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Pink rot of potato (Solanum tuberosum) is a widespread soilborne disease 

that causes significant losses in the field and storage. It is caused by 

Phytophthora erythroseptica (Pethybr.), an oomycete pathogen that produces 

sexual spores that can survive in soil for years. The management of pink rot 

mainly relies on chemical control. However, the most effective chemical in pink 

rot control, mefenoxam, is losing its efficacy owing to the development of 

mefenoxam resistance in P. erythroseptica. To evaluate alternative fungicides 

(including chemical and biological fungicides) to mefenoxam in pink rot control, 

two greenhouse experiments and three field trials were conducted. Crop rotation 

experiments were performed in the field to investigate the rotation effects of 

alfalfa, barley-ryegrass, canola, red clover, onion, pumpkin, sweet corn and oats 

on pink rot of potato. Thirty-four wild-type isolates of P. erythroseptica were 

collected for fungicide sensitivity assay and fungicide-resistant P. erythroseptica 

selection, to predict the resistance risk of fluopicolide, an alternative chemical to 

mefenoxam. Field trials showed that biologicals including Bacillus subtilis 



 
 

(Serenade Soil, Taegro), Bacillus amyloliquifaciens (Double Nickel, MBI-110), 

and extract of Reynoutria sachalinensis (Regalia) did not significantly reduce pink 

rot severity in the harvested potato tubers. The sole application of fluopicolide, 

some combinations of chemical fungicides (mefenoxam and oxathiapiprolin) and 

some combinations of chemical and biological fungicides 

(oxathiapiprolin/fluopicolide and Bacillus sp.) significantly reduced pink rot 

severity in the presence of mefenoxam-resistant P. erythroseptica population. In 

crop rotation trials, alfalfa, canola and pumpkin significantly increased potato 

tuber yield. However, the rotation crops had no significant effect on pink rot of 

potato. The results of fungicide resistance study suggested that the risk of P. 

erythroseptica to develop intermediate resistance to fluopicolide was at a 

medium level, and that there was a trade-off between fluopicolide resistance and 

biological fitness in P. erythroseptica.  
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Chapter 1 

LITERATURE REVIEW 

 

Chapter Abstract 

Pink rot of potato (Solanum tuberosum) is a widespread soilborne disease 

that causes tuber losses in the field and storage. It has been a persistent 

problem in potato production since it was first described in 1913. Potato pink rot 

is caused by Phytophthora erythroseptica (Pethybr.), an oomycete pathogen. In 

addition to direct infection damages, the occurrence of pink rot also leaves potato 

tubers prone to secondary infections caused by bacteria and fungi. Currently, the 

management of pink rot mainly relies on chemical fungicide applications. 

Mefenoxam is a systemic chemical that used to be the most effective synthetic 

fungicide in pink rot control. However, it becomes less effective owing to the 

development of mefenoxam resistance in P. erythroseptica population. 

Therefore, new fungicides and management strategies are needed to control 

pink rot of potato. In recent years, many studies have been conducted using new 

synthetic fungicides, biological fungicides and crop rotation. An overview of 

significant literature on the etiology of potato pink rot, pink rot management, 

fungicide resistance of P. erythroseptica, fungicide sensitivity studies and soil 

microbial community studies is presented here. 
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Introduction  

Potato pink rot is a ubiquitous soil-borne disease caused by an oomycete 

pathogen, Phytophthora erythroseptica (Cairns and Muskett 1933;  Gudmestad 

et al. 2007;  Taylor et al. 2004). Pink rot was first described in Ireland 

(Pethybridge 1913), and then reported in North and South America, Europe, the 

Middle and Far East and Australia (Rowe and Nielsen 1981). It causes significant 

losses in the field and storage (Rai 1979;  Toms 1968;  Yellareddygari et al. 

2016). Records from the 20th century showed that in the United States, pink rot 

caused 10 to 75% tuber loss in the field (Salas et al. 2003). The occurrence of 

pink rot also leaves potato tubers prone to secondary infections or colonization 

by bacteria and fungi (O'Sullivan and Dowley 1998).  

Pink rot symptom is characterized by the pink or salmon coloration of 

diseased tubers (Grisham et al. 1983), which is the result of the oxidation of 

phenolic compounds in potato tubers (White 1946). Pethybridge described that 

the cut surface of pink rot tuber turned pink in 20-30 minutes, and eventually 

turned brown or black. Dr. George H. Pethybridge isolated the pathogen and 

named it as P. erythroseptica Pethybridge (Pethybridge 1913). 

The first case of potato pink rot caused by P. erythroseptica in United 

States was reported in Maine (Bonde 1938), followed by the ones in Idaho (Goss 

1949), New York (Boothroyd 1951), Delaware (Carroll and Sasser 1974), 

Colorado, Michigan, Minnesota, Nebraska, North Dakota, Wisconsin and other 

states (Taylor et al. 2002;  Venkataramana et al. 2010;  Wharton and Kirk 2009).  
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Etiology of Phytophthora erythroseptica 

The causal agent of potato pink rot, P. erythroseptica is geographically 

widespread and has a wide host range. Besides potato (Solanum tuberosum), it 

also infects other plant species such as tomato (Solanum lycopersicum), barley 

(Hordeum vulgare), crimson clover (Trifolium incarnatum), spinach (Spinacia 

oleracea), wild rice (Zizania palustris) and other crops (Erwin and Ribeiro 1996;  

Gillings and Letham 1989;  Peters et al. 2005b;  Pratt 1981;  Whelan and 

Loughnane 1969).  

Phytophthora erythroseptica is a member of the oomycetes, which are not 

true fungi (Lamour and Kamoun 2009). They used to be considered as a phylum 

of Kingdom Fungi before polygenetic analyses revealed that they are closer to 

heterokont algae (brown algae) than to fungi (Fry and Grünwald 2010;  Lamour 

and Kamoun 2009). The oomycetes, known as water molds, share some 

characteristics with true fungi. They grow filamentous hyphae that enable them to 

absorb nutrients from the environment (plant tissue, water, animal waste, etc.) 

and produce spores for reproduction (Murphy 1918;  Pethybridge 1914;  Vujičić 

and Colhoun 1966). However, oomycetes and fungi are substantially different 

(Gisi and Sierotzki 2015). For example, few oomycetes have septa (cross cell 

walls) in their hyphae, but most fungi have septa. Moreover, the cell walls of 

oomycetes contain β-1,3, and β-1,6 glucans, but fungi cell walls contain chitin 

(the polymer of N-acetyl glucose amine) (Fry and Grünwald 2010). Therefore, P. 

erythroseptica is different from the true fungal pathogens on potatoes. 
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Phytophthora erythroseptica produces various structures including 

mycelium (an entity consisting of massive hyphae), oogonium (female organ), 

antheridium (male organ), oospore (sexual spore), sporangium (asexual fruiting 

body) and zoospore (asexual spore) (Erwin and Ribeiro 1996;  Pethybridge 

1914). Phytophthora erythroseptica rarely forms haustoria (McKay et al. 1957), 

which are common structures formed on hyphae by some fungi to facilitate the 

absorption of nutrients from plant cells (Bushnell 1972). In terms of fertilization, 

P. erythroseptica is homothallic, which means its sexual organs (oogonia and 

antheridia) can mate with ones from the same isolate and produce selfed 

population (Abu-El Samen et al. 2005;  Murphy 1918). Thick-walled sexual 

spores, oospores, will be produced after mating (Wharton and Kirk 2009). 

Another common reproductive structure of P. erythroseptica is called a 

sporangium (Chapman and Vujičić 1965). Sporangia are the asexual fruiting 

bodies of P. erythroseptica (Vujičić and Colhoun 1966;  Vujičić et al. 1968), which 

form multiple swimming zoospores.  

Phytophthora erythroseptica is a soilborne pathogen that is capable of 

infecting healthy potato plants in the field (Al-Mughrabi 2009). The mycelia, 

sporangia, zoospores and oospores of P. erythroseptica can initiate pink rot 

infection on potatoes (Lonsdale et al. 1980;  Wharton and Kirk 2009). The thick-

walled sexual spores, oospores, serve as overwintering structures in soil, which 

can survive in soil for years (Erwin and Ribeiro 1996;  Nanayakkara et al. 2010). 

When host plants are planted and the environmental conditions are right, 

oospores germinate and grow mycelia, which will colonize on roots and basal 
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stems of potato. During the growing season, zoospores are produced and 

released from sporangia, and serve as the secondary inoculum source. It is 

noted that sporangia can also infect plants directly (Erwin and Ribeiro 1996;  

Wharton and Kirk 2009). A quorum sensing effect was discovered in zoospore 

communication of P. erythroseptica, and the germination of zoospores seemed to 

be regulated by a zoospore signaling compound and the root exudates of host 

plants (Jiang et al. 2014). 

In some cases, P. erythroseptica attacks above-ground parts of the potato 

plant and causes leaf spots, petiole blights, stem decay, and wilting (Fry and 

Grünwald 2010;  Goss 1949) in the field. However, P. erythroseptica usually 

targets the underground systems (basal stem, root, stolon and tuber) of potato 

plants. Zoospores also attack tubers through eyes, lenticels and wounds (Fry and 

Grünwald 2010;  Lambert and Salas 2001;  Taylor et al. 2004;  True 1914;  

Vargas and Nielsen 1972;  Wharton and Kirk 2009). The plant response triggered 

by the infection of P. erythroseptica stimulates plants to release a large amount 

of phenolic compounds. When an infected tuber is cut, phenolic compounds in 

the tuber are oxidized and thus the tuber appears to be pink or salmon color 

(Johnson and Schaal 1957;  White 1946). Infected eyes and lenticels turn black 

and infected tuber tissue becomes rubbery and watery (Fry and Grünwald 2010;  

Taylor et al. 2004). The author noticed that severe pink rot results in the bursting 

of lenticels and thus mycelial coverage on tuber lenticels.  At the end of each 

season, P. erythroseptica either enters dormancy within soil in the form of 

oospores or stays in infected tubers (Wharton and Kirk 2009). The latent 
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pathogens in harvested tubers can spread further in storage (Salas et al. 2000;  

Stack et al. 1992;  True 1914;  Yellareddygari et al. 2016).  

The infection of P. erythroseptica on potato plants usually occurs in warm 

and poorly-drained fields (Bonde 1938;  Cairns and Muskett 1939;  Lennard 

1980;  Smith Jr and Wilson 1978), and pathogens can be spread through 

infected (including asymptomatic or latent) tubers in storage (Salas et al. 2000;  

Stack et al. 1992;  True 1914). In storage, root, stolon, tuber eyes and tuber 

lenticels are the natural entrances of P. erythroseptica (Lonsdale et al. 1980;  

Rich 2013), although potatoes are often infected through mechanical bruises and 

worm wounds (Cunliffe et al. 1977;  Taylor et al. 2008).  

 

Management of Potato Pink Rot  

Various pink rot management strategies were designed based on the 

characteristics of P. erythroseptica (Secor and Gudmestad 1999). The common 

strategies include avoiding disease-conducive fields, using certified seed tubers, 

planting pink rot resistant varieties, managing fertilizer application, managing 

irrigation, avoiding abiotic stress, avoiding wounds, regulating storage 

temperature, applying fungicides and rotating potatoes with other crops.  

The selection of planting site is critical in pink rot management. Fields with 

a recent pink rot history must be avoided, since the sexual spores of P. 

erythroseptica can survive in soil for years (Erwin and Ribeiro 1996;  

Nanayakkara et al. 2010). It is also necessary to test field soil prior to planting, 

because the characteristics of the soil, such as soil pH, soil nutrients, soil texture 



7 
 

and soil structure, play important roles in pink rot disease cycle. Low pH 

increases the colonization and infection of P. erythroseptica on potato root 

(Benson et al. 2009a). The availability of soil nutrients determines plant health 

and thus influences P. erythroseptica infection indirectly. Some nutrients like 

calcium have impacts on P. erythroseptica membrane stability and the mobility of 

zoospores (Messenger et al. 2000). An increase in available calcium can cause a 

significant reduction in pink rot disease (Benson et al. 2009b). Soil texture and 

structure determines infiltration rate, the availability of oxygen, and the activities 

of other soil microbes, and thus has a significant influence on pink rot disease.  

It is recommended to grow certified seed tubers and pink rot resistant 

potato varieties to reduce the risk of pink rot in the field. The susceptibility of 

potato tubers to various potato diseases including pink rot can be tested before 

planting (Bohl et al. 1992;  Peters and Sturz 2001). Many researchers have 

tested the susceptibility of different potato varieties to pink rot (Peters et al. 2004;  

Salas et al. 2003;  Thompson et al. 2007). Although all potato cultivars (cultivated 

varieties) grown in North America are susceptible to pink rot (Peters and Sturz 

2001): highly susceptible cultivars include ‘Red LaSoda’, ‘Russet Norkotah’, 

‘Goldrush’, ‘Red Gold’, ‘Warba’, ‘Norland’, and ‘Shepody’, still there are 

moderately resistant cultivars such as ‘Russet Burbank’, ‘Irish cobbler’, ‘Atlantic’, 

and ‘Pike’ (Benson 2008;  Fitzpatrick-Peabody 2008). 

Improper fertilization may worsen the damage caused by pink rot. Soil 

nitrogen, and the balance between soil nitrogen and soil phosphorus have a 

significant impact Phytophthora pathogens (Halsall et al. 1983;  Möller et al. 
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2006). Fertilizers also influences potato plants and soil microbes, which affects 

the survival of P. erythroseptica in indirect ways.     

Irrigation management is vital in pink rot control. P. erythroseptica thrives 

in wet environments, and this is why pink rot usually occurs in poorly-drained 

fields (Bonde 1938;  Wharton and Kirk 2009). Over-irrigation should be avoided 

to minimize the risk of pink rot. It is also necessary to pay attention to weather 

forecasts, since rainfall can wash away fungicide residues on or around plants. 

The application of fungicides right before irrigation or rainfall should be avoided.   

Potato tubers need to be harvested and handled carefully. It is 

recommended to harvest potato tubers before frosting, because frost damage 

assists P. erythroseptica in infecting tubers. Temperature regulation is also 

helpful: cooling down tuber pulp temperature to 65 F prior to harvest will reduce 

pink rot (Wharton and Kirk 2009). Additionally, tubers should be harvested 

carefully to avoid mechanical damages on tubers skins (Gudmestad et al. 2007;  

Secor and Gudmestad 1999). It is encouraged to separate diseased tubers and 

healthy tubers at harvest. Diseased tubers and plants should be discarded and 

destroyed before transferring harvested tubers to storages. It is also desirable to 

take tuber samples to estimate pink rot incidence and tuber yield prior to storage. 

A recent study introduced a beta regression model for the prediction of pink rot 

development in storage (Yellareddygari et al. 2016). In this study, tuber yield, the 

incidence of pink rot in tubers at harvest, and days after harvest were used as 

variables, and the results demonstrated that the interaction between pink rot and 

yield is a significant predictor (α=0.0001) of pink rot development (Yellareddygari 
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et al. 2016). Harvested tubers should be cured at 45 to 50 F at 90% (or higher) 

relative humidity for wound healing. Reducing tuber pulp temperature in storage 

to 50°F or lower as quickly as possible, using high airflow and preventing water 

condensation in the pile are useful in postharvest pink rot control (Wharton and 

Kirk 2009). 

The management of potato pink rot is not limited to the above-mentioned 

strategies. They are usually helpful but not powerful enough to significantly 

reduce pink rot. In fact, synthetic (chemical) and biological fungicide control and 

crop rotation are the most effective and important methods in pink rot 

management.    

Chemical control 

Oomycetes and true fungi differ in many respects including cell wall and 

cell membrane composition, metabolic pathways, and sensitivity to a range of 

inhibitors (Gisi and Sierotzki 2015;  Latijnhouwers et al. 2003). It was noticed that 

oomycetes are insensitive to some conventional fungicides that have 

suppressive effects on true fungi (Cohen and Coffey 1986;  Gisi and Sierotzki 

2015;  Hirooka and Ishii 2013). For instance, Azole fungicides are a group of 

fungicides that target the ergosterol biosynthesis pathway and inhibit the 

ergosterol biosynthesis of true fungi, but they don’t have significant suppressive 

effects on oomycetes, because oomycetes do not synthesize ergosterol (Griffith 

et al. 1992). A fungicide market share survey (in 2009) showed that over 50% of 

commercially available fungicides on the market are effective in oomycete 

control. Among them, 15.5% are specific oomyceticides, and 41% are broad-
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spectrum fungicides that also suppress ascomycetes, basidiomycetes and 

deuteromycetes (Hirooka and Ishii 2013).  

Most oomyceticides (oomycete fungicides) were introduced and reported 

in the late 20th century (Cohen and Coffey 1986;  Gullino et al. 2000;  Hirooka 

and Ishii 2013;  Schwinn and Staub 1987).  There are 4 major (widely-used) 

groups of oomyceticides within 16 different chemical groups that are effective in 

oomycete control: the phenylamides (PAs), quinone outside inhibitors (QoIs), 

carboxylic acid amides (CAAs), and multisite inhibitors (Fungicide Resistance 

Action Committee 2016;  Gisi and Sierotzki 2015;  Hirooka and Ishii 2013). The 

other groups are the ones with unknown modes of actions (MOAs) such as 

cymoxanil, quinone inside respiration inhibitors (QiIs), fluopicolide, ethaboxam, 

fosetyl-aluminum and phosphorous acid (Fungicide Resistance Action 

Committee 2016), or broad-spectrum fungicides, such as fluazinam (Komyoji et 

al. 1995), which is used to control potato late blight and downy mildews (Gisi and 

Sierotzki 2015;  Hirooka and Ishii 2013). The application methods of chemical 

oomyceticides are different. Almost all oomyceticide groups are used for foliar 

treatments, although PAs, fosetyl-aluminum, CAAs, QoIs, QiIs, and fluopicolide 

can be used in soil treatments. A few of them (PAs, QoIs, QiIs, cymoxanil, 

hymexazol etc.) have good performance when they are used for seed 

treatments. Some oomyceticides such as hymexazol and etridiazole are used 

exclusively for soil applications (Gisi and Sierotzki 2015). 

QoI fungicides such as azoxystrobin, famoxadone, and fenamidone, can 

inhibit mitochondrial respiration of oomycetes. They act through interrupting 
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electron transport in cytochrome b (complex III) by binding to the Qo site, which 

is the ubiquinol oxidizing pocket at the outer side of mitochondrial membranes 

(Gisi 2002). Some of them can inhibit the zoospore liberation and motility of 

oomycetes (Gullino et al. 2000).  

Cinnamic acid amides, valinamide carbamates, and mandelic acid amides 

are the subgroups of oomyceticides belonging to CAAs. They are effective in 

controlling most oomycetes, but they are ineffective in the management of 

Pythium and some oomycetes outside Peronosporales (Gisi and Sierotzki 2015). 

The MOA of CAA fungicides acting against Phytophthora infestans was revealed: 

the inhibition of the incorporation of 14C-labeled glucose into the β-1,4 glucan 

(cellulose) fraction of cell walls of germinating cystospores (Blum et al. 2010). 

Hence, it was postulated that cellulose synthase was the primary target enzyme 

of CAAs (Gisi and Sierotzki 2015). 

Phenylamide fungicides (PAs), is a group of synthetic chemical 

compounds that specifically suppress the growth of oomycete pathogens of 

plants (Gisi and Ziegler 2003;  Schwinn and Staub 1987). They act through 

inhibiting the polymerization of ribosomal RNA biosynthesis in oomycetes (Fisher 

and Hayes 1982). They are active and versatile, having long-lasting preventive, 

curative, and eradicative effects in oomycetes control, due to their systemic 

(acropetal) translocation ability in many crops (Cohen and Coffey 1986;  

Edgington 1981;  Gisi and Ziegler 2003;  Ivic 2010;  Müller and Gisi 2012). Seven 

PA chemicals were introduced between 1977 and 2007: metalaxyl and benalaxyl 

including their active isomers (mefenoxam = metalaxyl-M and kiralaxyl = 
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benalaxyl-M, respectively), oxadixyl, furalaxyl, and ofurace (Gisi and Cohen 

1996). They are single-site inhibitors, thus are often mixed with multisite 

fungicides or unrelated single-site inhibitors to broaden the fungitoxicity spectrum 

and slow down the development of fungicide resistance (Gisi and Sierotzki 

2015). PAs have significant suppressive effects on the hyphal growth, haustoria, 

and sporangia formation of oomycetes (Gisi and Sierotzki 2015;  Schwinn and 

Staub 1987). 

Metalaxyl and its isomer mefenoxam have been the most effective 

chemicals in fungicide control of potato pink rot (Fitzpatrick-Peabody and 

Lambert 2011;  Schwinn and Staub 1987;  Sukul and Spiteller 2000;  Torres et al. 

1985). Mefenoxam/metalaxyl acts through inhibiting the polymerase I complex of 

rRNA synthesis in oomycetes (Davidse 1995). It used to be the most active and 

widely-used oomyceticide in pink rot control owing to its high efficacy, rapid 

uptake, high acropetal systemicity, good persistence in plant tissue as well as the 

protective and curative effects (Schwinn and Staub 1987). 

Biological control 

The concept of biological control was proposed decades ago and has 

been widely accepted (Baker and Cook 1974;  Baker 1987;  Blakeman and 

Fokkema 1982;  Chet 1987).  Pal and Gardener defined biological control as the 

purposeful utilization of introduced or resident living organisms, other than 

disease-resistant host plants, to suppress the activities and populations of one or 

more plant pathogens (Pal and Gardener 2006). Generally, it includes the use of 

beneficial organisms, their genes, and products, such as metabolites, that reduce 
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the negative effects of plant pathogens and promote positive responses by the 

plant (Junaid et al. 2013). In research studies and in the market, most biological 

control agents derive from bacteria (Emmert and Handelsman 1999;  Haas and 

Keel 2003;  Schmiedeknecht et al. 1998), fungi (Adams 1990;  Butt and Copping 

2000;  Howell 2003;  Whipps and Lumsden 2001) or plant tissues (Harish et al. 

2008;  Stephan et al. 2005;  Su 2012). Researchers have tried various bacterial 

and fungal biological control agents to manage a wide range of potato diseases 

including black scurf and stem canker (Brewer 2003;  Tariq et al. 2010), brown 

rot (Kabeil et al. 2008), common scab (Han et al. 2005;  Liu et al. 1995), dry rot 

(Schisler et al. 1997), black leg (des Essarts et al. 2016), late blight (Shanthiyaa 

et al. 2013;  Stephan et al. 2005) and soft rot(des Essarts et al. 2016) on plants 

or in storage (Elad et al. 1980;  Gachango et al. 2012a;  Guchi 2015;  Lodhi 

2004).  

Common bacterial biological control agents include Agrobacterium (e.g. 

Agrobacterium radiobacter), Arthrobacter (Barrows-Broaddus et al. 1985), 

Alcaligenes (e.g. Alcaligenes faecalis) (Yokoyama et al. 2013), Azotobacter (e.g. 

Azotobacter chroococcum) (Chauhan et al. 2012), Bacillus (e.g. Bacillus subtilis 

and Bacillus amyloliquefaciens) (Arguelles-Arias et al. 2009;  Bais et al. 2004), 

Escherichia coli, Enterobacter, Pseudomonas (e.g. Pseudomonas aureofaciens 

and Pseudomonas fluorescence), Burkholderia, Rhizobium and so on (Junaid et 

al. 2013;  Narayanasamy 2013b;  Saxena et al. 2000). Agrobacterium 

radiobacter starin 84 was the first bacterial biological agent that has been 

commercialized as a biological fungicide product (Saxena et al. 2000). It is 
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manufactured by AgBioChem Inc. and called Galltrol (Junaid et al. 2013). Galltrol 

has been the most effective product for prevention of crown gall disease since it 

was released in 1985 (AgBioChem_Inc. 2016). Since then, there has been many 

big progresses in the commercialization of bacterial biocontrol products (Junaid 

et al. 2013;  Parnell et al. 2016). For example, Serenade soil (Bayer/AgraQuest) 

is a commercial bioproduct that showed suppressive effects on potato late blight 

(Olanya and Larkin 2006).  

Several groups of fungi such as Ampelomyces, Aspergillus, Coniothyrium, 

Cryptococcus, Candida, Fusarium, Gliocladium, Penecillum, Phlebiopsis, 

Pythium and Trichoderma were developed to be biological control products (Butt 

et al. 2001;  Daami-Remadi et al. 2012;  Lo 1998). Trichoderma harzianum is the 

most versatile fungal biocontrol, and it showed suppressive effects on a few 

potato diseases including late blight (Yao et al. 2016), potato leak (Daami-

Remadi et al. 2012), stem canker or black scurf (Arora 2008;  Hicks et al. 2014) 

and pink rot (Etebarian et al. 2000). 

The extracts of some plants, known as botanicals,  are toxic to pathogens 

(Gurjar et al. 2012). There are three groups of botanicals: plant extracts, 

essential oils and gels/ latexes. Clerodendro sp. plant extract can reduce downy 

mildew by 60% on pearl millet (Upadhyay et al. 2001). Cassia oil, mustard oil and 

cinnamon oil showed suppressive effects on Phytophthora nicotianae 

(Narayanasamy 2013a). Oregano oil was found to be effective in potato late 

blight control (Olanya and Larkin 2006). 
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The mechanisms of biological control agents have been well-investigated 

(Azcón-Aguilar and Barea 1997;  Baker 1968;  Jamalizadeh et al. 2011;  Junaid 

et al. 2013;  Lo 1998;  Whipps 2001). Generally, the MOAs of biological controls 

include antibiosis, competition, mycoparasitism, cell wall degradation and 

induced resistance, plant growth promotion and rhizosphere colonization (Lo 

1998).  

It is important to understand the relationships between natural organisms, 

since plant-microbe interaction and microbial interaction are involved in the 

mechanisms of biological control agents. There are five types of relationships in 

plant-microbe interactions and microbial interactions, which are parasitism, 

mutualism, antagonism, commensalism, neutralism (Pal and Gardener 2006). 

Parasitism means that one organism parasitizes on the other; therefore, one 

benefits and the other is harmed. The relationship between pathogens and 

susceptible plants is parasitism. Pathogens are parasites living on or in plants, 

absorbing nutrients from plants and destroying the plants. Parasitism also exists 

between microbes (Adams 1990). For example, Trichoderma spp. are known as 

mycoparasites on various fungi such as Rhizoctonia solani and Botrytis cinerea 

(Atanasova et al. 2013;  Howell 2003;  Lorito et al. 1996). Mutualism is a 

relationship that provides benefits to both species in the relationship. A typical 

example of mutualism is the interaction between legume crops and Rhizobium 

(Kiers et al. 2003). Rhizobium fixed nitrogen for legumes and legumes provide 

Rhizobium with products of photosynthesis in return. Protocooperation is a 

special form of mutualistic relationship, where the organisms do not depend 
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exclusively on each other for survival. Unlike Rhizobium, many bacterial 

biocontrol agents are facultative mutualists involved in protocooperations with 

crops; they do not depend on any specific host to survive and their efficacies 

depend upon environmental conditions (Pal and Gardener 2006). Commensalism 

is a relationship, in which one organism benefits and the other is not affected 

(neither receiving harm nor benefit). Most plant-associated microbes are 

commensalistic with host plants; they may cause challenges to pathogens and 

result in a decrease in pathogen infection or disease severity (Pal and Gardener 

2006). An antagonistic relationship between organisms causes harm to one or 

both. Antagonism is the major MOA of most biocontrol agents. Sometimes, the 

competition between two organisms is considered as a form of antagonism 

(Junaid et al. 2013). However, antagonism is often used to describe the 

relationship where antimicrobial metabolites are involved (antibiosis). Many 

bacterial biocontrol agents secrete antibiotics. For instance, Agrobacterium 

radiobacter releases Agrocin 84 and Bacillus spp. can produce Bacillomycin D, 

Zwitermycin A, Mycostubilin etc (Junaid et al. 2013). Plants can also secrete 

antimicrobial compounds and establish an antagonistic relationship with 

pathogens (Gurjar et al. 2012;  Narayanasamy 2013a). Neutralism describes an 

interaction where organisms do not have effects on each other (Baker 1968;  Pal 

and Gardener 2006). Most microbes are neutralistic, therefore it is hard to screen 

biocontrol agents from soil and other environments.  

A major group of biological control agents is plant growth promoting 

rhizobacteria, also known as PGPR. It is a group of bacteria that colonize at the 
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rhizosphere (Bhattacharyya and Jha 2012;  Kumar and Sarma 2016;  Siddiqui 

2005). Those rhizobacteria can enhance plant growth through multiple 

mechanisms such as biological nitrogen fixation (mutualism), rhizosphere 

engineering (competition), producing antifungal compounds (antagonism), 

interfering with pathogen toxin production, as well as manipulating phytohormone 

production and inducing systemic resistance of plants (Bhattacharyya and Jha 

2012;  Idriss et al. 2002;  Van Wees et al. 2008). Some plant extracts are also 

capable of stimulating the regulation of phytohormones and thus inducing of plant 

resistance (Su 2012). So far, few biological control agents have been tested 

against Phytophthora erythroseptica, although there has been considerable 

research on bio-controls of other oomycete diseases of potato (Daami-Remadi et 

al. 2012;  Etebarian et al. 2000;  Yao et al. 2016). It is possible the PGPR and 

plant extracts that promote potato plant growth, induce potato systemic 

resistance, and stimulate anti-oomycete compounds secretion can be used in 

pink rot management. 

Crop rotation   

Crop rotation is an important management method in potato pink rot 

control (Larkin 2008;  Larkin et al. 2010;  Peters 2003;  Toquin et al. 2008). It 

replenishes soil nutrient resources, improves soil properties, reduces erosion, 

breaks up the life cycle of soilborne plant pathogens, and changes the 

abundance and diversity of the soil microbiome that favors plant health (Larkin et 

al. 2010;  Larkin et al. 2012;  Sudini et al. 2011).With the needs of reducing the 

use of fungicides to mitigate fungicide resistance problems, and supporting the 
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transition from conventional farms to organic farms, crop rotation becomes a key 

element in disease management (Johnson and Sideman 2006;  Liebman et al. 

1996;  Mcgrath 2009;  Vincelli 2014). In Maine, crop rotation is encouraged in 

potato production and disease management (Coxe and Hedrich 2007;  Halloran 

et al. 2005;  Johnson and Sideman 2006;  Larkin 2014). 

Crop rotation defines a system in which appropriate crops are rotated or 

alternated in a sequence within a period of time. It is considered as a biological 

disease control method depending on time, environment condition, status of 

pathogens and crops (El-Nazer and McCarl 1986;  Narayanasamy 2013c). 

Therefore, the effectiveness of crop rotation varies from one field to another and 

from year to year. Crop rotation has direct effects on crop health; it boosts crop 

growth, increases crop yield and improves crop quality. Rotation crops can 

contribute carbon and nitrogen to succeeding crops, which may create a nutrient-

rich environment for potato plants (Aubinet et al. 2009;  Havlin et al. 1990;  

Honeycutt et al. 1996;  Honeycutt 1998). Additionally, crop rotation has indirect 

effects on plant health; it has good performance in soilborne or plant residue-

borne pathogen control. Non-host rotation crops can interrupt the lifecycles of 

soilborne pathogens; the absence of susceptible crops causes the failure of 

pathogen survival and reproduction. It is effective when the inoculum source is 

from the target planting site and the potential movement of the pathogen from 

other adjacent fields is limited (Narayanasamy 2013c). It may not be able to 

break up the life cycle of pathogens that produce resting spores and long-lasting 

survival structures, but it can change the abundance and diversity of the soil 
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microbiome in a way that favors plant health and suppresses the growth of target 

pathogens (Brewer 2003;  Larkin 2008;  Larkin et al. 2010;  Lee Marzano et al. 

2014;  Sudini et al. 2011). It was also reported that crop rotation may be able to 

confer disease resistance to potatoes (Peters et al. 2005a).  

The effects of different cropping systems on potato health and tuber yield 

have been extensively studied (Grandy et al. 2002;  Mohr et al. 2011;  Myers et 

al. 2008;  Ryakhovskaya and Gainatulina 2009;  Scholte 1987). Many crops have 

been found to be beneficial to potato disease control. For instance, the results in 

some cases showed: canola (Brassica napus), and rapeseed (Brassica napus) 

can reduce the severity of stem canker, black scurf, and common scab (Larkin et 

al. 2010); Sweet clover (Melilotus officinalis) and hay can reduce verticiilium wilt 

(Emmond 1972); Alfalfa (Medicago sativa) and OatsOats (Avena sativa) can 

reduce black dot of potato (Johnson and Cummings 2015). However, few 

studiesreveal the crop rotation effects on pink rot and the correlation between 

cropping sequences and soil microbial community compositions.  

Some rotation crops are known to contain antimicrobial compounds that 

directly inhibit or reduce a wide range of bacteria and fungi including soilborne 

pathogens on potato (Ojaghian 2012). The Brassica family (e.g. canola, 

rapeseed) has the capability to produce glucosinolates, which will become 

isothiocyanates after further reactions (Ojaghian 2012). Isothiocyanates are 

known as biofumigants that have a suppressive effect on various soil organisms 

(Larkin 2007;  Mazzola 2005;  Ojaghian 2012). Other than glucosinolates, there 

might be some substances released by Brassica crops can also suppress fungal 
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pathogens (Mazzola 2005). Allium family (e.g. garlic, onion) is another group with 

the ability to release antifungal and antibacterial chemicals. Researchers found 

that Allium family can release diallyl sulfide and allicin, which are both noted for 

their antimicrobial activity (Benkeblia 2007). It was also reported that a PGPR 

(Plant growth promoting rhizobacteria) bacteria, Rhizobium leguminosarum bv. 

trifolii, is associated with clover (Trifolium pratense) and wheat (Triticum spp..) 

roots (Urban 1982). It is possible that those crops can affect the soil microbial 

community structure and the activity of soil microbes including P. erythroseptica, 

and thus suppress the development of potato pink rot. 

 

Fungicide Resistance in Phytophthora  

In the 1970s, it was found that resistant mutants could be selected from 

the target pathogen populations that were exposed to fungicides (Brent and 

Hollomon 2007a;  Davidse 1988, 1995;  Hollomon 2015b). Fungicide resistance 

quickly became a concern in plant disease control. Thereupon the Fungicide 

Resistance Action Committee (FRAC, http://www.frac.info/) was established to 

prolong the effectiveness of fungicides that were liable to encounter resistance 

problems and to limit crop losses that might be caused by fungicide resistance 

(FRAC ;  Hollomon 2015b). FRAC categorizes all the synthetic fungicides in 

groups based on the MOA of fungicides, and keeps records of resistance reports.  

The presence of resistance can be a result of naturally occurring resistant 

individuals, which develop from a small population to be the majority in the field 

due to fungicide selection. Some pathogens can develop multiple-fungicide 
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resistances, and the fungicide resistance of these pathogens can be caused by a 

different fungicide (cross-resistance) (Brent and Hollomon 2007b;  Gisi et al. 

2000;  Ishii and Holloman 2015). There are several types of mechanisms in 

fungicide resistance. Alteration of the biochemical target site is the most common 

mechanism. Synthetic fungicides have one or multiple specific target sites where 

they work to disrupt a particular biochemical process or function. Single-site 

inhibitors act on one single target site; therefore, it is easy for target pathogens to 

alter the target site. As a result, these fungicides lose the capability to bind to the 

target site and thus lose efficacy (Brent and Hollomon 1995;  Buhler 2013;  

Deising et al. 2008). Some pathogens are insensitive to fungicides because they 

can increase the production of the fungicide-target protein or develop an 

alternative metabolic pathway to bypass the target site (Brent and Hollomon 

1995). Some fungal pathogens are capable of releasing metabolites to degrade 

fungicides before they can reach the target sites (Brent and Hollomon 1995;  

Buhler 2013).  Exclusion of the fungicide through ATP-ase dependent transporter 

proteins is another mechanism of fungicide resistance (Brent and Hollomon 

1995). Sometimes in the same species, the resistant population takes up less 

fungicides, because they absorb fungicides more slowly than the susceptible 

population (Buhler 2013). 

Powerful oomyceticides Phenylamides (PAs), such as mefenoxam, are 

single-site inhibitors (Gisi et al. 2000;  Gisi and Sierotzki 2015). Thus, they have 

a high risk of fungicide resistance (Fungicide Resistance Action Committee 2016;  

Hollomon 2015a). The most effective oomycete fungicide in pink rot control, 
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mefenoxam (Urech et al. 1977;  Wicks et al. 2000), is losing its efficacy as the 

mefenoxam-resistant population grows in P. erythroseptica (Al-Mughrabi et al. 

2007;  Fitzpatrick-Peabody and Lambert 2011;  Torres et al. 1985;  

Venkataramana et al. 2010). The insensitivity of P. erythroseptica to mefenoxam 

was first reported in Maine (Lambert and Salas 1994), and then discovered in 

New York, Idaho, North Dakota, Minnesota etc. (Goodwin and McGrath 1995;  

Porter et al. 2007;  Taylor et al. 2002;  Venkataramana et al. 2010). Taylor et al. 

(2002) tested the mefenoxam sensitivity of P. erythroseptica isolates collected 

from Idaho, Maine, Minnesota, Nebraska, North Dakota, Oregon, Washington, 

etc. from 1997 to 2000. The results showed that the overall percentage of 

mefenoxam-resistant populations in isolate collections rose from 2.9% to 36.2%, 

and the majority of mefenoxam-resistant isolates were found in Idaho and Maine 

(Taylor et al. 2002). A pink rot survey conducted in 2005 revealed that over 70% 

of P. erythroseptica isolates collected from 50 local storage sites in Maine were 

resistant to mefenoxam, (Fitzpatrick-Peabody and Lambert 2011).  Therefore, it 

is necessary to test new synthetic fungicides on P. erythroseptica and establish 

the sensitivity baselines to observe the pathogen response and monitor the 

development of fungicide resistance (Russell 2002). 

 

Assays for fungicide sensitivity baseline  

Plant pathogens may be sensitive to new chemical fungicides, but they 

can quickly develop resistance if the selection pressure is high. Fungicide 

sensitivity baselines are used to assess the risk of fungicide resistance in 
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pathogens. A baseline of a fungicide is a profile of the sensitivity of the target 

fungus to the fungicide constructed by using biological or molecular techniques to 

assess the response of previously unexposed fungal individuals or populations to 

the fungicide. It can be used for the establishment of, and subsequent monitoring 

of, fungicide resistance management strategies (Russell 2002). Usually, a 

sample size between 20 and 50 is adequate to represent the response of the full 

population to a fungicide, although larger sample sizes will produce better results 

(Russell 2002). A typical fungicide sensitivity baseline shows the distribution of 

pathogen isolates on different ranges of EC50 (the dose that reduces the 50% of 

the full growth of an isolate, which is determined by culturing the same isolate in 

the absence of fungicide) or different levels of resistance (Olaya and Köller 1999;  

Russell 2002).  

Traditionally, fungicide sensitivity is examined on agar plates amended 

with fungicides at various concentrations. This method is called serial dilution 

plating, in which the fungicide sample is diluted into a series of concentrations 

and incorporated into the agar medium with each plate containing a different 

concentration of the fungicide (Cavalieri et al. 2005). Dilution plating is a standard 

method used to observe the changes of pathogen growth along with the 

concentration of fungicides (Förster et al. 2004;  Hu and Li 2014;  Wexler et al. 

1996). The agar dilution plating method is good for most non-fastidious 

organisms and provides reproducible results (Cavalieri et al. 2005). However, it 

has a few disadvantages including the intensive labor and time required to 

prepare the agar plates and their relatively short shelf life (Cavalieri et al. 2005), 
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as well as the inherent dilution errors that lead to inaccurate results of fungicide 

sensitivity (Wexler et al. 1996).  

In 1990, the spiral gradient endpoint (SGE) method was introduced in 

antibiotics sensitivity tests (Hill and Schalkowsky 1990;  Paton et al. 1990). SGE 

was first proposed by Spiral System Instruments Inc., and they suggested that 

the spiral plater (an instrument that was used for microbial enumeration) 

represents a potentially more efficient method of performing agar-dilution 

susceptibility tests (Hill and Schalkowsky 1990;  Paton et al. 1990). The SGE 

method demonstrated an 90.7% correlation of the minimal inhibitory 

concentrations (MICs) with those from the traditional dilution plating method 

tested in parallel for 161 strains of bacteria and eight antibiotics (Hill and 

Schalkowsky 1990). Similar results were found by Paton et al. and other 

researchers (Paton et al. 1990;  Pong et al. 2010;  Wexler et al. 1996). 

Compared with the traditional method, the spiral gradient endpoint (SGE) method 

is more cost-efficient with regard to labor, less time and less materials.  

In 2004, Förster et al. published their study on using the spiral gradient 

dilution method to determine the EC50 of fungicides (Förster et al. 2004). In their 

study, hydrophilic cellophane films were cut into strips (50 × 3 to 4 mm), 

sterilized, and then the cellophane strips were covered by fungal mycelia or 

spores. After incubation, cellophane strips were placed on the potato dextrose 

agar amended with a fungicide applied in a spiral gradient dilution (by a spiral 

plater), in a 15-cm petri dish (Förster et al. 2004). The radial growth of the 

controls, the location on the PDA plate where fungal growth is inhibited by 50%, 
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and the distance between the center of the plate and the 50% growth point were 

measured after 3 days of incubation. The radial distance between the zone of 

50% inhibition of growth or conidial germination and the center of the plate was 

defined as ER (ending radius), and the corresponding fungicide concentration 

was defined as EC (ending concentration). TER (tail ending radius) was used to 

described the radial distance between the end of mycelial growth or outlier 

colonies in conidial streaks and the center of the plate. TEC (tail ending 

concentration) was the corresponding concentration of TER. The plate size, 

incubation time, the concentration and molecular weight of fungicide, and spiral 

plating mode were used in a software to calculate the EC50 of the fungicide. The 

fungicide sensitivity results from spiral plating assay and those from traditional 

plating assay were highly correlated (over 92%) (Förster et al. 2004). Fungicide 

sensitivity tests have been conducted on various fungi using the spiral plating 

method, since Förster et al. published their work in 2004 (Amiri et al. 2013;  Amiri 

et al. 2014;  Förster et al. 2007;  Gachango et al. 2012b;  McKay et al. 2012;  

Miles et al. 2014). Therefore, the reliability of spiral plating has been well-

demonstrated and accepted. Considering the advantages of spiral plating over 

traditional dilution plating, using spiral plating method in fungicide sensitivity 

baseline study is recommended.  

 

Impacts of soil microbial community on soilborne diseases  

The structure, population and activity of soil microbes are closely 

associated with plant disease, especially soilborne diseases (Larkin and 
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Honeycutt 2006;  Lemanceau et al. 2007;  Reed and Mazzola 2015;  Rosenzweig 

et al. 2012;  Weller et al. 2002). Studies on the effects of soil microbial 

inhabitants on plant disease date back to the 1970s. Smith and Snyder 

discovered that cultivation increased the tendency of field soil to suppress 

Fusarium wilting of sweet potato, and they hypothesized that the increasing 

suppression might result from the increase of competitive microbes in soil (Smith 

and Snyder 1971). Later, Baker and Cook found that the suppression of wheat 

take-all could be transferred from one field to another (Baker and Cook 1974), 

and fluorescent Pseudomonad bacteria that were isolated from disease-

suppressive field soil were antagonistic to the take-all pathogen (Cook 2003;  

Cook and Rovira 1976). Fluorescent pseudomonads from a fusarium-

suppressive soil were also found to be effective on wheat take-all (Wong and 

Baker 1984). Therefore, Baker and Cook proposed the concept of biological 

control: using disease-suppressive microbes to control target pathogens (Baker 

and Cook 1974;  Cook 1985).  The suppressive soil studies have revealed many 

potential microbe-based biocontrol agents (Chet and Baker 1981;  Chung and 

Kim 2005;  Han et al. 2001;  Kloepper et al. 1980;  Lemanceau et al. 2007;  

Scher and Baker 1980;  Sneh et al. 1984). Beneficial bacteria were found in 

many genera such as Azospirillum, Bacillus, Pseudomonas, Rhizobium, Serratia, 

Stenotrophomonas, and Streptomyces; beneficial fungi were found the genera 

Ampelomyces, Coniothyrium, Trichoderma, etc. (Nihorimbere et al. 2011). Most 

beneficial microbes act through secreting antagonistic metabolites including 

diffusible antibiotics and volatile organic compounds, toxins, and bio-surfactants 
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that inhibits the growth of plant pathogens, while some act through establishing a 

parasitic relationship with pathogens, which involves the production of 

extracellular cell wall-degrading enzymes (Nihorimbere et al. 2011). It was also 

discovered that some strains of fluorescent pseudomonads were able to degrade 

the pathogenicity factors such as toxins produced by pathogens (Haas and 

Défago 2005).  

In 1982, Schroth and Hancock pointed out that the incorporation of one 

single biocontrol agent (isolated from suppressive soil) may not be successful in 

disease control of commercial agriculture, because of the effects (e.g. antibiosis 

and competition) of other soil microbes on that biocontrol agent (Schroth and 

Hancock 1982). Shortly after that, Mazzola started to focus on the relationship 

between the whole soil microbial community and plant disease (Mazzola 1999). 

Generally, soil microbes are categorized into three groups: plant-beneficial, plant-

neutral, and plant-pathogenic microbes (Nihorimbere et al. 2011). The majority 

located in rhizosphere, the area around plant roots, regulated by plant root 

exudates (Broeckling et al. 2008;  Doornbos et al. 2012).  The abundance and 

composition of rhizosphere microbial community associated with different crops 

are distinctly different. Garbeva et al. investigated the soil microbial communities 

in response to maize (Zea mays L.), oats (Avena sativa L.), barley (Hordeum 

vulgare L.) and commercial grass mix, and found the highest percentages of 

beneficial bacteria were in maize and grass rhizosphere, although the highest 

population of Pseudomonas detected in barley and oats rhizospheres (Garbeva 
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et al. 2008). Niu et al. also found significant soil microbial community shifts in 

different cropping systems (Niu et al. 2016). 

Many researchers have contributed to the characterization of disease-

associated soil microbial community in the past 20 years (Bissett et al. 2013;  

Mazzola 2002, 2004;  Mendes et al. 2011;  Reed and Mazzola 2015;  

Rosenzweig et al. 2012;  Weller et al. 2002;  Zaccardelli et al. 2013). In some 

studies, the relationships between potato diseases (including black scurf, stem 

canker, common scab, powdery scab, etc.) and soil microbial communities were 

bridged through cultural practices, soil amendments and crop rotation studies in 

potato production systems (Larkin and Halloran 2014;  Larkin 2008;  Larkin et al. 

2010;  Larkin and Honeycutt 2006;  Peters et al. 2003;  Trabelsi et al. 2012). 

Their studies demonstrated that tillage, soil amendments and some cropping 

systems had significant impacts on the composition of soil microbial 

communities.  

At the soil microbiology and root diseases committee of 2016 American 

Phytopathology Society (APS) meeting, researchers proposed to organize 

special talks on the relationship of disease control and soil microbial community, 

and suggested that the composition or patterns of the soil microbial community 

should be included in soil health reports along with other common soil health 

parameters in the future. With more investigations on this subject, it is possible to 

manually modify or alter soil microbial communities to control potato soilborne 

diseases including pink rot through building up plant growing promoting and 

disease-suppressive microbial groups. 
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The current knowledge about the effects of soil microbial community 

manipulation on potato pink rot is limited. Ecological studies and molecular 

studies on this matter are urged to understand the relationship between the soil 

microbial community and pink rot disease, as well as the influence of 

management measures such as soil treatments, soil amendments, crop rotation, 

tillage and cultivation on the soil microbial community. The investigation of the 

disease-conducive patterns and disease-suppressive patterns of the soil 

microbial community will in return provide a direction in the application of 

biological fungicides and soil amendments, crop rotation, tillage and cultivation.    

 

Metagenomics on microbial analysis 

Soil microbial community analysis includes soil microbial composition and 

microbial activity, which can be achieved through culture-based methods (dilution 

plating), fluorescein diacetate hydrolysis, single carbon source substrate 

utilization analysis, fatty acid based techniques, and denaturing gradient gel 

electrophoresis (Bünemann et al. 2004;  Gil et al. 2011;  Govaerts et al. 2007;  

Larkin et al. 2016;  Larkin 2003;  Meriles et al. 2009;  Qian et al. 2014). Usually, 

soil microbial population and composition are determined by dilution-plating of 

soil suspensions on various selective agar media to numerate different groups of 

soil microbes (Larkin et al. 2016;  Larkin 2003). Fluorescein diacetate (FDA) 

hydrolysis is used to measure enzyme activity based on the readings on a 

spectrophotometer at 490 nm and a standard curve (Boehm and Hoitink 1992;  

Larkin 2003). Single carbon source substrate utilization analysis is based on the 
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capability of soil microbes to utilize a variety of sole carbon sources to measure 

microbial activity (Larkin 2003), and phospholipid fatty acids are utilized as 

chemotaxonomic markers to study active microbes in the soil community 

(Bünemann et al. 2004;  Gil et al. 2011). There is also a method based on DNA 

fingerprints of soil microbes, denaturing gradient gel electrophoresis, in which 

dominant microbial population shows stronger bands (Smalla et al. 2001).  

Traditional soil microbial community analysis techniques are costly and 

time-consuming, and they only provide limited information on a portion of the soil 

microbial community (Bünemann et al. 2004;  Larkin 2003;  Smalla et al. 2001). 

The emergence and development of next generation sequencing (NGS) enables 

researchers to use soil metagenomics to compare the differences between soil 

microbial communities and explain their influence on crop diseases and plant 

pathogens, which takes soil microbial community study to a new era (Caporaso 

et al. 2012;  Coats et al. 2014;  Daniel 2005;  Nesme et al. 2016;  Reed and 

Mazzola 2015;  van Elsas et al. 2008). The NGS techniques allow massive DNA 

amplicons to be sequenced in parallel, which is more efficient in soil microbial 

community analysis in comparison with traditional methods (Moorthie et al. 2011;  

Shendure and Ji 2008). There are five platforms in NGS: 454 pyrosequencing, 

Illumina, SOLiD, Ion Torrent personal genome proton and PacBio RS (Hodkinson 

and Grice 2015;  Liu et al. 2012;  Quail et al. 2012). Among them, 454 

pyrosequencing and Illumina are the most frequently used platforms (Luo et al. 

2012).  
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Early soil microbial community analysis was performed on the 454 

pyrosequencing platform (Rosenzweig et al. 2012;  Sugiyama et al. 2010;  Sul 

2009). Researchers have showed more and more interests in soil microbial 

amplicon analysis on Illumina due to its lower cost than other platforms 

(Caporaso et al. 2012;  Sapkota and Nicolaisen 2015;  Schmidt et al. 2013). 

Caporaso et al. (2012) tested Illumina on microbial communities from different 

sources including soil, feces and human oral environment. Their sequencing 

results supported known biological conclusions, which demonstrated the 

reliability of soil microbial amplicon analysis on Illumina platform. Recently, Reed 

and Mazzola (2015) utilized the Illumina platform to investigate apple replant 

disease-associated microbial communities (Reed and Mazzola 2015).  

On the Illumina Miseq platform, DNA amplicons from different samples are 

indexed with specific barcode sequences that are unique in each sample, which 

identify the samples from which the DNA amplicons originating (Illumina 2011, 

2013, 2016). The pair-end sequencing allows the indexed amplicons to be 

sequenced from two ends while being synthesized (Illumina 2016). In the 

process, four fluorescently labeled nucleotides were incorporated in the 

synthesized DNA, and the fluorescent dyes are identified by laser excitation and 

imaging after incorporation (Illumina 2016). The DNA sequences generated in 

the process are sorted out based on the unique barcodes, and thus the 

sequences associated with each sample are identified.      
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Conclusions 

Pink rot of potato caused by Phytophthora erythroseptica is an important 

disease in the United States. In the disease management of potato pink rot, 

synthetic fungicides have played an important role in the past. However, the 

development of fungicide-resistant P. erythroseptica poses a problem and 

creates a challenge in pink rot control. In the author’s opinion, a potato field 

should be considered as a system, and integrated management should be 

conducted in a way that favors plant health and counters the growth of 

pathogens. It is highly recommended to combine methods including selecting 

disease-free fields, using certified seed tubers and selecting disease resistant 

potato cultivars, crop rotation, fertilization and irrigation management, as well as 

fungicide application, to suppress pink rot in potato production.   

The development of integrated pink rot management requires the 

understanding of pink rot disease associated soil microbial community. It is 

necessary to investigate the influence of rotation crops on pink rot disease and 

the soil microbe communities to shed light on crop rotation and biological controls 

in potato pink rot management. The emergence and development of next 

generation sequencing (NGS) enables researchers to fulfill the investigation on 

soil microbial community associated with pink rot and different rotation crops.   
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Chapter 2 

EFFECTS OF SYNTHETIC AND BIOLOGICAL FUNGICIDES ON PINK ROT 

OF POTATO 

Chapter Abstract 

Pink rot (Phytophthora erythroseptica) is a persistent disease on potatoes 

(Solanum tuberosum) in the United States. Controlling pink rot becomes a 

challenge as the most effective oomyceticide mefenoxam is losing its 

effectiveness owing to the development of resistance of P. erythroseptica. To 

evaluate some products in controlling pink rot, two greenhouse experiments and 

three field trials were conducted in 2014, 2015 and 2016. Phytophthora 

erythroseptica inoculum was evenly distributed in the furrows before potato seed 

tubers (cv. ‘Russet Norkotah’) were planted. Chemical products and biological 

control agents were applied either individually or in combinations, at planting or 

during the growing season. Tuber yield and pink rot disease severity were 

assessed at harvest. Field results showed that mefenoxam, fluopicolide, and 

oxathiapiprolin significantly reduced pink rot severity in the harvested tubers. 

Biologicals including Bacillus subtilis (Serenade Soil, Taegro), Bacillus 

amyloliquifaciens (Double Nickel, MBI-110), and extract of Reynoutria 

sachalinensis (Regalia) did not significantly reduce pink rot severity in the 

harvested tubers. The combinations of fluopicolide or oxathiapiprolin and Bacillus 

sp. significantly reduced pink rot in the harvested tubers. In greenhouse 

experiments, four soil drenching applications of Regalia increased tuber yield, 
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reduced pink rot disease severity and boosted the health of potato roots and 

stolon. These results suggested some alternative fungicides or strategies can be 

used to solve mefenoxam resistance problems  in pink rot control. 

Introduction 

Pink rot (Phytophthora erythroseptica) is a ubiquitous potato disease 

(Porter et al. 2007;  Wicks et al. 2000). It causes significant losses in the field and 

storage (Al-Mughrabi et al. 2007;  Mills et al. 2005;  Schisler et al. 2009). In 2004, 

the estimated loss in potato due to pink rot in New Brunswick (Canada) was 

more than $20 million (Al-Mughrabi et al. 2007). In the United States, pink rot is 

present in all potato fields (Boothroyd 1951;  Carroll and Sasser 1974;  

Fitzpatrick-Peabody 2008;  Taylor et al. 2002;  Venkataramana et al. 2010;  

Wharton and Kirk 2009). It has been reported to be responsible for eight to nine 

percent loss of the total potato production in storage, and the highest disease 

incidence can reach 70% in the field (Benson 2008). Generally, all potato 

cultivars grown in North America are susceptible to pink rot (Peters 2001): highly 

susceptible cultivars include ‘Red LaSoda’, ‘Russet Norkotah’, ‘Goldrush’, ‘Red 

Gold’, ‘Warba’, ‘Norland’, and ‘Shepody’; moderately resistant cultivars include 

‘Russet Burbank’, ‘Irish cobbler’, ‘Atlantic’, and ‘Pike’ (Benson 2008;  Fitzpatrick-

Peabody 2008). 

Currently, pink rot management relies on appropriate fungicide 

application, water management, careful harvesting and temperature 

management during storage (Miller et al. 2003). There are few effective 
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fungicides in pink rot control (Benson 2008). The systemic chemical fungicide, 

mefenoxam, used to be the most effective product (Fitzpatrick-Peabody 2008;  

Johnson and Duniway 1997;  Wicks et al. 2000). Mefenoxam is capable of 

translocating throughout the whole plant, and this attribute facilitates the control 

of P. erythroseptica (Cohen 1986). However, the mefenoxam-insensitive 

populations of P. erythroseptica have been a problem arising in potato production 

(Goodwin 1995;  Lambert and Salas 1994;  Lambert 1994;  Taylor 2002). A 

survey in Idaho showed that over 70% of the P. erythroseptica isolates collected 

from 6 different sites were classified as highly resistant to mefenoxam (Porter 

2007). A survey of over 50 grower storages in Maine in 2005 found that 70% of 

the 162 isolates were mefenoxam-resistant (Fitzpatrick 2006). The resistant 

population still made up 49% of the isolates even after suspending the use of 

mefenoxam for a few years (Fitzpatrick-Peabody 2008). 

As supplements to soilborne disease management, composting and soil 

amendments have been widely studied and used in potato production (Larkin 

2007, Ojaghian 2012). Antagonistic microbes and plant growth promoting 

microbes have been found during these studies and that leads to the 

development of biological agents to control potato pink rot (Wynn 1979, 

Etebarian 2000, Schisler 2009). However, sole application of biological agents 

may not be effective enough to provide a significant reduction of pink rot severity, 

therefore, the combination and integration of biological agents and pesticides 

have been recommended for pink rot control (Etebarian 2000, Schisler 2009).  
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In this study, synthetic fungicides (Orondis and Presidio) and biological 

fungicides (Taegro, Serenade soil, Regalia, Double nickel LC and MBI-110) were 

tested and compared with Ridomil Gold SL (active ingredient: mefenoxam) in P. 

erythroseptica-inoculated fields over two years. Pink rot disease severity was 

rated and tuber yield was assessed to demonstrate the efficacy of each fungicide 

treatment. Two biological fungicides MBI-110 (active ingredient: Bacillus 

amyloliquefaciens F727) and Regalia (active ingredient: extract of Reynoutria 

sachalinensis) were used in a greenhouse study to test the optimum application 

method and timing of those two biologicals. The objectives of this study were to 

1) evaluate the efficacies of alternative synthetic fungicides and biologicals, 2) 

test different combinations of synthetic fungicides and biologicals, and 3) find the 

optimum application methods and timing of biocontrol products.   

 

Materials & Methods 

Isolates of P. erythroseptica used in the field trials 

Seven P. erythroseptica isolates were collected: four were from a UMaine 

collection (Fitzpatrick-Peabody and Lambert 2011) and three were isolated from 

diseased tubers found in uninoculated fields at Aroostook Farm, Presque Isle, 

Maine. The pathogens were isolated from potato tubers showing pink rot 

symptoms. Pieces of tuber tissue were cut and surface-sterilized in 75% ethanol 

for 30 s, and then soaked in 0.6% sodium hypochlorite for 5 to 10 min, depending 

on the necrotic level of tuber tissue. After being rinsed three times in sterile 

distilled water, three tuber pieces were dried on sterile filter paper and placed on 
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a 1.5% water agar (15 g of agar powder: 1000 ml of water) plate. The pathogens 

isolated from the same tuber were considered as different copies of the same 

isolate. All the isolates were identified through polymerase chain reaction (PCR) 

and DNA sequencing. DNA was extracted and amplified with ITS1/ITS4 primers 

(White et al. 1990). The amplicons were sequenced and compared with P. 

erythroseptica sequences in NCBI database (Wheeler et al. 2007). The similarity 

was above 99%.  

Mefenoxam (Ridomil Gold SL, Syngenta) sensitivity of seven P. 

erythroseptica isolates was tested using the dilution plating method. V8 agar 

plates (200 ml V8 juice, 2.5 g calcium carbonate, 1.5% agar, 800 ml distilled 

water) were amended with 6 concentrations of mefenoxam (V8-M plates): 0 

μg/ml, 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, 10 μg/ml and 100 μg/ml. The isolates were 

cultured on 6 types of V8-M plates, and each had 4 replications. Five days later, 

the diameter of mycelial growth (the coverage of mycelia on a plate) was 

measured. EC50 of each isolate was calculated using R. 3.1.1. by plotting the 

data and fitting them to a linear regression model (RStudioTeam 2015). Isolates 

were divided into three groups: 1) Sensitive isolates: EC50 < 10 μg/ml. 2) 

Resistant isolates: EC50 > 100 μg/ml. 3) Intermediately resistant isolates: 10 

μg/ml < EC50 < 100 μg/ml (Fitzpatrick-Peabody 2008;  Peters et al. 2001).  

Three isolates from this collection were used in the field inoculum 

preparation. Two mefenoxam-sensitive isolates (2/3) and one mefenoxam-

resistant isolate (1/3) were used in the field inoculum preparation in 2014. In 

2015, all three isolates used in the field trials were mefenoxam-sensitive.  
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Preparation of P. erythroseptica inoculum and field inoculations 

Using a modified method based on Erwin’s (Erwin and Ribeiro 1996), 

culture bags were made with 21" x10" x 5" mushroom spawn bags (Out Grow) 

containing 6 L of vermiculite (medium size) and 2.1 L of V8 broth (consisting of 

0.6 L of V8 juice, 1.5 L of water and 7.5 g of calcium carbonate). The bags were 

autoclaved twice in 48 hours with a liquid 45min cycle (Amsco Lab 250 laboratory 

steam sterilizer). Cultures of P. erythroseptica were transferred to the culture 

bags and incubated at room temperature. During the inoculum growth stage, the 

moisture in the bags were monitored and adjusted to be optimum to P. 

erythroseptica. In the meantime, the mycelial growth of field inoculum was 

examined weekly. The concentration of oospores was monitored in late 

(maturing) stages. The culture bags were shaken periodically, to distribute 

nutrients and oxygen evenly and make them available, thus producing better 

mycelia extension and oospore growth. The vermiculite-based inoculum was 

used in field trials after four to six weeks of incubation. 

Field trial experimental design and other details: 2014 field trial 1  

This experiment was performed in a field (46°39’N, 68°00’W) located at 

Aroostook Farm, Presque Isle, Maine. A randomized complete block design was 

used with 4 blocks and 8 plots in each block. There were 4 rows in each plot, and 

the row length was 25 feet. The row-spacing was 3 feet and plant-spacing was 1 

foot. There was an 8-feet gap between blocks to serve as buffer area and tractor 

road.  

The experiment subject was potato (Solanum tuberosum 'Russet 
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Norkotah'). Before planting, 1,110 lb/a fertilizer (14-14-14 NPK, Cavendish) and 

8.7 oz/a insecticide (Admire, Bayer) were used when rows were open. Inoculum 

of Phytophthora erythroseptica was evenly applied one hour before planting. The 

existence of oospores in field inoculum was confirmed before inoculation. At 

inoculation, vermiculite inoculum was mixed and applied into furrows. The two 

rows in the middle of each plot were inoculated with 6 L of vermiculite inoculum. 

The furrows were covered after planting on 4 June in 2014, which was finished 

soon after inoculation, to ensure the survival of pathogens.  

Synthetic fungicides from Syngenta (Greensboro, NC) including Ridomil 

Gold SL, Ridomil Gold Bravo SC, Orondis (and biological fungicide Taegro 

(Novozymes & Syngenta) were tested in sole or combined applications (Table 

2.1). All the fungicide treatments were compared with an untreated control in the 

P. erythroseptica-infested environment. The weather in Presque Isle was 

monitored during the growing season. The field was maintained with standard 

production practices. All plots were treated with insecticides, Admire Pro 

(Imidacloprid, 8.7 oz/a, Bayer), and herbicides, Roundup (Glyphosate, 25 oz/a, 

ScottsMiracle-Gro), as standard practice to that area. The weeds were hand-

removed weekly. Foliar spray of Bravo ZN (tetrachloroisophthalonitrile, 1.5 pt/a, 

Syngenta) was applied with a 10-day interval during the season to prevent late 

blight disease. Foliar treatments were applied on 1 July, 2014. The emergence 

and vigor of potato were evaluated on 1 July and 22 July in 2014. Potato vines 

were killed on 15 September, 2014. Potato tubers in the middle two rows of the 

four-row plots were hand-harvested on 4 October, 2014.  



40 
 

 

Table 2.1. Treatment details in 2014 field trial 1. 

Treatment 
Name 

Active 
Ingredient 

Application 
Rate 

Application 
Method 

Applicatio
n 
Timing 

Untreated 
Control - - - - 

Ridomil Gold SL 
Ridomil Gold 
Bravo SC 

Mefenoxam 
Mefenoxam 
Chlorothalonila 

0.42 fl oz/1000 ft 
2.5 pt/a 
 

In-furrow 
Direct spray 
 

At planting 
Hilling 
 

Orondis 
Ridomil Gold SL 

Oxathiapiprolin 
Mefenoxam 

0.66 fl oz/1000 ft 
0.28 fl oz/1000 ft 

In-furrow 
In-furrow 

At planting 
At planting 

Orondis 
Ridomil Gold SL 

Oxathiapiprolin 
Mefenoxam 

1.32 fl oz/1000 ft 
0.55 fl oz/1000 ft 

In-furrow 
In-furrow 

At planting 
At planting 

Orondis 
Ridomil Gold SL 
Orondis 
Ridomil Gold SL 

Oxathiapiprolin 
Mefenoxam 
Oxathiapiprolin 
Mefenoxam 

0.66 fl oz/1000 ft 
0.28 fl oz/1000 ft 
9.6 fl oz/a 
4.0 fl oz/a 

In-furrow 
In-furrow 
Direct spray 
Direct spray 

At planting 
At planting 
Hilling 
Hilling 

Taegro WP 
Bacillus sp. 
FZB24b 0.36 oz/1000 ft In-furrow At planting 

Orondis Oxathiapiprolin 0.33 fl oz/1000 ft In-furrow At planting 

Taegro WP 
 
Orondis 

Bacillus sp. 
FZB24 
Oxathiapiprolin 

0.36 oz/1000 ft 
0.33 fl oz/1000 ft 

 
In-furrow 
In-furrow 

 
At planting 
At planting 

a 72.0% of Chlorothalonil and 4.4% of propionic acid methyl ester. 
b Bacillus subtilis var. amyloliquefaciens Strain FZB24. 
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Field trial experimental design and other details: 2014 field trial 2  

This trial was performed in a field (46°39’N, 68°01’W) at Aroostook Farm, 

Presque Isle, Maine. A randomized complete block design was used, with 4 

blocks and 12 plots in each block. There were 4 rows in each plot, and the row 

length was 25 feet. The row-spacing was 3 feet and plant-spacing was 1 foot. 

There was an 8-feet gap between blocks to serve as buffer area and tractor path.  

The experiment subject was potato (S. tuberosum 'Russet Norkotah'). 

Before planting, 1,110 lb/a fertilizer (14-14-14 NPK, Cavendish) and 8.7 oz/a 

insecticide (Admire, Bayer) were used when rows were open. Inoculum of P. 

erythroseptica was evenly applied one hour before planting. The existence of 

oospores in field inoculum was confirmed before inoculation. At inoculation, 

vermiculite inoculum was mixed and applied into furrows. The two rows in the 

middle of each plot were inoculated with 6 L of vermiculite inoculum. The furrows 

were covered after planting, which was finished soon after inoculation, to ensure 

the survival of pathogens. Above-mentioned activities were done on 4 June, 

2014. 

Three biological agents, Regalia (Marrone, Bio Innovations Inc., Davis, 

CA), Serenade Soil (Bayer, Research Triangle Park, NC) and MBI110 (Marrone) 

were tested in the field. MBI110 is derived from a strain of Bacillus 

amyloliquefaciens, and it will be a commercial product soon. In this field trial, two 

fungicides Ridomil SC (Syngenta, Greensboro, NC) and Presidio (Valent, Walnut 

Creek, CA) were used as standards to evaluate the efficacy of biological 

products and the combinations of synthetic and biological fungicides (Table 2.2.). 
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Table 2.2. Treatment details in 2014 field trial 2. 

Treatment 
Name 

Active 
Ingredient 

Application 
Rate 

Application 
Method 

Application 
Timing 

Untreated 
Control - - - - 

MBI-110 
Bacillus sp. 
F727a 6 qt/a In-furrow At planting 

Regalia 
Plant 
extractb 

 
4 qt/a In-furrow At planting 

Serenade Soil 
Bacillus sp. 
QST 713c 6 qt/a In-furrow At planting 

Presidio Fluopicolide 13.7 fl oz/a In-furrow At planting 

 
Ridomil Gold SC Mefenoxam 0.42 fl oz/a In-furrow At planting 

Ridomil Gold SC 
Presidio 

Mefenoxam 
Fluopicolide 

0.42 fl oz/a  
4 fl oz/a 

In-furrow 
Foliar 

At planting 
Nickel tuber 

Ridomil Gold SC 
 
MBI-110 

Mefenoxam 
Bacillus sp. 
F727 

0.42 fl oz/a  
 
6 qt/a 

In-furrow 
 
Foliar 

At planting 
 
Nickel tuber 

Ridomil Gold SC 
 
Serenade Soil 

Mefenoxam 
Bacillus sp. 
QST 713 

0.42 fl oz/a  
 
6 qt/a 

In-furrow 
 
Foliar 

At planting 
 
Nickel tuber 

Ridomil Gold SC 
 
Regalia 

Mefenoxam  
Plant 
extract 

0.42 fl oz/a  
 
4 qt/a 

In-furrow 
 
Foliar 

At planting 
 
Nickel tuber 

Presidio 
 
MBI-110 

Fluopicolide 
Bacillus sp. 
F727a 

13.7 fl oz/a 
 
6 qt/a 

In-furrow 
 
Foliar 

At planting 
 
Nickel tuber 

a Bacillus amyloliquefaciens strain F727. 
b Extract of Reynoutria sachalinensis. 
c Bacillus subtilis strain QST 713. 
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The weather in Presque Isle was monitored during the growing season. 

The field was maintained with standard production practices. All plots were 

treated with insecticides Admire Pro (8.7 oz/a), and herbicides Roundup (25 

oz/a), as standard practice to that area. The weeds were hand-removed weekly. 

Bravo ZN (1.5 pt/a, Syngenta) was applied weekly on foliar for late blight control 

starting from 24 Jul to 11 Sep. Foliar application of treatments, such as Presidio, 

MBI-110, Serenade Soil and Regalia were applied weekly starting from 24 Jul 

until 11 Sep, 2014. The emergence and vigor of potato plants in this trial were 

not recorded. Potato vines were killed by applying Reglone (1.5 lb/a) on 15 and 

20 September, 2014. Potato tubers in the middle two rows of the four-row plots 

were dug with a 2-row harvester on 4 October, 2014. Pink rot severity and yield 

data were collected on 13 October, 2014. 

Field trial experimental design and other details: 2015 field trial  

This experiment was carried out in a field (46°65’N, 68°01’W) at Aroostook 

Farm, Presque Isle, Maine. A randomized complete block design was used, with 

4 blocks and 11 plots in each block. There were 4 rows in each plot, and the row 

length was 35 feet. The row-spacing was 3 feet and plant-spacing was 1 foot. 

There was an 8-feet gap between blocks to serve as buffer area and tractor path.  

The experiment subject was potato (S. tuberosum 'Russet Norkotah'). 

Before planting, 1,110 lb/a fertilizer (14-14-14 NPK, Cavendish) and 8.7 oz/a 

insecticide (Admire, Bayer) were used when rows were open. Inoculum of 

Phytophthora erythroseptica was evenly applied one hour before planting. The 

existence of oospores in field inoculum was confirmed before inoculation. At 
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inoculation, vermiculite inoculum was mixed and applied into furrows. The two 

rows in the middle of each plot were inoculated with 6 L of vermiculite inoculum. 

The furrows were covered after planting, which was finished soon after 

inoculation, to ensure the survival of pathogens. Above-mentioned activities were 

done on 25 May, 2015. 

Five chemical fungicides and two biological fungicides were tested in this 

trial. Ridomil Gold SL was used as standard control. The combination of presidio 

(at reduced rate) and MBI-110 was tested to confirm the results observed in 2014 

trial 2. Two application arrangements were used for MBI-110 to find the most 

appropriate application amount (Table 2.3.). 

The weather in Presque Isle was monitored during the growing season. 

The field was maintained with standard production practices. All plots were 

treated with insecticides, Admire Pro (8.7 oz/a), and herbicides, Roundup (25 

oz/a), as standard practice to that area. The weeds were hand-removed weekly. 

The treatments were applied at three timings: in-furrow at planting (May 25), 

dime tuber size (July 10), and two weeks after the dime tuber (July 22). All the 

plants were treated with Bravo ZN (1.5 pt/a) during the season to control late 

blight. Plant emergence and vigor were evaluated on 26 June and 16 July. 

Potato vines were killed by Reglone application (1.5 lb/a) on 7 September, 2015. 

Potato tubers in the middle row of each treatment were dug by a harvester and 

hand-picked on 24 September, 2015. Pink rot disease severity was rated and 

tuber yield was weighed on 11 October, 2015.   
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Table 2.3. Treatment details in 2015 field trial.  

Treatment 
Name 

Active 
Ingredient 

Application 
Rate 

Applicatio
n 
Method 

Application 
Timing 

Untreated 
Control - - - - 

Ridomil Gols SL 
Phostrol 

Mefenoxam 
phosphorous acids 

0.4 fl oz/1000 ft 
10 pt/a 

In-furrow 
Spray  

At planting 
Dime tubera 

Presidio 
Phostrol 

Fluopicolide 
phosphorous acids 

 
4.0 fl oz/a 
10 pt/a 

In-furrow 
Spray 

At planting 
Dime tuber 

Emesto Silver  
Reason 

Penflufen & 
Prothioconazole 
Fenamidone 

0.31 oz/cwtb 

0.15 oz.cwt 
Seed 
treatment Pre-planting 

Double Nickel LC Bacillus sp. D747c 1 qt/a In-furrow At planting 

Presidio 
MBI-110 
 
 

Fluopicolide 
Bacillus sp. F727d 

 

 

2.0 fl oz/a  
6 qt/a 
 
 

In-furrow 
Soil 
drenching 
 

At planting 
Four times 
from tuber 
initiation 

MBI-110 Bacillus sp. F727 6 qt/a 
Soil 
drenching 

Once at tuber 
initiation 

MBI-110 Bacillus sp. F727 6 qt/a 
Soil 
drenching 

Four times 
from tuber 
initiation 

a Applicated twice: applied at dime tuber stage and a week after the first 
application. 

b cwt: 100 lb of seed tubers. 
c Bacillus amyloliquefaciens strain D747. 
d Bacillus amyloliquefaciens strain F727. 
 

Plant emergence and vigor evaluation 

During the growth season, plant emergence and vigor were estimated and 

recorded periodically. Emerged plants of the middle rows were counted. Plant 

emergence was calculated based on the percentage of emerged seeds out of 

total number of seed tubers in that row (Eq.2.1.). Relative plant vigor was 
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estimated, based on the plot with the best vigor (100%) in each block, expressed 

by percentages.  

Eq.2.1. Plant emergence calculation 

Plant emergence=
the number of emerged plants in a row 

total number of seed tubers in a row ×100% 

Preparation of P. erythroseptica inoculum and greenhouse inoculations  

Three mefenoxam-sensitive P. erythroseptica isolates were used in 

greenhouse trials. In 2015, vermiculite inoculum was prepared as described 

earlier in this thesis (See “Preparation of P. erythroseptica inoculum and field 

inoculations”), and used in MBI-110 and Regalia experiments. The regalia trial 

was repeated in 2016, and zoospore suspension was used as the primary 

inoculum (Al-Mughrabi et al. 2007). Zoospores of P. erythroseptica were 

produced following the method published by Al-Mugharbi et al. (Al-Mughrabi et 

al. 2007), modified by Jiang (unpublished). 

To prepare zoospores, P. erythroseptica was cultured on 10% V8 (see 

Appendix A) agar (25 °C, dark) for 6 days. Four mycelial plugs were punched by 

a 5-mm cork borer and transferred to a petri plate (10 mm diameter) filled with 10 

ml of lima bean broth (LBB, see Appendix A). After incubation at 22 °C under 

natural light for 3 days, LBB was discarded. The original (10% V8) agar plugs 

were removed, and the mycelial mats were rinsed with sterilized distilled water 

three times. The Petri plates (with mycelial mats only) was filled with 10 ml of 

10% soil extraction (see Appendix A), and incubated at 18 °C under continuous 

fluorescent light for 4 days (Al-Mughrabi et al. 2007). Four days later, the Petri 
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plate and mycelial mats were rinsed again with sterile water (4 °C, cold water), 

and 10% soil extraction was replaced by 7 ml of sterile water (4 °C). The plate 

was chilled at 4 °C for an hour and then left at 22 °C for 30 min. Then the 

zoospore concentration was estimated with a hemocytometer. 

Greenhouse trial experimental design  

To explore further information about the optimum application method and 

timing, greenhouse experiments on MBI-110 and Regalia were performed in 

Room 2 of Roger Clapp greenhouse at University of Maine (Orono, ME). The 

greenhouse trials were first conducted in 2015, and Regalia trial was repeated in 

2016 owing to missing data in 2015 Regalia trial. A randomized complete block 

design was used in all the greenhouse experiments to rule out the bench position 

effects. 

Potato seed tubers (c.v. Russet Norkotah) were cut and left curing 

overnight. Each treatment had 5 replications, and was randomly assigned to a 

pot. All the plants or pots were independent. The spacing between two plots was 

1 foot. One pot contained 1.5 gallon of soil mixture (field soil: potting mix: 

vermiculite= 1:1:1).  

In 2015, vermiculite inoculum was used. Each experimental plant was 

inoculated with 120 ml of vermiculite inoculum at planting. In 2016, experimental 

plants were inoculated with zoospore inoculum by injecting it into plant root zone 

at the third week after planting. The inoculation method was adapted from Al-

Mughrabi et al.’s method (Al-Mughrabi et al. 2007). Pipette tips were used to 

punch a hole (the same depth as planting) on each side of the plant next to the 
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plant root zone. Five milliliter of zoospore inoculum (1x103 spores/ml) was 

injected into each hole using a pipette and the holes were covered by the soil. 

The pot soil was wetted before and 24 h after inoculation to ensure that 

zoospores could swim to belowground plant tissues to cause infection (Al-

Mughrabi et al. 2007).  

All the treatments were applied directly in planting holes or through soil 

drenching. In 2015 Regalia experiments, the first application started at planting, 

but in 2016 Regalia experiments, the first application started at 24 h after 

planting. Each treatment was added into 100 ml of water and applied to each 

individual plant. Presidio was used as standard control in all the greenhouse 

experiments. MBI-110 (Table 2.4.) or Regalia was applied at different timing in 

different ways (Table 2.5.).  
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Table 2.4. Treatment details in MBI-110 greenhouse trial.  

Treatment 
Name 

Active 
Ingredient 

Application 
Ratea 
(ml/pot) 

Application 
Method 

Application 
Timing 

Uninoculated control - - - - 

Inoculated control - - - - 

MBI-110 
Bacillus sp. 
F727b 0.0578  In-hole At plantingc 

MBI-110 
Bacillus sp. 
F727 0.0578  

Soil 
drenching 

Tuber 
initiationd 

Presidio Fluopicolide 0.0041  In-hole At planting 

Presidio Fluopicolide 0.0041  
Soil 
drenching 

Tuber 
initiation 

Presidio 

MBI-110 

 

Fluopicolide 

Bacillus sp. 
F727 

0.0041  

0.0578  

 

In-hole 

Soil 
drenching 

At planting 

Tuber 
initiation 

Presidio (half rate) 

MBI-110 

 

Fluopicolide 

Bacillus sp. 
F727 

0.0021  

0.0578 

  

In-hole 

Soil 
drenching 

At planting 

Tuber 
initiation 

Ridomil Gold 480 SL Mefenoxam 0.0092 In-hole At planting 
a Converted based on the surface area of each pot.  
b Bacillus amyloliquefaciens strain F727. 
c One application at planting. 
d Four applications starting from tuber initiation with a 10-day interval. 
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Table 2.5. Treatment details in Regalia trials.  

Treatment 
Name 

Application 
Ratea 
(ml/pot) 

Application 
Method 

Application 
Timing 

Uninoculated 
control - - - 
Inoculated 
control - - - 

Presidiob 0.0041  
In-hole 
/drenching Once, at/24 h after planting 

Regaliac 0.0385  

In-hole 

/drenching Once, at/24 h after planting 

Regalia 0.0385  
Soil 
drenching Once, 10 d after emergence 

Regalia 0.0385  
Soil 
drenching Once, 20 d after emergence 

Regalia 0.0385  
Soil 
drenching Once, 40 d after emergence 

Regalia 0.0385  
Soil 
drenching 

Four applications:  

At/24 h after planting, 10 d, 
20 and 40 d after emergence 

a Converted based on the surface area of each pot  
b Active ingredient: fluopicolide 
c Extract of Reynoutria sachalinensis 
 

 

Assessment of pink rot disease and potato tuber yield in field trials  

At harvest, tubers from the middle 2 rows were dug out and left in 

separate containers that had been tagged with treatment labels. The tubers were 

sized (US1: 2 inch minimum, US2: 1.5 inch minimum) and weighed for 

commercial yield (US1) and marketable yields (sum of US1 and US2) (Keough 

2016).  In 2014, only one of the middle two rows of each plot was used for data 
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collection. However, in 2015, all the tubers were weighed to collect yield data, 

only one row was used for disease evaluation. Tuber yield and disease severity 

data were collected traditionally (Larkin 2007;  Larkin et al. 2010;  Lobato 2008). 

Pink rot severity was rated by reading the approximate coverage of the visible 

symptom (pink stain) on the cut surface of tubers, based on a scale of 0 = no 

symptoms, 1 = < 2.5% of surface with symptoms, 2 = 2.5 – 10% surface with 

symptoms, 3 => 10 – 25% surface with symptoms, 4 => 25–50% surface with 

symptoms and 5 => 50% surface with symptoms of susceptibility. Disease index 

was calculated using the following formula (Eq.2.2): 

Eq.2.2. 

Disease Index= 
Sum of all disease ratings

Total number of tubers× maximum rating value ×100%  

 

Assessment of pink rot disease and potato tuber yield in greenhouse trials 

In greenhouse studies, the total weight of tubers per pot was considered 

as tuber yield. All the harvested tubers were examined for pink rot severity at 

harvest time. The disease evaluation method was the same as field disease 

assessment. 

Data analysis of fungicide trials 

The yield and disease severity data were analyzed using R. 3.1.1. and 

JMP 9.0. (SAS Institute, Cary, North Carolina). The means values were 
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compared using nonparametric test with Wilcoxon each pair comparison, or 

ANOVA with fisher’s LSD, at α = 0.05. 

Results 

Mefenoxam sensitivity of Phytophthora erythroseptica isolates 

In the dilution plating assay, seven isolates were cultured on V8-M plates 

with 6 concentrations of mefenoxam (0 μg/ml, 0.01 μg/ml, 0.1 μg/ml, 1 μg/ml, 10 

μg/ml and 100 μg/ml), with 4 replications. EC50 calculation showed that one 

isolate (13A02) was resistant to mefenoxam, and the rest were sensitive to 

mefenoxam. Among them, 13A09 was extremely susceptible to mefenoxam.   
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Figure 2.1. Sensitivity of Phytophthora erythroseptica isolates to mefenoxam. 

Red broken line indicates isolate 13A02. Light blue broken line, 16A12. Black 
broken line, 16A14. Pink solid line, 16A13. Green broken line,13A06. Grey solid 
line,13A01. Blue broken line, 13A09.  
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Plant emergence and vigor data in 2014 field trial 1 

In 2014 field trial 1, plant emergence and vigor was evaluated twice. The 

initial data were collected on 1-July, about 4 weeks after planting. The results 

(Table 2.6) showed that all the treatments except Taegro increased the 

emergence and enhanced plant vigor significantly in comparison with the 

untreated control (α = 0.05). Taegro did not have a significant effect on 

emergence, but it had a negative effect on plant vigor (α = 0.05). Plant 

emergence and vigor was evaluated again on 22-July. It was noticed that all the 

fungicide treatments except “Taegro” had positive effects on plant emergence 

and vigor (α = 0.05). Among them, In-furrow application plus direct spraying at 

hilling of Orondis and Ridomil Gold SL provided the best results. Compared with 

the untreated control, “Taegro” decreased plant emergence, although it did not 

have a significant effect on plant vigor (α = 0.05). Overall, all the treatments with 

synthetic fungicides (Ridomil Gold SL, Ridomil Bravo SC or Orondis) including 

“Orondis +Taegro” (the combination of synthetic and biological fungicides) 

improved plant emergence and vigor. “Taegro” seemed to have a negative effect 

on plant emergence and vigor.  
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Table 2.6. Plant emergence (%) and vigor (%) in 2014 field trial 1. 

 July 1 July 22 

Treatment Emergence  Vigor Emergence Vigor 

Untreated  56.9 ba 75.8 c 77.5 c 73.8 d 

Ridomil Gold 480 SL  

0.42 fl oz/1000 ft, furrow +  

Ridomil Gold Bravo SC, 2.50 pt/a, 
hilling 77.5 a 87.0 b 86.9 b 89.8 bc 

Orondis 0.66 fl oz/1000 ft, furrow +  

Ridomil Gold 480 SL 0.28, furrow 84.4 a 88.5 ab 91.9 ab 87.0 c 

Orondis 1.32, fl oz/1000 ft furrow +  

Ridomil Gold 480 SL 0.55, furrow 80.0 a 85.3 b 91.3 ab 92.0 abc 

Orondis 0.66 fl oz/1000 ft furrow +  

Ridomil Gold 480 SL  

0.26 fl oz/1000 ft, furrow +  

Orondis 9.6 fl oz/1000 ft hilling +  

Ridomil Gold 480 SL  

4.00 fl oz/1000 ft, hilling 84.4 a 88.3 ab 95.6 a 98.8 a 

Taegro 13 WP 0.36 oz/1000 ft, 
furrow +  

Orondis 0.33 fl oz/1000 ft, furrow 80.0 a 88.3 ab 93.8 ab 94.5 abc 

Taegro 13 WP 0.36 oz/1000 ft, 
furrow 55.6 b 67.5 d 68.8 d 65.0 d 

Orondis 0.33 fl oz/1000 ft, furrow 87.5 a 93.8 a 95.0 ab 96.5 ab 
a Mean values connected by the same letters are not significantly different (α = 
0.05). 
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Plant emergence and vigor data in 2015 field trial  

In 2015 field trial (Table 2.7), none of the fungicide treatments had a 

significant effect on plant vigor in comparison with untreated control (α = 0.05). 

However, the seed treatment (Emesto Silver plus Reason) significantly increased 

plant emergence (α = 0.05). Soil treatments (Ridomil gold SL, presidio and 

Double Nickel LC) did not affect plant emergence and vigor.   

 

Table 2.7. Plant emergence (%) and vigor (%) in 2015 field trial. 

Treatments June 26 July 16 

 Emergence  Vigor  
 
Emergence  

Non-treated     77.14 bca 82.50 ab 80.00 b 

Ridomil Gold SL 0.42 fl oz/1000 ft, 
furrow + Phostrol 10 pt/a, spray      72.14 c 81.25 ab 77.14 b 

Presidio 4 fl oz/a, furrow + 
Phostrol 10 pt/a, spray 77.14 bc 82.50 ab 85.00 ab 

Emesto Silver 0.31 oz/cwt, seed + 
Reason 0.15 oz/cwt, seed          93.57 a 97.50 a 94.29 a 

Double Nickel LC 1qt/a, furrow 80.71 abc 81.25 b 82.14 ab 

Presidio 2 fl oz/a, furrow + 
MBI-110 6 qt/a, drenching 
(4 times since tuber initiation)    85.71 ab 90.00 ab 79.29 b 

MBI-110 6 qt/a, drenching 
(once at tuber initiation) 76.43 bc 82.50 ab 77.14 b 

MBI-110 6 qt/a, drenching 
(4 times since tuber initiation) 76.43 bc 85.00 ab 80. 72 b 

a Mean values connected by the same letters are not significantly different (α = 
0.05). 
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Assessment of pink rot disease and tuber yield in 2014 field trial 1 

In 2014 field trial 1 (Table 2.8), all the treatments involved with synthetic 

fungicide Orondis significantly increased potato tuber yield (α = 0.05). Ridomil 

gold SL plus Ridomil gold bravo did not have a treatment effect on yield. The sole 

application of biological product Taegro did not have a significant effect on tuber 

yield. However, the combination of Orondis and Taegro significantly increased 

the yield and suppressed pink rot. All the treatments except “Ridomil gold SL plus 

Ridomil gold bravo”, Taegro and Orondis reduced potato pink rot significantly (α 

= 0.05). When compared with the lower rate (Orondis 0.66 fl oz/1000 ft + Ridomil 

Gold 480 SL 0.28 fl oz/1000 ft) of Orondis-Ridomil treatment, the higher rate 

(Orondis 1.32 fl oz/1000 ft + Ridomil Gold 480 SL 0.55 fl oz/1000 ft) of Orondis-

Ridomil combination caused a significant yield reduction in the harvested tubers 

(α = 0.05). 
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Table 2.8. Tuber yield and pink rot disease index in 2014 field trial 1. 

Treatment 

Commercial 

yield (lb) 

Marketable 

yield (lb) 

Pink rot 

Disease 
Index  

Untreated 20.44 da 22.21 c 16.8 ab 

Ridomil Gold 480 SL 0.42 fl oz/1000 ft, 

In-furrow + Ridomil Gold Bravo SC 
2.50 pt/a, hilling 22.34 d 25.10 c 27.9 a 

Orondis 0.66 fl oz/1000 ft, in-furrow + 
Ridomil Gold 480 SL 0.28 fl oz/1000 ft, 
in-furrow 37.06 a 40.91 a 0.4 c 

Orondis 1.32 fl oz/1000 ft, in-furrow + 
Ridomil Gold 480 SL 0.55 fl oz/1000 ft, 
in-furrow 30.02 c 35.03 b 2.2 c 

Orondis 0.66 fl oz/1000 ft, in-furrow + 
Ridomil Gold 480 SL 0.28 fl oz/1000 ft, 
in-furrow  

Orondis 9.6 fl oz/a hilling + 

Ridomil Gold 480 SL 4.00 fl oz/a, hilling 35.65 ab 40.31 a 1.3 c 

Taegro 13 WP 0.36 oz/1000 ft, in-
furrow + Orondis 0.33 fl oz/1000 ft, in-
furrow 32.42 bc 36.78 ab 1.8 c 

Taegro 13 WP 0.36 oz/1000 ft, in-
furrow 18.68 d 20.28 c 29.5 a 

Orondis 0.33 fl oz/1000 ft, in-furrow 31.22 bc 36.20 ab 9.9 bc 
a Mean values connected by the same letters are not significantly different (α = 
0.05). 
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Assessment of pink rot disease and tuber yield in 2014 field trial 2 

Three biological agents (Regalia, Serenade Soil and MBI-110) and a 

synthetic fungicide Presidio were tested in comparison with untreated control and 

Ridomil gold SC in this trial. The results showed that the sole application of 

biological agents did not have a significant effect on tuber and pink rot disease (α 

= 0.05). Ridomil gold SC and the combinations of Ridomil and biologicals did not 

reduce pink rot or increase tuber yield. Presidio, and the combination of Presidio 

and MBI-110 significantly suppressed pink rot disease (α = 0.05).  
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Table 2.9. Tuber yield and pink rot disease index in 2014 field trial 2. 

Treatment 

Commercial 

Yield (lb) 
Marketable 
yield (lb) 

Pink rot 

Disease 
index  

Untreated 23.61 a 26.98 a 8.47 aa 

MBI-110, 6 qt/a, furrow 27.72 a 28.42 a 5.39 abc 

Regalia 4 qt/a, furrow 28.94 a 31.63 a 4.60 abc 

Serenade Soil 6 qt/a, furrow 23.64 a 26.73 a 8.54 a 

Presidio 13.7 oz/a, furrow 35.52 a 41.10 a 1.65 bc 

Ridomil Gold SC 0.42 oz/a, 
furrow 28.36 a 32.48 a 4.84 abc 

Ridomil Gold SC, furrow +  

Presidio 4 oz/a, foliar 31.16 a 37.00 a 3.80 abc 

Ridomil Gold 0.42 oz/a, furrow+ 
MBI-110 6 qt/a, foliar 32.75 a 37.82 a 3.82 abc 

Ridomil Gold 0.42 oz/a furrow+ 

Serenade Soil 6 qt/a, foliar 29.69 a 32.66 a 6.34 ab 

Ridomil Gold 0.42 oz/a furrow+  

Regalia 4 qt/a, foliar 32.32 a 37.05 a 4.42 abc 

Presidio 13.7 oz/a, furrow+  

MBI-110 6 qt/a, foliar 33.34 a  40.88 a 0.65 c 
a Means not connected by the same letter are significantly different (α = 0.05).  
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Assessment of pink rot disease and tuber yield in 2015 field trial  

In 2015 field trial (Table 2.10), two biological fungicides Double Nickel LC 

and MBI-110 were tested. Neither of them had a significant effect on tuber yield 

and pink rot disease (α = 0.05). The seed treatment “Emesto Silver plus Reason” 

did not show a treatment effect on yield and disease reduction. Synthetic 

fungicide treatments (Ridomil Gold SL and Presidio) followed by Phostrol 

increased tuber yield and reduced pink rot disease (α = 0.05). The combination 

of Presidio (at half rate) and MBI-110 suppressed pink rot and increased 

marketable yield, although it did not have a significant effect on commercial tuber 

yield (α = 0.05). 
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Table 2.10. Tuber yield and pink rot disease index in 2015 field trial  

Treatment 
Commercial  
Yield (lb) 

Marketable  
yield (lb) 

Pink rot 
disease 
index  

Non-treated     49.10 cd 66.88 c 25.64 aa 

Ridomil Gold SL 0.42 fl oz/1000 ft,  
furrow + Phostrol 10 pt/a, spray      65.91 ab 87.74 ab 1.58 cd 

Presidio 4 fl oz/a, furrow + 
Phostrol 10 pt/a, spray 74.68 a 96.22 a 1.23 d 

Emesto Silver 0.31 oz/cwt, seed + 
Reason 0.15 oz/cwt, seed          59.87 abcd 80.57 abc 12.38 ab 

Double Nickel LC 1qt/a, furrow 50.17 bcd 74.17 bc 16.59 ab 

Presidio 2 fl oz/a, furrow + 
MBI-110 6 qt/a, drenching 
(4 times since tuber initiation) 65.00 abc 88.43 ab  10.11 bcd 

MBI-110 6 qt/a, drenching 
(once at tuber initiation) 45.38 d 65.36 c 18.18 ab 

MBI-110 6 qt/a, drenching 
(4 times since tuber initiation) 60.15 abcd 83.11 abc 15.06 ab 
a Mean values connected by the same letters are not significantly different (α = 
0.05). 
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Effects of MBI-110 on potato pink rot and tuber yield in greenhouse trial  

In 2015, different application methods and timings of MBI-110 and 

Presidio were tested in a greenhouse experiment (Table 2.11). Ridomil Gold SL 

was used as standard fungicide control. There were dead plants and plants 

without daughter tubers in most treatments. The meanings of statistical analyses 

on pink rot disease index could not be determined, therefore ANOVA on pink rot 

disease index was not performed on the data. However, it was likely that Ridomil 

Gold SL and the combination of Presidio and MBI-110 increased tuber yield (α = 

0.05). 
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Table 2.11. Tuber yield and pink rot evaluation in MBI-110 greenhouse trial  

Treatment name Tuber yield (g) 
Disease index  
of pink rot 

Inoculated control 0.00 ca 0 

Uninoculated control 33.48 a  0 

Ridomil Gold 480 SL, at planting 31.11 a 0 

Presidio at planting 15.97 abc 0 

Presidio, tuber initiation 19.90 abc 0 

MBI-110, at planting 9.77 abc 75 

MBI-110, tuber initiation 0.00 c 0 

Presidio (half rate), at planting + 
MBI-110, tuber initiation 16.33 abc 0 

Presidio at planting + 
MBI-110, tuber initiation 25.50 ab 0 
a Mean values connected by the same letters are not significantly different (α = 
0.05). 
 

Effects of Regalia on potato pink rot and tuber yield in greenhouse trials 

In 2015, different application methods and timings of Regalia were tested 

in a greenhouse experiment (Table 2.12). Presidio was used as standard 

fungicide control. There were dead plants and plants without daughter tubers in 

most treatments. The meanings of statistical analyses on pink rot disease index 

could not be determined, therefore ANOVA on pink rot disease index was not 

performed on the data. Diseased tubers were not found. However, the results 

indicated a trend that early applications and four applications of Regalia could 

increase tuber yield. 
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This experiment was performed again in 2016 (Table 2.13). A different 

inoculation method was used and data from all the pots were collected. The 

results confirmed the trend that was observed in 2015, early applications of 

Regalia could increase tuber yield, although there was no significance difference 

(α = 0.05). Four-time application of Regalia (24 h after planting, 10 days, 20 days 

and 40 days after emergence) increased potato tuber yield and reduced pink rot 

(α = 0.05). It was also noticed that four application of Regalia kept mother tubers 

fresh (Fig.2.2 -2.3.), and this treatment enlarged plant roots and stolon (Fig.2.4.). 
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Table 2.12. Tuber yield and pink rot disease index in 2015 Regalia greenhouse 
trial  

Treatment name Tuber yield (g/pot) 

Uninoculated control 21.06 abca 

Inoculated control 0.00 bc  

Presidio，once at planting 6.00 abc 

Regalia, once at planting 27.33 ab 

Regalia, once, 10 d after emergence 13.17 abc 

Regalia, once, 20 d after emergence 6.00 abc 

Regalia, once, 40 d after emergence 0.00 c 

Regalia, four applications:  
At planting, 10 d, 20 and 40 d after emergence 32.54 a 

a Mean values connected by the same letters are not significantly different (α = 
0.05). 
 
 
Table 2.13. Tuber yield and pink rot disease index in 2016 Regalia greenhouse 
trial  

Treatment name 
Tuber yield 
(g/pot) 

Pink rot 
disease 
 index  

Uninoculated control 64.30 bca 0 a 

Inoculated control 30.18 c  34.00 b 

Presidio，once, 24 h after planting 45.82 bc 13.33 ab 

Regalia, once, 24 h after planting 80.39 bc 10.00 ab 

Regalia, once, 10 d after emergence 78.77 bc 8.00 ab 

Regalia, once, 20 d after emergence 47.28 bc 8.00 ab 

Regalia, once, 40 d after emergence 56.25 c 20.00 ab 

Regalia, four applications:  
24 h after planting, 10 d, 20 and 40 d after 
emergence 123.22 a 0 a 

a Mean values connected by the same letters are not significantly different (α = 
0.05). 
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Figure 2.2. Mother tubers dug out at harvest. 

A: the mother tuber from the Presidio treatment decayed. B: the mother tuber 
from the Regalia (four applications) treatment stayed fresh. C: The cut surface of 
the mother tuber from the four-application Regalia treatment did not change its 
color or shape after planting.   
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Figure 2.3. Harvested tubers from the four-application Regalia treatment “24 h 
after planting, 10 d, 20 d and 40 d after emergence”.  

 

 

Figure 2.4. Four-application Regalia treatment kept underground plant system 
fresh (B), compared with non-treated control (A). 
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Discussion 

Alternatives to mefenoxam in pink rot control 

Synthetic fungicide fluopicolide reduced pink rot and increased tuber yield 

in all the field trials, although it did not show any treatment effects in greenhouse 

experiments. The target site of fluopicolide is a spectrin-like protein, which is 

different from the target site of mefenoxam (Toquin et al. 2008). The field results 

in this study also showed that there was no cross-resistance between fluopicolide 

and mefenoxam. Therefore, fluopicolide can be used in the fields where the 

mefenoxam-resistant population of P. erythroseptica is dominant.  

The sole application of mefenoxam did not suppress pink rot in 2014 field 

trials because of the mefenoxam-resistant population in the inoculum. 

Combinations of mefenoxam and oxathiapiprolin significantly reduced pink rot 

severity and increased potato tuber yield in the presence of mefenoxam-resistant 

P. erythroseptica, even when the application rates were reduced. The possible 

reasons for the failure of Orondis treatment (sole application, ¼ of full rate) could 

be that the application rate was not high enough to control pink rot. The 

combinations of Orondis at a higher rate and Ridomil Gold suppressed pink rot 

and increased tuber yield.  

Efficacy of biological fungicides 

Five biological fungicides Taegro, Serenade Soil, Regalia, Double Nickel 

LC and MBI-110, were tested in this study. Taegro, Serenade Soil, Double Nickel 

LC are derived from different strains of beneficial bacteria Bacillus subtilis and 

Bacillus amyloliquefaciens. The active ingredient of Regalia derived from 
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Japanese knotweed Reynoutria sachalinensis. The field results showed that sole 

applications of these biological fungicides did not have a significant effect on pink 

rot or potato tuber yield.  

There were many factors influencing the performance of biological agents 

in the field. Most biological agents were derived from bacteria, which require the 

environmental conditions to be conducive for them to establish and colonize in 

soil (Cabrefiga et al. 2014;  De Curtis et al. 2012;  Usta 2013). Available water 

and oxygen in soil are important for the survival of Bacteria, and that is 

associated with soil porosity and soil types (Parnell et al. 2016). Soil pH is 

another major factor that influences the performance of bacterial biological 

agents. The ideal soil pH for potato growth is between 5.2-6.4 (FAO 2008), and 

Bacillus spp. are known to have the best antibiotic or enzyme activity at a higher 

pH (7-9) (Deb et al. 2013;  Jamil et al. 2007;  Sudhakar et al. 2014). In this study, 

the pH of field soil was around 5.9, which was not the best for the enzyme activity 

of Bacillus spp. The low soil pH in the field was a possible cause of the failures of 

biologicals in this study. Another possible cause was the disease pressure. 

Biological agents were found to have good performance in the fields with low 

disease severity (Larkin 2016;  Meng et al. 2012;  Raupach and Kloepper 2000). 

In this study, the disease pressure was high. It was likely to be beyond the 

capability of biological agents. In other words, the suppressive effect of 

biologicals was limited when P. erythroseptica population was dominant and 

overwhelming in the soil microbial community. It was also observed in 

greenhouse trials of this study. In 2015 greenhouse experiment, the inoculum 
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was so heavy that many plants died and Regalia did not show a significant 

treatment effect. The inoculum method was adjusted in 2016 greenhouse 

experiment and all the plants survived, and then the suppressive effects of 

Regalia on pink rot was observed.  

Evaluations on biological products 

The performance of biological agents in the field control is not stable (Bale 

et al. 2008). Many researchers have tried to combine synthetic and biological 

fungicides, to reduce the use of synthetic fungicides while taking advantage of 

biological agents in disease control (Elad et al. 1993;  Gilardi et al. 2008;  Omar 

et al. 2006). In this study, an enhancing potential of synthetic and biological 

fungicide combination was found in 2014 trial 1, in which neither oxathiapiprolin 

(¼ of full rate) nor Bacillus subtilis var. amyloliquefaciens Strain FZB24 

significantly reduced pink rot disease. However, the combination of them caused 

a significant reduction in pink rot disease severity, although it was not 

significantly different from oxathiapiprolin (¼ of full rate) treatment. When 

fluopicolide was applied at a reduced rate and followed by 4 applications of 

Bacillus amyloliquefaciens F727, the combined treatment significantly reduced 

pink rot. However, it was hard to separate the effect of fluopicolide from this 

combination because fluopicolide had a significant suppressive effect on pink rot 

by itself. These results suggested that combining synthetic and biologicals 

fungicides could possibly reduce the use of synthetic fungicides and mitigate 

fungicide resistance problems, although more field trials are needed to confirm 

the advantages of chemical-biological combinations. The cost effectiveness of 
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synthetic-biological combined fungicides also needs to be investigated in an 

economic way, to help growers make better decisions in potato production 

(Headley 1985;  McFayden et al. 2008). 

It is also recommended to test different application methods and timings of 

biological fungicides. Although most biological fungicides available on the market 

are microbe-based products, there are some deriving from plants. It is necessary 

to explore the optimum application methods and timings of different biologicals, 

because they have different MOAs. In greenhouse experiments, MBI110 and 

Regalia were tested and it was found that early applications (at planting or 24 

hours after planting) were better than late applications (after emergence or at 

tuber initiation phase) in pink rot control. Although in-furrow applications and 

drenching applications were not compared in the same experiment, Regalia 

applied through soil drenching had a good performance in 2016, which was not 

observed in the 2015 Regalia trial where Regalia was applied as a “in-furrow” 

treatment. Additionally, it was observed that four applications of Regalia (24 h 

after planting, 10 days after emergence, 20 days after emergence and 40 days 

after emergence) boosted the health of potato plant underground system and 

kept mother tubers fresh. This effect was not found in other one-time Regalia 

treatments in the same experiment. In other words, the application timing and 

rates of Regalia made a significant difference in pink rot control. Hence, more 

studies on discovering the optimum application strategies of biologicals are 

demanded to achieve the full potential of the biologicals.  
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Integrated pest management (IPM) in pink rot control 

Alternative fungicides to mefenoxam and a potential chemical-biological 

combination were found in this study. Results from this study suggested that the 

appropriate use of fungicide could mitigate fungicide resistance problems and 

maximize the efficacy of fungicides. The results of the 2014 field trial 1 showed 

that reducing the use of mefenoxam and oxathiapiprolin in a field with 

mefenoxam resistance significantly increased potato tuber yield and slightly 

reduced potato pink rot severity. In 2015 and 2016 greenhouse trials, multiple 

applications of Regalia showed an advantage over one-time applications. 

Therefore, the author developed a hypothesis of “portion control” effect in 

fungicides. As it is well known, a large portion of foods and beverages leads to 

substantial increases in energy intake in human bodies, and the energy cannot 

be efficiently used thus transformed into fat (Rolls 2014).  In our case, the 

question is, with the same total amount, whether smaller amount and multiple 

applications of a fungicide treatment will have a better performance than a one-

time application of the same treatment. It is also worthwhile to study the fungicide 

retainability of soil and the update fungicide efficiency of plants, and that will help 

develop the optimum fungicide application strategies.  

 

Conclusions 

Synthetic fungicides fluopicolide and oxathiapiprolin-mefenoxam 

significantly reduced pink rot and increased tuber yield in mefenoxam-resistant 

fields. Biological fungicides (Taegro, Serenade Soil, Regalia, Double Nickel LC 
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and MBI-110) did not show any significant treatment effect in the field trials. The 

combination of chemical and biological fungicides did not show a significant 

advantage over the sole application of chemical fungicides, yet it suggested a 

potential to suppress pink rot with reduced rates of chemicals. In greenhouse 

experiments, Regalia suppressed pink rot, increased tuber yield and enhanced 

the health of potato underground systems when it was applied multiple times 

through soil drenching. In sum, experiments in this chapter provided information 

about the possible alternatives to mefenoxam, the efficacies of biological 

products and as to how to maximize the effectiveness of fungicides.  
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Chapter 3 

SENSITIVITY AND RESISTANCE RISK OF PHYTOPHTHORA 

ERYTHROSEPTICA TO FLUOPICOLIDE 

 

Chapter Abstract 

Thirty-four isolates of wild-type Phytophthora erythroseptica were 

collected from Maine, and examined for their sensitivity to fluopicolide. By 

measuring the mycelial growth on fluopicolide-amended agar medium, all the 

isolates were found to be sensitive to fluopicolide, with the effective concentration 

for 50% inhibition of mycelial growth (EC50) ranging from 0.08 to 0.35 μg/ml. 

Fluopicolide-resistant mutants were generated from zoospores of 9 out of the 34 

wild-type isolates. They were categorized into two types, fast-recovering type and 

regular type, based on the recover speed on fungicide-free medium. The mycelia 

of both types of mutants were morphologically abnormal. After the original 

mutants were transferred to fungicide-free V8 medium consecutively for 10 

generations, the 10th generation (T10) of mutants was examined for resistance 

stability and fitness. The EC50 values of 81.82% of mutants at T10 were 

significantly higher than those of their wild-type parents, and the fast-recovering 

type was more tolerant than the regular type originating from the same parent. All 

the mutants grew significantly slower than their wild-type parents in the first 24 h 

of incubation at 28 °C, but the growth rate between 24 h and 96 h of mutants, 

except Mutant 13A14-M, was similar with that of their wild-type parents. All the 

mutants caused pink rot symptoms on uncut potato tubers, but the virulence of 
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some mutants was reduced. The results of this study suggested that the risk of 

P. erythroseptica to develop intermediate resistance to fluopicolide was at 

medium level, and that there was a trade-off between fluopicolide resistance and 

biological fitness in P. erythroseptica. 

 

Introduction 

Pink rot (Phytophthora erythroseptica) is a ubiquitous potato disease 

(Porter et al. 2007;  Wicks et al. 2000). It causes significant losses in the field and 

storage (Al-Mughrabi et al. 2007;  Mills et al. 2005;  Schisler et al. 2009). 

Currently, few fungicides are effective on potato pink rot (Benson 2009). The 

systemic chemical fungicide mefenoxam used to be the most effective product 

(Fitzpatrick-Peabody 2008; Johnson 1997; Wicks 2000). However, the 

development of mefenoxam-insensitive populations of P. erythroseptica has 

been a big concern in potato production (Goodwin and McGrath 1995;  Lambert 

and Salas 1994;  Taylor et al. 2002). 

In the field fungicide studies, fluopicolide appeared to be a good 

alternative to mefenoxam for pink rot control (Zhang et al. 2016). It has good 

performance in potato fields infested with P. erythroseptica, even in the presence 

of a mefenoxam-resistant P. erythroseptica population (see Chapter 2). 

Fluopicolide is a new oomyceticide with a new mode of action (Toquin et al. 

2008). It has been tested on a range of oomycete diseases (Foster 2009;  

Gevens 2012;  Jackson et al. 2010;  Matheron 2011;  Quesada-Ocampo and 

Kousik 2015;  Rekanovic et al. 2008;  Schubert ;  Wang et al. 2014a;  Wise and 
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Wilcox 2012). It was reported that some oomycetes have the potential to develop 

resistance to fluopicolide (Lu et al. 2011;  Wang et al. 2014b). Fluopicolide-

resistant mutants were selected from the zoospores of wild-type fluopicolide-

sensitive Phytophthora capsica isolates (Lu et al. 2011). The fluopicolide 

resistance of Pseudoperonospora cubensis was induced by exposing the wild-

type isolates to UV light and selecting the adapted Pseudoperonospora cubensis 

isolates on fluopicolide-treated cucumbers (Wang et al. 2014b). However, the 

risk of fluopicolide resistance in P. erythroseptica remains unknown.  

Traditional dilution plating method was used in previous studies to test 

fluopicolide sensitivity of oomycetes (Lu et al. 2011;  Wang et al. 2014b). 

Alternatively, the spiral gradient endpoint (SGE) method can be used in fungicide 

sensitivity tests (Förster et al. 2004). This method costs less in terms of labor, 

time and materials. The objectives of this study were: 1) to investigate the 

baseline sensitivity of P. erythroseptica to fluopicolide; 2) to examine the biology 

and fitness of fluopicolide-resistant isolates; 3) to test the pathogenicity and 

virulence of the mutants.  

 

Materials & Methods 

Pathogen isolates and fluopicolide  

Potato tubers showing pink rot symptoms were used for pathogen 

isolation. Pieces of tubers having partially healthy tissues and partially rot lesions 

were cut and surface-sterilized in 75% ethanol for 30 s, and then soaked in 0.6% 

sodium hypochlorite for 5 to 10 min, depending on the necrotic level of tuber 
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tissue, followed by rinsing three times in sterile distilled water. The disinfested 

tuber pieces were dried on sterile filter paper and placed on a 1.5% water agar 

plate. Thirty-Four P. erythroseptica isolates were obtained, and purified through 

the single-spore method. All the isolates were collected from potato fields in 

Maine, where there was no history of fluopicolide application. Morphological 

identification (Erwin and Ribeiro 1996), PCR identification with ITS region (White 

et al. 1990) and mefenoxam sensitivity assay (See Chapter 2) were conducted 

on the wild-type isolates. The background information of these isolates is listed in 

Appendix B. Technical grade of fluopicolide (99.1% active ingredient) was 

obtained from Valent U.S.A. Corporation (1600 Riviera Avenue, Suite 200, 

Walnut Creek, CA 94596-8025). The chemical powder was dissolved in DMSO, 

and diluted to a stock concentration (1x105 μg/ml) for storage and work 

concentration (1x103 μg/ml) for later use.  

Baseline sensitivity of P. erythroseptica to fluopicolide  

The baseline sensitivity assay was conducted with a modified spiral 

plating (based on SGE) method (Förster et al. 2004;  Torres-Londono 2016). 

Pure cultures of P. erythroseptica isolates were grown on a clarified V8 plate 

(Clarified V8 agar: 200 ml clarified V8 juice, 2.5 g CaCO3, 1.5% agar, 800 ml 

distilled water) with 4 or 8 replicated pieces of sterile cellophane strips per 

isolate. The cellophane strips had been autoclaved in distilled water for 15 min at 

121 °C. The cultures were incubated at 25/28 °C in an incubator, until all the 

cellophane film strips were covered by mycelia.  
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An aliquot of 50 ml of potato dextrose agar (PDA) was poured into each 

15-mm Petri plate. These PDA plates were left to dry in a sterile hood for an 

hour. Only the plates with an even surface and no air bubbles were used for 

spiral plating. An aliquot of 50 μl of fluopicolide (1x103 μg/ml) was plated on the 

PDA plates using Spiral Biotech Autoplate 4000 (Spiral Biotech Inc, Norwood, 

MA, USA) with exponential mode. The plates were left in a sterile hood for 30 

minute to ensure fungicide absorbance. Then mycelia-colonized cellophane 

strips were moved and laid on the fluopicolide-distributed PDA plates, and 

arranged radially (Figure 3.1). Two or three days later, minimum inhibition 

concentration (MIC), total inhibition concentration (TIC) and EC50 points were 

recorded (Fig 3.1). R version 3.2.3 with a modified ECX package (modified based 

on Torres-Londoño’s design) was used to calculate EC50 and analyze EC50 

distribution in 34 wild-type isolates (Torres-Londoño et al. 2016).  

 



80 
 

 

Figure 3.1. Spiral plating procedure (Torres-Londono 2016). 

 

Selection of fluopicolide-resistant P. erythroseptica  

Fluopicolide-resistant P. erythroseptica isolates were selected on 100 

μg/ml fluopicolide-V8 (F-V8) medium. The V8 juice was filtered to clarify the 

medium. Zoospores of wild-type P. erythroseptica isolates were plated with a 

sterile hockey rod on F-V8 medium. Zoospores of P. erythroseptica were 

produced following the method published by Al-Mugharbi et al. (Al-Mughrabi et 

al. 2007), modified by Jiang (unpublished). 

To prepare zoospores, P. erythroseptica was cultured on 10% V8 agar 

(room temperature, dark) for 6 days. Four mycelial plugs were punched by a  

5-mm cork borer and transferred to a petri plate (10 mm diameter) filled with 10 

ml of lima bean broth (LBB). After being incubated at 22 °C under natural light for 

3 days, LBB was discarded. The original (10% V8) agar plugs were removed, 
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and the mycelial mats were rinsed with sterilized distilled water three times. Then 

the Petri plate (with mycelial mats only) was filled with 10 ml of 10% soil 

extraction, and incubated at 18 °C under continuous fluorescent light for 4 days 

(Al-Mughrabi et al. 2007). Four days later, the Petri plate and mycelial mats were 

rinsed again with sterile water (4 °C, cold water), and 10% soil extraction was 

replaced by 7 ml of sterile water (4 °C). The plate was chilled at 4 °C for an hour 

and then left at 22 °C for 30 min. Then the zoospore concentration was estimated 

with a hemocytometer. 

An aliquot of 1 ml of zoospore suspension (1-80 x 104 spores/ml) was 

spread on each F-V8 plate. V8 agar amended with 0.1% DMSO was used as a 

control and plated with 1 ml of the suspension. After the plates were incubated at 

25 °C in the dark for five days, colonies that survived on the F-V8 plates were 

considered as fluopicolide-resistant mutants (Lu et al. 2011). In this experiment, 

each isolate had 5 replications, and this experiment was conducted twice. 

Survival/mutation frequency was calculated: SF/MF = sum of mutants or 

survivors on five plates/ [(zoospores per plate) x 5]. 

Morphological observation and resistance stability of fluopicolide-resistant 

P. erythroseptica mutants  

The survivors on V8-F plates were transferred to fungicide-free, clarified 

V8 medium, and the first transfer were considered as the first generation of 

resistant isolates/mutants (T1). Each transfer counted as a generation. A total of 

ten generations of resistant isolates were generated and observed under a Leica 

microscope (Leica Microsystems Inc.,1700 Leider Lane, Buffalo Grove, IL 60089 
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US) to capture morphological changes. The 10th generation was used to examine 

the resistance stability of fluopicolide-resistant P. erythroseptica. Spiral plating 

was performed again, as described easier, to test the sensitivity of the 10th 

generation of mutants and their wild-type parents. This assay was repeated 

once.  

Mycelial growth of P. erythroseptica mutants 

The 10th generation of P. erythroseptica was used to investigate the 

mycelial growth differences between fluopicolide resistant isolates with their wild-

type parents. One agar plug was cut by a 5-mm cork borer and transferred from 

each active culture of P. erythroseptica isolate onto a clarified V8 agar plate. All 

the tested isolates were incubated at 28 °C, in dark. Each isolate had 4 

replications. The radius of mycelial coverage on each plate was measured at 24 

h, 48 h, 72 h and 96 h after incubation. Growth curves of each tested isolates 

were generated based on the serial measurements.  

Pathogenicity and virulence of P. erythroseptica mutants 

Disease-free potato tubers (c.v. Russet Norkotah) were used to examine 

the pathogenicity and virulence of the isolates. The tubers were washed and 

disinfested with 0.6% sodium hypochlorite followed by sterile water rinsing. The 

10th generation of fluopicolide-resistant P. erythroseptica mutants and their wild-

type parents on V8 plates were used for inoculation. Three agar plugs of each 

tested isolate were placed on a random eye of a randomly picked tuber, and 

covered by a cap of a 2 ml Eppendorf tube. The plastic cap loaded with a test 

isolate was wrapped and fixed by a piece of Parafilm on the inoculated tuber. 
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The treated tubers were placed in covered plastic containers, in which, the 

bottom was covered by a layer of plastic rack. The tubers inoculated with the 

same mutant/survivor and the ones inoculated with corresponding wild-type 

parent were incubated in the same plastic container, at the same time at 25 °C. 

Tubers used as blank controls were treated with sterile agar medium. A 

completely randomized design with 4 replications was used in this experiment. 

Tuber lesion penetration was calculated based on Fitzpatrick-Peabody and 

Lambert’s equation: (Depth + Width/2)/2 (Fitzpatrick-Peabody and Lambert 

2011). Seven days after inoculation, all the tubers were cut, and the depth and 

width (using the inoculation site as the center) of symptoms (pink lesion) were 

recorded.  

Statistical analyses 

R 3.2.3 and modified EXC package was used in data analysis to calculate 

EC50 (Torres-Londoño et al. 2016).  R 3.2.3 and JMP were used to perform 

ANOVA and Fisher’s LSD (for parametric data) or Wilcoxon each pair analysis 

(nonparametric data) in fluopicolide sensitivity, mycelial growth (in first 24 h), and 

virulence comparison. Bivariate analysis was used to examine the linear 

regression fit of mycelial growth rates between 24 h and 96 h of incubation 

(Everitt 1995;  Matthews et al. 1990). α was set at 0.05 in all the data analyses. 
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Results 

Baseline sensitivity of P. erythroseptica to fluopicolide  

The spiral plating results showed that all 34 wild-type P. erythroseptica 

isolates were sensitive to fluopicolide (Fig 3.2). The effective concentration for 

50% inhibition of mycelial growth (EC50) of those isolates ranged from 0.08 to 

0.35 μg/ml, with a mean of 0.18 μg/ml and median of 0.17 μg/ml. Shapiro-Wilk 

normality test was used to test the distribution of EC50 after log transformation, 

and the p value was 0.04. ECX (package) results showed the regression 

coefficient of EC50 calculation was above 0.99. α was set at 0.05 in all the data 

analyses. 

 

  

Figure 3.2. Distribution of fluopicolide sensitivity of 34 Phytophthora 
erythroseptica isolates from Maine. 
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Fluopicolide-resistant P. erythroseptica mutants  

Among 34 isolates, only 9 produced fluopicolide resistant mutants. The 

survivors formed visible mycelial colonies on F-V8 plates. The mutation 

frequency was between 1.35 x 10-5 and 1.00 x 10-4. A total of 12 mutants were 

acquired and used for further research, because three wild-type isolates 

produced two types of mutants with significantly different growth rates. Based on 

the mefenoxam sensitivity information of wild-type isolates, it seemed that the 

occurrence of fluopicolide resistance did have a relation with mefenoxam 

resistance, because both mefenoxam-resistant and mefenoxam-sensitive P. 

erythroseptica can produce fluopicolide-resistant mutants. (See Appendix B). 

 

Morphologies and resistance stability of fluopicolide-resistant P. 

erythroseptica mutants 

In total, ten generations of resistant isolates were acquired. Each 

generation (including the original one) was monitored with a Leica-microscope to 

capture the morphological changes. Images of the germination of original 

mutants were captured: the survived zoospores germinated thick and swollen 

hyphae (Fig 3.3). The first generation (T1) was obtained after transferring the 

original mutants to clarified V8 plates. It was noticed that the growth rates of 

some mutants were significantly different from the others. The survivors, the 

mutants, started to recovered on V8 plates. However, mutants at T1 formed short 

branched, swollen septa-free hyphae (Fig 3. 4), which was different from typical 

Phytophthora erythroseptica hyphae and other oomycetes. Some mutants 
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eliminated malformed mycelial at T2, but some did not recover from it until T3 or 

T4. Some mutants did not produce oospores between T3 and T6, but the 

oospore reproduction was back to normal in all the mutants at T8. One mutant 

stopped producing oospores at T5 and eventually died at T6. Multiple attempts to 

transfer it from T4 and T5 failed.  

 

Figure 3.3. Germination of a fluopicolide-resistant zoospore of Phytophthora 
erythroseptica 

 

 

 
Figure 3.4. Mycelia formed by wild-type isolates (left) and T1 mutants (right) of 
Phytophthora erythroseptica.  
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Spiral plating assay was conducted using the 10th generation (T10) and 

the wild-type parents of all the mutants. The results showed that the EC50 values 

of wild-type isolates generated in this assay were similar with the ones generated 

in the baseline sensitivity test (Table 3.1, α = 0.05). It demonstrated that the 

spiral plating method was reliable. The data collected from Isolate 13A02, Isolate 

13A05, Isolate 13A08 and Isolate 13A14 were nonparametric data. Therefore, 

Wilcoxon each pair test was used to separate their EC50 mean values. The rest 

was analyzed through ANOVA and Fisher’s LSD. Data analysis results showed 

the EC50 values of mutants at the 10th generation were significantly different with 

those of their parents, except 13A03-M and 13A08-M. The fast-recovering (fast-

growing at T1) type of mutants were more resistant/tolerant to fluopicolide than 

the regular type from the same parents.  

 

  



88 
 

Table 3.1. Effective concentration of 50% inhibition (EC50, μg/ml) of mycelial 
growth of fluopicolide resistant mutants and their wild-type parents of 
Phytophthora erythroseptica 

 13A01 13A02 13A03 13A05 13A06 13A07 13A08 13A14 13A39 

WT’a 0.18 ab 0.18 a 0.25 a 0.17 a 0.22 a 0.20 a 0.21 a 0.22 a 0.21 a 

WT 0.21 a 0.16 a 0.21 a 0.18 a 0.22 a 0.25 a 0.24 a 0.20 a 0.18 a 

MT1 0.33 b 0.24 b 0.25 a 0.47 b 0.94 b 0.41 b 0.39 a > 5.31 b 0.44 b 

MT2d N/A  0.99 c N/A 1.29 c N/A N/A N/A N/A N/A 
a WT’ indicates the EC50 of wild-type isolates that were generated in baseline 
sensitivity test. WT indicates the EC50 of wild-type isolates that were tested with 
their mutants on the same spiral gradient F-V8 plates. 
b Mean values not connected by the same letters are significantly different 
(α=0.05). 
c The mycelial growth of mutants originating from 13A14 was not suppressed on 
the spiral gradient F-V8 plates (the highest concentration was 5.31 μg/ml ). 
d Isolate 13A02 and isolate 13A05 produced two types of mutants that had 
significantly different grow rates at T1. MT1 indicates the type of mutants having 
a regular grow rate. MT2 indicates the fast-growing type. 
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Mycelial growth rate of fluopicolide-resistant P. erythroseptica mutants 

The radius of mycelial growth on each plate was measured at 24 h, 48 h, 

72 h and 96 h of incubation. The original agar plug radius (0.25 °Cm) was 

subtracted before data analysis. Mycelial growth data collected at 24 h were 

used to compare the growth difference between mutants and wild-type parents in 

the first 24 hours of incubation. The results showed that mutants grew 

significantly slower than wild-type parents in the first 24 hours (Table 3.2). 

 

Table 3.2. Growth rate (cm/h) of mutants and wild-type parents of Phytophthora 
erythroseptica measured at 24 h of incubation. 

 Isolate 

Typea 13A01 13A02 13A03 13A05 13A06 13A07 13A08 13A14 13A39 

WT 0.83 ab 0.96 a 0.88 a 0.85 a 0.75 a 0.81 a 0.88 a 0.82 a 0.91 a 

MT1 0.77 b 0.71 b 0.71 b 0.64 b 0.60 b 0.59 b 0.61 b 0.20 b 0.75 b 

MT2 N/A  0.53 c N/A 0.38 c N/A N/A N/A N/A N/A 
a WT: wild-type; MT: mutant.   
b Mean values not connected by the same letters are significantly different (α = 
0.05). 
 

Mycelial growth data collected at 24, 48, 72 and 96 h of incubation were 

used for linear regression analysis. The results showed that R2 ranged from 

0.9045 to 0.9985, which suggested the growth data of each tested isolate fit the 

linear regression model very well. The growth rates between 24 h and 96 h were 

indicated by the slopes of each regression equation. The results showed the 

growth rates of mutants and their parents between 24 h and 96 h were close 

(Table 3.3). However, the growth rate of Mutant 13A14-M was lower than its wild-

type parent.   
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Table 3.3. Growth rate (24 to 96 h incubation) of mutants and wild-type parents 
of Phytophthora erythroseptica analyzed by linear regression equation. 

Isolate   Growth ratea (cm/h) R Square 

13A01 0.0297 0.9954 

13A01-M 0.0315 0.9955 

13A02 0.0283 0.9972 

13A02-M1 0.0268 0.9971 

13A02-M2 0.0297 0.9945 

13A03 0.0303 0.9984 

13A03-M 0.0303 0.9984 

13A05 0.0322 0.9860 

13A05-M1 0.0301 0.9045 

13A05-M2 0.0291 0.9985 

13A06 0.0329 0.9975 

13A06-M 0.0283 0.9913 

13A07 0.0295 0.9929 

13A07-M 0.0295 0.9929 

13A08 0.0304 0.9942 

13A08-M 0.0260 0.9959 

13A14 0.0315 0.9981 

13A14-M 0.0226 0.9933 

13A39 0.0288 0.9899 

13A39-M 0.0296 0.9967 
a Growth rate is the slope of regression equation generated by bivariate analysis.  
 
 
Pathogenicity of fluopicolide-resistant P. erythroseptica mutants 

All the of fluopicolide-resistant mutants showed pathogenicity on uncut 

potato tubers with a pink rot incidence of 100%, except that Mutant 13A14-M only 

caused 25% pink rot (1 out of 4 tubers was infected) in the first tuber inoculation 

experiment. The experiment was repeated, and the data were consistent. Data 

were analyzed through ANOVA or student t test. Mean values were compared 

within the group sharing the same origin background. P value less than 0.05 
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indicates a significant difference. The results showed the virulence of Mutant 

13A14-M was much lower than its wild-type parent and other mutants (Table 

3.4).  

 

Table 3.4 Lesion development on potato tubers inoculated by Phytophthora 
erythroseptica mutants and wild-type parents 

Isolatea Depth (cm) P valueb Width (cm) P value Penetration (cm) P value 

13A01 3.95 
0.90 NS 

6.55 
0.29 NS 

3.61 
0.64 NS 13A01-M 3.90 7.18 3.74 

13A02 4.00 

0.31 NS 

7.83 

0.31 NS 

3.96 

0.28 NS 
13A02-M1 3.78 6.55 3.53 
13A02-M2 3.23 5.78 3.06 
13A03 3.58 

1.00 NS 
7.73 

0.22 NS 
3.72 

0.48 NS 13A03-M 3.58 6.88 3.51 
13A05 3.35 

0.23 NS 
5.90 

0.21 NS 
3.15 

0.18 NS 13A05-M1 3.93 6.50 3.59 
13A05-M2 2.73 4.78 2.56 
13A06 3.88 

0.17 NS 
7.83 

0.03 
3.89 

0.02 13A06-M 3.03 5.88 2.98 
13A07 3.50 

0.72 NS 
6.23 

0.06 NS 
3.31 

0.03 13A07-M 3.60 7.20 3.60 
13A08 3.95 

0.09  
7.30 

0.09 NS 
3.87 

0.06 NS 13A08-M 2.98 5.98 2.06 
13A14 4.17 

<0.001 
7.33 

<0.001 
3.18 

<0.001 13A14-M 2.00 5.00 3.23 
13A39 4.23 

0.43 NS 
6.63 

0.35 NS 
3.78 

0.39 NS 13A39-M 4.10 6.75 3.74 
a Isolates with the suffix “M” indicate mutants derived from the same isolate.   
b P < 0.05 indicates a significant difference. NS: not significantly different. 
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Discussion 

All of Maine isolates of P. erythroseptica were sensitive to fluopicolide. 

This result was not surprising as fluopicolide has not been broadly used in Maine, 

and the pathogen did not have enough selection pressure. This is similar to the 

observations of Phytophthora capsici populations in Michigan and 

Pseudoperonospora cubensis populations in China (Lu et al. 2011;  Wang et al. 

2014b). However, this does not mean that there is no risk of resistance 

development. 

 It is likely there is variation in P. erythroseptica ’s response to fluopicolide. 

The mutant selection experiment was conducted twice. The mutants were 

derived from 9 of 34 wild-type P. erythroseptica isolates, while the rest of the 

wild-type isolates did not produce any mutants. The estimated mutation 

frequency in this study was approximately 1 x 10-5, which was higher than 

previously reported fluopicolide resistance mutation frequency in other oomycete 

species (Lu et al. 2011;  Wang et al. 2014b). This result suggests a medium risk 

of fluopicolide resistance in P. erythroseptica populations (Brent and Hollomon 

2007a). 

In this study, the morphological change of fluopicolide-resistant P. 

erythroseptica mutants was observed. It was observed that fluopicolide in the F-

V8 selection medium caused the misshapen hyphae in P. erythroseptica 

mutants. Fluopicolide could also influence the oospore reproduction in resistant 

mutants (morphological observation under light microscope, data not shown). 

Some mutants stopped producing oospores on V8 plates from T3 (plates were 
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kept for 3-4 weeks for oospore observation). One of them died at T6, and the rest 

resumed oospore reproduction from T7. Currently, fluopicolide is known for 

acting through inhibiting spectrin-like proteins (Toquin et al. 2008;  Toquin et al. 

2010). It could explain why the mycelium was damagedby a lack of the support of 

proteins. However, there was no studying showing the influence of fluopicolide 

on oospores. Further studies are required to investigate this matter. 

A trade-off between a resistance development and biological fitness may 

occur in plants, bacteria and fungi (Brown and Rant 2013;  Damicone and Smith 

2009;  Hall et al. 2004;  Hobbelen et al. 2014;  Kang and Park 2010;  Mikaberidze 

et al. 2014;  Montarry et al. 2007). For example, Kang and Park (2010) showed 

that there was a fitness cost to gain antibiotic resistance in bacteria, 

Acinetobacter sp. Fluopicolide-resistant Pseudoperonospora cubensis mutants 

showed differences with their wild-type parents in latent period, infection 

frequency, lesion extension and sporulation ability (Wang et al. 2014b).However, 

there was no difference between most fluopicolide-resistant Phytophthora capsici 

mutants and their wild-type parents in zoospore production, cyst germination and 

virulence (Lu et al. 2011).   

The trade-off was observed in this study. Although the mutants were 

capable of infecting potato tubers, the virulence of mutants was generally weaker 

than wild-type parents. The fast-recovering type mutants seemed to be more 

tolerant to fluopicolide. But the virulence of them, like 13A02M2, can be 

compromised. Mutant 13A14-M seemed to be a highly resistant, but its virulence 



94 
 

was weakened. It only caused 25% disease incidence in the first pathogenicity 

test.    

 

Conclusions 

All Maine isolates of P. erythroseptica collected in this study were 

sensitive to fluopicolide, but there was a potential risk of developing pathogen 

population resistant to fluopicolide. Nine wild-type isolates produced fluopicolide-

resistant mutants. The mycelial morphology of fluopicolide-resistant mutants was 

abnormal. The EC50 values of 81.82% of mutants at T10 were significantly 

higher than those of their wild-type parents, and the fast-recovering type of 

mutants was more tolerant than the regular type originating from the same 

parent. However, the fitness of some mutants was impaired, resulting in reduced 

mycelial growth, unstable oospore reproduction and reduced aggressiveness in 

pathogenesis. The predicted risk of fluopicolide resistance in P. erythroseptica 

was at a medium level. It was likely that there was a trade-off between 

fluopicolide resistance and biological fitness in some P. erythroseptica isolates.  
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Chapter 4 

EFFECTS OF CROP ROTATION ON PINK ROT OF POTATO  

 

Chapter Abstract 

A two-year crop rotation experiment was conducted to determine the 

effects of rotation crops on potato pink rot. Two fields (A and B) were initiated by 

inoculating the soil with Phytophthora erythroseptica inoculum before planting in 

2014, followed by different cropping arrangements: Field A was planted with 

potato plants in 2014, and rotated with either alfalfa, barley-ryegrass, canola, red 

clover, pumpkin, sweet corn, oats or potatoes in 2015. Field B was planted with 

alfalfa, barley-ryegrass, canola, red clover, onion, sweet corn, oats or potatoes in 

2014, and rotated with potatoes in 2015. In 2016, Field A was planted with 

potatoes.  Disease and potato tuber yield were assessed at harvest. The results 

showed that alfalfa, canola and pumpkin significantly increased potato tuber 

yield. However, the rotation crops had no significant effect on pink rot. 

 

Introduction 

Potato pink rot is a ubiquitous soil-borne disease caused by an oomycete 

pathogen, Phytophthora erythroseptica (Cairns and Muskett 1933;  Gudmestad 

et al. 2007;  Taylor et al. 2004). It causes significant losses in the field and 

storage (Rai 1979;  Toms 1968;  Yellareddygari et al. 2016). Currently, the pink 

rot management mainly relies on fungicide control, and the systemic chemical 
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mefenoxam has been the most effective fungicide for pink rot control. However, 

the mefenoxam resistance of P. erythroseptica has been a problem in many 

states including Maine, New York, Idaho, Michigan, Nebraska, Philadelphia and 

North Carolina (Goodwin and McGrath 1995;  Lambert and Salas 1994;  Porter et 

al. 2007;  Taylor et al. 2002;  Venkataramana et al. 2010). New fungicides and 

new management strategies are needed to control potato pink rot. 

Crop rotation has a long history in agriculture, and it is known for its 

capability of improving crop quality and yield (Honeycutt et al. 1996;  Honeycutt 

1998;  Johnson and Cummings 2015). By growing different types of crops 

between seasons, it replenishes soil nutrient resources, improves soil properties, 

and reduces erosion (Larkin et al. 2010). With its impacts on the soil microbial 

communities, crop rotation breaks up the life cycle of soilborne plant pathogens, 

and changes the abundance and diversity of the soil microbiome that favors plant 

health (Larkin et al. 2010;  Sudini et al. 2011). Crop rotation has been one of the 

practical options in controlling soilborne diseases of potato (Larkin 2008;  Larkin 

et al. 2010;  Peters 2003;  Toquin et al. 2008). It does not only suppress 

soilborne diseases directly (Larkin 2010), but also confers disease-resistance to 

potatoes from pathogen (P. erythroseptica) attack (Peters et al. 2005a).  

Different crops can have dramatically different effects on crop diseases 

(Mazzola 1999). For instance, canola (Brassica napus), and rapeseed (Brassica 

napus) consistently reduce the severity of Rhizoctonia canker, black scurf, and 

common scab (Larkin et al. 2010) on potatoes; Sweet clover (Melilotus officinalis) 

and hay can suppress on Verticiilium wilt (Emmond 1972). However, so far, there 
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have not been any studies revealing crop rotation effects on pink rot and the 

corresponding correlation between cropping sequences and soil microbial 

community structure and activity.  

Some rotation crops produce antimicrobial compounds that directly inhibit 

or reduce a wide range of bacteria and fungi including soilborne pathogens on 

potato (Ojaghian 2012). The Brassica family (e.g. canola, rapeseed) has the 

capability to produce glucosinolates, which will become isothiocyanates after 

further reaction (Ojaghian 2012). Isothiocyanates are known as biofumugants 

that have a suppressive effect on various soil organisms (Larkin 2007;  Mazzola 

2005;  Ojaghian 2012). Other than glucosinolates, there might be some 

additional substances released by Brassica crops that can also suppress fungal 

pathogens (Mazzola 2005). The Allium family (e.g. garlic, onion) is another group 

that is capable of releasing antifungal and antibacterial chemicals. Researchers 

found that Allium family can release diallyl sulfide and allicin, which are both 

noted for their antimicrobial activity (Benkeblia 2007). It was also reported that 

PGPR (Plant growth promoting rhizobacteria) bacteria, Rhizobium 

leguminosarum bv. trifolii, is associated with clover (Trifolium pratense) and 

wheat (Triticum spp..) roots (Urban 1982). It is reasonable to hypothesize that the 

growth of these crops can affect the population of Phytophthora erythroseptica in 

soil, which would make these crops good crop rotation choices to control potato 

pink rot. 



98 
 

The objective of this study was to observe the rotation effects of alfalfa, 

barley/ryegrass, canola, red clover, onion, pumpkin, sweet corn and oats on 

potato tuber yield and pink rot incidence and severity.  

 

Materials & Methods 

Isolates of P. erythroseptica used in field trials 

Seven P. erythroseptica isolates were collected: four were from a UMaine 

collection (Fitzpatrick-Peabody and Lambert 2011) and three were isolated from 

diseased tubers found in uninoculated fields at Aroostook Farm, Presque Isle, 

Maine. The pathogens were isolated from potato tubers showing pink rot 

symptoms. Pieces of tuber tissue were cut and surface-sterilized in 75% ethanol 

for 30s, and then soaked in 0.6% sodium hypochlorite for 5 min to 10 min 

(depending on the necrotic level of tuber tissue). After being rinsed three times in 

sterile distilled water, three tuber pieces were dried on a sterile filter paper and 

placed on a 1.5% water agar (15 g of agar powder: 1000 ml of water) plate. The 

pathogens isolated from the same tuber were considered to be different copies of 

the same isolate. All the isolates were identified through PCR and Sanger 

sequencing. DNAs were extracted and amplified with ITS1/ITS4 primers (White 

et al. 1990). The amplicons were sequenced and compared with P. 

erythroseptica sequences in NCBI database (Wheeler et al. 2007). The similarity 

was above 99%. Three isolates from this collection (two mefenoxam-sensitive 

isolates and one mefenoxam-resistant isolate) were used in field inoculum 

preparation (See Chapter 2). 
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Preparation of P. erythroseptica inoculum and field inoculations 

Using a modified method based on Erwin’s (Erwin and Ribeiro 1996), 

culture bags were made with 21" x10" x 5" mushroom spawn bags (Out Grow) 

containing 6 L of vermiculite (medium size) and 2.1 L of V8 broth (consisting of 

0.6 L of V8 juice, 1.5 L of water and 7.5 g of calcium carbonate). The bags were 

autoclaved twice in 48 hours with a liquid 45min cycle (Amsco Lab 250 laboratory 

steam sterilizer). Cultures of P. erythroseptica were transferred to the culture 

bags and incubated at room temperature. During the inoculum growth stage, the 

moisture in the bags were monitored and adjusted to be optimum to P. 

erythroseptica. In the meantime, the mycelial growth of field inoculum was 

examined weekly. The concentration of oospores was monitored in late stages 

(P. erythroseptica maturing stage). The culture bags were shaken periodically, to 

distribute nutrients and oxygen evenly and make them available, thus producing 

better mycelia extension and oospore growth. The vermiculite-based inoculum 

was used in field trials after four to six weeks of incubation. 

Experimental design of field trials and plot maintenance 

Two adjacent fields (46°39’N, 68°01’W), designated as A and B, were 

assigned at Aroostook Farm, Presque Isle, Maine. Each field had 48 rows with 

104 feet in length. Fertilizer (14-14-14 NPK, Cavendish) at 1,110 lb/a and 

insecticide (Admire, Bayer) at 8.7 oz/a were applied in furrow at planting. 

Inoculum of P. erythroseptica was evenly spread in the furrow before planting. 

Four rows in the middle of each plot were inoculated, with 2.25 L of vermiculite 
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inoculum per row. The furrows were covered soon after planting to ensure the 

survival of pathogens. 

A randomized complete block design was used in this experiment. Each 

field contained 4 blocks, with an 8-foot gap between each. In each block, there 

were 8 plots, which contained six 20-feet rows. The row spacing was 3 feet, and 

the plant spacing was 1 foot. Eight treatments: alfalfa (Medicago sativa), barley 

(Hordeum vulgare) undersown with ryegrass (Lolium multiflorum), canola 

(Brassica napus), red clover (Trifolium pratense), onion or pumpkin (Allium 

cepa/Cucurbita pepo), sweet corn (Zea mays), Potato (Solanum tuberosum) and 

oats (Avena sativa) were randomly assigned to the plots in each block. Potato 

(Solanum tuberosum, cv. Russet Norkotah) was used as control. 

The field A was arranged with the following sequences of crops: potato in 

2014, rotation crops [alfalfa, barley (undersown with ryegrass), canola, clover, 

onion, sweet corn, oats and potato] in 2015, and potato in 2016. Field B was in 

rotation crops [alfalfa, barley/ryegrass, canola, clover, pumpkin (replacing onion), 

sweet corn, oats and potato] in 2014, and potato in 2015. During the growing 

seasons, weather conditions in Presque Isle were monitored, and hourly weather 

update were acquired at the website 

(http://www.umaine.edu/umext/potatoprogram/Current_Vantage_Pro.htm). 

Weeds were removed weekly, and late blight were controlled by fungicide Bravo 

ZN (1.5 qt/a, Syngenta, Greensboro, NC 27419) as described in Chapter 2.  

http://www.umaine.edu/umext/potatoprogram/Current_Vantage_Pro.htm
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Plant emergence  

In 2015, potato plant emergence was recorded six weeks after planting. 

Emerged plants of the two middle rows of each plot were counted. Plant 

emergence was calculated based on the percentage of emerged seeds out of 

total number of seed tubers in that row (Eq.2.1.). Plant emergence was not 

recorded in 2016. 

Assessment of pink rot disease and potato tuber yield  

At harvest, tubers from the middle 2 rows were collected using a one-row digger. 

The tubers were cleaned with washing equipment and weighed for yield. In 2015, 

all the tubers were weighed to collect yield data, but only one row was used for 

disease evaluation. In 2016, only one middle row was for data collection. Pink rot 

incidence was the percentage of infected tubers in harvested tubers. Pink rot 

severity was rated by reading the approximate coverage of the visible symptom 

(pink staining) on the cut surface of tubers, based on a scale of 0 = no 

symptoms, 1 = < 2.5% of surface with symptoms, 2 = 2.5 – 10% surface with 

symptoms, 3 => 10 – 25% surface with symptoms, 4 => 25–50% surface with 

symptoms and 5 => 50% surface with symptoms of susceptibility. Disease index 

was calculated using Eq.2.2. (Chapter 2) to express disease severity. Harvested 

tubers were also examined for other soilborne diseases, including common scab 

and black scurf.  

Data analysis 

The yield and disease severity data were analyzed using JMP 10. (SAS 

Institute, Cary, North Carolina). The means values were compared using 
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nonparametric test with Wilcoxon each pair comparison, or ANOVA with Fisher’s 

LSD, at α = 0.05. 

Results 

Plant emergence  

In 2015, Field A was under rotation and Field B was covered by potatoes. 

Four plots treated with potatoes in Field A were examined for emergence. The 

average of emergence was 87.50 (%), and the standard deviation was 4.33. 

Plant emergence data were collected from all the plots of Field B. ANOVA 

showed that rotation crops did not affect the emergence of potato plants in Field 

B (Table 4.1). Emergence data of rotation trails in 2016 were not recorded.  
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Table 4.1. Potato plant emergence in Field B, 2015. 

Treatment Emergence of potato (%)a 

Alfalfa 80.6 a 

Barley & Ryegrass 80.6 a 

Potato 80.6 a 

Oats 80.0 a 

Clover 79.4 a 

Corn 78.8 a 

Onion 76.3 a 

Canola 73.8 a 
a Means values followed by the same letters are not significantly different (α = 
0.05). 

 

Assessment of pink rot disease and potato tuber yield  

In 2015, potato tubers in middle two rows in each plot were harvested 

from Field B. Tuber yield, the disease incidence and severity of pink rot and other 

soilborne diseases were assessed. Data analysis showed that alfalfa significantly 

increased tuber yield in comparison with prior rotation with potatoes, although 

none of the rotation crops had a significant effect on pink rot incidence or severity 

(Table 4.2.). Black scurf and common scab were found on harvested tubers. 

Statistical analysis indicated Alfalfa significantly increased the disease incidence 

and severity of common scab (Table 4.3.). The rotation crops did not have a 

significant effect on black scurf disease. 
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Table 4.2. Potato tuber yield, pink rot severity and pink rot incidence (after 
rotation) in Field B, 2015. 

Treatment 

Total yield  

(lb/plot) 

Pink rot  

incidence (%) 

 

Pink rot 

severity (%) 

Alfalfa 38.07 aa 4.71 a 4.75 a 

Clover 35.98 ab 2.21 a 2.25 a 

Onion 35.13 ab 2.74 a 2.75 a 

Corn 31.44 ab 2.72 a 2.75 a 

Canola 27.12 ab 5.09 a 5.25 a 

Barley & 
Ryegrass 27.03 ab 1.21 a 1.25 a 

Oats 26.46 ab 0.35 a 0.25 a 

Potato 24.00 b 5.51 a 5.75 a 
a Mean values not connected by the same letter are significantly different (α = 
0.05). 
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Table 4.3. Incidence and severity of other soilborne diseases on potato (after 
rotation) in Field B, 2015. 

Treatment 

Black Scurf 

incidence (%) 

Black Scurf 

severity 
(%) 

Common 
Scab 

incidence (%) 

 

Common Scab 

severity (%) 

Alfalfa 18.89 aa 10.88 a 78.76 a 40.15 a 

Clover 15.57 a 10.42 a 50.37 b 26.12 b 

Onion 19.07 a 11.89 a 50.06 b 23.34 b 

Corn 15.66 a 9.59 a 48.36 b 21.25 b 

Canola 17.69 a 9.55 a 48.36 b 24.42 b 

Barley & Ryegrass 23.05 a 14.02 a 53.16 b 25.25 b 

Oats 21.45 a 11.04 a 46.77 b 19.41 b 

Potato 30.87 a 19.96 a 52.83 b 26.38 b 
a Mean values not connected by the same letter are significantly different (α = 
0.05). 
 

 

Data analysis showed that canola, pumpkin and alfalfa significantly 

increased tuber yield in comparison with potatoes, although none of the rotation 

crops had a significant effect on pink rot incidence or severity (Table 4.4). Black 

scurf and common scab were found on harvested tubers. Statistical analysis 

showed that the rotation crops did not have any significant effects on black scurf 

or common scab disease (Table 4.5.). 
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Table 4.4. Potato tuber yield, pink rot severity and pink rot incidence (after 
rotation) in Field A, 2016. 

Treatment 

Total yield  

(lb/plot) 

Pink rot  

incidence (%) 

 

Pink rot 

severity (%) 

Canola 17.88 aa 6.31 a 5.66 a 

Pumpkin 17.33 a 9.42 a 7.72 a 

Alfalfa 17.03 a 10.90 a 9.64 a 

Oats 15.98 ab 5.67 a 5.23 a 

Barley & Ryegrass 15.91 ab 7.32 a 6.18 a 

Corn 15.08 ab 7.35 a 7.25 a 

Clover 13.95 ab 4.23 a 4.23 a 

Potato 10.77 b 10.36 a 10.35 a 
a Mean values not connected by the same letter are significantly different (α = 
0.05). 
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Table 4.5. Incidence and severity of other soilborne diseases on potato (after 
rotation) in Field A, 2016. 

Treatment 

Black scurf 

incidence (%) 

 

Black scurf 

severity (%) 

Common scab 

incidence (%) 

 

Common scab 

Severity (%) 

Alfalfa 30.44 aa 12.46 a 68.47 a 29.05 a 

Clover 52.93 a 20.25 a 60.22 a 26.12 a 

Pumpkin 38.18 a 17.93 a 61.70 a 29.00 a 

Corn 52.30 a 22.11 a 66.49 a 21.25 a 

Canola 43.38 a 13.32 a 63.30 a 25.73 a 

Barley & 
Ryegrass 43.25 a 22.07 a  63.89 a 28.69 a 

Oats 50.02 a 22.85 a 56.74 a 23.26 a 

Potato 42.31 a 25.91 a 64.93 a 29.63 a 
a Mean values not connected by the same letter are significantly different (α = 
0.05). 

 

Discussion & Conclusions  

Planting alfalfa prior to potato significantly increased potato tuber yield in 

the subsequent season. Rotating canola and pumpkin with potatoes significantly 

increased potato tuber yield in Field A. In Field B (2015), alfalfa significantly 

increased potato common scab, but it did not have significant effects on pink rot 

or black scurf. In Field A, there was no treatment effects on pink rot, black scurf 

or common scab.  

The results in this study have demonstrated that rotating potato with 

alfalfa, pumpkin and canola significantly increased tuber yield. Unfortunately, 

pink rot was not significantly affected by any of the rotation crops. Many studies 
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showed that the effects of 2-year rotation on potato diseases, tuber quality and 

tuber yield are limited (Johnson and Cummings 2015;  Larkin et al. 2010;  Myers 

et al. 2008;  Peters et al. 2005a). Longer rotations are highly recommended by 

researchers to achieve better disease management and higher revenue 

(Johnson and Cummings 2015;  Larkin et al. 2010;  Myers et al. 2008). In this 

study, none of tested rotation crops suppressed potato soilborne diseases, which 

was similar with the results from other potato rotation studies. However, it was 

possible that some rotation crop did suppress soilborne pathogens or change the 

soil microbial pattern in a beneficial way, although the change was not sufficient 

to cause a significant reduction in soilborne disease severity. It is anticipated that 

the result of Illumina sequencing data analysis could reveal the changes of soil 

microbial patterns in different rotation treatment (see Appendix C).  

Alfalfa in both two-year rotation (potato-alfalfa-potato and alfalfa-potato) 

fields significantly increased potato tuber yield. Alfalfa belongs to the legume 

family, and it is known for its symbiotic relationship with nitrogen-fixing bacteria 

(Bruulsema and Christie 1987;  Hesterman et al. 1986;  MacKenzie et al. 1997;  

Voss and Shrader 1984). Therefore, the increase of tuber yield could be 

associated with the increases nitrogen fixation benefits brought by alfalfa and 

nitrogen-fixing bacteria. This hypothesis could be tested by analyzing the Illumina 

sequencing data of soil microbial DNAs collected from different treatments. 

Canola improved tuber yield in Field A (2016), but this benefit was not 

found in Field B (2015). Therefore, the effect of canola was inconclusive. Onion 

was used in Field B (2014). However, the establishment and growth of onion 
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plants was not good due to the dry weather. Therefore, pumpkin was used in 

Field A (2015). Although the result in Field A (2016) showed that pumpkin 

significantly increased potato tuber yield, a repeated experiment is required to 

confirm the effect of pumpkin on potato tuber yield.  
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APPENDIX A. RECIPES OF MEDIUM USED IN ZOOSPORE REPRODUCTION 

 

10% V8 agar:  

20 ml V8 juice, 0.25 g Calcium Carbonate, 12 g agar, 980 ml water. 

Lima bean broth (LBB):  

Add 30 g lima bean seeds in a 2-L flask filled with 600 ml water. After 

autoclaving, filter the broth through 4 layers of cheese cloth to remove the 

bean residuals. Then add up to 1 L with sterile water and autoclaved 

again.  

10% soil extraction:  

Add 100 g soil into a 2-L flask filled with 1 L water. Stir for 30 min and 

store at 23°C overnight. Transfer the supernatant to a clean 1-L flask, and 

add up to 1 L with sterile water and autoclaved again. 
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APPENDIX B.  PHYTOPHTHORA ERYTHROSEPTICA ISOLATES  

 

Table B.1 Isolates of Phytophthora erythroseptica used in this study 

Isolate N.O. Sensitivity to mefenoxam Source 
13A01 Sensitive H. Jiang 
13A02 Sensitive H. Jiang 

13A03 Sensitive H. Jiang 

13A04 Resistant H. Jiang 

13A05 Resistant H. Jiang 

13A06 Sensitive H. Jiang 

13A07 Resistant H. Jiang 

13A08 Resistant H. Jiang 

13A09 Sensitive H. Jiang 

13A10 Resistant H. Jiang 

13A12 Resistant H. Jiang 

13A13 Resistant H. Jiang 

13A14 N/A  H. Jiang 

13A39 Resistant W. Mu 
13A40 Resistant W. Mu 
14B71 N/A  X.Y. Zhang 
14B72 N/A  X.Y. Zhang 
16A01 Sensitive D. Lambert 
16A02 Sensitive D. Lambert 

16A03 Sensitive D. Lambert 

16A04 Sensitive D. Lambert 

16A05 Sensitive D. Lambert 

16A06 Sensitive D. Lambert 

16A07 Sensitive D. Lambert 

16A08 Sensitive D. Lambert 

16A09 Resistant D. Lambert 

16A10 Resistant D. Lambert 

16A11 Resistant D. Lambert 

16A12 Sensitive X. M. Zhang 
16A13 Sensitive X. M. Zhang 

16A14 Sensitive X. M. Zhang 

16A15 N/A  X. M. Zhang 

16A16 N/A  X. M. Zhang 

16A17 N/A  X. M. Zhang 
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APPENDIX C.  EFFECTS OF CROP ROTATION ON SOIL MICROBIAL 

COMMUNITIES 

 

Introduction 

Since soil microbiota responds quickly to environmental changes (Meriles 

2009), it is hypothesized that the effects of rotation crops on the characteristics 

and structure of soil microbial communities can be revealed by comparing soil 

microbial community structure and population at different stages: before and after 

rotation. Soil microbial communities, primarily bacterial communities, have been 

analyzed using metagenomics through next generation sequencing by analyzing 

the amplicons from critical regions in fungal and bacterial genome (Caporaso et 

al. 2012;  Rosenzweig et al. 2012;  Sugiyama et al. 2010;  Sul 2009). The 

bacterial, fungal and oomycete communities in soil have already been 

successfully analyzed on the Illumina platform (Kozich et al. 2013;  Reed and 

Mazzola 2015;  Sapkota and Nicolaisen 2015;  Schmidt et al. 2013). Therefore, 

the soil microbial communities in potato fields can be investigated using Illumina 

sequencing.  

The development of integrated pink rot management requires the 

understanding of pink rot disease associated soil microbial community. It is 

necessary to investigate the impact of different crops on pink rot disease and the 

influence of crops on soil microbes to shed light on crop rotation and biological 

controls in potato pink rot management. The emergence and development of 

next generation sequencing (NGS) enables researchers to fulfill the investigation 
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on soil microbial community associated with pink rot. The objective of this study 

was to investigate the soil microbial patterns associated with different rotation 

crops and different levels of pink rot disease. 

 

Materials & Methods 

Soil sampling and DNA extraction 

During each season, soil was sampled near the roots of plants at planting 

and at harvest, using the methods described by Larkin et al (2010). Five soil 

cores were taken using a soil probe from the middle 2 rows in each plot, with the 

depth of 8 to 15 cm and the diameter of 2 cm. At sampling, five soil cores from 

the same plot were mixed and placed in labelled plastic bags. Rocks and Large 

organic debris were removed using a 3.35-mm sieve. The samples were shipped 

with cold packs and processed for DNA extraction (FastDNA Kit for soil, MP 

Biomedicals) immediately. Extra soil samples were stored at -80 °C for 

references. Sample DNA was extracted from a 0.5-g sample from each plastic 

bag, and then quantified by a Nanodrop spectrophotometer 2000c (Thermo 

Scientific, Wilmington, Delaware). DNA samples were stored at -20 °C before 

sequencing. 

Illumina sequencing 

To investigate the entire soil microbial communities in soil with different 

treatments (rotation crops), Illumina Miseq was employed in this research. 

Samples associated with onion, corn and pumpkin were excluded due to lack of 

confidence (poor crop coverage). Among these samples, 37 were drawn from 
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Field A: 5 (3 at planting and 2 at harvest) drawn in 2014 for background 

references, and 32 (8 at planting and 24 at harvest) were from 2015. In total, 63 

soil samples were drawn from Field B: 15 (3 at planting and 12 at harvest) drawn 

in 2014 for background references, and 48 (24 at planting and 24 at harvest) 

were from 2015. Soil DNA samples were validated by conducting conventional 

PCR with fungal universal primers ITS1/ITS4 (Manter and Vivanco 2007) and 

bacterial universal primers fd1/rp1(Akhtar et al. 2008) and determined the best 

work concentration of each in PCR. All the DNA samples were sent to the 

Research Technology Support Facility of Michigan State University (East 

Lansing, MI) for sequencing.  

The amplicons were sequenced following Schmidt et al.’s (2013) and 

Kozich et al.’s (Kozich et al. 2013) protocols to analyze soil fungal and bacterial 

communities. From each soil DNA sample two NGS metagenomic amplicon 

libraries were generated. The V4 hypervariable region (515f/806r) of the bacterial 

16S rRNA gene was amplified using complete, dual-indexed Illumina compatible 

adapters following a published protocol (Kozich et al. 2013). The second region 

targeted was the fungal internal transcribed spacer 1 (ITS1). For the ITS1 

amplicons a two-step PCR design was used; the first step PCR targets the fungal 

ITS1 region with primers ITS1F12/ITS2 (Schmidt et al. 2013), with Fluidigm CS1 

and CS2 oligomers added to their 5' ends. In the secondary PCR, dual-indexed 

Illumina compatible adapters are added using primers targeting the Fluidigm CS 

oligos at the ends of the primary PCR products. All PCR products were 

normalized using Invitrogen SequalPrep DNA Normalization plates, and products 
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recovered from the normalization plates were pooled. Separate pools were made 

for 16S-V4 and ITS1 amplicons. Each of the pools was given a final cleanup with 

AmpureXP magnetic beads and then quantified using Qubit dsDNA HS, Caliper 

LabChipGX HS DNA and Kapa Biosystems Illumina Library Quantification qPCR 

assays. The two pools were then combined in equimolar amounts for 

sequencing. 

Sequencing was done in a 2 x 250bp paired end format (PE250) using a 

Illumina MiSeq v2 flow cell and 500 cycle reagent cartridge. Custom sequencing 

and index read primers were added.  Base-calling was done by Illumina Real 

Time Analysis (RTA) v1.18.54 and output of RTA was demultiplexed and 

converted to FastQ format with Illumina Bcl2fastq v1.8.4.  

 

Sequencing Outcome 

The quality of sequencing results was high. The sequencing generated 

13,950,218 raw clusters, and 11,679,139 of them passed the filter. Quality score 

Q-30 is a prediction of the probability of an error (0.001) in base calling (Illumina 

2014). The overall percentage of bases with a quality score greater than Q30 

(error rate less than 0.001) was averaged across the entire run, and it was 

68.7%. The data analysis of sequencing results is undergoing. It is anticipated 

that Operational Taxonomic Units (OTUs) will be formed with the sequencing 

data, and OTUs will be used to compare the difference of the microbial 

community patterns (structure and composition) in the soil samples associated 

with different rotation crops.   
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