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Chapter 1

INTRODUCTION

1.1 History and Motivation

The city of Konigsberg in Prussia (present day Russia) was built such that there

were two parts of the city on either side of the river Pregel. The parts of the city,

which included two large islands, were connected to the mainland through seven

bridges. A very persistent problem was to prove or disprove whether it was

possible to traverse the city, crossing each bridge exactly once, under the condition

that one could reach the islands only through a bridge (and not a boat for

example) and that a bridge once accessed must be crossed(Figure1.1). Such a path

is called an Eulerian walk, as we will see later . It was the genius of Leonhard

Figure 1.1. The Konigsberg Bridges

Euler who settled this problem in 1736 by proving that it was impossible to do

such a traverse, and that work is considered to have given birth to the branches of

mathematics known as graph theory and topology. We will see later how this

problem is concerned with walks on graphs and Eulerian circuits, important topics

in modern-day graph theory
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The Utility Problem asks whether it is possible in a plane to connect three houses

to three supply stations (like gas, water and electricity) without using a third

dimension and without the lines overlapping, as suggested in Figure 1.2. Unlike

the Konigsberg bridges problem, the origin of the Utility problem is not known,

although it has been around for a long time. Yet, quite similar to the Konigsberg

Bridges Problem, it plays an important role in graph theory. This problem can be

Figure 1.2. The utility problem

represented by what is known as the bi-partite graph K3,3 (Figure 1.3) and the

question is whether K3,3 is planar (i.e , whether it can be located in the plane in

such a way that the edges do not cross, unlike the case in Figure 1.3). With basic

Figure 1.3. The bi - partite graph K3,3

tools from graph theory and topology it can be proven that this graph is not

planar. Hence, the utility layout cannot be done in the desired way. As it often

happens in mathematics, this problem gives rise to more general questions such as

"When is a graph planar?" and "If a graph is not planar, on what surface can such

2



a layout be done?". It turns out that the surface on which the utility problem can

be done is the torus (the surface of the familiar doughnut) as shown in Figure 1.4.

Figure 1.4. The utilities layout on a torus

With the above ideas in mind, this thesis is an exploration of the embeddings of a

class of graphs, called hypercube graphs, on orientable surfaces. We will make all

of these notions precise in what follows. Furthermore we will address ways of

representing embeddings and how a graph can be maximally or minimally

embedded on a surface. Before delving into these topics, however, we need to

de�ne some of the recurrent terms that will be used throughout, and we also need

to make clear any conventions that will be followed.

1.2 Graph Theory

In this section we introduce the basic concepts of graph theory. The text Graph

Theory [6] is a reference for the topics and results that we present in this section.

A graph is a set of vertices that are connected to each other by edges. Figure

1.5 illustrates the graph K5, a graph known as the complete graph on �ve vertices

(complete because each vertex is connected to every other vertex by a single edge).

The degree of a vertex in a graph is de�ned as the number of edges that are

incident on it. If there is a loop, it is counted twice; i.e if an edge connects a vertex

3



Figure 1.5. The complete graph K5 with labeled edges and vertex

to itself, it is counted twice in the degree of the vertex. Figure 1.6 shows a graph

with the degree of each vertex labeled.

If an edge in a graph connects distinct vertices, then we can assign a direction to

the edge by indicating the vertices in order (i.e, a start vertex and an end vertex).

A directed edge is an edge along with a direction assigned to it. In a graph, each

Figure 1.6. A Graph showing the degree of it's vertices

edge that is not a loop, has two directed edges associated to it.

A regular graph is a graph where every vertex has the same degree. If a graph

has vertices of di�erent degree, it is called a non-regular graph. In Figure 1.7, we

have a regular graph with each vertex of degree 3. Adding a vertex to this graph

at the center, connected to �ve other vertices as shown, makes it a non-regular

graph because the new vertex has degree 5, di�erent from the degree of all the

other vertices. A simple graph is an graph containing no loops and no cases

4



Figure 1.7. Examples of a regular graph and a non-regular graph

where two or more edges connect the same pair of vertices. In Figure 1.8 and

Figure 1.9 , we can see an example of a graph that is simple and an example of a

graph that is not, respectively.

Figure 1.8. Example of a simple graph

Figure 1.9. A graph that is not simple

5



A path in a graph is sequence of vertices and edges (v0, e0, v1, e1, ...vn−1, en−1, vn)

such that for each j = 0, 1, 2, ...n− 1 , edge ej connects vertices vj and vj+1. A

cycle is a closed path, a path that ends where it begins. In the graph on the left

in Figure 1.10, 1→ 5→ 8→ 6 is a path, and in the graph on the right

1→ 3→ 2→ 4→ 1 is a path that is a cycle. A path that visits every edge in a

Figure 1.10. Examples of Paths and a Cycle

graph exactly once is called an Eulerian path, and if the path is closed, then it is

called a Eulerian circuit. In Figure 1.11 we have an Eulerian path that goes

from vertex to vertex as follows :

1→ 2→ 3→ 4→ 1→ 5→ 2→ 4→ 5.

Figure 1.11. Example of an Eulerian Path

There are well known necessary and su�cient conditions for a graph to have an

Eulerian path or an Eulerian circuit :

6



Theorem 1. A graph has an Eulerian Circuit if and only if every vertex has even

degree. A graph has an Eulerian path, but not an Eulerian circuit if exactly two

vertices have an odd degree. In this case, the path begins and ends at these vertices.

It is interesting to note that in the Konigsburg Bridges Problem, if we treat each

region as a vertex and each bridge as an edge, we obtain the graph illustrated in

Figure 1.12. The problem now reduces to �nding an Eulerian path on this graph.

By Theorem 1, it follows that an Eulerian path does not exist because more than

two vertices have odd degree. Thus, there is no walk through Konigsberg crossing

each bridge exactly once.

Figure 1.12. The Konigsburg Bridges Problem modeled by a graph

A hypercube graph Qn is de�ned as the vertices and edges in an n - dimensional

cube. The hypercube graph Qn is a regular graph that has 2n vertices, each with

degree n, and has n2n−1 edges. The vertices in Qn can be expressed by binary

strings of length n where connected vertices di�er in their binary strings by exactly

one bit. In Figure 1.13, we show Q1, Q2 and Q3, the hypercube graphs in one, two

and three dimensions, respectively, along with the binary strings that label the

vertices.

7



Figure 1.13. Hypercube graphs for n = 1, 2, 3

Since Hypercube graphs are simple graphs, for the remainder of the thesis we

restrict our attention to simple graphs and assume that all graphs we consider are

simple.

1.3 Topology Background

The theory of topological spaces and continuous functions is the main setting for

the work in this thesis.The text Introduction to Topology: Pure and Applied [5] is

a reference for the topology topics and results presented throughout this thesis.

The main notion of equivalence in topology is homeomorphism, a continuous

bijective function between topological spaces f : X → Y , having a continuous

inverse. Two spaces are said to be topologically equivalent or homeomorphic if

there is a homeomorphism between them.

An embedding from a topological space A to a topological space X is a

continuous injective function f : A→ X that is a homeomorphism onto it's image

f(A) ⊂ X. We can think of an embedding as placing a copy of space A within

space X. An illustration of an embedding of the cube on a sphere is shown in

Figure 1.14.
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Figure 1.14. Example of an embedding of the cube on a sphere

The open disk in the plane plays an important role in what is to come. It is the

set {(x, y)|x2 + y2 < 1}.

The primary purpose of this paper is to investigate embeddings of the hypercube

graphs on what are known as compact orientable surfaces. So, we now introduce

some background on compact orientable surfaces. We will be skipping the detailed

formal de�nitions, but will present important characterizing properties below.

Two important aspects of surfaces are that they are connected and locally

homeomorphic to R2. That is, if you are on a surface, locally it looks like you are

on a plane.

The compact orientable surfaces are the sphere and the n-hole tori, the latter of

which can be thought of as surfaces of doughnuts with n holes, as illustrated in

Figure 1.15. The genus of a compact orientable surface is essentially the number

Figure 1.15. A two hole torus
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of holes in it. Every compact orientable surface of genus n ≥ 1 can be represented

as a 4n-gon with edges glued in pairs, as illustrated in Figure 1.16 and Figure 1.17.

An important question that arises is whether given a collection of polygons whose

Figure 1.16. Folding a square into a torus

Figure 1.17. Folding an octagon into a two hole torus

edges altogether are glued in pairs, does a compact orientable surface always

result?

It turns out that it does not necessarily happen. But, if the gluing is orientation

preserving (a property we describe below), then compact orientable surfaces result.

Suppose we have a collection of polygons whose edges we glue in pairs (as shown

in Figure 1.18). We can orient each polygon either clockwise or counterclockwise.

If there is a choice of orientation on each polygon such that, considering each glued

pair of edges, one edge's gluing direction is in the direction of orientation on its
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Figure 1.18. Example for orientation preserving gluing

polygon and the other edge's gluing direction is opposite the direction of

orientation, then the polygon gluing is called orientation preserving.

Theorem 2. A collection of polygons whose edges are glued in pairs by an

orientation preserving gluing results in a collection of compact orientable surface.

In Figure 1.18 we can see an example of when a gluing is orientation preserving.

An important question for this thesis is, When we have an orientation preserving

gluing of polygons that result in a single compact orientable surface, how do we

determine the genus of the resulting surface?

It turns out, we can �nd that out using what is known as Euler's formula. Note

that with a polygon gluing that results in a single compact orientable surface, each

polygon interior results in a face on the compact orientable surface, each glued

pair of edges results in a single edge, and the polygon vertices result in some

number of vertices on the surface. We denote the number of faces,edges, and

vertices on the resulting compact orientable surface by F, E, and V, respectively.

Theorem 3. If an orientation preserving gluing results in a single compact

orientable surface, then V − E + F = 2− 2g , where g is the genus of the compact

orientable surface.

When we consider regular polyhedra in three dimensions, since they are

homeomorphic to the sphere, they have a genus of 0, and we get the well known
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relation V − E + F = 2. An example is shown in Figure 1.19, where the convex

icosahedron has V = 12 , E = 30 and F = 20.

Figure 1.19. A convex icosahedron
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Chapter 2

GRAPH EMBEDDING INTO SURFACES

In this chapter we introduce the main concepts and results related to graph

embeddings and their representations ia rotation systems. The following are

references for the material in sections 2.1-2.3 : [4],[2],[3]. In section 2.4 we

introduce our �rst main result. It details how rotation system changes impact the

associated embedding. It will be important to us in Chapter 3 when we investigate

particular embeddings of hypercube graphs.

2.1 Graph embedding and Rotation systems

Given a graph G and a surface S, a graph embedding is an embedding

f : G→ S. Informally a graph embedding is a representation of the graph G on

the surface such that two edges intersect only in vertices they have in common. A

graph embedding is called a 2-cell embedding if every component of the

complement of the embedded graph in the surface is homeomorphic to the open

2-disk.

For example we have the embedding of K5 on a Torus, as shown in Figure 2.1

Figure 2.1. Embedding of K5 on a Torus
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Once we look at a few embeddings, we realize that it is cumbersome to represent

them pictorially each time we want to talk about them. Thankfully, there is an

easier way of representing embeddings using rotation systems. A rotation

system for a graph G is an ordering of the edges around every vertex. For

example, consider the embedding of Q3 on a sphere shown in Figure 2.2. The

Figure 2.2. Q3 on a sphere : Front and Rear view

information about this graph embedding can be stored at each vertex as an

ordering of the edges that appear around it when traversing it in a

counterclockwise fashion. For example, around 0, the ordering of the edges here in

counterclockwise order is 01, 04, 02. For simplicity, instead of representing the

rotation system as a list of edges, we represent it using the vertex at the other end

of the edge. We can do this because we are working with simple graphs and there

are no repeated edges. For example, the rotation system around vertex 0 in Figure

2.2 is represented as (0 : 1, 4, 2). If this is done around each vertex, we obtain the

rotation system as follows :

(0 : 1, 4, 2)

(1 : 0, 3, 5)

(2 : 3, 0, 6)

(3 : 2, 1, 7)
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(4 : 5, 6, 0)

(5 : 4, 7, 1)

(6 : 7, 4, 2)

(7 : 6, 5, 3)

Consider the rotation system about 3 - (3 : 2, 1, 7). The entry that follows 1 is 7 -

in terms of embedding this translates to the fact that around vertex 3, the edge

that appears next, counterclockwise, after the edge 31 is 37.

Thus, with this scheme, given a graph embedding, we can write an associated

rotation system. The natural question to ask here is if the reverse process can be

done as well. Given a rotation system, can we construct an embedding from it?

It turns out that with straightforward assumptions, the answer to this question is

yes. We address this in the next section.

2.2 Boundary Walks

As indicated previously, given a graph embedding, there is an associated rotation

system. Now we show that when we have a rotation system, we also have an

associated embedding. From the rotation system, we can create cyclic sequences of

edges traversed around the boundary of a polygon that by itself, or with other

polygons, will glue to provide a surface and an embedding of the graph. The

boundary walk algorithm described below is the process by which we create these

sequences of edges.

De�nition 1. Given a rotation system and a directed edge vw, the succeeding

edge to vw is the directed edge wv′ such that wv′ immediately follows wv in the

ordering in the rotation system at vertex w. The preceding edge to vw is the
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directed edge w′v such that vw′ precedes vw in the rotation system at vertex v.

Note that if there is only one edge incident to vertex w then wv is the succeeding

edge to vw, and if there is only one edge incident to vertex v, then wv is the

preceding edge to vw.

Boundary Walk Algorithm : Pick a directed edge e0 and form a walk

e0e1e2...en by letting ei+1 be the succeeding edge to ei for each i. End the walk at

en where the succeeding edge to en is e0 (we explain below why this is always

possible). The resulting walk is called a boundary walk associated to the

rotation system. If all the directed edges have appeared in the boundary walks

constructed, the process ends. Otherwise pick a directed edge that has not

appeared and use it as the starting edge in another boundary walk. The set of

boundary walks constructed by the boundary walk algorithm is called the

boundary walk collection associated with the rotation system.

The idea behind the boundary walk algorithm is that we look at it as if we are

walking along the edges in the boundary of a polygon whose interior is a

component of the complement of the graph in a surface embedding, and we are

walking in such a way that the component lies to our right. As we approach a

vertex along an edge, we need to know which edge to take next to continue the

walk. As shown in Figure 2.3, the departure edge should be the next edge after the

approach edge in the ordering of the edges around the vertex in the rotation

system, that is the approach edge's succeeding edge.

There are a number of important questions and results to be addressed regarding

the boundary walk algorithm, but �rst we consider an example. Here we consider

Q3 with the rotation system :
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Figure 2.3. Boundary Walk

(0 : 1, 2, 4)

(1 : 0, 3, 5)

(2 : 3, 0, 6)

(3 : 2, 1, 7)

(4 : 5, 6, 0)

(5 : 4, 7, 1)

(6 : 7, 4, 2)

(7 : 6, 5, 3)

If we apply the boundary walk algorithm to the rotation system above, starting

with edge 01, we obtain the following walk :

0− 1− 3− 2− 6− 4− 0

Here we are listing the vertices visited in order; the corresponding directed edges

are 01, 13, 32, etc. Since 01 is the succeeding edge to 40, the walk stopped at 40.

We continue to construct boundary walks choosing the starting edge to be a

directed edge that has not been traversed yet. We get the following additional

walks :

0− 2− 3− 7− 5− 1− 0− 2
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0− 4− 5− 7− 6− 2− 0− 4

1− 0− 2− 3− 7− 5− 1− 0

Each of these boundary walks can be represented as a hexagon with directed

edges, as illustrated in Figure 2.4. Note that, as expected, every edge appears

exactly twice, once in each direction. Hence the sum of the walk lengths is 24

where there are four components, each of size six. The four hexagons in Figure 2.4

Figure 2.4. The boundary walks

can be glued according to the labeled edges to obtain an embedding of Q3 on a

torus, as illustrated in Figure 2.5. In Figure 2.6 we show the correspondence of the

interior of the polygons with the regions in the torus with the embedding. To

Figure 2.5. Top and bottom view of embedding of Q3 on a torus

verify that this is indeed the surface it maps into, we can look at Figure 2.6, where
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we have marked each of the boundary walk on the hexagons and their

corresponding representation on the torus. We get a mapping of each region to the

torus. Note that the embedding that results from the boundary walk algorithm is

a 2-cell embedding since the components of the complement of the graph in the

embedding surface is made up of the interiors of the polygons and each is

homeomorphic to an open disk.

Figure 2.6. Mapping of regions on Q3

Next, via Theorem 4-6 we address some natural questions that arise regarding the

Boundary Walk Algorithm.

Theorem 4. In constructing a boundary walk as in the boundary walk algorithm,

at some point an edge is chosen whose succeeding edge is the initial directed edge

(and therefore each boundary walk ends as indicated).

Proof. The boundary walk will end because there are a �nite number of edges and

after some iterations of the boundary walk algorithm, the edges will start

repeating. Since, the rotation system is �xed, if a particular directed edge repeats
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then so would its preceding edge, unless the directed edge is the initial directed

edge in the boundary walk. Thus, the initial directed edge is the �rst to repeat.

Theorem 5. Each directed edge appears exactly once in a boundary walk

collection.

Proof. Let a directed edge xy appear in two di�erent boundary walks and let the

succeeding edges in each of these boundary walks be yz and yw. If z 6= w, we have

an ambiguity in the rotation system around y. Hence, z = w. Similarly, in both

boundary walks, the preceding edge to xy must be the same and it follows that the

two boundary walks are the same.

Given a rotation system and corresponding boundary walk collection, we can

associate to each boundary walk a polygon whose edges are labeled in clockwise

order with the directed edges in the boundary walk. The result can be seen as a

collection of polygons whose edges are glued together in pairs (since each directed

edge appears exactly once in the boundary walk collection). We refer to the result

of the polygon gluing as the rotation system polygon gluing.

Theorem 6. Assume we have a connected simple graph G and a given rotation

system for G. The rotation system polygon gluing results in a compact orientable

surface of genus g = 1− V−E+B
2

, where E is the number of edges in the graph, V is

the number of vertices in the graph and B is the number of boundary walks in the

boundary walk collection. Furthermore, the polygon edges and vertices glue together

so that the result is 2-cell embedding of G in the surface.

Proof. We provide a sketch of the proof here. For further details, see the references

mentioned previously. Because the graph is connected, it follows that the polygon

gluing results in a single compact surface.
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It easily follows that a rotation system polygon gluing is an orientation preserving

gluing. By Theorem 2, the resulting surface is a compact orientable surface.

Since the sides and the vertices of the polygon correspond to the edges and the

vertices of the graph, and since the polygons glue together with the appropriate

incidence relation between vertices and edges, the graph embedding obtained is an

embedding of G.

The interior of each polygon is homeomorphic to an open 2-cell, implying that the

embedding obtained by gluing together the polygons is a 2-cell embedding.

Theorem 3 implies that V − E +B = 2− 2g and therefore the genus of the

resulting surface is g = 1− V−E+B
2

.

De�nition 2. The rotation system de�ned embedding of G is the embedding

that is obtained from a rotation system using the boundary walk algorithm.

2.3 Maximal and Minimal genus of graph embeddings

We have seen that representing embeddings as rotation systems is much easier

than making drawings of them.This raises a number of questions about the

relationship between the rotation systems and the embedding -

• How does a change in the rotation system a�ect the embedding?

• Can we control how the embedding of the graph changes by making speci�c

changes in the rotation system?

For example, let us take the rotation system on Q3 that we de�ned previously and

reverse the ordering of the edges around vertex 0. We change the rotation system

ordering from (1, 2, 4) to (1, 4, 2) and the new rotation system is now
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(0 : 1, 4, 2)

(1 : 0, 3, 5)

(2 : 3, 0, 6)

(3 : 2, 1, 7)

(4 : 5, 6, 0)

(5 : 4, 7, 1)

(6 : 7, 4, 2)

(7 : 6, 5, 3)

Let us use the boundary walk algorithm to �nd the boundary walks of this

embedding. Since the entry around 0 has changed, when we start the walk with

0− 1, and reach vertex 0 from 4, instead of going towards 1 and closing this

boundary walk, we now go towards 2 and continue for a while before this

boundary walk closes up. As a result, we now get only two boundary walks,

instead of the four that we previously had. These boundary walks are :

0− 1− 3− 7− 5− 4− 6− 2− 3− 1− 5− 7− 6− 4− 0− 2− 6− 7− 3− 2, and

1− 0− 4− 5

This means we have two polygons, to be glued for the embedding, and one is a

20-gon as represented in Figure 2.7. The e�ect of this seemingly minor change is

Figure 2.7. 20-gon corresponding to the walk from the modi�ed rotation system
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that now the embedding of Q3 has only two boundary walks. Hence the Euler

characteristic of the embedding surface is −2 and the embedding now is in a 2-hole

torus instead of a 1-hole torus, as shown in Figure 2.8

Figure 2.8. Top and bottom view of Q3 in a 2-hole torus after 1 switch

Notice that, so far, we have seen the same graph Q3 embedded in a sphere, a

1-hole torus, and a 2-hole torus; that is, in surfaces of genus 0, 1, and 2. Is there a

limit to how large the genus of the embedding surface can be? This brings us to

some of the speci�c kinds of embeddings that we are interested in looking at. The

maximal genus of a graph is the maximum integer n such that the graph can be

2-cell embedded in an orientable surface of genus n. The minimal genus of a

graph is the minimum integer n such that the graph can be 2-cell embedded in an

orientable surface of genus n. The minimal genus is also called the genus of the

graph. The genus and the maximal genus of a graph G are denoted by γ(G) and

γM(G), respectively.

Note that the embedding of Q3 that we have seen in surfaces of genus 0, 1, 2 are

2-cell embeddings. It follows that γ(Q3) = 0 since zero is the least value of genus
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possible. Furthermore γM(Q3) = 2 since we have a 2-cell embedding of Q3 in the

genus 2 surface, and the following theorem indicates that that is the largest genus

for a 2-cell embedding of Q3.

Theorem 7. The minimal genus of the hypercube graph Qn satis�es :

γ(Qn) ≥ (n− 4)2n−3 + 1,

and the maximal genus satis�es :

γM(Qn) ≤ (n− 2)2n−2

Proof. For a given graph embedding, the number of vertices and the number of

edges are �xed. In Qn, we have V = 2n, and E = n2n−1. The number of boundary

walks though, depends on the rotation system and the embedding. From Theorem

6, we have g = 1− V−E+B
2

. Note that since E and V are even and g must be an

integer, it follows that B is even. For maximal genus, we need B to be the least

possible, which is 2. Plugging in the values, we get γM(Qn) ≤ (n−2)2n−2. Now, for

minimal genus, we need the number of boundary walks to be as high as possible.

This means that we need the size of each boundary walk to be as small as possible.

Since, the total boundary walk length is n2n and the smallest cycle in each

hypercube graph is of size 4, the total number of boundary walks is at most n2n−2.

Plugging this into the equation for genus, we get γ(Qn) ≥ (n− 4)2n−3 + 1.

In chapter 3 we prove that equality is attainable in each of the inequalities in

Theorem 8.

2.4 Adjacent changes in a Rotation System

Given a rotation system, the simplest change we could make to it is to switch the

order of a single pair of adjacent edges incident on a particular vertex. Note that,
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with a sequence of such changes we can obtain all possible rotation systems for a

graph, given a rotation system to start with. In this section, we examine the

impact of such a switch on the collection of boundary walks and the embedding.

Let us switch the ordering of edges about the vertex 0 in Figure 2.9 and look at

the e�ect that this action has on the embedding. We will state a result about how

the boundary walks change when these switches are made. In Figure 2.9, we start

with an initial con�guration of edges incident to vertex 0 in a rotation system and

then switch the edges labeled 01 and 02 to get to a new con�guration. We assume

that there is at least one other edge incident to 0, the edge 0x in Figure 2.9,

otherwise switching the edges 01 and 02 has no impact on the ordering of the

edges around vertex 0 since they are the only edges incident to the vertex. It is

possible that edges 0x and 0y in the �gure are the same edge.

In Figure 2.9, P1, P2, P3 represent polygons that are glued in the embedding as a

result of the parts of the boundary walk shown. They are not necessarily distinct.

For example, P1 will coincide with P2 if directed edges 01 and 10 appear in the

same boundary walk. We will be referring to these polygons as the associated

polygons. P1 has a boundary walk x01B′ where B′ represents the sequence of

edges in the boundary walk as we go from 01 back to x0. Similarly, P2 has its

boundary walk given by the sequence 102B′′, and P3 has boundary walk 20yB′′′.

De�nition 3. Given a rotation system, an adjacent change at a vertex is a

switch of the ordering of two adjacent edges around the vertex.

Theorem 8. With vertices, edges and polygons as above, making an adjacent

change to edges 01 and 02 at vertex 0 in a rotation system increases the number of

boundary walks by 2, decreases it by 2 or leaves it unchanged. In particular, the
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Figure 2.9. The con�guration prior to the switch of edges and polygons

change in the number of boundary walks depends on the initial con�guration and

on where the directed edges 01, 10, 02, 20 are located in the boundary walks:

1. If the associated polygons P1, P2 and P3 are distinct, then the number of

boundary walks decreases by 2 (three faces combine to form one).

2. If the associated polygons P1, P2 and P3 coincide and the directed edges

01, 10, 02, 20 appear in the order 01− 20− 10− 02 in the corresponding

boundary walk, then the number of boundary walks increases by 2 (the faces

breaks apart to form 3 faces), whereas if they appear in the order

01− 10− 02− 20, then there is no change in the number of boundary walks

3. If two of the associated polygons P1, P2 and P3 coincide and the third is

distinct, then there is no change in the number of boundary walks.

Proof. 1. Note that since we are switching the edges 01 and 02, only the

boundary walks containing 01, 10, 02, 20 are impacted by the switch. This is

because by making the switch in the edges around 0, we are making a change

in the rotation system around 0 only and hence the only boundary walks

that are a�ected are the ones that contain the directed edges 01, 10, 20, 02.

Referring to Figure 2.9 as the initial con�guration, we can write the
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corresponding boundary walks. Since the edges 0x, 02, 01, 0y are adjacent

edges around 0, a boundary walk that starts with 01 will close o� only when

we come in from the edge x0 (01 is the succeeding edge to x0). Hence, the

boundary walk is going to be in the form 01B1xx0, where B1x is the part of

the boundary walk going from 1 to x. It is important to note that this is just

a string (of possibly zero length) of vertices traversed, and the exact nature

of the path taken does not matter. Similarly, the boundary walk starting 02

is in the form 02B2110 and the boundary walk starting 0y is in the form

0yBy220. Note that these boundary walks cover each of the four directed

edges we are concerned with (namely 01, 10, 02, 20), and the directed edges in

B1x, B21 and By2 are all distinct.

The polygons P1, P2, P3 corresponding to these boundary walks are

represented in Figure 2.10. Now we switch the adjacent edges 01 and 02.

Figure 2.10. The polygons P1, P2 and , P3 and their boundary walks

This amounts to switching 1 and 2 in the boundary walks illustrated in

Figure 2.10. Once we have done this, the resulting polygon or polygons will

have parts as shown in Figure 2.11. We have to determine where B1x, B21

and By2 lie within these boundary walks.
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Figure 2.11. Parts of the polygon(s) after switching 01 and 02

To determine the resulting boundary walks, note that if we begin a walk x02,

we must then traverse B21 following edge 02 as before. That brings us to

edge 10 which, with the switch, is followed by 0y. Continuing in this manner

we �nd that we now have a single boundary walk x02B2110yBy2201B1x, as

illustrated in Figure 2.12. Hence, in this case the number of boundary walks

Figure 2.12. 3 faces have combined into 1

has reduced by 2 as claimed.

2. Now we consider a di�erent initial con�guration. In this case, the associated

polygons P1, P2, P3 coincide and result from a single boundary walk. When

this happens, we could have two kinds of boundary walks. In the �rst case,

the boundary walk has the edges in order 01− 20− 10− 02, as follows :
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01B1220yBy1102B2xx.

This corresponds to one face, as shown in Figure 2.13]. Now we switch the

Figure 2.13. Case 2: Initial con�guration

adjacent edges 01, 02. In doing so, as in the previous case, the resulting

polygon(s) contain parts as shown in Figure 2.11.

To determine the resulting boundary walk(s), consider the boundary walk

that includes x02. Following edge 02, according to the original rotation

system, we must have B2x. That then brings us back to x0 and closes the

boundary walk. The resulting boundary walk is x02B2x. Similarly, we obtain

boundary walks 10yB1y and 201B12, as illustrated in Figure 2.14. Thus, the

Figure 2.14. Case 2: The boundary walk after switching edges 01 and 02
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number of boundary walks has increased by two from the initial

con�guration.

Next, in the case the edges appear in the order 01− 10− 02− 20, we have a

boundary walk that appears as follows:

x01B11102B2220yByxx0.

This corresponds to the polygon shown in Figure 2.15, with the vertices

labeled as required. We switch the adjacent edges 01, 02 and again obtain a

Figure 2.15. Case 2: The boundary walk before switching edges 01 and 02

boundary walk collection with boundary walks with parts as shown in Figure

2.14

Arguing as in the previous cases, we �nd that in this case the three parts lie

in a single boundary walk given by x02B22201B1110yByx. The only e�ect of

the switch is to change the ordering of the edges in the boundary walk to the

new ordering, as seen in Figure 2.16. Thus, in this case, the number of

boundary walks is unchanged as a result of the edge switch.

3. In this case, when the associated polygon P1 and P2 coincide, the boundary

walk collection is given by x01B11102B2x and 20yBy2. Arguing as before we
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Figure 2.16. Case 2: The boundary walk after switching edges 01 and 02

�nd that on switching, the new boundary walk collection is x02B2x and

201B1110yBy2. Similarly, if the associated polygons P1 and P3 coincide, then

the boundary walk collection is given by x01B1220yByx and 102B21. On

switching, the new boundary walk collection is x02B2110yByx and 201B12.

Lastly, if the associated polygons P2 and P3 coincide, the boundary walk

collection is given by x01B1x and 102B22yBy1. On switching, the new

boundary walk collection is x02B22201B1x and 10yBy1. In all of these

subcases of case 3, the number of boundary walks remained unchanged, as

claimed.

Corollary 1. Given a graph and a rotation system for it, an adjacent change at a

vertex increases the genus of the associated embedding surface by 1, decreases it by

1 or leaves it the same.

Proof. From Theorem 9 we know that an adjacent switch amounts to a decrease in

number of boundary walks by two, an increase in number of boundary walks by

two or no change in the number of boundary walks. Since, g = 1− V−E+B
2

, where

B is the number of boundary walks in the boundary walk collection, an adjacent

change would correspond to an increase in the genus of the embedding surface by
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one, a decrease in the genus of the embedding surface by one, or no change in the

genus of the embedding surface.

Corollary 2. For a graph G, if γ(G) ≤ g ≤ γM(G), then there is a 2-cell

embedding of G in a surface of genus g.

Proof. Given g such that γ(G) ≤ g ≤ γM(G), using Corollary 1 we know that if we

start with an embedding in a surface of genus γ(G) and an associated rotation

system, then if we perform a sequence of edge switches, then we increment the

genus by at most one with each switch. Since, the maximal genus and the minimal

genus are attainable, there are embeddings and associated rotation systems for

them. We can take a rotation system for the minimal genus and via a sequence of

edge switches attain the rotation system for the maximal genus. It follows that via

these edge switches we go through embeddings with each genus g, such that

γ(G) ≤ g ≤ γM(G).

Note that it is not necessary that each switch increase the genus by exactly one,

but it is necessary that by making switches each and every genus in between the

minimal and the maximal genus is achieved.

Corollary 3. For a graph G, either every 2-cell embedding has an even number of

faces or every 2-cell embedding has an odd number of faces.

Proof. This follows from the fact that according to edge switching in rotation

systems, the number of boundary walks can change only by 2, by 0 or by -2, and

that all rotation systems can be attained via edge switches.
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Chapter 3

HYPERCUBE GRAPH EMBEDDINGS ON ORIENTABLE

SURFACES

3.1 Introduction

In this chapter we explore examples of embeddings of hypercube graphs in

orientable surfaces and establish results about some general families of such

embeddings. These results include the existence of minimal and maximal

embeddings for Qn for all n. Before doing that, we will de�ne some of the terms

that will be used throughout the chapter.

3.2 Common Terminology

A bit is de�ned as a binary digit that has a single binary value, 1 or 0. A binary

string is a sequence of bits. The complement of a bit ai is denoted by ãi and

equals 1-ai. The complement of a binary string ṽ is the string made up of the

complement of each of its bits; that is if v = a1a2...an, then ṽ = ã1ã2...ãn.

Given two binary strings of equal length, the Hamming distance between them

is de�ned as the number of bits in which they di�er. For example, 01101 and

10010 di�er in �ve bits and hence the Hamming distance between them is 5. In

the hypercube graph Qn, the Hamming distance between every pair of vertices

connected by an edge is one. For example, in Figure 3.1, consider the vertex 7 in

Q3. The binary representation of 7 is 111. Since there are exactly three bits that

can be complemented, the vertex is connected by single edges to three vertices,

which is consistent with the fact that in Q3 all vertices have degree 3. The vertices
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to which it is connected can be obtained by complementing the bits one at a time

to obtain 011, 101, 110, which are 3, 5, 6, respectively, as is shown in Figure 3.1

Figure 3.1. Vertices connected to 7 in Q3

A Gray code is a sequence of binary strings where every term is Hamming

distance 1 away from the term preceding it. The usual numeral system 0, 1, 2, 3 is

not a Gray code because in binary this is 00, 01, 10, 11, and in going from 01 to 10

we have made changes in two bits, instead of one. In order to make it a Gray code,

we need the order to be 00, 01, 11, 10 in binary, which is 0, 1, 3, 2, in the decimal

system. The following lemma, whose proof is straightforward, will be helpful to us

later in the chapter:

Lemma 1. The vertices in Qn can be listed in a Gray-code order beginning with

00...00, 00...01 and ending with 10...01, 10...00

In a boundary walk for a rotation system on the hypercube graph Qn, the

sequence of vertices around the boundary walk component is a Gray code since

each numerically consecutive pair of vertices is connected by an edge in Qn.

In what follows, we use either the binary or the decimal representation for the

vertices in Qn, depending on which is most convenient and relevant for the

situation.
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3.2.1 The "ABC" rotation system

Recall that a rotation system is an ordering of the edges incident to each vertex in

a graph. When we represent the rotation system, instead of listing the edges, we

list the vertices at the other end of the edges. We can do this with hypercube

graphs since we have at most one edge between each pair of vertices. For example,

looking at Figure 3.1 the rotation system around 7 is represented as (7 : 3, 6, 5),

which means that when we traverse counter clockwise around vertex 7, the edges

appear in the order (73, 76, 75).

De�nition 4. The Alternate Bit Change (ABC) rotation system for every

vertex v = a1a2...an−1an is de�ned as :

(a1a2...an−1an : a1a2...an−1ãn, a1a2... ˜an−1an, ..., a1ã2...an−1an, ã1a2...an−1an)

For example, in Q4 to get the ABC rotation system entry corresponding to vertex

9, we start with the binary representation of 9, 9 = 1001. The rotation system

entry at vertex 9 is :

(1001 : 1000, 1011, 1101, 0001)

Note that for each vertex we have exactly four entries in the rotation system

because in Q4, each vertex has degree 4 and there are exactly four bits to be

complemented.

We also de�ne a rotation system, called the Reverse ABC rotation system as :

(a1a2...an−1an : ã1a2...an−1an, a1ã2...an−1an, ..., a1a2... ˜an−1an, a1a2...an−1ãn)

Here the ordering around each vertex is the opposite of the ordering in the ABC

rotation system.
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3.2.2 The embedding corresponding to the ABC rotation system

In Chapter 2, we established that given a rotation system, we can use the boundary

walk algorithm to �nd the corresponding embedding. Let us see what embedding

the ABC rotation system gives us. In Q3, the ABC rotation system is given by :

(0 : 1, 2, 4)

(1 : 0, 3, 5)

(2 : 3, 0, 6)

(3 : 2, 1, 7)

(4 : 5, 6, 0)

(5 : 4, 7, 1)

(6 : 7, 4, 2)

(7 : 6, 5, 3)

The boundary walk algorithm gives us four polygons which are shown in Figure

3.2. When these polygons are glued together, we get the surface on which this

Figure 3.2. Polygons corresponding to the ABC rotation system in Q3

graph is embedded, and that is a torus. The embedding is shown in Figure 3.3.

One of the polygons is represented on the embedding using a red line. In Q4, the

ABC rotation system is given by :

(0 : 1, 2, 4, 8) (8 : 9, 10, 12, 0)

(1 : 0, 3, 5, 9) (9 : 8, 11, 13, 1)
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Figure 3.3. Top and bottom view of the embedding of Q3 with the ABC rotation
system

(2 : 3, 0, 6, 10) (10 : 11, 8, 14, 2)

(3 : 2, 1, 7, 11) (11 : 10, 9, 15, 3)

(4 : 5, 6, 0, 12) (12 : 13, 14, 8, 4)

(5 : 4, 7, 1, 13) (13 : 12, 15, 9, 5)

(6 : 7, 4, 2, 14) (14 : 15, 12, 10, 6)

(7 : 6, 5, 3, 15) (15 : 14, 13, 11, 7)

In this case, using the boundary walk algorithm, we get eight boundary walks of

size eight each. When we glue these polygons together, we get the surface on

which the graph is embedded. Since V = 16, E = 32, and B = 8, we have g= 5,

which means that the embedding is on a 5-hole torus. Figure 3.4 shows one of the

polygons for this embedding on a 5-hole torus. These observations can be

generalized by the following theorem, which tells us exactly how the embedding of

Qn corresponding to the ABC rotation system appears.

Theorem 9. For n ≥ 3 the ABC rotation system on the hypercube graph Qn has

2n−1 boundary walks of size 2n, resulting in an embedding of Qn in a surface of

genus : g = 1− n− 2n−1 + n2n−2

Proof. For a given hypercube graph Qn, we can write the vertex in binary form as

v = (a1, a2, ..., an). The ABC rotation system ordering around the vertex v is :
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Figure 3.4. Top and bottom views of one of the faces in the embedding of Q4 with
the ABC rotation system

((a1, a2, ..., an) : (a1, ..., ãn), (a1, ... ˜an−1, an), ....(ã1, a2, ..., an))

By de�nition, every pair of vertices connected by an edge is separated by

Hamming distance of 1. To create a boundary walk , we start at any edge, say

v-w. Since these vertices are separated by a Hamming distance of 1, by

appropriately choosing the bits for their representation, we can have our boundary

walk start as (a1, ...aq, ...an)→ (a1, ...ãq, ...an) for some aq. But according to the

rotation system, the next entry in the boundary walk is the vertex appearing to

the right of (a1, ...ãq, ...an) in the rotation system ordering at (a1, ....an). That

vertex is (a1, ... ˜aq−1, ãq, ...an). Continuing the boundary walk in this way will give

us n entries until we reach ṽi (see Figure 3.5). Repeating this process another n

times gets us back to v. This completes the boundary walk and the length of the

walk is 2n, as required.

In Qn the number of vertices is V = 2n and the number of edges is E = n2n−1.

Since each edge in the graph is traversed twice, once in each direction, the total
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length of the boundary walk collection is twice the number of edges, which in the

hypercube graph is n2n. In the ABC rotation system, every walk is of size 2n.

Hence, the number of boundary walks is B = n2n/2n = 2n−1. Substituting this

into the equation g = 1− V+E−B
2

, we get g = 1−n− 2n−1+n2n−2, as claimed.

Figure 3.5. ABC Proof sketch

3.3 The Minimal Embedding of Qn

3.3.1 De�nition

Recall that a 2-cell embedding of a graph on a surface of minimal genus is called a

minimal embedding. From Theorem 8, we have that γ(Qn) ≥ (n− 4)2n−3 + 1. So

the question we want to ask here is if γ(Qn) = (n− 4)2n−3 + 1 is always attainable.

In the next section, we will provide some examples and answer the question

generally for Qn

3.3.2 Examples of minimal embedding

We have seen before that the minimal embedding of Q3 is on a sphere. The

rotation system that corresponds to this embedding is given by:

(0 : 1, 4, 2)

(1 : 3, 5, 0)

(2 : 3, 0, 6)
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(3 : 7, 1, 2)

(4 : 5, 1, 6)

(5 : 1, 4, 7)

(6 : 4, 2, 7)

(7 : 5, 6, 3)

Given this rotation system, we can use the boundary walk algorithm to obtain the

embedding polygons as shown in Figure 3.6. When these polygons are glued

Figure 3.6. Faces in the minimal embedding of Q3

together, they give the surface on which Q3 is minimally embedded, as shown in

Figure 3.7. Note that there are exactly six faces of size four labeled

A,B,C,D,E, F .

Figure 3.7. Front and rear view of the minimal embedding of Q3 on a sphere
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Now let us look for the minimal embedding of Q4. By Theorem 8 we have that

γ(Q4) ≥ 1 so the minimal embedding is possible in a surface of genus 1. In fact, we

can �nd such an embedding. The rotation system corresponding to it is given by :

(0 : 1, 2, 4, 8) (8 : 0, 12, 10, 9)

(1 : 9, 5, 3, 0) (9 : 8, 11, 13, 1)

(2 : 10, 6, 0, 3) (10 : 11, 8, 14, 2)

(3 : 2, 1, 7, 11) (11 : 3, 15, 9, 10)

(4 : 12, 0, 6, 5) (12 : 13, 14, 8, 4)

(5 : 4, 7, 1, 13) (13 : 5, 9, 15, 12)

(6 : 7, 4, 2, 14) (14 : 6, 10, 12, 15)

(7 : 15, 3, 5, 6) (15 : 14, 13, 11, 7)

Using the boundary walk algorithm, we obtain 16 embedding polygons, which can

be represented in the grid as shown in Figure 3.8. Note that the left and right side

coincide in the �gure, as do the top and bottom sides. When these sides are glued

Figure 3.8. Lattice for the minimal embedding of Q4

together, we get the embedding of Q4 on a torus, as shown in Figure 3.9.
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Figure 3.9. Top and bottom view of the minimal embedding of Q4 on a torus

3.3.3 Minimal Embedding Theorem

Here, we address the minimal embedding for Qn. By Theorem 8 we have that

γ(Qn) ≥ 1 + (n− 4)2n−3. In the examples we presented, we obtained equality for

n = 3 and n = 4 where we saw γ(Q3) = 0 and γ(Q4) = 1.

In "The genus of the n-cube" [7] Lowell Bieneke and Frank Harary proved that

equality holds for all n via a proof that recursively builds the minimal embedding

for Qn from the minimal embedding for Qn−1. We provide an alternative proof

where the minimal embedding of Qn for each n is found via a speci�c rotation

system.

De�nition : The 4-cycle rotation system on Qn with vertices represented in

their decimal notation, is the rotation system de�ned as having the ABC rotation

system at even vertices and the reverse ABC rotation system at odd vertices.

Theorem 10. The genus of the surface for the embedding associated with the

4-cycle rotation system is 1 + (n− 4)2n−3, and therefore γ(Qn) = 1 + (n− 4)2n−3.

Proof. We know that g ≥ 1 + (n− 4)2n−3. We prove equality by showing every

boundary walk has 4 edges.

To prove the theorem we claim that every boundary walk is of size 4. Pick any

vertex v to start with. There are two cases - the vertex in its decimal
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representation is either odd or even. Consider the vertex v of graph Qn in its

binary notation as a1a2...an. Let the decimal representation of v be even. Since

the connected vertices in the hypercube di�er in exactly one bit, the next entry in

the walk is a1, ...ãi...an for some i. Since this vertex is at an odd Hamming

distance from v, it will have the reverse ABC rotation system. In the reverse ABC

rotation system, we begin by complementing the leftmost bit and move

progressively towards the right, until each bit has been complemented exactly

once. Thus, the next entry is going to have the next right bit complemented,

which is a1, ...ãi, ˜ai+1, ...an. This vertex is an even Hamming distance away from

vertex v and hence has the ABC rotation system. The next entry is thus going to

have the next left bit complemented, which gives us a1, ...ai, ˜ai+1, ...an (see Figure

3.10). Once again, this vertex is at an odd Hamming distance from v and hence

has the reverse ABC rotation system. This gives us the next entry by

complementing the next bit to the right to get a1, ...., an, thus completing the

walk. The face size is thus exactly 4, as required. Hence, this rotation system gives

us exactly the minimal embedding on a surface of genus g = 1 + (n− 4)2n−3, and

therefore this g is the genus of the graph. A similar argument can be made when

the vertex v is odd in the decimal representation as shown in Figure 3.10.

The process used in the proof is illustrated in Figure 3.10.

3.4 Maximal Embedding

As indicated previously, a maximal embedding of a graph is a 2-cell embedding in

an orientable surface with g as large as possible. We also indicated previously that

for an embedding of Qn the fewest number of faces possible is 2 (since every 2-cell

embedding of Qn must have an even number of faces). Is an embedding of Qn with

2 faces possible? Recall that Theorem 8 indicated γM(Qn) ≤ (n− 2)2n−2. The
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Figure 3.10. Sketch of a boundary walk for the Minimal Embedding

upper bound arises from the fact that the fewest faces possible in a two cell

embedding of Qn is two. So, here we are asking if we can achieve

γM(Qn) = (n− 2)2n−2.

The answer is known to be a�rmative and is based on a theorem by Mark

Jungerman [1] that indicates that every 4-edge connected graph is upper

embeddable. (A graph is 4-edge connected if it cannot be disconnected by removal

of any 3 of its edges, and upper embeddable means has a 2-cell embedding with 1

or 2 faces). It is not di�cult to show that for n ≥ 4, Qn is 4-edge connected and

therefore is upper embeddable. Q2 has just one embedding on the sphere, so the

maximal genus is realized trivially. In Q3, we have seen an example in Chapter 1

where we switched the rotation system around vertex 0 to get two boundary walks,

which corresponds to achieving the maximal genus.

Jungerman's proof of the upper embeddability of Qn is based on a particular

property of Qn and does not demonstrate an actual maximal embedding. In this

section, we examine some examples of maximal embeddings of Q3 and Q4, and we

prove, via a recursive construction, a general theorem about the existence of a

particular type of maximal embedding of Qn that we call a "big face" embedding.
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Unlike minimal embeddings of Qn, which can be achieved only by having all faces

be of size 4, maximal embeddings can be obtained in a number of ways. This is

because there are a number of choices in how the two faces can appear. For

example, in Q3 we give examples of maximal embeddings with faces of sizes 18 and

6, 14 and 10, 12 and 12, and 20 and 4. It is interesting to note that by considering

properties of boundary-walk lengths under rotation-system switches, it can be

proven that there is no maximal embedding where the boundary walks are of sizes

8 and 16. We do not provide a proof here though.

3.4.1 Various maximal embeddings of Q3

In Q3 we have V = 8 and E = 12. Since we are talking about the maximal

embedding, we know that B = 2. This gives us that g = 2. Hence, the maximal

embedding of Q3 is on a 2-hole torus. As remarked before, the complete boundary

walk length in Q3 is 24 and there are a number of ways in which the maximal

embedding can be achieved. Let us look at some of the examples. In all of these

examples, whenever we are talking of making adjacent changes, it is with respect

to the ABC rotation system as the starting point.

Case 1: We make one adjacent switch in the rotation system about any one

vertex, say we do it for vertex 0. This gives us an embedding of Q3 where the two

boundary walks are of sizes 18 and 6 respectively. The boundary walks in this case

are :

0-1-3-7-6-4-0-2-6-7-5-1-0-4-5-7-3-2-0

1-5-4-6-2-3-1

When the corresponding polygons are glued together we get the embedding on the

2-hole torus shown in Figure 3.11.
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Figure 3.11. Maximal embedding of Q3 with boundary walks of size 18 and 6.

Case 2: In this case, we make adjacent switches in the rotation system on vertices

0, 1, 3 and 7. This gives us an embedding of Q3 where the two boundary walks are

of size 12 each. The boundary walks in this case are :

0-1-5-4-6-2-3-7-5-1-3-2

0-4-5-7-6-4-0-2-6-7-3-1

When the corresponding polygons are glued together, we get the embedding on the

2-hole torus shown in Figure 3.12.

Figure 3.12. Maximal embedding of Q3 with boundary walks of size 12 and 12
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Case 3: In this case, we make adjacent switches in the rotation system on vertices

0 and 3, that is vertices that are Hamming distance 2 apart. This gives us an

embedding of Q3 where the two boundary walks are of sizes 20 and 4. The

boundary walks in this case are :

0-1-3-2

0-4-5-7-3-1-5-4-6-2-3-7-6-4-0-2-6-7-5-1.

When the corresponding polygons are glued together we get the embedding on the

2-hole torus shown in Figure 3.13.

Figure 3.13. Maximal embedding of Q3 with boundary walks of size 20 and 4

Case 4: For this we make adjacent switches in the rotation system on two

connected vertices, for example, on vertex 0 and vertex 1. This gives us an

embedding of Q3 where the two boundary walks are of sizes 14 and 10 respectively.

The boundary walks in this case are :

0-1-5-4-6-2-3-1-0-4-5-7-3-2

0-2-6-7-5-1-3-7-6-4.

When the corresponding polygons are glued together we get the embedding on the

2-hole torus given by Figure 3.14.
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Figure 3.14. Maximal embedding of Q3 with boundary walks of size 14 and 10

3.4.2 Maximal Eulerian Circuit Embedding

De�nition 5. A maximal Eulerian circuit embedding is de�ned as a maximal

embedding where each of the boundary walks is an Eulerian circuit on the graph.

Recall that an Eulerian circuit is a closed path in a graph that visits every edge of

the graph exactly once. Also, an Eulerian circuit is possible only when the degree

of each vertex in the graph is even. Hence, here we will be looking only at

hypercube graphs of even dimension.

Let us look at some examples. First, we have the simple case of Q2. Here we have

V = 4, E = 4 and B = 2 (the latter because it is a maximal embedding). Using

this, we have g = 1− V−E+B
2

= 0. Hence, this embeds on a surface of genus 0; that

is, on the sphere. The two Eulerian circuits in this case are as follows

0− 1− 3− 2− 0

1− 0− 2− 3− 1

When these faces are glued together, we get the surface on which it is embedded,

the sphere, as shown in the Figure 3.15. In Q4, we have V = 16, E = 32. Since, we

are considering the maximal embedding, we have exactly two boundary walks, or
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Figure 3.15. Eulerian Circuit embedding for Q2

B = 2. Hence, g = 8, which means that the embedding is on a 8-hole torus. We

obtain this embedding using the following rotation system :

(0 : 8, 4, 2, 1) (8 : 0, 12, 10, 9)

(1 : 0, 3, 5, 9) (9 : 8, 11, 13, 1)

(2 : 10, 6, 0, 3) (10 : 11, 8, 14, 2)

(3 : 2, 1, 7, 11) (11 : 10, 9, 15, 3)

(4 : 5, 6, 0, 12) (12 : 13, 14, 8, 4)

(5 : 4, 7, 1, 13) (13 : 12, 15, 9, 5)

(6 : 7, 4, 2, 14) (14 : 15, 12, 10, 6)

(7 : 6, 5, 3, 15) (15 : 14, 13, 11, 7)

This rotation system gives two boundary walks, each of which is an Eulerian

circuit on Q4.

0-1-3-7-15-14-12-8-10-14-6-7-5-1-9-8-0-4-12-13-15-11-3-2-10-11-9-13-5-4-6-2-0

1-0-8-12-4-5-7-3-11-10-8-9-11-15-7-6-4-0-2-3-1-5-13-12-14-10-2-6-14-15-13-9-1

Using four copies of the lattice from Figure 3.9, the �rst boundary walk can be

represented as in Figure 3.16.
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Figure 3.16. Eulerian Circuit lattice

It is interesting to note that, starting with the ABC rotation system, if we make

changes at the vertices 8, 2 and 10, we obtain another maximal Eulerian circuit

embedding, with the corresponding boundary walks having the added property

that each Eulerian circuit is made up of two Hamiltonian circuits (cycles visiting

each vertex exactly once). The boundary walks are as follows :

0-1-3-7-15-14-12-8-10-11-9-13-5-4-6-2-0-4-12-13-15-11-3-2-10-14-6-7-5-1-9-8-0

0-2-3-1-5-13-12-14-10-8-9-11-15-7-6-4-0-8-12-4-5-7-3-11-10-2-6-14-15-13-9-1-0

To try to �nd an Eulerian circuit embedding for Q6, we wrote a computer code

(that we refer to as the boundary walk program) that iteratively searched for a

pair of Eulerian circuits that when glued together would give a maximal

embedding. However, we were not able to �nd one. We found an embedding where

one of the boundary walks is an Eulerian circuit, but we had more than one other

face, which means that that it was not a maximal embedding.

Conjecture 1. Every hypercube of even dimension has a maximal Eulerian circuit

embedding.
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3.4.3 Big-Face Maximal Embedding

We de�ne a big-face embedding of Qn as a maximal embedding where one face

is the smallest possible, that is of size 4, and the other is the largest possible, that

is of size of n2n − 4. Before we provide a general construction of these kinds of

embeddings, let us look at some examples.

In Q3, we have already seen the big-face maximal embedding. In Figure 3.17, the

face of size 4, with boundary walk 0− 1− 3− 2, is highlighted. The big-face here is:

0− 4− 5− 7− 3− 1− 5− 4− 6− 2− 3− 7− 6− 4− 0− 2− 6− 7− 5− 1.

Figure 3.17. The big-face maximal embedding of Q3

Using the lattice representation, the big-face embedding in Q4 can be represented

as shown in Figure 3.18. Here we start with the minimal embedding and make

adjacent changes at the vertices circled in red. Making seven adjacent switches

takes us from the minimal embedding to the big-face maximal embedding. We

discuss this transition from minimal embedding to maximal embedding further in

the next chapter. Experimenting with the boundary walk program, we were also

able to �nd the big- face maximal embedding of Q5, which has boundary walks as
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Figure 3.18. The big-face maximal embedding of Q4

shown in Figure 3.19. The boundary walks are of sizes 156 and 4 respectively. The

Figure 3.19. Boundary walks for the big-face maximal embedding of Q5

boundary walk corresponding to the big-face embedding in Q6 is given in Figure

3.20. Here the boundary walks are of sizes 380 and 4 respectively. In the next

Figure 3.20. Boundary walks for the big-face maximal embedding of Q6
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section, we prove that big-face embeddings exist for Qn for all n.

3.4.4 The Big-Face Maximal Embedding Theorem

We begin with a construction lemma that enables us to add edges to a graph and a

rotation system without impacting the number of components in the corresponding

embedding (although the genus of the embedding surface increases by one).

Lemma 2. Given a graph G, and a rotation system such that in one boundary

walk, directed edges e,e', connecting vertices v0,v1 and v′0, v
′
1, respectively, appear as

illustrated in Figure 3.21. If a new graph G∗ is formed by adding edges e0,

Figure 3.21. Boundary walk

connecting v0 and v′0, and e1, connecting v1 and v′1, and the rotation system for G

is modi�ed so that :

1. e0 immediately precedes e in the ordering around v0,

2. e1 immediately follows e in the ordering around v1,

3. e0 immediately precedes e′ in the ordering around v′0,

4. e1 immediately follows e′ in the ordering around v′1.
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Then the original boundary walk eBe′A becomes ee1Ae0e
′e−11 Be−10 , with all the

other boundary walks unchanged.

Proof. The proof of the lemma is going to be done by what is known as "cutting

and pasting". Beginning with Figure 3.21, we connect vertices v0 and v
′
0 by adding

an edge e0 consistent with the prescribed rotation system. So, now we have Figure

3.22. Now, in order to be able to add the edge e1, connecting vertices v1 and v
′
1, we

Figure 3.22. Inserting edge e0

need a tube that goes over the edge e0. Note that adding a tube amounts to

increasing the genus of the embedding surface by 1. The tube can be added by

removing an open 2-disk from either side of the edge e0 and gluing the circle

boundaries together. In Figure 3.23, this is represented by the circle X.

Now, we can insert the edge e1 connecting vertices v1 and v
′
1. To do this, we

connect v1 to the circle X via edge e1a which then come out of the other copy of

circle X, from the corresponding position along edge e1b before terminating at v′1.

This is shown in Figure 3.24.

To see that we now have the desired boundary walk, we do some cutting and

pasting on Figure 3.24. To begin, we cut along the edges e0 and e1 to obtain
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Figure 3.23. Inserting the tube

Figure 3.24. Inserting edge e1

Figure 3.25, which gives us two parts, both of which are hexagons, with sides as

indicated in Figure 3.26. What is implicit here is that these cut parts are glued

back together again in the construction of the embedding surface from the polygon

components. Finally, we paste the hexagons along X, and e1a and e1b combine to

form e1. The result is a face with the desired boundary walk, as shown in Figure

3.27. No other boundary walk component is impacted in doing this because the

rotation system ordering at all other vertices did not change and because the four

new directed edges appear in the modi�ed boundary walk.
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Figure 3.25. Cut along edges e0 and e1

Figure 3.26. Hexagons resulting from the cutting

Figure 3.27. Result of pasting along X
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With this lemma, we can now prove our big-face maximal embedding theorem.

Theorem 11. For all n ≥ 2, there is a rotation system for Qn with two boundary

walks where one is 00...00− 00...01− 10...01− 10...00− 00...00 and the other is

made up of the remaining directed edges in Qn, and therefore the corresponding

embedding is a big-face embedding of Qn.

Proof. The result holds for n = 2, the boundary walks being 00− 01− 11− 10 and

01− 00− 10− 11 and the rotation system being :

0 : 1, 2

1 : 3, 0

2 : 3, 0

3 : 1, 2

We will now induct on the dimension of the graph (n). Assume that the statement

is true and we have a rotation system on Qn−1 as speci�ed by the statement of the

theorem.

Let S be the embedding surface for Qn−1. From S, we remove the "small face"

00...00− 00...01− 10...01− 10...00. We call the resulting surface S0 (Figure 3.28).

Now, to each of the vertices in S0 we append a 0 on the left in its binary

Figure 3.28. Surface S0 after removing 4 sided face

representation to obtain a vertex in Qn. (Note that although the decimal
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equivalent has not changed, we have increased the length of the binary string from

n− 1 to n.)

Next, we take another copy of Qn−1 with the rotation system corresponding to the

big-face embedding. For this copy, we reverse the rotation system at each vertex.

This gives us a big-face embedding with the small face

00...00− 10...00− 10...01− 00...01− 00...00

Let S1 be the embedding surface with the "small face" removed. We now append 1

on the left in the binary representation of the vertices in S1 to obtain the rest of

the vertices in Qn. Note that we have the rotation system orderings for each of the

vertices in the original Qn−1 that we started with.

To obtain Qn from these two copies of Qn−1, we need to add edges connecting

0a1a2...an−1 and 1a1a2...an−1, which are the edges connecting each pair of vertices,

one on each of the Qn−1 hypercubes. Furthermore, we need to place these edges

properly in each vertex's rotation system ordering to obtain the desired rotation

system and embedding.

Align S0 and S1 and add the four edges going across as illustrated in Figure 3.29.

We add these edges to the rotation system ordering at each vertex in such a way

Figure 3.29. Surface S0 and S1 with four edges connected across
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that four 4-sided faces result, creating a tube that connects S0 and S1. Denote the

faces T(top), B(bottom), F(front), K(back), as they appear in Figure 3.29.

For example, originally 00...01 immediately followed 01...00 in the rotation system

ordering at 00...00. We add 10...00 between them to get the new rotation system

around 00...00. Let G0 denote the graph that results. It is made up of two copies

of Qn−1 and 4 new edges. We have an embedding of G0 in a surface such that

there are six faces : S0, S1, T, B, F,K.

In the rotation system at 11...00 switch the edges corresponding to the vertices

01...00 and 11...01. By Theorem 5, of the 6 original faces, S1, K,B combine to

form one face, say H. Hence, we now have 4 faces.

Next, in the rotation system at 01...01 switch the edges corresponding to the

vertices 11...01 and 00...01. By Theorem 5, of the four faces from the last step,

H,F, S0 combine to form one face. This results in a new rotation system and an

embedding of G0 with 2 faces: the original face T,

00...00− 00...01− 10...01− 10...00− 00...00,

and T', the face obtained by merging the rest.

Now, we are in the position to add the missing edges to form Qn. We can do this

two edges at a time so that at each stage Lemma 2 implies we have graph

embedding with two faces, T and a face determined by the other directed edges in

the graph. When this addition process is completed, we have the desired rotation

system and a big-face maximal embedding.

It remains to prove that the edge-addition process can be carried out. To that end,

by Lemma 1, we can order the vertices in Qn−1 − {00...00, 00...01, 10...01, 10...00}
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with a Gray code ordering v1, v2, ..., vp. In the boundary walk for T' in G0, directed

edges 0v1− 0v2 and 1v1− 1v2 appear (as do 0v2− 0v1, and 1v2− 1v1). By Lemma 2,

we can add edges 0v1 − 1v1 and 0v2 − 1v2 to G0 and the rotation system to obtain

a graph G1 such that the resulting surface embedding has two faces, T and a face

made up of the rest of the directed edges in G1. Similarly, we can build G2, adding

edges 0v3 − 1v3 and 0v4 − 1v4 to G1, and we can continue the process, adding the

needed edges to obtain Qn and a rotation system with the desired property.

Thus, if result holds for n− 1, it holds for n as well, and by induction we can

conclude that for all n, there exists a big-face maximal embedding of Qn.

60



Chapter 4

FURTHER THOUGHTS

4.1 The spectrum of embeddings from minimal to maximal

In this section we demonstrate a process where we can sequentially go from the

minimal embedding of Q4 to a maximal embedding of Q4. In doing so, we cover a

spectrum of embeddings of Q4 in surfaces of genus g, γ(G) ≤ g ≤ γM(G), where

γ(G) is the genus of the graph and γM(G) is the maximal genus. We achieve this

by using Theorem 5 and making a sequence of adjacent changes.

In Q4 we start with the rotation system corresponding to the minimal embedding.

As we have seen before, the polygons resulting from the boundary walks

corresponding to this rotation system can be represented as the lattice in Figure

4.1. Now, using Theorem 5, if we switch the rotation system around vertex 3,

Figure 4.1. Lattice corresponding to the minimal embedding of Q4

speci�cally switching the entries 7 and 11, the 3 associated faces will combine to

form one bigger face corresponding to the shaded region in Figure 4.2. Note that
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this amounts to adding a handle in the 3− 7− 15− 11 square and switching the

edges so that 3− 11 goes over the handle and 3− 7 goes through the handle to

accomplish the edge switch. We can continue this process, changing the rotation

Figure 4.2. Lattice after switching the rotation system around 3

system around 7, to combine 2 more faces and obtain the lattice as shown in Figure

4.3. We can continue this process further until we have combined all the faces

Figure 4.3. Lattice after switching the rotation system around the circled vertices

except the one labeled 0132. At this point, we have attained the big-face maximal

embedding in Q4. The vertices around which the rotation system is changed are
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circled in the Figure 4.4, and the regions that combine to form the big-face has

been shaded. Notice that each switch adds a handle to the embedding surface, so

Figure 4.4. Lattice for the big-face maximal embedding in Q4

we start with a torus for the minimal embedding, and with each switch increase

the genus by one, ending with a maximal embedding in the 8-hole torus.

4.2 Some open questions

Here is a list of some open questions that we encountered during our investigation :

• For Qn can we �nd a set of adjacent changes that takes us monotonically

from the minimal embedding to the maximal embedding? We demonstrated

an example in Q4 of how this can be done. But, can such a series of switches

be found for higher dimensions as well?

• Does there exist an Eulerian circuit embedding for every Qn of even

dimension? We found an example of a rotation system on Q4 where each of

the boundary walks is an Eulerian circuit on Q4. Can this be generalized for

higher dimensions?

63



• Can we �nd an explicit rotation system for the big-face maximal embedding

of Qn? We showed a recursive construction for the big-face maximal

embedding, but is there a closed form for the rotation system corresponding

to the big-face maximal embedding?
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