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Elevated concentrations of atmospheric CO2 brought about by human activity creates 

changes in plant morphology, growth rate and exudate production. Our study sought to 

understand the effect of these changes on soil mineral weathering using plants grown 

under two conditions, ambient CO2 (400ppm) and elevated CO2 (1000ppm). Phaseolus 

vulgaris (common beans) were grown in flow-through microcosms consisting of a 

mixture of quartz and apatite sands. Plant growth was sustained by a nutrient solution 

devoid of calcium (Ca) and phosphorous (P). Using Atomic Adsorption Spectroscopy and 

colorimetry, Ca and P content of the leachate and plant tissue served as a proxy for 

apatite dissolution. Plants were harvested periodically during the 8-week experiment to 

show Ca and P content with time. P. vulgaris grown in elevated CO2 had a greater root to 

shoot ratio. This outcome was expected based on the results of many other studies. The 

planted microcosms were found to have a lower pH than abiotic controls 811% more Ca 

was released from biotic than abiotic experiments by the end of week 8. The presence of 

plants resulted in the release of over 100 more P compared to their absence. Plants 



 

 

grown in elevated CO2 released 82% more Ca and 80% more P than those grown in 

ambient conditions. Although elevated CO2 helped plants to grow larger root structures 

and lower the solution pH, no significant change to weathering rates was observed during 

the experiment. Our results show the importance of below ground carbon fluxes in 

creating changes to the rhizosphere which aid in P release from apatite  
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1. INTRODUCTION  

The rate at which minerals weather to release ions and form soils is a complex 

process mediated by both abiotic and biotic sources of weathering. Mineral weathering 

releases ions which are an important source of plant nutrients. Release of cations such as 

magnesium (Mg) and calcium (Ca) also serve as a carbon dioxide (CO2) sink through the 

formation of carbonate minerals. Recently an increasing amount of attention has been 

paid to the role of plants increasing the rate of soil mineral weathering (Akter & Akagi, 

2005b; Andrews et al., 2008; Calvaruso et al., 2013).  

Plant metabolic processes are sustained by the collection of nutrients through physical 

and chemical alteration of substrates. Although plants receive the bulk of their 

alimentation from soils, they require carbon (C) as a source of new tissue material. 

Through photosynthesis, CO2 is used as a building block for different plant structures. 

Increases in atmospheric CO2 levels lead to enhanced growth and below ground C 

allocation in the majority of land plant species (Li et al., 2003; Luo et al., 2006; Yan, et 

al., 2006).  In a world where human activity continues to increase the concentration of 

atmospheric CO2, it is important to quantify potential changes in plant mediated 

weathering of minerals. 

We hypothesize that elevated atmospheric CO2 will lead to both increased root 

growth and organic acid exudation. These two traits will lead to improved acquisition of 

phosphorus (P) derived from apatite. In order to test this hypothesis, we will:  
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1) Determine the dissolution rate for apatite in the presence of Phaseolus 

vulgaris ‘Langstrath Stringless’ (green bean) grown at 400 ppm and 1000 ppm 

CO2.  

2) Determine the dissolution rate for apatite weathered abiotically at 400 ppm 

and 1000 ppm CO2.  

3) Describe physical and chemical characteristics of precipitates and changes to 

surface morphology throughout the experiment.   

1.1 Effects of Elevated CO2 on Plant Physiology and Growth 

The changes plants undergo in atmospheres containing elevated CO2 have been 

extensively studied (Drake et al. 1997; Li et al., 2003; Luo et al., 2006; Yan et al., 2006). 

Plants use carbon from the air in order to construct new tissue. Increases in atmospheric 

concentration of CO2 leads to more photosynthesis in some plants. Autotrophs take CO2 

from the air and reduce it to form organic carbon. This reduced carbon is used to create 

new body tissue as well as energy storing sugars. In C3 carbon fixation, plants rely on the 

enzyme ribulose bisphosphate carboxylase (RuBisCO) to facilitate the conversion of CO2 

to organic C. C3 plants represent 80% of earth’s gross productivity, and are common in 

both agricultural and natural ecosystems (Wand et al., 1999). 

At a pCO2 of 400 ppm, C fixation enzymes are under saturated. This inefficiency in 

the presence of existing concentrations of CO2 allows for C3 plant growth to be enhanced 

by elevated CO2. In the construction of new plant tissue RuBisCO and CO2 from the air 

are combined to produce a 3-carbon compound called phosphoglyceric acid (PGA). Due 
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to the abundance of oxygen in the atmosphere, 25% of RuBisCO is oxygenated rather 

than carbonated (Busch, 2013; Sharkey, 1988). The oxygenation of RuBisCO is known 

as photorespiration. Photorespiration occurs after the plant has already consumed two 

moles ATP and NADPH. The reaction consumes energy and results in the production of 

no organic C. Using four different methods of measuring photorespiration, Sharkey 

(1988) observed photorespiration to drop to 12% in an atmosphere containing 800 ppm 

CO2. It has been found that these losses to photorespiration are no longer measurable in 

bean plants when the concentration of CO2 reached 1200 ppm. Further increases in CO2 

showed no significant increase in growth (Jolliffe & Ehret, 1985).  

In elevated CO2 atmospheres, photorespiration decreases and C3 plants become more 

efficient. A reduction in waste products created by photorespiration lowers the plant’s N 

demands as less N containing enzymes are needed to process oxygenated RuBisCO.  

Plants require less water due to the closing of stomata.  The closing of stomatal openings 

in leaves leads to lower rates of transpiration and higher soil moisture (Drake et al., 

1997). Increased soil moisture has been shown to intensify physical weathering and 

sediment transport (Gedney et al., 2006; Raymond & Cole, 2003). The increase in 

physical weathering creates more surface area and thus encourages chemical weathering 

(Chen et al., 2014; Gaillardet et al., 1999).  

Some studies show benefits from elevated CO2 are temporary in systems that are 

nitrogen (N) and P limited (Lloyd & Farquhar, 1996; Norton, et al., 1999). Thus, it is 

possible that nutrient availability largely controls how an ecosystem responds to elevated 
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CO2. In other instances N and P limitations are mitigated by a greater efficiency in their 

use (Conroy, 1992; Lloyd & Farquhar, 1996). In a survey of 156 different plants grown in 

elevated CO2, Poorter (1993) found the largest increase in growth rate came from N-

fixing C3 plants and those that formed a mutual relationship with N-fixing organisms. 

Plants that were assisted in nutrient acquisition were able to assimilate a larger quantity 

of C than plants limited by nutrient demands. In some instances, plants respond to 

elevated CO2 by increasing symbiotic association with fungi and bacteria (Soussana & 

Hartwig, 1995). Haase et al. (2007) found a 177% increase in exudation of malate in bean 

plants grown in elevated CO2. Malate serves as a chemo-attractant designed to attract N-

fixing microbes. In a review of 60 different experiments Drake et al. (1997) found 

photosynthesis to increase by 58% in doubled CO2 concentration when compared to 

plants grown in ambient conditions.  

Chemo-attractants are just one example of carbon-based organic acids which increase 

in elevated CO2. C-based exudates are also used to aid in nutrient acquisition and protect 

plants from heavy metal toxicity. These organic acids are derived from energy producing 

reactions known as, “dark reactions” or, “light independent reactions”. In areas of the 

plant which are unable to produce energy from photosynthesis, such as the roots, sugars 

are oxidized to produce energy through glycolysis. During the breakdown of sugars, 

different enzymes used produce oxalate, malate and citrate. Increases in exudate 

production under elevated CO2 and nutrient stresses have been observed (Phillips et al., 

2009, Delucia, 1997, Haase et al., 2007, and Johansson et al., 2009). In a study by 

Fransson and Johansson (2010), C assimilation was found to increase by 41-47% 
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between plants grown in ambient (400 ppm CO2) and elevated conditions (800 ppm 

CO2). The increase in C assimilation was complimented by a 120-160% increase in 

organic acid production. 

During glycolysis, oxidation of sugars also releases CO2. This results in soil CO2 

concentrations being several orders of magnitude higher than those in the air (Oh & 

Richter, 2004). In natural ecosystems respiration outside of the plant is a large source of 

soil CO2. Soil microbiota are responsible for decomposition of organic matter (OM) as an 

energy source. Infiltration from ambient pCO2 is small compared to these subsurface 

factors. Under elevated CO2, production of soil CO2 increases due to a greater input of 

OM which fuels microbial populations (Parton et al., 1995). In a study by Andrews and 

Schlesinger (2001) elevated CO2 resulted in a 27% increase in soil respiration.  Changes 

to microbial communities and fungi living within the rhizosphere can be strongly 

controlled by plant root exudation. Studies on changes in rhizosphere populations have 

failed to consistently show an increase or decrease in microbial populations under 

elevated CO2  (Lipson et al., 2005).  

1.2 Inorganic Nutrients 

All requisite nutrients for plant growth, other than C and N, initially come from the 

weathering of minerals. Macronutrients such as K, Ca, Mg, P, S, and micronutrients Cl, 

Fe, B, Mn, Zn, Cu, Mo and Ni are common components of minerals in earth’s crust. 

Plants absorb these elements for different metabolic processes and temporarily 

immobilize them in organic forms. In order to attain nutrients, plants have developed a 



6 

 

variety of tools to chemically alter the area surrounding the roots, the rhizosphere, and 

liberate different ions.  Recent studies have shown that land plants facilitate nutrient 

release from minerals (Calvaruso et al. 2013, Hinsinger et al. 2001, Marschner & 

Römheld 1983). Plants have been shown to increase weathering by 1.5-10 over abiotic 

controls (Calvaruso et al., 2013; Hinsinger et al., 2001; Uroz, et al., 2009). 

Mineral weathering can be accelerated by the release of exudates from plant roots. 

Production of organic acids, sugars, amino acids and enzymes allows plants to change the 

soil chemistry in their immediate surroundings. These changes affect the redox 

conditions, microbial populations, surrounding biomass and chemical speciation of 

elements (Katoh et al., 2015). Akter and Akagi (2005) used fine mesh bags to prevent 

roots from coming into contact with mineral grains, showing that even at a distance of 

several millimeters, chemical changes within the rhizosphere are effective in altering 

mineral surfaces.  

1.3 Biotic Mechanisms Involved in Mineral Dissolution 

Mineral dissolution in soils is strongly controlled by soil pH (Mengel and Kirkby, 

1987). As early as 1902, scientists have observed etching on calcite grains caused by 

roots (Deherain, 1902). The presence of roots can drive the pH of the rhizosphere to as 

low as 3 (Berner et al. 2004).  

Acidification of the rhizosphere occurs through three separate mechanisms: proton 

flux due to cation exchange; generation of carbonic acid through root respiration; and 

exudation of organic acids (Hinsinger, 1998; Zhu et al., 2014). Proton flux is caused by 
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the imbalance of anions and cations being taken up by plants. If excess cations are taken 

up, the root compensates by releasing the surplus positive charge as protons. Oppositely, 

if more anions are taken up by the root, plants will secrete OH- to maintain an internal 

charge balance (Haynes, 1990; Marschner & Römheld, 1983; Nye, 1981). Because N is 

consumed in greater quantities than other nutrients, the consumption of NH4
+ and NO3

- 

largely causes these internal imbalances (Haynes, 1990). The generated OH- and H+ are 

released into the rhizosphere via fine roots (Marschner & Römheld, 1983). At low pH, H+ 

adsorbs to the surface of minerals and facilitates exchange of Na, K, and Ca. Mineral 

dissolution also occurs when the pH is high, resulting in the formation of metal-

hydroxides (Chaïrat et al., 2007). When the pH is in the neutral range, both H+- and OH--

mediated dissolution mechanisms become less effective at weathering minerals. This 

neutral pH range is common in natural environments other than the root zone. 

Uptake of ions by plants reduces their solution saturation and creates an imbalance 

according to Le Chatelier’s principle (Law of Mass Action). This depletion of the soil 

solution leads to further mineral dissolution. In experiments by Houben & Sonnet (2012) 

plant uptake of Zn cations from solution resulted in further dissolution of smithsonite.  

1.4 Organic Acids and Mineral Dissolution 

In the neutral pH range, H+- and OH--mediated processes have a lower influence on 

mineral dissolution. The effect of organic acids becomes more pronounced as it can also 

promote mineral dissolution through the formation of surface complexes.  Although 

organic acids help lower the pH, they also accelerate mineral weathering by forming 
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covalent bonds through the sharing of electrons. The most commonly studied organic 

acids are polyfunctional aliphanitic anions. Organic acids such as citrate, malate and 

oxalate owe their effectiveness in weathering to their structure which has multiple 

functional groups. This allows for the formation of soluble multidentate complexes. The 

formation of surface complexes weakens and breaks the bonds between metals and 

oxygen atoms (Van Hees et al., 2002; Xiao & Wu, 2014; Zhu et al., 2014). Ligands can 

also accelerate weathering through the formation of complexes with cations in solution, 

which reduces their saturation state of the fluid (Uroz et al., 2009). Conversely, metal-

ligand complexes can form precipitants on mineral surfaces and inhibit dissolution 

(Welch & Vandevivere, 1994).  

The effectiveness with which organic acids can break down minerals is dependent on 

their concentration and subsequent adsorption to mineral surfaces. The adsorption of 

ligands is dependent on metal speciation and charge of the mineral surface (Ullman et al., 

1996). The rate of mineral dissolution can be increased by surface dislocations and 

impurity defect sites where reactive sites are more accessible (Dorozhkin, 1997). 

Additionally, high concentrations of cations and anions can compete with organic acids 

and mineral surface reaction sites (Biber & Stumm, 1994).   

Dissolved organic carbon (DOC) is present in the soil at concentrations of 2-30 ppm, 

but can reach higher levels within the rhizosphere (Drever, 1994).  Grierson (1992) found 

concentrations of DOC in the rhizosphere soil solution of Banksia integrifolia as high as 

2500 ppm. This concentration was an order of magnitude higher than that in the 
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surrounding soil solution. The majority of DOC consisted of citric and malic acid. 

Oxalate, malate and citrate can be found in forest soil solutions ranging in concentrations 

between nM to μM (Ullman & Welch, 2000). Plant species modify their rhizospheres to 

different degrees.  Katoh et al. (2015) investigated Pb mobility in the presence of two 

plant species from the same ecosystem. It was found that buckwheat, a Pb tolerant 

species was able to alter the speciation of Pb contained in the mineral, pyromorphite, 

through the exudation of oxalate. This caused the release of Pb into solution. Hairy vetch, 

a Pb intolerant species had no effect on lead mobility and showed symptoms of Pb 

toxicity. Several studies (Drever, 2005; Martínez-Alcalá et al., 2010; Shen et al., 2002) 

also hypothesize that organic acid production can be increased as a response to 

phytotoxic elements. 

Organic acids show selectivity for specific cations. This can be seen in the formation 

of etching pits on the surface of minerals. In an experiment evaluating the effect of four 

different crop species (lupine, oilseed rape, maize and banana) on basalt dissolution, 

Hinsinger et al. (2001) found that Ca and Na were released one to five times faster than 

other elements, indicating minerals were weathered preferentially. 

1.5 Phosphorus in Natural and Fertilized Ecosystems 

Although most soils around the world contain abundant P, the quantity that is 

bioavailable often limits plant growth (Martin, 1979). Soil P is contained in three pools: 

organic (Po), inorganic (Pi) and dissolved in soil solution. Po is contained in organic 

detritus or immobilized by microbes (Table 1-1). Po is the largest pool of soil P and can 
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represent up to 80% of total P. Even though Po cannot be directly absorbed by plant roots, 

fungi and plants are known to produce enzymes to facilitate its release (Gyaneshwar et 

al., 2002). The second largest pool of soil P is inorganic (Pi) and is found adsorbed to 

minerals surfaces, precipitated on soil particles, or imprisoned by the crystal structure of 

minerals. Pi cannot be used by plants until it is solubilized through changes to rhizosphere 

chemistry. The smallest P pool is dissolved orthophosphate contained in the soil solution. 

These dissolved nutrients move towards the roots due to concentration gradients created 

by plant uptake (Gauch, 1972).  

Table 1-1. Concentrations of P in different soil pools at 0-10 cm. 

Pool Approximate P concentration  

Soil Solution 1-3 µM m -3 

Organic P 100-400 kg ha-1 

Inorganic P 50-200 kg ha-1 

 

This depletion of dissolved P allows for more P to be released from labile sources, 

such as desorption from charged surfaces, dissolution of minerals and hydrolysis of Po. 

Jungk (1991) observed this process happening at a rate of 0.13 M per day. Because of 

this slow release, up to 20% of total costs associated with farming can be due to P 

fertilizer.  
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1.6 Apatite Weathering 

In non-fertilized ecosystems plants attain P from mineral sources. A large mineral 

pool of P is in apatite (Ca5(PO4)3 (OH,F,Cl)), which can be found in igneous, 

metamorphic and sedimentary rocks. The dissolution of apatite also releases less common 

elements such as Zn, Mo, B and Cu that are needed for many plant processes (Filippelli, 

2008). 

Apatite dissolution kinetics have been well studied due to its importance as a P source 

in nature (Chien et al., 1980; Chien, 1977; Christoffersen et al., 1978; Guidry & 

Mackenzie, 2003; Valsami-Jones et al., 1998). As the most common phosphate mineral, 

apatite is the foundation of the P cycle (Filippelli, 2008). All organisms have a P-based 

energy currency and need it to develop new tissue (Rakovan & Pasteris, 2015). It is 

present in DNA, RNA, ATP and ADP (Welch, 2002). The term apatite represents more 

than 40 distinct minerals. Most commonly found in nature, fluorapatite (FA) and 

hydroxyapatite (HA), are calcium phosphates containing F and OH respectively (Back, 

2015). 

The dissolution of apatite is controlled by solution saturation, hydrodynamics and pH. 

The structure of HA and FA consists of orthophosphate tetrahedra linked by two different 

Ca polyhedra. The first Ca site consists of four Ca atoms in six-fold coordination and the 

second site consists of six Ca atoms in seven-fold coordination (Figure 1). The F- or OH- 

occupies a space in the second Ca polyhedra (Dorozhkin, 2012).  
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Figure 1-1. Crystal structure of apatite. The dotted lines outline one-unit cell which 

consists of M1-centred Ca polyhedra, represented as six-fold coordinated metaprisms, 

M2 Ca (two of the seven bonds overlap in this projection), yellow phosphate tetrahedra 

and the dominant anion shown in green (Pasero et al., 2010) 

Based on the crystal structure, the release of P is dependent on the destruction of 

bonds between Ca-O and Ca-F-/OH-, whereas destruction of P-O bonds is not required for 

apatite dissolution.  

Harouiya et al. (2007) preformed a series of batch reactor experiments to evaluate 

dissolution rates of apatite in temperatures ranging from 5 to 50 °C and pH ranging from 

1 to 6. The released concentrations of Ca, P and F were stoichiometric. Stoichiometric 

apatite dissolution results in a Ca/P ratio of 1.67 (Christoffersen et al., 1978). The rate 

equation for apatite dissolution calculated using data from multiple studies is R=10-

6.64*aH
-0.541  (Brantley et al., 2008). 

Organic acids have been shown to accelerate apatite dissolution through the same 

mechanisms described above (Calvaruso et al., 2013; Welch et al., 2002; Margolis & 

Moreno, 1992). Phosphorus release is related to an organic acid’s ability to form 



13 

 

complexes with a particular metal, in this case Ca. Solubility constants serve to predict 

the likelihood of complexation of metals in the presence of different ligands.  

Welch et al. (2002) conducted a series of batch reactor studies using organic acids 

and microbes to evaluate the influence of microbes on apatite dissolution. It was found 

that acetate and oxalate accelerate mineral dissolution by an order of magnitude. Organic 

acids lowered the pH and formed complexes with Ca in solution and on the mineral 

surface. In the same study, microbes produced oxalate and accelerated weathering by two 

orders of magnitude while maintaining at near neutral pH. 

Studies by Christoffersen et al. (1996 and1998) model the dissolution of apatite by 

the formation of weathering pits, which are caused by the removal of a Ca, F or PO4. 

These studies show the spreading of weathering pits is controlled by the saturation state 

of Ca in solution. 

Uroz et al. (2009) conducted a field-based study of apatite dissolution using mesh 

bags placed in the rhizospheres of different beech trees. The forest was chosen for its 

naturally Ca and P poor soils, which allowed for easy observation of nutrient fluxes from 

fluorapatite. This plot was compared to a similar forest that had been fertilized with Ca 

and P. Dissolution was measured by change in sample weight. After four years, samples 

had lost between .4% and 1.8% of their weight in unfertilized plots. Observation of 

individual grains under an SEM revealed three times as many weathering pits on the 

surface of mineral grains retrieved from the unfertilized than those from the fertilized 

plots.  
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1.7 Phaseolus vulgaris  

The legume Phaseolus vulgaris ‘Langstrath Stringless’ (green bean) produces a broad 

spectrum of organic acids. It goes through an entire growth cycle and fruits in 6-8 weeks 

(Helm, 1990). Growth cycles consist of four different stages and are characterized by 

development of different plant structures and nutrient demands. During the first stage, 

establishment, limited plant-soil interaction occurs, as the plant is not yet involved in 

photosynthesis. The following two stages require nutrients to be attained from the plant’s 

substrate. After establishment, plants enter the vegetative stage, which is discernable by 

the development of cotyledons. During this time plants have a high nutrient demand and 

will be producing more biomass above ground than below. The plants will then undergo a 

reproductive stage where growth occurs mostly below ground. P. vulgaris is a member of 

the Fabaceae family and known to be an autogam, meaning that it is able to fruit without 

the help of pollinators (Cobert et al., 2011).  

In a survey of exudates produced by plant roots of different species, Vančura and 

Hanzlíková (1972) found that P. vulgaris produced a broad spectrum of organic acids at a 

large quantity per unit weight. Oxalic, citric, malic, lactic and succinic acids were found 

in the rhizosphere of P. vulgaris. Legumes are known to acidify their rhizosphere through 

the preferential uptake of NH4 over NO3 (Caixan, 2003). In an evaluation of four different 

bean varieties of bean plants, Shen et al. (2002) found that they respond to P deficiency 

through the production of citrate, tartrate and acetate. The same study found that bean 

plants, which produced more organic acids, were able to accumulate higher 

concentrations of P in plant tissues.  
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P. vulgaris was successfully used in nutrient cycling studies by (Cobert et al., 2011; 

Guo et al., 2005). As a C3 plant, P. vulgaris will respond to changes in pCO2 with 

changes in photosynthetic efficiency. A study by Cowling and Sage (1998) found a 77% 

decrease in biomass of beans grown at 200 ppm CO2 compared to 380 ppm CO2.  Rao 

(2015) also tested changes to plant physiology under elevated CO2 using P. vulgaris. It 

was found bean plants grown in 580 ppm CO2 had a higher dry weight, produced more 

flowers and a greater root mass than plants grown at 380 ppm.  
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2. MATERIALS AND METHODS 

2.1 Materials  

The legume P. vulgaris was chosen for its small size and short lifecycle. P. vulgaris 

plants have also been used in elevated CO2 studies by Haase et al. (2007), Cobert et al. 

(2011) and Rao et al., (2015). Seeds purchased from Everwilde Farms® were washed in a 

2 m H2O2 solution for 20 min and rinsed with deionized water to remove microbial 

contaminates (Akter & Akagi, 2005; Van Tichelen et al., 2001). Once cleaned, seeds 

were germinated on sterile cotton mats. After emergence of taproot, plants were 

transferred to 60 mL syringes which served as plant pots.  

2.1.1 Minerals 

Apatite crystals purchased from Madagascar Minerals in Tucson, Arizona, were 

crushed using a jaw crusher and ground to sand using a disk pulverizer.  This preparation 

equipment is located in the basement of Bryand Hall. Prepared sands were dry-sieved to 

obtain a size fraction between 0.5 and 1mm. This size fraction was chosen to match 

experiments used to define kinetic constants of minerals in field ecosystems (Augusto et 

al., 2000; Marie-Pierre et al., 2009). The apatite sand was combined with quartz sand 

(1.2-2 mm) donated by US Silica. Close evaluation of the provided sand shows the 

presence of feldspar grains (~20-30%). The quartz and apatite mixture was similar to the 

growing medium used by Calvaruso et al. (2013) and Andrews et al. (2008). This mixture 

created a substrate that would retain sufficient moisture as well as have enough mineral 
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surface area to measure mineral dissolution. A mixture of 85% quartz with 15% apatite 

by weight was used to fill plant pots. The quartz grains served as an inert root anchoring 

material and the apatite was the only P and Ca source for the plants. Particle surface area 

of apatite was too large to be measured using the surface area analyzer at the Laboratory 

for Surface Science and Technology (LASST). Instead, grains surfaces were analyzed 

and determined to be free of surface pores. Geometric surface area was then calculated 

under the assumption grains were spherical, using the equation: 

𝑆𝑢𝑟𝑓𝑎𝑐𝑒 𝐴𝑟𝑒𝑎 =
 𝑉𝑠 ∗

𝑆𝐴
  Equation 1 

where Vs is the volume of a sphere,  is the density of apatite and SA is the surface 

area of a sphere. Because grains were sorted using sieves, apatite particles used in the 

experiment ranged from 0.5-1mm. Using the averaging method from Tester et al. (1994), 

a weighted average particle diameter can be calculated assuming a flat particle size 

distribution (Equation 2): 

𝐷𝑒 =
𝐷𝑚𝑎𝑥−𝐷𝑚𝑖𝑛

ln(
𝐷𝑚𝑎𝑥
𝐷𝑚𝑖𝑛

)
 Equation 2 

where De is the effective diameter used in surface area calculations, and Dmax and Dmin 

are the upper and lower limits of the particle size range. Apatite grains were calculated as 

having a surface area of 26.1 cm2 g-1(Equation 1). Quartz and apatite grains used in the 

experiment were cleaned using ethanol and a Misonix S-4000 Sonicator the procedure of 

Adcock et al. (2013). Quartz grains were first hand rinsed twice in 100 mL of ethanol and 
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then ultrasonicated for 10 minutes replacing the ethanol every two minutes. The process 

continued until the supernatant was clear. Apatite grains were sonicated for 2 min at 

amplitude eight for four minutes and at amplitude six for 1 min to remove fine particles. 

Before filling the plant pots, the sand was autoclaved for 20 min at 120 °C, three days 

before starting the experiment. Calvaruso et al. (2013) also used an autoclave to sterilize 

their quartz-apatite mixture and found no change to dissolution kinetics. 

A sample of crushed, sieved and sonicated apatite was sent to ACT Labs in Ontario, 

Canada, to quantify concentrations of major elements using X-ray fluorescence (XRF). 

This combined with observations of mineral grains using a scanning electron microscope 

were used to confirm the apatite used in the experiment were homogeneous and free of 

inclusions.  

2.1.2 Nutrient Solutions 

In order to sustain healthy plant growth, minimal nutrients were added to the constant 

drip solution (Table 2-1). Similar solutions were used to sustain plants in studies by Akter 

& Akagi (2005), Hinsinger et al. (2001) and Uroz et al. (2009). Both cation and anion 

sources of N were added to avoid inducing H+ fluxes and artificially influencing solution 

pH. Calcium and P were not added to the nutrient solution to encourage plants to use 

mineral sources for these nutrients.  
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Table 2-1. Nutrient solution used in experiment.  

Salt Ion Desired 

Concentration 

Salt added 

(mgL-1 ) 

mM 

  

 

(mg L-1) 

  KCl K 235.00 448.09 6.011 

MgSO4 + 7H2O SO4 189.72 

 

1.975 

 Mg 48.00 486.77 1.975 

H3BO3 B 0.0001 0.00005 8.5X10-7 

FeSO4 + 7H2O Fe 0.0010 0.0050 1.8X10-5 

MnCl2+4H2O Mn 0.50 1.80 0.009 

 Cl 211.26 

 

6.029 

NH4NO3 NO3 464.77 

 

7.496 

 NH4 135.23 

 

7.496 
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2.2 Experimental Design  

2.2.1 Environmental Growth Chambers 

Six 20-gallon fish tanks with the dimensions of 24” W 12” D  16” H were fitted 

with air-tight lids by the University of Maine Advanced Manufacturing Center to create 

the environmental growth chambers (EGCs) where the concentration of CO2 could be 

held at approximately1000 ± 200 ppm (Figure 2-1). Photos of growth chambers can be 

found in the Appendix section I. 

Figure 2-1. Schematic of environmental growth chambers built by the University of 

Maine Advanced Manufacturing Center. 

The CO2 concentration was elevated using Hydrofarm Desktop CO2 Monitors 

(Autopilot) which were modified to control a solenoid valve. The firmware in the CO2 
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monitor allows for programmable alarms consisting of LEDs indicating if the 

concentration of CO2 is lower than, equal to, or higher than a desired level. By 

exchanging the “low concentration” LED with a bipolar junction transistor, the circuit 

responsible for supplying power to open a solenoid valve (Figure 2-2) can be completed 

and the valve opens. When the solenoid valve opens, concentrated CO2 flows into the 

EGC until the pCO2 of the environment reaches 1000 ppm and the voltage supplied to the 

transistor is shut off and the valve closes.  

 

Figure 2-2. Wiring diagram of modifications made to CO2 monitor. 

In order to avoid hysteresis created by slow diffusion of CO2 in the EGC and the time 

needed for the CO2 monitor to take measurements, CO2 was added to each EGC at a flow 

rate of 0.4 ft3 hr-1 using a rotameter manufactured by Omega Instruments. Even after 

these precautions are taken, there was still a ± 200 ppm range observed while conducting 

12v DC 

Solenoid Valve 

Signal from CO2 monitor  
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trial experiments. By using 3-way solenoid valves one tank of compressed CO2 could be 

used on multiple EGCs.  

Each CO2 condition (400 and 1000 ± 200 ppm) was replicated in three EGCs. 

Replicates contained four plants as well as an abiotic control that contained the soil media 

but no any plants. One plant was harvested and analyzed for Ca and P content every two 

weeks (2, 4, 6 and 8 weeks) in order to capture the kinetics of plant growth and nutrient 

uptake.  

2.2.2 Flow Through Microcosms  

Plants were grown in flow though microcosms similar to those described by 

Calvaruso et al. (2013). Using peristaltic pumps to create constant flow of liquid ensured 

that the concentration of ions in solution remains constant and below solution saturation 

throughout the experiment. Plants were grown in 60 mL syringes filled with 15 mg of 

apatite and 85 mg of quartz sand. The plants were supplied with a nutrient solution 

dripping at a constant rate of approximately 1 mL hr-1 (~2.5” per week) due to the high 

permeability of sand using an ultra-low flow peristaltic pump (The Control Company). 

This rate was based on the beans’ need to receive between .5” and 2.5” of water per week 

to sustain healthy growth (Houdek & Stradler, 2016). 

 A piece of 500 m nylon mesh was placed at the base of each syringe to allow 

solution to escape while preventing the loss of mineral grains. The leachate was collected 

in beakers and weighed to estimate its volume. Each week approximately 30 mL of 

solution was collected for quantification of total P and Ca.  
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2.2.3 Sampling 

Leachate samples were collected weekly during the experiment (Table 2-2). On each 

sampling date ~30 mL of solution was collected from all microcosms to determine pH, 

flow rate, and concentrations of Ca and P.  Samples were collected using a 0.45 m filter 

and acidified with 0.3 mL 15.8 M HNO3 and stored at 1 °C (Greenberg, 2005). Plant 

tissue was collected every two weeks by harvesting one plant from each environment and 

digesting it to measure uptake of ions by the plants. By sampling the system periodically, 

release of ions with respect to time was measured. Once the plants were harvested, 

collection of leachate was discontinued. Because apatite was the only source of Ca and P, 

the sums of Ca and P found in the leachate and plant tissue can be used to calculate a 

dissolution rate for apatite (Calvaruso et al., 2013).  The data presented in the results are 

shown as a moving average of three simultaneously conducted replicates. They can be 

categorized as one of the four following categories: biotic experiments receiving elevated 

CO2 (Be), abiotic experiments receiving elevated CO2 (Abe), biotic experiments receiving 

ambient CO2 (Ba), and abiotic experiments receiving ambient CO2 (Aba). Until week 4, 

all treatments were conducted in triplicate. By week 6, two plants had died and one 

replicate of the ambient conditions was discontinued in order to replace plants which had 

died.     
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Table 2-2. Sampling totals for 8-week experiment. 

 

2.2.4 Release Rates 

The weathering budget was defined as the amounts of Ca and P collected by the plant 

and released into solution (Calvaruso et al., 2013), 

𝑊 = 𝐿 + 𝐼 Equation 3 

where W is the total P or Ca released from apatite (mg sec-1), I is the amount of ions 

immobilized by the plant (mg sec-1) at sampling time t (sec) and L is the concentration in 

the outlet solution with time (calculated in Eq. 4), assuming a constant flow rate: 

𝐿 = 𝑄 × 𝐶 Equation 4 

L has the units of mg sec-1, where C is the concentration (mg L-1 ) and Q is the 

leachate discharge rate measured in L sec-1. The rate of mineral dissolution was 

calculated using the rate formula proposed by Calvaruso et al. (2013). 

Sampling	totals

Sample type Replicates Sample dates Total

Seed Ca 1 1 1

Seed P 1 1 1

Plant Ca 6 4 24

Plant P 6 4 24

Leachate Ca 30 8 164

Leachate P 30 8 164
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R=
𝑊

𝑆𝐴×𝑀×𝜃×𝑉𝑝×𝑡
 Equation 5 

where R is the rate (mol m-2 s-1), W is the weathering budget based on P or Ca 

concentrations, SA is the surface area of the mineral grain (cm2 g-1), M is the mass of 

apatite (g), θ is the pore space saturation, t is time elapsed in (s) and Vp is a stoichiometric 

coefficient based on the ratio of Ca to P.  

Due to evapotranspiration taking place in biotic experiments, θ was calculated 

individually for each harvested pot. First, the unsaturated bulk density was calculated 

using the weight of sand added to the plant pot divided by the volume. Because the plant 

pots were syringes, the volume could be read directly off the side of the pot. An average 

porosity was approximated using the density of the crushed rock divided by dry bulk 

density.  

Φ=1-
𝜌𝐶𝑟𝑢𝑠ℎ𝑒𝑑 𝑅𝑜𝑐𝑘

𝜌𝐵𝑢𝑙𝑘 𝑅𝑜𝑐𝑘
 Equation 6 

where Φ represents average porosity. Because the plant pots were filled with a 

mixture of 85% quartz and 15% apatite by weight, the densities used reflect the quantities 

of the two materials.  With a known unsaturated porosity, any decrease in porosity is 

caused by pore space being filled with water or plant roots (Equation 7). Once the shoots 

were removed, the plant pots were reweighed to an approximate total pore space filled by 
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leachate and plant roots. The mass of plant root mass was estimated using the assumption 

that dry weight of roots is 7% of fresh weight (Ryan et al., 2001).   

𝜃 = 𝑚𝑡𝑜𝑡𝑎𝑙 − 𝑚𝑠𝑎𝑛𝑑 − 𝑚𝑟𝑜𝑜𝑡 − 𝑚𝑝𝑜𝑡  Equation 7 

2.3 Analytical Methods 

2.3.1 Plant Tissue Oxidation and Digestion 

Root and shoot tissues were processed separately because the concentrations of Ca 

and P is differs between plant structures (Hewitt & Smith, 1974). This is the standard in 

most plant tissue data sets and allows for comparison between studies. Plant tissue was 

dried at 70 °C for 2 days to determine the dry weight (Thomas, 2013). The dry weights 

were used to normalize elemental concentrations per unit weight. Once dried, plants were 

ground up using the Wiley Mill in the MAFES lab in Deering Hall at the University of 

Maine to homogenize the sample. Plant tissue was ashed using a muffle furnace at 550 

°C for 6 hours. After cooling, the plant tissue was wetted with DI water and solubilized 

using 5 mL of 5.83 M HCl and boiled on a hotplate for 30 min. After cooling, plant 

samples were strained using a 0.45 µm filter and diluted up to 50 mL (Chapman & Pratt, 

1961). This processing ensures that all forms of P are oxidized and hydrolyzed to form 

orthophosphate. Before starting the experiment, ten seeds were digested together and 

analyzed using the same process described above in order to characterize initial 

concentrations of elements in seeds. 
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2.3.2 Quantification of Ca Using Atomic Absorption Spectroscopy  

Calcium content of leachate and digested plant tissue was measured using atomic 

absorption spectroscopy (AAS) on a Thermo S-Series AAS in the CES Environmental 

Engineering Lab at the University of Maine. Total Ca was measured using light 

absorbance at 422.7 nm in samples ionized in an acetylene flame. A calibration curve was 

constructed on each sampling date using a stock solution made from 0.2497 g CaCO3 

powder which was dried at 180 °C for 1 hr. After drying the CaCO3 was dissolved in 10 

mL of concentrated HCl and then diluted up to 1000 mL of DI water. Standards ranging 

in 0-60 mg L-1 were prepared and resulted in a linear relationship between concentration 

and absorbance. For every 20 samples a replicate and an external quality check were 

analyzed to ensure that data was reproducible and meaningful. This procedure follows the 

methods outlined by Eaton et al. (1998). 

2.3.3 Colorimetric Determination of Total P  

The P content of digested plant tissues and liquids was evaluated using the Varian 

Cary 50 Spectrophotometer in Sawyer Hall’s Water Chemistry Lab. This 

spectrophotometer can accommodate a 10 cm cell allowing a detection range from 1 to 

200 ppb for P. Most samples had concentrations of 10 to 2000 ppb and were diluted to 

10% of their original concentration. The measurement requires that all forms of P present 

be digested in an acidic environment to release it as orthophosphate (H3PO4). In order to 

ensure that all P was in the quantifiable form, orthophosphate, leachate was acidified 

using 1 mL of 11 N H2SO4 and oxidized using 1 mL of 1.75 M ammonium persulfate. 
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The treated samples were then placed in an autoclave at 15 psi and heated to 121 °C for 

30 minutes (Eaton et al., 1998).  By adding ammonium molybdate, molybdophosphoric 

acid is formed and reduced using ascorbic acid to generate a blue color (Murphy & Riley, 

1962). The reduced P complex absorbs light at 880 nm.  

A calibration curve was constructed on each sampling date using a stock solution 

made from 0.2197 g KH2PO4 powder which was dried at 180 °C. After drying, the salt 

was added to 1000 mL of milliQ water to make a 1000-ppm stock solution. Standards 

ranging from 1 to 100 μg L-1 were prepared at each sampling date and resulted in a linear 

relationship between concentration and absorbance. For every 20 Samples an older 

sample was retested and a quality check made from an external P standard was measured 

to ensure reproducibility and assure the quality of the calibration curve. 

2.3.4 Sample Corrections  

When concentrations of Ca and P were higher than the upper limit of the calibration 

curve, samples were diluted and the concentration was multiplied by the reciprocal of the 

dilution factor (Equation 8). 
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𝐶𝑐 = 𝐶𝑑×𝐷𝑓  Equation 8 

where Cc stands for corrected concentration, Cd stands for the diluted concentration 

and DF represents the dilution factor. The DF accounts for the aliquot of sample taken 

from the total volume and the volume of reagent added. In the case of total P all samples 

were diluted to 7.5 percent of their original concentration to remain within the linear 

range of the calibration curve, and to account for the volume of colorimetric reagents 

added.  

2.3.5 Mineral Content of Shoots 

To check the nutritional status of plants and estimate concentrations, samples of plant 

tissue were analyzed using the inductively coupled plasma atomic emission spectrometer 

(ICP-AES) in Deering Hall at the University of Maine. This also served as a second 

method for measuring Ca and P and provided an external quality check.  

Comparing concentrations of P from ICP analysis to colorimetry show higher values 

for P were recorded colorimetry. Shoot tissue samples had 6318 and 6444 ppm according 

to colorimetry, where values reported by ICP were 5420 and 5830 ppm. Calcium 

concentrations measured by AAS were much lower than values reported by ICP. The two 

samples measured by ICP had concentrations of 1640 and 1600 ppm Ca where values 

recorded by AAS had 802 and 461 ppm Ca. One possible reason for is due to the amount 

of dilution plant samples underwent during digestion. The absorbance values for Ca in 

the shoot tissue fell just above the minimum detectable levels.   
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2.3.6 Batch Reactor Dissolution 

Two experiments were conducted to assess the stoichiometry of abiotic apatite 

dissolution in the absence of quartz grains.  Five grams of cleaned apatite grains were 

added to 50 mL of nutrient solution and shaken in a bath for 2 weeks at 25 C. 

Concentrations of Ca and P were measured from 10 mL samples for week 1 and 2.  

2.3.7 Post-Experiment Mineral Experiments 

Mineral grains were collected from the biotic pots at the time of harvest. Grains of 

apatite and quartz from abiotic experiments were sampled after the 8-week experiment 

had ended. Samples were examined with scanning electron microscopy (SEM) and data 

were collected using electron dispersive spectrometry (EDS) and backscatter electron 

(BSE) imagery. Fresh samples were also examined for comparison. Before examination, 

samples were air-dried and carbon-coated. Observations of quartz and apatite surfaces 

were made using the Tescan Vega XMU Scanning Electron Microprobe located in 

Bryand Hall. The use of the SEM allowed for imaging of changes to surface topography, 

and the possible formation of secondary precipitates. Using the EDAX Apollo EDS 

detector, chemical analysis of spots on mineral grains and semi-quantitative chemistry 

data were collected to help identify secondary mineralogy.   

2.3.8 Statistics 

Experiments were run in triplicate and averaged to help reduce the inherent variability 

present in biological experiments. In order to compare the averages, data were evaluated 
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using Student’s T-test. If variance was shown not to differ significantly (P>0.05) using an 

f-test, the variance for the elevated and ambient conditions could be pooled. The 

arithmetic means for data were compared using a two tail unpaired t-test. A calculated t-

statistic could be compared to critical values for t found in Portney & Watkins (2000). 

When a calculated t-statistic didn’t show a difference in means (P>0.1) a p value for the 

null hypothesis was also reported. 
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3.  RESULTS 

3.1 XRF Analysis of Apatite 

X-ray fluorescence analysis (XRF) of apatite grains used in this study shows that 

concentration of Ca is higher than that found in typical apatites. This elevated Ca 

concentration creates a Ca to P ratio of 1.80 (Table 4). Apatite used in experiments by 

Calvaruso et al. (2013) and Park et al. (2005) had a lower Ca concentration and a Ca to P 

ratio of 1.67. 

Table 3-1. Composition of apatite used in experiments. Moles cation refers to 

stoichiometry of one mole of apatite. 

Weight  % Moles Cation

 Ca 41.465% 5.2176

P 17.753% 2.8905

 Si 3.022% 0.5426

F 3.455% 0.9172

 Na 0.065% 0.0002

 Fe 0.061% 0.0055

 Mn 0.033% 0.0030

V 0.002% 0.0002

 Ti 0.002% 0.0002  

3.2 Changes in pH with Time 

The pH values used in data analysis were the average of three replicates in each 

treatment (Figure 4). Weekly pH values can be found in Appendix A. The pH of the 

nutrient solution was 5.01 after mixing and equilibrating with the air. The pH of all outlet 

solutions increased until week 4. After week 4 the average pH of Be pots fell while the 

three other treatments, Ba Abe Aba remained high. Using a t-test it was determined that 
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there was no significant difference between the average pH of leachate sampled from Be 

and Ba pots until week 5 (p<0.05 appendix H-7). At week 5, leachate from Be had an 

average pH of 4.57±0.16, which was significantly lower than all other conditions. For the 

final two weeks of the experiment the average pH of Be was significantly lower (p=0.008 

and p=0.03 respectively) than the pH measured in the Ba experiments.  

The average pH of Abe and Aba experiments did not differ significantly at any point 

during the experiment. The average pH throughout the 8-week experiment of Abe and 

Aba experiments were 5.18 ±0.07 and 5.07 ± 0.08 respectively.  

 

Figure 3-1. Average pH of the outlet solutions. Error bars represent the standard 

deviation of the mean.  
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3.3 Plant Growth 

Dry weights of plant roots and shoots were measured after harvesting (Appendix B). 

Although the average total dry weight of plants grown in elevated CO2 was greater than 

the average weight of ambient plants at each sampling point, the difference was not 

statistically significant during any of the 4 weeks (p>0.1) (Table 3-2). A t-test showed 

plants grown in elevated CO2 had a significantly higher root to shoot ratio throughout the 

experiment. Analysis of the root to shoot ratio is a common way to normalize root growth 

for comparison among non-identical plants (Munns et al., 2010) (p<0.05, Figure 3-2). 

Statistics comparing average plant weights can be found in appendix H-3. 

Table 3-2. Dry weights of total plant tissue recorded in grams. 

 

Dry weight Average wt. Dry weight Average wt.

(g) (g) ± (g) (g) ±
Week 2 0.4387 0.3809 0.041 Week 2 0.3463 0.3203 0.015

Elevated 0.2820 Ambient 0.3299

0.4220 0.2847

Week 4 0.2420 0.3201 0.035 Week 4 0.2915 0.4768 0.114

Elevated 0.3872 Ambient 0.7492

0.3312 0.3896

Week 6 0.2599 0.6082 0.298 Week 6 1.1271 0.7760 0.248

Elevated 1.3388 Ambient 0.4249

0.2259

Week 8 1.1716 2.2366 0.753 Week 8 1.3279 1.4503 0.087

Elevated 3.3015 Ambient 1.5726

0.3077
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Figure 3-2. Ratio of roots to shoots throughout 8-week experiment. Error bars represent 

the standard deviation of the mean. 

 

3.4 Plant Nutritional Status 

Nutrient content of the plant shoots was analyzed to evaluate the possibility of 

nutrient deficiencies (Table 3-3). By comparing concentrations of macro- and micro-

nutrients to average concentrations collected for P. vulgaris by Benton et al. (1996), 

nutritional status of plants was quantified for one plant grown under ambient and elevated 

CO2 treatments at week 8. It was found that both sets of plants were deficient in Ca, Al 

and Zn at Week 8. 
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Table 3-3. Concentrations of mineral elements (ppm dry matter) in elevated and ambient 

plant shoots. Healthy range comes from Benton et al. (1996). 

  Elevated Ambient Healthy Range 

  (ppm) (ppm) (ppm) 

%N 5.11 6.40 3-6 

Ca 0.16 0.16 0.80-3.0 

K 3.85 4.98 1.8-4.0 

Mg 0.42 0.64 0.3-1.0 

P 0.54 0.58 0.3-.0.8 

Al 36.50 44.20 624.00 

B 22.20 36.90 20-75 

Cu 6.95 7.45 5-30 

Fe 83.50 109.00 20-200 

Mn 89.90 105.00 30-300 

Zn 8.08 10.20 20-200 

 

3.5 Distribution of Ca pools 

Calcium released from apatite in biotic experiments was either incorporated into plant 

tissue or dissolved in the leachate (Equation 3). The majority of Ca was contained in 

leachate, reaching as high as 92% On average, elevated plant tissue retained a higher 

percentage of Ca than tissues of plants grown in ambient CO2 (Figure 3-3). A larger 

percentage of Ca was lost to the effluent in both elevated and ambient conditions later in 

the experiments.  
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Figure 3-3. Percent total Ca found in leachate.  

In biotic experiments, dissolved Ca concentrations varied by week and ranged 

between 20-140 µmoles of Ca (Figure 3-4) Comparing the averages of total dissolved Ca, 

a t-test shows that significantly more Ca was released from Be experiments at weeks 6, 7 

and 8.  During other weeks, no significant difference was observed between the two 

biotic conditions. By the end of week 8, Be experiments had released 82% more Ca to the 

leachate than Ba experiments (Table 3-4). Statistics comparing the average Ca content 

between experiments can be found in appendix H. 
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Figure 3-4. Moving average of total Ca (µmol) measured in the outlet solution during the 

8-week experiment. 
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3.6 Total Ca Concentrations 

To calculate the Ca release rate, it is necessary to add the Ca in the leachate with Ca 

found in the plant tissue (Equation 3). By the end of week 8, Be experiments had released 

more Ca than Ba experiments (Figure 3-5). At week 8, the average Ca released from Be 

experiments was 247 ± 67.65 µm and 136 ± 20.95 µm from Ba experiments (Appendix 

D). Despite this difference, a t-test found no significant difference between Be and Ba 

experiments in the total amounts of Ca released (p>0.1 Appendix H-4). 

In both sets of abiotic experiments, weekly Ca concentration decreased throughout 

the experiment. Using a t-test to compare the average Ca concentrations each week, it 

was found there was not a significant difference between Abe and Aba (p<0.05). The 

average Ca released from Abe and Aba was 37.01 ±0.48 µmols and 28.18 ±0.37 µmols of 

Ca.  

The presence of plants significantly increased the release of Ca (p<0.05 Appendix H-

1). The Be and Ba experiments released 81% and 66% more Ca than abiotic experiments, 

respectively (Appendix D).  
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Figure 3-5. Concentrations of the total Ca released (µmoles) in each treatment.  Total Ca 

includes Ca released in leachate as well as Ca contained in plant tissue. 

3.7 Distribution of P pools 

The majority of the liberated P was found in the plant tissue (Figure 3-6). Although 

only a small amount of P was measured in the leachate, it is still important to consider 

this pool for the following mass balance calculations. Plants grown in ambient CO2 

incorporated a higher percentage of P released from apatite than plants grown in elevated 

conditions. 
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Figure 3-6. Distribution of P between plant tissue and leachate.  

At week 3 the largest P concentration was measured in the leachate of Be and Ba 

experiments. Following this increase, the concentration of P in solution steadily declined. 

Comparing the moving average of dissolved P from Be and Ba experiments, it was found 

that significantly more P was released to solution by Be experiments at weeks 2, 6 and 8 

(p<0.1 Appendix H-5). Other weeks the concentrations were not significantly different. 

The outlet solution of abiotic experiments shows P released from apatite also reached 

a maximum at week 3 and steadily decreases from that point (Table 3-6). The difference 

between concentrations of P released from the elevated and ambient sets of abiotic 

experiments wasn’t significantly different at any point during the 8-week experiment 

(p>0.05). 
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Table 3-5. Moving average of P found in leachate. 

 

 

Biotic Elevated Biotic Ambient Abiotic Elevated Abiotic Ambient

Abiotic Ambient P (µmol) P (µmol) P (µmol) P (µmol)

0.004 Week 1 0.68 0.42 0.05 0.12

0.013 Week 2 1.25 0.62 0.14 0.42

0.018 Week 3 2.89 2.33 0.72 0.57

0.022 Week 4 3.63 3.35 1.03 0.71

0.026 Week 5 4.14 3.31 1.11 0.83

0.028 Week 6 4.79 2.82 1.17 0.91

0.029 Week 7 5.25 2.85 1.39 0.93

0.031 Week 8 5.77 3.21 1.67 0.99
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3.8 Total P Concentrations 

To calculate the P release rate, it was necessary to combine dissolved P with P 

immobilized by the plant tissue (Equation 3). As shown in Figure 3-6, the majority of the 

released P was found in the plant tissue. At week 8 the average P released from Be 

experiments was 263.0 ± 58.2 µmoles and 145.8 ± 13.4 µmoles from Ba (Appendix D). 

Although the data suggest plants grown in elevated CO2 released more P by the end of 

week 8, a t-test showed the averages were not significantly different (p>0.1 Appendix H-

9).  

The presence of plants significantly increased the release of P (p<0.05; Appendix H-

2). The Be and Ba experiments released 187 and 104 times more P than abiotic 

experiments by week 8.  

In both sets of abiotic experiments, weekly P concentration decreased throughout the 

experiment. Using a t-test to compare the average P concentrations each week, it was 

found that there was not a significant difference between Abe and Aba (p<0.05). The 

average P released from Abe and Aba was 1.67 ±0.18 µmols and 0.99 ± 0.01 µmols of P 

respectively. 
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Figure 3-7. Total P (µmoles) released during 8-week experiment. 

3.9 Stoichiometry of dissolution 

Apatite used in experimentation had a Ca to P Ratio of 1.80. Examination of total P 

and Ca released shows dissolution was nonstoichiometric throughout all sets of 

experiments (Table 3-7). While biotic experiments released more P and had a Ca to P 

ratio below 1.80, abiotic experiments had a ratio above 1.80 and released a larger 

percentage of Ca. Although stoichiometric dissolution was never observed during the 

experiment, biotic experiments approached stoichiometric dissolution with time. The 

abiotic experiments had a Ca to P ratio which decreased with time. By the end of the 

experiment the ratio of Ca to P was still an order of magnitude higher than found in the 

apatite.  
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Batch reactor experiments designed to evaluate abiotic dissolution of apatite in the 

absence of interferences from quartz, had a Ca to P ratio ranging from 14.5 and 16.7 

(Appendix F-4). Although batch reactor and column experiments aren’t directly 

comparable, these two tests of abiotic dissolution suggest nonstoichiometric apatite 

dissolution was not solely due to adsorption of ions to quartz surfaces.   

Table 3-7. Stoichiometry of Mineral dissolution  

 

Biotic Elevated Biotic Ambient Abiotic Elevated Abiotic Ambient 

Week 2 0.40 0.44 133.21 89.39 

Week 4 0.63 0.87 25.86 36.40 

Week 6 0.85 1.29 27.20 31.99 

Week 8 1.11 0.94 23.31 29.61 

 

3.10 SEM Characterization of Weathered Mineral Grains 

In an effort to characterize the development of surface topographies and the formation 

of secondary precipitates, mineral grains collected from abiotic and biotic experiments 

were examined using the SEM. Grains from the biotic experiments were sampled from 

rhizosphere at each 2-week interval when plants were harvested. After rinsing and drying 

plant roots, apatite grains found adhered to root surface were also collected and examined 

separately. Although, precipitates were observed in both abiotic and biotic experiments 
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their compositions differed. EDS spectra of quartz grains from abiotic experiments 

revealed precipitates rich in Ca and S (  

Figure 3-10). In biotic experiments, precipitates on the surfaces of quartz grains 

contained Fe, Al and P (Figure 3-8). Apatite grains removed from the root surface 

showed the development of needle like structures similar to those described by Calvaruso 

et al. (2013) and Dorozhkin (1997) (Figure 3-9). While grains removed directly from the 

root surface had developed easily observed surface topographies, examination of grains 

recovered from the rhizosphere did not reveal formation of needles. It is likely formation 

of needles increased the surface area of apatite during the experiment.  
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Figure 3-10. EDS spectra of precipitates found in abiotic experiments. 

 

Figure 3-9. Photomicrograph of cleaned and unweathered apatite surface (left) and apatite 

surface after 8 weeks on the surface of a root (right). The images shown represent the extremes 

of surfaces. 
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Figure 3-11. Photomicrograph of Ca sulfate precipitate formed on the surface of a quartz 

grain recovered from biotic experiment. 
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4. DISCUSSION 

Numerous studies show that elevated CO2 increases carbon allocation to the 

rhizosphere (Rao et al., 2015; Haase et al., 2007; Salsman et al., 1999 Poorter, 1993). 

This study seeks to understand one possible change brought about by increases in below 

ground carbon fluxes caused by higher pCO2. Using flow-through microcosms we have 

collected data suggesting an increase in mineral weathering due to plants being grown in 

elevated CO2. 

In response to a higher nutrient demand and more available C in the air, plants 

undergo morphological changes. Work by Huber (1989) and Lin et al. (2000) showed 

that elevated atmospheric CO2 causes an increase in the root to shoot ratio of plants. This 

was also observed in our study (Figure 3-2). Increased root growth has been shown to 

improve nutrient uptake by increasing the surface area of roots and aiding in the 

acquisition of nutrients (Wang et al., 2009). Larger quantities of below ground tissues 

create observable changes to rhizosphere chemistry and intensifies chemical weathering.  

4.1 Relationship Between pH and Ion Release 

Apatite dissolution is strongly associated with solution pH. In low pH solutions, 

apatite dissolves via the following reaction (Bengtsson & Sjöberg 2009):    

Ca5(PO4)3(F,OH) + 7H+ = 5Ca2+ + 3H2PO4- + H+ + F-,H2O 

Although this formula includes the consumption of protons, pH measurements in 

some of the experiments in this study fell (Figure 3-1). The increased acidity seen in 

biotic experiments is due to several different processes. Plants need to maintain an 
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internal pH and charge balance. If there is an excess of cations is taken up, the plant root 

compensates by releasing the surplus positive charges as protons (i.e., ion-exchange 

reaction), acidifying the rhizosphere. The same process occurs for consumption of anion 

nutrients which results in the release of OH- (Hinsinger et al., 2003). Decreases in pH are 

also attributed to the release of organic acids, which are derived in the roots during 

cellular respiration. The importance of organic acids in changing soil solution pH is 

highly variable between plant species and difficult to study due to their quick 

consumption by microbes (Ryan et al., 2001).  

Some pH decrease can also be attributed to the production of carbonic acid (CO2(aq)). 

Roots generate energy from respiration, releasing CO2 into the rhizosphere which forms 

carbonic acid. However, contribution to acidity by carbonic acid would be small in the 

observed pH (Appendix A). In a review by Hinsinger et al. (2003) a large range of soil 

CO2 values are reported. These differences arise from variability of soil structure, 

microbial respiration, and soil organic matter. Helal & Sauerbeck (1989) found that up to 

15% of all photosynthetically fixed carbon in maize plants ends up below ground as CO2. 

These quantities of respired CO2 are nearly an order of magnitude higher than 

concentrations of H+ due to cation exchange.   

EDS spectra of grains from abiotic experiments reveal areas with high concentrations 

of C indicating the possible presence of unwanted microbial populations (Appendix I). It 

is possible that some of the decrease in pH can be attributed to the growth of microbes, 
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which acidify their surroundings through respiration and the consumption of cation 

nutrients.  

Calcium and P concentrations in solution increase with decreasing pH due to 

enhanced mineral dissolution. The differences between Ca and P concentrations in the 

leachate in Be and Ba were not significant until there was a significant difference in pH 

between the two treatments. This is not surprising since apatite dissolution shows a strong 

pH dependence (Bengtsson & Sjöberg 2009; Chaïrat et al., 2007). At week 5 the pH 

values in Be columns were significantly lower than Ba columns (Appendix H-7). 

Following week five, the Ca released into the leachate of Be columns was significantly 

higher (Figure 7). With respect to total Ca released (sum of effluent and plant tissue 

concentrations) the differences between Be and Ba were not significant until week 8. This 

could be attributed to the slower response time from plant tissue, the timing of sample 

collection and the much smaller concentration of Ca captured by plant tissue (Figure 3-5).  

There was a similar response to decreased pH and the release of P. The differences in 

P concentrations between Be and Ba experiments were greatest when there was a 

significant difference in average pH. At week 5, the pH of Be experiments was 

significantly lower than that in Ba experiments. Interestingly, leachate P concentrations 

in the Be experiments increased, while they decreased in the Ba experiments ( 

). During week 7, the pH of the Ba experiments reached a maximum at 5.60 and 

concentrations of P in the leachate were lower than any other point during the 

experiment. At that time the pH and P concentrations of Ba experiments resembled those 
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in the abiotic experiments (Figure 3-1). Similar to the Ca data, changes in P release are 

not reflected in plant tissue concentrations until week 8 (Figure 3-7). Although the mean 

P concentration of Be experiments was greater than Ba plants, the difference was not 

significant. This could be attributed to the small sample size (n=2).   

4.2 Calculated weathering rates 

Weathering rates for biotic experiments were calculated based Equation 5 (Calvaruso 

et al. 2013). Quantification of total Ca and P allowed us to calculate two separate 

dissolution rates for biotic and abiotic experiments (Table 11, Table 12).  Comparing the 

dissolution rates of biotic experiments based on Ca and P concentrations using a t-test, it 

was found that there was not a significant difference between the two rates on any of the 

four sampling dates (p>0.05, Appendix H-12).  

Because dissolution was far from stoichiometric in abiotic experiments (Table 3-7), 

dissolution rates calculated using Ca and P varied by two orders of magnitude. Possible 

explanations for this difference are explored in greater detail in the following section.  

4.2.1 Dissolution rates based on Ca concentrations 

The concentrations of Ca released from the Abe and Aba experiments show increased 

CO2 concentrations did not lead to a significant change in Ca release (Table 3-4). 

Because of this, data from Abe and Aba were combined to calculate one average 

dissolution rate based on Ca concentrations, which decreased with time (Table 4-1) 
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In both sets of biotic experiments, the dissolution rates were fastest at week 2, when 

the mineral surfaces were fresh. In Ba experiments the apatite dissolution rate gradually 

decreased for the remaining 6 weeks of the experiment. In the Be experiments the rate 

decreased until week 6, when the average rate increased from 10-12.06 to 10-11.86 mol cm2 s-

1 (Table 4-1). This increase in weathering rate coincides with the precipitous drop in pH 

observed in Be columns (Figure 3-1). Although the average rate in biotic elevated 

experiments was faster than biotic ambient experiments, a t-test shows the difference was 

not significant (p>0.05; Appendix H-10).  

Table 4-1. Apatite dissolution rates based on concentrations of Ca. Release rates are 

shown as log (mol cm-2sec-1).  

 

Biotic Elevated Biotic Ambient Abiotic 

Week Log (mol cm-2sec-1) Log (mol cm-2sec-1) Log (mol cm-2sec-1) 

Week 2 -11.73 -11.59 -12.25 

Week 4 -11.96 -11.95 -12.35 

Week 6 -12.06 -12.06 -12.44 

Week 8 -11.86 -12.08 -12.52 

 

4.2.2 Dissolution rates based on P concentrations 

Because Ca and P release rates were non-stoichiometric, dissolution rates were also 

calculated using total released P.  Previous studies have successfully used dissolved P in 

solution to quantify apatite dissolution (Welch et al. 2002). In experiments conducted by 

Calvaruso et al. (2013), the release of P was determined to represent the true dissolution 

rate of apatite due to the formation of Ca precipitates observed on the surface of mineral 
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grains. In our experiments, the ratio of Ca to P in biotic experiments also shows 

possibility of Ca loss to precipitates (Figure 3-11). 

The two dissolution rates calculated based on Ca and P concentrations in biotic 

experiments follow a similar trend throughout the duration of experiments (Figure 4-1). 

As seen in the dissolution rates based on Ca concentrations, the dissolution rate in Be 

experiments increased between weeks 6 and 8. This increase in the dissolution rate occurs 

after the pH falls in Be experiments (Figure 3-1). Although the average Be dissolution rate 

is greater than the Ba rate, a t-test demonstrated there was no significant difference 

between rates in the two treatments (p>0.05 Appendix H-11). 

As mentioned previously, the dissolution rates for abiotic experiments differed 

greatly when calculated based on Ca and P concentrations. When the abiotic rate was 

calculated based on P concentrations, the dissolution rate was two orders of magnitude 

slower than the rate based on Ca concentrations. This difference in dissolution rates is 

explored in greater detail in the following section. 

The presence of plants caused P to be released approximately 100-1000 faster than 

abiotic treatments (Table 4-2).  The greatest difference in dissolution occurred at week 2 

when mineral surfaces were fresh. 
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Table 4-2. Apatite dissolution rates calculated based on concentration of P. Release rates 

are shown as mol cm-2 s-1. 

 
Biotic Elevated Biotic Ambient Abiotic 

Week Log (mol cm-2sec-1) Log (mol cm-2sec-1) Log (mol cm-2sec-1) 

Week 2 -11.65 -11.77 -14.46 

Week 4 -12.05 -12.10 -13.95 

Week 6 -12.30 -12.26 -14.07 

Week 8 -11.93 -12.15 -14.04 

 

 

 

Figure 4-1. Rates of apatite dissolution based on Ca and P release log(mol cm-2 sec-1). 

Dissolution rate based on P release not included because it is two orders of magnitude 

slower than other rates. 
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4.3 Rates measured in other apatite dissolution studies 

There are many other studies which have sought to determine the dissolution rate of 

apatite. Most studies focus on effects of pH and synthesized organic ligands. Welch et al. 

(2002) did a series of batch reactor studies using inorganic acids in pH ranging from 2-6 

and found dissolution rates ranging from 10-9 mol cm -2 s-1 at the minimum pH and 5×10-

13 mol cm-2s-1 at the highest pH. This is comparable to Valsami-Jones et al. (1998), who 

used a pH range of 4 to 5.2 and calculated a dissolution rate based on Ca of 1.8 to 3×10-

11 mol cm-2s-1. when looking at the effect of organic ligands (oxalate and acetate) on 

apatite dissolution, Welch et al. (2002) found the presence of these ligands increased 

dissolution rates by two orders of magnitude but chose not to share the actual rates. They 

also noted the effects of organic ligands became less pronounced at lower pH as the 

solution pH was approaching the pKa of oxalate, 3.19 and acetate, 1.18. Hutchens et al. 

(2006) compared abiotic apatite dissolution to apatite dissolution in the presence of 

bacteria. They report a rate of 2.63×10-15 mol cm-2s-1 for abiotic experiments and 

2.37×10-14 mol cm-2s-1for biotic experiments.   

There are very few studies which seek to measure apatite dissolution in the presence 

of plants. Calvaruso et al. (2013) conducted apatite dissolution studies using scots pine 

grown in flow through column reactors. The presence of plants increased dissolution 

from 1.8×10-14 to 1.72×10 -13 mol cm-2s-1. 

In our experiments, the rate of dissolution for abiotic experiments based on Ca release 

was initially 5.59×10 -13 ± 3.3×10 -14 mol cm-2s-1and slowed to a rate of 2.99×10-13 ± 
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4.4×10 -15 mol cm-2s-1 by week 8. In our biotic experiments rates were closer to those 

created by the use inorganic acids and were on the order of 10-12 mol cm-2s-1 

4.4 Stoichiometry of Apatite weathering 

Congruent dissolution of typical apatite results in a Ca to P ratio of approximately 

1.67. Apatite used in our experiments had a Ca to P ratio of 1.80 (Table 3-1). All abiotic 

experiments resulted in release ratios that were significantly higher than what is typically 

found in stoichiometric apatite dissolution (Table 3-7). The unexpectedly low 

concentrations of P in abiotic effluents could be due to the highly reactive nature of P. Fe 

and Al precipitates were observed in EDS spectra of quartz grains from abiotic columns. 

The presence of Al further indicates the possible presence and weathering of feldspar 

grains mentioned in the materials and methods section. Grains were not heavily coated 

but patches of precipitates were easily found (Appendix I-1). Some of the observed 

precipitates included P. This suggests that some P could have been lost due to the 

formation of iron or aluminum phosphates. Arias et al. (2006) observed that Fe oxides in 

packed quartz sand filters were able to remove up to 50% of total P from natural and 

waste waters. 

Batch reactor experiments of apatite grains weathered with the nutrient solution used 

for plant growth achieved a Ca to P ratio that was closer to the stoichiometry but was still 

an order of magnitude higher than 1.80 (Appendix F-4).  These experiments show the 

adsorption of P to Fe and Al oxides on quartz grains was not the sole reason for a higher 

Ca to P ratio. It is also possible P was released from apatite but readsorbed to apatite 
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surface. Dissolution experiments by Chaïrat et al. (2007); Guidry & Mackenzie (2003) 

and Valsami-Jones et al. (1998) observed dissolution rates based on Ca concentration to 

be nonlinear in neutral pH conditions and initially incongruent. This break in linear 

dissolution rates has been shown to be correlated with concentration of CaOH2 
+ in 

solution. 

Incongruent dissolution occurs due to two separate locations of Ca in the crystal 

structure of apatite. The first Ca site consists of four Ca atoms in nine-fold coordination 

and the second site consists of six Ca atoms in seven-fold coordination. Both of these Ca 

polyhedra are connected to the phosphate tetrahedra. Before any P can be released into 

solution all bonds between calcium and oxygen must be broken. Because of this, 

formation of non-stoichiometric surface layers have been observed in experiments by 

Brown & Martin, (1999) and Park et al. (2005).  

In biotic experiments the ratio of Ca to P released was lower than the expected 

stoichiometric ratio of apatite (Table 3-7). SEM analysis of quartz grains from the 

rhizosphere of biotic columns reveal the presence of Ca sulfate precipitates (Figure 3-11). 

These precipitates were easily found, but were sporadically distributed along the surface 

of quartz grains (Appendix I).  

4.5 Nutritional Status of Plants 

Standard nutrient concentrations and visual diagnostic aids for assessing nutritional 

status of plants are abundant in books by Benton et al., (1996) Gauch (1972), and Martin 

(1979). Large variations in typical nutrient concentrations exist due to plant type, 
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sampled tissue, and stage of development. Because of these uncertainties, an analysis of 

total elemental concentration works best in chorus with visual identification of nutrient 

deficiencies. Elemental analysis of plants grown in both elevated and ambient conditions 

have lower concentrations of Zn, Ca and ( 

 

Table 3-3) than standard concentrations found in leaves of healthy bean plants collected 

by Benton et al. (1996). As a micronutrient, Zn is required in smaller concentrations than 

other nutrients. Zn deficiency causes a decrease in auxin, the protein required for 

elongating cells in shoots and regulating plant growth. In the absence of Zn, auxin 

oxidizes more quickly and plants produce smaller leaves and suffer reductions in shoot 

length. Some plants were clearly stunted while others appeared healthy (Appendix I-2). 

Hewett and Smith (1974) observed 13-20 g of Zn in P. vulgaris seeds. It is possible this 

helped sustain healthy plant growth was sustained for most of the experiment. Studies by 

Park et al. (2005) have shown trace concentrations of Zn in the structure of apatite. 

Although most plants survived the 8-week duration of the experiment, plant fatalities 

could be reduced by adding a ZnSO4 component which is a common in other nutrient 

solutions (Hewitt & Smith, 1974). While concentrations of Ca in the outlet solution were 

high, samples of plant tissue were deficient in Ca ( 

 

Table 3-3). It is possible that Ca uptake was impaired by high soil moisture which 

disrupts the mechanism for Ca uptake, as well as by the virtually nonexistent CEC of 
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quartz sands used in experiments. Without any adsorption capacity, Ca would be quickly 

lost from the plant pots from the movement of water (Martin, 1979; Mclaughlin & 

Wimmer, 1999).  

 

4.6 Real World Implications of In-vitro Studies  

Although these data are novel, there are several unrealistic conditions imposed by the 

experimental design. It is important to remember that these data were collected in a 

laboratory setting with an approximate pCO2 of 1000 ppm. This is around 200 ppm 

higher than any model of future atmospheric CO2 suggests (Girod et al., 2009). 

Additionally, there is no organic component to the soil used in this experiment. Organic 

material greatly influences P movement through adsorption and immobilization by 

organic matter. This P pool can represent up to 80% of P in soils (Hinsinger, 2001; Jungk 

& Claassen, 1989; Martin, 1979). Without these sinks to strip P from the soil solution, 

concentrations of P in the leachate of our experiments was roughly 4 orders of magnitude 

higher than typical concentrations outlined by Richardson (1994).  

The inorganic component of soil P was also atypical. Natural soils are estimated to 

have inorganic P concentrations that range between 0.005-0.02 P g cm -3 in the top 10 cm. 

The inorganic P is present as phosphate minerals, Fe, Ca and Al precipitates and adsorbed 

to mineral surfaces. In our experiments, the only P source was the 15 g of apatite added 

to each reactor column. Using the volume and percent weight P of apatite, a value of 0.04 

g cm -3 P was calculated.  
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Rates of mineral dissolution show a great deal of variability between different labs 

and when comparing in situ studies to in vivo studies. Factors such as mineral 

stoichiometry, heterogeneity, preparation, and experimental conditions and durations 

affect dissolution rates (Dorozhkin, 2012). Comparisons between laboratory and field 

studies have shown mineral weathering in lab settings to occur at three to five orders of 

magnitude faster than in field settings (Maher et al., 2006). These dissimilarities arise 

from differences in surface areas, formation of precipitates, approach to saturation, 

mineral composition and dominant flow paths (Drever, 2005; Maher, 2010). Putting these 

large differences between in vitro and in vivo studies aside, these are some of the first 

data indicating plants exposed to elevated CO2 are better able to release nutrients from 

mineral sources (Andrews, Leake, Palmer, Banwart, & Beerling, 2011; Fransson & 

Johansson, 2010; Williams, Walter, Ku, Kling, & Zak, 2003). Increases in acidity, 

organic ligands and root surface area, like those seen in this study, are all traits that aid in 

nutrient acquisition from inorganic sources.    
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5. CONCLUSIONS 

The presence of P. vulgaris increases the rate of apatite dissolution. Increases in 

dissolution rates translate to a larger concentration of bioavailable nutrients, specifically 

Ca and P. This study shows that the presence of P. vulgaris released Ca from apatite 

1.32-1.45 times faster than abiotic controls. More importantly, experiments containing 

plants exhibited a rate of P release of 118-152 times the abiotic controls (Appendix G-2). 

In both biotic and abiotic experiments, apatite dissolution was nonstoichiometric. In 

biotic experiments, P, an essential component of DNA and ATP, was released in greater 

quantities than Ca. In the absence of plants, the quantity of P released was minimal. 

Previous studies show apatite dissolution is pH dependent and can be enhanced by the 

presence of organic acids.  Our data suggest apatite dissolution was promoted by a 

mixture of cation exchange reactions, evident by the decrease in pH, and complexation 

reactions created by organic ligands seen by the increase in DOC.  

Root mass and acidification of the rhizosphere increased in experiments where plants 

were grown in elevated CO2. These changes to rhizosphere surface area and chemistry 

resulted in higher concentrations of Ca and P found in plant tissue and the outlet solution. 

Although these differences between rates and total Ca and P are statistically insignificant 

for most points during the experiment, larger sample sizes could eliminate uncertainties 

related to variance in plant growth (appendix H-11). Leachate data had a larger sample 

size and was more homogeneous ion concentrations, which allowed t-tests that show the 

means were different. At weeks 2, 4 and 8, concentrations of Ca in the leachate from Be 

experiments were significantly higher than those in Ba experiments (Appendix H-4). 
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Additionally, P concentrations in the leachate from Be columns were significantly higher 

at weeks 2, 6 and 8 than Ba experiments (Appendix H-5).  

5.1 Potential Implications 

Nutrient availability greatly limits production in both fertilized and unfertilized 

ecosystems. In particular, P, which is an essential element in both heterotrophs and 

autotrophs, limits production in roughly 2/3 of the cultivated soil on earth (Batjes, 1997). 

Without P, energy transfer in cells is impossible. In recent years there is growing concern 

regarding longevity of P reserves at Earth’s surface. P derived from phosphate rock is 

mined for fertilizer production and different estimates show these deposits could be 

depleted within the next 50-100 years (Cordell et al., 2009). Understanding P dynamics 

and possible increases in P demands of crop species are at the center of ensuring food 

security in our rapidly changing world. 

Natural ecosystems are also undergoing changes due to anthropogenic increases in 

CO2. As global temperatures rise, environments that were once too cold to support 

autotrophs and develop organic soils can now be colonized. Studies of paleoecosystems 

and contemporary forests show plant communities migrating to higher altitudes and 

latitudes during warmer periods (Jump et al., 2009; Overpeck et al., 1991; Woodall et al., 

2009). Some studies have highlighted the potential for forest ecosystems being outpaced 

by climactic changes (Schwartz et al., 2001). Higher altitudes and latitudes that were 

once dominated by glaciers produce large quantities of till, which have a large surface 

area and have previously undergone minimal chemical weathering. These labile nutrient 
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sources combined with increased belowground C fluxes have the potential to shape the 

rate at which plants are able to colonize newly available environments. Quantifying 

increases in plant-driven nutrient release from mineral sources in elevated CO2 is an 

important parameter for making accurate predictions about soil formation rates, nutrient 

release, and subsequent plant migration. 

5. 2 Future Work 

Because of the wide array of biotic and abiotic processes taking place in soils, their 

effects on nutrients are difficult to accurately quantify and follow in the field, especially 

on short timescales (Williams et al., 2003). Nevertheless, predicting and understanding 

changes to these cycles will help ensure continued use of the Earth’s fragile surface.  

Previous work has looked at plant-mineral weathering through the lens of plant sciences, 

and data mostly focus on quantifying nutrient fluxes between soils and plants rather than 

mineral dissolution rates. To my knowledge, there are no studies comparing mineral 

dissolution rates between plants grown in ambient CO2 and elevated CO2.  Understanding 

the response of plants grown in elevated CO2 and subsequent mineral weathering is an 

important endeavor for making predictions about soil formation and nutrient loss as well 

as discover new forms of bioremediation.  

These experiments represent a successful test of our experimental design in a 

laboratory setting. The CO2 control system could easily be moved to a greenhouse or an 

outdoor research plot. For a variety of reasons explored in the discussion, data from these 

microcosm studies are just the beginning of investigating changes brought about by 
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increases in C fluxes caused by plant growth in elevated CO2. Due to the ever shrinking 

quantities of P sources, particular interest should be aimed at understanding changes in P 

dynamics in soil systems.   
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Appendix A  Flow rate and pH 

Table A-1 Week 1 pH, Volume and Time  

None Detected (ND) Not Sampled (NS) Volume (V) Time(t) 

Week 1 Abiotic Elevated     

Sample ID  pH V (g) t (min) 

1 5.02 45.91 10080 

7 4.93 35.69   

13 4.90 34.29   

Week 1 Abiotic Ambient     

Sample ID  pH V (g) t (min) 

19 3.59 117.85   

24 4.81 12.61   

35 5.94 56.93   

Week 1 Biotic Elevated     

Sample ID  pH V (g) t (min) 

2 4.29 101.68   

3 4.58 114.28   

4 4.54 109.11   

5 4.35 128.65   

6 5.47 118.19   

8 5.16 92.30   

9 5.34 97.98   

10 5.49 115.66   

11 5.31 104.30   

12 5.28 95.32   

14 3.92 88.55   

15 3.00 89.77   

16 3.67 114.01   

17 3.57 101.30   

18 3.59 113.59   

Week 1 Biotic Ambient     

Sample ID  pH V (g) t (min) 

21 3.87 124.90   

22 4.07 98.83   

23 3.86 119.45   

25 4.62 34.05   

26 5.06 47.70   

27 5.02 37.32   

28 4.97 40.73   

29 5.01 29.21   

30 5.72 82.55   

31 6.44 109.02   

32 5.86 111.54   

33 5.86 106.62   

34 5.96 97.26   
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Table A-2. Week 2 pH, flow rate (g), time (min) and water content of harvested plant pot 

(g). 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 2 Abiotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

1 6.00 40.89 17790 NS 

7 4.89 29.54   NS 

13 4.98 13.37   NS 

Week 2 Abiotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

19 4.50 89.60   NS 

24 4.68 42.15   NS 

35 5.78 58.67   NS 

Week 2 Biotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

2 4.43 97.75   NS 

3 5.24 87.38   NS 

4 4.26 85.76   NS 

5 4.57 64.71   NS 

6 5.03 56.32   9.79 

8 5.06 86.40   NS 

9 5.00 59.59   NS 

10 5.36 88.72   NS 

11 5.05 53.49   8.36 

12 5.29 84.70   NS 

14 4.77 68.69   6.84 

15 4.52 79.73   NS 

16 4.63 83.79   NS 

17 4.47 59.34   NS 

18 4.52 71.46   NS 

Week 2 Biotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

21 4.51 92.01   8.67 

22 4.45 76.98   NS 

23 4.72 101.89   NS 

25 4.59 106.04   NS 

26 4.71 99.90   NS 

27 4.79 116.85   NS 

28 4.84 116.75   9.08 

29 4.73 81.51   NS 

30 5.16 64.53   NS 

31 5.17 85.30   NS 

32 5.70 89.54   NS 

33 5.16 74.15   7.57 

34 5.75 80.20   NS 
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Table A-3. Week 3 pH, volume (g) and time (min) 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 3 Abiotic Elevated     

Sample ID pH  V (g) t (min) 

1 5.23 110.24 31590 

7 4.88 149.98   

13 5.32 172.33   

Week 3 Abiotic Ambient     

Sample ID pH  V (g) t (min) 

19 4.54 117.46   

24 4.82 174.16   

35 5.53 153.01   

Week 3 Biotic Elevated     

Sample ID pH  V (g) t (min) 

2 4.57 151.29   

3 4.82 126.63   

4 6.36 127.92   

5 5.10 96.77   

6 NS NS   

8 4.47 92.71   

9 4.55 36.72   

10 5.13 164.68   

11 NS NS   

12 5.19 113.41   

14 NS NS   

15 4.91 183.85   

16 4.88 203.35   

17 4.63 207.80   

18 4.56 169.23   

Week 3 Biotic Ambient     

Sample ID pH  V (g) t (min) 

21 NS NS   

22 4.60 83.68   

25 4.53 115.32   

26 4.60 107.04   

29 4.48 123.22   

30 NS NS   

31 4.80 110.61   

32 5.33 66.39   

33 NS NS   

34 5.47 32.08   
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Table A-4. Week 4 pH, volume (g), time (min) and water content of harvested plant pot 

(g). 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 4 Abiotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

1 5.66 107.13 40470 NS 

7 4.89 117.26   NS 

13 4.57 121.23   NS 

Week 4 Abiotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

19 4.40 86.81   NS 

24 4.92 126.05   NS 

35 5.09 113.56   NS 

Week 4 Biotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

2 5.68 109.03   NS 

3 5.40 101.26   NS 

4 NS NS   NS 

5 6.20 92.31   NS 

6 NS NS   NS 

8 3.80 27.94   NS 

9 4.29 13.28   NS 

12 4.64 89.08   10.44 

14 NS NS   NS 

15 4.65 120.70   NS 

16 4.83 113.23   NS 

17 4.98 117.91   NS 

18 4.69 104.11   7.59 

Week 4 Biotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

21 NS NS   NS 

22 4.38 62.10   8.91 

23 NS NS   NS 

25 4.67 54.76   NS 

26 4.50 72.77   NS 

29 4.47 112.64   11.71 

30 NS NS   NS 

31 4.71 76.96   NS 

32 5.10 31.83   NS 

33 NS NS   NS 

34 5.52 106.83   11.18 
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Table A-5. Week 5 pH, volume (g) and time (min) 

None Detected (ND) Not Sampled (NS) Volume (V)Time(t) 

Week 5 Abiotic Elevated     

Sample ID  pH V (g) t (min) 

1 5.04 109.55 50430 

7 4.88 142.84   

13 4.96 109.90   

Week 5 Abiotic Ambient     

Sample ID  pH V (g) t (min) 

19       

24 5.81 108.81   

35 5.19 128.03   

Week 5 Biotic Elevated     

Sample ID  pH V (g) t (min) 

2 4.67 100.73   

3 479.00 88.07   

4 NS NS   

5 NS NS   

6 NS NS   

8 3.87 135.64   

9 4.30 20.67   

15 NS NS   

16 4.91 100.68   

17 4.90 108.45   

18 NS NS   

Week 5 Biotic Ambient     

Sample ID  pH V (g) t (min) 

21 NS NS   

22 NS NS   

23 NS NS   

25 4.80 136.36   

26 5.51 152.24   

27 NS NS   

28 NS NS   

29 NS NS   

30 NS NS   

31 4.78 68.04   

32 5.04 133.94   

33 NS NS   

34 NS NS   
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Table A-6. Week 6 pH, volume (g) time (min) and water content of harvested plant (g) 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 6 Abiotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL)  

1 5.88 85.73 60480 NS 

7 5.51 122.58   NS 

13 5.07 117.08   NS 

Week 6 Abiotic Ambient     Water Content (mL)  

Sample ID pH  V (g) t (min)   

19 NS NS   NS 

24 5.06 85.14   NS 

35 5.14 100.69   NS 

Week 6 Biotic Elevated       

Sample ID pH  V (g) t (min) water content (ml) 

2 4.32 55.75   10.05 

3 6.59 90.11   NS 

8 4.06 103.99   9.73 

9 4.05 18.50   NS 

10 NS NS   NS 

11 NS NS   NS 

12 NS NS   NS 

14 NS NS   NS 

15 NS NS   NS 

16 4.81 168.17   NS 

17 4.88 165.96   7.57 

18         

Week 6 Biotic Ambient       

Sample ID pH  V (g) t (min) water content (ml) 

21 NS NS   NS 

22 NS NS   NS 

23 NS NS   NS 

25 5.18 46.39   5.47 

26 5.11 56.27   NS 

27 NS NS   NS 

28 NS NS   NS 

29 NS NS   NS 

30 NS NS   NS 

31 4.77 46.78   NS 

32 5.15 39.06   13.22 

33 NS NS   NS 

34 NS NS   NS 
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Table A-7. Week 7 pH, volume (g) and time (min). 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 7 Abiotic Elevated     

Sample ID pH  V (g) t (min) 

1 5.57 128.60 70620 

7 4.76 102.83   

13 4.83 111.79   

Week 7 Abiotic Ambient     

Sample ID pH  V (g) t (min) 

19 NS NS   

24 4.96 110.39   

35 5.71 81.54   

Week 7 Biotic Elevated     

Sample ID pH  V (g) t (min) 

2 4.07 63.85   

8 NS NS   

9 4.01 57.82   

10 NS NS   

11 NS NS   

12 NS NS   

14 NS NS   

15 NS NS   

16 4.74 161.11   

17 NS NS   

18 NS NS   

Week 7 Biotic Ambient     

Sample ID pH  V (g) t (min) 

21 NS NS   

22 NS NS   

23 NS NS   

25 NS NS   

26 6.30 93.50   

27 NS NS   

28 NS NS   

29 NS NS   

30 NS NS   

31 NS NS   

32 5.76 37.32   

33 NS NS   

34 NS NS   
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Table A-8. Week 8 pH, volume (g), time (min) and water content of harvested plant (g) 

None Detected (ND) Not Sampled (NS) Volume (V) Time (t) 

Week 8 Abiotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

1 5.54 113.05 79620 7.54 

7 4.70 130.40   7.36 

13 6.22 135.96   NS 

Week 8 Abiotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

19 NS NS   NS 

24 5.01 151.69   9.13 

35 5.19 141.63   11.25 

Week 8 Biotic Elevated       

Sample ID pH  V (g) t (min) Water Content (mL) 

2 3.77 50.28   9.8 

6 NS NS   NS 

8 NS NS   NS 

9 3.92 45.58   12.93 

10 NS NS   NS 

11 NS NS   NS 

12 NS NS   NS 

14 NS NS   NS 

15 NS NS   NS 

16 4.44 127.22   9.1 

17 NS NS   NS 

18 NS NS   NS 

Week 8 Biotic Ambient       

Sample ID pH  V (g) t (min) Water Content (mL) 

21 NS NS   NS 

22 NS NS   NS 

23 NS NS   NS 

25 NS NS   NS 

26 4.64 116.06   8.78 

27 NS NS   NS 

28 NS NS   NS 

29 NS NS   NS 

30 NS NS   NS 

31 NS NS   NS 

32 5.14 120.48   11.31 

33 NS NS   NS 

34 NS NS   NS 
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Appendix B  Plant tissue by week Elevated CO2 (el) Ambient CO2 (am) 

Table B-1. Week 2 plant data 

Elevated CO2 (el) Ambient CO2 (am)         

Condition ID 
Dry 

 wt(g) 

Crucibal 

(g) 

Wt Added 

(g) 

Final 

Volume 

(mL) 

Total plant 

(g) 

Root: 

shoot 

el 6 sh  0.3713   10.3906   0.0576  50.35 0.4387 0.1815 

el 6 rt  0.0674   11.1161   0.0446  50.16     

el 11 sh  0.2283   11.7433   0.0512  50.75 0.282 0.2352 

el 11 rt  0.0537   11.0012   0.0499  50.08     

el 14 sh  0.3726   10.5891   0.0637  50.44 0.422 0.1326 

el 14 rt  0.0494   11.6826   0.0484  50.57     

am 21 sh  0.2931   11.5247   0.0576  50.29 0.3463 0.1815 

am 21 rt  0.0532   12.1897   0.0483  50.19     

am 28 sh  0.2821   11.6201   0.0542  50.79 0.3299 0.1694 

am 28 rt  0.0478   10.5152   0.0451  50.03     

am 33 sh  0.2476   11.2049   0.0489  50.09 0.2847 0.1498 

am 33 rt  0.0371   11.2879   0.0317  50.11     
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Table B-2. Week 4 plant data 

Elevated CO2 (el) Ambient CO2 (am)         

Condition ID Dry wt(g) Crucibal (g) Wt Added (g) 
Final Volume 

(mL) 

Total 

plant (g) 
Root: shoot 

el 5 sh  0.1813   11.2915   0.0643  50.43 0.242 0.3348 

el 5 rt  0.0607   11.6831   0.0193  50     

el 12 sh  0.3262   11.7432   0.0629  50.76 0.3872 0.1870 

el 12 rt  0.0610   11.5235   0.0367  50.23     

el 18 sh  0.2709   10.3899   0.0555  51.46 0.3312 0.2226 

el 18 rt  0.0603   11.0023   0.0350  50.53     

am 22 sh  0.2381   12.1888   0.0455  50.35 0.2915 0.2243 

am 22 rt  0.0534   10.5167   0.0399  50.22     

am 29 sh  0.6286   11.1151   0.0473  50.25 0.7492 0.1919 

am 29 rt  0.1206   11.6204   0.0610  50.71     

am 34 sh  0.3684   10.5880   0.0460  50.35 0.3896 0.0575 

am 34 rt  0.0212   11.2055   0.0146  50.52     
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Table B-3. Week 6 plant data 

Elevated CO2 (el) Ambient CO2 (am)           

Condition ID Dry wt(g) 
Crucibal 

(g) 

Wt Added 

(g) 

Final 

Volume 

(mL) 

Total 

plant (g) 

Root: 

shoot 

el 3 sh  0.2201   11.7432   0.0510  50.09 0.2599 0.1808 

el 3 rt  0.0398   11.0018   0.0363  39.84     

el 8 sh  1.1199   11.2044   0.0548  50.12 1.3388 0.1955 

el 8 rt  0.2189   11.6826   0.0535  50.28     

el 17 sh  0.1867   10.5163   0.0470  50.08 0.2259 0.2100 

el 17 rt  0.0392   11.1157   0.0370  51.23     

am 25 sh  0.9513   11.2883   0.0402  49.11 1.1271 0.1848 

am 25 rt  0.1758   11.3908   0.0643  50.2     

am 31sh  0.3668   12.1894   0.0566  50.45 0.4249 0.1584 

am 31 rt  0.0581   11.6209   0.0464  39.78     
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Table B-4. week 8 plant data 

Elevated CO2 (el) Ambient CO2 (am)         

Condition ID Dry wt(g) 
Crucibal 

(g) 

Wt Added 

(g) 

Final Volume 

(mL) 

Total 

plant (g) 
Root: shoot 

el 2 sh  0.9313   12.1875   0.0585  50.08 1.1716 0.2580 

el 2 rt  0.2403   11.5231   0.0566  50.49     

el 9 sh  2.8001   10.3912   0.0509  50.24 3.3015 0.1791 

el 9 rt  0.5014   11.0009   0.0533  50.55     

el 16 sh  0.2586   10.5166   0.0481  49.67 0.3077 0.1899 

el 16 rt  0.0491   10.5882   0.0403  51.04     

am 26 sh  1.2331   11.1159   0.0586  50.03 1.3279 0.0769 

am 26 rt  0.0948   11.6823   0.0414  49.6     

am 32 sh  1.4506   11.7429   0.0526  50.05 1.5726 0.0841 

am 32 rt  0.1220   11.2882   0.0462  50.38     
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Appendix C Calcium concentrations measured using AAS. 

Concentrations converted to total Ca using volume (V) from weekly flow data. 

Table C-1. Week 1 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.045 6.6170 101.68 0.6728 1.68E-05 

3 0.035 5.1846 114.28 0.5925 1.48E-05 

5 0.04 5.9008 128.65 0.7591 1.89E-05 

6 0.042 6.1873 118.19 0.7313 1.82E-05 

8 0.049 7.1899 92.3 0.6636 1.66E-05 

9 0.049 7.1899 97.98 0.7045 1.76E-05 

11 0.03 4.4684 104.3 0.4661 1.16E-05 

12 0.041 6.0440 95.32 0.5761 1.44E-05 

14 0.101 14.6383 88.55 1.2962 3.23E-05 

15 0.241 34.6915 89.77 3.1143 7.77E-05 

16 0.096 13.9221 114.01 1.5873 3.96E-05 

17 NS NS NS NS NS 

18 0.134 19.3651 113.59 2.1997 5.49E-05 

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

21 0.089 12.9194 124.9 1.6136 4.03E-05 

22 0.101 14.6383 98.83 1.4467 3.61E-05 

25 0.109 15.7842 34.05 0.5375 1.34E-05 

26 0.068 9.9115 47.7 0.4728 1.18E-05 

27 NS NS NS NS NS 

28 0.054 7.9061 40.73 0.3220 8.03E-06 

29 0.157 22.6596 29.21 0.6619 1.65E-05 

30 NS NS NS NS NS 

31 0.036 5.3279 109.02 0.5808 1.45E-05 

32 0.059 8.6223 111.54 0.9617 2.40E-05 

33 0.028 4.1820 106.62 0.4459 1.11E-05 

34 0.057 8.3358 97.26 0.8107 2.02E-05 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.05 7.3332 45.91 0.3367 8.40E-06 

7 0.079 11.4871 35.69 0.4100 1.02E-05 

13 0.077 11.2006 34.29 0.3841 9.58E-06 

19 0.146 21.0840 117.85 2.4847 6.20E-05 

24 0.117 16.9301 12.61 0.2135 5.33E-06 

35 0.078 11.3438 56.93 0.6458 1.61E-05 
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Table C-2. Week 2 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.026 3.8955 97.75 0.3808 9.50E-06 

3 0.034 5.0414 87.38 0.4405 1.10E-05 

4 NS NS NS NS NS 

5 0.023 3.4658 64.71 0.2243 5.60E-06 

6 0.046 6.7602 56.32 0.3807 9.50E-06 

8 0.017 2.6063 86.4 0.2252 5.62E-06 

9 0.04 5.9008 59.59 0.3516 8.77E-06 

10 NS NS NS NS NS 

11 0.053 7.7629 53.49 0.4152 1.04E-05 

12 0.03 4.4684 84.7 0.3785 9.44E-06 

14 0.014 2.1766 68.69 0.1495 3.73E-06 

15 0.013 2.0334 79.73 0.1621 4.05E-06 

16 0.013 2.0334 83.79 0.1704 4.25E-06 

17 0.01 1.6037 59.34 0.0952 2.37E-06 

18 0.023 3.4658 71.46 0.2477 6.18E-06 

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS NS NS NS NS 

21 0.008 1.3172 92.01 0.1212 3.02E-06 

22 0.011 1.7469 76.98 0.1345 3.36E-06 

25 0.028 4.1820 106.04 0.4435 1.11E-05 

26 0.025 3.7522 99.9 0.3748 9.35E-06 

27 NS NS       

28 0.017 2.6063 116.75 0.3043 7.59E-06 

29 0.031 4.6117 81.51 0.3759 9.38E-06 

31 0.024 4.6117 85.3 0.3934 9.82E-06 

32 0.031 2.6063 89.54 0.2334 5.82E-06 

33 0.017 5.4711 74.15 0.4057 1.01E-05 

34 0.037 5.4711 80.2 0.4388 1.09E-05 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.039 5.7576 40.89 0.2354 5.87E-06 

7 0.031 4.6117 29.54 0.1362 3.40E-06 

13 0.051 7.4764 13.37 0.1000 2.49E-06 

19 0.017 2.6063 89.6 0.2335 5.83E-06 

24 0.028 4.1820 42.15 0.1763 4.40E-06 

35 0.033 2.6063 58.67 0.1529 3.82E-06 
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Table C-3. Week 2 Ca content of plant tissue. Total Ca comes from concentration of 

digested plant ~50 mg times total mass of plant. 

Week 2             

Elevated mg/L (ppm) Digested (g) Dry wt (g) Vol plant (ml) Ca (mg) Total Ca (mg) 

6 sh 1.3172 0.0576 0.3713 50.35 0.0663 0.4275 

6 rt 5.0414 0.0446 0.0674 50.16 0.2529 0.3821 

11 sh 0.7443 0.0512 0.2283 50.75 0.0378 0.1684 

11 rt 2.6063 0.0499 0.0537 50.08 0.1305 0.1405 

14 sh 0.6010 0.0637 0.3726 50.44 0.0303 0.1773 

14 rt 1.8902 0.0484 0.0494 50.57 0.0956 0.0976 

Ambient mg/L (ppm) Digested (g)) Dry wt (g) Vol plant (ml) Ca (mg) Total Ca (mg) 

21 sh 0.6010 0.0576 0.2931 50.29 0.0302 0.1538 

21 rt 0.7443 0.0483 0.0532 50.19 0.0374 0.0411 

28 sh 1.1740 0.0542 0.2821 50.79 0.0596 0.3103 

28 rt 0.8875 0.0451 0.0478 50.03 0.0444 0.0471 

33 sh 1.1740 0.0489 0.2476 50.09 0.0588 0.2977 

33 rt 4.7549 0.0317 0.0371 50.11 0.2383 0.2789 
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Table C-4. Week 3 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.033 4.8981 151.29 0.7410 1.85E-05 

3 0.04 5.9008 126.63 0.7472 1.86E-05 

4 NS NS NS NS NS 

5 0.034 5.0414 96.77 0.4879 1.22E-05 

6 H H H H H 

8 0.06 8.7656 92.71 0.8127 2.03E-05 

9 0.209 30.1079 36.72 1.1056 2.76E-05 

10 NS NS NS NS NS 

11 H H H H H 

12 0.016 2.4631 113.41 0.2793 6.97E-06 

14 H H H H H 

15 0.006 1.0307 183.85 0.1895 4.73E-06 

16 0.006 1.0307 203.35 0.2096 5.23E-06 

17 0.009 1.4604 207.8 0.3035 7.57E-06 

18 0.013 2.0334 169.23 0.3441 8.59E-06 

Biotic 

Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS NS NS NS NS 

21 H H H H H 

22 0.029 4.3252 83.68 0.3619 9.03E-06 

23 NS NS NS NS NS 

25 0.077 11.2006 115.32 1.2917 3.22E-05 

26 0.047 6.9035 107.04 0.7389 1.84E-05 

27 NS NS NS NS NS 

28 H H H H H 

29 0.074 10.7709 123.22 1.3272 3.31E-05 

30 NS NS NS NS NS 

31 0.041 6.0440 110.61 0.6685 1.67E-05 

32 0.128 18.5057 66.39 1.2286 3.07E-05 

34 0.03 4.4684 32.08 0.1433 3.58E-06 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.017 2.6063 110.24 0.2873 7.17E-06 

7 0.011 1.7469 149.98 0.2620 6.54E-06 

13 0.011 1.7469 172.33 0.3010 7.51E-06 

19 0.012 1.8902 117.46 0.2220 5.54E-06 

24 0.011 1.7469 174.16 0.3042 7.59E-06 

35 0.013 2.0334 153.01 0.3111 7.76E-06 
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Table C-5. Week 4 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.033 4.8981 109.03 0.5340 1.33E-05 

3 0.021 3.1793 101.26 0.3219 8.03E-06 

4 NS         

5 0.024 3.6090 92.31 0.3331 8.31E-06 

6 H         

8 0.095 13.7789 27.94 0.3850 9.61E-06 

9 0.332 47.7261 13.28 0.6338 1.58E-05 

10 NS         

11 H         

12 0.022 3.3225 89.08 0.2960 7.38E-06 

14 H         

15 0.006 1.0307 120.7 0.1244 3.10E-06 

16 0.008 1.3172 113.23 0.1491 3.72E-06 

17 0.011 1.7469 117.91 0.2060 5.14E-06 

18 0.007 1.1740 104.11 0.1222 3.05E-06 

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS         

21 H         

22 0.012 1.8902 62.1 0.1174 2.93E-06 

23 NS         

25 0.093 13.4924 54.76 0.7388 1.84E-05 

26 0.086 12.4897 72.77 0.9089 2.27E-05 

27 NS         

28 H         

29 0.072 10.4844 112.64 1.1810 2.95E-05 

30 NS         

31 0.028 4.1820 76.96 0.3218 8.03E-06 

32 0.177 25.5243 31.83 0.8124 2.03E-05 

34 0.025 3.7522 106.83 0.4009 1.00E-05 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.013 2.0334 107.13 0.2178 5.44E-06 

7 0.008 1.3172 117.26 0.1545 3.85E-06 

13 0.01 1.6037 121.23 0.1944 4.85E-06 

19 0.009 1.4604 86.81 0.1268 3.16E-06 

24 0.008 1.3172 126.05 0.1660 4.14E-06 

35 0.008 1.3172 113.56 0.1496 3.73E-06 
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Table C-6. Week 4 Ca content of plant tissue. Total Ca comes from concentration of 

digested plant ~50 mg times total mass of plant. 

 

            

Elevated mg/L (ppm) Digested (g) Dry wt (g) Vol plant (ml) Ca (mg) Total Ca (mg) 

5 sh 1.0307 0.0643 0.1813 50.43 0.0520 0.1466 

5 rt 2.1766 0.0193 0.0607 50 0.1088 0.3423 

12 sh 1.0307 0.0629 0.3262 50.76 0.0523 0.2713 

12 rt 3.1793 0.0367 0.061 50.23 0.1597 0.2654 

18 sh 1.1740 0.0555 0.2709 51.46 0.0604 0.2949 

18 rt 2.3199 0.0350 0.0603 50.53 0.1172 0.2020 

Ambient mg/L (ppm) Digested (g) Dry wt (g) Vol plant (ml) Ca (mg) Total Ca (mg) 

22 sh 1.1740 0.0455 0.2381 50.35 0.0591 0.3093 

22 rt 5.6143 0.0399 0.0534 50.22 0.2820 0.3773 

29 sh 0.8875 0.0473 0.6286 50.25 0.0446 0.5927 

29 rt 4.1820 0.0610 0.1206 50.71 0.2121 0.4193 

34 sh 0.8875 0.0460 0.3684 50.35 0.0447 0.3579 

34 rt 3.1793 0.0146 0.0212 50.52 0.1606 0.2332 
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Table C-7. Week 5 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.031 4.6117 100.73 0.4645 1.16E-05 

3 0.012 1.8902 88.07 0.1665 4.15E-06 

4 NS         

5 H         

6 H         

8 0.049 7.1899 135.64 0.9752 2.43E-05 

9 0.367 52.7395 20.67 1.0901 2.72E-05 

10 NS         

11 H         

12 H         

14 H         

15 NS         

16 0.01 1.6037 100.68 0.1615 4.03E-06 

17 0.009 1.4604 108.45 0.1584 3.95E-06 

18 H         

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS         

21 H         

22 H         

23 NS         

25 0.048 7.0467 136.36 0.9609 2.40E-05 

26 0.044 6.4738 152.24 0.9856 2.46E-05 

27 NS         

28 H         

29 H         

30 NS         

31 0.054 7.9061 68.04 0.5379 1.34E-05 

32 0.058 8.4791 133.94 1.1357 2.83E-05 

33 H         

34 H         

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.011 1.7469 109.55 0.1914 4.78E-06 

7 0.006 1.0307 142.84 0.1472 3.67E-06 

13 0.018 2.7496 109.9 0.3022 7.54E-06 

19 NS         

24 0.007 1.1740 108.81 0.1277 3.19E-06 

35 0.006 0.5940 128.03 0.0761 1.90E-06 
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Table C-8. Week 6 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.085 11.6963 55.75 0.6521 1.63E-05 

3 0.007 0.7346 90.11 0.0662 1.65E-06 

4 NS NS NS NS NS 

5 H H H H H 

6 H H H H H 

8 0.069 9.4477 103.99 0.9825 2.45E-05 

9 0.575 80.5583 18.5 1.4903 3.72E-05 

10 NS NS NS NS NS 

11 H H H H H 

12 H H H H H 

14 H H H H H 

15 NS NS NS NS NS 

16 0.009 1.0156 168.17 0.1708 4.26E-06 

17 0.007 0.7346 165.96 0.1219 3.04E-06 

18 H         

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS NS NS NS NS 

21 H H H H H 

22 H H H H H 

23 NS NS NS NS NS 

25 0.055 7.4802 46.39 0.3470 8.66E-06 

26 0.037 4.9506 56.27 0.2786 6.95E-06 

27 NS NS NS NS NS 

28 H H H H H 

29 H H H H H 

30 NS NS NS NS NS 

31 0.072 9.8693 46.78 0.4617 1.15E-05 

32 0.095 13.1016 39.06 0.5117 1.28E-05 

33 H         

34 H         

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.008 0.8751 85.73 0.0750 1.87E-06 

7 0.003 0.1724 122.58 0.0211 5.27E-07 

13 0.007 0.7346 117.08 0.0860 2.15E-06 

19 NS NS NS NS NS 

24 0.006 0.5940 85.14 0.0506 1.26E-06 

35 0.004 0.3130 100.69 0.0315 7.86E-07 
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Table C-9. Week 6 Ca content of plant tissue. Total Ca comes from concentration of 

digested plant ~50 mg times total mass of plant. 

None detected (ND)           

Elevated mg/L (ppm) Digested (g) 

Dry wt 

(g) Vol plant (ml) Ca (mg) Total Ca (mg) 

3sh 0.8751 0.0510 0.2201 50.09 0.0438 0.1892 

3 rt 2.8426 0.0363 0.0398 39.84 0.1132 0.1242 

8 sh ND ND ND ND ND ND 

8 rt 0.3130 0.0535 0.2189 50.28 0.0157 0.0644 

17 sh  1.0156 0.0470 0.1867 50.08 0.0509 0.2020 

17 rt 8.1829 0.0370 0.0392 51.23 0.4192 0.4441 

Ambient mg/L (ppm) Digested (g) 

Dry wt 

(g) Vol plant (ml) Ca (mg) Total Ca (mg) 

25 sh 0.4535 0.0402 0.9513 49.11 0.0223 0.5270 

25 rt 1.1562 0.0643 0.1758 50.2 0.0580 0.1587 

31 sh ND ND ND ND ND ND 

31 rt 0.7346 0.0464 0.0581 39.78 0.0292 0.0366 
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Table C-10. Week 7 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.161 22.3769 63.85 1.4288 3.56E-05 

3 H H H H H 

4 NS NS NS NS NS 

5 H H H H H 

6 H H H H H 

8 NS NS NS NS NS 

9 0.327 45.7057 57.82 2.6427 6.59E-05 

10 NS NS NS NS NS 

11 H H H H H 

12 H H H H H 

14 H H H H H 

15 NS NS NS NS NS 

16 0.011 1.2967 161.11 0.2089 5.21E-06 

17 H H H H H 

18 H H H H H 

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS NS NS NS NS 

21 H H H H H 

22 H H H H H 

23 NS NS NS NS NS 

25 H H H H H 

26 0.0894 12.3146 93.5 1.1514 2.87E-05 

27 NS NS NS NS NS 

28 H H H H H 

29 H H H H H 

30 NS NS NS NS NS 

31 H H H H H 

32 0.103 14.2259 37.32 0.5309 1.32E-05 

33 H H H H H 

34 H H H H H 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.005 0.4535 128.6 0.0583 1.46E-06 

7 0.014 1.7183 102.83 0.1767 4.41E-06 

13 0.01 1.1562 111.79 0.1292 3.22E-06 

19 NS NS NS NS NS 

24 0.002 0.0319 110.39 0.0035 8.78E-08 

35 0.005 0.4535 81.54 0.0370 9.23E-07 
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Table C-11. Week 8 Ca content of leachate in mg and moles 

Biotic Elevated           

Not sampled (NS) None detected (ND) Harvested (H)     

ID Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

2 0.224 31.2306 50.28 1.5703 3.92E-05 

3 H H H H H 

4 NS NS NS NS NS 

5 H H H H H 

6 H H H H H 

8 NS NS NS NS NS 

9 0.339 47.3921 45.58 2.1601 5.39E-05 

10 NS NS NS NS NS 

11 H H H H H 

12 H H H H H 

14 H H H H H 

15 NS NS NS NS NS 

16 0.023 2.9831 127.22 0.3795 9.47E-06 

17 H H H H H 

18 H H H H H 

Biotic Ambient Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

20 NS NS NS NS NS 

21 H H H H H 

22 H H H H H 

23 NS NS NS NS NS 

25 H H H H H 

26 0.041 5.5127 116.06 0.6398 1.60E-05 

27 NS         

28 H H H H H 

29 H H H H H 

30 NS NS NS NS NS 

31 H H H H H 

32 0.023 2.9831 120.48 0.3594 8.97E-06 

33 H H H H H 

34 H H H H H 

Abiotic  Absorbance mg/L (ppm) V (mL) Ca (mg) m Ca 

1 0.005 0.4535 113.05 0.0513 1.28E-06 

7 0.009 1.0156 130.4 0.1324 3.30E-06 

13 0.006 0.5940 135.96 0.0808 2.02E-06 

19 NS NS NS NS NS 

24 0.002 0.0319 151.69 0.0048 1.21E-07 

35 0.001 ND 141.63 ND ND 
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Table C-12. Week 8 Ca content of plant tissue. Total Ca comes from concentration of 

digested plant ~50 mg times total mass of plant. 

None detected (ND)           

Elevated mg/L (ppm) Digested (g) 

Dry wt 

(g) Vol plant (ml) Ca (mg) Total Ca (mg) 

2 sh 0.3130 0.0585 0.9313 50.08 0.0157 0.2495 

2 rt 1.7183 0.0566 0.2403 50.49 0.0868 0.3683 

9 sh  0.4535 0.0509 2.8001 50.24 0.0228 1.2534 

9 rt 3.9669 0.0533 0.5014 50.55 0.2005 1.8864 

16 sh 1.0156 0.0481 0.2586 49.67 0.0504 0.2712 

16 rt 13.1016 0.0403 0.0491 51.04 0.6687 0.8147 

Ambient mg/L (ppm) Digested (g) 

Dry wt 

(g) Vol plant (ml) Ca (mg) Total ca (mg) 

26 sh 0.7346 0.0586 1.2331 50.03 0.0368 0.7733 

26 rt 1.4372 0.0414 0.0948 49.6 0.0713 0.1632 

32 sh ND ND ND ND ND ND 

32 rt 8.7450 0.0462 0.122 50.38 0.4406 1.1634 

Bean seed 0.7346 0.0544 0.43 50.16 0.0368 0.2912 
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Appendix D  P concentrations measured using colorimetry. 

Concentrations converted to total P using volume (V) from weekly flow data. 

Table D-1. Week 1 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L Dilution mg/L V (ml) P (mg) m P 

2 0.0707 9.29 0.6567 101.68 0.0668 2.16E-06 

3 0.0100 9.29 0.0931 114.28 0.0106 3.43E-07 

4 NS NS NS NS NS NS 

5 0.0614 9.29 0.5708 128.65 0.0734 2.37E-06 

6 0.0083 9.29 0.0771 118.19 0.0091 2.94E-07 

8 ND ND ND ND ND ND 

9 0.0066 9.29 0.0615 97.98 0.0060 1.95E-07 

10 NS NS NS NS NS NS 

11 0.0019 9.29 0.0176 104.30 0.0018 5.93E-08 

12 0.0017 9.29 0.0154 95.32 0.0015 4.75E-08 

14 ND ND ND ND ND ND 

15 ND ND ND ND ND ND 

16 ND ND ND ND ND ND 

17 ND ND ND ND ND ND 

18 ND ND ND ND ND ND 

Biotic 

Ambient mg/L  Dilution mg/L V (ml) P (mg) m P 

20 ND ND ND ND ND ND 

21 ND ND ND ND ND ND 

22 ND ND ND ND ND ND 

23 ND ND ND ND ND ND 

25 0.0991 9.29 0.9210 34.05 0.0314 1.01E-06 

26 0.0394 9.29 0.3665 47.70 0.0175 5.64E-07 

28 0.0005 9.29 0.0050 40.73 0.0002 6.53E-09 

29 0.1697 9.29 1.5763 29.21 0.0460 1.49E-06 

31 0.0043 9.29 0.0403 109.02 0.0044 1.42E-07 

32 0.0025 9.29 0.0229 111.54 0.0025 8.23E-08 

33 0.0016 9.29 0.0146 106.62 0.0016 5.01E-08 

34 0.0015 9.29 0.0138 97.26 0.0013 4.35E-08 

Abiotic mg/L Dilution mg/L V (ml) P (mg) m P 

1 0.0025 4.15 0.0105 45.91 0.0005 1.56E-08 

7 0.0051 4.15 0.0211 35.69 0.0008 2.43E-08 

13 0.0255 4.15 0.1056 34.29 0.0036 1.17E-07 

24 0.0280 9.29 0.2603 12.61 0.0033 1.06E-07 

35 0.0166 4.15 0.0690 56.93 0.0039 1.27E-07 
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Table D-2. Week 2 P content of leachate in mg and moles. 

Biotic Elevated           

None Detected (ND) Not Sampled (NS)  Harvested (H)   

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0754 9.29 0.7000 97.75 0.0684 2.21E-06 

3 0.0309 9.29 0.2871 87.38 0.0251 8.10E-07 

4 NS NS NS NS NS NS 

5 0.0189 9.29 0.1760 64.71 0.0114 3.68E-07 

6 0.0420 9.29 0.3900 56.32 0.0220 7.09E-07 

8 0.0038 9.29 0.0354 86.40 0.0031 9.86E-08 

9 0.0079 9.29 0.0732 59.59 0.0044 1.41E-07 

10 NS NS NS NS NS NS 

11 0.0486 9.29 0.4520 53.49 0.0242 7.80E-07 

12 0.0023 9.29 0.0211 84.70 0.0018 5.77E-08 

14 0.0152 9.29 0.1414 68.69 0.0097 3.13E-07 

15 0.0252 9.29 0.2341 79.73 0.0187 6.03E-07 

16 0.0158 9.29 0.1470 83.79 0.0123 3.98E-07 

17 0.0238 9.29 0.2215 59.34 0.0131 4.24E-07 

18 0.0232 9.29 0.2160 71.46 0.0154 4.98E-07 

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20             

21 0.0177 9.29 0.1643 92.01 0.0151 4.88E-07 

22 NS NS NS NS NS NS 

23 NS NS NS NS NS NS 

25 0.0112 9.29 0.1041 106.04 0.0110 3.57E-07 

26 0.0311 9.29 0.2885 99.90 0.0288 9.31E-07 

27 NS NS NS NS NS NS 

28 0.0014 9.29 0.0127 116.75 0.0015 4.78E-08 

29 NS NS NS NS NS NS 

30 NS NS NS NS NS NS 

31 0.0007 9.29 0.0063 85.30 0.0005 1.73E-08 

32 0.0009 9.29 0.0085 89.54 0.0008 2.45E-08 

33 0.0022 9.29 0.0205 74.15 0.0015 4.91E-08 

34 0.0010 9.29 0.0092 80.20 0.0007 2.38E-08 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0395 4.145 0.1637 40.89 0.0067 2.16E-07 

7 0.0106 4.145 0.0437 29.54 0.0013 4.17E-08 

13 0.0013 9.29 0.0124 13.37 0.0002 5.35E-09 

19 0.0585 4.145 0.2426 89.60 0.0217 7.02E-07 

24 0.0307 4.145 0.1273 42.15 0.0054 1.73E-07 

35 0.0034 4.145 0.0143 58.67 0.0008 2.71E-08 
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Table D-3. Week 2 P content of plant tissue. Total P comes from concentration of 

digested plant ~50 mg times total mass of plant. 

Elevated mg/l Dilution mg/l  Vol plant (ml) Digested (g) Dry wt (g) Total P (mg) 

6 sh 0.0715 0.0086 8.2974 50.35 0.0576 0.3713 2.6930 

6 rt 0.0921 0.0086 10.6825 50.16 0.0446 0.0674 0.8098 

11 sh 0.0736 0.0086 8.5366 50.75 0.0512 0.2283 1.9318 

11 rt 0.0638 0.0086 7.3970 50.08 0.0499 0.0537 0.3987 

14 sh 0.0873 0.0086 10.1306 50.44 0.0637 0.3726 2.9889 

14 rt 0.0632 0.0086 7.3303 50.57 0.0484 0.0494 0.3784 

Elevated mg/l Dilution mg/l  Vol plant Digested (g) Dry wt (g) Total P (mg) 

21 sh 0.0782 0.0086 9.0679 50.29 0.0576 0.2931 2.3205 

21 rt 0.0638 0.0086 7.4038 50.19 0.0483 0.0532 0.4093 

28 sh 0.0579 0.0086 6.7136 50.79 0.0542 0.2821 1.7747 

28 rt 0.0540 0.0086 6.2659 50.03 0.0451 0.0478 0.3323 

33 sh 0.0723 0.0086 8.3879 50.09 0.0489 0.2476 2.1274 

33 rt 0.0703 0.0086 8.1504 50.11 0.0317 0.0371 0.4780 

 

  



109 

 

Table D-4. Week 3 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.1268 9.29 1.1781 151.29 0.1782 5.75E-06 

3 0.0742 9.29 0.6890 126.63 0.0872 2.82E-06 

4 NS NS NS NS NS NS 

5 0.0428 9.29 0.3976 96.77 0.0385 1.24E-06 

6 H H H H H H 

8 0.0427 9.29 0.3964 92.71 0.0368 1.19E-06 

9 0.0327 9.29 0.3039 36.72 0.0112 3.60E-07 

10 0.0014 9.29 0.0128 164.68 0.0021 6.78E-08 

11 H H H H H H 

12 0.0049 9.29 0.0455 113.41 0.0052 1.67E-07 

14 H H H H H H 

15 0.0128 9.29 0.1192 183.85 0.0219 7.08E-07 

16 0.0103 9.29 0.0959 203.35 0.0195 6.30E-07 

17 0.0268 9.29 0.2494 207.80 0.0518 1.67E-06 

18 0.0354 9.29 0.3292 169.23 0.0557 1.80E-06 

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 0.0207 9.29 0.1923 83.68 0.0161 5.20E-07 

23 NS NS NS NS NS NS 

25 0.1461 9.29 1.3571 115.32 0.1565 5.05E-06 

26 0.0826 9.29 0.7678 107.04 0.0822 2.65E-06 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 0.0739 9.29 0.6866 123.22 0.0846 2.73E-06 

30 NS NS NS NS NS NS 

31 0.0224 9.29 0.2080 110.61 0.0230 7.43E-07 

32 0.0125 9.29 0.1164 66.39 0.0077 2.50E-07 

33 H H H H H H 

34 0.0067 9.29 0.0623 32.08 0.0020 6.45E-08 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0850 4.145 0.3525 110.24 0.0389 1.25E-06 

7 0.0118 4.145 0.0490 149.98 0.0074 2.37E-07 

13 0.0107 4.145 0.0445 172.33 0.0077 2.48E-07 

19 0.0079 4.145 0.0328 117.46 0.0038 1.24E-07 

24 0.0104 4.145 0.0430 174.16 0.0075 2.42E-07 

35 0.0047 4.145 0.0197 153.01 0.0030 9.72E-08 
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Table D-5. Week 4 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0984 9.29 0.9145 109.03 0.0997 3.22E-06 

3 0.0364 9.29 0.3381 101.26 0.0342 1.11E-06 

4 NS NS NS NS NS NS 

5 0.0273 9.29 0.2535 92.31 0.0234 7.55E-07 

6 H H H H H H 

8 0.0317 9.29 0.2943 27.94 0.0082 2.65E-07 

9 0.0541 9.29 0.5026 13.28 0.0067 2.15E-07 

10 NS NS NS NS NS NS 

11 H H H H H H 

12 0.0034 9.29 0.0312 89.08 0.0028 8.98E-08 

14 H H H H H H 

15 0.0075 9.29 0.0697 120.70 0.0084 2.72E-07 

16 0.0061 9.29 0.0565 113.23 0.0064 2.07E-07 

17 0.0210 9.29 0.1946 117.91 0.0230 7.41E-07 

18 0.0195 9.29 0.1811 104.11 0.0189 6.09E-07 

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 0.0144 9.29 0.1338 62.10 0.0083 2.68E-07 

23 NS NS NS NS NS NS 

25 0.0804 9.29 0.7472 54.76 0.0409 1.32E-06 

26 0.0813 9.29 0.7554 72.77 0.0550 1.77E-06 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 0.1028 9.29 0.9551 112.64 0.1076 3.47E-06 

30 NS NS NS NS NS NS 

31 NS NS NS NS NS NS 

32 1.3044 9.29 12.1182 31.83 0.3857 1.25E-05 

33 H H H H H H 

34 0.0080 9.29 0.0742 106.83 0.0079 2.56E-07 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0476 4.145 0.1975 107.13 0.0212 6.83E-07 

7 0.0076 4.145 0.0313 117.26 0.0037 1.19E-07 

13 0.0071 4.145 0.0295 121.23 0.0036 1.16E-07 

19 0.0093 4.145 0.0387 86.81 0.0034 1.08E-07 

24 0.0114 4.145 0.0471 126.05 0.0059 1.92E-07 

35 0.0072 4.145 0.0299 113.56 0.0034 1.09E-07 
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Table D-6. Week 4 P content of plant tissue. Total P comes from concentration of 

digested plant ~50 mg times total mass of plant. 

Elevated mg/l Dilution mg/l  Vol plant (ml) Digested (g) Dry wt (g) Total P (mg) 

5 sh 0.0863 0.0086 10.0125 50.43 0.0643 0.1813 1.4237 

5 rt 0.0266 0.0086 3.0852 50.00 0.0193 0.0607 0.4852 

12 sh 0.0832 0.0086 9.6547 50.76 0.0629 0.3262 2.5415 

12 rt 0.0545 0.0086 6.3274 50.23 0.0367 0.061 0.5283 

18 sh 0.1125 0.0086 13.0516 51.46 0.0555 0.2709 3.2783 

18 rt 0.0560 0.0086 6.5000 50.53 0.0350 0.0603 0.5659 

Elevated mg/l Dilution mg/l  Vol plant (ml) Digested (g) Dry wt (g) Total P (mg) 

22 sh 0.0637 0.0086 7.3936 50.35 0.0455 0.2381 1.9481 

22 rt 0.0571 0.0086 6.6281 50.22 0.0399 0.0534 0.4455 

29 sh 0.0326 0.0086 3.7766 50.25 0.0473 0.6286 2.5220 

29 rt 0.0565 0.0086 6.5581 50.71 0.0610 0.1206 0.6575 

34 sh 0.0732 0.0086 8.4887 50.35 0.0460 0.3684 3.4230 

34 rt 0.0231 0.0086 2.6815 50.52 0.0146 0.0212 0.1967 
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Table D-7. Week 5 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0475 9.29 0.4411 100.73 0.0444 1.43E-06 

3 0.0159 9.29 0.1480 88.07 0.0130 4.21E-07 

4 NS NS NS NS NS NS 

5 H H H H H H 

6 H H H H H H 

8 0.0118 9.29 0.1101 135.64 0.0149 4.82E-07 

9 0.0673 9.29 0.6252 20.67 0.0129 4.17E-07 

10 NS NS NS NS NS NS 

11 H H H H H H 

12 H H H H H H 

14 H H H H H H 

15 NS NS NS NS NS NS 

16 0.0035 9.29 0.0324 100.68 0.0033 1.05E-07 

17 0.0045 9.29 0.0415 108.45 0.0045 1.45E-07 

18 NS NS NS NS NS NS 

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 H H H H H H 

23 NS NS NS NS NS NS 

25 0.0340 9.29 0.3157 136.36 0.0431 1.39E-06 

26 0.0129 9.29 0.1199 152.24 0.0183 5.89E-07 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 H H H H H H 

30 NS NS NS NS NS NS 

31 0.0326 9.29 0.3026 68.04 0.0206 6.65E-07 

32 0.0119 9.29 0.1108 133.94 0.0148 4.79E-07 

33 H H H H H H 

34 H H H H H H 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0046 4.145 0.0193 109.55 0.0021 6.81E-08 

7 0.0039 4.145 0.0162 142.84 0.0023 7.47E-08 

13 0.0066 4.145 0.0276 109.90 0.0030 9.78E-08 

19 NS NS NS NS NS NS 

24 0.0126 4.145 0.0524 108.81 0.0057 1.84E-07 

35 0.0029 4.145 0.0121 128.03 0.0016 5.01E-08 
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Table D-8. Week 6 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0471 9.29 0.4378 55.75 0.0244 7.88E-07 

3 0.0690 9.29 0.6414 90.11 0.0578 1.87E-06 

4 NS NS NS NS NS NS 

5 H H H H H H 

6 H H H H H H 

8 0.0060 9.29 0.0556 103.99 0.0058 1.87E-07 

9 0.0462 9.29 0.4289 18.5 0.0079 2.56E-07 

10 NS NS NS NS NS NS 

11 H H H H H H 

12 H H H H H H 

14 H H H H H H 

15 NS NS NS NS NS NS 

16 0.0102 9.29 0.0952 168.17 0.0160 5.17E-07 

17 0.0060 9.29 0.0562 165.96 0.0093 3.01E-07 

18             

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 H H H H H H 

23 NS NS NS NS NS NS 

25 0.0106 9.29 0.0984 46.39 0.0046 1.47E-07 

26 0.0061 9.29 0.0570 56.27 0.0032 1.04E-07 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 H H H H H H 

30 NS NS NS NS NS NS 

31 0.0379 9.29 0.3524 46.78 0.0165 5.32E-07 

32 0.0074 9.29 0.0683 39.06 0.0027 8.62E-08 

33 H H H H H H 

34 H H H H H H 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0070 4.145 0.0291 85.73 0.0025 8.07E-08 

7 0.0046 4.145 0.0190 122.58 0.0023 7.53E-08 

13 0.0022 4.145 0.0091 117.08 0.0011 3.43E-08 

19 NS NS NS NS NS NS 

24 0.0087 4.145 0.0362 85.14 0.0031 9.94E-08 

35 0.0046 4.145 0.0190 100.69 0.0019 6.16E-08 
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Table D-9. Week 6 P content of plant tissue. Total P comes from concentration of 

digested plant ~50 mg times total mass of plant. 

Elevated mg/l Dilution mg/l  Vol plant (ml) Digested (g) Dry wt (g) Total P (mg) 

3sh 0.0777 0.0086 9.0098 50.09 0.0510 0.2201 1.9477 

3 rt 0.0546 0.0086 6.3292 39.84 0.0363 0.0398 0.2765 

8 sh 0.0238 0.0086 2.7584 50.12 0.0548 1.1199 2.8253 

8 rt 0.0238 0.0086 2.7652 50.28 0.0535 0.2189 0.5689 

17 sh  0.0664 0.0086 7.7062 50.08 0.0470 0.1867 1.5330 

17 rt 0.0654 0.0086 7.5900 51.23 0.0370 0.0392 0.4120 

Elevated mg/l Dilution mg/l  Vol plant (ml) Digested (g) Dry wt (g) Total P (mg) 

25 sh 0.0244 0.0086 2.8318 49.11 0.0402 0.9513 3.2910 

25 rt 0.0362 0.0086 4.1952 50.2 0.0643 0.1758 0.5758 

31 sh 0.0397 0.0086 4.6018 50.45 0.0566 0.3668 1.5045 

31 rt 0.0401 0.0086 4.6463 39.78 0.0464 0.0581 0.2314 
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Table D-10. Week 7 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0512 9.29 0.4755 63.85 0.0304 9.80E-07 

3 H H H H H H 

4 NS NS NS NS NS NS 

5 H H H H H H 

6 H H H H H H 

8 H H H H H H 

9 0.0115 9.29 0.1068 57.82 0.0062 1.99E-07 

10 NS NS NS NS NS NS 

11 H H H H H H 

12 H H H H H H 

14 H H H H H H 

15 NS NS NS NS NS NS 

16 0.0045 9.29 0.0417 161.11 0.0067 2.17E-07 

17 NS NS NS NS NS NS 

18 NS NS NS NS NS NS 

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 H H H H H H 

23 NS NS NS NS NS NS 

25 H H H H H H 

26 H H H H H H 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 H H H H H H 

30 NS NS NS NS NS NS 

31 H H H H H H 

32 0.0060 9.29 0.0561 37.32 0.0021 6.75E-08 

33 H H H H H H 

34 H H H H H H 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0335 4.145 0.1387 128.6 0.0178 5.76E-07 

7 0.0036 4.145 0.0148 102.83 0.0015 4.91E-08 

13 0.0032 4.145 0.0135 111.79 0.0015 4.86E-08 

19 NS NS NS NS NS NS 

24 0.0024 4.145 0.0101 110.39 0.0011 3.59E-08 

35 0.0019 4.145 0.0080 81.54 0.0007 2.11E-08 
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Table D-11. Week 8 P content of leachate in mg and moles. 

Biotic Elevated             

None Detected (ND) Not Sampled (NS)  Harvested (H)     

Sample ID mg/L  Dilution mg/L mL P (mg) m P 

2 0.0513 9.29 0.4764 50.28 0.0240 7.73E-07 

3 H H H H H H 

4 NS NS NS NS NS NS 

5 H H H H H H 

6 H H H H H H 

8 H H H H H H 

9 0.0128 9.29 0.1191 45.58 0.0054 1.75E-07 

10 NS NS NS NS NS NS 

11 H H H H H H 

12 H H H H H H 

14 H H H H H H 

15 NS NS NS NS NS NS 

16 0.0157 9.29 0.1459 127.22 0.0186 5.99E-07 

17             

18             

Biotic Ambient mg/L  Dilution mg/L mL P (mg) m P 

20 NS NS NS NS NS NS 

21 H H H H H H 

22 H H H H H H 

23 NS NS NS NS NS NS 

25 H H H H H H 

26 0.0149 9.29 0.1383 116.06 0.0161 5.18E-07 

27 NS NS NS NS NS NS 

28 H H H H H H 

29 H H H H H H 

30 NS NS NS NS NS NS 

31 H H H H H H 

32 0.0057 9.29 0.0530 120.48 0.0064 2.06E-07 

33 H H H H H H 

34 H H H H H H 

Abiotic mg/L  Dilution mg/L mL P (mg) m P 

1 0.0028 4.145 0.0117 113.05 0.0013 4.26E-08 

7 0.0032 4.145 0.0135 130.4 0.0018 5.67E-08 

13 0.0405 4.145 0.1679 135.96 0.0228 7.37E-07 

19 NS NS NS NS NS NS 

24 0.0033 4.145 0.0138 151.69 0.0021 6.77E-08 

35 0.0024 4.145 0.0099 141.63 0.0014 4.55E-08 
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Table D-12. Week 8 P content of plant tissue. Total P comes from concentration of 

digested plant ~50 mg times total mass of plant. 

Elevated mg/l Dilution mg/l  

Vol plant 

(ml) Digested (g) Dry wt (g) 

Total P 

(mg) 

2 sh 0.0525 0.008620 6.0952 50.08 0.0585 0.9313 4.8595 

2 rt 0.0353 0.008620 4.0989 50.49 0.0566 0.2403 0.8786 

9 sh  0.0264 0.008620 3.0659 50.24 0.0509 2.8001 8.4734 

9 rt 0.0432 0.008620 5.0100 50.55 0.0533 0.5014 2.3824 

16 sh 0.0507 0.008620 5.8805 49.67 0.0481 0.2586 1.5703 

16 rt 0.1163 0.008620 13.4907 51.04 0.0403 0.0491 0.8389 

Elevated mg/l Dilution mg/l  

Vol plant 

(ml) Digested (g) Dry wt (g) 

Total P 

(mg) 

26 sh 0.0288 0.008620 3.3367 50.03 0.0586 1.2331 3.5128 

26 rt 0.0387 0.008620 4.4877 49.6 0.0414 0.0948 0.5097 

32 sh 0.0262 0.008620 3.0427 50.05 0.0526 1.4506 4.1997 

32 rt 0.0939 0.008620 10.8869 50.38 0.0462 0.1220 1.4484 

Bean seed 0.0520 0.008620 6.0372 50.16 0.2898 0.4300 0.4493 
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Appendix E  Total Ca released by with time.  

Individual plant pots occupy separate columns. 

Table E-1. Abiotic experiments 

Mg Ca Leachate 

Abiotic 

Elevated     Abiotic Ambient   

week 1 7 13 19 24 35 

Week 1 0.3367 

0.410

0 0.3841 0.2485 0.2135 0.6458 

Week 2 0.2354 

0.136

2 0.1000 0.2335 0.1763 0.1529 

Week 3 0.2873 

0.262

0 0.3010 0.2220 0.3042 0.3111 

Week 4 0.2178 

0.154

5 0.1944 0.1268 0.1660 0.1496 

Week 5 0.1914 

0.147

2 0.3022  NS 0.1277 0.1320 

Week 6 0.0750  ND 0.0860  NS 0.0506 0.0315 

Week 7 0.0583 

0.176

7 0.1292  NS  NS 0.0370 

Week 8 0.0513 

0.132

4 0.0808  NS  NS ND  

              

Total Ca 

(mg) 1.4532 

1.419

0 1.5777 0.8308 1.0384 1.4599 

 Ca (µmol) 36.26 35.40 39.36 20.72 25.90 36.42 
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Appendix F  Total P concentrations released with time. 

Individual plant pots occupy separate columns.  

Table F-1. Abiotic P concentrations 

Not Sampled (NS) None Detected(ND) Harvested (H)         

Mg P Leachate 

Abiotic 

Elevate

d     Abiotic Ambient   

  1 7 13 19 24 35 

Week 1 0.0005 0.0008 0.0036 ND 0.0033 0.0039 

Week 2 0.0067 0.0013 0.0002 0.0217 0.0054 0.0008 

Week 3 0.0389 0.0074 0.0077 0.0038 0.0075 0.0030 

Week 4 0.0212 0.0037 0.0036 0.0034 0.0059 0.0034 

Week 5 0.0021 0.0023 0.0030 H 0.0057 0.0016 

Week 6 0.0025 0.0023 0.0011 H 0.0031 0.0019 

Week 7 0.0178 0.0015 0.0015 H 0.0011 0.0007 

Week 8 0.0013 0.0018 0.0228 H 0.0021 0.0014 

              

Total P mg 0.0910 0.0210 0.0435 0.0289 0.0341 0.0167 

 P (µmol) 2.9367 0.6779 1.4032 0.9343 1.0999 0.5388 
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Table F-4. Ratio of Ca to P in shaker bath experiment 

Ca (moles) P (moles) Ca:P Time 

1.17E-04 7.26E-06 16.04 10 days 

1.06E-04 7.30E-06 14.53 10 days 

1.17E-04 6.94E-06 16.78 20 days 

1.17E-04 7.15E-06 16.30 20 days 
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Appendix G  Log dissolution rates calculated based on Ca and P released. 
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Appendix H . Stats 

Table H-1. T-tests comparing average Ca released between biotic and abiotic experiments 

(α=0.05) 

  Week 2   Week 4   Week 6   Week 8   

  Biotic Abiotic Biotic Abiotic Biotic Abiotic Biotic Abiotic 

Mean 2.07 0.55 2.73 0.99 3.03 1.26 6.07 1.48 

Variance 0.51 0.02 0.14 0.02 0.09 0.03 6.86 0.01 

Observations 6.00 6.00 6.00 6.00 5.00 5.00 4.00 3.00 

df 5.00   7.00   0.06   3.00   

t Stat 5.12   10.48   8.00   3.50   

P(T<=t) one-tail 0.00   0.00   11.37   0.02   

t Critical one-tail 2.02   1.89   1.86   2.35   

P(T<=t) two-tail 0.00   0.00   0.00   0.04   

t Critical two-tail 2.57   2.36   2.31   3.18   

F-Test Two-Sample for Variances.       

  Different   Different   Same   Different   

  Biotic Abiotic Biotic Abiotic Biotic Abiotic Biotic Abiotic 

Mean 2.07 0.55 2.73 0.99 3.03 1.26 6.07 1.48 

Variance 0.51 0.02 0.14 0.02 0.09 0.03 6.86 0.01 

Observations 6.00 6.00 6.00 6.00 5.00 5.00 4.00 3.00 

df 5.00 5.00 5.00 5.00 4.00 4.00 3.00 2.00 

F 26.31   5.71   3.15   983.39   

P(F<=f) one-tail 0.00   0.04   0.15   0.00   

F Critical one-tail 5.05   5.05   6.39   19.16   
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Table H-2. T-test comparing total P released between biotic and abiotic experiments 

(α=0.05) 

  Week 2   

Week 

4   Week 6   Week 8   

  Biotic 

Abioti

c Biotic Abiotic Biotic 

Abioti

c Biotic 

Abioti

c 

Mean 2.35 0.01 2.66 0.03 2.30 0.03 6.70 0.04 

Variance 0.32 0.00 0.54 0.00 0.90 0.00 6.66 0.00 

Observation

s 6.00 6.00 6.00 6.00 5.00 5.00 4.00 5.00 

df 5.00   5.00   4.00   3.00   

t Stat 10.19   8.77   5.34   5.16   

P(T<=t) 

one-tail 0.00   0.00   0.00   0.01   

t Critical 

one-tail 2.02   2.02   2.13   2.35   

P(T<=t) 

two-tail 0.00   0.00   0.01   0.01   

t Critical 

two-tail 2.57   2.57   2.78   3.18   

F-Test Two-Sample for 

Variances.                 

  

 

  Different   Different   Different   

  Biotic 

Abioti

c Biotic Abiotic Biotic 

Abioti

c Biotic 

Abioti

c 

Mean 2.35 0.01 2.66 0.03 2.30 0.03 6.70 0.04 

Variance 0.32 0.00 0.54 0.00 0.90 0.00 6.66 0.00 

Observation

s 6.00 6.00 6.00 6.00 5.00 5.00 4.00 5.00 

df 5.00 5.00 5.00 5.00 4.00 4.00 3.00 4.00 

F 4567.37   6916.95   

33674.

0   

29600.

0   

P(F<=f) 

one-tail 0.00   0.00   0.00   0.00   

F Critical 

one-tail 5.05   5.05   6.39   6.59   
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Table H-3. T-test comparing average plant weight (g) between elevated and ambient 

conditions (α=0.05). 

  Week 2   Week 8   Week 6   Week 8   

  

Elevate

d 

Ambie

nt 

Elevate

d Ambient Elevated Ambient 

Elevat

ed 

Amb

ient 

Mean 0.38 0.32 0.32 0.48 0.61 0.78 2.24 1.45 

Variance 0.01 0.00 0.01 0.06 0.40 0.25 2.27 0.03 

Observati

ons 3.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00 

df 3.00   0.03   3.00   1.15   

t Stat 1.14   4.00   -0.33   2.00   

P(T<=t) 

one-tail 0.17   -1.08   0.38   0.73   

t Critical 

one-tail 2.35   2.13   2.35   2.92   

P(T<=t) 

two-tail 0.34   0.34   0.76   0.54   

t Critical 

two-tail 3.18   2.78   3.18   4.30   

F-Test Two-Sample for Variances           

 

    

Different                 

  

Elevat

ed 

Ambie

nt 

Elevate

d Ambient Elevated Ambient 

Elevate

d 

Ambi

ent 

Mean 0.38 0.32 0.48 0.32 0.78 0.61 1.59 1.45 

Variance 0.01 0.00 0.06 0.01 0.25 0.40 2.37 0.03 

Observati

ons 3.00 3.00 3.00 3.00 2.00 3.00 3.00 2.00 

df 2.00 2.00 2.00 2.00 1.00 2.00 2.00 1.00 

F 7.28   10.83   0.62   79.30   

P(F<=f) 

one-tail 0.12   0.08   0.49   0.08   

F Critical 

one-tail 19.00   19.00   0.01   199.50   
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Table H-4. T-test comparing average Ca content (mg) of leachate in ambient and elevated 

biotic experiments (α=0.1). 

  Week 1   Week 2   Week 3   Week 4   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 0.95 0.79 1.23 1.10 1.75 1.82 2.06 2.29 

Variance 0.60 0.19 0.01 0.01 0.10 0.28 0.03 0.13 

Observations 12.00 10.00 13.00 10.00 10.00 8.00 10.00 7.00 

Pooled 

Variance 0.41   0.01   0.18   0.07   

df 20.00   21.00   16.00   15.00   

t Stat 0.59   2.53   -0.37   -1.83   

P(T<=t) one-

tail 0.28   0.01   0.36   0.04   

t Critical 

one-tail 1.33   1.32   1.34   1.34   

P(T<=t) two-

tail 0.56   0.02   0.71   0.09   

t Critical 

two-tail 1.72   1.72   1.75   1.75   

         

  Week 5   Week 6   Week 7   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 2.29 2.73 2.87 2.68 4.29 2.94 5.66 3.44 

Variance 0.19 0.21 0.33 0.01 1.48 0.14 0.82 0.04 

Observations 7.00 5.00 6.00 4.00 3.00 2.00 3.00 2.00 

Pooled 

Variance 0.20   0.21   1.03   0.56   

df 10.00   8.00   3.00   3.00   

t Stat -1.71   0.65   1.46   3.25   

P(T<=t) one-

tail 0.06   0.27   0.12   0.02   

t Critical 

one-tail 1.37   1.40   1.64   1.64   

P(T<=t) two-

tail 0.12   0.54   0.24   0.05   

t Critical 

two-tail 1.81   1.86   2.35   2.35   
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Table H-5. T-test comparing average weekly P content of leachate in elevated and 

ambient biotic experiments (α=0.1). 

  Week 1   Week    Week 3   Week 4   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 0.02 0.01 0.04 0.02 0.09 0.07 0.11 0.10 

Variance 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Observations 13.00 10.00 13.00 10.00 10.00 7.00 10.00 7.00 

Pooled 

Variance 0.00   0.00   0.00   0.00   

df 21.00   21.00   15.00   15.00   

t Stat 1.34   3.27   0.65   0.53   

P(T<=t) one-

tail 0.10   0.00   0.26   0.30   

t Critical 

one-tail 1.32   1.32   1.34   1.34   

P(T<=t) two-

tail 0.19   0.00   0.53   0.60   

t Critical 

two-tail 1.72   1.72   1.75   1.75   

                  

                  

  Week 5   Week 6   Week 7   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 0.13 0.13 0.15 0.11 0.11 0.09 0.18 0.10 

Variance 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 

Observations 6.00 4.00 6.00 4.00 5.00 2.00 3.00 2.00 

Pooled 

Variance 0.00   0.00   0.01   0.00   

df 8.00   8.00   5.00   3.00   

t Stat 0.01   3.79   0.28   9.94   

P(T<=t) one-

tail 0.50   0.00   0.40   0.00   

t Critical 

one-tail 1.40   1.40   1.48   1.64   

P(T<=t) two-

tail 0.99   0.01   0.79   0.00   

t Critical 

two-tail 1.86   1.86   2.02   2.35   
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Table H-6. T- test comparing average pH between abiotic and biotic experiments 

(α=0.05). 

  Week 1   Week 2   Week 3   Week 4   

  Abiotic Biotic Abiotic Biotic Abiotic Biotic Abiotic Biotic 

Mean 4.87 4.78 5.14 4.87 5.05 4.89 4.92 4.85 

Variance 0.56 0.75 0.37 0.15 0.14 0.22 0.19 0.34 

Observations 6.00 28.00 6.00 28.00 6.00 19.00 6.00 17.00 

Pooled Variance 0.72   0.18   0.20   0.30   

df 32.00   32.00   23.00   21.00   

t Stat 0.22   1.37   0.76   0.26   

P(T<=t) one-tail 0.41   0.09   0.23   0.40   

t Critical one-

tail 1.69   1.69   1.71   1.72   

P(T<=t) two-tail 0.83   0.18   0.45   0.80   

t Critical two-

tail 2.04   2.04   2.07   2.08   

                  

                  

  Week 5   Week 6   Week 7   Week 8   

  Abiotic Biotic Abiotic Biotic Abiotic Biotic Abiotic Biotic 

Mean 5.18 4.76 5.33 4.89 5.17 4.98 5.33 4.38 

Variance 0.14 0.19 0.13 0.54 0.19 1.04 0.34 0.31 

Observations 5.00 10.00 5.00 10.00 5.00 5.00 5.00 5.00 

Pooled Variance 0.17   0.41   0.62   0.32   

df 13.00   13.00   8.00   8.00   

t Stat 1.84   1.25   0.38   2.64   

P(T<=t) one-tail 0.04   0.12   0.36   0.01   

t Critical one-

tail 1.77   1.77   1.86   1.86   

P(T<=t) two-tail 0.09   0.23   0.71   0.03   

t Critical two-

tail 2.16   2.16   2.31   2.31   
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Table H-7. T-test comparing average pH between elevated and ambient experiments 

(α=0.05). 

  Week 1   Week 2   Week 3   Week 4   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 4.57 4.99 4.88 4.91 4.96 4.80 4.94 4.76 

Variance 0.65 0.81 0.13 0.18 0.28 0.15 0.53 0.14 

Observations 14.00 14.00 12.00 14.00 11.00 8.00 9.00 8.00 

Pooled 

Variance 0.73   0.16   0.22   0.35   

df 26.00   24.00   17.00   15.00   

t Stat -1.31   -0.21   0.77   0.65   

P(T<=t) one-

tail 0.10   0.42   0.23   0.26   

t Critical one-

tail 1.06   1.06   1.07   1.34   

P(T<=t) two-

tail 0.20   0.84   0.45   0.53   

t Critical two-

tail 1.48   1.49   1.51   1.75   

                  

                  

  Week 5   Week 6   Week 7   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 4.57 5.03 4.79 5.05 4.27 6.03 4.04 4.89 

Variance 0.17 0.12 0.91 0.04 0.16 0.15 0.12 0.13 

Observations 6.00 4.00 6.00 4.00 3.00 2.00 3.00 2.00 

Pooled 

Variance 0.15   0.58   0.16   0.12   

df 8.00   8.00   3.00   3.00   

t Stat -1.84   -0.54   -4.84   -2.63   

P(T<=t) one-

tail 0.05   0.30   0.01   0.04   

t Critical one-

tail 1.40   1.40   1.64   1.64   

P(T<=t) two-

tail 0.10   0.60   0.02   0.08   

t Critical two-

tail 1.86   1.86   2.35   2.35   
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Table H-8. T-tests comparing total Ca released (α=0.1). 

  Week 2   Week 4   Week 6   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 1.73 2.41 2.51 2.96 3.02 3.04 8.04 4.10 

Variance 0.15 0.78 0.01 0.18 0.11 0.14 4.84 0.26 

Observations 3.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00 

Pooled Variance 0.46   0.10   0.12   2.55   

df 4.00   4.00   3.00   2.00   

t Stat -1.22   -1.78   -0.08   2.46   

P(T<=t) one-tail 0.15   0.08   0.47   0.07   

t Critical one-tail 1.53   1.53   1.64   1.89   

P(T<=t) two-tail 0.29   0.15   0.94   0.13   

t Critical two-tail 2.13   2.13   2.35   2.92   

 

Table H-9. T-test comparing total P released from biotic elevated and biotic ambient 

experiments (α=0.1). 

  Week 2   Week 4   Week 6   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 2.66 2.05 2.60 2.73 2.19 2.46 8.03 5.38 

Variance 0.41 0.11 0.94 0.40 0.64 2.24 13.00 0.02 

Observations 3.00 3.00 3.00 3.00 3.00 2.00 2.00 2.00 

Pooled Variance 0.26   0.67   1.17   6.51   

df 4.00   4.00   3.00   2.00   

t Stat 1.46   -0.20   -0.28   1.04   

P(T<=t) one-tail 0.11   0.43   0.40   0.20   

t Critical one-tail 1.53   1.53   1.64   1.89   

P(T<=t) two-tail 0.22   0.85   0.80   0.41   

t Critical two-tail 2.13   2.13   2.35   2.92   
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Table H-10. T-test Comparing rates based on total Ca released. (α=0.1). 

  Week 2   Week 4   Week 6   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 

1.49213E

-12 

1.55042E-

12 

7.46907E-

13 

1.11683E

-12 

7.37043E-

13 

1.07203E

-12 

1.89539E-

12 

1.10895E

-12 

Variance 

1.68264E

-25 

2.57126E-

25 

3.88611E-

26 

1.96123E

-25 

1.42184E-

25 

1.62681E

-25 

7.09571E-

25 

1.14052E

-25 

Observation

s 3 3 3 3 3 2 2 2 

Pooled 

Variance 

2.12695E

-25   

1.17492E-

25   

1.49017E-

25   

4.11811E-

25   

df 4   4   3   2   

t Stat -0.15   -1.32   -0.95   1.23   

P(T<=t) 

one-tail 0.44   0.13   0.21   0.17   

t Critical 

one-tail 1.53   1.53   1.64   1.89   

P(T<=t) 

two-tail 0.88   0.26   0.41   0.35   

t Critical 

two-tail 2.13   2.13   2.35   2.92   
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Table H-11. T-test comparing rates calculated based on total P released (α=0.1). 

 
Week 2   Week 4   Week 6   Week 8   

  Elevated Ambient Elevated Ambient Elevated Ambient Elevated Ambient 

Mean 

2.22454E

-12 

2.06876E

-12 

8.81141E

-13 

7.8788E-

13 

4.99319E

-13 

5.58745E

-13 

1.20422E

-12 

7.04974E

-13 

Variance 

2.90269E

-25 

7.76145E

-26 

1.03661E

-25 

3.55722E

-26 

2.72841E

-26 

1.35064E

-25 

2.35458E

-25 

2.53361E

-26 

Observation

s 3 3 3 3 3 2 2 2 

Pooled 

Variance 

1.83942E

-25   

6.96166E

-26   

6.32107E

-26   

1.30397E

-25   

df 4   4   3   2   

t Stat 0.44   0.43   -0.26   1.38   

P(T<=t) 

one-tail 0.34   0.34   0.41   0.15   

t Critical 

one-tail 1.53   1.53   1.64   1.89   

P(T<=t) 

two-tail 0.68   0.69   0.81   0.30   

t Critical 

two-tail 2.13   2.13   2.35   2.92   
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Table H-12. T-test comparing rate of dissolution based on Ca and P released at week 8 

(α=0.05). 

  Rate[Ca] Rate [P] 

Mean 1.20422E-12 

1.89539E-

12 

Variance 2.35458E-25 

7.09571E-

25 

Observations 2 2 

Pooled Variance 4.72514E-25   

Hypothesized Mean 

Difference 0   

df 2   

t Stat 

-

1.005487008   

P(T<=t) one-tail 0.210271784   

t Critical one-tail 1.885618083   

P(T<=t) two-tail 0.420543567   

t Critical two-tail 2.91998558   
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Appendix I  Images from experiments 

 

Figure I-1 Fe precipitates on the surface of a quartz grain 
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Figure I-2 characteristic stunted leaf growth and hooked leaf tips of plants deficient in 

Zn. 
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Figure I-3. Plant pot used in experiment 
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Figure I-4 Image showing experimental growth chamber 
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Figure I-5 Single channel peristaltic pump set up to run 5 tubes 
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