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Students’ low success rates in college calculus courses are a factor that leads to high 

attrition rates from science, technology, engineering and mathematics (STEM) degree 

programs. To help reach our nation’s goal of one million additional STEM majors in the 

next decade, we must address the conceptual difficulties of our students. Studies have 

shown that students have difficulty with the concepts of slope and derivative, especially 

in cases when students are asked to utilize these concepts in real-life contexts.  

For this study, written surveys were collected from 69 differential (first semester) 

calculus students. Follow-up clinical interviews were performed on 13 integral (second 

semester) calculus students. Through the surveys and interviews, students’ understanding 

of slope and derivative using real-life contexts was explored. On the surveys, students 

answered questions about linear and nonlinear relationships and interpretations of slope 

and derivative. They also critiqued the reasoning and accuracy of a hypothetical person’s 

predictions based on values of slope and derivative. In interviews, students explained 

their thought process and reasoning for the problems, and answered follow-up questions.  



 

 
 

Results indicate that students struggle with knowing what the slope and derivative 

represent and how to use them appropriately to make predictions. The dominant incorrect 

reasoning by students (one-third of surveyed students and two-thirds of interviewed 

students) was to think of slope as the ratio-of-totals !
!

 instead of the ratio-of-differences 

∆!
∆!

. Thinking of slope as a ratio-of-totals implies that all linear relationships are directly 

proportional (of the form 𝑓(𝑥) = 𝑚𝑥, with a y-intercept of zero); students went on to 

interpret the slope as something that can be used to calculate the value of the dependent 

variable (by multiplying it by the value of the independent variable).  

This incorrect thinking about slope influences students’ understanding of the 

derivative. As a result, they often interpreted the derivative as something that could be 

used to find the value of the dependent variable (by multiplying the derivative by the 

value of the independent variable). This led to the incorrect relationship, 𝑓 (𝑥) = 𝑓! 𝑥 ∗

𝑥. Furthermore, when students were asked to critique the reasoning of a hypothetical 

person’s predictions, they showed little knowledge of how the derivative can be used to 

make valid predictions. Instead of demonstrating understanding that the derivative can be 

used to estimate change only near the input value, 54% of interviewed students said once 

again that they could use the derivative to calculate the total value (𝑓 (𝑥) = 𝑓! 𝑥 ∗ 𝑥). 

Students’ impoverished views of slope are adversely impacting their ability to understand 

the more advanced related topic of derivative. 

Knowing more about students’ understanding of slope and derivative as rates of 

change can help educators improve our instruction, with the overall goal of retaining our 

STEM majors. Instructional implications of this study, as well as limitations and future 

avenues for research, are discussed. 
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1.  INTRODUCTION 

1.1 The national context and STEM education 

America’s international competitiveness in the areas of science and mathematics is 

undermined by the declining mathematics and science literacy of Americans (Seymour & 

Hewitt, 1997). The President’s Council of Advisors on Science and Technology 

(PCAST) forecasted that an additional one million science, technology, engineering and 

mathematics (STEM) graduates are needed in the next decade to meet the United States’ 

demand (Holdren & Lander, 2012). Although throughout the 20th century the United 

States led the way in research and development, facilitated by post World War II 

increases in the number of STEM graduates, the number of STEM graduates has been 

falling during the past decade. A 34% increase over our current annual STEM degree 

production rates is needed in order to keep pace with our economy’s growing need for 

STEM graduates.  

Combinations of task forces, conferences, commissions, and workgroups, all 

sponsored by a variety of different organizations, have focused on the causes and 

consequences of high attrition rates from mathematics and science. One such focus is on 

the pedagogical context of undergraduate learning and the unmet needs of students 

(Seymour & Hewitt, 1997). Faculty pedagogy, curriculum design, and student assessment 

practices are the dominant sources of problems for students who eventually switch from 

STEM to other majors. However, an underlying reason is the conceptual difficulties that 

students have that are not adequately addressed over the course of their mathematics 

career. Seymour and Hewitt (1997) point out: 
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The experience of conceptual difficulty at particular points in particular classes, 

which might not constitute an insuperable barrier to progress if addressed in a timely 

way, commonly sets in motion a downward spiral of falling confidence, reduced class 

attendance, falling grades, and despair – leading to exit from the major. (Seymour & 

Hewitt, 1997a, p.35).  

Our introductory undergraduate courses must be improved in order to address the 

conceptual difficulties students bring to our classrooms. Many of our students have not 

had adequate opportunities to learn key concepts in secondary school, which influences 

their learning of new, more advanced concepts in college. In addition, the ideas of 

college-level mathematics are difficult for many students, and we need to improve our 

capacity to provide high-quality learning opportunities for our students. In order to reach 

the goal of one million additional STEM majors, it is not enough to attract new STEM 

majors; we need to focus on improving our instruction in order to retain the students who 

start out in STEM majors (Holdren & Lander, 2012).  

 

1.2 The importance of calculus in STEM education 

Calculus is used to model, analyze, and understand changing quantities in our world. 

In the STEM fields, it is important for students to be able to apply their knowledge of 

change to analyze and make sense of various phenomena, from the marine biologist who 

needs to estimate the population growth of a species, to the medical researcher who is 

approximating the volume of air being inhaled by an asthmatic patient.  

These change concepts are foundational for STEM students. Focusing on engineering 

students, but applicable to all STEM majors, Moore (2005) notes calculus is the gateway 
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course for engineers, and therefore academic success in engineering depends on the 

successful completion of the calculus sequence (typically, three semester-long courses).  

Since calculus is a gateway course for STEM students, it is not surprising that it is 

also often the roadblock to students’ overall success in their chosen STEM field. While 

lack of preparation for postsecondary mathematics is often cited as a reason for low 

success rates in college mathematics (Thomasian, 2011), responsibility for addressing 

and improving the deficiencies lies with the entire mathematics education community. 

We must do better as a community in providing our students with the solid mathematics 

education needed for STEM degrees, and for their careers following graduation. 

 

1.3 Students’ difficulties with learning calculus 

While the importance of calculus is apparent, first semester calculus courses have 

high failure rates and are a huge barrier to success in a STEM field (Bressoud, Mesa, & 

Rasmussen, 2015; Ferrini-Mundy & Graham, 1991; Habre & Abboud, 2006; Steen, 

1987). In their overview of research in calculus learning, Ferrini-Mundy and Graham 

(1991) categorize student understanding of calculus into four key areas: function, limits 

and continuity, the derivative, and the integral. Research into student thinking and 

difficulties in these four areas is extensive. In this study, we look at one of these four 

categories, the derivative, and two concepts that are foundational to its understanding: 

rates of change and slope.  
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1.4 Motivation to study students’ understanding of slope and derivative 

My motivation to focus on these specific areas stems from both education research 

findings and my own experiences in the classroom, in both a general education algebra 

course where a focus is on slope, and a differential (first semester) calculus course where 

a focus is on the derivative.  

In the algebra course, developed to provide students with an alternative to a 

traditional college algebra class, we ask students to do more than just use linear 

relationships. For example, given an equation such as 𝐶 = 9.8𝑔 + 750, where 𝐶 is the 

cost in dollars to produce 𝑔 gallons of a chemical, students are asked for the slope, the 

units on the slope, and the interpretation of what the slope means in the context of the 

problem. In this case, the slope is 9.8 dollars per gallon, and as we increase the number of 

gallons produced by one gallon, the cost increases by $9.80 (Franzosa & Tyne, 2010). 

Students must understand slope as a rate of change to answer this question. My students 

often struggle with these questions. Common mistakes include stating that the units on 

the slope are “costs in dollars per gallons of a chemical,” thus not recognizing what is the 

variable and what is the unit. For the interpretation question, students will often say that 

the slope means, “It costs $9.80 for each gallon produced,” thus implying a directly 

proportional relationships of the form 𝐶 = 9.8𝑔 (a linear relationship that goes through 

the origin). 

Similarly, in differential calculus courses, we often ask calculus students to interpret 

the derivative in comparable ways. For example, given that 𝐶 = 𝑓(𝑔) is the cost in 

dollars of producing 𝑔 gallons of the chemical, what are the units on 𝑓′(𝑔)? And, what 
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does 𝑓! 200 = 6 represent? In this case, the units are dollars per gallon, and when the 

number of gallons produced is 200, the cost is increasing at a rate of $6 per gallon 

(Hughes-Hallet, 2013). In order to fully understand how to answer these questions, 

students must know that the derivative is an instantaneous rate of change that is only 

applicable at 200 gallons, and that the derivative can be used to approximate the cost of 

producing the 201st gallon.  

This study was designed to examine student thinking on these types of questions. 

Slope and derivative are both concepts that rely on understanding rates of change. Slope 

is a precollege idea (first encountered in middle school) that appears throughout one’s 

mathematical career, including in a differential calculus course. In addition, the 

derivative, a concept students encounter in calculus, relies on a strong foundational 

understanding of slope. As discussed below, examining these ideas separately, 

researchers have already found slope and derivative to be difficult for students.  

However, these concepts are highly interconnected and examining whether students’ 

incomplete knowledge about one shapes their developing knowledge of the other is the 

focus of this study. 

 

1.5 The importance of rates of change, slope, and derivative in the study of calculus 

Rates of change and slope are initially encountered in middle school mathematics. 

Rates are mentioned first in the Common Core State Standards for Mathematics 

(CCSSM) in sixth grade (National Governors Association Center for Best Practices, 

2010), where students are called to “use ratio and rate reasoning to solve real-world and 

mathematical problems” (Grade 6, Ratios and Proportional Relationships, 
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CCSS.Math.Content.6.RP.A.3). The rate of change concept is used to describe 

relationships between changing quantities in all sorts of fields, such as biology (e.g., 

changes in population with respect to time), physics (e.g., the relationships between 

position, velocity, and acceleration), and economics (e.g., changes in production costs 

with respect to the number of units produced).  

Slope, a specific rate of change, is covered in eighth grade, where students are called 

to “interpret the rate of change and initial value of a linear function in terms of the 

situation it models” (Grade 8, Functions, CCSS.Math.Content.8.F.B.4). Interpreting the 

rate of change in context (for both slope and derivative) is a key part of this study, and is 

directly tied to this 8th grade content standard.  

Slope is a fundamental mathematical concept that can be represented in many 

different ways, for example as a geometric ratio (i.e., “rise over run”) or as a physical 

property (using the words “steepness,” “incline,” etc.). It is the functional representation 

of slope (understanding slope as a rate of change) that is the focus of this study. To 

understand slope functionally, strong covariational reasoning is necessary. Covariational 

reasoning is defined as “coordinating two varying quantities while attending to the ways 

in which they change in relation to each other” (Carlson, Jacobs, Coe, Larsen, & Hsu, 

2002, p. 354). For example, for the function 𝑓 𝑥 , when input value 𝑥!approaches 𝑥!, 

does the function value 𝑓 𝑥  increase or decrease? Covariational reasoning is again 

necessary for understanding derivative as a rate of change (Nagle, Moore-Russo, 

Viglietti, and Martin, 2013). 

Derivative is a calculus concept that is deeply connected to slope, but at a much more 

advanced level. The derivative is formally defined as a limit of a difference quotient, in 
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other words a limit of a slope of a line (specifically the limit of the slope of the secant 

line as it approaches the slope of the tangent line). The derivative extends our knowledge 

of an average rate of change to an instantaneous rate of change, one in which the rate of 

change is varying.  

It is essential for university-level mathematics faculty to understand students’ 

understanding of slope coming into calculus, and to expand on that knowledge in 

teaching the derivative. “If students do not understand average rate of change, it is hard to 

imagine they have anything but a superficial understanding of instantaneous rate of 

change” (Hackworth, 1994, p. 154). Not only must students understand the derivative as 

an instantaneous rate of change, they must also have an understanding of continuously 

changing rates (the derivative is different at each value of the independent variable), as 

well as have strong covariational reasoning skills to interpret dynamic situations modeled 

with calculus (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002).  

It is not enough for students to be able to calculate slope and derivative; we also want 

them to understand what they mean in a specific context and understand the rate of 

change they represent. Understanding how students think about slope and derivative can 

lead to better instruction, and hence stronger conceptual knowledge for our students. 

Therefore, examining calculus students’ understanding of slope and derivative as rates of 

change is important. We know the concept of rate of change in general is not well 

understood by students (Bezuidenhout, 1998). Since understanding slope as a rate of 

change is the foundation that calculus students need to bring to the learning of derivatives 

as instantaneous rates of change (Hackworth, 1994), we seek to examine what the 
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relationships are between students’ knowledge of slope and their knowledge of 

derivative.  

Also important is examining students’ understanding of these rates of change in the 

context of real life situations. The importance of modeling real life situations is reflective 

in CCSSM. One of the Common Core’s Standards for Mathematical Practice is to “model 

with mathematics,” which focuses on the importance of solving problems that arise in 

everyday life. Likewise, research points to the use of context problems, defined as 

“problems of which the problem situation is experientially real to the student” 

(Gravemeijer & Doorman, 1999, p. 111) as key to students’ understanding of formal 

mathematics and their improved mathematical reasoning.  

The concepts of rate of change, slope, and derivative are tightly interconnected. 

Students’ knowledge of derivatives is built on their foundational knowledge of slope. 

One cannot effectively study students’ understandings of derivative as an instantaneous 

rate of change without also exploring their notions of slope as a constant rate of change.  

 

1.6 The call for the ability to critique the reasoning of others 

This study also focuses on students’ abilities to critique the reasoning of others. As 

called for by the CCSSM, critiquing the reasoning of others is the ability to “distinguish 

correct logic or reasoning from that which is flawed and – if there is a flaw in an 

argument – explain what that is” (Standards for Mathematical Practice section, 

CCSS.MATH.PRACTICE.MP3, National Governors Association Center for Best 

Practices, 2010). While the National Council of Teachers of Mathematics (NCTM) 

Principles and Standards (NCTM, 2000) recognized the importance of communicating 
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about mathematics, specifically calling for explanations that “include mathematical 

arguments and rationales, not just procedural descriptions or summaries,” (Process 

Standards, Communication) the call for critiquing the reasoning of others goes further, 

adding another level of reasoning. 

Since this additional level of reasoning is a relatively new standard for mathematical 

practice, it has not been studied widely in the mathematics education community, nor 

have any studies to date focused on critiquing the reasoning of others in calculus 

contexts. This study is also one way to see whether the building blocks ideas that 

students, ideally, learn in K-12 are robust in their undergraduate mathematics learning. 

 

1.7 Research questions 

This study builds on previous research on students’ difficulties with slope and 

derivative, focusing on the connections between students’ verbal interpretation of slope 

and their verbal interpretation of the derivative. It also probes into students’ abilities to 

critique the reasoning of others’ predictions, through questions focusing on the 

appropriate use of a rate of change to make a prediction. Both are new research areas at 

the college level.  

My two principal research questions are:  

1. Is there a relationship between calculus students’ understanding of slope and their 

understanding of derivative? Specifically, do students’ abilities to correctly 

interpret the slope as a constant rate of change make them more likely to be able 

to interpret the derivative as an instantaneous rate of change?  
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2. Given predictions based on slope and derivative, can students appropriately 

critique the reasoning? 

By “interpret” I mean to provide a description of the meaning in the context of the 

problem. By “real life situations” I mean application problems that model realistic 

circumstances. Such applications require students to be able to translate from the context 

to the abstract level of calculus and then back to the context, skills that require conceptual 

knowledge (White & Mitchelmore, 1996). “Not only do real-world situations provide 

meaningful opportunities for students to develop their understanding of mathematics, 

they also provide opportunities for students to communicate their understanding of 

mathematics” (Stump, 2001, p.88). By “use of slope and derivative” I mean do students 

understand the difference between a constant rate of change (which can be used to 

interpret change at any x-value) and an instantaneous rate of change (which is only valid 

for a specific x-value, and can only be used to approximate around that x-value). Lastly, 

by “appropriately critique” I mean distinguish correct reasoning from flawed reasoning, 

and be able to explain what the flaw, if any, is in an argument.  

My research questions are directly related the larger goal of student thinking of slope 

and derivative. The focus emphasizes linear and non-linear, one-variable relationships, 

concepts that are necessary for first-year calculus students. The goal is that by answering 

my two research questions, I will contribute to this collection of research, adding 

understanding about the connection between students’ understanding of slope and how it 

impacts their ability to understand the derivative, and also students’ understanding of 

how rates of change can be appropriately used to make predictions. This knowledge will 

in turn help to inform instruction, both in the calculus classroom (where students are 
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expected to have understanding of slope and rates of change) and in the middle grades 

(where students are first exposed to slope and rates of change).  

We know that far too many students start in STEM majors, only to drop out due to 

experiences in early courses (Holdren & Lander, 2012). We must better understand 

students’ knowledge coming into calculus, and how that knowledge can affect their 

success in calculus. Otherwise, if left unaddressed, students’ views of important concepts 

(such as slope) may adversely impact their learning of more advanced concepts (such as 

derivative). By understanding the knowledge students bring to our classes, we will better 

be able to meet their individual needs, thus providing them a more successful calculus 

experience. Hopefully this will lead to more persistence in STEM majors, an ultimate 

goal for us as mathematics educators.  
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2. RESEARCH ON STUDENT THINKING ABOUT RATES OF CHANGE, 

SLOPE, DERIVATIVE, AND LINEAR APPROXIMATION 

Research shows that students have difficulties with rates of change, both rates of 

change of linear functions (i.e., slope) and rates of change of non-linear functions (as 

represented by the derivative) (Barr, 1980, 1981; Carlson, 1998; Crawford & Scott, 2000; 

Ferrini-Mundy & Graham, 1994, 2004; Habre & Abboud, 2006; Hackworth, 1994; 

Lobato & Thanheiser, 2002; Orton, 1984; Park, 2013; Stump, 2001; Thompson, 1994; 

White & Mitchelmore, 1996; Zandieh, 2000). In many textbooks and mathematics 

classrooms, the overarching concept of rate is often ambiguous and confusing to students 

(Confrey & Smith, 1994). At the same time, rates of change are fundamental to 

understanding the relationships between various quantities, and many concepts in higher-

level mathematics. Understanding rates of change is necessary not just to be able to 

succeed in mathematics courses; it is essential to be able to understand the relationships 

encountered in just about any major that uses quantitative analysis (biology, economics, 

business, etc.). 

Rate of change is the overarching topic of this research study. Within rate of change 

are the related concepts of slope and derivative. Calculus instructors may assume that 

students are entering their classrooms with a strong foundation in slope as a constant rate 

of change. From this foundation, they work to build knowledge of derivative as an 

instantaneous rate of change. The slope of a secant line (average rate of change) is the 

basis for understanding slope of a tangent line (instantaneous rate of change). Slope is a 

necessary building block for understanding derivative, but unfortunately slope is a 
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concept that is very difficult for students (Barr, 1980, 1981; Crawford & Scott, 2000; 

Lobato & Thanheiser, 2002; Stump, 2001). 

Also important to this research is the idea that a constant rate of change can be used 

to predict function values over any interval, but a varying rate of change (as is found with 

a derivative for non-linear functions) can only be used to estimate function values around 

the point where the derivative was calculated. Linear approximation, the concept of using 

the tangent line to approximate the value of the function at nearby points, is typically 

covered in the differential calculus curriculum. While there have been calls to bring linear 

approximation and approximation in general to the forefront of calculus teaching (Bivens, 

1986; Sofronas et al., 2011), there has not been much research into student thinking and 

difficulties with this topic.  

The following example is demonstrative of how incorrect reasoning around slope can 

lead to potential problems in understanding the derivative. Let 𝐶 = 2.5𝑛 + 25 be the cost 

(in dollars) to rent a bowling alley lane for a birthday party, where n is the number of 

people attending. As described later in this section, research shows that many students 

take a ratio-of-totals !
!

 approach to slope (as opposed to a ratio-of-differences ∆!
∆!

 

approach). A student with a ratio-of-totals approach to slope would conclude that the 

slope of 2.50 dollars per child means that the “total cost is $2.50 for each person who 

attends.” This is different than the correct reasoning of “for each additional person who 

attends, the cost would increase by $2.50.” The incorrect ratio-of-totals approach assumes 

that the relationship is directly proportional (in other words a linear relationship with a y-

intercept of zero), so that 𝐶 = 2.5𝑛.  



 

 
 

14 

In calculus, the students might go on and apply the incorrect ratio-of-totals reasoning 

to a nonlinear relationship, 𝐶 = 𝑓(𝑛). When we explore instantaneous rates of change, 

we want students to understand that 𝐶! 10 = 2.50 means that when 10 people are 

attending the party, the total cost is increasing at a rate of $2.50 dollars per person. In 

other words, we can use the derivative of $2.50 per person to estimate the cost increase 

for the next person (the 11th person). The student with the incorrect ratio-of-totals 

approach from before might incorrectly conclude that 𝐶! 10 = 2.50 means that when 

the number of people attending is 10, the total cost is $2.50 for each person.   

With the important concepts of rates of change, slope, derivative, and linear 

approximation in mind, and the example of how incorrect reasoning in one can impact 

understanding of another, we examine the research into students’ understanding of these 

ideas.  

 

2.1 Student thinking about rates of change  

With their basis in everyday experiences, rates of change are fundamental for 

understanding the relationships between various quantities (Confrey & Smith, 1994). 

Many researchers claim that students’ success in higher level mathematics depends on a 

deep understanding of rate (Carlson et al., 2002; Zandieh, 2000). As rates of change play 

a significant part in describing and understanding changing quantities in biology, physics, 

chemistry, economics, and other areas, rates of change are a critical mathematical topic. 

Research findings about students’ difficulties with rates of change fall into three 

categories: (1) students’ underdeveloped concepts of rates, (2) students’ difficulties 
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interpreting rates of change, and (3) students’ incorrect view of rates of change as the 

ratio-of-totals.  

2.1.1 Students’ underdeveloped concepts of rates  

Since rates of change play such an important role in calculus, an underdeveloped 

understanding of rates will impact students’ abilities to understand slope and derivative. 

The concept of rate is based in proportionality. One of the first rates explored in middle 

school is the unit rate, also called the constant of proportionality; it is the slope of the 

linear relationship of the form 𝑦 = 𝑚𝑥. The research documents the difficulties students 

have with ratio and proportion (e.g., Heller, Post, Behr, & Lesh, 1990; Thompson & 

Saldanha, 2003; Tourniaire & Pulos, 1985). Proportional reasoning is often considered 

the cornerstone of middle school mathematics, and therefore more advanced mathematics 

(Lesh, Post, & Behr, 1988). It is not surprising that if students do not understand ratio and 

proportion, their ability to understand rates will be compromised. “Fundamentally, rate of 

change is a manifestation of proportionality” (Orton, 1984, p. 184).  

Rates of change and proportionality are linked directly. Ben-chaim, Fey, Fitzgerald, 

and Benedetto (1998) formalize three broad categories of proportional reasoning, the 

second being what we think of as rates: “comparing magnitudes of different quantities 

with an interesting connection” (p. 249), for example miles per gallon, kilometers per 

minute, or people per square mile.  

 Thompson (1994) and Hackworth (1994) both speak to students’ underdeveloped 

concepts of rates. In studying student understanding of the Fundamental Theorem of 

Calculus, difficulties in understanding were often tied to underdeveloped understanding 

of rates of change (Thompson, 1994). Specifically, Thompson found that many students 
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did not have the understanding of average rate of change that is needed to move onto 

instantaneous rate of change. He defines this average rate of change knowledge to be 

“that if a quantity were to grow in measure at a constant rate of change with respect to a 

uniformly changing quantity, then we would end up with the same amount of the change 

in the dependent quantity as actually occurred” (p. 50). Hackworth (1994) found that 

students who did poorly in calculus seemed to come in with an underdeveloped 

understanding of rate of change; for these students, instruction about derivatives failed to 

substantially change their reasoning about rate situations. He found that since rate of 

change requires envisioning two variables co-varying systematically, a strong 

understanding of function is necessary. However, many students did not appear to 

understand that “for a given amount of time there is a unique distance value and for any 

change in time there is a corresponding change in distance” (p.157).  

Orton (1983) found that many of the calculus students he interviewed did not think 

about rate of change in derivative problems, hence losing the connection to the original 

graphical representation of a derivative as a limit of an average rate of change, and 

instead had moved on to the techniques for calculating derivatives. He examined this lack 

of connection through interviews, but did not provide insight into the student thinking 

behind it. He expressed concerns with being able to make the concept of derivative 

accessible to our students without revisiting the very basic ideas of ratio and proportion, 

well-documented problematic concepts for students.  

Many students are entering calculus with underdeveloped understandings of rate, 

often developed in middle school and connected to misunderstandings surrounding ratio 

and proportionality. While we know that ratio and proportionality are difficult concepts 
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for students and the building blocks needed for understanding rate of change, we do not 

yet know fully how these misunderstandings affect the way students make sense about 

constant versus changing rates of change.  

2.1.2 Students’ difficulties with interpreting rates of change  

Understanding what a rate of change (for example a slope or derivative) tells us about 

the relationship that is being modeled is an important outcome for students. In addition to 

understanding them in purely mathematical contexts, students should able to recognize 

and understand rates of change that they encounter in other classes, in the news, and in 

their future employment. Many studies, however, point to students’ difficulties with 

being able to interpret rates of change (Carlson, 1998; Teuscher & Reys, 2007; Wilhelm 

& Confrey, 2003).  

Teuscher and Reys (2007) studied Advanced Placement calculus students and 

concluded that students lack an understanding of the interpretation of rate of change. 

They found that students successfully calculated the rate of change of linear functions, 

but when the function was not linear they had difficulty, both in representing the 

relationship on a graph, and interpreting the rate of change in relation to the real-world 

context. These struggles were evident when students were asked to graph a function of 

the amount of water in a tank at a given time after reading a verbal description of the flow 

rates into the tank, and less than 50% were able to correctly graph the function. A typical 

mistake was that students drew a straight line when the water flow decreased gradually, 

signifying in their graph that the water flow was still constant. The researchers concluded 

that the vocabulary used by teachers and textbooks might have contributed to student 

misunderstandings, where often the terms slope, rate of change, and steepness were used 
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interchangeably. They also pointed out that if teachers are not aware of the ways of 

thinking about rate of change that their students are bringing to the classroom, effectively 

teaching topics such as limits and derivatives would be difficult.  

 Wilhelm and Confrey (2003) reported that most research on the rate of change 

concept involved motion and speed, the context most dealt with in calculus textbooks and 

courses. There are, however, many different contexts in which students encounter rate of 

change in other courses or in everyday life. By structuring their study with multiple 

contexts, Wilhelm and Confrey were able to examine students’ abilities to apply their 

knowledge of rate of change and accumulation (i.e., the amount of the quantity that 

changes over time for a particular rate of change) from one context to another context. 

Specifically they used a motion context and a money context, and examined students’ 

abilities to see the similar aspects in a contextually unlike situation. They found that 

students did not have to master the relationship between the rate of change and 

accumulation graphs within a single context before applying concepts of rate of change 

and accumulation separately in another context. Also, they found that students who can 

easily go back and forth between the rate of change and accumulation graphs might not 

be able to apply these concepts from one contextual situation to another. In other words, 

one did not have to fully understand the relationship between rate of change and 

accumulation in order to apply to different contexts, and if one did have what seemed like 

a full understanding of the relationship, it did not mean they could apply it elsewhere. 

They advise that instead of always focusing on motion, rate of change instruction should 

be approached in multiple contexts (for example, the rate of change of money going into 

a bank account or water going into a swimming pool), allowing the “learner the 
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opportunity to see the ‘like’ in the contextually unlike situation, so that the learner might 

later be able to project these rate of change and accumulation concepts into novel 

situations” (p. 904).  

 Carlson (1998) studied students’ development of the function concept as they 

progressed through undergraduate mathematics. She found that even the most talented 

second-semester calculus students had trouble interpreting rate of change information 

from a dynamic situation, as well as demonstrating an awareness of the impact of a 

change in one variable has on another variable. She found that current calculus curricula 

gave very little opportunity for students to interpret the covarying aspects of functions. 

Instead, the rapid pace at which new material is presented (especially with evolving 

concepts like function and rate) does not leave time for reflection, even for the strongest 

students, and instead allows students to come away with a very superficial understanding.  

We want our students to be able to interpret and understand what a rate of change 

means in the context of the situation, but many students struggle with this interpretation. 

Students are not given many opportunities to explore rate of change, especially in 

contexts other than motion. While others’ studies touched upon this interpretation as one 

small part, the present study directs attention specifically at students’ abilities to interpret 

slope and derivative in the context of the problem.  

2.1.3 Students’ incorrect view of rates of change as the ratio-of-totals 

Rates of change of linear functions can be viewed as a ratio of differences (∆!
∆!

 or 

!!!!!
!!!!!

) but some students view it incorrectly as the ratio-of-totals !
!

, possibly because 

the expressions ∆!
∆!

 and !
!
 are so similar (Hauger, 1995). Understanding slope as a ratio-of-
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totals is appropriate for directly proportional relationships (relationships of the form 

𝑦 = 𝑚𝑥), but not for linear relationships where b is not equal to zero (such as in 

equations of the form 𝑦 = 𝑚𝑥 + 𝑏). In Hauger’s study of high school and college 

students, 11% of the students estimated a rate of change of a graph using just one point 

and calculating !
!
.  He notes that in many real-life situations the initial values are zero, and 

therefore !
!
 is appropriate, but “unless these subtle distinctions are made in the minds of 

students, it is a small wonder that they use !
!
 when they should be using ∆!

∆!
” (p. 27).  

Whether or not a line passes through the origin also results in difficulties for students 

regarding slopes and rate of change. Beichner (1994) found that students were much less 

successful in calculating slope when the line did not pass through the origin. Students 

would regularly divide a single ordinate value by a single abscissa value, “forcing” the 

graph through the origin, in other words calculating slope as !
!

 instead of ∆!
∆!

. Like 

mentioned previously, for many real life relationships, the initial value is zero, thus !
!

 is 

an appropriate interpretation of slope in many (but not all) situations. This has the 

potential to impact students’ understanding of derivative, the slope of a curve at a point.  

2.1.4 Summary of students’ thinking about rates  

While rates of change are fundamental for understanding the relationships between 

various quantities, and higher-level mathematics depends on a deep understanding of 

rate, research shows that rate is a difficult concept for students. Students’ underdeveloped 

concept of rate is often rooted in misunderstandings surrounding ratio and proportion, the 

foundation for rates of change. Students also fail to see the connection between rates of 
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change and concepts such as derivative, and instruction in concepts such as the derivative 

typically fails to reinforce a correct interpretation of the more basic concept of rate. 

Research also shows that students have trouble interpreting what a rate of change 

represents in context, a key skill that students need in order to understand changing 

quantities in other areas (such as economics or biology). Oftentimes, however, students 

are presented with rate of change questions focused on just motion and kinematics, 

instead of a diverse mix of rate of change contexts that they might see in other areas of 

study. While research shows that students had more success with linear functions than 

non-linear ones, they still struggled when interpreting constant rates in real-life contexts.  

Lastly, and most importantly for this study, research shows that students often 

misinterpret slope as a ratio-of-totals !
!

 instead of a ratio-of-differences ∆!
∆!

. While 

many relationships are directly proportional and therefore have a slope that can be 

interpreted as !
!
, research shows that students misinterpret and miscalculate slope of linear 

relationships with non-zero initial values using !
!
.  

This current study attempts to fill in some of the gaps in the research on student 

understanding of rate of change. Specifically, it focuses on interpretation of two different 

rates of change (slope of linear functions and derivative for non-linear functions) in the 

context of real-life situations that do not involve motion. Through students’ 

interpretations and follow-up questions in the interviews, the common incorrect ratio-of-

totals approach to interpreting a rate of change is explored to see what kind of 

implications such incorrect understanding has on more complex concepts such as the 

derivative.  
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2.2 Student thinking about slope 

The overarching concept of rate of change is difficult for students, as summarized in 

the previous section. Slope, the constant rate of change associated with linear functions, 

is one rate of change that forms the foundation needed to understand instantaneous rates 

of change in calculus. Researchers have documented difficulties students have with slope 

(e.g., Barr, 1980, 1981; Crawford & Scott, 2000; Lobato & Thanheiser, 2002; Stump, 

2001). Research findings about student difficulties fall into two categories: (1) students’ 

inabilities to interpret the slope as a rate of change, (2) students’ underdeveloped 

conceptions of slope.  

2.2.1 Students’ inabilities to interpret slope as a rate of change 

Lobato and Thanheiser (2002) found that students can correctly calculate slope using 

the “rise over run” formula, but only view slope as a number, not as a measure of rate. 

For example, a high-performing algebra student calculated the slope correctly as ½, but 

when asked “a half of what?” she responded, “It isn’t a half of anything, I think. It just 

determines the measurements on how high it is rising” (p. 162). They proposed ratio-as-

measure tasks that can “help students develop an understanding of slope that is more 

general and applicable” (Lobato & Thanheiser, 2002, p.174). 

Stump (2001) also found that high school students “had trouble interpreting slope as a 

measure of rate of change” (p. 81). In interviews, when she asked students “what does the 

slope of the line represent?” many students gave general observations such as “the 

steeper the slope, the more resistance,” and only one student gave a specific answer with 

numbers and units. Within the interview transcripts, many students described the slope as 
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an “angle,” some said, “rise over run,” and some also quoted the formula. Stump suggests 

instruction that focuses on providing opportunities for students to communicate their 

understanding of slope.  

Stump (1999) categorized pre-service and in-service teachers’ responses to the 

answer “What is slope?” into seven different categories: geometric ratio, algebraic ratio, 

physical property, parametric coefficient, trigonometric conception, calculus conception, 

and functional property. While the functional representation is key to understanding slope 

as a rate of change, less than 20% of the teachers in Stump’s study thought of slope as a 

functional concept. “In other words, the majority of teachers did not think of slope as a 

rate of change between two variables” (Stump, 1999, p. 140). She notes that the teachers 

might have been capable of making the connection, but that they did not incorporate the 

connections into their definitions. Functional knowledge of slope (understanding slope as 

a rate of change) is necessary to understand the derivative as an instantaneous rate of 

change; calculus instructors likely expect students to enter with this functional knowledge 

of slope. The most common definitions by teachers were that of slope as a geometric ratio 

(i.e., “rise over run”), or as a physical property (using the words “steepness,” “incline,” 

etc.). 

Also addressing the known difficulties students have understanding the slope as a rate 

of change, Crawford and Scott (2000) call for having students communicate and reason 

about slope, as well as using real-world examples to introduce the concept of rate of 

change prior to introducing slope. They suggest using multiple representations (words, 

tables, graphs, and equations) to explore the patterns of change, starting with directly 
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proportional relationships, then introducing linear relationships where the vertical 

intercept is non-zero, and lastly discussing rates of change that are not constant.  

2.2.2 Students’ underdeveloped conceptions of slope 

Nagle, Moore-Russo, Viglietti, and Martin (2013) studied slope conceptualizations in 

both college students (from one university) and college instructors (from a number of 

colleges and universities in the same region). They classified student and instructor 

responses among 11 conceptualizations of slope. They found that instructors’ responses 

often contained evidence of understanding slope functionally (as a rate of change), and 

often used more formal “textbook” descriptions of slope. On the other hand, students 

often recalled various ideas about slope from their past without a precise definition. In 

terms of conceptualizations, students were most likely to talk about slope as a behavior of 

the graph (“a number that tells you if the line is increasing, decreasing, or staying flat”), 

though no instructors took the behavior approach. Likewise, instructors’ most common 

conceptualizing was functional (“how fast one thing changes as something else 

changes”), though less than one-fifth of all students used a functional approach. They 

conclude that it is imperative that instructors understand the conceptualizations 

commonly held by their students in order to build advanced ideas.  

2.2.3 Summary of students’ thinking about slope  

Slope, a key rate of change concept necessary for understanding the derivative, is 

difficult for students. There are many conceptions of slope, and often students and 

instructors bring different conceptions to the classroom. Whereas the functional concept 

of slope as a rate of change is necessary for understanding the derivative, it is not the 

conception that many students bring to calculus. It is well documented that students 
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struggle with understanding slope as a rate of change, a necessary part of understanding 

the derivative as an instantaneous rate of change.  

While it is known that students must understand slope functionally (as a rate of 

change) in order to understand derivative as an instantaneous rate of change, it is not yet 

known how students’ interpretations of slope affect their interpretation of the derivative. 

This current study fills in some of the gaps in the research on student understanding of 

slope. Specifically, it focuses on students interpreting the slope in real world contexts and 

using the slope appropriately to make predictions. Through students’ written 

interpretations and follow-up questions in the interviews, students’ understandings of 

slope as a rate of change (as well as derivative as a rate of change) were explored to 

examine how the slope and derivative understandings are related.  

 

2.3 Student thinking about derivatives 

Students’ difficulties with the derivative are well documented in the literature (e.g., 

Asiala et al., 1997; Bingolbali et al., 2007; Ferrini-Mundy & Graham, 1994, 2004; Habre 

& Abboud, 2006; Park, 2013; White & Mitchelmore, 1996; Zandieh, 2000). Students are 

often able to compute derivatives using algorithms, but may have very little conceptual 

knowledge about the derivative (Ferrini-Mundy & Graham, 1994; White & Mitchelmore, 

1996). Research about difficulties students have understanding the derivative falls into 

three categories: (1) student weaknesses with underlying concepts, (2) students’ 

difficulties with covariational reasoning, and (3) the difficulties which stem from the 

multi-faceted nature of the derivative. 
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2.3.1 Students’ weaknesses with underlying concepts 

There are many underlying concepts necessary for full understanding of the 

derivative (for example slope, variable, function, limit, etc.). The two concepts of 

variable and function are precalculus concepts of which calculus instructors often expect 

students to come in with a strong foundation. These, however, are difficult concepts for 

students. White and Mitchelmore (1996) cite the need for a mature view of variable as a 

prerequisite to a successful study of calculus. They found that many of the students 

treated the variables in the problems as symbols to be manipulated and instead ignore the 

meaning behind the symbols. For example, in one of their tasks, students were asked to 

maximize the area, thus first finding 𝐴 𝑥  in terms of one variable, and then taking the 

derivative !"
!"
.  Instead, many students focused on the constraint, 𝑦 = 12− 𝑥!, and 

instead found !"
!"
.  The authors conclude that students were remembering the procedure 

for maximizing a function in terms of the symbols first used (i.e., !"
!"
), instead of on a 

process based on the rate of change of a specific function (in this case, area).  

Many students also come to calculus with a very primitive understanding of functions 

(Carlson, 1998; Ferrini-Mundy & Graham, 1994; Monk, 1994). Monk (1994) looked at 

students’ understanding of functions from two approaches – point-wise and across-time. 

Point-wise understanding is what students first attain in their learning about functions, 

thinking of particular values of the independent variable corresponding to particular 

values of the dependent variable. However, in calculus, students must have across-time 

understanding of functions, where changes in one variable lead to changes in another 

variable. Monk found, however, that many calculus students are much more successful in 

answering point-wise questions about functions than across-time ones. As an example 
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from his research, he found that when given a graph of a non-linear function and a secant 

line between two points, 87% of the students were able to find the slope of the secant 

line, but only 57% were able to answer whether the slope of the secant line increases or 

decreases as one independent variable value changes and one point moves toward another 

point.  

2.3.2 Students’ difficulties with covariational reasoning 

Rate of change knowledge is strongly linked to the notion of covariational reasoning, 

described by Carlson et al. (2002) as “the cognitive activities involved in coordinating 

two varying quantities while attending to the ways in which they change in relation to 

each other” (p. 354). Such reasoning requires someone to hold an image of two 

quantities’ values simultaneously (Saldanha & Thompson, 1998).  

Research has shown that students lack the understanding necessary to deal with these 

co-varying quantities efficiently. These difficulties fall into two categories: (1) students 

often using a point-wise approach instead of an across-time approach (Carlson, 1998; 

Park, 2013), and (2) students not having the understanding of average rates of change 

necessary for full covariational reasoning.  

Students need to understand the covarying nature of the derivative function, not just 

the point-wise interpretation, in order to fully make sense of this key calculus concept. 

Research shows, however, that many students only have a point-wise understanding. For 

example, in Carlson (1998), students were asked to sketch the graph of height of water in 

a bottle as a function of the volume of water, as water is poured into the bottle (a picture 

of the bottle was provided). To complete this task successfully, students must understand 

the covariant aspects of the variables (how change in the height affects change in the 
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volume). Students who did not display knowledge of the covariant aspects were not able 

to visualize the change in the height, and responded with, for example, a sketch of a 

straight line. She concluded that even the most talented second-semester calculus students 

exhibited difficulties with “demonstrating an awareness of the impact change in one 

variable has on the other” (p. 142).  

Park (2013) also found that most differential calculus students used a point-specific 

understanding of the derivative. She designed her interview study to explore students’ 

explanations about the derivative as a function. In task-based interviews, she asked 

calculus students to explain what the derivative is, and then answer whether their 

response was more similar to the definition of the derivative of a function or the 

derivative of a function at a point. She concluded that to define the derivative function, 

students use a point-specific concept of the derivative over an interval, and that the 

transition from the derivative of a function at a point to the derivative of a function is 

nontrivial for students.  

In looking more closely at covariational reasoning and the mental actions needed for 

success, Carlson et al. (2002) created five classifications for covariational reasoning with 

five mental actions (MA) as follows: MA1 (coordination of the variables), MA2 

(coordination of the direction of change), MA3 (coordination of the amounts of changes 

of the variables), MA4 (coordination of average rate of change across uniform increments 

of the domain, and MA5 (coordination of instantaneous rates of change). They found that 

calculus students were able to perform at the MA1, MA2, and MA3 levels, but 

consistently had difficulty at MA4 (average rates of change). Carlson et al. tie students’ 
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struggles with covariational reasoning to their incomplete understanding of average rates 

of change.   

2.3.3 Students’ difficulties with multi-faceted nature of the derivative 

The derivative is a multi-faceted idea, with students needing to connect many 

underlying concepts in order to think fully about the derivative (Ferrini-Mundy & 

Graham, 1994; Zandieh, 2000). The concept of the derivative can be represented 

graphically as the slope of a tangent line, verbally as the instantaneous rate of change, 

physically as velocity, and symbolically as the limit of the difference quotient (Zandieh, 

2000). Researchers have found that students often do not connect a function’s derivative 

with its rate of change, which leads to the inability to understand differentiation as an 

operator that measures a rate of change (Weber, Tallman, Byerley, & Thompson, 2012). 

Even when they can connect the derivative with rate of change, students often confuse 

derivative at a point with the derivative function (Ubuz, 2007).  

2.3.4 Summary of students’ thinking about derivatives  

The derivative is a complex concept, and research points to many difficulties in 

students’ understanding of the derivative. There are multiple underlying concepts that are 

necessary for understanding the derivative, and students often come into calculus with 

under-developed conceptions and misunderstandings about these concepts. Also, in order 

to understand the derivative as a function, students must have strong covariational 

reasoning, a well-documented struggle among calculus students. Like slope, the 

derivative is multi-faceted and can be represented in different ways, adding to the 

complexity of the concept and leading to students’ challenges.  
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While it is known that students struggle with the derivative, this current study fills in 

some of the gaps in the research on student understanding of derivative. Specifically, it 

focuses on interpreting the derivative in real world contexts and using the derivative 

appropriately to make predictions. Through students’ written interpretations and 

questions in the interviews, students’ understandings of derivative as a rate of change, 

and their ability to interpret and use appropriately, were explored. Also, through 

comparison of students’ responses to questions about slope and derivative, it attempts to 

reveal how misunderstandings about slope can impact students’ misunderstandings about 

derivative.  

 

2.4 Student thinking about linear approximation  

While there have been calls to bring linear approximation and approximation in 

general to the forefront of calculus teaching (Bivens, 1986; Sofronas et al., 2011), there 

has been very little research as to student thinking and difficulties with this topic (Asiala 

et al., 1997).  

Asiala et al. (1997) did look at student understanding of the tangent line while 

studying students’ graphical understanding of the derivative. They found that many 

students calculated and used the equation of the tangent line but did not show any 

understanding of it as an approximation of the function near the point.  

Sofronas et al. (2011) reported that 33.3% of the 24 calculus experts in their study 

identified student understanding of approximation as central to a deep understanding of 

first-year calculus. While the idea of linear approximation is mentioned in just about all 
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calculus textbooks, it is “always as an afterthought and the intuitiveness of the tangent-as-

limit-of-a-secant remains unquestioned” (Schremmer & Schremmer, n.d.).  

Bivens (1986) calls to bring linear approximation to the forefront of calculus 

teaching, where “the interpretation of the tangent line as the ‘best linear approximation’ 

can be used with profit in the beginning college calculus course” (p. 142).  

While linear approximation is not specifically stated in the current study’s survey, the 

questions pertaining to the appropriateness of using the derivative to make a prediction 

are designed to probe students’ understanding of linear approximation.  

 

2.5 What is not yet known about student understanding  

This study focuses on slope and derivative in real-life contexts. Specifically, it centers 

on students’ abilities to interpret the slope and derivative in context, students’ 

understanding of appropriate uses of slope and derivative to make predictions, and 

students’ abilities to critique the reasoning of others. Researchers have documented that 

students often have incomplete conceptions of rates of change, slope, and derivative, all 

key concepts in understanding the tasks in the current study.  

Recall that this study is designed to answer the following two research questions: 

1. Is there a relationship between calculus students’ understanding of slope and their 

understanding of derivative? Specifically, do students’ abilities to correctly 

interpret the slope as a constant rate of change make them more likely to be able 

to interpret the derivative as an instantaneous rate of change?  

2. Given predictions based on slope and derivative, can students appropriately 

critique the reasoning? 
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Focusing on the first question, while some research has already examined students’ 

abilities to interpret slope in real-life contexts, it has mostly involved high school 

students. Research shows that college students also struggle with slope, and this study 

extends these findings by examining whether college students also struggle with these 

interpretations. Also, very little research has been done on students’ verbal interpretation 

of the derivative as a rate of change; most studies focus on slope. Lastly, by focusing on 

both slope and derivative interpretation, this study aims to examine how 

(mis)understandings of slope interpretation can impact students’ interpretation of the 

derivative and to examine how students interpret both slope and derivative in real-life 

contexts.  

A second focus of the study raised in research question two, and one that has not been 

examined previously, is student understanding of appropriate uses of slope and 

derivative. In particular, when can the slope and derivative be used appropriately to 

estimate a change in the dependent variable? Though focused on functions in general, and 

not derivatives, Carlson (1998) found that second-semester calculus students “had 

difficulty interpreting and representing covariant aspects of a function situation” (p. 115). 

The current study also focuses on covariant aspects of functions, in particular students’ 

understanding of how changes in one variable affect changes in another.  

The appropriate use of the derivative to make predictions also indirectly relates to 

students’ understanding of linear approximation, an important topic in calculus for which 

very little research around student understanding exists. Prior research points to students 

being able to find and use the tangent line, but does not address appropriate use of the 
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tangent line approximation (e.g., how close to the point of tangent is an appropriate 

approximation?).  

The third focus of this study is the ability of students to critique the reasoning of 

others, also a gap in the current research on slope, derivative, and rates of change. The 

CCSSM states that it is important for students to be able to critique the reasoning of 

others, and “distinguish correct logic or reasoning from that which is flawed and – if 

there is a flaw in an argument – explain what that is” (Standards for Mathematical 

Practice section, CCSS.MATH.PRACTICE.MP3, National Governors Association 

Center for Best Practices, 2010). This study has students critique the reasoning of others 

in the context of the questions about appropriate use of slope and derivative so students’ 

ways of reasoning on these kinds of tasks can be investigated. 

In summary, this study is designed to focus on some unanswered questions in the 

literature surrounding students’ interpretations of slope and derivative in real-life 

contexts, students’ understandings of appropriate uses of slope and derivative to make 

predictions, and students’ abilities to critique the reasoning of others. My research 

questions begin to fill in two gaps in the current research: (1) existing literature highlights 

that interpreting slope and derivative are hard for students, but how specifically do 

students’ misunderstandings about slope impact their misunderstandings about 

derivative?; (2) do students understand when it is appropriate (and not appropriate) to use 

a rate of change to make predictions?; and can they critique the appropriateness of others’ 

predictions? By working to fill these gaps, the mathematics education community will 

understand better the students who enter our classroom, which will in turn lead to the 

improvement of the teaching and learning of calculus.  
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3. RESEARCH DESIGN 

3.1 Theoretical framework 

The present study was conducted within a cognitivist framework (Byrnes, 2001; 

Siegler, 2003), which posits that students make sense of the mathematics they are doing 

based on their experiences and that their answers are rational and subject to explanation 

(Ferrini-Mundy & Graham, 1994). Ferrini-Mundy and Graham describe the intention of 

such studies as “to provide rich and defensible descriptions of student understandings that 

can serve as springboards for acknowledging the great complexities to be understood in 

learning about student knowledge” (p. 32). Because a cognitive lens focuses on 

individual thinking, it is useful for investigating how students think about slope and 

derivative and use them to make predictions. The focus here is on detailed analyses of 

student understanding of a few key concepts, gained from direct student responses. Hence 

this study used a written survey instrument and follow-up interviews as data sources. 

Since my goal is to understand how individual students are thinking about the ideas of 

slope and derivative, I utilized this theoretical perspective, using the current findings in 

the field to guide the questions in this study.  

 

3.2 Written survey data collection 

The data for this study were collected from 69 students enrolled in differential (e.g., 

first semester) calculus at a public university in the northeast. Over 50% of the students 

had taken calculus in high school, and all needed to either pass a placement exam or 

complete precalculus at the university with a C or better to gain enrollment into 

differential calculus. Since there is only one flavor of calculus at the university, it 
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contains a mixture of majors (engineering, science, mathematics), as well as those taking 

the course as a general education requirement. Students completed the surveys during 

class time, approximately 80% through the course. 

The survey instrument consisted of questions about slope and derivatives, including 

questions about linear and nonlinear relationships between the yield of a crop of corn 

(bushels) as a function of the amount of nitrogen put on the field (lbs.). There were two 

versions of the survey; one version asked students to sketch the graphs of the 

relationships in question (Figure 3.1 and Appendix A) and one version provided graphs 

of the relationships (Figure 3.2 and Appendix B). The two different versions were created 

to examine whether students performed differently when the graphs were provided. 

Thirty-seven of the surveys included the graphs, and thirty-two of the surveys asked 

students to sketch the graphs. 

The survey questions are not mechanical in nature and therefore do not assess 

computational skills; instead, they are questions about students’ interpretations of slope 

and derivative and their ability to critique others’ reasoning, and therefore try to uncover 

their understanding about these topics.  

The questions were informed by the typical presentation of slope and derivative in 

textbooks, the Common Core Standards for Mathematical Practice, and the call for 

assessing students’ across-time view of functions (Monk, 1994). In textbooks and in 

instruction, when focus is given to students’ understanding of slope and derivative, 

usually the questions asked are similar to A1, A2, B1, and B2 (Figure 3.1). These 

questions address units (Bezuidenhout, 1998) and students’ point-wise understanding of 

rates of change (Monk, 1994). Based on the Common Core’s call for critiquing the  
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Figure 3.1. Survey instrument, graphs not provided 

Let B(n) be the number of bushels of corn produced on a 10-acre tract of 
farmland that is treated with n pounds of nitrogen.  

A. Assume that B(n) is a linear function with a slope equal to 2 (m = 2)  
0. On the graph to the right, give a rough sketch of what the function B(n) looks like. 

Label the axes, but no need to scale them.  
1. What are the units on the slope, m = 2?  

 
2. Explain what this slope (m = 2) means in the context of the problem.  
3. Using the slope (m = 2), Farmer Jim predicts that by going from 20 pounds of 

nitrogen to 21 pounds of nitrogen, he will produce 2 more bushels of corn. How 
much confidence do you have in Jim’s reasoning? (circle one and provide 
explanation) 

Very Confident Somewhat Confident   Not Confident 
Explanation: 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this season. At the last 
minute, he decides to invest more in nitrogen and increases the application to 30 
pounds. Based on his model, he predicts that will get him 20 additional bushels (2 
bushels for each additional pound of nitrogen). How much confidence do you 
have in Jim’s reasoning? (circle one and provide explanation) 

Very Confident Somewhat Confident   Not Confident 
Explanation: 
 

B. Now, assume that B(n) is a non-linear function. 
0. On the graph to the right, give a rough sketch of what the function B(n) looks like, 

assuming that the nitrogen is helpful to the crop up until a certain point and then 
too much is harmful. Label your axes, but no need to scale them.  

1. What are the units on ? (also known as ) 

2. Explain the meaning of the statement in the context of the problem.  
3. Using the fact that , Farmer Jim predicts that his corn yield will 

increase by 2 bushels when his nitrogen application increases from 20 pounds to 
21 pounds. How much confidence do you have in his reasoning? (circle one and 
provide explanation) 

Very Confident Somewhat Confident   Not Confident 
Explanation: 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this year. Last minute, he 
decides to invest more in nitrogen and raises it to 30 pounds. Since , he 
predicts that the additional nitrogen will yield him 20 additional bushels (2 
bushels for each pound of nitrogen) . How much confidence do you have in Jim’s 
reasoning? (circle one and provide explanation) 

Very Confident Somewhat Confident   Not Confident 
Explanation: 
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Figure 3.2. Survey instrument, graphs provided 

Let B(n) be the number of bushels of corn produced on a 10-acre tract of 

farmland that is treated with n pounds of nitrogen.  

A. Assume that B(n) is a linear function with a slope equal  
to 2 (m = 2), shown in the graph.  

1. What are the units on the slope, m = 2? 
2. Explain what this slope (m = 2) means in the context of 

the problem.  
3. Using the slope (m = 2), Farmer Jim predicts that by going from 20 pounds of 

nitrogen to 21 pounds of nitrogen, he will produce 2 more bushels of corn. How 
much confidence do you have in Jim’s reasoning? (circle one and provide 
explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this season. At the last 
minute, he decides to invest more in nitrogen and increases the application to 30 
pounds. Based on his model, he predicts that will get him 20 additional bushels (2 
bushels for each additional pound of nitrogen). How much confidence do you 
have in Jim’s reasoning? (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 

B. Now, assume that B(n) is a non-linear function, such that nitrogen is helpful to the crop up 
until a certain point and then too much is harmful, as show in the graph. 

1. What are the units on ? (also known as )  

2. Explain the meaning of the statement in the context of the problem.  
3. Using the fact that , Farmer Jim predicts that his corn yield will 

increase by 2 bushels when his nitrogen application increases from 20 pounds to 
21 pounds. How much confidence do you have in his reasoning? (circle one and 
provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this year. Last minute, he 
decides to invest more in nitrogen and raises it to 30 pounds. Since , he 
predicts that the additional nitrogen will yield him 20 additional bushels (2 
bushels for each pound of nitrogen). How much confidence do you have in Jim’s 
reasoning? (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 
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reasoning of others, as well as students’ across-time understanding of rate of change 

(Monk, 1994) the survey included questions A3, A4, B3, and B4. The linear questions 

(A3 and A4) were included to gain an understanding of students’ knowledge of 

predictions based on linear change and are similar to typical textbook/instruction 

presentation of slope.  

 

3.3 Responses of an ideal knower  

In order to frame the analysis, I have included in this section what an “ideal knower” 

would answer, what students would be thinking about while solving each task, and what 

the question is designed to generate data on. These descriptions were used to inform the 

data analysis. 

A: Assume that B(n) is a linear function with a slope equal to 2 (m = 2).  

1. What are the units on the slope, m = 2?  

The ideal knower would respond that the units are bushels (of corn) per pound (of 

nitrogen). This question gets at students’ understanding of the units on the slope, which 

are the units on the dependent variable over the units on the independent variable.  

2. Explain what this slope (m = 2) means in the context of the problem.  

The ideal knower would respond that the slope of 2 means that for each additional 

pound of nitrogen, the number of bushels of corn will increase by 2. This question gets at 

students’ understanding of slope as a constant rate of change, where the ratio of changes 

in variables is constant. This is different than a directly proportional relationship where 

the ratio of amounts is constant, which implies a vertical intercept of zero. They also have  
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to understand the covarying nature of the variables, in other words how the dependent 

variable changes with changes in the independent variable.  

3. Using the slope (m = 2), Farmer Jim predicts that by going from 20 pounds of 

nitrogen to 21 pounds of nitrogen, he will produce 2 more bushels of corn. How much 

confidence do you have in Jim’s reasoning? 

The ideal knower would respond, “very confident,” by understanding that a slope of 2 

represents the increase in bushels per pound of nitrogen, and that it is a constant rate of 

change. As the pounds increase by 1, the yield increases by 2 bushels. This question 

begins to get at students’ across-time understanding of functions, as they have to 

understanding how the dependent variable changes as the independent variable increases 

by one.  

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this season. At the last 

minute, he decides to invest more in nitrogen and increases the application to 30 pounds. 

Based on his model, he predicts that will get him 20 additional bushels (2 bushels for 

each additional pound of nitrogen). How much confidence do you have in Jim’s 

reasoning?  

The ideal knower would respond, “very confident” and explain that the increase of 2 

bushels per pound of nitrogen is constant and would be applied to the ten-pound increase. 

This question is designed to get at students’ knowledge of the slope as a constant rate of 

change, and how it can therefore be applied to any change in the independent variable.  

B: Now, assume D(w) is a non-linear function, such that nitrogen is helpful to the 

crop up to a certain point and then too much is harmful. 

1. What are the units on !"
!"

 ? (also known as 𝐵′(𝑛)) 
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The ideal knower would respond that the units are bushels per pound. This question 

gets at students’ understanding of the units on the derivative, which are the units on the 

dependent variable over the units on the independent variable.  

2. Explain the meaning of the statement 𝐵! 20 = 2 in the context of the problem. 

The ideal knower would respond that when 20 pounds of nitrogen is applied, the corn 

yield is increasing at a rate of 2 bushels per pound of nitrogen. This question gets at 

students’ understanding of the derivative in the context of the problem, and their ability 

to demonstrate a point-wise understanding of the derivative at a point.  

3. Using the fact that 𝐵! 20 = 2, Farmer Jim predicts that his corn yield will 

increase by 2 bushels when his nitrogen application increases from 20 pounds to 21 

pounds. How much confidence do you have in Jim’s reasoning?  

The ideal knower would respond “somewhat confident,” with some explanation of the 

instantaneous rate of change as an appropriate approximation for the marginal change, or 

for input values very close to the input value of the derivative. Students might also 

discuss linear approximation and how the tangent line is a good approximation for the 

function near the point of tangent. This problem is designed to get information about 

students’ understanding of the use of instantaneous rate of change in predicting marginal 

change. The important thing for students to show an understanding about is that the non-

linear nature of the function means the derivative gives an estimate of the change (and 

because information is not given about the type of non-linear function, we cannot be sure 

how much error is involved).  

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this year. Last minute, he 

decides to invest more in nitrogen and raises it to 30 pounds. Since 𝐵! 20 = 2, he 
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predicts that the additional nitrogen will yield him 20 additional bushels (2 bushels for 

each pound of nitrogen). How much confidence do you have in Jim’s reasoning?  

The ideal knower would respond, “Not confident because 2 bushels per pound is the 

instantaneous rate of change for a 20 pound application. Because the function is non-

linear, one can not use the instantaneous rate of change to make a prediction so far away 

from 20-pounds.” This ideal knower would understand that the instantaneous rate of 

change is not a constant rate of change, and cannot be used as an estimate of the rate of 

change except at or around the specific input value. This question is designed to get at 

students’ across-time understanding of instantaneous rates of change. 

 

3.4 Coding of survey data 

I took a modified Grounded Theory approach (Strauss & Corbin, 1990) to analyzing 

the written surveys. Grounded Theory is a qualitative data analysis method widely used 

in similar mathematics education studies (e.g., Byerley & Thompson, 2014; Ferrini-

Mundy & Graham, 1994; Oehrtman, 2009; Orton, 1983). In pure Grounded Theory, the 

researcher does not look at literature until after the data analysis. After an earlier 

literature review, I had an idea of possible categories that would emerge but used 

techniques of Grounded Theory to identify and refine my analysis categories.  

I examined data from the written surveys by categorizing answers from the unit 

questions (A1 and B1), the slope and derivative interpretation questions (A2 and B2), and 

the linear and non-linear critiquing questions (A3, A4, B3, and B4). These 

categorizations helped in identifying themes to be addressed in interviews. 
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3.5 Analysis of survey data 

Before I categorized the written explanations, I examined the correctness of student 

responses, summarizing these as Monk (1994) did by creating 2x2 contingency tables to 

display combinations of right or wrong answers. A sample contingency table is shown in 

Table 3.1.  

 
									Question	B	

Q
ue

st
io
n	
A	

	 Correct	 Incorrect	 Total	

Correct	 30%	 62%	 92%	

Incorrect	 2%	 6%	 8%	

Total	 32%	 68%	 N=69	

Table 3.1. Sample 2x2 contingency table 
 

The focus in the contingency tables is on the shaded diagonal cells, namely those 

students who got exactly one of the questions correct. In the case of the sample 

contingency table in Table 3.1, it is evident that there is an asymmetry in the success 

levels on questions A and B, since a large percentage of students got question A correct 

but went on to get question B incorrect (62%) but only a small percentage of students got 

question B correct and question A incorrect (2%). In other words, the conditional 

probabilities (the probability of an event occurring given that another event has already 

occurred) are not the same.  

Three question comparisons were done: (1) the unit questions for both linear 

(question A1) and non-linear (question B1), (2) the interpretation questions for slope 

(question A2) and derivative (questions B2), and (3) the critiquing Farmer Jim’s 

reasoning questions for linear context (questions A3 and A4) and non-linear context 
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(questions B3 and B4). These comparisons were done to get insight as to whether there 

were significant differences between the success of students on the slope (linear) and 

derivative (non-linear) questions, a key part of my first research question about the 

relationship between students’ understanding of slope and derivative.  

For the unit questions for both slope and derivative (questions A1 and B1), an answer 

was marked as correct if the student stated that the units were “bushels per pound” or 

“bushels of corn per pound of nitrogen.” They must have included the actual units for 

both variables in order for it to be considered a correct answer. For example, “corn per 

nitrogen” or “bushels per nitrogen” were marked as incorrect. Because contingency tables 

compare just “correct” and “incorrect” answers, I did not have any “partially correct” 

codes for this aspect of the analysis.  

For the slope and derivative interpretation questions (questions A2 and B2), the linear 

slope question was marked as correct if the student stated something like “for each 

additional pound of nitrogen, two more bushels of corn are produced.” The key language 

here is that students recognize that the slope represents a constant ratio in the changes in 

variables, thus the “additional” language. For the non-linear question, an answer was 

marked correct if the student stated something like “when the nitrogen is equal to 20 

pounds, the corn yield is increasing at a rate of 2 bushels per pound of nitrogen.” The key 

language here is that students recognize that the derivative represents a rate of change at a 

point. In order for an answer to be marked correct, students had to include units and 

include the context of the problem. For example, answers like “when the nitrogen is equal 

to 20, the corn is increasing at 2” or “it means the slope of the tangent line is equal to 2” 

were marked incorrect. Again, because contingency tables compare just “correct” and 
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“incorrect” answers, I did not have any “partially correct” codes for this aspect of the 

analysis.  

For the critiquing questions in the linear context (A3 and A4) I was looking for 

students with correct reasoning to circle “very confident” in both cases, since the 

relationship is linear and the slope of 2 bushels per pound is a constant. For the critiquing 

questions in the non-linear context (B3 and B4), I was looking for students to have more 

confidence in the 1-pound increase than the 10-pound increase. Therefore, I was looking 

for “somewhat confident” for the 1-pound increase and “not confident” in the 10-pound 

increase as evidence of strong understanding of the ideas. I also accepted the combination 

of “very confident” for the 1-pound and “somewhat confident” for the 10-pound, or “very 

confident” for the 1-pound and “not confident” for the 10-pound. The most important 

aspect of their answer was that they had more confidence in the one-pound increase than 

in the 10-pound increase. For the 2x2 contingency tables, I was not looking at student 

reasoning for these critiquing questions. I just looked to see whether they circled the 

correct level of confidence.  

3.5.1 Comparing surveys with graphs provided versus those without graphs 

I first compared the data from the surveys that provided students with graphs (called 

graph) and the surveys for which students sketched graphs (called no graph) to see 

whether there were differences in student responses. For each of the question 

comparisons, I created two 2x2 contingency tables, one of the graph data and one for the 

no graph data. For each table, I created a 95% confidence interval for the proportion of 

students who had the non-linear question correct given that they had the linear question 

wrong (in other words, a confidence interval around the lower left cell in the contingency 
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tables). To do this, I calculated the adjusted Ward interval (Agresti & Coull, 1998) 

by adding two successes and two failures to my data. The adjusted Ward interval is 

suggested because the use of the normal curve to build a confidence interval is only 

approximate when the data are counts, and the adjusted Ward interval is a better 

approximation, especially when the cell count is very small.  

If the confidence interval for the two proportions (graph and no graph) overlapped, 

then I could conclude that there is no significant difference between the results on the two 

surveys. If they did not overlap, I could conclude there are differences between the graph 

and no graph results. 

Details of these analyses are in Chapter 4, but an example is presented here for 

clarification. Shown are the contingency tables (Tables 3.2 and 3.3) for the slope and 

derivative unit questions (questions A1 and B1). The 95% adjusted Ward confidence 

interval for the proportion of students who had the derivative question correct given that 

they had the slope question incorrect is (0.005, 0.495) for the surveys with the graphs and 

(0.119, 0.769) for the surveys without graphs. Since the confidence intervals overlap, 

there are no significant differences between the responses and therefore I combined the 

data from these surveys. 

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 32%	 19%	 51%	

Incorrect	 3%	 46%	 49%	

Total	 35%	 65%	 N=37	

Table 3.2. Results from unit questions (surveys with graphs) 
 

 



 

 
 

46 

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 38%	 6%	 44%	

Incorrect	 9%	 47%	 56%	

Total	 47%	 53%	 N=32	

Table 3.3. Results from unit questions (surveys without graphs) 
 

3.5.2 Combining the surveys  

In the cases where there were no significant differences between the results from the 

surveys with graphs and without graphs, I combined the data and looked at one 

contingency table for each of the question comparisons. I performed McNemar’s test (∝

 = 0.05), which tests whether there is an asymmetry in the success levels of students on 

the two questions. A significant result shows that the conditional probabilities are not the 

same (Agresti, 2007). In addition to performing the test, I calculated the conditional 

probabilities to highlight their values. 

To continue the unit example above, the contingency table for the combined data is 

presented in Table 3.4. The McNemar test was not significant (p = 0.27), which one 

would expect since the values in the shaded shells are quite similar. The conditional 

probabilities were also similar, with the probability of a student getting the slope correct 

given that the derivative is correct is 0.86, and the probability of a student getting the 

derivative correct given that the slope is correct is 0.77. This indicates that students were 

only slightly more successful at knowing the slope’s units than the derivative’s units, and 

not significantly so. 
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									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 35%	 13%	 48%	

Incorrect	 6%	 46%	 52%	

Total	 41%	 59%	 N=69	

Table 3.4. Results from unit questions (all surveys) 
 

After performing McNemar’s test and calculating the conditional probabilities, I 

categorized the common incorrect responses, using a modified Grounded Theory 

approach. I did not focus on grammar or spelling. Categories that emerged were similar 

for the different types of problems; for example, the slope interpretation and derivative 

interpretation questions had similar categories. The specific categories that emerged, and 

examples of the responses that fit each category, are presented in conjunction with the 

results in Chapter 4. The categories that emerged from the data analysis formed the basis 

of my interview questioning.  

 

3.6 Interviews 

The interview instrument was very similar to the written survey, except the context 

was the amount of drug given to a patient as a function of the patient’s weight (Figure 3.3 

and Appendix C). 

Follow-up clinical interviews (Hunting, 1997) were done during the first half of the 

semester following the survey data collection. Thirteen students participated, eight of 

whom had completed the written survey the previous semester. All the interviewees were 

enrolled in Calculus 2 when the interviews were conducted, and all had either taken 
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Calculus 1 at the university or received Advanced Placement credit for Calculus 1 in high 

school.  

 

Figure 3.3. Interview instrument 
 

For certain drugs, the amount of dose given to a patient, D (in milligrams), 
depends on the weight of the patient, w (in pounds).  

A. Assume that D(w) is a linear function with a slope equal to 2 (m = 2).  
0. On the graph below, give a rough sketch of what the function D(w) looks like. 

Label the axes, but no need to scale them. 
1. What are the units on the slope, m = 2? 
2. Explain what this slope (m = 2) means in the context of the problem.  
3. Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 

2 mg when the patient’s weight changes from 140 pounds to 141 pounds. How 
much confidence do you have in her reasoning? (circle one and provide 
explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 

4. Nurse Jodi accurately doses a 140-pound patient using the model. Her next patient 
is twenty pounds heavier and she reasons that she must increase the dose by 40 
mg (2 mg for each pound of weight). How much confidence do you have in her 
reasoning? (circle one and provide explanation) 

Very Confident  Somewhat Confident   Not Confident 
Explanation: 

B. Now, assume D(w) is a non-linear function.  
0. On the graph below, give a rough sketch of what the function D(w) might look 

like. 

1. What are the units on ? (also known as ) 

2. Explain the meaning of the statement in the context of the problem.  
3. Using the fact that , Nurse Jodi predicts that a patient’s dose will 

increase by 2 mg when the patient’s weight changes from 140 pounds to 141 
pounds. How much confidence do you have in her reasoning? (circle one and 
provide explanation) 

Very Confident Somewhat Confident   Not Confident 
Explanation: 

4. Nurse Jodi accurately doses a 140-pound patient using the model. Her next patient 
is 160-pounds and she reasons that since , she must increase the dose 
by 40 mg (2 mg for each pound of weight). How much confidence do you have in 
her reasoning? (circle one and provide explanation). 

Very Confident Somewhat Confident   Not Confident 
Explanation: 
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Students were asked to “think out loud” while they worked through the problems. I 

asked follow-up questions throughout the interview. For example, if a student sketched 

their graph but did not follow the direction that stated “label your axes,” I made sure to 

remind them that the question asked to label their axes. As another example, if a student 

drew their linear function through the origin, then after answering the slope interpretation 

question I asked whether their answer would change if their graph did not go through the 

origin.  

Interviews allowed me to probe student thinking more deeply, especially focusing on 

themes that emerged in the survey data analysis. I kept the survey data’s findings in the 

forefront as I conducted the interviews. For example, one of the categories from the 

written survey data analysis was the need for another derivative to predict the change in 

dosage. If an interviewee engaged in this sort of reasoning, I asked, “Why do you need a 

different derivative to answer the question? What could you do with that information if 

you had it?”  

The interviews lasted 30-45 minutes and written work and audio were recorded with a 

LivescribeTM pen. Students were given a $25 gift card to the university’s bookstore for 

participation in the interview.  

 

3.7 Analysis of interview data 

Immediately following each interview, I wrote a reflective field note of the interview. 

I summarized the interview question by question, transcribing student answers that were 

pertinent to the themes and unanswered questions from the survey data analysis. I copied 
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the graphs from the LivescribeTM recording into the field notes, writing comments about 

what was being said during the sketching of the graphs.  

I also made notes about whether the answers were “ideal knower-like,” fell into one 

of the categories from the survey data, and/or whether they were similar to previous 

interviewee responses. I examined whether the responses were similar to the larger 

sample of written survey data, and documented in the field notes any new themes that 

were emerging from the interview data. This was an interactive process that went on after 

each individual interview; I did not wait until all the interviews were completed to start 

this analysis. The process of creating the field notes and analyzing the interview helped 

inform future interview questions, as themes emerged that were not explicit in the survey 

data.  
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4. SURVEY DATA RESULTS 

The 69 surveys were analyzed using the methods outlined in Chapter 3. While many 

of the students answered parts of the survey like an “ideal knower,” none of the students 

answered all questions correctly using “ideal knower” reasoning.  

Results are presented below for the three types of questions: units (questions A1 and 

B1), slope and derivative interpretation (questions A2 and B2), and linear and non-linear 

critiquing of Farmer Jim’s predictions (questions A3-A4 and B3-B4). One overarching 

theme throughout the analyses is that students’ underdeveloped understanding of slope 

(seen by many as a ratio-of-totals) seems to impact their abilities to both interpret the 

derivative and understand how it can be used to make predictions. 

 

4.1 Students’ understanding of units on slope and derivative  

Questions A1 and B1 addressed the units on the slope and derivative, respectively. In 

question A1, students were asked, “what are the units on the slope, m = 2?” and on 

question B1, students were asked, “what are the units on !"
!"

 (also known as 𝐵′(𝑛))?” The 

correct answer for both the slope and derivative questions was “bushels per pound.” 

4.1.1 Students perform similarly on unit questions with and without graphs 

provided 

As discussed earlier, there were two versions of the survey, one that provided 

students with the graphs of the linear and non-linear relationships, and one where 

students had to sketch the graphs. Whereas one would perhaps expect that students would 

perform better on the surveys where the graphs were provided for students, this was 

shown to not be the case for the unit questions (see section 3.5.1 for a discussion of the 
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methods used to make this determination). The 2x2 contingency tables for the percentage 

of students who got the questions correct are in Table 4.1 (for the surveys where the 

graphs were provided to students) and Table 4.2 (for the surveys where students had to 

sketch the graphs).  

									Derivative	

Sl
op

e	
	 Correct	 Incorrect	 Total	

Correct	 32%	 19%	 51%	

Incorrect	 3%	 46%	 49%	

Total	 35%	 65%	 N=37	

Table 4.1. Results from unit questions (surveys with graphs) 

 

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 38%	 6%	 44%	

Incorrect	 9%	 47%	 56%	

Total	 47%	 53%	 N=32	

Table 4.2. Results from unit questions (surveys without graphs) 

 

For the graph data, the 95% adjusted Ward confidence interval for the proportion of 

students who got the derivative question correct given that they got the slope question 

incorrect (in other words, a confidence interval around the lower left cell in the 

contingency tables) is (0.005, 0.495). For the no graph data, the confidence interval is 

(0.119, 0.769). The fact that these confidence intervals overlap signal that there are no 

significant differences between the responses for the graph and no graph surveys. In the 

analysis that follows, I combine the data from these questions. 
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4.1.2 No significant differences between students’ success on slope and derivative 

units 

Whereas one might expect students to perform better on questions involving slope 

than questions involving derivative, this was not the case in the questions that required 

students to identify the units. The 2x2 contingency table for the combined data, 

comparing the slope unit question (A1) with the derivative unit question (B1) is shown in 

Table 4.3.  

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 35%	 13%	 48%	

Incorrect	 6%	 46%	 52%	

Total	 41%	 59%	 N=69	

Table 4.3. Results from unit questions (all surveys) 

 

Performing the McNemar test and examining conditional probabilities gives us 

information about whether the students were more successful at one of the types of 

problems. The McNemar test was not significant (p = 0.27), which one would expect 

from looking at the table since the values in the shaded cells are quite similar. The 

conditional probabilities were also similar, with the probability of a student getting the 

slope correct given that the derivative is correct being 0.86, and the probability of a 

student getting the derivative correct given that the slope is correct being 0.77. This 

indicates that students were only slightly more successful at knowing the slope’s units 

than the derivative’s units, and not significantly so.  
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4.1.3 Categories of student responses to slope unit question 

After looking at answers in terms of just “correct” (“bushels per pound”) and 

“incorrect,” the incorrect answers were examined in more detail. The answers were 

examined and common patterns emerged. While almost 50% of the students answered the 

question correctly, it became evident from the incorrect responses that many students 

struggled with identifying the units of the slope of a linear function, a concept first seen 

in middle school. In order for students to recognize the units on the slope, they must 

understand that the slope is a ratio of the dependent variable to the independent variable, 

and therefore recognize that the units on the slope are the units on the dependent variable 

over the units on the independent variable.  

The struggles that students displayed were categorized into five large types: (1) 

students who knew that the unit of the slope is a ratio, but did not use units in their ratio 

or switched the order of the ratio, (2) students who knew that the units involved either 

“bushels” and/or “pounds” but combined them incorrectly or used just one, (3) students 

who introduced “acres” into their answer, (4) students who left the question blank or 

answered “unitless,” and (5) students who gave an answer that showed no knowledge of 

units. 

Some students used variable names instead of units, for example, “B/n” or 

“corn/nitrogen,” showing some knowledge of slope as change in the dependent variable 

over the change in the independent variable, but not recognizing the difference between a 

variable name and the unit of measurement. Some students used the units, but put them in 

a different order (“pounds per bushel”) or used one variable name and one unit (“bushels 

per nitrogen”), once again recognizing that slope is a ratio and has to do with division.  
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Some students just used one of the units (“bushels” or “pounds”), and three students 

used something other than division to combine the units, either multiplying (bushels x 

pound), or squaring a unit (bushels per pound-squared). These students used a unit name 

(as opposed to a variable name), but did not show knowledge of slope as a ratio of the 

dependent variable to the independent variable.  

Quite a few students introduced acres into the units (for example, bushels per acre, 

acre per square foot, or pounds per acre). It seems likely that this is because in the 

description of the problem it said that the tract of land that the corn was grown on was 10 

acres. While the size of the tract was not a relevant piece of information, it appears that 

because the size of the tract was given (including its units), 10% of the students used it in 

their answer. 

Some students left the question blank or answered that the slope is unitless. Another 

group of students gave answers that did not demonstrate knowledge of units (for 

example, “up 2 over 1,” “(2, 0) and (3, 2),” or “(B, n)”).  

Close to half the students produced the correct answer; another 11.6% recognized it 

as a ratio. The distribution of response types is summarized in Table 4.4. There does not 

seem to be any one dominant incorrect answer.  

 

Correct 
Gave 

answer as 
ratio 

Used correct 
parts but 
combined 
incorrectly 

Introduced 
acres into 

answer  

Left blank, 
or stated 

“unitless” 

No 
demonstrated 
knowledge 

of units 
33 

47.8% 
8 

11.6% 
12 

17.4% 
7 

10.1% 
4 

5.8% 
5 

7.2% 
Table 4.4. Student responses for the slope unit question 
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4.1.4 Categories of student responses to unit derivative question 

For the derivative unit question, the same categories emerged. While the percentage 

of students answering correctly was lower (40.6% for derivative versus 47.8% for slope), 

more students who answered incorrectly for the derivative question gave their answer as 

a ratio (21.7% of derivative responses versus 11.6% of slope responses). Samples of 

answers that fell into the “no demonstrated knowledge of units” category included things 

like “B = 1, n = 20” and “20, 40, 60.” The distribution of responses is presented in Table 

4.5. 

Correct 
Gave 

answer as 
ratio 

Used correct 
parts but 
combined 
incorrectly 

Introduced 
Acres into 

answer  

Left blank, 
or stated 

“unitless” 

No 
demonstrated 
knowledge 

of units 
28 

40.6% 
15 

21.7% 
11 

15.9% 
3 

4.3% 
6 

8.7% 
6 

8.7% 
Table 4.5. Student responses for the derivative unit question 

 

Of the 36 students who did not answer the slope unit question correctly, only four 

answered the derivative question correctly. For those four students, on the slope unit 

question two of them switched the order of the variables (stating pounds per bushel), one 

said the slope was unitless, and one introduced acres into the answer (corn per acre). 

There does not seem to be a pattern among these students’ incorrect slope answers. 

4.1.5 Summary of students’ successes and struggles with the unit questions 

There were no significant differences between students’ success on the slope unit 

problem and the derivative unit problem. In both cases, less than half of the students 

answered the question correctly. Without knowledge of the units on these rates of change, 
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it seems unlikely that a student would be able to interpret the meaning of the slope and/or 

derivative in the context of the problem, which was asked of them next in the survey.  

On both the slope and derivative questions, some students who answered correctly 

were able to give their answer as a ratio, demonstrating some knowledge of slope and 

derivative as a ratio. However, many more students gave answers that were not ratios, did 

not include the correct variables, and demonstrated very little knowledge of units. While 

my research questions do not directly deal with units, students need knowledge of units in 

order to interpret the slope and derivative in context, the next question in the survey.  

 

4.2 Students’ abilities to interpret the slope and derivative in context 

Questions A2 and B2 addressed interpretation of the slope and derivative, 

respectively. In question A2, students were asked to “explain what this slope (m = 2) 

means in the context of the problem” and on question B2, students were asked to “explain 

the meaning of the statement 𝐵! 20 = 2 in the context of the problem.” On the slope 

question, for the answer to be correct, students had to demonstrate that they understood 

that a slope of 2 means that for each additional pound of nitrogen, the number of bushels 

will increase by 2. For correct answers to the derivative question, students had to state 

that when 20 pounds of nitrogen is applied, the corn yield is increasing at a rate of 2 

bushels of corn per pound of nitrogen.  

4.2.1 Students perform similarly on interpretation questions with and without 

graphs provided  

As was the case with the unit questions, it was shown that students performed 

similarly on the interpretation questions with and without the graphs provided. The 2x2 
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contingency tables for the slope and derivative interpretation results are in Table 4.6 (for 

the surveys giving the graphs) and Table 4.7 (for the surveys where students had to 

sketch the graphs).  

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 8%	 19%	 27%	

Incorrect	 3%	 70%	 73%	

Total	 11%	 89%	 N=37	

Table 4.6. Results from interpretation questions (surveys with graphs) 

 

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 0%	 6%	 6%	

Incorrect	 16%	 77%	 93%	

Total	 16%	 83%	 N=32	

Table 4.7. Results from interpretation questions (surveys without graphs) 

 

For the graph data, the 95% adjusted confidence interval for the proportion of 

students who got the non-linear question correct given that they got the linear question 

incorrect (in other words, a confidence interval around the lower left cell in the 

contingency tables) is (0.005, 0.495). For the no graph data, the confidence interval is 

(0.491, 0.781). As before, overlapping confidence intervals demonstrate no significant 

differences between the graph and no graph data, and so from this point on, I combine 

the data from these questions. 
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4.2.2 No significant differences between students’ success on slope and derivative 

interpretations 

One might expect that students would be more successful interpreting the slope than 

derivative, since students have been exposed to slope since middle school. However, 

based on the survey data, this was not the case. The 2x2 contingency table for the 

combined data, comparing the slope interpretation question (A2) with the derivative 

interpretation question (B2) is shown in Table 4.8.  

									Derivative	

Sl
op

e	

	 Correct	 Incorrect	 Total	

Correct	 5%	 13%	 18%	

Incorrect	 9%	 74%	 83%	

Total	 14%	 87%	 N=69	

Table 4.8. Results from interpretation questions (all surveys) 

Performing the McNemar test and examining conditional probabilities can give us 

information about whether the students were more successful at one of the types of 

problems. The McNemar test was not significant (p = 0.61). The conditional probabilities 

were also similar, with the probability of a student getting the slope interpretation correct 

given that the derivative interpretation is correct being 0.33, and the probability of a 

student getting the derivative interpretation correct given that the slope interpretation is 

correct being 0.25. Students were not more successful in interpreting the slope than in 

interpreting the derivative and students’ success at interpreting slope does not seem to 

make them more likely to interpret derivative correctly, as seen by the results of the 

McNemar test and examination of the conditional probabilities.  
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4.2.3 Categories of student responses to the slope interpretation question 

In examining student responses to the question of what a slope of 2 means in the 

context of the linear problem, 17.4% of students responded correctly, stating something 

like “for each additional pound of nitrogen, two more bushels of corn are produced.” The 

key language here is that students recognize that the slope represents a constant ratio in 

the changes in variables, thus the “additional” language.  

The incorrect answers were categorized into two groups. Many students (39.1% of the 

total number of students) responded using language that implied they were assuming a 

directly proportional relationship that goes through the origin, in other words that the 

slope represents a constant ratio in the variable values !
!

. The most common response 

was that “2 represents the number of bushels produced per pound of nitrogen” or “for 

every pound of nitrogen, 2 bushels of corn are produced,” implying a directly 

proportional relationship of 𝐵(𝑛) = 2𝑛. This was coded as a “ratio-of-totals” 

interpretation, and denoted as 𝐵(𝑛) = 2𝑛. It is important to note that the difference 

between the correct answer and a “ratio-of-totals” answer is very subtle. The difference 

could be as subtle as the word “additional” being absent from the statement “for each 

additional pound of nitrogen, 2 bushels of corn are produced.”  

The remaining responses (43.4% of the total) were incorrect in some way other than 

the ratio-of-totals approach. For example, some gave answers out of context such as “the 

rate of increase of the function,” or gave vague answers such as “it tells us that the corn is 

increasing,” “it relates to how adding more N changes the bushel production,” or “it tells 

us how the function grows over time.” No strong patterns or groupings emerged in this 

large group of respondents.  
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Table 4.9 summarizes the results. While there is only a subtle difference between the 

correct answer (“for every additional pound of nitrogen, 2 more bushels of corn are 

produced”) and the ratio-of-totals interpretation (“for every pound of nitrogen, 2 bushels 

of corn are produced”), this becomes an important distinction when analyzing the 

derivative survey data and the interview data.  

Correct 
Ratio-of-Totals 
Interpretation 
𝐵(𝑛) = 2𝑛 

Other 
Incorrect 

12 
17.4% 

27 
39.1% 

30 
43.4% 

Table 4.9. Student responses for the slope interpretation question, N = 69 

4.2.4 Categories of student responses to the derivative interpretation question 

In examining students’ responses to the question of what 𝐵! 20 = 2 means in the 

context of the non-linear problem, 13.0% responded correctly, saying something like 

“when the nitrogen is equal to 20 pounds, the corn yield is increasing at a rate of 2 

bushels per pound of nitrogen.” The key here is that students recognized that the 

derivative represents a rate of change (2 bushels per pound) at a specific point (in this 

case, 20 pounds).  

For the incorrect responses, five categories emerged. 10.1% of students responded 

similarly to a correct response, except with no units or incorrect units, answering, for 

example, “when the nitrogen is equal to 20 pounds, the corn is increasing at a rate of 2.” 

These students demonstrated some knowledge of the derivative as an instantaneous rate 

of change, but their demonstration was not complete because it lacked units.  

Even more students (15.9%) responded using language that implied they were 

assuming that the rate of change could be used to calculate the total yield, stating that the 
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derivative means “that at 20 pounds, there are 2 bushels produced for each pound of 

nitrogen.” Some went on to conclude that this gave a total yield of 40 bushes, implying 

that 𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛. This language is similar to the “ratio-of-totals” response for the 

slope, where students responded that for each pound of nitrogen, there are 2 bushels of 

corn produced.  

Other students (10.1%) interpreted the derivative as the function value, concluding 

that 𝐵! 20 = 2 means that when 20 pounds of nitrogen are applied, the total number of 

bushels is equal to 2. The final two categories were for responses from students who gave 

a correct answer but not in the context of the problem (for example, “it is the slope of the 

tangent line when n = 20”) and those who gave incorrect answers that did not fit into the 

other categories (18.8% and 31.9% respectively). Table 4.10 summarizes these results. 

Correct Correct but 
no/wrong units 𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛 𝐵! 𝑛) = 𝐵(𝑛  No context Other 

Incorrect 
9 

13.0% 
7 

10.1% 
11 

15.9% 
7 

10.1% 
13 

18.8% 
22 

31.9% 
Table 4.10. Student responses for the derivative interpretation question, N = 69 

4.2.5 Summary of students’ successes and struggles with the interpretation 

questions  

Slightly more students were successful on the slope interpretation question (17.4%) 

verses the derivative interpretation question (13.0%). But students’ success at interpreting 

slope does not seem to make them more likely to interpret derivative correctly. This is a 

surprising finding, as it seems reasonable to assume that because slope and derivative are 

such similar concepts that a strong understanding of slope would translate into a higher 

likelihood of getting the derivative question correct. 
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Most relevant for this research is that of the 11 students (16%) who answered the 

derivative question using the “𝐵(20) = 𝐵! 20 ∗ 20” interpretation, 8 of them answered 

the linear question using the incorrect ratio-of-totals interpretation (𝐵 = 2𝑛). In other 

words, 73% of the students who thought that the derivative could be used to calculate a 

total yield (by multiplying the rate of change by the number of pounds to get total 

bushels) also interpreted the slope using an analogous ratio-of-totals approach (total 

bushels equals slope times number of pounds). It seems like students’ misunderstanding 

of slope as a ratio-of-totals is impacting their abilities to interpret the derivative as an 

instantaneous rate of change. 

 

4.3 Students’ abilities to critique the reasoning of others and demonstrate 

understanding of using rates of change to make predictions 

Questions A3 and A4 addressed the ability to critique the reasoning of Farmer Jim in 

a linear context, using the slope to make predictions. In question A3, Farmer Jim used the 

slope of m = 2 to “predict that by going from 20 pounds of nitrogen to 21 pounds of 

nitrogen, he will produce 2 more bushels of corn.” Students were then asked whether they 

were “very confident,” “somewhat confident,” or “not confident” in his prediction and to 

explain why. Question A4 was similar, except Farmer Jim predicts that by adding an 

additional 10 pounds of nitrogen, he will get an additional 20 bushels of corn.  

Questions B3 and B4 also had Farmer Jim making similar predictions, but this time in 

a non-linear context using the derivative. In B3, he uses the fact that 𝐵! 20 = 2 to 

predict that his yield will increase by 2 bushels when his nitrogen application increases 
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by 1 pound. In B4, he uses 𝐵! 20 = 2 to predict that his yield will increase by 20 

bushels when his nitrogen application increases by 10 pounds.  

4.3.1 Students perform similarly on critiquing questions with and without 

graphs provided 

As with previous questions, here too it was shown that students performed similarly 

on questions with and without the graphs provided. For the linear context (questions A3 

and A4), answers were considered correct for the contingency table analysis if the 

students responded “very confident” in both cases. For the non-linear context (questions 

B3 and B4), students who responded with more confidence in B3 than in B4 were 

considered correct. Many students circled “somewhat confident” for the first part (since 

the derivative can be used to estimate a change in the dependent variable close to the 

given input value) and “not confident” for the second part (because the non-linear 

function’s derivative can only be used around the given input value). Also considered 

correct were responses stating, for example, “very confident” for the first part and “not 

confident” for the second part. The important feature for a response to be considered 

correct was that there was more confidence in the one-pound increase than in the 10-

pound increase. The student explanations were not considered for the contingency table 

analysis.  

The 2x2 contingency tables for the results of critiquing Farmer Jim’s predictions are 

in Table 4.11 (for the surveys where the graphs were given) and Table 4.12 (for the 

surveys where students had to sketch the graphs).  
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									Non-Linear	Context	

Li
ne

ar
	C
on

te
xt
	 	 Correct	 Incorrect	 Total	

Correct	 30%	 35%	 65%	

Incorrect	 5%	 30%	 35%	

Total	 35%	 65%	 N=37	

Table 4.11. Results from critiquing questions (surveys with graphs) 

									Non-Linear	Context	
Li
ne

ar
	C
on

te
xt
	 	 Correct	 Incorrect	 Total	

Correct	 31%	 44%	 75%	

Incorrect	 0%	 25%	 25%	

Total	 31%	 69%	 N=32	

Table 4.12. Results from critiquing questions (surveys without graphs) 

For the graph data, the 95% adjusted Ward confidence interval for the proportion of 

students who had the derivative question correct given that they had the slope question 

incorrect (in other words, a confidence interval around the lower left cell in the 

contingency tables) is (0.028, 0.394). For the no graph data, the confidence interval is (0, 

0.256). As once again the confidence intervals overlap showing no significant differences 

between the graph and no graph data, I combine the data from these questions. 

4.3.2 Students more successful on slope than on derivative critiquing questions 

Like before, one might expect that students would be more successful with the 

critiquing questions involving linear context (using slope) than with a non-linear context 

(using derivative), since slope is a concept students have seen for many years. In the 

critiquing questions this was the case; students were more successful with the linear slope 

questions. 
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The 2x2 contingency table for the combined data, comparing the linear critiquing 

questions question (A3 and A4) with the non-linear critiquing questions (B3 and B4) is 

shown in Table 4.13.  

									Non-Linear	Context	

Li
ne

ar
	C
on

te
xt
	 	 Correct	 Incorrect	 Total	

Correct	 30%	 39%	 69%	

Incorrect	 3%	 28%	 31%	

Total	 33%	 67%	 N=69	

Table 4.13. Results from critiquing questions (all surveys) 

The McNemar test was significant (p < 0.001), which is evident from the table since 

the values in the shaded cells are very different. The conditional probabilities were also 

very different. The probability of a student getting the linear critiquing question correct 

given that the non-linear critiquing question is correct was 0.91, and the probability of a 

student getting the non-linear question correct given that the linear question is correct 

was 0.44. Students performed significantly better on the linear slope critiquing questions 

as compared to the non-linear derivative critiquing questions. This demonstrates an 

understanding of the slope as a constant rate of change that can be applied at any input-

value, but shows misunderstandings in how to use the derivative to make predictions.  

4.3.3 Categories of reasoning responses to linear critiquing questions 

A large majority of students (69.9%) answered the two linear critiquing questions 

correctly, stating that they were confident about both the one-pound and ten-pound 

increase and providing reasoning like “the slope is a constant rate of change, where for 

each additional pound of nitrogen you get two bushels of corn.”  
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An analysis of the incorrect answers resulted in four categories. A few students 

(2.9%) stated that they did not have enough information to answer the question. Others 

(10.1%) incorrectly interpreted the slope stating, for example, that they were not 

confident in Jim’s answers because a slope of 2 means that a 10-pound increase would 

yield an additional 10 bushels. Other students (10.1%) brought in additional ideas based 

on the context of the problem, saying that they were not confident in the 10-pound 

increase because they did not know when the yield would plateau, or at some point too 

much nitrogen would be bad for the crop. Lastly, there was a small percentage of students 

(7.2%, categorized as “other incorrect”) who did not give a reason for their circled 

answers, were confused by the context of the problem, or interpreted “increased to 30 

pounds” as “increased by 30 pounds,” which led them to conclude that the drug should be 

increased by 60 mg.  

Table 4.14 summarizes the results. Most interesting is the large percentage of students 

who answered these questions correctly, much higher than the other slope questions 

(units and interpretation). Students seem to have a good understanding of slope being a 

constant rate of change, and therefore being able to use the slope to make predictions 

over any interval. 

Correct 

Not 
enough 
info to 
answer 

Questions about 
context 

Incorrect 
interpretation 

of slope 

Other 
Incorrect 

48 
69.6% 

2 
2.9% 

7 
10.1% 

7 
10.1% 

5 
7.2% 

Table 4.14. Student responses for critiquing with the linear context, N = 69 
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4.3.4 Categories of reasoning responses to derivative critiquing questions 

Whereas 69.9% of students answered the two linear critiquing questions correctly, 

only 15.9% answered the non-linear critiquing questions correctly. These students stated, 

for example, that they were “somewhat confident” or “very confident” about the 

interpretation in the one-pound increase scenario. However, they were “not confident” in 

the ten-pound increase scenario, and gave explanations about the derivative being a good 

approximation close to 20 pounds. Only two students used linear approximation language 

in their reasoning, which is the language introduced in a differential calculus course.  

An analysis of the incorrect answers resulted in four categories. Some students 

(14.4%) stated that they needed another derivative to answer the question, for example, 

they needed the derivative at 21 or 30. Still others (4.3%) said they needed to know 

where the derivative was zero (or where the critical point of the function was located). 

Another category of answers was for responses from those students who stated they 

were “not confident” in both predictions. Thirteen students (18.8%) said this was because 

the relationship is non-linear, and therefore the derivative is different at each weight. 

Ideally, students should acknowledge more confidence in the one-pound increase (a 

marginal increase) than the ten-pound increase, but these students were equally skeptical 

about both.  

A small percentage of students (4.3%) answered “confident” on both, and gave 

reasoning such as “for each pound of nitrogen, 2 bushels are produced,” which would 

only be appropriate for a linear function.  

Lastly, a large number of students’ responses (42%) fell into the incomplete or 

incorrect category, and did not fall into the other categories. For example, one student 
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mentioned, “too much nitrogen can be harmful” and then circled “somewhat confident” 

in both cases. Another student circled “not confident” in both cases and gave reasoning 

that stated that the farmer “is treating the rate of change like it’s the bushels/pound of 

nitrogen value B(n).”  

Table 4.15 summarizes the results. The percentage correct in Table 4.15 does not 

match the 33% who answered correctly in the 2x2 contingency table because many of 

those who circled correct responses did not provide valid reasoning for their answers. 

Correct 

Need 
another 

derivative 
to make 

prediction 

Need to know 
maximum/critical 

value to make 
prediction 

Not 
confident on 

both 
predictions 

because 
relationship 
is non-linear 

Confident 
on both 

because for 
each pound 
of nitrogen, 

2 bushels are 
produced 

Other 
Incorrect 

11 
15.9% 

10 
14.4% 

3 
4.3% 

13 
18.8% 

  3 
4.3% 

29 
42.0% 

Table 4.15. Student responses for critiquing with the non-linear context, N = 69 

Given the struggles many students had with the units and interpretation questions, 

namely thinking of slope as the ratio-of-totals and using the derivative analogously to 

calculate the total yield (𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛), it seemed likely that a higher percentage of 

students’ responses would be in the “confident on both because for each pound of 

nitrogen, 2 bushels are produced” category. But, perhaps many of the “need another 

derivative to make the prediction” students would want that other derivative in order to 

calculate the total yield. This is something that was explored in the interviews.  

4.3.5 Summary of students’ successes and struggles with the critiquing questions  

Many more students were successful on the linear critiquing questions (69%) as 

compared to the non-linear critiquing questions (15.9%). Students showed an 
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understanding of the slope as a constant rate of change that can be used to make 

predictions over any interval. Students, however, had large gaps in their understanding of 

when it was appropriate to use a derivative of a non-linear function to make predictions. 

Almost 20% of the students said that they were not confident in Farmer Jim’s predictions 

at both the one-pound increase and the ten-pound increase, indicating they do not 

understand the distinction between approximations for a value near the point of interest 

and a value far away. Another 14% said they needed to know the derivative at a different 

point in order to estimate the change in bushels.  

On the interpretation questions, while many students took a ratio-of-totals approach 

for the slope (39.1%) and an analogous approach to the derivative questions by using the 

derivative to calculate the total (15.9%), only 4.3% of students reasoned similarly on the 

non-linear critiquing questions. There were, however, 14.4% of students who stated they 

needed another derivative, and it is not clear from their explanations why they felt a need 

for this other derivative.  

 

4.4 Summary of survey results 

Some key themes emerge from the survey data. First, there were no significant 

differences between the findings based on data from the graph and no graph surveys for 

any of the questions. Originally, I had thought that by providing the graphs, students 

might be more successful in answering the questions, or might be less apt to make 

assumptions, such as the origin-assumption for the linear graph (which might lead to an 

incorrect ratio-of-totals approach to the slope). However, this was not the case, and 



 

 
 

71 

because there were no significant differences, I was able to combine the data for 

subsequent analyses. 

Second, whereas students performed similarly on the slope and derivative questions 

for the units and interpretation scenarios, students performed much better on the linear 

(slope) critiquing problems as compared to the non-linear (derivative) critiquing 

scenarios. This is apparent in Figure 4.1, which provides an overview of how students did 

on the slope and derivative questions for the three scenarios.  

 

Figure 4.1. Students’ success rates on the slope and derivative questions for the three 
types of scenarios (units, interpretation, and critiquing) 

 

Third, looking at individual results for each scenario, students had difficulty with the 

unit questions, with only 35% of the students answering both the slope and derivative 

questions with correct units. Even more surprising was that students did not perform 

significantly better on the slope unit question than the derivative one. Units appear to be 

difficult for students, regardless of whether they are units for a linear relationship or units 

for a non-linear relationship. Units are a key part of understanding and interpreting rates 

of change, and by not recognizing the units on a slope or derivative, it seems unlikely that 

students would have a complete understanding of these rates of change.  
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Fourth, for the interpretation questions, students performed very poorly, with only 5% 

of students answering both the linear and non-linear questions correctly. The McNemar’s 

test shows no significant differences in the marginal probabilities. For the linear 

interpretation, 17% of students answered correctly, and more than twice that many (39%) 

gave a ratio-of-totals answer, implying 𝐵(𝑛) = 2𝑛. This subtle difference (recognizing 

the slope as the “change in y over change in x,” instead of “y over x”) might be leading to 

misunderstandings with more complex concepts such as the derivative. Given that 

understanding slope in a functional context as a rate of change is necessary in 

understanding derivative, this is a very concerning result. The ability of students to 

interpret the slope and derivative in the context of the real-life situations is core to 

understanding these rates of change, but it is clear that most surveyed students are unable 

to correctly answer these questions.  

For the non-linear interpretation question, only 13% of students answered correctly, 

with 16% taking the approach that you can use the derivative to find the total value 

(𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛). Eight of the eleven students who answered using this approach also 

answered the slope interpretation question using the ratio-of-totals (𝐵(𝑛) = 2𝑛) 

interpretation. While an ideal knower would understand that the slope is the ratio-of-

changes, students who think of it as a ratio-of-totals seem to be bringing this 

misunderstanding to their interpretation of the derivative. Their incorrect view of slope as 

the ratio-of-totals seems to be clouding their ability to correctly interpret the derivative as 

an instantaneous rate of change.  

Lastly, for the critiquing questions, in examining whether students correctly circled 

the level of confidence, as presented in the 2x2 contingency table, 30% correctly circled 
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valid confidence levels for both the linear and non-linear. But, when examining their 

reasoning, many did not provide valid reasons. When I looked at the reasons for their 

responses, I found that 70% gave valid correct answers for the linear critiquing, but only 

16% gave valid correct answers for the non-linear critiquing, with only two students 

mentioning linear approximation and the use of the derivative to make approximations 

near the known value.  

Many students had the same level of confidence in the one-pound increase as in the 

10-pound increase (23.1%), showing no understanding of losing accuracy in the 

prediction when moving away from the known value. Another group of students (14.4%) 

said that they could not answer the non-linear prediction questions because they needed 

another derivative, namely the derivative at 21 pounds or 30 pounds. Both of these fail to 

show understanding of the derivative as an instantaneous rate of change that can only be 

used at (or near) the known input value.  

In summary, the survey results showed that students struggle with key ideas 

surrounding slope and derivative as rates of change. While student did significantly better 

on the linear critiquing question (as compared to the non-linear critiquing question), they 

did not perform significantly better on the slope unit and slope interpretation questions. 

Their struggles seem to be rooted in their knowledge of slope, as many of their 

misunderstandings of slope manifested themselves again in their answers to the 

derivative questions.  
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5. INTERVIEW DATA RESULTS 

The written surveys gave much insight into my two research questions, though there 

were several findings that called for further investigation. In planning follow up 

interviews with survey respondents, I chose to delve more into the following questions 

that arose from the survey data: 

• Did interviewees have similar difficulties to the surveyed students on the unit 

questions for slope and derivative, where only 35% of the surveyed students 

identified correct units on both the slope and derivative? If they had more success, 

could it be attributed to the different context (drug dose instead of corn yield)? 

• Did the interviewees answer the slope interpretation question using the incorrect 

ratio-of-totals interpretation (𝐵(𝑛) = 2𝑛), thus implying a directly proportional 

relationship, and the derivative interpretation question using the analogous 

explanation (𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛)? If so, what was their reasoning? 

• Did the interviewees give similar answers to the prediction questions as the 

survey responders? In particular, twenty-eight percent (22.1%) of the surveyed 

students did not distinguish between the 1-pound and the 10-pound increases for 

the non-linear context, giving similar confidence levels and reasoning. And, 14% 

stated that they did not agree with Farmer Jim because they needed a different 

derivative to answer the question. Did similar responses emerge from the 

interviewees, and if so, would follow-up questioning get at the reasoning behind 

these responses?  
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These questions were at the forefront of my mind as I interviewed the thirteen 

students. Of the thirteen interviewees, only one (Jarrod1) gave what I consider ideal 

answers for all questions. Excerpts of Jarrod’s interview are presented throughout the 

chapter to illustrate ideal answers and to identify important points to keep in mind when 

examining other interviewee’s responses and comparing them to the desired, ideal 

answers.  

 

5.1 Students’ understanding of units on slope and derivative  

Students were asked to give the units on the slope and derivative using the context of 

the problem. Recall the context for the interview questions: “For certain drugs, the 

amount of dose given to a patient, 𝐷 (in milligrams), depends on the weight of the 

patient, 𝑤 (in pounds).” In the linear question, students were to assume that 𝐷(𝑤) is a 

linear function with a slope = 2 and were asked for the units on the slope. In the non-

linear question, students were to assume that 𝐷(𝑤) is a non-linear function and were 

asked for the units on dD
dw

 (also known as 𝐷′(𝑤)). While not explicitly described in the 

research questions, understanding of units on rates of change is necessary in order to 

interpret the meaning of a rate of change in the context of a problem.  

5.1.1 Summary of unit question results from the surveys 

The survey results showed no significant differences between students’ success on the 

slope unit question and the derivative unit question. On the individual slope and 

derivative unit questions, success rates were less than 50%, and only 35% of the students 

                                                
1 All names used are pseudonyms; gender was preserved in the name choices. 
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answered both unit questions correctly. With the low success rates on the unit questions, 

it was not surprising that students struggled with the interpretation questions that 

followed in the interviews. Approximately 10% of the students incorrectly introduced 

“acres” into their unit responses; I changed the context in the interview questions to one 

that did not contain extraneous units to see whether this might have influenced the 

success rates.   

5.1.2 Ideal knower responses on the unit questions 

Jarrod was the one interviewee who answered all questions correctly, and thus will be 

used as an example of an “ideal knower.” At the start of the linear questions, when asked 

to sketch the function, Jarrod sketched a linear function with a positive slope and a 

vertical intercept of zero. He was then asked what the units were on a slope of 2: 

Jarrod: Ummm.. It’d be milligrams per pound I suppose.  

Interviewer: Why did you get milligrams per pound? 

Jarrod: The slope of a line is the change in the y over the change in the x. And the y is 

milligrams and the x is pounds. 

Key Point: Jarrod clearly stated the correct definition of slope, as the change in y over 

the change in x, not a common (incorrect) response of “y over x.”  

For the non-linear questions, he first sketched a concave down increasing function 

starting at the origin. He also drew a concave up increasing function and said you could 

argue it either way. For the units on the derivative, he struggled at first but talked himself 

through it: 

Jarrod: Umm…milligrams per pound per pound. Because….oh, hmm….I think it’s 

milligrams per pound per pound because you are showing how the rate of change. 
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No, I’m wrong. I didn’t just sketch the derivative. This [graph ] still shows the 

dosage, so the derivative of this would be….milligrams per pound. And the units on 

the derivative of the derivative would be milligrams per pound per pound. 

Interviewer: So if I’m asking for the units on the derivative of this function [I pointed 

to the graph of 𝐷(𝑤)]…that would be… 

Jarrod: Milligrams per pound 

5.1.3 Interview responses on the unit questions 

The interviewee success rates on the unit questions were higher than the survey 

participants’ results (Table 5.1). Like the surveyed students, the interviewees had similar 

success rates on the slope and derivative unit questions. For both the surveys and the 

interviews, students performed slightly better on the slope units question. One reason for 

the higher success rates for the interviewees might be that the context on the written 

surveys could be interpreted as slightly more complicated, since it was the yield of corn 

(in bushels) that results from nitrogen (in pounds) added to a 10-acre tract of land, and 

some students introduced acres into their answers about units. Also, during the 

interviews, at the start of the linear and non-linear questions, students were asked to 

sketch the relationship. Before moving onto the unit questions I made sure students 

produced graphs that had well-labeled axes (including units). These well-produced 

graphs might have aided them in answering the unit questions.  

 Surveys 
(N=69) 

Interviews 
(N=13) 

Slope 33 
47.8% 

9 
69.2% 

Derivative 28 
40.6% 

8 
61.5% 

Table 5.1. Survey and interview participants’ success rates for unit questions 
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Table 5.2 summarizes the answers for the unit questions for all 13 interviewees. All 

the students except one either got both questions correct (62%) or both incorrect (31%). 

Only one student had difficulty with the derivative (answering milligrams per pound-

squared) after getting the slope unit question correct.  

								Derivative	

Sl
op

e	
	

	 Right	 Wrong	 Total	

Right	 8	
61.5%	

1	
7.7%	

9	
69.2%	

Wrong	 0	
0%	

4	
30.8%	

4	
30.8%	

Total	 8	
61.5%	

5	
38.5%	 N=13	

Table 5.2. Summary of interview unit questions 
 

Of the thirteen interviewees, eight (62%) gave correct answers for the units on the 

slope (mg/pound) and derivative (mg/pound). When asked how they came up with 

mg/pound, six students responded that the slope was “change in y over change in x,” 

“change in dosage over change in weight” or “rise over run,” so they put the milligrams 

(the units on the y-variable) on top and the pounds (the units on the x-variable) on the 

bottom. For example, Kelly responded: 

Kelly: milligrams per pound  

Interviewer: OK, milligrams per pound, and how did you come up with that?  

Kelly: Ummm….the same thing. It’s the rise over the run. So this is in milligrams 

[points to dependent axis], so it’s milligrams over the independent variable, which is 

pounds. 

Two students gave the correct slope of milligrams per pound, but went on to explain 

their reasoning by saying that slope was “y over x,” in other words a ratio-of-totals, 
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instead of the correct answer of “change in y over change in x” or “rise over run,” or a 

ratio-of-differences. For example, Chip claimed he chose milligrams per pound because 

“the slope is y over x.” Missy also stated milligrams per pound because it’s “y over x.” 

While their reasoning led them to the correct units of milligrams per pound, their 

incorrect ratio-of-totals reasoning might lead to misunderstandings later on when they 

interpret the slope and derivative, as well as use the slope and derivative to make 

predictions. It is also possible, however, that it was just a short cut way to describe the 

slope and does not signal a true ratio-of-totals misunderstanding.  

Two students switched the units on slope to be pounds per milligram (instead of 

milligrams per pound). Pam originally stated, “pounds” but quickly changed her answer 

to “pounds per milligram” with no prompting.  

Pam: Oh the slope? The slope would be pounds per milligram.  

Interviewee: Pounds per milligram. How did you come up with that? 

Pam: The weight is pounds and the dosage is milligrams. 

Interviewee: OK, and why the pounds on the top and the milligrams on the 

bottom? Why not vice versa? 

Pam: Pounds is the x, so I was just dividing x by y. 

Interviewee: Dividing the x by y because……that’s what you usually do? 

Pam: Yes. 

Later on, Pam interpreted the slope interpretation question correctly, and then 

recognized her mistake on the units and went back and corrected her answer to 

milligrams per pound. 
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Two students gave incorrect responses for the slope units (mg for one, and dosage per 

weight for the second), but after some prompting, they answered them correctly as 

milligrams per pound, and went on to answer the derivative units correctly too. Maddie’s 

reasoning for switching her incorrect answer of “milligrams” to the correct answer of 

“milligrams per pound” was very interesting. Instead of taking the most common 

reasoning that slope is “the change in y over the change in x,” so the units would be the 

“units on the y-axis over the units on the x-axis,” she instead looked at the equation 

𝑦 = 𝑚𝑥 and reasoned that the units on the slope times the units on the independent 

variable had to equal the units on the dependent variable.  

Maddie: So you’re multiplying the pounds by the slope to get milligrams.  

Interviewer: OK, I see what you are saying. 

Maddie: So you have your slope, you multiply by pounds and you should get 

milligrams. So your slope has to be milligrams per pound. (Figure 5.1). 

Interviewer: Because those pounds are going to cancel out? 

Maddie: Yes. 

 

Figure 5.1. Maddie’s reasoning for why the unit on slope is milligrams per pound 
 

It was unclear from Maddie’s answer whether she had a clear understanding of slope 

as the ratio-of-differences or whether she would take a ratio-of-totals approach to answer 

the interpretation questions. The graph that she drew had a y-intercept of zero (directly 
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proportional) and although her calculations led her to the correct units, I was unsure as to 

whether she had a level of understanding as sophisticated as our ideal knower.   

Harry answered the slope units correctly but went on to say that the units on the 

derivative were mg/lb2. When probed he said, “I’m thinking about physics where, like, 

velocity is meters per second, and the derivative of velocity is acceleration which is 

meters per second squared.” This shows a lack of understanding of the units on the 

derivative as the units on the dependent axis over the units on the independent axis; 

instead Harry is reaching for something he recalls about kinematics. While the ideal 

knower understands that the units on the slope and derivative are the same, Harry does 

not.  

5.1.4 Summary of interviewees’ successes and struggles with the unit questions 

In summary, the success rates of the interviewees for the unit questions were better 

than the written survey results, perhaps signaling that the context in the interview 

questions was less confusing than the survey questions (where the extraneous unit of 

acres was used to describe the context). Still, 38% of the interviewees struggled with 

units, a key part of understanding slope and derivative as a rate of change. Even for the 

six students who answered correctly (milligrams per pound), two of them described the 

slope as “y over x,” implying a ratio-of-totals approach to slope, as opposed to the correct 

ratio-of-differences reasoning. Examining the possible impact of this on their thinking 

about other ideas (such as the interpretation of the slope and derivative) is part of what 

was done in the remainder of the interview.  
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5.2 Students’ abilities to interpret the slope and derivative in context 

After the questions about units, students were asked to give interpretations of the 

slope and derivative in the context of the problem. On the linear question, students were 

to explain the meaning of a slope of 2. On the non-linear question, students were asked to 

explain the meaning of the statement 𝐷! 140 = 2. These questions were directly tied to 

the first research question surrounding students’ abilities to interpret the slope and 

derivative.  

5.2.1 Summary of interpretation question results from the surveys  

The survey results showed that students were slightly more successful on the slope 

interpretation question than on the derivative interpretation question, but not significantly 

so. Students’ success at interpreting slope did not make them more likely to interpret the 

derivative correctly. The interpretation questions had success rates on the individual slope 

and derivative questions of less than 20%, and only 5% of the students answered both 

interpretation questions correct. One key finding was that 73% of the students who 

thought the derivative could be used to calculate the total yield (taking the 𝐵 𝑛 =

𝐵! 𝑛 ∗ 𝑛 approach) also interpreted the slope using an analogous ratio-of-totals 

approach (𝐵 𝑛 = 𝑚 ∗ 𝑛). By asking follow-up questions to similar interviewee 

responses, I found out the thinking behind students’ incorrect interpretations.  

5.2.2 Ideal knower responses on interpretation questions 

When asked to interpret the slope in the context of the problem, Jarrod (our ideal 

knower) responded:  

Jarrod: It means for every pound increase in the patient, you can expect an increase 

dose of 2 milligrams. 
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Key Point: Once again, he refers to the change in the weight (the increase in weight) 

and the change in the dosage (the increase in dosage), not a common incorrect response 

of “the dosage is twice the weight.”  

Recall that Jarrod had initially drawn a linear function that went through the origin. 

After asking him to interpret the slope, I drew a second graph with a slope of 2 that did 

not go through the origin. I asked if his interpretation of slope would be any different if 

the graph looked like that. 

Jarrod: Umm….if you are just looking from one point on the line to another, then 

how much it increases by, I’d say it would be the same……But you can’t define it as 

twice as many milligrams as pounds. Over here [points to graph that goes through the 

origin], you can say that any point on the line, numerically the milligrams dose is 

exactly twice as much as the weight in pounds. But over here [points to graph that 

goes that has a positive y-intercept] you can’t because you are not starting at zero.  

Key Point: Jarrod was able to distinguish between a directly proportional graph (that 

goes through the origin and for which slope is equivalent to !
!

) and a linear function 

that does not go through the origin (with a slope that is ∆!
∆!

). 

When asked to interpret the derivative (𝐷! 140 = 2) in the context of the problem, 

Jarrod responded:  

Jarrod: So, 140 is the weight of the patient, and so that means at 140 (on that graph) 

that the rate at which the dosage is changing is 2 milligrams per pound. So, if you 

drew a tangent line at that point. You could say that, ummm if you are trying to 

estimate, like at 141 or 139, about how much the dosage is going to change from one 

point to the other, you can’t exactly do because it’s not linear and it’s following some 
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sort of curve, but you would be able to add 2 or subtract 2 to approximate the 

change. 

Key Point: Jarrod was not only able to state the correct interpretation for the 

derivative concisely; he continued on to explain what the derivative can be used for (to 

predict changes near by).  

5.2.3 Interview responses to the slope interpretation question 

As with the unit questions, the interviewees did better than the surveyed students on 

the interpretation questions. Table 5.3 summarizes the success rates. This improved 

success could be due to the different context, the higher success on the unit questions 

(correct units could aid in answering the interpretation questions correctly), or the follow-

up questions that were asked by the interviewer.  

Surveys 
(N=69) 

Interviews 
(N=13) 

12 
17.4% 

4 
30.8% 

Table 5.3. Survey and interview participants’ success rates for slope interpretation 
questions 

 

For the interpretation of a slope of 2 in the context of the problem, 4 of the 13 

interviewees gave correct responses. Excerpts from these four interviews are given 

below: 

Jarrod: It means for every pound increase in the patient, you can expect an increase 

dose of 2 milligrams. 

 

John: For every one additional pound, add two milligrams. 
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Pam: For each more pound, you get two more milligrams. 

 

Dawn: It means the change in the dosage in comparison the weight. 

Interviewer: And where does the 2 come into play? 

Dawn: The 2 is like the change in it. So the dosage will change twice as much per 

change in weight. 

Interviewer: OK, so the dosage changes twice as much as the weight changes? 

Dawn: Yes.  

Dawn: For every unit of weight you increase, you will increase twice that amount in 

dosage. 

Eight other students gave ratio-of-total responses, using language such as “for every 

pound, they would need 2 mg of drug” or “dosage is twice the number of pounds.” As an 

example, here is an excerpt of Jackie’s interview: 

Jackie: It means that for, I guess, it means that for every pound, 2 milligrams of the 

dose. Depending on how much you weigh. How much it increases. So if you weigh 2 

pounds, you would get 4 dosages. 

Interviewer: OK, so 4 milligrams? 

Jackie: Yes 

Interviewer: OK, so if you weight a certain amount, you will get twice as much 

milligrams? 

Jackie: Yes. 

Chip and Missy, who in their unit question gave the reasoning that “slope is y over x” 

both went on to interpret the slope incorrectly.  
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Chip: Basically it means for someone’s weight, you give them…their numerical value 

for the weight. If they weighed 100 pounds, their dosage would be 200…twice that. 

Interviewer: So the dosage is twice the weight? 

Chip: Yes, but not the same units. Dosage in milligrams, weight in pounds. 

 

Missy: For every one pound, you go 2……you double it.  

Interviewer: OK for every one pound you double what? 

Missy: You multiply it by 2 to get the dosage.  

Interviewer: OK, so what if I weighed 150 pounds? 

Missy: 300 milligrams. 

These students thought of the slope as the ratio-of-totals (instead of the ratio-of-

differences), that led them to an implied 𝐷(𝑛) = 2𝑛 relationship (where the y-intercept is 

zero). All students except one (Emily) graphed the linear equation going through the 

origin. Emily graphed a positive y-intercept but still interpreted the slope of 2 as a ratio-

of-totals. 

For seven students who graphed the linear equation going through the origin, I had a 

follow up question asking them whether their interpretation of the slope would be 

different if the equation did not go through the origin. I drew a graph of 𝐷 𝑤  with a 

positive y-intercept. Two of the seven students had answered the slope interpretation 

correctly, and five had answered it using the incorrect ratio-of-totals reasoning. Excerpts 

are below from a subset of these two groups. 

For the two students who answered the interpretation question correctly with their 

original graph that went through the origin, they used correct language again to describe 
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the slope for the newly drawn graph that did not go through the origin. Excerpts of one of 

the interviews follow: 

Jarrod: Umm….if you are just looking from one point on the line to another, then 

how much it increases by, I’d say it would be the same……But you can’t define it as 

twice as many milligrams as pounds. Over here [points to graph that goes through the 

origin], you can say that any point on the line, numerically the milligrams dose is 

exactly twice as much as the weight in pounds. But over here [points to graph that 

goes that has a positive y-intercept] you can’t because you are not starting at zero.  

These students had a solid understanding of the slope in both situations; Jarrod made 

the clear distinction between a linear relationship that has a non-zero y-intercept (where 

slope is a ratio-of-differences) and a directly proportional linear relationship (that goes 

through the origin, where slope is a ratio-of-totals).  

For the five students who interpreted the slope using a ratio-of-total reasoning on 

their original graph that they drew through the origin, when I drew another graph with a 

non-zero y-intercept, four of the five said that the only change to their explanation would 

be that, in order to find a patient’s dosage, you would have to add the y-intercept “at the 

end.” They still used incorrect ratio-of-totals reasoning to describe the slope, and justified 

the different y-intercept as something that just needs to be added if you wanted to 

calculate the final dosage. To them, the y-intercept in and of itself had nothing to do with 

the slope interpretation. This is important to note because these students were not looking 

at their graph (drawn through the origin) and recognizing that for a directly proportional 

relationship, !
!

 holds everywhere (like Jarrod did above). Instead, they were 
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misinterpreting the meaning of the slope as !
!

, instead of ∆!
∆!

, regardless of the y-

intercept. 

For example, I asked the students whether their interpretation of slope would be the 

same if the graph had a positive y-intercept. A few excerpts follow:  

Maddie: Yes.  

Interviewee: So does it still mean “for every pound the patient weighs, the milligrams 

increase by 2?”  

Maddie: Yeah, then you’d have to add the y-intercept. 

Interviewee: How could you interpret the slope given that? Would you use the same 

interpretation? 

Maddie: Yes, we’re describing the slope, not the function. 

Interviewee: So it still holds true? 

Maddie: Yes. 

 

Chip: The slope would be the same. You would have different number…. values 

associated with each tick mark because you have the graph running through a 

different point on the y-axes now. If the slope is the same, the change will be the 

same. It just has a different starting point. 

Interviewer: So you could still say the dosage in milligrams would be twice the weight 

in pounds? (Chip’s response initially) 

Chip: Yes.  

Craig was the only student who changed his reasoning from a ratio-of-totals 

interpretation for the directly proportional relationship that he drew, to a ratio-of-
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differences interpretation for the graph that I drew (with a y-intercept of 50 mg and a 

slope of 2 mg per pound): 

Interviewer: Can you explain the slope in the context of this problem? 

Craig: Of course. Initially, if someone weighs zero pounds, they need…theoretically if 

they weigh zero pounds, they need 50 milligrams of the drug. And then for every 

additional pound, they need 2, they need 2 milligrams more. 

In addition to the incorrect ratio-of-totals approach to the slope interpretation, there 

was one student, Brandon, who could not verbalize the interpretation of the slope, and 

instead kept talking about the steepness of the line. It is interesting to note that Brandon 

did go on to interpret the derivative correctly, but was unable to interpret the slope and 

got boggled down with the steepness of the line. This focus on “steepness” and trouble 

distinguishing between slope and steepness is something Teuscher and Reys (2007) noted 

in their study of AP calculus students. 

In summary, only five of the 13 interviewees (38.5%) correctly interpreted the slope. 

Seven gave ratio-of-totals interpretations (53.8%), and one only student (7.7%) gave a 

different incorrect response. For those who initially drew a graph through the origin and 

then were later provided a graph with a non-zero y-intercept, those who answered 

correctly with their original graph continued to use the correct interpretation with the new 

graph, with Jarrod going on to point out the differences between the directly proportional 

relationship (where slope is equivalent to !
!

) and a linear function that does not go 

through the origin (with a slope that is ∆!
∆!

). For those who answered incorrectly with 

their initial graph through the origin, four out of five continued to use an incorrect ratio-
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of-totals interpretation when given the graph with the non-zero y-intercept. The ratio-of-

totals interpretation is by far the dominant incorrect interpretation of slope.  

5.2.4 Interviewee responses to the derivative interpretation question 

Similar to the slope interpretation questions, the interviewees performed better on the 

derivative interpretation question than the surveyed students (see Table 5.4).  

 

Surveys 
(N=69) 

Interviews 
(N=13) 

9 
13.0% 

5 
38.5% 

Table 5.4. Survey and interview participants’ success rates on derivative interpretation 
questions 

 

For the derivative interpretation, five of the thirteen interviewees (38.5%) gave 

correct responses (at 140 pounds, the drug dosage is increasing at a rate of 2 mg per 

pound). Four of the five (Jarrod, John, Pam, and Craig) had also interpreted the slope 

correctly. First are two quotes from students who had interpreted the slope correctly: 

John: It is the slope of the tangent line at 140, and it’s equal to 2…..the dosage is 

increasing at a rate of 2 milligrams per pound. When the weight is 140 pounds. 

Pam goes more in-depth to describe what the derivative can be used for, namely that 

an instantaneous rate of change at a point that can be used to figure out what will happen 

to the dependent variable with small changes in the independent variable.  

Interviewer: What does this derivative mean then for the 140-pound patient? 

Pam: Well, if a patient were to weigh 141 pounds, if you go up by 1 pound, or 

something really close, like a half a pound, you would be going up by 2.  
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Interviewer: So, if you are 140-pounds, and you go up a little bit….your dosage 

would go up by how much? 

Pam: Well, if it’s 141, so we don’t have to use decimals, then 141 would mean an 

additional 2 pounds.  

Craig uses similar reasoning to Pam, but makes one key mistake within his 

explanation when he refers back to how it would be different if it were a linear function:  

Interviewer: So what does it mean in the context of the problem? 

Craig: It means, that, at 140 pounds, it will take 2 milligrams per pound to… that the 

dosage will increase by 2 milligrams per pound at 140 pounds. It’s the instantaneous 

rate of change. 

Interviewer: OK, so when I’m 140 pounds, then what’s happening with the 2 and my 

rate? 

Craig: The instantaneous rate of change of the function is 2 milligrams per pound. So 

if you are 140 pounds, the slope, in this case it’s not linear. So the derivative won’t 

give you. It can’t just multiply the weight by the derivative to get the answer…..At that 

instant, if you could, gain an infinitely small amount of weight, that infinitely small 

amount of weight times 2 would give you the milligrams you’d need. 

Craig describes the derivative with what seems like ideal knower understanding, but 

then when he compares the instantaneous rate of change to the linear function, he says 

that we can no longer multiply the weight by the derivative to get the answer, a process 

that would hold true for only linear relationships that are directly proportional. As a 

reminder, Craig at first interpreted the slope as a ratio-of-totals, but then when I drew a 

linear function that did not go through the origin, he changed his answer to a correct 
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ratio-of-differences interpretation. Here, however, he is implying that for all linear 

relationships, one can calculate the total by multiplying the slope by the input (in other 

words 𝑦 = 𝑚𝑥). The instability of Craig’s answers suggests that even though he got the 

answers correct at the end, that his understanding might not be solid.  

Eight students did not answer the derivative interpretation question correctly. Seven 

of these students gave responses stating that the derivative allows you to calculate how 

much dosage to give per each pound. In other words, they used a 𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 

approach. A few excerpts highlight this reasoning: 

Dawn: That, ummmm, it terms of slope it would mean that at 140, the line is equal to 

2. In terms of function, the value of D-prime, at x = 140, would be equal to 2.  

Interviewer: So, if I’m 140 pounds, what does the 2 represent? 

Dawn: The 2 would represent….hmmm…..I’m not 100% sure.  

Interviewer: OK, What if you think about the units from before? What if I say, I’m 

140 pounds. 

Dawn: Oh, it would be able to tell you how much drug to get. So, if it’s 2 mg/pound, 

with an 140-pound patient, your dosage would be 2 * 140, or 280 mg. 

Interviewer: So that 2 mg/pound tells you how much drug to give? 

Dawn: Yes. 

  

Interviewer: OK, umm….so how do we umm….what exactly does the 2 mean? When 

the patient is 140 pounds, what’s going on in terms of the 2? 

Harry: Meaning that at 140 pounds, it needs twice as many milligrams per pound. So 

it would need 280. 
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Interviewer: OK, so when a patient is 140 pounds, that means they need…. 

Harry: 280 

Interviewer: 280 mg. So for each pound they need 2 milligrams? That’s what it is 

saying? 

Harry: Yeah 

Table 5.5 summarizes the slope and derivative interpretations. Four of the five 

students who interpreted slope correctly went on to interpret the derivative correctly. Six 

of the seven who interpreted slope as the ratio-of-totals (thus implying a directly 

proportional relationship) went on to interpret the derivative similarly as a rate of change 

that can be used to calculate the total.  

 Derivative Interpretation 
Correct 𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 Other 

Sl
op

e 
In

te
rp

re
ta

tio
n Correct 4 1  

ratio-of-totals 
(𝐷 = 2𝑛)  6 1 

Other 1   

Table 5.5. Interview responses for the slope and derivative interpretations, N = 13 
 

5.2.5 Summary of interviewees’ successes and struggles with the interpretation 

questions 

In summary, only five of the 13 (38.5%) correctly interpreted the slope. Seven gave 

ratio-of-totals interpretations (53.8%), and one only student (7.7%) gave a different 

incorrect response. For the written surveys, 17.4% answered correctly and 39.1% gave 

the ratio-of-totals reasoning. For the remaining 43.3% that were left blank or answered 
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incorrectly using another reasoning in the written surveys, it is unclear what they would 

have concluded in an interview setting with some follow-up questions.  

The two students who provided the correct units for slope but described their 

reasoning as slope being “y over x” instead of “change in y over change in x” went on to 

interpret the slope as a ratio-of-totals. This signals that students are not just leaving out 

the “change in” language, but instead think that for all linear relationships, the slope can 

be used to calculate the total (in other words are directly proportional relationships).  

Also important to note is that four of the five students who interpreted the linear 

relationship as a ratio-of-totals after drawing a graph through the origin, went on to take 

the ratio-of-totals approach when I drew a linear relationship with a non-zero y-intercept. 

This again adds evidence to the claim that students’ incorrect understanding of slope as a 

ratio-of-totals is impacting their ability to make sense of linear relationships that have 

non-zero y-intercepts.  

Building on the results of the survey data, the interviews provide additional evidence 

that students’ inabilities to interpret the slope as ratio-of-differences (and instead taking a 

ratio-of-totals approach) lead to struggles with interpreting the derivative. If a student 

takes the ratio-of-totals approach for slope (where 𝑦 = 𝑚 ∗ 𝑥), he/she is more likely to 

hold an incorrect interpretation of the derivative as something that can be used to directly 

calculate the total (𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛). Six of the seven interviewed students (85.7%) 

who took the incorrect slope approach (ratio-of-totals) went on to take the analogous 

incorrect derivative approach (𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛).  
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5.3 Students’ abilities to critique the reasoning of others and demonstrate 

understanding of using rates of change to make predictions 

Students were asked in the interviews to critique the reasoning of Nurse Jodi’s 

predictions; there were a total of four predictions, two based on the linear model and two 

based on the non-linear model. In all cases, students had to circle whether they were 

“very confident,” “somewhat confident,” or “not confident” in Nurse Jodi’s predictions, 

and explain their reasoning. 

For the linear model, the two predictions are as follows:  

• “Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 

2 mg when the patient’s weight changes from 140 pounds to 141 pounds.”  

• “Nurse Jodi accurately doses a 140-pound patient using the model. Her next 

patient is twenty pounds heavier and she reasons that she must increase the dose 

by 40 mg (2 mg for each pound of weight).”  

Similarly, for the non-linear model:  

• “Using the fact thatD '(140) = 2 , Nurse Jodi predicts that a patient’s dose will 

increase by 2 mg when the patient’s weight changes from 140 pounds to 141 

pounds.”  

• “Nurse Jodi accurately doses a 140-pound patient using the model. Her next 

patient is 160-pounds and she reasons that since D '(140) = 2 , she must increase 

the dose by 40 mg (2 mg for each pound of weight).” 

Both sets of questions (linear and non-linear) focus on the second research question 

about students’ abilities to critique the reasoning of others in making predictions using 

rates of change.  
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5.3.1 Summary of critiquing question results from the surveys 

The survey results showed much higher success rates with critiquing the linear model 

(69%) as compared to critiquing the non-linear one (16%). Students showed an 

understanding of slope as a constant rate of change that can be used to make predictions 

over any interval. They had large gaps, however, in their understanding of when it was 

appropriate to use a derivative to make predictions in the non-linear context.  

A higher proportion of students used a ratio-of-totals approach in the derivative 

interpretation question (15.9%) than in the derivative critiquing questions (4.3%). 

However, there were 14.4% of the students who stated they needed another derivative, 

and it was not clear in the surveys which derivative they would need or what they would 

do with that derivative. The interview follow-up questions were designed to understand 

students’ reasoning behind needing another derivative and what they would do with that 

derivative. 

Also, 20% of the students made no distinction in critiquing the one-pound increase 

and the ten-pound increase, displaying incorrect understanding of the appropriateness of 

using a derivative to make predictions. The interview questions further explored why 

students had similar levels of confidence in both predictions.  

5.3.2 Ideal knower responses to the critiquing questions 

For Nurse Jodi’s prediction of a one-pound increase assuming the linear model, 

Jarrod responded:  

Jarrod: Umm…I’d say, that is exactly correct, based on what I just said. Um…if you 

just take the change in y (your dose, given as 2 mg) over change in x (141-140, so 1 

pound). 2 over 1, or 2, so assuming it’s linear, it’s exactly right. 
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Key Point: He again stressed the slope being the change in y over the change in x.  

For Nurse Jodi’s prediction of a twenty-pound increase, once again with the linear 

model, Jarrod responds: 

Jarrod: Umm…I believe it would be the same thing. Increasing by 40 mg, weight goes 

up by 20 pounds, so 40 over 20, or 2. If linear model is correct, then yes. 

Interviewer: Same amount of confidence in both? 

Jarrod: Yes. 

Key Point: He had equal confidence in both the one-pound and twenty-pound 

increase.  

For the non-linear model, Jarrod responded to Nurse Jodi’s prediction for a 1-pound 

increase: 

Jarrod: Umm, yeah, just like I just said. Because we know it’s not linear, I don’t have 

confidence in her statement, because that says if you go from 140 to 141, that it is 

following this line (tangent line), we are following that same slope. It’s a good 

estimation, but not with a lot of certainty.  

Interviewer: Would it be an over approximation or under approximation? 

Jarrod: It would be an over in the case of this graph. 

Key Point: Jarrod stated he was not confident, but went on to explain that it would be 

a good estimate.  

For Nurse Jodi’s prediction for a 20-pound increase with the non-linear model: 

Jarrod: Ummm, the same thing. Just a different change in x. If you follow that same 

tangent line, assuming the slope is the same everywhere. It’s a way over estimate.  
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Interviewer: What if we estimate the slope of 160 as ½. Could you do anything with 

this? 

Jarrod: It would definitely tell you that you can’t follow the linear pattern. It would 

tell you that you can’t follow this type of model. Your slope has changed so much.  

Later, we go back to the 1-pound increase: 

Jarrod: Following the linear pattern, [the one-pound is] such a small change, so it 

might be negligible, but especially in the other [20-pound increase] case, the linear 

pattern won’t exactly model the change.  

Key Point: Jarrod is able to demonstrate his understanding in Nurse Jodi’s use of the 

tangent line (“follow the same tangent line”) to approximate the change in the dosage. He 

shows visually on the graph that the error for the 1-pound increase is much smaller than 

the error on the 20-pound increase (Figure 5.2). 

 

Figure 5.2. Jarrod’s sketch of his non-linear graph and tangent line approximations 
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5.3.3 Interview responses to the critiquing questions for the linear context 

Focusing on the linear predictions first, once again the success rates for the 

interviewees were higher than for the surveyed students (see Table 5.6).  

Surveys 
(N=69) 

Interviews 
(N=13) 

48 
69.6% 

12 
92.3% 

Table 5.6. Survey and interview participants’ success rates for critiquing questions with 
the linear context  

 

Twelve of the thirteen interviewees confidently stated that Nurse Jodi was correct. I 

use an except from Chip to show sample reasoning, first for the 1-pound increase: 

Chip: Very confident, it follows my thinking a second ago. If you move over 1 on the 

x-axis, which is pounds, you go up 2 milligrams.  

For the 20-pound increase: 

Chip: Yes, that should be correct there too. I would say very confident again. 

Increasing by 20 pounds should be increasing the dosage by 40 milligrams. It’s just a 

linear function there should not be other factors. 

Interviewer: Equally confident for the two? 

Chip: Yes. 

Brandon originally stated that he was not confident in Nurse Jodi’s reasoning for the 

1-pound increase, thinking that the slope of 2 meant that for every two pounds, your 

dosage would go up by 2 milligrams. But, he then decided to go back to thinking about 

slope as “rise over the run,” and he changed his answer and said that Nurse Jodi was 

correct. For the 20-pound increase: 

Brandon: Yeah, I guess that makes sense. 
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Interviewer: OK, so somewhat? Very? 

Brandon: Between somewhat and very. 

Interviewer: OK, and for what reasoning? 

Brandon: Well, it’s a linear line. It doesn’t change. So whatever the rise over the run 

is here will be the same there. 

Interviewer: OK, so the rise over run is the same everywhere? 

Brandon: Yes, the slope is the same everywhere.  

Interviewer: Would there be any different in your reasoning for these two questions? 

Brandon: Same reasoning for both. 

These twelve students reasoned that the slope, as a constant rate of change, held for 

any change in the independent variable. They were equally confident for both scenarios 

because of the rate being constant, in other words the rate could be applied for any 

change in the independent variable.  

Dawn was the only interviewee who had different confidence levels in the two 

predictions for the linear model. For the one-pound increase: 

Dawn: I, umm…, I am… somewhat confident in this.  

Interviewer: OK, and why somewhat? 

Dawn: It kind of correlates to like, what I was saying about increasing by like 2 when 

I increase by 1 pound. 

Interviewee: Yeah, that’s what I thought I was saying up here. Umm…why are you 

not in the very confident category? 

Dawn: I feel like I would have to plot it out specifically and visualize it better. 
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Interviewee: Ok, so it depends on what the graph looks like? 

Dawn: Yes 

For the twenty-pound increase: 

Dawn: It has the same kind of setup, with 2 milligrams for each pound, so it makes 

sense. I feel like the way #4 is worded, I feel more OK about it. Ummm….Yeah, I 

think I would say very confident in this one.  

Interviewer: Very confident. And what’s different with the wording? 

Dawn: I think it’s that ummm…there is a little explanation. Like she increases by 40 

(2 milligrams per pound of weight). Up there it just says she increases the dose when 

the patient’s weight increases from here to here.  

Interviewer: So there is more information down here? 

Dawn: Yeah 

Interviewer: And that gives you more confidence? 

Dawn: Yeah.  

Even though Dawn was one of the students who interpreted the slope correctly, 

stating, “the dosage changes twice as much as the weight changes,” she did not translate 

this to a “very confident” response for both of Nurse Jodi’s predictions. Instead, she felt 

like there was more information given in the 20-pound increase problem that translated to 

more confidence on her part. The 20-pound increase problem specifically said that she 

would give “2 mg per each pound of weight,” which defined the slope and gave her more 

confidence. Even though she interpreted the slope correctly on the previous question, her 

reasoning for these two questions show that her understanding is not solid.  
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5.3.4 Interview responses to the critiquing questions for the non-linear context 

For the non-linear predictions, the success rates for the interviewees were once again 

higher than for the surveyed students (see Table 5.7).  

Surveys 
(N=69) 

Interviews 
(N=13) 

11 
15.9% 

4 
30.8% 

Table 5.7. Survey and interview participants’ success rates for critiquing questions with 
non-linear context 

 

The success rates were also much lower than the predictions for the linear situation 

(30.8% vs. 92.3%). Only four of the 13 interviewees responded using correct reasoning 

for the predictions for the non-linear model. Incorrect reasoning fell into two categories: 

(1) students who used the derivative to calculate the change regardless of the input value, 

and (2) students who used the derivative to calculate the total dosage. 

5.3.4.1 Students who used correct reasoning for the critiquing questions with the 

non-linear context 

The four interviewees who answered correctly talked about the derivative being a 

good approximation for small increases in the independent variable. Excerpts from two of 

these four are presented below. 

Brandon used explicit knowledge of linear approximation, but was the only 

interviewee to do so. For the one-pound increase: 

Brandon: Yeah, I’m confident in that.  

Interviewer: Confident. Because? 
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Brandon: Because it’s just increasing by one pound. It’s right here [points to graph]. 

So you could use that slope along the line, instead of the equation. Use the slope of 

two.  

Interviewer: OK, would it be exact? 

Brandon: No, it would be close to. But not exact. Very close. 

Interviewer: Close a little bit high or a little bit low? 

Brandon: Low. 

Interviewer: Why did you say low? 

Brandon: The shape of the graph. If it was the other way [draws concave down 

graph] it would be high. 

Interviewer: OK, so it’s where the tangent line falls in relation to the graph? 

Brandon: Yeah 

Interviewer: So you said very confident because you can use that slope to estimate. 

Brandon: Yeah, you can use the formula, the…it’s been a while. 𝐿 𝑥 = 𝑓 𝑎 +

𝑓! 𝑎 ….  

For the twenty-pound increase: 

Brandon: Oh, not confident. 

Interviewer: And why not confident? 

Brandon: Based on the slope, it would go out like that [draws the tangent line]. There 

would be a change. It wouldn’t be accurate. 

Interviewer: Under or over approximation? 

Brandon: Under approximation by quite a bit. 

Interviewer: And what makes 160 different from 141? 
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Brandon: How close it is from f(a).  

Interviewer: Because 160 is farther away? 

Brandon: Yeah. 

It is interesting to note that while Brandon gave very solid answers for the critiquing 

questions and the derivative interpretation question, he was the student who (earlier in the 

interview) was unable to verbalize the meaning of a slope of 2 milligrams per pound in 

the context of the problem. 

Pam gave similar reasoning to Brandon, focusing on how close the independent value 

is from the input value of the derivative, but without mention of using the linear 

approximation to make the estimates. For the one-pound increase: 

Pam: Very confident. 

Interviewer: And why? 

Pam: Because 141 is very close…if there… you wouldn’t be close. But it’s close to 

140 then that would be the same. So if you go down one, it would be a good estimate 

too. 

Interviewer: OK, and ummm…would that be exact or close? 

Pam: It wouldn’t be exact, because the derivative is not exact. But it would be close. 

I’m not sure it would be close enough for medicine. But close. 

For the twenty-pound increase: 

Pam: Ummm….so, I’m not confident for this one. Because 160 is a long ways away 

from 140.  

Interviewer: OK, so let’s say 160 is right here [draw 160 on graph] 

Pam: It’s close, but not really close. 



 

 
 

105 

Pam continues to draw the tangent line at 160 and estimated it to be a slope of 3 

(Figure 5.3). I asked whether she could use that slope of 3 to figure out the change in 

dosage, but she said that one would need to know the derivative at a lot of points in 

between 140 pounds and 160 pounds to estimate the change in dosage: 

Pam: You’d have to take more measurements. Not with the information given. It 

wouldn’t be accurate. 

Interviewer: What kind of measurements? 

Pam: You’d have to get the derivative of a bunch of points along the way [she plots 

the points]. 

 

Figure 5.3. Pam’s non-linear graph 
 

5.3.4.2 Students who used the derivative to calculate the change regardless of the 

input value  

Two of the nine remaining interviewees said that a derivative could be used to 

calculate the change, whether it was a one-pound or twenty-pound increase. One of these 

students, as seen below, requested another derivative (instead of the one provided) to 
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calculate change. Both students expressed equal confidence in both predictions. Unlike 

an ideal knower, they did not understand that a derivative could be used to approximate 

change only in a small interval around the input value.  

Jackie was equally confident in both of Nurse Jodi’s responses, saying that the 

derivative could be used to approximate the change in dosage anywhere. Her reasoning 

was similar to that of the linear relationship (where slope is a constant rate of change that 

can be applied to any change in the input variable), but she did not have as much 

confidence as with her prediction for the linear relationship. She could not, however, 

verbalize why her confidence was lower, just that it was because it was a derivative 

instead of a slope. For the one-pound increase: 

Jackie: Ummm…..somewhat confident. 

Interviewer: OK, somewhat confident. And what’s your reasoning? 

Jackie: It’s like the first one [linear], but the derivative is throwing me off. 

Interviewer: So up here you were telling me for every pound, you get two milligrams 

per pound. Are you using the same reasoning here? 

Jackie: Yes. 

Interviewer: Somewhat confident instead of very because…. 

Jackie: I’m not as sure. 

For Jackie and the twenty-pound increase: 

Jackie: So, next patient is 20 pounds heavier, ….. somewhat confident, because, if, 

well, her patient was 140 and her next patient is 160, so that’s 20 pounds different, 

and 20 times 2 is 40, so she would increase the dosage by 40.  

Interviewer: OK, same confidence as the last problem? 
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Jackie: yeah. 

Interviewer: No difference? 

Jackie: No difference. 

John also agreed that the derivative could be used to calculate the change in both one-

pound and twenty-pound increases, but explained that he needed a different derivative to 

calculate the change. He reasoned that the he needed the derivative at the ending weight 

(in this case 141 or 160) to calculate the change in dosage. For the twenty-pound 

increase: 

John: Still not confident. Because 160 is so much farther than 140. 

Interviewer: OK, so say you have the derivative at 160, and say it’s 4 [Figure 5.4] 

John: OK. 

Interviewer: OK, so if the patient is 20 pounds greater, how much more would you 

give? 

John: 80, I would multiply it by 4. 

Interviewer: So you would give 4 milligrams for each additional pound of weight? 

John: Yeah. 

 

Figure 5.4. John’s non-linear graph 
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John took a similar approach to Jackie, but used a different derivative (the derivative 

at the endpoint of the interval) to make the prediction. Both lacked the ideal knower’s 

understanding that the derivative can only be used to approximate change for values close 

to the input value.  

5.3.4.3 Students who used the derivative to calculate total dosage 

The seven remaining students stated that you needed another derivative (either at 141 

or 160) to calculate the total dosage. Unlike John, who used another derivative to 

calculate the change in dosage (multiplying the derivative times the change in weight to 

yield the change in dosage), these students used another derivative to calculate the total 

weight (multiplying the derivative times the weight to yield total dosage). Excerpts from 

Harry, Emily, and Dawn are used to illustrate this reasoning.  

Harry describes how he could find the total dosage for a 160-pound patient: 

Harry: And still not confident. Because it would be even more off because the slope is 

still increasing.  

Interviewer: OK, so say the slope here is equal to, I don’t know, three [interviewer 

points to the tangent line at 160 pounds, Figure 5.5]. So if she wanted to know how 

much more drug to give a patient who is 20 pounds greater, can she determine that 

from that derivative [the derivative at 140] or that derivative [the derivative at 160] or 

none of them? 

Harry: That derivative [points to the derivative at 160]. 

Interviewer: She would take three milligrams and do what with it? 

Harry: She would multiply 160 by 3. That would give her the right dosage. 

Interviewer: OK. So multiply 160 by 3 and that would give her the total dosage?  
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Harry: Yes 

Interviewer: Not the increase in dosage? 

Harry: Yes, the total dosage.  

Interviewer: So 160 pounds times 3 milligrams per pound….that will give her the 

total number of milligrams that she’ll need. 

Harry: Yes. 

 

 

Figure 5.5. Harry’s non-linear graph 
 

Harry reasoned that the dependent variable can be calculated as the derivative times 

the input value (in other words, the total dosage is equal to the weight times the rate of 

change at that weight, or 𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛). Harry also used the incorrect ratio-of-totals 

approach to interpret slope, reasoning that the total dosage was two times the weight 

(𝐷 = 2𝑛). This is very different than an ideal knower, who understands that the rate of 
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change is only relevant at a specific input value, and can be used to approximate change 

at values very close to the input value.  

At the end of the interview, I asked Harry if he had anything to add: 

Harry: Actually there is. With the 160 pounds time 3 mg per pound, one way to 

always know if I’m doing it right is if the units cancel out.  

Interviewer: So the pounds cancel here, and I end up with mg (Figure 5.6). 

Harry: Yes. 

Interviewer: And that gives you confidence? 

Harry: Yes 

Interviewer: OK, so, you are not confident with these answers here [interviewer 

points to Nurse Jodi’s predictions], but with your new way you are confident?  

Harry: Yes 

Interviewer: And equally confident for both of these? 

Harry: Yes  

 

Figure 5.6. Harry’s unit cancelation 
 

Harry used the derivative to calculate the total dosage, and by showing the units 

canceling, he was able to justify to himself that his reasoning was correct. Even though 

his reasoning was incorrect, he was able to feel confident in his answers because of his 

unit analysis. He said he “knows he’s correct” because he ends up with the correct units.  
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Emily had similar reasoning to Harry, but drew a graph for the non-linear relationship 

that was increasing for a while, and then it started decreasing (Figure 5.7). This 

introduced a potentially troubling situation for her because the slope at 160 pounds is 

negative on her graph. I asked her to explain her reasoning for drawing the graph: 

Emily: Umm…I drew it based on the drug’s only going to have a certain effect up 

until you can’t give someone any more, and then it won’t have an effect on a patient 

and you can’t give them any more….Like there is going to be a cap on the amount of 

dosage that you can physically give a patient. Not even depending on their weight. 

Depending on the potency of the drug itself. 

 

Figure 5.7. Emily’s non-linear graph 
 

For the one-pound increase, she gave similar reasoning to Harry and Kelly: 

Interviewer: What if we knew the slope at 141? 

Emily: She would have to re-do her calculations for 141. 
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Interviewer: OK, say the patient was increasing in weight by a pound, and say we 

knew that 𝐷! 141 = 2.2 milligrams per pound.  

Emily: Yes. 

Interviewer: How much would she have to increase, or give, the patient? 

Emily: She would have to give the patient 2.2 milligrams for every pound that they 

weigh. So they would have to increase it, they would have to basically multiply the 

weight by 2.2 instead of just 2.  

Interviewer: So her total dosage would be that?  

Emily: I think so. 

Interviewer: 141 pounds times 2.2. 

Emily: I think so. 

Interviewer: And that would give her the total dosage? 

Emily: I think so. 

For the 20-pound increase question, Emily was not able to use the same reasoning 

that she had previously, since multiplying a negative slope times the weight would yield a 

negative dosage. Estimating the derivative at 160 pounds to be –1 (as shown in Figure 

5.7), she worked to change her reasoning to account for the negative slope: 

Emily: She would have to decrease the patient’s dosage rather than increase it. 

Interviewer: So if we knew the dosage of a 140-pound patient, we would decrease the 

dosage by how much? If she were 20 pounds heavier? 

Emily: Umm….you kind of have the graph right here. It’s capped off at 30 milligrams 

[she points to the maximum point], so she’d have to decrease it by however much off 

the patient weighs off the cap, by negative 1. 
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Interviewer: So if the max was 150, and she was 10 pounds heavier than that cap, you 

would have to decrease it? 

Emily: Yeah. Because the slope is going down. 

Interviewer: What would she have to decrease it by? 

Emily: She’s ten pounds over the cap, so she might have to decrease it 10 milligrams? 

Or so?  

Interviewer: Because the slope is -1 there? 

Emily: Yeah. 

Interviewer: All right, so this slope gives you the decrease for a one-pound increase? 

Emily: Yeah, I guess so. 

Emily was able to make meaning of her reasoning for the negative slope by adjusting 

her logic slightly and focusing on a maximum point. Instead of using the derivative to 

calculate the total dosage, she adjusted her reasoning and used the negative derivative to 

calculate the decrease in dosage from the maximum point. Described using Piaget’s 

language of accommodation versus assimilation, when faced with something that caused 

her original reasoning to fail, instead of changing that understanding (accommodation), 

Emily found a way to make the anomalous piece of information fit her understanding 

(assimilation) (Piaget, 1970). 

Like Emily, Dawn described using the derivative to calculate the total dosage, not the 

change in dosage. When she drew a graph similar in shape to Emily’s (Figure 5.8), she 

was not able to apply her incorrect reasoning to the negative slope, and she started 

doubting her approach.  
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Figure 5.8. Dawn’s non-linear graph 
 

Interviewer: How could I use that for my total dosage, or could I? [interviewer points 

to the derivative of -2] 

Dawn: I think it’s different.  

Interviewer: Different because? 

Dawn: There is a negative slope involved. 

Interviewer: Is there something we could use it, or anything else, to determine the 

amount of drug to give? 

Dawn: I don’t think so. I’m started to re-think that what I said earlier about 

multiplying the 3 by the 160, or the 140 by 2, is not correct. It’s probably not correct. 

Interviewer: What’s getting you to think it’s not correct? It doesn’t work with a 

negative? 

Dawn: Yeah. Because that would make a negative dosage. 

Interviewer: OK, let’s try this question again. If I know the derivative at 140 is equal 

to 2. What does that tell me about a 140-pound patient? 
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Dawn: I don’t know what it says about the patient. I know it says something about the 

dosage. Something about the rate of change. But that’s an instantaneous rate of 

change. I’m not really sure.  

Unlike Emily, she was not able to make meaning when the slope was negative, and 

instead starting doubting her initial reasoning. Instead of taking Emily’s approach of 

amending her reasoning to account for the negative slope (and needing to know the 

maximum value to do so), Emily instead reasoned that she knew the derivative had 

something to do with the instantaneous rate of change, but was unsure what exactly that 

meant or what one could do with it.  

There were three students (Chip, Kelly, and Missy) who also took the total dosage 

approach, but for whom I probed a little more as to whether there were multiple ways to 

find the total dosage for a patient. All three concluded that there were two ways to find 

out the total dosage for a certain weight. One way was reading the dependent value from 

the graph (finding the y-value), and the other way was to multiply the derivative by the 

weight to yield the total dosage.  

For example, during Chip’s interview, from Figure 5.9 he reasoned that a 160-pound 

patient would require 160 * 4 or 640 mg of the drug, and a 140-pound patient would 

require 140 * 2 = 280 mg of the drug.  

Chip: So for a 160-pound patient, you would be administering 640 milligrams for a 

160-pound patient, as opposed to 280-milligrams for a 140-pound patient. It seems 

like a steep change, but it’s what the slopes are giving.  

Interviewer: So, you are saying if I’m 140 pounds and my this is my slope, my 

derivative is 2, I can multiply 140 by 2 to get my total dosage? 
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Figure 5.9. Chip’s non-linear graph 
 

Chip: Yes. 

Interviewer: OK. So 140 times 2. So you are telling me this dosage over here will be 

280? [I write 280 on the y-axis]. 

Chip: Yeah 

Interviewer: OK, and for 141, I would multiply 141 times 2.1, and that will give me 

that? [I point to the y-axis corresponding to where w = 141] And 160 times 4 will give 

me my total dosage here? ? [I point to the y-axis corresponding to where w = 160] 

Chip: Yeah. 

Interviewer: So does that mean there are two ways to find, or to calculate, a y-value? 

One directly from reading the graph, and one from taking the derivative and 

multiplying it times the weight? 

Chip: Absolutely, yes.  
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Chip reasoned that the y-value on the graph should correspond to the value that is 

calculated by multiplying the derivative at a weight by that specific weight.  

Missy also stated that multiplying the derivative by the weight would give the total, 

but she goes on to use a point on the graph to calculate the slope of the tangent line. At 

the end of Missy’s interview, I drew a second set of axes and plotted the point (140, 200) 

(Figure 5.10). I asked her to describe the point in the context of the problem, in order to 

see whether she understood that the function represents total dosage as a function of the 

weight. An ideal knower would understand that the point represents the dosage of 200 mg 

given to a 140-pound patient.  

 

Figure 5.10. Graph used for Missy to explain the meaning of a point on the graph 
 

Missy: It means the ratio would be like 200 over 140. Or like the slope at that point. 

Interviewer: So you can calculate the slope based on the y and the x? 

Missy: Yes. 

And then later on I draw another point: 
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Interviewer: OK, so this here point (200, 300) right here [I draw the point (200, 300) 

on the graph]. I can use that to calculate the slope at that point? 

Missy: Yeah. 

Missy’s reasoning for the interpretation of the point on the graph reveals many 

misunderstandings on her part. Not only does she not understand that a point on the graph 

represents the amount of drug needed for a specific weight, she believes that she can 

calculate !
!
 to find the slope of the tangent line. In other words, the slope of the line 

between a point and the origin is equivalent to the instantaneous rate of change at a point. 

Missy’s misunderstandings seem to be rooted in incorrect reasoning about functions and 

knowledge of tangent lines.  

5.3.5 Summary of interviewees’ successes and struggles with the critiquing 

questions 

In summary, most interviewed students performed very well when critiquing the 

linear predictions, even more so than students had on the surveys. In particular 92.3% of 

interviewees gave correct answers whereas 69.6% of surveyed students responded 

correctly. In the interviews, students used correct reasoning of slope as a constant rate of 

change that can be used to estimate change for any increase in the independent variable, 

and they were able to express confidence in Nurse Jodi’s use of the slope to make 

predictions. Dawn was the only interviewee who had differing confidence levels for the 

two questions. Surprisingly she had more confidence in the 20-pound increase prediction 

scenario than the 1-pound increase scenario.  

It is evident from the interviews, however, that very few students appropriately use 

derivatives to make predictions. Instead, students used incorrect reasoning in one of two 



 

 
 

119 

ways. Demonstrating one inappropriate line of reasoning, two students used derivatives 

(either the derivative at 140 in the case of Jackie who agreed with Nurse Jodi, or a 

derivative at another point, namely 141 or 160, in the case of John who did not have 

confidence in Nurse Jodi) to calculate the change in dosage. These students did not 

understand that the derivative was an instantaneous rate of change that could be used 

accurately only at the input value (or for a small region around the input value). Instead, 

they applied the derivative like the slope in the linear situation, as something that could 

be used to approximate change over any interval.  

In the second incorrect line of reasoning, seven students took the approach where they 

used another derivative (the derivative at 160, for example) to calculate the total dosage, 

stating that the derivative times the weight gives the total dosage. Six of the seven had 

interpreted slope as a ratio-of-totals, thus extending their incorrect ratio-of-totals slope 

interpretation to derivatives and concluding 𝐷(𝑛) = 𝐷! 𝑛 ∗ 𝑛. A few of these students 

tried to adjust their reasoning for a negative slope (Emily and Dawn), at least one 

successfully in her mind (Emily).  

Students also failed to recognize when to apply their knowledge of linear 

approximation. Brandon was the only student to use linear approximation language in his 

answers. 

Recall that on the written surveys, 18% of students mentioned needing another 

derivative to answer the question. I was expecting that students who said they needed 

another derivative in the interview would use the derivative to approximate the change 

over the interval (like Nurse Jodi, but using the derivative at 141 pounds or 160 pounds, 

instead of the derivative at 140 pounds). In other words, I was expecting them to reason 
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that it was appropriate to use a derivative to estimate a change over any interval. Instead, 

7 of the 8 interviewed students (87.5%) who used another derivative, did so to calculate 

the total dosage. Their reasoning was that a derivative (a rate of change) can be used to 

find the total dosage by multiplying the rate of change by the weight (𝐷(𝑛) = 𝐷! 𝑛 ∗ 𝑛), 

thus extending the incorrect knowledge of the slope being a rate of change that can be 

used to calculate total weight (𝐷 𝑛 = 𝑚 ∗ 𝑛).  

 

5.4 Summary of interview results 

Figure 5.11 compares the success rates on the survey and interview linear context 

questions. Figure 5.12 compares the same for the non-linear context questions. The 

success rates across the board were higher for the interviewees. One thing that stands out 

is that the success rates for the critiquing questions were much higher for linear than non-

linear scenarios, indicating students’ inability to understand how a derivative can (or can 

not) be used to make a prediction.  

 

Figure 5.11. Survey and interview participants’ success rates on the linear questions 
(units, interpretations, and critiquing) 
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Figure 5.12. Survey and interview participants’ success rates on the non-linear questions 
(units, interpretations, and critiquing) 

 

There were four areas that I investigated through the interviews. First, whereas only 

35% of the students identified correct units on both the slope and derivative in the 

surveys, there was a success rate of 61.5% in the interviews. Possible explanations could 

be that the context was easier (the survey questions introduced the “10-acre tract” and 

some students in turn used “acres” as part of the units) and also, I made sure students had 

their graphs labeled appropriately (including units) before moving to the unit question, 

which could have aided them in answering the unit questions. Successful interviewed 

students were able to identify the slope as the “change in y over change in x” in order to 

reason that the units on the slope would be the “units on y over the units on x.” Even 

those students who used a ratio-of-totals approach to defining slope as “y over x” were 

able to apply that to the units and get the correct “units on y over units on x.” 

Unsuccessful students were unable to apply knowledge of slope to the units, and instead 
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changed the units (putting the independent variable in the numerator) or introduced other 

combinations.  

For the interpretation questions on the surveys, 39% of students gave a slope 

explanation using an incorrect ratio-of-totals interpretation (𝐵(𝑛) = 2𝑛), thus implying a 

directly proportional relationship, and 16% gave a similar derivative explanation 

(𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛). In the interviews, a much higher percentage took the ratio-of-totals 

approach to the slope (61.5%) and the analogous derivative interpretation of 𝐷(𝑛) =

𝐷! 𝑛 ∗ 𝑛 (53.8%). Students’ misunderstandings of slope as a ratio-of-totals seems to be 

impacting their abilities to interpret derivative correctly, as six of the eight ratio-of-totals 

respondents on the slope question (75%) went on to interpret the derivative incorrectly as 

𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛. Whereas at first glance one might reason that a ratio-of-totals 

approach to slope might be a small mistake on the part of the student (leaving out the 

word “additional” for example), the high percentage of students who go on to interpret 

the derivative incorrectly as 𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛 points to much more than leaving out a 

word. Instead, it seems like the ratio-of-totals approach to slope is carrying over to an 

analogous incorrect interpretation of derivative. Whereas an ideal knower would be able 

to interpret slope ratio-of-differences, and the derivative as an instantaneous rate of 

change at a specific input value, many with misunderstandings used an incorrect ratio-of-

totals approach to the slope and a similar 𝐵(𝑛) = 𝐵! 𝑛 ∗ 𝑛 approach to the derivative.  

The survey responses for Farmer Jim’s predictions in the non-linear model showed 

22.1% of the students did not distinguish between the 1-pound and the 10-pound 

increases, giving similar confidence levels and reasoning. In the interviews, two of the 13 

students (15.4%) gave similar confidence levels for both the 1-pound and 20-pound drug 
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increases form Nurse Jodi’s predictions. Both students used the derivatives to calculate 

the change over the interval, signaling that they reasoned similarly to how they did with 

the linear critiquing questions. Namely, they used both the slope of a linear relationship 

and a derivative of a non-linear relationship to estimate change over any interval. They 

failed to demonstrate the ideal knower’s understanding that a derivative of a non-linear 

function can only be used to estimate change in a small interval around the input value.   

Lastly, focusing on the critiquing questions, Table 5.8 summarizes the interviewees’ 

responses for the interpretation questions and the non-linear scenario critiquing questions. 

I chose to focus on these questions for this table because most students performed well on 

the linear scenario critiquing questions. Also, there were some patterns in how students 

answered the interpretation questions, and then how they answered the critiquing 

questions. 

 

 Critiquing of Nurse Jodi’s Predictions with  
Non-linear Context 

Correct Use derivative to 
find the change 

over any interval 

Used Derivative to 
find the total 

dosage 
𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 

Sl
op

e 
&
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In
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Correct for both Jarrod,  
Pam, Craig John  

Correct for slope and 
incorrect for derivative   Dawn, Chip 

Incorrect for slope and 
correct for derivative 

Brandon 
   

Use 𝐷 = 2𝑛 for slope 
and  
𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 for 
derivative  

 Jackie 
Maddie, Missy, 
Harry, Emily, 

Kelly 

Table 5.8. Summary of slope and derivative interpretation vs. critiquing of non-linear 
context, N=13 
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Only three students answered the interpretation questions and both critiquing 

questions in the non-linear context correctly, Jarrod (our “ideal knower”), Pam (who 

answered everything in the interview correctly except for the unit questions), and Craig 

(who starting describing slope as the ratio-of-totals but changed to the ratio-of-

differences when I drew a graph that did not go through the origin). Six answered both 

the interpretation and critiquing questions incorrectly (Jackie, Maddie, Missy, Harry, 

Emily, and Kelly). All six used a ratio-of-totals interpretation for slope and a 𝐷 𝑛 =

𝐷! 𝑛 ∗ 𝑛 interpretation of the derivative. Five of the six went on to conclude that a 

derivative can be used to predict the total dosage by multiplying the derivative by the 

weight, thus continuing the 𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 approach. The last (Jackie) went on to use 

the derivative to predict the change over any interval. 

In summary, for the seven students who interpreted slope incorrectly, six went on to 

critique the non-linear predictions incorrectly. Five of them took the 𝐷 𝑛 = 𝐷! 𝑛 ∗ 𝑛 

approach, analogous to their ratio-of-totals approach to the slope. Students’ 

underdeveloped views of slope seem to be related to their misunderstandings of the 

derivative. This highlights that there was one common incorrect way of thinking that 

students displayed, anchored in students’ misunderstandings of slope as a ratio-of-totals. 

This dominant incorrect reasoning was displayed in a variety of different tasks; it was by 

far the most common unproductive way of thinking. This unproductive reasoning is 

similar to that seen in younger students; this will be addressed more in the next chapter.  
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6. CONCLUSIONS AND IMPLICATIONS 

This study focused on students’ understanding of slope and derivative, two 

fundamental rate of change concepts. Specifically, this investigation centered on 

students’ interpretation and use of slope and derivative in the context of real life 

situations, and their ability to critique the reasoning of someone else’s predictions made 

using a slope or derivative.  

The findings provide a valuable look into students’ understanding of slope and 

derivative; specific instructional implications are given in this chapter that can help guide 

the mathematical education community. By learning more about how students think 

about slope and derivative, including what misunderstandings many bring into our 

calculus classes, the mathematics education community can strengthen calculus teaching, 

and work toward improving students’ conceptual knowledge and increasing retention 

rates. 

 

6.1 Results and contributions to the literature for research question #1: 

Interpretation of the slope and derivative  

The first research question focused on students’ interpretations of slope and 

derivative in the context of the problem: Research Question #1: Is there a relationship 

between calculus students’ understanding of slope and their understanding of derivative? 

Specifically, do students’ abilities to correctly interpret the slope as a constant rate of 

change make them more likely to be able to interpret the derivative as an instantaneous 

rate of change?  
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Key findings from the study which bring insight into research question #1 can be 

summarized as follows; they are described in more details in the sections that follow: 

• Students who interpreted the slope correctly were no more likely to interpret the 

derivative correctly than those who did not interpret slope correctly. 

• The dominant incorrect way to interpret the slope has been to use a ratio-of-totals 

approach !
!

, implying a directly proportional relationship of the form 𝑦 = 𝑚𝑥, 

with a y-intercept of zero. 

• Most students who interpreted the slope incorrectly as a ratio-of-totals went on to 

interpret the derivative similarly, as something that could be used to find the value 

of the dependent variable, in other words 𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥. 

• Students struggled to understand the units on the slope and derivative, a key 

component to correctly interpreting the meaning of the rate of change.  

These findings support prior research that showed that rates of change are hard for 

students (Carlson, 1998; Hackworth, 1994); the findings also extend the research around 

high school students’ difficulties with slope (Stump, 2001) to college students.  

6.1.1 Students who correctly interpreted slope were not more likely to interpret 

the derivative correctly 

Students were not more successful on the slope interpretation questions (e.g., “a slope 

of 2 bushels per pound means that for each additional pound of nitrogen, 2 more bushels 

of corn are yielded”) than the derivative interpretation questions (e.g., “𝐵! 20 = 2 

means that when the amount of nitrogen is 20 pounds, the yield is increasing at a rate of 2 

bushels per pound”) in either the surveys or the interviews (see Table 6.1). Since slope is 

a concept covered multiple times since middle school, and derivative is a more advanced 
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topic that is not only new, but builds off slope knowledge, I was expecting higher success 

rates for the slope question. This was not the case, and furthermore, students’ success at 

interpreting slope did not seem to make them more likely to interpret the derivative 

accurately.  

 Slope 
Interpretation 

Derivative 
Interpretation 

Surveys 
(N=69) 17% 13% 

Interviews 
(N=13) 31% 38% 

Table 6.1. Comparison of success rates for the interpretation questions for the surveys 
and interviews 

 

This finding is surprising, as the ideas of slope and derivative are tightly connected, 

and therefore one would expect that success at understanding slope would translate to 

success at understanding derivative. This does not seem to be the case, and leads one to 

believe that students are not understanding the connections between these two rates of 

change.  

The success rates for the interpretation questions were higher for the interview 

questions than for the survey questions. Two things help to explain these differences. 

First, many of the surveyed students did not answer the question fully, or in the context of 

the problem, which was not the case for the interviews where I was able to ask follow-up 

questions. Second, the survey questions had extraneous information (it mentioned that 

there was a 10-acre tract of land), and some students incorrectly introduced acres into 

their units, which contributed to their incorrect interpretation.  

Even though the success rates were higher for the interview questions, fewer than 

40% of the interviewed students were able to interpret these rates of change in context. 
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Both the interview and survey data provide evidence that not only do students’ abilities to 

interpret slope not make them more able to interpret the derivative, but that students 

struggle across the board with understanding slope and derivative as rates of change.  

6.1.2 A ratio-of-totals approach to slope interpretation was the dominant 

incorrect reasoning  

The most common incorrect reasoning on the surveys for slope interpretation was the 

ratio-of-totals !
!

 reasoning, which implies a directly proportional relationship of the 

form 𝑦 = 𝑚𝑥. Over one-third of the surveyed students (39%) answered with this 

reasoning (see Table 6.2).  

 Ratio-of-Totals 
Approach 

Surveys 
(N=69) 

39% 

Interviews 
(N=13) 

54% 

Table 6.2. Comparison of rates of using the incorrect ratio-of-totals reasoning for the 
slope interpretation questions for the surveys and interviews  

 

The interview data were even more striking, with 54% of the students using a ratio-

of-totals approach to interpret the slope. Probing interview questions shed light on the 

fact that many of these students think that for all linear relationships, the slope can be 

used to calculate the total (in other words all linear relationships are directly proportional 

relationships). It is not a matter of just forgetting the word “additional;” they instead 

think that slope is the ratio-of-totals, as opposed to the correct ratio-of-differences.  
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6.1.3 The students who used the ratio-of-totals approach for slope interpretation 

often went on to interpret the derivative similarly 

In the surveys, only 13.0% of the students interpreted the derivative correctly; another 

18.8% gave an accurate interpretation but did not give it within the context of the 

problem (for example, “it is the slope of the tangent line when n = 20”). The most 

common incorrect response (15.9%) was that the total yield could be determined by 

multiplying the derivative by the amount of nitrogen, in other words 𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥 

(see Table 6.3). For those students, 73% of them had interpreted the slope using the ratio-

of-totals approach (𝑓 𝑥 = 𝑚 ∗ 𝑥).  

 𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥 
Approach 

Surveys 
(N=69) 16% 

Interviews 
(N=13) 54% 

Table 6.3. Comparison of rates of using the incorrect 𝒇(𝒙) = 𝒇! 𝒙 ∗ 𝒙 reasoning for the 
derivative interpretation questions for the surveys and interviews  

 

The interviews provided additional evidence of students’ inabilities to interpret the 

slope as a ratio-of-differences (instead taking a ratio-of-totals approach) leading to 

struggles with interpreting the derivative. Seven of the 13 interviewed students (54%) 

took the 𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥 approach to interpreting the derivative. Six of the seven 

interviewed students (85.7%) who had taken the incorrect ratio-of-totals slope 

interpretation went on to take the analogous incorrect derivative interpretation (𝑓(𝑥) =

𝑓! 𝑥 ∗ 𝑥). Students expressed confidence in using the derivative to calculate the y-value 

of the function.  
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These unsuccessful students also did not convey understanding of the covarying 

relationship between the derivative and the function value, something Carlson (1998) 

found lacking in even the most talented second-semester calculus students, who exhibited 

difficulties with “demonstrating an awareness of the impact change in one variable has on 

the other” (p. 142). Instead of taking an across-time approach to the problem and showing 

understanding of the derivative as a function of the independent variable, they took a 

point-wise approach in which they used the derivative at a point to calculate something at 

that specific input value.  

Unsuccessful students are not demonstrating knowledge of the changing derivative. 

Instead, they are applying their incorrect reasoning of a slope as a ratio-of-totals to their 

interpretation of the derivative.  

6.1.4 Students struggled with the units on the slope and derivative 

While not directly related to my research question, knowledge of the units on the 

slope and derivative are necessary to accurately interpret the meaning of the rates of 

change. In the surveys, there were no significant differences between students’ success on 

the slope and derivative unit problems. In both cases, less than half of the students 

answered the question correctly (see Table 6.4), and only 35% answered both the slope 

and derivative units correctly. Without knowledge of the units on these rates of change, it 

is not surprising that the success rates on the interpretation questions were so low. 

 Slope Units Derivative Units 
Surveys 
(N=69) 48% 41% 

Interviews 
(N=13) 69% 61% 

Table 6.4. Comparison of success rates for the unit questions for the surveys and 
interviews  
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Only 22% of the incorrect answers were given as a ratio; in other words, many of the 

students did not know that the units on the slope should be a ratio of the form !"#$
!"#$

.  Even 

though many of these students explained later on that the slope was “y over x,” they 

could not put this knowledge to use when answering the questions about the units of the 

slope. These findings are consistent with those of other researchers who focused on high 

school students’ difficulties with viewing slope as a ratio (Barr, 1980, 1981; Stump, 

2001).  

The success rates on the interview questions were better, perhaps signaling that the 

context in the interview questions or my follow-up questions affected their success. Still, 

one-third of the interviewees struggled with units. 

6.1.5 Summary of research question #1 and contributions to the literature 

On the written surveys, only 17% of students interpreted the slope correctly in the 

context of the problem (e.g., “a slope of 2 bushels per pound means that for each 

additional pound of nitrogen, 2 more bushels of corn are yielded”), and only 13% 

interpreted the derivative correctly (e.g. “𝐵! 20 = 2 means that when the amount of 

nitrogen is 20 pounds, the yield is increasing at a rate of 2 bushels per pound”). While 

slightly improved over Bezuidenhout’s (1992) findings, where only 2 of 100 participants 

were able to interpret the meaning of a derivative in the context of a problem, it is still 

discouraging. The results from the interview questions about slope and derivative are 

better (31% and 38% respectively), but as mentioned previously, these may be a result of 

being able to ask follow-up questions and having an easier context.  

We know students must understand rates of change in general to succeed in calculus 

(Hackworth, 1994), and my research adds to the set of findings that show that rates of 
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change are not well-understood by calculus students, many of whom may have 

fundamental misconceptions (Bezuidenhout, 1998). Over a third of the surveyed students 

and almost two-thirds of the interviewed students viewed slope as a ratio-of-totals, which 

is much higher than the 11% of interviewees in Hauger (1995). Hauger’s study did not 

have students interpret the slope verbally; instead students had to estimate from a graph 

how fast a population was changing. While the correct approach was to estimate the rate 

of change using a slope ∆!
∆!

, 11% of the students calculated !
!
 instead. In my study, six 

of the seven interviewees who used an incorrect ratio-of-totals interpretation of slope 

went on to interpret the derivative in a similar incorrect fashion, leading me to believe 

that it was not just a simple act of leaving out the word “additional.”  

We know that proportional reasoning is difficult for students (Hoffer & Hoffer, 1988; 

Lawton, 1993; Lesh et al., 1988; Tourniaire & Pulos, 1985), and perhaps students’ 

misunderstandings of linear functions in general, and directly proportional relationships 

specifically (for which the slope is a ratio-of-totals), lead to an impoverished 

understanding of slope. Even with the slope interpretation questions, students performed 

poorly, and those who performed poorly on the slope interpretation question were likely 

to carry their misunderstandings on to their derivative interpretation (and later to the 

critiquing questions too).  

We know students’ difficulties with calculus concepts are often tied to their 

underdeveloped views of rates of change (Carlson, 1998; Hackworth, 1994; Orton, 1983; 

Thompson, 1994). This study adds to these findings, by highlighting the prevalent view 

of slope as a ratio-of-totals, as demonstrated by 39% of surveyed students and 54% of 

interviewed students. Findings also point to a connection between this ratio-of-totals view 
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of slope and students’ view of the derivative as something that can be used to calculate a 

y-value, in other words 𝑓 𝑥 = 𝑓! 𝑥 ∗ 𝑥. In the interviews, of the seven students who 

took this incorrect approach to derivative interpretation, six had used a ratio-of-totals 

approach. The fact that students’ impoverished view of slope is impacting their view of 

the derivative in these specific ways is not something that has been mentioned in the 

literature to date. 

While my research questions did not deal directly with units, some useful findings on 

students’ understanding of units come out of the study. Dorko and Speer (2015) found 

that calculus students had difficulty with units for area and volume, where only 26.6% of 

college students labeled correct units for all five area and volume tasks that were given to 

them. Students who struggled with the tasks seemed to not have knowledge of arrays or 

dimensionality. The types of unit questions that were given to the calculus students in my 

study were different, but in general, regardless of the context, it seems that units are 

difficult for students. Whereas arrays and dimensionality seemed to be lacking in the 

former study, in my study many students did not think of the units on the slope or 

derivative as a ratio, necessary knowledge to correctly find the units. These findings 

extend those at the high school level that found students difficulties viewing slope as a 

ratio (Barr, 1980, 1981; Stump, 2001). 

On a broad level, understanding units is important because our national standards call 

on students to attend to precision, and one way to do so is by “specifying units of 

measure” (Standards for Mathematical Practice section, CCSS.MATH.PRACTICE.MP6, 

National Governors Association Center for Best Practices, 2010). In terms of this 

research, understanding units is important because without such understanding, it seems 
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unlikely that students would be able to correctly interpret the meaning of the slope and 

derivative.  

As pointed out in the Chapter 2, there has not been much research to date about 

college students’ verbal interpretation of rate of change in real-life contexts, despite calls 

for calculus instruction to focus on “verbal approaches to applications on the derivative 

concept” (Maharaj, 2013, p. 15). This study’s focus on verbal interpretation of the 

derivative in the context of real-life situations begins to fill that gap. Through these 

verbal interpretation questions, it was established that the ratio-of-totals view of slope is 

prevalent, and is impacting students’ abilities to understanding the meaning of the 

derivative.  

 

6.2 Results and contributions to the literature for research question #2: Critiquing 

the reasoning of others and recognizing appropriate uses of slope and derivative  

The second research question focused on students’ abilities to critique the reasoning 

of others, specifically students’ abilities to recognize appropriate uses of slope and 

derivative to make predications. Research Question #2: Given predictions based on slope 

and derivative, can students appropriately critique the reasoning?  

Key findings from the study which bring insight into research question #2 can be 

summarized as follows; they are described in more details in the sections that follow: 

• Students struggled with the critiquing questions for the non-linear context, 

showing little understanding of the covarying nature of the derivative. In other 

words, they had difficulties with the idea that the derivative is an instantaneous 

rate of change whose value changes depending on its input value.  
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• The dominant incorrect ways to interpret the slope and derivative were applied to 

the critiquing questions, where many concluded that they could calculate the total 

by using the derivative (𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥). 

These findings support prior research that highlighted students’ difficulties using 

calculus to analyze dynamic situations (Carlson, 1998), and students’ struggles with 

use of the derivative to approximate the function near a point (Asiala et al., 1997). 

These finding extend the prior research by identifying students’ common incorrect 

use of the derivative as a ratio-of-totals to be used to calculate the function value.  

6.2.1 Students demonstrated little understanding of the covarying nature of the 

derivative 

Considering the poor performance on the interpretation questions, it is not surprising 

that students were not able to critique the reasoning of someone else’s predictions in the 

non-linear context (Table 6.5). In the surveys, only 16% of the students correctly 

critiqued the reasoning of Farmer Jim; just one student used the language of linear 

approximation. Almost as many (14%) stated that they needed another derivative (though 

none stated what they would do with that derivative). Many students did not give answers 

with complete reasoning (42%). The interviews allowed me to ask follow-up questions 

that allowed me to understand student thinking more completely than in the surveys.  

  
Correct 

Need another 
derivative 

Surveys 
(N=69) 16% 14% 

Interviews 
(N=13) 31% 62% 

Table 6.5. Comparison of the response rates for the critiquing questions in the non-linear 
context for the surveys and interviews  
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Success rates for the interviews were almost double that of the surveys (though only 

one student used language of linear approximation). What also increased substantially in 

the interviews was the percentage of students who said they needed another derivative 

(62%).  

Two of the thirteen interviewed students used the derivative in the same manner as 

Nurse Jodi, to calculate the change in dosage for a certain change in weight. One agreed 

with Nurse Jodi, and one used the same approach as Nurse Jodi but requested that the 

derivative at the end weight be used to estimate the change. They made these predictions 

regardless of the magnitude of the change in weight. In other words, they did not 

recognize that the derivative, as an instantaneous rate of change, was only appropriate to 

use to estimate the change for values close to the input value.  

These students did not express an understanding of confidence levels changing 

depending on the distance from the known value and the predicted value. Using the 

language of covariational reasoning, students did not attend to the ways the quantities of 

the weight and the rate of change of weight altered in relation to each other.  

Seven interviewed students who said they needed another derivative used the 

derivative at the end weight to calculate the total dosage of the patient, by multiplying the 

derivative times the weight. These students also did not demonstrate understanding of the 

covarying nature of the derivative; instead of seeing the derivative as a function that 

changes as the input value changes (an across-time understanding), they instead saw the 

derivative as something that can be used to calculate the value of a function at a specific 

point (a point-wise understanding). 
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Of the nine interviewed students who incorrectly critiqued the reasoning of Nurse 

Jodi in the non-linear context, all demonstrated little knowledge of the covarying nature 

of the derivative. They thought of the derivative as something that could be used to 

calculate something at a point (either the total dosage or the change in dosage over an 

interval of any magnitude), instead of a function that changes depending on the input 

value.   

6.2.2 The incorrect interpretation of slope and derivative as a ratio-of-totals was 

applied to the critiquing questions 

Most of the students who interpreted the slope as a ratio of totals (𝑓 𝑥 = 𝑚 ∗ 𝑥) and 

the derivative as the analogous 𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥 went on to apply this incorrect 

interpretation to the critiquing questions. Specifically, seven of the 13 interviewed 

students (54%) disagreed with Nurse Jodi’s use of the derivative to estimate the change in 

dosage, and instead used the derivative to calculate the total dosage (𝐷(𝑥) = 𝐷′(𝑥) ∗ 𝑥). 

Of these seven, five had used the ratio-of-totals approach to slope interpretation and the 

analogous 𝑓 𝑥 = 𝑚 ∗ 𝑥 approach to derivative interpretation. The other two had 

correctly interpreted the slope but incorrectly interpreted the derivative.  

These undesirable generalizations that students formed using their impoverished view 

of slope seem to be influencing their understanding the derivative as a continuously 

varying rate of change. One interviewed student, Missy, took her undesirable 

generalization one step further to say that the slope at a point could be determined by 

calculating !
!
.  

Based on the findings in this study, students’ thinking of slope as a ratio-of-totals 

seems to be preventing them from making sense of the derivative as an instantaneous rate 
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of change. Most troubling was the high percentage of interviewees (54%) who claimed 

that one could calculate the total dosage by multiplying the derivative by the weight 

(𝑓(𝑥) = 𝑓! 𝑥 ∗ 𝑥). 

6.2.3 Summary of research question #2 and contributions to the literature 

Many of the contributions to the literature mentioned in section 6.1.5 apply to this 

section as well, where students applied their impoverished view of slope as a ratio-of-

totals to their critiquing of others’ predictions.  

New to this section is the focus on critiquing the reasoning of others. Noted in 

Chapter 2 is the call in our national standards to have students critique the reasoning of 

others, and “distinguish correct logic or reasoning from that which is flawed and – if 

there is a flaw in an argument – explain what that is” (Standards for Mathematical 

Practice section, CCSS.MATH.PRACTICE.MP3, National Governors Association 

Center for Best Practices, 2010). No literature exists probing student thinking about ideas 

related this important standard. This study begins to explore students’ abilities to 

recognize a flawed argument and explain their reasoning. Unfortunately, in the case of 

this study, very few students were able to do this effectively. Many of their difficulties 

stemmed from, once again, their inability to interpret the slope and derivative correctly, 

which carried over to their inability to effectively critique the reasoning of others.  

 

6.3 Limitations of the study 

This study has limitations related to the sample size, sample population, questionnaire 

design, and data collection methods. A total of 69 students at one university were 

surveyed and 13 students were interviewed. Although there is no particular indication 
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that these samples are not representative of the larger population of calculus students, a 

larger and more representative sample size would enable stronger generalizations about 

all differential calculus students.  

Because only one context was used for the surveys (yield of a crop as a function of 

nitrogen level applied) and one for the interviews (dosage of a drug as a function of the 

weight of a patient), the ability to make conclusions about students’ understandings 

across other contexts is limited. A larger study with more diverse contexts would enable 

stronger generalizations about all contexts.  

In the surveys, the students often gave vague or incomplete written responses. This 

was avoided in the interviews because the interviewer asked follow-up questions and 

encouraged the participants to provide more details. Students might have had lower 

motivation and focus when they were filling out the written survey, which might have led 

to answers that did not accurately reflect their understandings. There is also the chance 

that the interviewer unintentionally influenced students’ answers in the interviews. 

Additional interviews would provide more evidence of student understanding, but was 

beyond the scope and time available for this project.  

 

6.4 Instructional implications 

Expanding on previous findings that show students lack solid understanding of rates 

of change in general (Hackworth, 1994; Orton, 1984), findings suggest that students do 

not have a full understanding of what slope and derivative mean as a rate of change in the 

context of modeling situations, nor do they understand appropriate uses of slope and 

derivative to make predictions. Findings also suggest that students’ incorrect 
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interpretation of slope (as a ratio-of-totals which translates to a directly proportional 

relationship of the form 𝑓 𝑥 = 𝑚 ∗ 𝑥) seems to be related to their incorrect 

interpretation and use of a derivative (as 𝑓 𝑥 = 𝑓! 𝑥 ∗ 𝑥). These findings have 

instructional implications for both calculus instructors and middle school mathematics 

teachers.  

6.4.1 Instructional implications for calculus instructors 

Implications for calculus instructors center around three area: (1) identifying and 

addressing students’ shortcomings around slope interpretation, (2) stressing limitations of 

derivatives and appropriateness of predictions, and (3) attending to units.  

As college calculus instructors, we need to assess our students coming into our 

calculus courses. What is their understanding of slope, and their interpretation of slope in 

modeled contexts? By asking questions similar to those in this study early on in the 

calculus course, instructors can assess students’ understandings coming into the course. 

When students answer slope interpretation questions using a ratio-of-totals approach, we 

cannot assume that they just “left out the word additional.” We must address these 

shortcomings, taking the time to step back to the middle school concepts of slope, linear 

relationships, and directly proportional relationships (a subset of all linear relationships). 

Based on the results of this study, which showed a large percentage of the students 

having a ratio-of-totals approach, we need to take the time at the start of our calculus 

course so that all students understand the differences between directly proportional 

relationships and other linear relationships, and how the interpretation of slope is 

different in each. This would be best accomplished when ideas of average rates of change 

are introduced at the start of the course. Clicker questions would be an ideal way to get at 
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the common misunderstandings around slope, and instructors could follow up with a 

worksheet or homework questions to reinforce these important concepts. When 

interpretations of the derivative are covered later on in the course, questions about linear 

equations and slope could be revisited, and distinctions made between the two.  

Also, while students learn about the derivative in calculus, we have to provide enough 

opportunities for students to understand the differences between slope (a constant rate of 

change) and derivative (an instantaneous rate of change). I suggest combining questions 

about slope (linear relationships) with questions about derivative (non-linear 

relationships) so that students have opportunity to interpret both rates of change.  

Second, we need to focus on not just what derivatives can be used for (linear 

approximation, marginal cost, etc.), but also stress their limitations in making predictions. 

Even in applied calculus texts, these limitations are not stressed. For example, in Applied 

Calculus (Hughes-Hallet et al., 2014) the section on interpretation of the derivative and 

tangent line approximation states “if the derivative of a function is not changing rapidly 

near a point, then the derivative is approximately equal to the change in the function 

when the independent variable increases by 1 unit” (p. 104). Similarly in Applied CALC 

(Wilson, 2012), it states that you can interpret 𝑓! 𝑎 = 𝑐 as “the value of the function f 

will increase (decrease) by about c units of output between a units of input and a+1 units 

of input” (p. 70). But never do they mention what “changing rapidly” means, nor do they 

explicitly state whether it is appropriate to use the derivative to approximate change 

further away than 𝑓(𝑎 + 1). As an instructor, I would suggest giving students 

opportunities to compare the estimated values (from the derivative) with the actual value 

(from the original function), both by calculating the values and showing the error 
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graphically. Discussions around how much error might be appropriate in different 

contexts would be beneficial. For example, in calculating the approximate change in a 

fish stock, one might allow for more error than in calculating the approximate change in 

the breaking distance of a newly designed vehicle.  

Hughes-Hallet et al. (2014) also includes questions about using the derivative to 

estimate values of a function, and says “since the derivative tells us how fast the value of 

a function is changing, we can use the derivative at a point to estimate values of the 

function at nearby points” (p. 106). They do not define “nearby” points however, and in 

some of their exercises they have students estimate values that are as much as five or ten 

units away from original input value.  

This study has shown that many calculus students do not know how to appropriately 

use a derivative to make an estimate. Textbooks are not giving students opportunities to 

discuss the appropriateness of predictions; instead students are asked to make estimates 

without being asked to consider how far away the input value is, or how rapidly the 

function is changing around the point of interest. We must address these ideas in our 

classroom, so students have opportunities to reflect on the appropriateness of their 

predictions. 

Lastly, we must attend to units throughout the mathematics curriculum. While not a 

focus of the research study, it was clear that many of the calculus students in this study 

struggled with units on slope and derivative, and that those struggles impacted their 

ability to understand and appropriately use slope and derivative. While elementary 

students’ understanding of unit has been studied in detail, very little research has been 

done at the college level (Dorko & Speer, 2015), despite the importance of units in many 



 

 
 

143 

calculus topics (differentiation, integration, differential equations). While mathematics 

instructors might not view units as important a topic as our physics and engineering 

colleagues, being aware of the difficulties students have around units, and attending to 

units when they arise in our curriculum, will be very beneficial to our students.  

6.4.2 Instructional implications for middle school mathematics teachers 

At the middle school level, instructional implications suggestions fall into two 

categories: (1) providing opportunities for students to understand that directly 

proportional relationships are a subset of all linear relationships, and how the 

interpretation of slope differs in both cases, and (2) providing more opportunities to 

understand and interpret the covariant aspects of functions.  

 I recommend providing more extensive opportunities for students to understand that 

directly proportional relationships are a subset of all linear relationships, and that not all 

linear relationships are of the form 𝑓 𝑥 = 𝑚𝑥. For example, students can calculate both 

!
!
 and ∆!

∆!
 for linear relationships of the form 𝑓 𝑥 = 𝑚𝑥 and 𝑓 𝑥 = 𝑚𝑥 + 𝑏 and make 

conclusions about the slope based on the results. Extending to slope interpretations, 

students need the opportunity to interpret slope as a rate of change (the functional 

approach to slope), similar to the questions in this study, but specifically focusing on 

interpreting slope of directly proportional relationships versus those that are not. By 

highlighting the differences between directly proportional relationships and other linear 

relationships, students will have the opportunity to understand how the interpretation of 

the slope differs. Focus must also be on units, as soon as students are introduced to slope. 

Oftentimes in the middle school curriculum, students calculate slope as a number, but the 

units are not mentioned or stressed. We know from research at the college level that 
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students struggle with units; we must do better attending to units throughout the 

mathematics curriculum.  

We also know that current curricula “provide little opportunity for developing the 

ability to: interpret and represent covariant aspects of functions, understand and interpret 

the language of functions, interpret information from functional events, etc.” (Carlson, 

1998, p. 142). As a mathematics education community, we need to continue to improve 

our instruction and focus our attention on the topics (such as covariational reasoning and 

interpretation) that the research is pointing to as critical to the success of our students.  

 

6.5 Future research 

More research must be done on students’ interpretations of both slope and derivative 

as rates of change. It seems clear from this project that students’ most common incorrect 

interpretation of slope as a ratio-of-total (as !
!
 instead of ∆!

∆!
 ) is influencing their ability to 

understand the derivative. How early do these ways of thinking form? Student thinking 

about slope as a rate of change can be researched at the middle school level to see 

whether the ratio-of-totals interpretation is prevalent in those early years. We know that 

“full concept development appears to evolve over a period of years” (Carlson, 1998. 

p.143). The concept of slope is first introduced in middle school, utilized throughout high 

school, and then expanded on in calculus with the introduction of the derivative. 

Research could be done to examine how students’ understanding of slope evolves over 

these key years.  

At the college level, one could also focus on the effectiveness of specific instruction 

that is designed to address these misunderstandings. Differential calculus students could 
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be pretested on their knowledge of slope as a rate of change at the start of the course, and 

then instruction on slope and interpretation of slope (for linear functions of the form 

𝑓 𝑥 = 𝑚𝑥 + 𝑏 and 𝑓 𝑥 = 𝑚𝑥) could occur prior to starting derivatives. After 

instruction on derivatives, a post-test could measure student gains on interpreting both 

slope and derivative, to see whether the targeted instruction on slope aids in students’ 

understanding of derivative.  

Also important would be to design surveys and interviews to probe the common 

incorrect response that a derivative can be used to calculate the dependent variable 

(𝑓 𝑥 = 𝑓! 𝑥 ∗ 𝑥). Questions could be designed to challenge this idea, for example 

where 𝑓! 𝑥  is negative, to see whether students assimilate or accommodate their 

incorrect way of thinking.  

Knowing more about students’ understanding of slope and derivative as rates of 

change can help educators improve our instruction. The concept of slope is fundamental 

to the mathematics curriculum from the middle grades and on; we must do better to 

ensure that our students have solid conceptions of this rate of change. If we can help 

students develop these understandings when the concept is first introduced in middle 

school, and if necessary address any misunderstandings they bring forward to high school 

and beyond, we can ensure that students in our calculus course have the solid foundation 

necessary to understanding the complexities of the derivative. More success in calculus 

translates to more persistence in STEM fields, thus reaching our overarching goal of 

increasing the number of STEM graduates in our universities.  
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APPENDIX A: SURVEY INSTRUMENT WITHOUT GRAPHS PROVIDED 

Let B(n) be the number of bushels of corn produced on a 10-acre tract of farmland 
that is treated with n pounds of nitrogen.  
 
A. Assume that B(n) is a linear function with a slope equal to 2 (m = 2) 

 
0. On the graph to the right, give a rough sketch of what the 

function B(n) looks like. Label the axes, but no need to 
scale them.  
 

1. What are the units on the slope, m = 2? 
 

2. Explain what this slope (m = 2) means in the context of the problem. 
  

 

3. Using the slope (m = 2), Farmer Jim predicts that by going from 20 pounds of 
nitrogen to 21 pounds of nitrogen, he will produce 2 more bushels of corn. How 
much confidence do you have in Jim’s reasoning? (circle one and provide 
explanation) 

 
Very Confident   Somewhat Confident   Not Confident 
 
Explanation: 
 
 
 
 
 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this season.  At the last 
minute, he decides to invest more in nitrogen and increases the application to 30 
pounds. Based on his model, he predicts that will get him 20 additional bushels (2 
bushels for each additional pound of nitrogen).  How much confidence do you have 
in Jim’s reasoning? (circle one and provide explanation) 

 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
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B. Now, assume that B(n) is a non-linear function. 
 

0. On the graph to the right, give a rough sketch of what 
the function B(n) looks like, assuming that the 
nitrogen is helpful to the crop up until a certain point 
and then too much is harmful. Label your axes, but no 
need to scale them. 
 
 

1. What are the units on 
dB
dn

? (also known as B '(n) ) 

 
 

2. Explain the meaning of the statement B '(20) = 2 in the context of the problem.  
 
 
 

3. Using the fact that B '(20) = 2 , Farmer Jim predicts that his corn yield will 
increase by 2 bushels when his nitrogen application increases from 20 pounds to 
21 pounds. How much confidence do you have in his reasoning? (circle one and 
provide explanation) 
 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
 
 
 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this year.  Last minute, 
he decides to invest more in nitrogen and raises it to 30 pounds. Since B '(20) = 2
, he predicts that the additional nitrogen will yield him 20 additional bushels (2 
bushels for each pound of nitrogen) .  How much confidence do you have in 
Jim’s reasoning? (circle one and provide explanation) 
 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
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APPENDIX B: SURVEY INSTRUMENT WITH GRAPHS PROVIDED 

Let B(n) be the number of bushels of corn produced on a 10-acre tract of farmland 
that is treated with n pounds of nitrogen.  
 

A. Assume that B(n) is a linear function with a slope equal to 2 
(m = 2), shown in the graph.  
 
1. What are the units on the slope, m = 2? 

 
 
 
 

2. Explain what this slope (m = 2) means in the context of the problem.  
 
 
 
 
 

3. Using the slope (m = 2), Farmer Jim predicts that by going from 20 pounds of 
nitrogen to 21 pounds of nitrogen, he will produce 2 more bushels of corn. How 
much confidence do you have in Jim’s reasoning? (circle one and provide 
explanation) 

 
Very Confident   Somewhat Confident   Not Confident 
 
Explanation: 
 
 
 
 
 

4. Farmer Jim purchases 20 pounds of nitrogen for his tract this season.  At the last 
minute, he decides to invest more in nitrogen and increases the application to 30 
pounds. Based on his model, he predicts that will get him 20 additional bushels (2 
bushels for each additional pound of nitrogen).  How much confidence do you have 
in Jim’s reasoning? (circle one and provide explanation) 

 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
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B. Now, assume that B(n) is a non-linear function, such that 

nitrogen is helpful to the crop up until a certain point and then 
too much is harmful, as show in the graph: 
 

0. What are the units on 
dB
dn

? (also known as B '(n) ) 

 
 
 
 

1. Explain the meaning of the statement B '(20) = 2 in the context of the problem.  
 
 
 
 

2. Using the fact that B '(20) = 2 , Farmer Jim predicts that his corn yield will increase 
by 2 bushels when his nitrogen application increases from 20 pounds to 21 pounds. 
How much confidence do you have in his reasoning? (circle one and provide 
explanation) 

 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
 
 
 
 

3. Farmer Jim purchases 20 pounds of nitrogen for his tract this year.  Last minute, he 
decides to invest more in nitrogen and raises it to 30 pounds. SinceB '(20) = 2 , he 
predicts that the additional nitrogen will yield him 20 additional bushels (2 bushels 
for each pound of nitrogen).  How much confidence do you have in Jim’s reasoning? 
(circle one and provide explanation) 

 
Very Confident   Somewhat Confident   Not Confident 

 
Explanation: 
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APPENDIX C: INTERVIEW INSTRUMENT  

For certain drugs, the amount of dose given to a patient, D (in milligrams), depends 
on the weight of the patient, w (in pounds).  

 
A.  Assume that D(w) is a linear function with a slope equal to 2 (m = 2).  

 
0. On the graph below, give a rough sketch of what the function D(w) looks like. 

Label the axes, but no need to scale them. 

 
 

1. What are the units on the slope, m = 2? 
 
 
 

2. Explain what this slope (m = 2) means in the context of the problem.  
 
 
 
 

3. Using the slope (m = 2), Nurse Jodi predicts that a patient’s dose will increase by 
2 mg when the patient’s weight changes from 140 pounds to 141 pounds. How 
much confidence do you have in her reasoning? (circle one and provide 
explanation) 

 
Very Confident  Somewhat Confident   Not Confident 
 
Explanation: 

 
 
 
 

4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next 
patient is twenty pounds heavier and she reasons that she must increase the dose 
by 40 mg (2 mg for each pound of weight).  How much confidence do you have 
in her reasoning? (circle one and provide explanation) 

 
Very Confident  Somewhat Confident   Not Confident 
 
Explanation: 
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B. Now, assume D(w) is a non-linear function.  

0. On the graph below, give a rough sketch of what the function D(w) might look like. 

 
 

1. What are the units on 
dD
dw

? (also known as D '(w) ) 

 
 
 
 

2. Explain the meaning of the statement D '(140) = 2 in the context of the problem.  
 
 

 
 

3. Using the fact thatD '(140) = 2 , Nurse Jodi predicts that a patient’s dose will 
increase by 2 mg when the patient’s weight changes from 140 pounds to 141 pounds. 
How much confidence do you have in her reasoning? (circle one and provide 
explanation) 

 
Very Confident  Somewhat Confident   Not Confident 

 
Explanation: 

 
 
 
 
 
 

4. Nurse Jodi accurately doses a 140-pound patient using the model.  Her next patient is 
160-pounds and she reasons that since D '(140) = 2 , she must increase the dose by 
40 mg (2 mg for each pound of weight).  How much confidence do you have in her 
reasoning? (circle one and provide explanation). 

 
Very Confident  Somewhat Confident   Not Confident 

 
Explanation: 
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