBP in M. edulis. The 

nucleotide and amino acid sequence of SCBP only covers a portion of the gene from 

nucleotide 405-607; the predicted SCBP in C. gigas is roughly 500 bp. There is high 

homology between the M. californianus and M. edulis sequences but <40% similarity at 

the amino acid level in other species.  
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201 
tctagaacgagtatctcaggaacttcattaggcgccaaacttgtgataccagtcaaaata 
 S  R  T  S  I  S  G  T  S  L  G  A  K  L  V  I  P  V  K  I  
 
261 
caaaacacgtatagactagaacctcaacaaacggagaaatttaacgcagaatcggttcaa 
 Q  N  T  Y  R  L  E  P  Q  Q  T  E  K  F  N  A  E  S  V  Q  
 
321 
aaaatgatgactggagttttgtcatcttatttggacggcgaagtttatgatcagaaattg 
 K  M  M  T  G  V  L  S  S  Y  L  D  G  E  V  Y  D  Q  K  L  
 
381 
tgtgcgaaacattctcaagaattgtcggatgtaattaaaaaacgtgtaaaggaattagga 
 C  A  K  H  S  Q  E  L  S  D  V  I  K  K  R  V  K  E  L  G  
 
441 
tttcctaggtataaactagtctgtaatgttatgattggacaaaacc 
 F  P  R  Y  K  L  V  C  N  V  M  I  G  Q  N       
 

Figure B.12. Partial nucleotide and amino acid sequence for TCTEX in M. edulis. The 

nucleotide and amino acid sequence of TCTEX covers 95 amino acids of the M. 

californianus EST. This gene has 40% similarity to TCTEX1-domain containing-1, 

which is 173 aa long.  
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APPENDIX C: 

PRELIMINARY HYPOOSMOTIC STRESS EXPERIMENTS 

 

We ran a series of preliminary experiments to get a better understanding of the 

dynamics of gene expression in M. edulis during low salinity exposure. The results from 

these studies were used to develop the experimental design of the larval and juvenile 

experiments used in this dissertation. Below is a description of the experiments as well as 

the findings from the gene expression and NMR studies.  

C1. Preliminary Larval Experiments 

Adult mussel broodstock were collected from subtidal populations at Squirrel 

Island, Boothbay Harbor, ME, and at the Darling Marine Center, Walpole, ME in May 

2014. The mussels were exposed to a thermal shock protocol to induce spawning, as 

described elsewhere. We fertilized the eggs of 10 female mussels with the sperm of 4 

males and combined the gametes into 20 l buckets containing UV-sterilized, filtered 

seawater (UV-FSW; 15 °C, 30 ppt). The embryos developed to the trochophores stage 

before being split into 5 batches of equal densities and transferred into 350 l tanks 

containing UV-FSW (14 °C, 30 ppt) supplemented with probiotic bacteria (Dr. Tim’s 

Aquatics, LLC). Larvae were fed daily mixtures of live algae and water changes were 

conducted every other day by hatchery staff.  

At 14 dpf, mussels had developed to the veliger stage. A subset of larvae was 

removed from each tank and combined into a 20-l bucket to remove any tank effects. 

Roughly 70,000 veligers from the pooled sample were transferred into 1 l beakers 

containing either control (32 ppt) or low-salinity (20 ppt) UV-FSW (14.5 °C) and held for 
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2, 4, 6, 8, 24, or 48 h (n = 5). Five control samples were collected at the time of treatment 

(0 h) to get baseline measurements prior to placement in the beakers. The veligers were 

sampled at the end of the treatment by sieving the contents of each beaker onto an 80 µm 

sieve. The larvae were transferred to a sterile, 1.5 ml Eppendorf tube, flash frozen in a 

methanol-dry ice bath, and stored at -80 °C. Larvae were starved for 12 h prior to 

experimentation and not fed during treatment. This experiment was replicated at 21 dpf 

with pediveliger larvae.  

These experiments lack biological replication because embryos were pooled prior 

to stocking the larval tanks and the subsets of veliger and pediveliger larvae were pooled 

prior to treatment. While samples contained a mixture of mussels from two populations 

and multiple individuals per sample, we cannot be confident that genetic differences were 

accounted for and therefore, results from these experiments should be interpreted with 

caution.  

C2. Preliminary Juvenile Experiments 

 Juvenile M. edulis were collected from a subtidal population near the Darling 

Marine Center, Walpole, ME, in August 2014 and transferred to the University of Maine, 

Orono, ME. The mussels were acclimated in a recirculating system to 14 °C and 32 ppt 

and were fed a daily ration of Shellfish Diet 1800. Following a 3-w acclimation, mussels 

were put into 1 l beakers containing a treatment (20 ppt) or control (32 ppt) salinity and 

held at 14 °C for 0, 2, 4, 6, 8, 24, or 48 h. Upon completion of the treatment, mussels 

were sacrificed, the gills were dissected out and flash frozen in liquid N2. The tissue 

samples were stored at -80 °C. As with the larval experiments, juvenile mussels were 

starved for 12 h prior to treatment.  
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C3. Gene Expression Studies 

We used a subset of the veliger and pediveliger samples from May 2014 to 

monitored for expression of TAUT, ICLN (chloride nucleotide-sensitive channel 1A), 

OAT, BHMT, CaM, CAML2, and ODC using qPCR. For the gill tissue collected from the 

juvenile mussels in September 2014, we ran qPCR assays targeting TAUT, OAT, ODC, 

CaM, CAML1, CAML2, and BHMT. See Appendix B for information of marker 

development, sequence information, and a list of primers used in the qPCR assays. The 

description of the sample preparation and qPCR protocols are described in detail in 

Section 4.3.6. Prior to analysis, all plates were set to the same threshold value (250 

RFUs) and any erroneous samples were eliminated. Expression was normalized to 40S 

using the DCt method and the effects of low salinity treatment on expression were tested 

using an independent samples Student’s T Test in SPSS Statistical Software (IBM 

Corporation). A p value < 0.017 was considered significant to reflect repeated analysis of 

the same sample. The normalized expression for each gene is found in Figures C.1–C.8.  

C4. Flux of FAA Pools 

 An additional subset of the larval samples was used to monitor changes in the 

FAA pools using 1H NMR spectroscopy. The FAA extractions using acetonitrile and 

water, sample preparation, the specifications for the 1D NMR, and the data analysis are 

all described in the methods section of Chapter 3. We conducted limited statistical 

analysis which included running an independent samples Student’s T Test in SPSS 

Statistical Software. We analyzed the change in FAAs in all the veliger samples (Table 

C.1) and analyzed the pediveliger samples from time 0, 2, 4, 6, and 8 h (Table C.2). In 

both cases, changes in glycine were significant in the stress larvae after 6 h of exposure.  



 

 246 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C.1. Preliminary BHMT gene expression results. The regulation of BHMT 

expression varied at 2, 4, 6, 8, 24, and 48 h of exposure to a low salinity treatment 

relative to controls. There was a significant downregulation in expression in pediveligers 

at 4 h (p < 0.01, panel b), but no significant difference in expression for veligers (a) or in 

the gill tissue of juvenile M. edulis (c).   
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Figure C.2. Preliminary TAUT gene expression results. TAUT was significantly 

upregulated in veligers mussels exposed to low salinity for 8 h (a). There was a general 

trend toward an increase in expression during low salinity exposure in the pediveliger (b) 

and gill tissue of juveniles (c), although these changes in expression were not significant 

at a = 0.017. Note variation in the scale for expression values between the larval and 

juvenile results.  
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Figure C.3. Preliminary OAT gene expression results. OAT is upregulated in veliger (a), 

pediveliger (b), and in the gill tissue of juveniles (c) exposed to low salinity treatment. In 

the gill tissue of juveniles, the expression at 48 h was 76x higher in the treatment group 

relative to the controls, although the scale stops at 25. Asterisks indicate p < 0.01.  
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Figure C.4. Preliminary ODC gene expression results. Ornithine decarboxylase or ODC 

was significantly downregulated in veliger (a) and pediveliger (b) larvae exposed to low 

salinity. Low salinity exposure had no effect on ODC expression in the gill tissue of 

juvenile M. edulis (c). Asterisks indicate a p value < 0.01.   
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Figure C.5. Preliminary CaM gene expression results. Calmodulin (CaM) was 

differentially expressed after short-term exposure to low salinity stress in larval and 

juvenile mussels. The gene was significantly downregulated in veliger (a) and pediveliger 

(b) mussels, but was upregulated in the gill tissue of juvenile mussels (c) experiencing the 

same treatment. Asterisks indicate p < 0.01.  
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Figure C.6. Preliminary CAML1 gene expression in the gill of juvenile mussels. CAML1 

tended to be upregulated during low salinity treatment, although these results were not 

statistically significant. This gene is not expressed in larval mussels.  
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Figure C.7. Preliminary CAML2 gene expression results. The expression of a 

calmodulin-like gene, CAML2 was largely unaffected by low salinity treatment. The gene 

was often downregulated in veliger (a) and pediveliger (b) larvae and upregulated in the 

gill of juveniles (c) after short-term exposure. Its expression was significantly 

downregulated in veligers at 48 h, as indicated by the asterisk (p < 0.01).  



 

 253 

 
 
 

Figure C.8. Preliminary ICLN gene expression results. Expression of the chloride 

nucleotide-sensitive channel 1A gene, ICLN, is shown for veliger (a) and pediveliger (b) 

larvae. The expression in veligers was unaffected by treatment, while it was slightly 

downregulated after short-term exposure in pediveligers. The asterisk indicates p < 0.01. 

ICLN was amplified using the forward primer 5’ GACGCATGGTTGTCAAAGAA 3’ 

and 5’ GCTCTGCCATGACACACAAC 3’ as the reverse primer. 
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