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 Elderberry (Sambucus sp.) fruit is a healthful food with a variety of reported 

curative properties and is among the richest sources of anthocyanic pigmentation, 

which are the primary factors for its commercial use. Although a variety of value-added 

elderberry products are available to consumers, it is questionable as to which product 

form contains the highest nutrient levels and color stability characteristics, and 

represents the best value to consumers. It was the objectives of this research to 

evaluate a variety of commercial elderberry products, and to develop a value-added 

elderberry product with enhanced nutrient and color stability.  

 The first part of this research evaluated the nutrient and color stability of several 

value-added elderberry products (syrups, tinctures, concentrates, capsules, lozenges, 

dried fruit, powder) throughout 10 weeks of accelerated temperature (32° C) storage. 

Most of the products contained appreciable amounts of anthocyanins and other 

nutrients, which generally exceeded the values observed within raw elderberry fruit. 



   

However, the elderberry tinctures contained low levels of anthocyanins, 

proanthocyanidins, and sugars; high levels of moisture/alcohol, and displayed poor 

nutrient and color stability throughout storage. The elderberry syrups, capsules, and 

lozenges generally displayed favorable phytochemical and color stability characteristics. 

Kerr Elderberry Concentrate and NP Nutra® Elderberry P.E. 10:1 powder contained 

substantial amounts of phytochemicals and pigmentation, which demonstrates their 

value within wholesale food markets.  

 The second part of this research determined the nutrient and color stability 

effects of copigment additives (rosemary extract, tannic acid, black carrot color, purple 

sweet potato color, enzymatically modified  isoquercitrin) within elderberry tinctures 

throughout 6 weeks storage at 21° C. The results did not demonstrate effective 

copigmentation among any of the tinctures with copigment additives, which was likely 

due to the high ethanol content of the tinctures. All of the copigment additives 

contributed to increased phenolic contents and antioxidant activity within the tinctures, 

and black carrot and purple sweet potato color additives caused significant (p≤0.05) 

effects to the L*a*b* color values, monomeric anthocyanins, color density, and 

polymeric color of the tinctures. The results demonstrated that elderberry anthocyanins 

degraded into colorless products prior to converting into brown colored anthocyanin-

tannin products throughout storage.   
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CHAPTER 1. INTRODUCTION 

 

Elderberry Ecology 

Elderberry (Sambucus sp.) is a genus of deciduous shrubs consisting of 

approximately thirty different sub-species, which typically grow in temperate and sub-

tropical regions of both the Northern and Southern Hemispheres. Elderberry is found 

throughout the majority of Canada, Europe, and the United States, as well as regions of 

Asia, Australia, and South America (Byers and others 2012). Regionally it grows in and 

around the Sonoran Desert within Mexico, in Western and Northwestern South 

America, in Eastern and Northeastern Asia, in Eastern and Southeastern Australia, 

throughout Australasia, and within the Northern Mideast (Martin and Mott 1997). The 

two most prevalent varieties of elderberry are the American elderberry (Sambucus 

canadensis) and the European elderberry (Sambucus nigra), which are both categorized 

within the black elderberry (Sambucus nigra) species. Red elderberries (Sambucus 

racemosa) are also common within the United States and Asia, however, its fruit is not 

utilized for human consumption due to high levels of cyanogenic glycoside toxins (Losey 

and others 2003).  

Elderberry leaves are structured pinnately, are typically between five and twenty 

centimeters in length, and generally contain between five and eleven leaflets, with 

singly toothed serrated edges (Martin and Mott 1997, Charlebois 2007) (Figure 1). 

Elderberry shrubs grow between six and twelve feet tall in fertile semi-dry, wet sandy, 

or bottomland soils, and prefer a soil pH between 5.5 and 7.5 (Martin and Mott 1997, 
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Byers and others 2012). It thrives in partially sunny or sunny areas (Byers and others 

2012). Elderberry fruit grows in large umbrella-shaped clusters from showy white 

flowers, and ripens from July to September (Martin and Mott 1997, Byers and others 

2012). The harvest of elderberry fruit is a labor intensive process due to the lack of 

mechanized harvesting equipment. Strang (2012) estimates for every ⅕ acre of 

elderberry shrubs, 130 hours for harvesting/freezing and 20 hours for processing are 

required, which equates to approximately $2,965 of total expenses per ⅕ acre. Mature 

elderberry plants yield between two to four tons of fruit per acre, or eight kilograms per 

plant, respectively (Charlebois 2007, Byers and others 2012, Strang 2012). Elderberry 

fruit can be separated from the stem by freezing and shaking off, or by stripping the 

fruit (Strang 2012).  



3 
 

 
Figure 1 Illustration of elderberry (Sambucus nigra) stem.  

Used with permission from the Southwest School of Botanical Medicine 
(www.swsbm.com). 

 

The fruit is considered a very desirable food source for a wide variety of animals 

such as songbirds, game birds, mice, rats, opossums, raccoons, squirrels, rabbits, 

woodchucks, foxes, bears, livestock, and deer (Martin and Mott 1997). Elderberry 

flowers attract butterflies and bees, and are considered a valuable resource for nectar. 
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The traditional breeding of elderberry has yielded several commercial cultivars which 

produce large flower and fruit clusters. Among these cultivars are York, Kent, Scotia, 

Johns, Nova, Victoria and Adams, which can often be purchased at commercial nurseries 

(Martin and Mott 1997, Charlebois 2007). Commercial elderberries are tolerant to 

insects and disease, however, infrequent tomato ringspot, elderberry sawfly, twig 

canker, verticillium wilt, powdery mildew, leaf spot, thread blight, borers, flea beetles, 

grape mealybugs, and thrips can cause deleterious effects to elderberry crops (Martin 

and Mott 1997, Byers and others 2012, Strang 2012).  

 

Medicinal Uses for Elderberry  

 Early medicinal uses for elderberries have been documented back to indigenous 

Native American tribes and Europeans during the Middle Ages (French 1651, Blochwitz 

1677, Borchers and others 2000, Barak and others 2002, Losey and others 2003). It has 

been used for centuries to treat a variety of illnesses, such as rheumatism, fever, plague 

and edema, and has long been used as a diaphoretic and natural antibiotic (Charlebois 

2007). The fruit and flowers of elderberry contain tannins, flavonoids, and rutin, which 

improve immune function, as well as reduce bleeding, congestion, and diarrhea (Stevens 

2001, Vespalcova and others 2011).  

Current research has evaluated the effects of black elderberry syrup 

formulations on the production of inflammatory cytokines, and has shown that the 

syrup had a strong stimulatory effect on cytokine production by human monocytes 

(Barak and others 2001, Barak and others 2002, Waknine-Grinberg 2009). In addition, it 
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was reported that the elderberry extract formulation which contained the highest level 

of elderberry syrup resulted in the greatest production of cytokines, thusly increasing 

inflammatory response and overall immune function (Barak and others 2001, Barak and 

others 2002). It was also suggested that elderberry syrup may increase the production 

of hematopoietic growth factor GM-CSF and lymphocytes, which may have positive 

implications for people with decreased immune functions (Barak and others 2001, Barak 

and others 2002). Children, elderly, and immunocompromised people are at greatest 

risk from flu related symptoms due to low cytotoxic T-lymphocyte activity, which is 

responsible for viral recovery (Cox and others 2004).  

Burge and others (1999) demonstrated the effect of the black elderberry extract 

Sambucol® (Razei Bar, Jerusalem, Israel) on chimpanzees infected with influenza over a 

period of approximately six months. Chimpanzees in the control group exhibited flu-like 

symptoms throughout thirty-nine days, whereas chimpanzees in the Sambucol® group 

exhibited flu-like symptoms throughout only twelve days of the study (Burge and others 

1999). In a similar study, Zakay-Rones and others (2004) standardized an elderberry 

extract based on flavonoid content and investigated its effect on sixty patients suffering 

from influenza-like symptoms (coughing, mucus discharge, poor quality of sleep, nasal 

congestion) in a randomized, double-blind, placebo-controlled experiment. Patients 

recorded their symptoms using an analogue scale of 0=‘no improvement' to 

10=‘pronounced improvement’. The researchers reported scores near ‘pronounced 

improvement’ after 3.1 days in the elderberry group compared to 7.1 days in the 

placebo group (Zakay-Rones and others 2004). In addition, the use of rescue 
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medications (antipyretic/analgesic paracetamol, acetylsalicylic pain killer, nasal sprays) 

was significantly (p<0.001) less in the elderberry group compared to the placebo group 

(Zakay-Rones and others 2004). Interestingly, these results may indicate that elderberry 

fruit is a better antiviral agent than common antiviral drugs, due to good efficacy and 

the lack of harmful side effects. Whereas, neuraminidase inhibitors and vaccinations do 

not universally protect against the wide array of ever-changing influenza strains, and 

vaccinations are only 60%-90% effective (Cox and others 2004).  

Elderberry fruit is a rich source of anthocyanins, which serve as natural 

antioxidants and are considered to provide a wide range of curative properties. 

Antioxidants neutralize free radicals, which assists in the reduction in age-associated 

oxidative stress and cellular damage, as well as improve cognitive brain function, 

maintain normal vascular permeability, improve endothelial function, and prevent 

inflammation and cancer (Youdim and others 2000, Bagchi and others 2004, Thole and 

others 2006, Elisia and others 2007, Jing and others 2008). In addition, antioxidants have 

been shown to have a protective effect from damage caused by irradiation (Youdim and 

others 2000). 

In addition to elderberry fruit, research shows that elderberry flowers have 

medicinal applications. Mild teas prepared from elderberry flowers have been used to 

break fevers, reduce headaches, promote perspiration, relieve indigestion, reduce the 

effects of edema, alleviate rheumatism, as well as fight the effects of colds, influenza, 

tuberculosis, and bladder or kidney infections (Stevens 2001, Merica and others 2006, 

Charlebois 2007). 



7 
 

Elderberry Composition and Phytochemicals 

The proximate composition of fresh elderberry fruit has been reported to be 

79.8% moisture, 11.4% sugars, 7.0% fiber (28% daily value/100 g), 0.7% protein, 0.6% 

ash and 0.5% polyunsaturated fatty acids, respectively (Anonymous 2009). Fresh 

elderberry fruit also contains appreciable amounts of vitamin C (29.0 mg/100 g or 48% 

daily value/100 g), vitamin A (27.1 µg RE/100 g or 1.8% daily value/100 g), vitamin B6 

(0.18 g/100 g or 10% daily value/100 g), iron (1.6 mg/100 g or 9% daily value/100 g), 

potassium (321.0 mg/100 g or 6.8% daily value/100 g), and calcium (47.4 mg/100 g or 

4.7% daily value/100 g) (Anonymous 2009). Polyphenol oxidase and peroxidase, which 

cause the rapid polymerization of red pigments and other polyphenols, have been 

detected within raw elderberry fruit at 0.51 and 0.66 units of activity/g (Galić and others 

2009). For elderberry juice, Byers and others (2012) reported total soluble solids levels 

of 11-12° brix, pH of 4.5-5.0, and malic acid equivalent titratable acidity of 0.60-0.70 

g/100 ml. 

Elderberry fruit has been shown to contain a variety of biologically active 

phenolic compounds within the flavonoid and non-flavonoid classes. Within the 

flavonoid group, elderberries contain the flavonols quercetin, kaempferol and rutin; the 

anthocyanidins cyanidin and its anthocyanin derivatives; as well as the flavanol 

proanthocyanidins are found within elderberry fruit. Of the non-flavonoids, 

hydroxycinnamic acid derivates (cinnamic, chlorogenic, neochlorogenic, and caffeic 

acids), as well as malic, benzoic and palmitic acids are most prevalent. Of all of the 

phenolic compounds found in elderberry fruit, anthocyanins are most abundant, 
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followed by flavonols (tannins, proanthocyanidins), flavan-3-ols, flavones, and non-

flavonoids (Han and others 2007, Jakobek and others 2007). The major phenolic 

compounds in elderberry must and wine have been identified as chlorogenic acid, 

neochlorogenic acid, quercetin-3-rutinoside, quercetin-3-glucoside, kaempferol-3-

rutinoside, cyanidin-3-sambubioside, cyanidin-3-glucoside, cyanidin-3-sambubioside-5-

glucoside, cyanidin-3,5-diglucoside and cyanidin-3-rutinoside (Johansen and others 

1991, Schmitzer and others 2010). Galić and others (2009) determined the total 

phenolic and anthocyanin contents of wild elderberry fruit to be 32.2 mg/g and 13.1 

mg/g on a dry weight basis, whereas Wu and others (2006) reported an average 

anthocyanin content of 11.3 mg/g on a dry weight basis for Sambucus nigra cultivars. 

Özgen and others (2010) reported that anthocyanins comprised between 41.4% and 

87.9% of the total phenolics identified among fourteen American elderberry accessions. 

The major flavanol in elderberry fruit is quercetin, with an average of 17.1 mg/100 g on 

a fresh weight basis (Kyle and Duthie 2006). The healthful benefits of these compounds 

advocate the growth of elderberry cultivars that are high in anthocyanins and other 

polyphenolic compounds. Among all plants found in nature, catechin and epicatechin 

account for the largest amount of flavonoids, of which are present in elderberry fruit 

(Marais and others 2006). 

 Due to the significant variability of anthocyanin and phenolic contents among 

elderberry cultivars, research shows that traditional breeding techniques may be useful 

in developing elderberries with high or low phytonutrient contents (Lee and Finn 2007, 

Özgen and others 2010). Özgen and others (2010) suggest that the breeding of wild 



9 
 

germplasm into existing cultivars could result in elderberries with enhanced 

horticultural, post-harvest or processing traits and could contain superior phytochemical 

profiles. A variety of factors can influence the phenolic content of elderberry fruit 

including cultivar, species, temperature, ripeness, yield, growing season, plot 

management, post-harvest storage, and processing (Moyer and others 2002, Lee and 

Finn 2007).  

 In a study investigating a population of women (n=38,445), the average 

flavonoid (flavonols, flavones) intake from all food sources, omitting flavan-3-ols, was 

estimated to be 24.6 mg/day/person, with quercetin as the major flavonoid contributor 

(70.2%) (Sesso and others 2003). In another study investigating the flavonoid intake of 

Scottish people (n=81), the flavonoid intake was estimated to be 18.8 (flavonols), 0.1 

(flavones), 22.5 (proanthocyanidins), 59.0 (catechins), and 1.2 (flavanones) 

mg/day/person, with major dietary sources which included black tea, apple, sweet 

pepper, red wine, onion, and lettuce (Kyle and Duthie 2006). It is theorized that 

flavonoids are absorbed well in the oral cavity but under-absorbed in the stomach and 

intestine, due to the presence of microflora which cleave sugar moieties and are 

required for efficient absorption (Wu and others 2002). 

Anthocyanins are a variety of flavonoid compounds found in all parts of higher 

order plants and are responsible for the attractive colors of most fruits and vegetables. 

They are water-soluble pigments which are stored in the vacuoles of plant tissues and 

can range from red, purple to blue depending on chemical structure and pH (Anderson 

and Jordheim 2006). The ecological purpose of anthocyanins is to attract animals and 
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pollinators to the reproductive organs of the plants, which helps disperse the seeds and 

genes of the plants, subsequently ensuring future growth. In addition, anthocyanins 

have been shown to provide a protective effect from the sun’s ultra-violet rays. If plants 

are exposed to too much sunlight, they undergo photoinhibition, or light-induced 

reduction of photosynthetic activity (Steyn and others 2002). When isolated, 

anthocyanins have been described as having no odor and little to no flavor, however, 

they contribute to an astringent sensation. In their natural from, anthocyanins are often 

attached to sugar molecules (i.e. glycosides), and their aglycones are referred to as 

anthocyanidins (Charlebois 2007) (Figure 2). Glycosylation often results in increased 

anthocyanin stability and solubility (Stintzing and Carle 2004). The six common 

anthocyanidins are cyanidin, delphinidin, pelargonidin, malvidin, peonidin, and 

petunidin; with cyanidin accounting for approximately 45% of total anthocyanidin intake 

among people within the United States (Clifford 2000, Anderson and Jordheim 2006, Wu 

and others 2006, Charlebois 2007).  

 

 
Figure 2 Illustration of anthocyanin structure. 
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The total number of anthocyanins isolated from plants has been reported to be 

539 (Anderson and Jordheim 2006). The anthocyanin content of elderberry fruit is 

between 11.3 mg/g and 13.1 mg/g on a dry weight basis, which contributes to 41.4% to 

87.9% of total phenolics (Wu and others 2006, Galić and others 2009, Özgen and others 

2010). Elderberry fruit contains four major anthocyanins within the cyanidin group 

(cyanidin-3-sambubioside, cyanidin-3-glucoside, cyanidin-3-sambubioside-5-glucoside, 

cyanidin-3,5-diglucoside), of which cyanidin-3-sambubioside and cyanidin-3-glucoside 

account for more than 90% of total anthocyanins (Johansen and others 1991, Wu and 

others 2002, Seabra and others 2010a). In comparison, cyanidin-3-glucoside accounts 

for 87.5% of total anthocyanins in crude blackberry extract (Elisia and others 2007). 

Anthocyanins pelargonidin-3-glucoside and pelargonidin-3-sambubioside have also been 

identified within elderberry fruit, to a lesser extent (Wu and others 2004). Additionally, 

due to the wide array of anthocyanins present in foods, anthocyanins serve as 

important chemical markers for identification of fruits and vegetables within value-

added food products (Clifford 2000, Borges and others 2010).   

 Anthocyanins can occur naturally in acylated or non-acylated forms. Acylated 

anthocyanins are anthocyanins that are covalently linked to organic or phenolic acid acyl 

group, which have greater stability compared to their non-acylated anthocyanin 

glycoside counterparts (Clifford 2000). Greater than sixty-five percent of anthocyanins 

occur naturally in the acylated form (Anderson and Jordheim 2006). The acyl groups of 

anthocyanins are organic or phenolic acids, such as cinnamic (p-coumaric, caffeic, 

ferulic, sinapic), aliphatic (acetic, malonic, succinic), hydroxybenzoic (p-hydroxybenzoic, 
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gallic), hydroxycinnamic, malic, oxalic, or tartaric acids (Anderson and Jordheim 2006). 

Malonic acid is the most common acyl group, followed by p-coumaric, caffeic, ferulic, 

acetic, and sinapic acids (Anderson and Jordheim 2006). Anthocyanin acylation improves 

elderberry anthocyanin stability to heat and light (Inami and others 1996, Malien-Aubert 

and others 2001, Turker and others 2004, Charlebois 2007, Lee and Finn 2007). In 

addition, acylated anthocyanins have increased antioxidant activity compared to their 

non-acylated counterparts (Stintzing and Carle 2004, Charlebois 2007).  

Using data from the National Health and Nutrition Examination Survey (NHANES) 

from 2001-2002, Wu and others (2006) estimated that the average intake of 

anthocyanin levels are 12.5 mg/day/person in the United States, with cyanidin, 

delphinidin, and malvidin contributing to 45%, 21%, and 15% of total intake, 

respectively. Other reports suggest that anthocyanin intake may be as high as 215 

mg/day/person (Kühnau 1976, Cao and Prior 1999, Kyle and Duthie 2006). It was 

observed that non-acylated anthocyanins contributed to 77% of total intake, whereas 

acylated anthocyanins contributed to 23% (Wu and others 2006). 

 Proanthocyanidins, also known as ‘condensed tannins’, are an important 

subclass of flavonoids found in elderberry fruit and are comprised of oligomeric and 

polymeric flavan-3-ols, specifically catechin and epicatechin isomers. Their size, or 

molecular weight, is often described by their degree of polymerization (Gu and others 

2002). Proanthocyanidins can occur with A- or B-type interflavanyl bonds. A-type 

proanthocyanidins are less common than their B-type counterparts and contain an 

atypical second ether interflavanyl linkage between C2’O7. B-type proanthocyanidins 
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possess only a single interflavanyl linkage which occurs primarily between C4’C8 or 

C4’C6 (Cunningham and others 2002, Prior and Gu 2005, Ferreira and others 2006). As a 

result, the conformation of A-type proanthocyanidins is more stable than B-type 

proanthocyanidins, which results in unmistakable nuclear magnetic resonance (NMR) 

spectra (Ferreira and others 2006). Due to the effects of dynamic rotational isomerism, 

B-type proanthocyanidins are rotational isomers which lead to equivocal NMR spectra 

(Kolodziej 1992, Ferreira and others 2006). 

 A-type proanthocyanidins have gained particular attention as important 

phytochemicals due to their protective effect on urinary tract health. A-type cranberry 

proanthocyanidins have been shown to prevent the adhesion of P-fimbriated 

uropathogenic Escherichia coli to uroepithelial cells (Howell and others 2005). Foods 

which do not contain A-type, but do contain B-type proanthocyanidins (purple grape 

juice, apple juice, green tea, dark chocolate), showed no significant in-vitro urinary 

bacterial anti-adhesion activity (Howell and others 2005). It has been previously 

theorized that the low acidity of cranberry juice, which contains A-type 

proanthocyanidins, caused the acidification of urine and subsequently resulted in an 

antibiotic effect, which is now known to be false (Prior and Gu 2005). 

 The estimated daily consumption of proanthocyanidins is 57.7 mg/person within 

the United States, with apples (32.0%), chocolate (17.9%), and grapes (17.8%) 

accounting for 67.7% of the total intake (Gu and others 2004). Proanthocyanidin 

monomers (catechin, epicatechin), dimers, trimers, and oligomers/polymers are 

estimated to contribute 7.1%, 11.2%, 7.8% and 73.9% of total proanthocyanidins, 
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respectively (Gu and others 2004). Although these values are believed to be good 

estimates, the complexities of proanthocyanidin molecules and the lack of appropriate 

analytical standards result in somewhat empirical quantifications (Pérez-Jiménez and 

others 2009, Wallace and Giusti 2010). 

 

Proanthocyanidin Analytical Methods 

 There are a number of analytical techniques currently employed for the 

determination of proanthocyanidins in foods, including gravimetric, colorimetric, 

thiolytic, chromatographic, and mass spectrometric methods (Cunningham and others 

2002, Gu and others 2003, Kelm and others 2005, Prior and others 2010). Gravimetric 

techniques involve the purification of proanthocyanidins, which often employs flash 

and/or gel chromatography. The final weight of purified proanthocyanidins is compared 

to the mass of the initial product and can be reported on a dry weight or percent basis. 

This technique is expensive, time consuming, and not environmentally friendly due to 

the usage of large solvent volumes.  

The vanillin assay is another quantification technique, which involves the 

extraction of proanthocyanidins, followed by depolymerization in a weak acid solution 

and colorimetric analysis at 500 nm. This assay is most effective when analyzing 

proanthocyanidins that have been previously isolated based on degree of 

polymerization due to varying effects of mineral acid on differing proanthocyanidin 

chain lengths. It should be noted that vitamin C, acetone, and naturally present 

anthocyanins, which have maximum absorption at 520 nm, can cause interference at 



15 
 

500 nm (Cao and Prior 1999, Cunningham and others 2002, Prior and Gu 2005, Prior and 

others 2010).  

The 4-(Dimethylamino)cinnamaldehyde (DMAC) assay is a commonly employed 

colorimetric technique which is faster, more accurate, and more sensitive for the 

determination of proanthocyanidins than the vanillin assay. DMAC reacts with flavan-3-

ols (catechin, epicatechin) or the terminal monomer of proanthocyanidins at the C8 

position of the A-ring flavonoid, which produces a green chromophore with maximum 

absorption at wavelength 640 nm (Cunningham and others 2002, Prior and Gu 2005, 

Prior and others 2010, Feliciano and others 2012). Performing spectrophotometric 

analysis at 640 nm is advantageous compared to the vanillin assay due to the lack of 

interference by anthocyanins and other compounds (Feliciano and others 2012). Due to 

the fact that DMAC reacts with a single flavan-3-ol monomer, proanthocyanidins are 

often underestimated when they occur in polymeric forms, and estimations of 

proanthocyanidins are often reported as catechin equivalents (Prior and Gu 2005). The 

lack of appropriate standards for products containing proanthocyanidins results in data 

which is difficult to compare among samples (Kelm and others 2005, Prior and Gu 2005). 

Optimally, standards should reflect the heterogeneous nature of the proanthocyanidins 

within specific foods and account for proanthocyanidin subunit structure, interflavan 

linkage types, and degree of polymerization (Prior and Gu 2005, Feliciano and others 

2012). Feliciano and others (2012) isolated cranberry proanthocyanidins from cranberry 

press cake for use as an analytical standard. They reported that the slope of the 

standard curve from cranberry proanthocyanidins was 2.5 times lower than for 
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procyanidins A2 and B2, and 7.1 times lower than catechin, which indicated that the 

contents of proanthocyanidins from cranberry press cake would be underestimated by 

2.5- or 7.1-fold if these standards were used in the DMAC assay. This supports the 

theory proposed by Prior and others (2010) that large polymeric proanthocyanidins 

have a lower response than monomeric or dimeric procyanidins. DMAC reagent is also 

useful in histology for the localization of proanthocyanidins within plant tissue.   

A number of chromatographic techniques are available for proanthocyanidin 

analysis. Normal-phase high-performance liquid chromatography (HPLC) coupled with 

mass spectrometry (MS) is able to isolate proanthocyanidins based on their degree of 

polymerization up to decamers, however quantification is underestimated due to poor 

resolution of highly polymeric (>decamer) proanthocyanidins (Hammerstone and others 

1999, Gu and others 2002, Prior and Gu 2005). It is believed that current normal-phase 

HPLC-MS technology is able to separate proanthocyanidins up to tridecamers (Gu and 

others 2002). Reversed-phase HPLC techniques are able to separate proanthocyanidin 

monomers, dimers, and trimers, however, separation of proanthocyanidins with degree 

of polymerization beyond 4 results in a broad, unresolved peak (Lazarus and others 

2001, Prior and Gu 2005). Additionally, polymeric proanthocyanidins can be 

depolymerized by benzyl mercaptan (i.e. thiolysis) into catechin and epicatechin 

monomers, which can then be analyzed using HPLC for an empirical estimation of 

proanthocyanidins (Gu and others 2002). 
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Elderberry Product Development and Marketing 

Currently, elderberry (Sambucus nigra) is primarily cultivated for commercial 

production within Austria, Denmark, Poland, France, Italy, Quebec, and Chile, as well as 

within the U.S. states of Washington, Oregon, Missouri, and Maine. Elderberry reaches 

full production maturity after 3 to 4 years of growth. Often, elderberry fruit ripens at 

different rates among canes on the same bush, thus elderberry fruit is harvested 

incrementally over a period of three to four weeks. The most common method of 

elderberry harvest is to cut the entire fruit cluster from the bush before freezing and 

stripping the fruit from the branch (Strang 2012). To obtain elderberry flowers, the 

flower cluster is harvested and rubbed over screens (Byers and others 2012). The fruit is 

either frozen for long term storage or is processed immediately, and the flowers are 

usually frozen or dried (Byers and others 2012). Based on estimates of elderberry 

production costs (irrigation, harvesting, marketing), gross returns of a 2012 elderberry 

crop was approximately $3.00 per pound, or $400.00 per 1/5 acre (Strang 2012). During 

optimum growing conditions, up to four tons of fruit can be harvested per acre (Strang 

2012). Frozen storage of elderberry fruit is not recommended beyond a few months. 

Freezer cycling, repeated freezing and thawing and/or over-processing will lead to a loss 

of anthocyanins, which will result in brown products with lowered antioxidant activity 

(Byers and others 2012). Slow or repeated freezing of elderberry fruit will cause the 

rupture of cellular membranes, which increases anthocyanin hydrolysis and the 

formation of blown color anthocyanin-tannin pigments (Muldrew and McGann 1994). 
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Currently, the majority of the world’s elderberries are cultivated on a hobbyist 

scale and are not produced commercially (Cernusca and others 2011). Elderberry wines, 

cordials, jams, jellies, pies, beers, dressings, sauces, and teas are produced and sold in 

limited quantities, whereas dried elderberries, syrups, powders, concentrates, juices, 

capsules, lozenges, and tinctures are commercially sold within niche markets (Cernusca 

and others 2011, Byers and others 2012). Tight regulations of alcoholic beverages limit 

the sale of elderberry wines, cordials, and beers to within U.S. state borders (Byers and 

others 2012). Syrups and extracts currently command the highest prices, with an 

estimated commercial value of $50-200 per kilogram (King and others 2003). 

In a survey of 74 elderberry producers within the United States, respondents 

reported that they most commonly sell plants (42%), followed by fruit (22%), wine 

(18%), juice (11%), flowers (8%), concentrate (8%), and nutraceuticals (4%); with 43% of 

respondents selling nationally, 40% selling regionally, and 57% selling locally (Cernusca 

and others 2011). Fifty-nine percent of the same respondents declared that elderberry 

demand will increase within the next five years, and 41% of respondents stated that the 

elderberry industry is non-competitive (Cernusca and others 2011). Market 

competitiveness is defined as potential profitability, which is controlled by market 

forces such as: customers, suppliers, potential entrants, and substitute products 

(Cernusca and others 2011). In a separate survey of 508 respondents representative of 

the general U.S. population, 31% ‘had heard of elderberry’ while 69% were ‘not familiar’ 

(Mohebalian and others 2012). Seventeen percent of total respondents had sampled 

elderberry products and 14% purchased products made with elderberry (Mohebalian 
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and others 2012). Respondents also reported that elderberry juice, elderberry jelly, and 

elderberry wine were the three most commonly purchased elderberry products (35%, 

31%, 24%), respectively (Mohebalian and others 2012). 

The appearance of food products is one of the most important quality 

characteristics which determines consumer acceptability, after flavor and economic 

factors (Casati and others 2012). Currently, consumer trends are moving towards the 

consumption of natural colorants as a substitute for synthetic dye or lake pigments. 

Juice from black elderberry fruit (Sambucus nigra) has been investigated as a natural 

colorant due to its high anthocyanin content, and elderberry concentrate can be 

produced by membrane concentration or filtration technologies (Carlsen and Stapelfeldt 

1997, Malien-Aubert and others 2001, Lee and Finn 2007). Anthocyanins are a beneficial 

natural food colorant due to its potential health benefits, although poor stability is their 

major drawback. Anthocyanin stability depends on structure, degree of acylation, 

storage temperature, presence of copigments, extraction method, pH, presence of 

oxygen, exposure to light, and presence of complexing agents (Rodríguez-Saona and 

others 1999, Malien-Aubert and others 2001, Jing and others 2008). Schmitzer and 

others (2010) reported that 94% of anthocyanic pigments were lost in elderberry wine 

during three years of storage, and there was a 5-fold decrease after 16 months. During 

storage, the wine gained brown hues which were likely the result of formations of 

polymeric pigments from degradation reactions (Schmitzer and others 2010). Carlsen 

and Stapelfeldt (1997) investigated the sensitivity of an elderberry anthocyanin colorant 

to visible and ultra-violet light and concluded that irradiation wavelengths had a strong 



20 
 

effect on color stability, indicating that a uv-barrier is needed within elderberry 

packaging material. Interestingly, it was also concluded that the pH of the solution had 

no effect on the photochemical breakdown of the elderberry extract and only affected 

color intensity (Carlsen and Stapelfeldt 1997).   

Among all of the fruits and vegetables, elderberry fruit has one of the highest 

anthocyanin contents, which makes it suitable for solvent extraction on a commercial 

scale.  Anthocyanins are highly polar molecules and are soluble in a variety of solvents, 

which are typically acidified (Galić and others 2009). Crude elderberry extracts can be 

obtained using methanol, ethanol, acetone, or water as extragents, which can be 

further utilized for the production of elderberry syrups or tinctures (King and others 

2003, Gourdin and others 2008, Denev and others 2010). Additionally, crude elderberry 

extracts contains by-products, such as sugars, pectin, sugar alcohols, amino acids, 

organic acids, and/or proteins, which may cause problems during subsequent elderberry 

processing or cause a reduction in overall shelf-life (Denev and others 2010). Solid-

phase extraction or gel filtration techniques can be often employed for subsequent 

anthocyanin purification after a crude extract is obtained (Denev and others 2010). 

 Carbon dioxide is another useful extractive and has advantages over organic 

solvents. Carbon dioxide has the ability to extract food chemicals, such as anthocyanins, 

without adding toxicity to the food or the environment, unlike organic solvents 

(Fitzgerald and others 1999). It is extremely environmentally friendly and is most 

effective as a solvent at its critical point. Critical point is defined as the point in which 

two phases of any pure substance become indistinguishable as a result of modifications 
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of temperature and pressure, and it most commonly pertains to the liquid-gas phase 

boundary (Fitzgerald and others 1999, Waibel and others 2008). A supercritical fluid is 

any substance at a pressure and temperature above its critical point in which no liquid 

or gas phases are clearly evident (Waibel and others 2008). Supercritical carbon dioxide 

has the advantage of diffusing through elderberry matrices, like a gas, and extracting 

anthocyanins and other phytochemicals, like a liquid, due to its lack of surface tension. 

In addition, small modifications of temperature or pressure can cause substantial 

changes in fluid density, which grants the ability of the fluid to be adjusted accordingly 

(Fitzgerald and others 1999). During supercritical carbon dioxide extraction, adjusting 

fluid density allows for selectivity during the extraction process and simple 

depressurization recovers the extracted material (Fitzgerald and others 1999). Although 

supercritical carbon dioxide is advantageous compared to the use of organic solvents in 

many ways, it has limited extraction performance because of its non-polar nature, which 

may limit the extraction of high molecular weight compounds (Seabra and others 2010a, 

Seabra and others 2010b). The addition of organic co-solvents is commonly employed to 

enhance the performance of supercritical carbon dioxide extraction (Seabra and others 

2010a). 

Subcritical water also has a useful role in phytochemical extractions. King and 

others (2003) tested the anthocyanin extraction efficiency of acidified (2.3 pH) 

subcritical water on elderberry pomace using an accelerated solvent extractor, and 

determined that 0.724 mg of anthocyanins were extracted per gram of pomace when 

using a water extraction temperature of 120° C. A water temperature of 120° C may 



22 
 

seem high due to the thermal vulnerability of anthocyanins, however, rapid transport of 

anthocyanins from the elderberry pomace to the outside of the extraction cells 

preserved their conformation and antioxidant activity (King and others 2003). 

Additionally, it is theorized that rapid sterilization of the resultant elderberry product 

could be achieved using the hot subcritical water extraction process (King and others 

2003). 

 Within the United States, drying is the second most common processing 

technique for fruits, after winemaking, and is often a prerequisite for the extraction of 

nutraceuticals (Anonymous 2008). Drying reduces shipping costs, increases shelf-life, 

and typically preserves fruit nutrients. The moisture content of dried fruits can range 

from 3% to 21%. California is responsible for the largest majority of dried fruit 

production within the United States, accounting for the production of 99% of raisins, 

99% of dried plums, 98% of dried figs, 96% of dried peaches, 92% of dried apricots, and 

over 90% of dried dates (Anonymous 2008). Apples, cherries, cranberries, pineapples, 

strawberries, blueberries, papayas, mangos, and coconuts are other notable fruits which 

are consumed dried within the United States and abroad. Interestingly, cranberries, 

blueberries, and Concord grapes are the only three fruits native to North America. Fruits 

which contain low amounts of sugar (cranberries, cherries, blueberries, strawberries) 

typically require the addition of a sweetener prior to drying for microbial control and 

consumer acceptability. Elderberry fruit is unique because it is sold on a limited 

commercial scale as an unsweetened dried fruit, and is generally not considered ‘sweet’ 

by consumers in its native form. Commercial opportunities may exist for the creation, 
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production, and sale of sweetened dried elderberries. Sugar, organic acids, sorbates, 

and/or glycerol are commonly employed within dried fruits and fruit extracts to reduce 

water activity, and to control spoilage and pathogenic microorganisms.   

 Two production issues can occur during fruit drying, enzymatic and non-

enzymatic browning. Sulfites have traditionally been an effective treatment to control 

fruit browning. Non-enzymatic browning occurs as a result of the Maillard reaction, in 

which reducing sugars within the fruit react with amino compounds to form 

intermediate products, which subsequently polymerize and cause browning (Nafisi-

Movaghar 1991). Sulfites interrupt non-enzymatic browning by reacting with the 

reducing sugars instead of the amino compounds to form a sulfonate product (Nafisi-

Movaghar 1991). The sulfonate product does not polymerize to cause browning. 

Enzymatic browning of fruits is also controlled by the addition of sulfites. Enzymatic 

browning involves naturally present polyphenol oxidase, catechol oxidase, or other 

enzymes which react with innate phenols and oxygen, and this reaction causes 

browning. Sulfites inhibit enzymatic browning by scavenging available oxygen, which 

would otherwise participate in fruit browning (Nafisi-Movaghar 1991). Sulfites also 

inhibit the growth of microorganisms and are not typically used within products in 

which browning is considered desirable, such as in the production of dried figs or raisins. 

The major drawback of sulfite use is that it can cause allergic reactions in people with 

allergies or sensitivities to sulfites. As a result, the U.S. Food and Drug Administration 

requires the labeling of foods containing sulfites at greater than ten parts per million. 
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 Spray drying of fruit juices or extracts is another useful and quick preservation 

technique which is commonly employed in the food industry. It has the advantage of 

preserving fruit phytonutrients through microencapsulation with wall materials, such as 

maltodextrin, gum acacia, soy protein, egg white, as well as other gums and starches 

(Murugesan 2010, Murugesan and others 2012). One research study identified gum 

acacia as the wall material of choice, compared to maltodextrin and a variety of soy 

preparations for the preservation of elderberry phenolics, color, and yield (Murugesan 

2010, Murugesan and Orsat 2011). Spray drying is a valuable technique for the 

production of elderberry capsules, lozenges, and powdered extracts. 

 Due to the fact that the major selling factor for elderberry products is their rich 

source of polyphenolics and other nutraceuticals, elderberry fruit must be processed in 

ways to preserve these nutrients. However, common processing techniques such as 

solvent extraction, pasteurization, chopping, sulfur dioxide treatments, pH modification, 

enzymatic clarification, canning, heating, drying, shredding, irradiation, peeling, and 

fermentation have been shown to affect the flavonoid content of foods (Kaack and 

others 2008, Kyle and Duthie 2006). Winemaking has been reported to increase 

anthocyanin polymerization and condensation (Schmitzer and others 2010). Galić and 

others (2009) demonstrated that blanching of elderberry fruit did not result in 

significant overall polyphenol decrease, however, non-flavonoid concentration was 

about 25% lower in the blanched berries. It was also reported that the disintegration of 

elderberries resulted in an increase of polyphenols, which was likely due to the 

inactivation of enzymes (Galić and others 2009). Overall, there are a variety of 
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processing choices which may be applicable to elderberry fruit. As consumer food 

choice continues to trend in a more healthful direction, it is even more important that 

elderberry processors choose processing techniques which preserve or enhance the 

fruits' healthful properties. 

 

Anthocyanin Copigmentation 

 In addition to flavor and cost factors, color is one of the most important 

characteristics that determines the acceptability of food and beverages. Anthocyanin 

molecules are responsible for the red, blue, and purple pigments of many fruit and 

vegetable products, and are of substantial importance within the food and beverage 

industry. Currently, there are significant demands for the replacement of synthetic food 

dyes with anthocyanin-rich concentrates, however their utilization is limited by their 

relative instability. The rapid degradation of anthocyanins during processing and storage 

results in substantial losses of product color, nutritional and sensory characteristics. The 

major factors which affect anthocyanin stability include temperature, pH, enzyme 

activity, light, structure, concentration, and the presence of copigments or metal ions 

(Mazza and Brouillard 1990, Talcott and others 2003, Rein 2005, Kammerer and others 

2007, Kaack and others 2008, He and others 2012). 

 One of the most important factors governing the stability, hue, and chroma of 

anthocyanin pigments is pH. The pH of a solution controls the equilibrium of four 

anthocyanin chromophores (part of the molecule responsible for its color), which 

includes the red flavylium cation, blue or red quinonoidal base, colorless carbinol 
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pseudobase, and colorless chalcone (Brouillard 1982, Hubbermann 2006). In very acidic 

solutions (pH<2) the red flavylium cation dominates. As pH increases, protons are lost 

from the flavylium cation, which yields the blue or red quinonoidal base. Furthermore, 

hydration of the flavylium cation occurs over time, which results in the formation of 

colorless carbinol pseudobases, and subsequently colorless chalcones through the 

hydration and opening of the flavonoid ring structure (Brouillard 1982, Hubbermann 

2006). Considering that the flavylium cation is the most stable form of anthocyanin 

chromophores and is responsible for the red anthocyanin color, it is important to 

process and store anthocyanin-rich products at low pH values. Anthocyanins are most 

stable between 2.8-3.4 pH. 

 The structure of anthocyanin molecules also has a substantial effect on 

anthocyanin stability and color. In their natural form, anthocyanins generally occur as 

glycosides, which have greater stability than their anthocyanidin backbone 

substructures, due to the presence of intramolecular hydrogen bonding networks. 

Furthermore, intramolecular copigmentation occurs as a result of anthocyanin 

acylation, which results in even greater pigment stability compared to anthocyanin 

glycosides. The greater stability of acylated anthocyanins is a result of organic or 

phenolic acid acyl groups which are covalently bonded to anthocyanin molecules, 

whereas anthocyanin glycosides contain weaker hydrogen bonds. Radishes, red 

potatoes, red cabbage, black carrots, red onions, and purple sweet potatoes primarily 

contain anthocyanins in the acylated form (Giusti and Wrolstad 2003), whereas 

strawberries, elderberries, blueberries, grapes, blackberries, cranberries, cherries, 
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plums, pomegranates, and black currants are examples of foods which primarily contain 

non-acylated anthocyanins. The biosynthesis of anthocyanins occurs within the cytosol 

of plants after the production of anthocyanidin synthase, and their degree of 

glycosylation, methylation, or acylation determines their stability (He and others 2010). 

 Although there are many factors which degrade anthocyanin pigmentation, the 

stability of anthocyanins can be improved through copigmentation. Copigmentation is 

defined as the molecular complexation between anthocyanins and other flavonoids, 

polysaccharides, amino acids, or metal ions, which results in anthocyanin molecules 

with enhanced color stability (Malien-Aubert and others 2001, Eiro and Heinonen 2002, 

Talcott and others 2003, Del Pozo-Insfran and others 2007). This molecular 

complexation prevents hydration of the flavylium cation to colorless pseudobases and 

undesirable brown degradation compounds, and can result in synergistic enhancements 

to the color intensity of anthocyanin based products. Colorless copigments are able to 

link with anthocyanin molecules in their flavylium or quinonoidal forms through 

covalent bonding (intramolecular copigmentation), hydrogen bonding (intermolecular 

copigmentation), hydrophobic interactions (intermolecular copigmentation), 

electrostatic interactions (intermolecular copigmentation), anthocyanin self-association 

(inter-/intramolecular copigmentation), or metal complexation (inter-/intramolecular 

copigmentation) (Talcott and others 2003, Rein 2005). Interestingly, copigmentation is 

unique to the anthocyanin class of pigments, and does not occur among betalains, 

carmine, carotenoids, chlorophylls, flavonoids, hemes, melanins, quinones, tannins, or 

xanthones.  
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  Intramolecular copigmentation is loosely defined as a phenolic copigment joined 

with an anthocyanin molecule through covalent acylation to form a highly stable 

pigment (Brouillard 1983, Rein 2005). Although intramolecular copigmentation results in 

the greatest pigment stability among the types of copigmentation reactions, its use for 

the development of anthocyanin-rich food and beverages is limited since it 

copigmentation generally occurs as a natural process of plant growth. Intermolecular 

copigmentation is described as a non-acylated anthocyanin and a colorless copigment 

complex through hydrogen bonding, hydrophobic interactions, or electrostatic 

interactions, using water as an important cofactor (Talcott and others 2003, Rein 2005). 

Intermolecular copigmentation is of great interest to food and beverage producers, and 

is considered to be the most important technique for the stabilization of anthocyanin 

molecules.  

 The effect of copigmentation can be detected by bathochromic or hyperchromic 

shifts, where a change of the λmax of the absorption spectra can be detected (Eiro and 

Heinonen 2002). A bathochromic shift is defined as an increase of absorption spectra, 

where the λmax shifts towards a higher wavelength. When this phenomenon occurs as a 

result of copigmentation, it is also known as the bluing effect, because anthocyanin 

pigments become more blue (Brouillard and others 1989). A hyperchromic shift involves 

a decrease of absorption spectra, where the λmax shifts towards a lower wavelength 

and there is an increase of the intensity of red pigmentation.  

 Elevated temperatures and the addition of solvents impede copigmentation 

reactions by preventing or dissociating intermolecular complexation (Mazza and 
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Brouillard 1990, Rein 2005, He and others 2012). Generally, copigmentation reactions 

do not occur below anthocyanin concentration of 3.5 x 10¯⁵ M, and greater anthocyanin 

concentrations result in greater molecular self-association and improved color stability 

(Asen 1976, Giusti and Wrolstad 2003, Rein 2005). Previous studies have shown that 

wines containing 10%-21% ethanol are susceptible to copigmentation reactions, 

however no research has demonstrated the effectiveness of copigments within tinctures 

(>25% ethanol) or liqueurs (15%-55% ethanol) (Boulton 2001). Additives such as 

rosemary extract, black carrot color, elderberry color, thyme extract, purple sweet 

potato color, and tannic acid have been shown to be effective copigments within 

elderberry and other anthocyanin-rich systems, and can cause enhanced pigment 

stability and antioxidant activity (Talcott and others 2003, Del Pozo-Insfran and others, 

Kammerer and others 2007). 
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Objectives 

 No studies have analytically evaluated commercial elderberry products or have 

evaluated the effect of copigmentation within high ethanol (<25%) anthocyanin 

systems. Therefore, it was the overall objectives of this research to increase the market 

competitiveness of elderberry products through the analytical evaluation of commercial 

elderberry products, and to develop a value-added elderberry product with enhanced 

nutrient and color stability characteristics using the effect of copigmentation. 

 

The specific objectives of these studies were: 

1) To make analytical comparisons among a variety of commercial value-added 

elderberry products (n=33), including syrups, tinctures, concentrates, capsules, 

lozenges, dried fruit, and a powder at 0, 5, and 10 weeks of accelerated temperature 

(32° C) storage, which will allow consumers to make informed elderberry purchases and 

enhance the competitiveness among value-added elderberry producers. 

 

 2) To determine how additions of rosemary extract, tannic acid, black carrot 

color, purple sweet potato color, and enzymatically modified isoquercitrin will affect the 

nutrient and color stability of elderberry tinctures at 0, 2, 4, and 6 weeks storage at 21° 

C, with one week of accelerated temperature (32° C) storage which occurred between 5 

and 6 weeks. 
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CHAPTER 2. A COMPETITIVE ASSESSMENT OF COMMERCIAL ELDERBERRY (SAMBUCUS 

SP.) PRODUCTS 

 

Objectives 

 The objectives of this study were to evaluate the moisture, proanthocyanidins, 

sugars, anthocyanins, organic acids, and vitamin C contents of a variety of commercial 

elderberry products (n=33), including syrups, tinctures, concentrates, capsules, 

lozenges, dried fruit, and a powder at 0, 5, and 10 weeks of accelerated temperature 

(32° C) storage.  

 

Materials and Methods 

Elderberry Products 

 A total of 33 important value-added elderberry products were chosen for this 

study (Table 1, Figure 3). Each product was placed into one of seven categories; syrups 

(n=14), tinctures (n=5), concentrates (n=3), capsules (n=3), lozenges (n=4), dried fruit 

(n=3), or powder (n=1). Syrups were fluid elderberry products categorized by their high 

sugar contents (40-70° brix), and not labeled as concentrate. Tinctures were defined as 

fluid elderberry products which contained alcohol as the primary ingredient and 

minimally added sugar. Concentrates were categorized as liquid elderberry products of 

at least 50° brix and labeled as concentrate. Capsules were elderberry products which 

contained a shell; whereas lozenges did not contain a shell, and were either in tablet or 

chewable form. 
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Table 1 Commercial Elderberry Products Analyzed in this Study 

Product 
Category 

Product 
Code 

Product Product Source 

Syrups 

EMG 
Evergreen Manufacturing 
Group Elderberry Syrup 

(Evergreen Manufacturing Group, 
LLC., Madawaska, ME) 

NW SF 
Nature’s Way® Sugar-Free 

Sambucus Syrup 
(Nature’s Way® Products, Inc., 

Green Bay, WI) 

NW 
Nature’s Way® Sambucus 

Syrup 
(Nature’s Way® Products, Inc., 

Green Bay, WI) 

Sam K Sambucol® for Kids Syrup 
(PharmaCare U.S., Inc., San Diego, 

CA) 

NA 
Nature’s Answer® Black 

Elderberry Extract 
(Nature’s Answer®, Hauppauge, 

NY) 

Sam Sambucol® Syrup 
(PharmaCare U.S., Inc., San Diego, 

CA) 

Bio SE 
Bio-Botanica® SE Elderberry 

Syrup 
(Bio-Botanica®, Inc., Hauppauge, 

NY) 

Bio AF 
Bio-Botanica® AF Elderberry 

Syrup 
(Bio-Botanica®, Inc., Hauppauge, 

NY) 

Dyn 
Dynamic Health® Black 

Elderberry Tonic 
(Dynamic Health Laboratories, 

Inc.®, Brooklyn, NY) 

Inte 
Integrative Therapeutics™ 

Sambucus Extract 
(Integrative Therapeutics™, Inc., 

Green Bay, WI) 

Now 
Now® Elderberry, Zinc and 

Echinacea Syrup 
(NOW® Foods, Bloomingdale, IL) 

Antho 
AnthoImmune™ Organic 

Elderberry Syrup 
(Maine Medicinals, Inc.™, Dresden, 

ME) 

Honey 
Honey Gardens™ Elderberry 

Syrup 
(Beehive Organics™, Inc., Park City, 

UT) 

Planet 
Planetary™ Herbals Full 

Spectrum™ Elderberry Syrup 
(Planetary™ Herbals, LLC., Soquel, 

CA) 

Tinctures 

Quant 
Quantum® Health Elderberry 

Liquid Extract 
(Quantum®, Inc., Eugene, OR) 

Source 
Source Naturals® Wellness 
Elderberry Liquid Extract™ 

(Source Naturals®, Inc., Scotts 
Valley, CA) 

Gaia 
Gaia® Organics Black 

Elderberry Liquid Extract 
(Gaia® Herbs, Inc., Brevard, NC) 

Herb 
Herb Pharm® Black Elderberry 

Extract 
(Herb Pharm®, LLC., Williams, OR) 

Planet 
Planetary™ Herbals Full 

Spectrum™ Elderberry Fluid 
Extract 

(Planetary™ Herbals, LLC., Soquel, 
CA) 
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Table 1 continued 

Concentrates 

Kerr Kerr Elderberry Concentrate 
(Kerr Concentrates, Inc., Oxnard, 

CA) 

Sambu 
Sambu® Wild Grown 

Elderberry Concentrate 
(Dr Dünner AG, Immensee, 

Switzerland) 

Nat 
Natural Sources® Natural 
Elderberry Concentrate 

(Natural Sources®, Inc., San 
Clemente, CA) 

Capsules 

NW 
Nature’s Way® Elderberry 

Capsules 
(Nature’s Way® Products, Inc., 

Green Bay, WI) 

Swan 
Swanson® Premium Brand 

Elderberry Capsules 
(Swanson® Health Products, Fargo, 

ND) 

Eclectic 
Eclectic Institute™ Elderberry 

Capsules 
(Eclectic Institute™, Inc., Sandy, 

OR) 

Lozenges 

Now 
Now® Elderberry and Zinc 

Lozenges 
(NOW® Foods, Bloomingdale, IL) 

Sam Sambucol® Chewable Tablets 
(PharmaCare U.S., Inc., San Diego, 

CA) 

Rub 
Rubini® ProFlavon Elderberry 

Complex Lozenges 
(East Coast International Natural 

Healthcare, Dublin, Ireland) 

Planet 
Planetary™ Herbals Full 

Spectrum™ Elderberry Tablets 
(Planetary™ Herbals, LLC., Soquel, 

CA) 

Dried Fruit 

Front 
Frontier® Whole European 

Elderberries 
(Frontier® Natural Products Co-Op, 

Norway, IA) 

Flor M 
Florida Herb House Minced 

Dried Elderberries 
(Florida Herb House, LLC., South 

Daytona, FL) 

Flor W 
Florida Herb House Dried 

Elderberries 
(Florida Herb House, LLC., South 

Daytona, FL) 

Powder NP Nutra NP Nutra® Elderberry P.E. 10:1 (NP Nutra®, Inc., Gardena, CA) 

n=2. 
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Figure 3 Value-added elderberry products analyzed in this study. 

Refer to Table 1 for product identification. From top left: (row 1) EMG, NW SF, NW 
(syrup), Sam K, NA, Sam (syrup), Bio SE, (row 2) Bio AF, Dyn, Inte, Now (syrup), Antho, 
Quant, Source, (row 3) Honey, Gaia, Herb, Planet (tincture), Planet (syrup), Kerr, Sambu, 
(row 4) Nat, NW (capsule), Swan, Eclectic, Now (lozenge), Sam (lozenge), Rub, (row 5) 
Planet (lozenge), Front, Flor M, Flor W, NP Nutra. Capsules and lozenges not shown in 
their native conformations.  
 
 

 Each product was received within 24 months from its date of manufacture (μ=7 

months) based on product investigation and was representative of product 

expectations. Products were analyzed initially for moisture content, water activity, °brix, 

total proanthocyanidins, vitamin C, spectrophotometric color, L*a*b* color, sugars 

profile, anthocyanins profile, and organic acids profile. After initial analyses, products 

were sealed in their original packaging at 32° C, and re-tested at 5 and 10 weeks of 

storage. Products were purchased and analyzed in duplicate.  
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Moisture 

 Total moisture content was determined in duplicate for each elderberry product 

using a draft drying technique based on AOAC method 950.46 (AOAC, 2005). Aluminum 

drying pans were labeled according to product and replication number. The initial pan 

weight was determined (±0.0001 g) using an A&D Weighing analytical balance Model 

GH-120 (A&D Engineering, Inc., San Jose, CA). The aluminum pans were tared and 

approximately 3 grams of product was dropped evenly onto labeled pans. The weight of 

each sample was recorded to the nearest 0.0001 g. Each sample was placed in a 100° C 

Precision Scientific oven Model 16 (The Precision Scientific Co., Chennai, India) for 

approximately 16 hours. The pans were removed from the oven, cooled, and re-

weighed to the nearest 0.0001 g. Percent moisture was determined using the following 

calculation:  

% = (pan wt. + sample wt.) – (pan + dry sample wt.)/sample wt. x 100. 

 

Water Activity 

 Water activity was determined in duplicate using an Aqua Lab 4TE water activity 

meter Model S40002169 (Decagon Devices, Inc., Pullman, WA). The instrument was 

calibrated prior to analyses using 0.30, 0.50 and 0.90 aw calibration solutions. Each 

product was thoroughly mixed and placed into a clean, dry sample cup, and water 

activity was determined. 

 

 



36 
 

Soluble Solids 

 Soluble solids content was determined in duplicate for syrups, tinctures, and 

concentrates using an ATAGO RX-5000 refractometer (ATAGO Co., LTD, Tokyo, Japan), 

and reported as °Brix (sucrose equivalents). Liquid elderberry samples were mixed 

thoroughly and dropped onto the sample port of the refractometer using a 4 mL plastic 

transfer pipette (Globe Scientific Inc., Paramus, NJ). The lid was closed and soluble solids 

were determined using the instrument.  

 

Total Proanthocyanidins 

Proanthocyanidins Purification 

 Freeze-dried elderberry fruit (46.8 g) was obtained from Nuts.com (Cranford, 

NJ), placed into a large ceramic mortar, frozen to approximately -62° C using a Revco 

Elite Plus Minus 80 Freezer (Thermo Fisher Scientific, Waltham, MA) and ground to form 

a powder using a mortar and pestle. The elderberry powder was divided evenly into six 

BD 50mL Falcon™ centrifuge tubes (Thermo Fisher Scientific, Waltham, MA). Twenty mL 

of a 70% acetone (Thermo Fisher Scientific, Waltham, MA) solution was added into each 

tube, shaken vigorously by hand for 1 minute, and sonicated for 10 minutes using a 

Branson 5510 sonicator (Branson Ultrasonics Co., Danbury, CT). The tubes were then 

centrifuged at 1800 x g for 10 minutes using a Damon IEC HN-S centrifuge (Damon/IEC 

Division, Needham Heights, MA). The elderberry supernatant was carefully decanted 

from each tube and combined. The extraction process was repeated three more times 

until a substantial loss of color was perceived from the elderberry powder. The acetone 



37 
 

fraction of the elderberry extract was evaporated off using a Büchi Rotavapor® rotary 

evaporator Model R-124 (BUCHI Corp., New Castle, DE) with a water bath temperature 

of 30° C. The extract was placed into a plastic bottle and cooled to ~5° C. 

 A 500 mL Chromaflex® glass chromatography column (PPG Industries Ohio, Inc., 

Cleveland, OH) was packed with Sephadex® LH-20 gel (GE Healthcare Bio-Sciences AB, 

Uppsala, Sweden) and preconditioned by pumping 500 mL of deionized water through it 

at a flow rate of 5 mL/min. The elderberry extract was loaded in the column by pumping 

it at the same flow rate (Figure 4). The top 2 inches of the LH-20 gel was stirred briefly to 

ensure even loading of the elderberry extract. Five hundred mL of deionized water were 

pumped through the column, which removed sugars and organic acids. This fraction was 

discarded. Eight hundred mL of a 25% ethyl alcohol (Thermo Fisher Scientific, Waltham, 

MA) solution was pumped through the column, which eluted more sugars and low-

medium molecular weight flavonoids. Eight hundred mL of a 70% acetone (Thermo 

Fisher Scientific, Waltham, MA) solution was pumped through the column at the same 

flow rate and collected, which contained purified elderberry proanthocyanidins.  
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Figure 4 Isolation of elderberry proanthocyanidins using Sephadex® LH-20 gel 

chromatography. 

 

 The 70% acetone fraction, which contained the purified elderberry 

proanthocyanidins, was subjected to rotary evaporation with a water bath temperature 

of 30° C, to remove the acetone fraction. One hundred mL of deionized water was 

added to the purified proanthocyanidins, and the solution was transferred into a 60 mL 

HDPE bottle (Nalgene®, Rochester, NY) and frozen to -62° C using a Revco Elite Plus 

Minus 80 Freezer (Thermo Fisher Scientific, Waltham, MA). The purified frozen 

proanthocyanidins were freeze dried using a FreeZone 18 Liter Console Freeze Dry 

System Model 7755042 (LABCONCO, Kansas City, MO). The proanthocyanidins were 
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weighed (±0.0001), and the proanthocyanidin content of the original elderberry product 

from Nuts.com (Cranford, NJ) was calculated gravimetrically. The material was 

transferred into 30 mL amber vials (Med-Lab Supply Co. Inc., Miami, FL), labeled, sealed 

and stored at frozen (~0° C) temperature until ready for analyses.  

 

Response Factor 

 Purified elderberry proanthocyanidins were used to determine a response factor 

for elderberry products, which is defined as the ratio between spectrophotometric 

absorbance at 640 nm and the quantity of purified elderberry proanthocyanidins in 

parts per million. Five separate elderberry proanthocyanidin dilutions were made (64, 

156, 282, 427, 662 ppm) using a 70% acetone (Thermo Fisher Scientific, Waltham, MA) 

solution. One mL of each dilution was pipetted into individual disposable glass culture 

tubes. A blank was prepared by pipetting 1 mL of a 70% acetone solution into another 

glass culture tube. 4-(Dimethylamino)cinnamaldehyde (DMAC) (Sigma-Aldrich®, Saint 

Louis, MO) was dissolved into a 30% hydrochloric acid/70% methanol (Thermo Fisher 

Scientific, Waltham, MA) solution at a 0.1000 g into 100 mL concentration. Four mL of 

DMAC reagent was pipetted into each tube at 10 second intervals, and vortexed. Five 

minutes was allowed to pass between the addition of the DMAC reagent and 

spectrophotometric analysis, which gave time for the DMAC to react with the 

proanthocyanidins. After 5 minutes, the instrument was zeroed and the 

spectrophotometric absorbance at 640 nm was determined for each sample using a 

Hach® spectrophotometer Model DR/2500 (Hach Co., Loveland, CO). The overall 
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response factor was determined in duplicate by averaging the values obtained from the 

five diluted samples using the following calculation: 

absorbance at 640 nm/ppm. 

 

Proanthocyanidins Recovery 

 Proanthocyanidins recovery (%) is defined as the absorbance at 640 nm of 

purified elderberry proanthocyanidins which have been subjected to the 

proanthocyanidins assay versus the absorbance at 640 nm of purified elderberry 

proanthocyanidins, not having been subjected to the proanthocyanidins assay. Four 

dilutions (0.2477, 0.4984, 0.9849, 2.5321 g/L) of purified elderberry proanthocyanidins 

were prepared (±0.0001 g) using deionized water, and shaken vigorously for one 

minute. Each dilution was subjected to the proanthocyanidins assay outlined in the 

subsequent sub-chapter, entitled 'proanthocyanidins assay'.  

 

Proanthocyanidins Assay 

 Total proanthocyanidins content were determined in duplicate for each sample 

based on a procedure by Prior and others (2010). Elderberry syrups, extracts and 

concentrates were diluted at an approximate 1:1 ratio with deionized water. Capsules 

and lozenges were either broken open or ground using a mortar and pestle, diluted to 

~1:8, shaken vigorously for 5 minutes, sonicated for 10 minutes using a Branson 5510 

sonicator (Branson Ultrasonics Co., Danbury, CT) and centrifuged at 1800 x g for 10 

minutes using a Damon IEC HN-S centrifuge (Damon/IEC Division, Needham Heights, 
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MA). Dried fruit was diluted to ~1:4, homogenized using a Waring® commercial blender 

Model HGB55556 (Waring® Products, Odessa, FL) and centrifuged at 1800 x g for 10 

minutes. Powder was diluted to ~1:40 and shaken vigorously for 5 minutes. The 

solutions or supernatants of each elderberry product were used for the subsequent 

determination of total proanthocyanidins.  

 The tips of Bio-Rad Poly-Prep columns Model 731-1553 (Bio-Rad Laboratories, 

Inc., Hercules, CA) were broken off, and the columns were inserted into a Bio-Rad 

Polycolumn rack Model 731-7005 (Bio-Rad Laboratories, Inc., Hercules, CA). One and 

two-tenths mL of Sephadex® LH-20 gel (GE Healthcare Bio-Sciences AB, Uppsala, 

Sweden) was dropped into each column. Five mL of deionized water were added to each 

column, which caused the gel to pack down to a 1 mL volume. Once the water content 

was drained, ~1.0 g of sample was carefully added into each column, allowed to drain 

gravimetrically, and the elute was discarded. Ten mL of deionized water was added to 

each column and allowed to drain, and the elute was discarded. Ten mL of a 25% ethyl 

alcohol (Thermo Fisher Scientific, Waltham, MA) solution was added to each column, 

allowed to drain, and the elute was discarded. Fifteen mL Falcon™ centrifuge tubes 

(Thermo Fisher Scientific, Waltham, MA) were inserted in between the columns and 

rack to act as collection vessels for the collection of a 70% acetone wash (i.e. the 

fraction of interest). Two and a half mL of a 70% acetone (Thermo Fisher Scientific, 

Waltham, MA) solution were added to each column and the eluate was collected in the 

15 mL centrifuge tubes. Another 2.5 mL of the 70% acetone solution were added to 

each column and eluate was added into the previous collection. The columns were 
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discarded and the centrifuge tubes were vortexed for ~30 seconds each. One mL of each 

sample was transferred from the centrifuge tubes into disposable glass culture tubes, 

and a blank was prepared by pipetting 1 mL of a 70% acetone solution into another glass 

culture tube. 4-(Dimethylamino)cinnamaldehyde (DMAC) (Sigma-Aldrich®, Saint Louis, 

MO) was dissolved into a 30% hydrochloric acid/70% methanol (Thermo Fisher 

Scientific, Waltham, MA) solution at a 1.0 g/mL concentration. Four mL of DMAC 

reagent was pipetted into each tube at 10 second intervals, and vortexed after a five 

minute incubation period, which allowed DMAC to react with the proanthocyanidins. 

Samples were analyzed using a spectrophotometer. The instrument was zeroed and the 

spectrophotometric absorbance at 640 nm was measured for each sample using a 

Hach® spectrophotometer Model DR/2500 (Hach Co., Loveland, CO). Total 

proanthocyanidins were determined using the following calculation: 

% proanthocyanidins = ((((abs@640 x eluate volume mL)/(response factor x volume 
analyzed mL x weight on column g x dilution factor x % sample solids))/% recovery)/μg 
per g to mg per g conversion factor) x % conversion factor. 
 
Example calculation: 

((((0.405 x 5.0)/(0.0018 x 1.0 x 0.9654 x 0.008 x 100%))/32%)/1000) x 0.1 = 44.1 % 
proanthocyanidins (DMAC). 
 

Titratable Acidity and Vitamin C  

 Titratable acidity was determined in duplicate for fluid elderberry products by 

sodium hydroxide titration using a Pharm Titrando titration system Model 2.907.1020 

(Metrohm Ltd., Herisau, Switzerland) (Method 942.15, AOAC 2005). Ten mL of sample 

was diluted into 90 mL of distilled water and titrated with 0.1 N NaOH (Thermo Fisher 
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Scientific, Inc., Waltham, MA) until a pH endpoint of 8.1 was reached. Titratable acidity 

was expressed as % citric acid using the following calculation:  

(mLs of 0.1 N NaOH x 0.1 x milliequivalent factor of citric acid x 100)/10. 

 Vitamin C (ascorbic acid + dehydroascorbic acid) was determined in duplicate for 

fluid elderberry products by iodine titration using a Pharm Titrando titration system 

Model 2.907.1020 (Metrohm Ltd., Herisau, Switzerland) and expressed as % vitamin C 

(Method 967.21, AOAC 2005). 

 

Spectrophotometric Color 

 The spectrophotometric color of liquid elderberry products was determined in 

duplicate. Samples were diluted to a 1:50 ratio with deionized water and sonicated for 

10 minutes using a Branson 5510 sonicator (Branson Ultrasonics Co., Danbury, CT). 

Products which contained particulates were filtered using a 10 mL BD™ Luer-Lock™ 

syringe Model S7510-10 (BD™, Franklin Lakes, NJ) with a 30 mm x 1.2 μm GMF 

Membrane Titan 2 HPLC filter tip (Sun Sri, Rockwood, TN). Five mL of each sample was 

pipetted into disposable glass culture tubes and absorbance was determined at 520 and 

430 nm using a Hach® spectrophotometer Model DR/2500 (Hach Co., Loveland, CO).  

 

L*a*b* Color 

 Elderberry products were subjected to colorimetric analysis using a LabScan XE 

Hunter Lab colorimeter (Hunter Associates Laboratory, Reston, VA) to determine L*a*b* 

values. Elderberry products were poured into a 2.5 inch clear glass sample cup and 
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placed on a pre-calibrated, 2.5 inch sample port. L*a*b* values were determined using 

the computer software and analysis was completed in duplicate per product with one 

reading per sample. 

 

Sugars Profile 

 The sugars profile of elderberry products was determined based on a procedure 

by Richmond and others (1981). Elderberry products were diluted to an approximate 

1:30 ratio using deionized water and shaken vigorously by hand for 1 minute. Products 

which contained particulates were filtered using a 10 mL BD™ Luer-Lock™ syringe Model 

S7510-10 (BD™ Franklin Lakes, NJ) with a 30 mm x 1.2 μm GMF Membrane Titan 2 HPLC 

filter tip (Sun Sri, Rockwood, TN). The tips of Bio-Rad Poly-Prep columns Model 731-

1553 (Bio-Rad Laboratories, Inc., Hercules, CA) were broken off, and the columns were 

inserted into a Bio-Rad Polycolumn rack Model 731-7005 (Bio-Rad Laboratories, Inc., 

Hercules, CA). The columns were sequentially rinsed with methanol (Thermo Fisher 

Scientific, Waltham, MA) and deionized water. One (±0.1) g of Bio-Rad Bio-Rex® 100-200 

mesh resin (Bio-Rad Laboratories, Inc., Hercules, CA) was added to each column after 

being slurried with ~5 mL of deionized water. Approximately 4 mL of deionized water 

was carefully added into each column and drained, which allowed the resin to settle. 

One half mL of each elderberry sample was carefully pipetted directly onto the resin 

beds, and allowed to drain. Fifteen mL Falcon™ centrifuge tubes (Thermo Fisher 

Scientific, Waltham, MA) were inserted in between the columns and rack to act as 

collection vessels for the collection of the subsequent eluate. One mL of deionized 
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water was carefully added into each column, twice, and the eluates were collected. 

Once the columns had completely drained, they were discarded and the centrifuge 

tubes were vortexed for ~10 seconds each. Sample eluate was transferred from the 

centrifuge tubes into clear HPLC autosampler vials, and sealed. The sugars profile 

(xyloglucans, sucrose, lactose, sucrose, mannose, fructose, glycerin, maltitol, xylitol, 

sorbitol) of each elderberry sample was determined using an Agilent 1100 Series 

G1311A QuatPump liquid chromatograph (Agilent Technologies, Inc., Santa Clara, CA) 

with a 300 x 780 mm Phenomenex® Rezex™ RCM-Monosaccharide Ca+2 (8%) column 

(Phenomenex Inc., Torrance, CA), a Bio-Rad Micro-Guard® Carbo C guard column (Bio-

Rad Laboratories, Inc., Hercules, CA), and an Agilent 1200 Series refractive index 

detector Model G1362A (Agilent Technologies, Inc., Santa Clara, CA). The mobile phase 

was deionized water, of which 10 μL of each sample were injected into the system at a 

0.6 mL/min flow rate. The overall run time was 30 minutes and the column temperature 

was 80° C. Multiple concentrations of reference standards of each type of saccharide 

were analyzed along with the samples. Each sample was analyzed in duplicate and each 

sugar was reported as %. 

  

Anthocyanins Profile 

 The anthocyanins profile of all elderberry products was determined based on a 

procedure by Brown and Shipley (2011). Elderberry products were diluted to between a 

1:2 and a 1:100 ratio using deionized water, and sonicated for 10 minutes using a 

Branson 5510 sonicator (Branson Ultrasonics Co., Danbury, CT).  Products which 
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contained particulates were filtered using a 10 mL BD™ Luer-Lock™ syringe Model 

S7510-10 (BD™ Franklin Lakes, NJ) with a 30 mm x 1.2 μm GMF Membrane Titan 2 HPLC 

filter tip (Sun Sri, Rockwood, TN). Samples were transferred into amber HPLC 

autosampler vials, and sealed. The anthocyanins profile (cyanidin-3-sambubioside, 

cyanidin-3-sambubioside-5-glucoside, cyanidin-3,5-diglucoside, cyanidin-3-galactoside, 

cyanidin-3-glucoside, cyanidin-3-arabinoside, peonidin-3-galactoside, peonidin-3-

glucoside, peonidin-3-arabinoside, cyanidin, peonidin) of each sample was determined 

using an Agilent 1100 Series G1312A BinPump liquid chromatograph (Agilent 

Technologies, Inc., Santa Clara, CA) with a 50 x 4.60 mm Phenomenex® Kintex™ 2.6μ 

C18 100Å column (Phenomenex Inc., Torrance, CA) and an Agilent diode array detector 

Model G1315A (Agilent Technologies, Inc., Santa Clara, CA). The mobile phase was 

comprised of two eluents (A/B). Eluent A was comprised of 99:1 deionized water:85% 

phosphoric acid, and eluent B contained 50:49:1 deionized water:85% phosphoric 

acid:acetonitrile. The eluents were injected by gradient elution (0.0-7.8 minutes, 88% A, 

12% B; 7.8-11.4 minutes, 70% A, 30% B; 11.4-13.2 minutes, 60% A, 40% B; 13.2-15.0 

minutes, 30% A, 70% B) at a 1.5 mL/min flow rate, along with a 20 μL sample. The 

overall run time was 15 minutes, the column temperature was 30° C, and anthocyanins 

were detected at 520 nm absorbance. Multiple concentrations of reference standards of 

each type of anthocyanin were analyzed along with the samples. Each anthocyanin was 

reported as either mg/L for fluid elderberry products or parts per million (ppm) for dried 

elderberry products. 
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Organic Acids Profile 

 The organic acids profile of elderberry products was determined based on a 

procedure by Chen and others (2013). Elderberry products were diluted to between a 

1:40 and a 1:2000 ratio using deionized water, and sonicated for 10 minutes using a 

Branson 5510 sonicator (Branson Ultrasonics Co., Danbury, CT).  Products which 

contained particulates were filtered using a 10 mL BD™ Luer-Lock™ syringe Model 

S7510-10 (BD™ Franklin Lakes, NJ) with a 30 mm x 1.2 μm GMF Membrane Titan 2 HPLC 

filter tip (Sun Sri, Rockwood, TN). Samples were transferred into Dionex™ PolyVials™ 0.5 

mL Model 038010 (Thermo Fisher Scientific, Waltham, MA), capped using Dionex™ 

PolyVial™ 0.5 mL filter caps Model 038011 (Thermo Fisher Scientific, Waltham, MA) and 

inserted into the slots of a Dionex™ AS-DV autosampler Model 068888 (Thermo Fisher 

Scientific, Waltham, MA). The organic acids profile (quinic, galacturonic, malic, tartartic, 

fumaric, citric, isocitric) of each sample was determined using a Dionex™ ICS-2100 

Reagent-Free™ ion chromatograph (Thermo Fisher Scientific, Waltham, MA) with a 

RFIC™ IonPac® AG11-HC 4 x 250 mm ion exchange column Model 078429 (Thermo 

Fisher Scientific, Waltham, MA), RFIC™ IonPac® AG11-HC 4 x 50 mm guard column 

Model 078430 (Thermo Fisher Scientific, Waltham, MA) and an ASRS® 300 4 mm 

suppressor Model 064554 (Thermo Fisher Scientific, Waltham, MA). The column 

temperature was 30° C, and the mobile phase was deionized water at a flow rate of 1.35 

mL/min. Standards of each organic acid were analyzed along with the samples, and each 

sample was tested in duplicate. Multiple concentrations of reference standards of each 

type of organic acid were analyzed along with the samples. 
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 The benzoic acid content of each sample was determined by high-performance 

liquid chromatography (HPLC). Samples were prepared the same as previously outlined 

within this subchapter, except sample dilutions were transferred into amber HPLC 

autosampler vials instead of Dionex™ PolyVials™ 0.5 mL Model 038010 (Thermo Fisher 

Scientific, Waltham, MA). The benzoic acid content of each sample was determined 

using an Agilent 1100 Series G1313A liquid chromatograph (Agilent Technologies, Inc., 

Santa Clara, CA) with a 4.6 x 150 mm Agilent ZORBAX® Eclipse XDB-C8 5μ column 

(Agilent Technologies, Inc., Santa Clara, CA) and an Agilent diode array detector Model 

G1315A (Agilent Technologies, Inc., Santa Clara, CA). The mobile phase was a solution of 

50% 0.025M phosphoric acid  (Thermo Fisher Scientific, Waltham, MA), 35% methanol 

(Thermo Fisher Scientific, Waltham, MA), and 15% acetonitrile (Thermo Fisher Scientific, 

Waltham, MA), of which 5 μL per sample were injected into the system at a flow rate of 

0.5 mL/min. The run time was 7 minutes and the detector was set at 230 nm 

absorbance. Multiple concentrations of a benzoic acid standard was included in each 

sample set and each sample was analyzed in duplicate. Each organic acid was reported 

as either mg/L for fluid elderberry products or parts per million (ppm) for dried 

elderberry products. 

 

Statistical Analyses 

 Data collected from elderberry product assays and accelerated temperature (32° 

C) storage were evaluated within product categories using JMP 7.0.1 (SAS Institute Inc., 

Cary, NC) statistical software using one-way analysis of variance (ANOVA) with a 
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significance value of p≤0.05. Differences between means were evaluated using the 

Fisher's least significant difference test. A correlation analysis was also performed 

among the dependent variables. 

 

Results and Discussion 

Syrups 

Compositional Analyses at Week 0 

 The analytical testing performed in this study quantified the large majority 

(>88.0%) of ingredients within each of the syrups, except for Sambucol® for Kids and 

Sambucol® syrups, which contained 30.3% and 45.1% of unknown ingredients, 

respectively (Tables 2+3). Maltodextrins, which were not quantified in this study, likely 

accounted for the large fraction of unknown ingredients within these two syrups. Other 

ingredients which were likely in all of the syrups, yet unquantified, may have included 

some organic acids (cinnamic, chlorogenic, neochlorogenic, caffic, palmitic), plant 

material (fiber), and possibly small fractions of sorbates. Considering that 

hydroxycinnamic acid derivatives (cinnamic, chlorogenic, neochlorogenic, caffic) account 

for the major non-flavonoid organic acids naturally present in elderberry fruit, it is 

theorized that the total organic acid contents of all products tested in this study were 

underestimated by approximately half (Thomas and others 2015). Determining the total 

organic acids content of elderberry products is important because there may be a 

relationship between the amount organic acids and the amount of fruit used for 

production. The organic acid profiles of all syrups were typical of elderberry, and 
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contained mostly citric, quinic, and malic acids (Table 6) (Whiting 1958). The exception 

was Dynamic Health® Black Elderberry Tonic, which contained elevated levels of 

galacturonic acid, likely due to the inclusion of raspberry fruit. The anthocyanin profiles 

of all syrups were also typical of elderberry, and contained mostly cyanidin-3-

sambubioside, cyanidin-3-glucoside, and to a lesser extent, cyanidin-3-sambubioside-5-

glucoside (Table 5) (Wu and others 2002, Seabra and others 2010a, Schmitzer and 

others 2010). Anthocyanins which include sambubioside glycosides are important 

chemical markers for the identification of elderberry in foods, since these markers are 

exclusive to elderberry (Clifford 2000, Veberic and others 2009). It was determined that 

glycerin comprised between 51.1% and 60.7% of the total sugars content of Nature’s 

Answer® Black Elderberry Extract, Bio-Botanica® SE Elderberry Syrup, Bio-Botanica® AF 

Elderberry Syrup, and Now® Elderberry, Zinc and Echinacea Syrup; and between 13.7% 

and 14.3% of Nature’s Way® Sugar-Free Sambucus Syrup, Nature’s Way® Sambucus 

Syrup, and Integrative Therapeutics™ Sambucus Extract (Table 4). Additionally, Nature’s 

Way® Sugar-Free Sambucus Syrup also contained 43.1% sorbitol and 13.9% glycerin, and 

its sugar contents were comprised exclusively of these two polyols. Although it was 

necessary for the syrups to contain added sugars for preservation and consumer 

acceptability purposes, their high sugars content may negatively offset the overall 

perception of being healthy products.  
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Table 2 Labeled Ingredients and Price of Elderberry Syrups 

Pro-
duct 
Code 

Labeled Ingredients 
Serv-
ing 
Size 

Retail Price (USD 
as of April 2016) 

Weigh-
ted 

Price 
(USD) 

Average 
Months 
in Distri-
bution 
Before 

Analysis 

EMG N/A N/A N/A N/A 3 

NW SF 

Standardized Elderberry 
BioActives® Extract, Sorbitol, 

Purified Water, Vegetable Source 
Glycerin, Natural Raspberry Flavor, 

Citric Acid 

10 mL 
$28.99/240 mL 

(www.vitacost.com) 
$0.12/ 

mL 
17 

NW 

Standardized Elderberry 
BioActives® Extract, Fructose, 

Purified Water, Vegetable Source 
Glycerin, Natural Raspberry Flavor, 

Citric Acid 

10 mL 
$28.99/240 mL 

(www.vitacost.com) 
$0.12/ 

mL 
16 

Sam K 
Elderberry Extract, Glucose Syrup, 

Purified Water, Citric Acid, 
Potassium Sorbate 

10 mL 
$24.99/230 mL 

(www.sambucolusa. 
com) 

$0.11/ 
mL 

1 

NA 
Black Elderberry Extract, 

Vegetable Glycerin, Purified 
Water, Citric Acid 

5 mL 
$14.99/120 mL 

(www.naturesanswer.
com) 

$0.12/ 
mL 

18 

Sam 
Elderberry Extract, Glucose Syrup, 

Purified Water, Citric Acid, 
Potassium Sorbate 

10 mL 
$24.99/230 mL 

(www.sambucolusa. 
com) 

$0.11/ 
mL 

3 

Bio SE Elderberry, Glycerin N/A N/A N/A 14 

Bio AF Elderberry, Glycerin N/A N/A N/A 1 

Dyn 

Elderberry Juice Concentrate, 
Raspberry Puree, Invert Red Beet 
Syrup, Honey, Natural Raspberry 

Flavor 

15 mL 
$11.89/240 mL 

(www.vitacost.com) 
$0.05/ 

mL 
3 

Inte 

Standardized Elderberry Extract, 
Fructose, Purified Water, 

Vegetable Source Glycerin, Natural 
Raspberry Flavor, Citric Acid 

10 mL 
$15.50/120 mL 

(www.integrativepro. 
com) 

$0.13/ 
mL 

8 

Now 

Elderflower, Elderberry Fruit, 
Echinacea purpurea, Zinc 

Gluconate, Vegetable Glycerin, 
Water 

5 mL 
$16.99/120 mL 

(www.vitacost.com) 
$0.14/ 

mL 
4 

Antho 

Organic American Elderberry, 
Organic European Elderberry, 

Organic Blueberry, Organic 
American Elderflower, Organic 

Agave Nectar, Water, Organic Pure 
Grain Alcohol USP (3.5-5%) 

5 mL 
$27.95/240 mL 

(www.mainemedicinal
s.com) 

$0.12/ 
mL 

5 
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Table 2 continued 

Honey 

US Grade A Raw Honey, Organic 
Elderberries, Organic Apple Cider 
Vinegar, Propolis Echinacea, Pure 

Grain Alcohol, Water 

5 mL 
$20.99/240 mL 

(www.honeygardens. 
com) 

$0.09/ 
mL 

8 

Planet 
European Elderberry Extract, 

Honey, Grain Alcohol (20-25%), 
Purified Water 

5 mL 
$33.50/240 mL 

(www.planetaryherbal
s.com) 

$0.14/ 
mL 

10 

Refer to Table 1 for product identification. 

 

 Table 3 Compositional Profiles of Elderberry Syrups at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Vitamin 
C (%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

EMG 44.6c 0.163def ND 
60.1 
abcd 

0.0385c 0.3443e -5.2 

NW SF 38.7ef 0.360b ND 
57.2 
bcd 

0.0434c 0.1674g 3.5 

NW 40.7de 0.252c ND 55.4cd 0.0346c 0.4490e 3.2 

Sam K 38.2f 0.142efg 13.5a 17.4i 0.0002e 0.4568e 30.3 

NA 24.8h 0.092gh ND 62.8a 0.0026e 1.5619b 10.7 

Sam 33.9g 0.378b ND 19.9i 
0.0098 
de 

0.6709d 45.1 

Bio SE 24.8h 0.203cde ND 
61.7 
abc 

0.0031 
de 

2.0290a 11.3 

Bio AF 24.6h 0.585a ND 65.4a 0.1048a 2.2131a 7.1 

Dyn 62.4a 0.614a 13.5a 27.5h 0.0355c 1.1759c -5.2 

Inte 42.6cd 0.218cd ND 54.7de 0.0741b 
0.3732 
ef 

2.0 

Now 32.4g 0.064hi ND 61.4ab 0.0002e 0.3922f 5.7 

Antho 54.1b 0.341b ND 40.3g 
0.0263 
cd 

0.7913d 4.4 

Honey 42.3cd 0.131fg ND 49.6ef 0.0062e 
0.2938 
fg 

7.7 

Planet 45.0c 0.021i ND 46.4fg 0.0003e 0.7913d 7.8 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses per variable. Limit of quantitation (proanthocyanidins)=0.51 ppm, 

(vitamin C)=7.3 mg. 
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 Sambucol® for Kids Syrup and Dynamic Health® Black Elderberry Tonic were the 

only two syrups tested in this study which made vitamin C claims. Initial analysis showed 

that they both contained vitamin C contents of 13,500 mg/100 g, had serving sizes 

between 5.0-14.8 mL, and exceeded their claims by approximately 20 and 65 times. The 

recommended daily intake for vitamin C is 60-90 mg per day per person, and daily 

consumption exceeding 2,000 mg is not recommended, primarily due to the potential 

for renal taxation, upset stomach, and diarrhea (U.S. Department of Agriculture 2008). 

Considering that fresh elderberry fruit and elderberry fruit juice contains approximately 

29 mg/100g of vitamin C (48% daily value/100 g), and that no other syrups tested in this 

study contained detectable levels of vitamin C, it is theorized that Sambucol® for Kids 

Syrup and Dynamic Health® Black Elderberry Tonic were vitamin C fortified (U.S. 

Department of Agriculture 2008, Casati and others 2012). Interestingly, Sambucol® for 

Kids Syrup contained somewhat lower anthocyanin contents compared to Sambucol® 

Syrup, which may have been a result of its vitamin C contents causing the degradation 

of anthocyanins (González-Molina and others 2012). 
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Table 4 Sugar Profiles of Elderberry Syrups at Week 0 

Product 
Code 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Sorbitol 
(%) 

Total Sugars 
(%) 

EMG 53.0a 4.2f 3.0g ND ND 60.1abcd 

NW SF ND ND ND 14.3d 43.1 57.2bcd 

NW ND ND 41.5a 13.9d ND 55.4cd 

Sam K 7.8c 9.4e 0.5i ND ND 17.4i 

NA ND 2.4g 2.9f 57.6b ND 62.8a 

Sam 9.6b 10.3d ND ND ND 19.9i 

Bio SE ND 4.5f 6.0f 51.1c ND 61.7abc 

Bio AF ND 2.7g 2.9g 59.8b ND 65.4a 

Dyn 3.1d 11.5c 12.9e ND ND 27.5h 

Inte ND ND 41.0a 13.7d ND 54.7de 

Now ND ND 0.7h 60.7a ND 61.4ab 

Antho 1.3f 4.8f 34.0b 0.3g ND 40.3g 

Honey 2.0e 20.8a 26.1c 0.9f ND 49.6ef 

Planet ND 19.8b 23.1d 1.4e ND 46.4fg 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Table 5 Anthocyanin Profiles of Elderberry Syrups at Week 0 

Product 
Code 

cyan-3-
sambu 
(mg/L) 

cyan-3-
sambu-
5-gluco 
(mg/L) 

cyan-
3-

galact 
(mg/L) 

cyan-
3-gluco 
(mg/L) 

peonidin 
(mg/L) 

Total 
Unknown 

(mg/L) 

Total 
Anthocyanins 

(mg/L) 

EMG 90.7ab ND ND 12.6d 16.5a 265.3a 385.1c 

NW SF 42.1bcd 7.3a ND 378.0c ND 2.6c 433.6c 

NW 31.5bcd ND ND 314.4c ND ND 345.8c 

Sam K 0.4cd 0.4d ND 1.3d ND ND 1.9e 

NA 15.1cd 2.1c ND 14.3d ND 2.4c 25.5e 

Sam 27.0bcd 4.5bc ND 65.0cd ND ND 98.4de 

Bio SE 10.6bcd ND ND 8.5d ND 12.1bc 31.2de 

Bio AF 130.2a ND ND 917.9ab ND ND 1048.1a 

Dyn 62.1abc ND ND 176.7cd ND 116.0ab 354.8c 

Inte 59.4abcd ND ND 681.2b ND ND 740.6b 

Now 2.0d ND ND ND ND ND 2.0e 

Antho 119.0a 6.3ab 2.1 65.6cd ND 69.5b 262.5cd 

Honey 9.7cd ND ND ND 0.6b 51.6b 61.8de 

Planet 2.8cd ND ND 0.6d ND ND 3.4e 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.2 mg/L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



56 
 

Table 6 Organic Acid Profiles of Elderberry Syrups at Week 0 

Product 
Code 

Quinic 
(mg/L) 

Galac-
turonic 
(mg/L) 

Malic 
(mg/L) 

Tart-
aric 

(mg/L) 

Fum-
aric 

(mg/L) 

Citric 
(mg/L) 

Iso-
citric 

(mg/L) 

Total 
Organic 

Acids 
(mg/L) 

EMG 201.8f ND 
579.1 
efg 

27.1d 53.4cd 
2487.1 
gh 

92.6de 
3443.0 
efg 

NW SF 75.3f 44.3e 87.4h ND ND 
1430.7 
hi 

27.0e 1673.7g 

NW 138.7f 40.6e 82.7h 9.3e ND 4165.9e 52.9e 4489.9e 

Sam K 291.1f 262.4de 265.1gh 11.7d ND 
3622.9 
ef 

114.4de 4567.6e 

NA 3219.2b 371.0cde 
1455.0 
bc 

21.6cd 
126.3 
abc 

9834.7b 585.8b 
15618.5
b 

Sam 461.5ef 440.5cde 
415.6 
fgh 

ND 13.7cd 
5326.3 
cd 

102.9de 6708.9d 

Bio SE 4879.0a 440.2cde 2928.0a 143.5a 
243.0 
abc 

10887.1
b 

769.3ab 
20290.0
a 

Bio AF 4270.5a 1202.7b 1888.8b ND ND 
14768.7
a 

ND 
22130.7
a 

Dyn 
2591.3 
bc 

2172.2a 
650.3 
efg 

92.7b ND 5962.5c 289.7c 
11758.7
c 

Inte 555.5ef ND 71.4h ND ND 
3097.1 
fg 

ND 
3732.3 
ef 

Now 
1000.2 
de 

ND 878.4de 139.4a 138.3ab 
1655.8 
hi 

102.5de 
3921.5 
ef 

Antho 2561.6c 278.2de 961.9de 33.0d 60.9c 
3867.7 
ef 

166.3cd 7913.1d 

Honey 570.0ef 59.0e 670.3ef 57.7c 91.3bc 1330.1i 48.2e 
2937.8 
fg 

Planet 1524.7d 31.2e 
1267.5 
cd 

85.0b 96.1bc 
4702.4 
de 

206.2cd 7913.2d 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Honey=111.4±0.9 mg/L benzoic. Limit of quantitation=90 mg/L. 

 

Color Analyses at Week 0 

 Spectrophotometric wavelengths of 520 and 430 nm were used to indicate the 

amount of red (anthocyanic pigment) and brown (anthocyanic degradation) 

pigmentations within the syrups, respectively. A 520/430 ratio was used to gain quick 
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insight into the quality of the syrups. Typically, ratios exceeding 1.00 denote high quality 

elderberry syrups, which contain greater proportions of red pigmentation compared to 

brown pigmentation. The 520/430 ratios exceeded 2.00 for Evergreen Manufacturing 

Group Elderberry Syrup, Nature’s Way® Sugar-Free Sambucus Syrup, Nature’s Way® 

Sambucus Syrup, Sambucol® for Kids Syrup, Sambucol® Syrup, Integrative 

Therapeutics™ Sambucus Extract, and Honey Gardens™ Elderberry Syrup, during initial 

testing. A 520/430 ratio of 1.23 was detected for Now® Elderberry, Zinc and Echinacea 

Syrup, and ratios between 0.45 and 0.92 were detected for Nature’s Answer® Black 

Elderberry Extract, Bio-Botanica® SE Elderberry Syrup, Bio-Botanica® AF Elderberry 

Syrup, Dynamic Health® Black Elderberry Tonic, and AnthoImmune™ Organic Elderberry 

Syrup. Syrups with ratios below 1.00 generally appeared more brown, and contained 

strong musty odors, which would likely contribute to lowered consumer acceptability. 

 Colorimetric analysis using the L*a*b* color scale is a fast quantitative technique 

in which the L*a*b* values are used to approximate human vision. L* values represent a 

range of black (0) to white (100), or darkness to lightness. The a* value represents a 

range of green (-) to red colors (+), and b* values represent a range of blue (-) to yellow 

colors (+) (Nielson, 2010). In this study, significantly (p≤0.05) higher a* and b* values 

were detected within Evergreen Manufacturing Group Elderberry Syrup, Sambucol® for 

Kids Syrup, and Honey Gardens™ Elderberry Syrup, which indicates that these products 

are rich sources of red and yellow pigmentation (Figure 5). Interestingly, the average 

time between date of production and analyses of these three syrups was only 4 months, 

whereas the average age for the other syrups was 8 months after production. The 
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shorter distribution time of these syrups likely contributed to their improved color. 

Moderate to low correlations (p≤0.05) were observed between 520/430 ratio and L* 

(r=0.22), a* (r=0.50), and b* (r=0.37) values. Additionally, a strong correlation was 

observed between absorbance at 520 nm and absorbance at 430 nm (r=0.65) among the 

syrups, which demonstrates a relationship between the amounts of anthocyanic 

pigmentation and anthocyanic degradation within the syrups.  

 

 
Figure 5 L*a*b* color values of elderberry syrups at week 0.  

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA.  n=2 replicates, 2 analyses.  

 

Effects of Accelerated Storage 

 An important objective of this study was to determine the effects of accelerated 

temperature (32° C) storage on the quality (nutrient and color stability) of elderberry 

syrups at 0, 5, and 10 weeks. The two syrups which contained vitamin C exhibited 
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significant (p≤0.05) decreases in vitamin C content throughout 10 weeks of accelerated 

temperature (32° C) storage. Sambucol® for Kids Syrup and Dynamic Health® Black 

Elderberry Tonic had vitamin C contents of 13,500, 10,700, and 9,500 mg/100 g and 

13,500, 8,800, and 5,800 mg/100 g at 0, 5, and 10 weeks of storage (Figure 6). These 

results show that the vitamin C content degraded slower in the Sambucol® for Kids 

Syrup than in the Dynamic Health® Black Elderberry Tonic. This decrease may be the 

result of the presence of maltodextrins within Sambucol® for Kids Syrup, which may 

have acted as a preservative by encapsulating vitamin C and excluding oxygen. A second 

theory is that the presence of potassium sorbate within Sambucol® for Kids Syrup may 

have limited microbial growth, which otherwise may have degraded vitamin C. After 10 

weeks of accelerated temperature storage, both syrups still exceeded their vitamin C 

claims by wide margins. 
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Figure 6 Vitamin C values (mg/100 g) of elderberry syrups throughout weeks of 

accelerated temperature (32° C) storage. 

Vitamin C content by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses. 

 

 During the first 5 weeks of accelerated temperature (32° C) storage, significant 

(p≤0.05) losses of red pigmentation were observed in the Evergreen Manufacturing 

Group Elderberry Syrup, Nature’s Way® Sugar-Free Sambucus Syrup, Sambucol® for Kids 

Syrup, Nature’s Answer® Black Elderberry Extract, Sambucol® Syrup, Bio-Botanica® SE 

Elderberry Syrup, Bio-Botanica® AF Elderberry Syrup, and AnthoImmune™ Organic 

Elderberry Syrup (Figure 7). There was an average of a 25% reduction to the 520/430 

ratio of these syrups, and Evergreen Manufacturing Group Elderberry Syrup, Sambucol® 
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and Sambucol® for Kids Syrup were among the syrups with the strongest initial red 

colorations according to their a* values, therefore the color of these syrups remained 

competitive after substantial losses to red pigmentation. Additionally, although many of 

the syrups experienced significantly (p≤0.05) lower 520/430 ratios throughout the first 5 

weeks of accelerated temperature storage, few effects were observed between 5 weeks 

and 10 weeks of storage. These results indicate that the majority of the color 

degradation occurred within the first 5 weeks of accelerated temperature storage. It is 

believed that the elevated 520/430 ratios of Honey Gardens™ Elderberry Syrup 

observed at 5 and 10 weeks of storage are a result of experimental error. There is no 

scientific justification for the increase of red pigmentation throughout accelerated 

temperature storage, and Honey Gardens™ Elderberry Syrup contained observable 

particulates which may have interfered with the spectrophotometric absorbance 

readings. Interestingly, Honey Gardens™ Elderberry Syrup was the only elderberry syrup 

tested in this study which did not contain elderberry fruit as its primary ingredient, 

which was instead raw honey. These results are in agreement with Fernández-López and 

others (2013), who reported a loss of 36.2% of absorbance at 535nm throughout 6 

hours of storage at 90° C, which indicated a loss of anthocyanic pigmentation. 
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Figure 7 520/430 ratios of elderberry syrups throughout weeks of accelerated 

temperature (32° C) storage. 

Refer to Table 1 for product identification. 520/430 ratios by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 

 

 In addition to the storage effects on vitamin C and color, significant (p≤0.05) 

decreases of anthocyanin content in elderberry syrups were detected throughout 10 
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weeks, the majority of the syrups lost approximately half of their initial anthocyanin 

content. Bio-Botanica® AF Elderberry Syrup and Dynamic Health® Black Elderberry Tonic 

were the most susceptible to anthocyanin degradation among the syrups tested in this 
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anthocyanins throughout accelerated storage, these syrups still contained appreciable 

amounts of anthocyanins at 10 weeks of storage. These results are in agreements with 

González-Molina and others (2012), who reported an average loss of approximately 60% 

of the anthocyanin contents of an elderberry solution throughout 56 days of room 

temperature storage. 

 

 
Figure 8 Total anthocyanin values (mg/L) of elderberry syrups throughout weeks of 

accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total anthocyanins by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 
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Tinctures 

Compositional Analyses at Week 0 

 The analytical testing performed in this study quantified greater than 94.0% of 

the ingredients within each of the tinctures (Tables 7+8). All of the tinctures contained 

at least 80.4% moisture/alcohol, between 0.9% and 15.0% total sugars, and small 

fractions of anthocyanins (<0.015% or <140.0 mg/L). Sugars profile analyses revealed 

that these tinctures primarily contained naturally-occurring elderberry sugars (sucrose, 

fructose), with the exception of Herb Pharm® Black Elderberry Extract, which contained 

12.1% glycerin (Table 9). Additionally, Gaia® Organics Black Elderberry Liquid Extract 

contained 8.5% sucrose, which was not detected within any of the other tinctures 

tested in this study. The anthocyanin profiles of the tinctures were exclusive of 

elderberry fruit, and contained primarily cyanidin-3-sambubioside and cyanidin-3-

glucoside (Table 10). Quantum® Health Elderberry Liquid Extract and Source Naturals® 

Wellness Elderberry Liquid Extract™ contained appreciable amounts of anthocyanins, 

however the anthocyanin contents of the tinctures were relatively low compared to the 

syrups tested in this study. This difference was likely due to increased sugar contents of 

the syrups, which absorbed water and prevented the hydrolytic degradation of 

anthocyanins. The total organic acids content of the tinctures were comparable to the 

syrups tested in this study, which indicates that similar quantities of fruit were used 

during the production of each elderberry product. The organic acids profiles of the 

tinctures indicate that elderberry fruit was the exclusive fruit used within the tinctures, 

and contained primarily citric, quinic, and malic acids (Table 11). The organic acid results 
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are in agreement with Verberic and others (2009), who reported the organic acid 

content of fresh elderberry fruit to be 6.3 g/kg or 0.638%. All of the tinctures contained 

low proportions of proanthocyanidins, with the exception of Quantum® Health 

Elderberry Liquid Extract which contained a relatively high proanthocyanidin fraction 

(11,060.0 mg/L or 1.106%). In comparison, the estimated daily consumption of 

proanthocyanidins is between 22.5 and 57.7 mg per person, and cranberry fruit, which 

is considered a rich source of proanthocyanidins, contains 4,110.0 mg/kg (Gu and others 

2004, Kyle and Duthie 2006, Rothwell and others 2013). Interestingly, vitamin C was not 

detected within any of the tinctures tested in this study, which was likely due to the 

susceptibility of vitamin C to oxidative and hydrolytic degradation.  
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Table 7 Labeled Ingredients and Price of Elderberry Tinctures 

Pro-
duct 
Code 

Labeled Ingredients 
Serv-
ing 
Size 

Retail Price (USD as 
of April 2016) 

Weigh-
ted 

Price 
(USD) 

Average 
Months 
in Distri-
bution 
Before 

Analysis 

Quant 
Elderberry Extract, Distilled 

Water, Alcohol 
0.6-0.9 

mL 

$13.49/ 
60 mL 

(www.quantumhealth 
.com) 

$0.22/ 
mL 

6 

Source 

European Elder Berry and 
Flower Extract, Grain 

Alcohol (40%), Purified 
Water 

5 mL 

$31.98/ 
240 mL 

(www.sourcenaturals 
.com) 

$0.13/ 
mL 

17 

Gaia 
Organic Black Elderberries, 

Water, Organic Grain 
Alcohol USP (40-50%) 

1 mL 
$11.99/ 
30 mL 

(www.gaiaherbs.com) 

$0.40/ 
mL 

20 

Herb 

Distilled Water, Certified 
Organic Grain Alcohol (33-
43%), Vegetable Glycerine, 
Black Elderberry Extractives 

0.7 mL 
$14.00/ 

29.6 mL (www.herb-
pharm.com) 

$0.47/ 
mL 

10 

Planet 

European Elder Berry and 
Flower Extract, Grain 

Alcohol (40%), Purified 
Water 

5 mL 

$33.50/ 
240 mL 

(www.planetaryherbals
.com) 

$0.14/ 
mL 

8 

Refer to Table 1 for product identification. 
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Table 8 Compositional Profiles of Elderberry Tinctures at Week 0 

Product 
Code 

Moisture/
Ethanol 

(%) 

Total 
Proantho-
cyanidins 

(%) 

Vitamin 
C (%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

Quant 92.2ab 1.106a ND 3.6bc 0.0139a 0.9366b 2.1 

Source 94.3a 0.067b ND 2.4c 
0.0070 
ab 

0.7382b 2.5 

Gaia 85.6bc 0.058b ND 7.0b 0.0001b 1.7161a 5.6 

Herb 80.4c 0.058b ND 15.0a 0.0002b 
1.3672 
ab 

3.2 

Planet 96.5a 0.070b ND 0.9c 
0.0003 
ab 

0.6031b 1.9 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses per variable. Limit of quantitation (proanthocyanidins)=0.51 ppm, 

(vitamin C)=7.3 mg. 

 

Table 9 Sugar Profiles of Elderberry Tinctures at Week 0 

Product 
Code 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Malitol 
(%) 

Sorbitol 
(%) 

Total 
Sugars 

(%) 

Quant ND 1.4ab 2.2ab ND ND ND 3.6bc 

Source ND 0.9ab 1.5ab ND ND ND 2.4c 

Gaia 8.5 1.8a 2.8a 1.9b ND ND 7.0b 

Herb ND 1.0ab 1.9ab 12.1a ND ND 15.0a 

Planet ND 0.3b 0.6b ND ND ND 0.9c 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 
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Table 10 Anthocyanin Profiles of Elderberry Tinctures at Week 0 

Product 
Code 

cyan-
3-

sambu 
(mg/L) 

cyan-3-
sambu-
5-gluco 
(mg/L) 

cyan-
3-

galact 
(mg/L) 

cyan-
3-

gluco 
(mg/L) 

peon-
3-

galact 
(mg/L) 

Total 
Unknown 

(mg/L) 

Total 
Anthocyanins 

(mg/L) 

Quant 68.1a 6.0a ND 63.1a 1.5a 0.9a 139.1a 

Source 34.8ab 5.9a ND 60.6a 1.5a 1.4a 69.5ab 

Gaia 0.3b ND ND ND ND 0.5a 0.6b 

Herb 1.5b ND ND ND ND ND 1.5b 

Planet 2.4ab ND ND 0.5b ND ND 2.8ab 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.2 mg/L. 

 

Table 11 Organic Acid Profiles of Elderberry Tinctures at Week 0 

Product 
Code 

Quinic 
(mg/L) 

Galac-
turonic 
(mg/L) 

Malic 
(mg/L) 

Tart-
aric 

(mg/L) 

Fum-
aric 

(mg/L) 

Citric 
(mg/L) 

Iso-
citric 

(mg/L) 

Total 
Organic 

Acids 
(mg/L) 

Quant 
3683.6
a 

285.6a 
1394.4
a 

80.7b 62.8a 3754.6b 145.3b 9366.3b 

Source 
1212.6
b 

9.3c 
1494.3
a 

ND ND 4501.1b 158.3b 7381.7b 

Gaia 
2371.8
b 

105.8b 
2887.8
a 

79.9ab 15.1b 
11282.2
a 

418.6a 17161.1a 

Herb 
2133.6
b 

170.9b 
2041.3
a 

120.9a ND 
8879.9 
ab 

320.5 
ab 

13672.2ab 

Planet 
1043.2
b 

ND 
1493.3
a 

ND ND 3383.2b 111.3b 6031.0b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=90 mg/L. 

 

Color Analyses at Week 0 

 The initial 520/430 ratios of all tinctures were between 0.66 and 1.02 (Figure 9). 

As previously mentioned, if 520/430 ratios are below 1.00 this indicates poor product 

color due to the polymerization of red-colored anthocyanic pigmentation into brown-
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colored degradation products. All of the tinctures tested in this study appeared brown in 

color and contained strong musty odors, which would likely result in decreased 

consumer acceptability. These results are substantiated by the fact that the tinctures 

contained appreciable amounts of organic acids and low concentrations of 

anthocyanins, which may indicate that appreciable amounts of fruit were used, but 

losses of red colored anthocyanic pigments were detected. Although alcohol is an 

excellent extractive of anthocyanins and other phenolics, it is theorized that glycerin is a 

better preservative based on the evaluation of elderberry syrups. The high levels of 

ethanol within the tinctures likely resulted in the alcoholic denaturation of the 

elderberry polyphenolic and anthocyanin contents (Lapornik and others 2005, Tay and 

others 2014). The average a* value of the tinctures tested in this study was 0.7, whereas 

the average a* value of the syrups was 4.6, further demonstrating that the tinctures 

contained less red pigmentation compared to the syrups tested in this study. In 

comparison, Casati and others (2012) reported that the average a* value of elderberry 

juice was approximately 20, and that approximately half of the juices' a* value was lost 

throughout 185 days of storage at 40° C. 

 

Effects of Accelerated Storage 

 The 520/430 ratios decreased over accelerated temperature storage (32° C), 

which indicates similar degradation of tincture color compared to elderberry syrups 

over storage time. At 0, 5, and 10 weeks of storage, the average 520/430 ratios among 

all tinctures were 0.85, 0.58, and 0.56, respectively, which equates to a reduction of 
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31.6% throughout the first 5 weeks of storage, and an additional 3.2% between 5 and 10 

weeks of storage (Figure 9). Apparently, the majority of anthocyanic degradation 

occurred throughout the first 5 weeks of accelerated storage. Interestingly, Quantum® 

Health Elderberry Liquid Extract and Source Naturals® Wellness Elderberry Liquid 

Extract™ were the only two tinctures tested in this study which contained appreciable 

amounts of anthocyanins, and these two tinctures showed the sharpest declines in 

520/430 ratios as their anthocyanin contents declined (Figure 10). These results 

demonstrated a relationship between the amount of anthocyanins within the tinctures 

and the intensity of red pigmentation. A strong correlation (r=0.62) (p≤0.05) was 

observed between the 520/430 ratio and total anthocyanins among the tinctures.  
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Figure 9 520/430 ratios of elderberry tinctures throughout weeks of accelerated 

temperature (32° C) storage. 

Refer to Table 1 for product identification. 520/430 ratios by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 
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Figure 10 Total anthocyanin values (mg/L) of elderberry tinctures throughout weeks of 

accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total anthocyanins by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 

 

Concentrates 

Compositional Analyses at Week 0 

 The analytical testing performed in the study quantified greater than 90.7% of 

the ingredients within each of the concentrates (Tables 12+13). Kerr Elderberry 

Concentrate contained very rich fractions of proanthocyanidins (7.4% or 74,220.0 mg/L), 

anthocyanins (0.8% or 8,442.0 mg/L), vitamin C (14.5% or 145,000.0 mg/L), and organic 

acids (12.6% or 125,810.0 mg/L) during initial testing, which indicates that a substantial 

amount of fruit was used for its production. Sambu® Wild Grown Elderberry 

Concentrate and Natural Sources® Natural Elderberry Concentrate contained 

a 

a 

ab a a 

b 
a 

a a ab 

c 

a b a b 
0.0 

20.0 

40.0 

60.0 

80.0 

100.0 

120.0 

140.0 

160.0 

Quant Source Gaia Herb Planet 

m
g/

L 0 Weeks 

5 Weeks 

10 Weeks 



73 
 

appreciable amounts of sugars and organic acids, however also contained very low 

proportions of anthocyanins and proanthocyanidins. Although it is likely that 

considerable amounts of fruit were used for their production based on organic acids 

data, a lack of anthocyanins and proanthocyanidins indicates poor product stability. The 

nutrient profiles of these two concentrates make them more comparable to the syrups 

tested in this study. All of the concentrates tested in this study contained sugars, 

anthocyanins, and organic acids profiles which were indicative of elderberry fruit (Tables 

14-16). 

 

Table 12 Labeled Ingredients and Price of Elderberry Concentrates 

Product 
Code 

Labeled 
Ingredients 

Retail Price (USD 
as of April 2016) 

Weighted 
Price 
(USD) 

Average 
Months in 

Distribution 
Before 

Analysis 

Kerr 
Elderberry Juice 

Concentrate 
N/A N/A 4 

Sambu 

Elderberry Juice 
Concentrate, 

Elderflower Extract, 
Honey 

$36.49/504 mL 
(www.vitacost.com) 

$0.07/mL 13 

Nat 
Elderberry Juice 

Concentrate 
$21.10/480 mL 

(www.vitacost.com) 
$0.04/mL 5 

        Refer to Table 1 for product identification. 
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Table 13 Compositional Profiles of Elderberry Concentrates at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Vitamin 
C (%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

Kerr 42.6a 7.422a 14.5 27.2c 0.8442a 
12.5810
a 

-5.1 

Sambu 33.0c 0.012b ND 54.8a 0.0005b 2.8402b 9.3 

Nat 41.6b 0.093b ND 45.8b 0.0010b 3.7072b 8.8 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses per variable. Limit of quantitation (proanthocyanidins)=0.51 ppm, 

(vitamin C)=7.3 mg. 

 

Table 14 Sugar Profiles of Elderberry Concentrates at Week 0 

Product 
Code 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Malitol 
(%) 

Sorbitol 
(%) 

Total 
Sugars 

(%) 

Kerr ND 13.5b 13.8b ND ND ND 27.2c 

Sambu 4.6a 22.3a 28.0a ND ND ND 54.8a 

Nat 0.9b 14.9b 28.8a ND ND 1.6 45.8b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 

 

Table 15 Anthocyanin Profiles of Elderberry Concentrates at Week 0 

Product 
Code 

cyan-
3-

sambu 
(mg/L) 

cyan-3-
sambu-
5-gluco 
(mg/L) 

cyan-
3-

galact 
(mg/L) 

cyan-
3-gluco 
(mg/L) 

cyan-3-
arabino 
(mg/L) 

Total 
Unknown 

(mg/L) 

Total 
Anthocyanins 

(mg/L) 

Kerr 1127.1a ND ND 7315.1a ND ND 8442.1a 

Sambu 1.2b ND ND 0.4b ND 3.9a 5.4b 

Nat 2.4b ND 0.3 4.9b 1.4 1.9b 10.1b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.2 mg/L. 
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Table 16 Organic Acid Profiles of Elderberry Concentrates at Week 0 

Product 
Code 

Quinic 
(mg/L) 

Galac-
turonic 
(mg/L) 

Malic 
(mg/L) 

Tart-
aric 

(mg/L) 

Fum-
aric 

(mg/L) 

Citric 
(mg/L) 

Iso-
citric 

(mg/L) 

Total 
Organic 

Acids 
(mg/L) 

Kerr 
13139.8
a 

17427.6
a 

15526.0
a 

1031.1
a 

414.3a 74854.7a 
3416.9
a 

125810.4
a 

Sambu 3560.0b 2223.8b 2857.8b ND 192.3a 18915.6b 652.4b 28401.9b 

Nat 1798.3b 4997.9b 
10268.6
a 

540.4a 165.5a 18375.2b 265.3b 37072.3b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Nat=666.3±315.7 mg/L benzoic. Limit of quantitation=90 mg/L. 

 

Color Analyses at Week 0 

 The color of elderberry concentrates is one of the most important characteristics 

to food and beverage manufacturers because concentrates are commonly utilized as 

natural sources of red pigmentation in lieu of synthetically produced lakes and dyes. 

Kerr Elderberry Concentrate, Sambu® Wild Grown Elderberry Concentrate, and Natural 

Sources® Natural Elderberry Concentrate displayed 520/430 ratios of 1.82, 0.89, and 

1.37 during initial analyses, respectively (Figure 11). Although the 520/430 ratios were 

comparable among the concentrates, it is important to note that the absorbances at 

both 520 nm and 430 nm were observed to be significantly (p≤0.05) higher for the Kerr 

Elderberry Concentrate compared to Sambu® Wild Grown Elderberry Concentrate and 

Natural Sources® Natural Elderberry Concentrate. These results indicate that Kerr 

Elderberry Concentrate contained strong color density and was a rich source of 

anthocyanic pigmentation compared to the other products tested in this study.  
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Figure 11 Spectrophotometric color values of elderberry concentrates at week 0.  

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) among concentrates based on one-way ANOVA. n=2 

replicates, 2 analyses.  

 

Effects of Accelerated Storage 

 Similar trends were observed in regards to decreasing levels of color and 

anthocyanins among the concentrates over storage time compared to the syrups and 
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were 1.82, 1.56, 1.40 (Kerr Elderberry Concentrate), 0.89, 0.64, 0.57 (Sambu® Wild 

Grown Elderberry Concentrate), and 1.37, 1.11, 1.04 (Natural Sources® Natural 

Elderberry Concentrate), respectively (Figure 12). These results indicate that some of 

the red colored anthocyanic pigments within the concentrates were subjected to 

degradation effects, and were polymerized into brown colored degradation products 

throughout storage.  
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Figure 12 520/430 ratios of elderberry concentrates throughout weeks of accelerated 

temperature (32° C) storage. 

Refer to Table 1 for product identification. 520/430 ratios by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 
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first 5 weeks of accelerated storage, which was expected due to the large fractions of 

these compounds and their relative instability at high temperatures (Figure 13).  

 

 
Figure 13 Total proanthocyanidin values (mg/L) of elderberry concentrates throughout 

weeks of accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total proanthocyanidins by weeks of storage 

not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. n=2 replicates, 2 analyses. 

 

Capsules 

Compositional Analyses at Week 0 

 The analytical testing performed in this study identified and quantified between 

32.9% and 74.4% of the total compounds within the elderberry capsules (Tables 17+18). 

Xyloglucans (hemicelluloses) were detected within all of the capsules, which indicated 

that the capsules were comprised of appreciable amounts of plant or fruit cell wall 

material, and that the capsules likely contained elderberry pomace or other plant 
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material (Table 19). Although large amounts of organic acids were detected within all of 

the capsules, substantially more anthocyanins were detected within Eclectic Institute™ 

Elderberry Capsules than within Nature’s Way® Elderberry Capsules or Swanson® 

Premium Brand Elderberry Capsules (Tables 20+21). Large fractions of 

proanthocyanidins were detected within both Swanson® Premium Brand Elderberry 

Capsules and Eclectic Institute™ Elderberry Capsules.  

 Both Nature’s Way® Elderberry Capsules and Swanson® Premium Brand 

Elderberry Capsules contained anthocyanins and organic acids profiles typical of 

elderberry fruit, constituting cyanidin-3-glucoside, cyanidin-3-sambubioside, and 

cyanidin-3-sambubioside-5-glucoside anthocyanins, as well as citric, quinic, and malic 

organic acids. Interestingly however, Eclectic Institute™ Elderberry Capsules had 

anthocyanins and organic acids profiles ,which were not indicative of elderberry fruit. 

Eclectic Institute™ Elderberry Capsules contained cyanidin-3-galactoside, and peonidin 

anthocyanins, as well as fumaric, low quinic, and substantially more isocitric acids than 

is typically detected for elderberry fruit. Additionally, neither cyanidin-3-sambubioside 

or cyanidin-3-sambubioside-5-glucoside were detected within Eclectic Institute™ 

Elderberry Capsules, which are important chemical markers for the presence of 

elderberry fruit (Clifford 2000, Veberic and others 2009). Based on these results, it is 

theorized that no elderberry fruit was used for the production of Eclectic Institute™ 

Elderberry Capsules, and that blackberry fruit was used as the primary ingredient, which 

still resulted in a high-value, anthocyanin-rich product.  
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Table 17 Labeled Ingredients and Price of Elderberry Capsules 

Product 
Code 

Labeled Ingredients 
Serving 

Size 
Retail Price (USD 
as of April 2016) 

Weighted 
Price 
(USD) 

Average 
Months 
in Distri-
bution 
Before 

Analysis 

NW 
Elderberry Fruit, 

Elderflower, Gelatin, Silica 
2 Capsules 
(1150 mg) 

$12.99/ 
100 Capsules 

(www.vitacost.com) 

$0.13/ 
Capsule 

5 

Swan 

Elderberry Fruit, Elder 
Flowers, Gelatin, 

Microcrystalline Cellulose, 
Magnesium Stearate, Silica 

1 Capsule 
(575 mg) 

$6.49/ 
120 Capsules 

(www.swansonvita
mins.com) 

$0.05/ 
Capsule 

5 

Eclectic 

Wild Harvested Freeze-
Dried Elderberry Fruit, 

Freeze-Dried Blackberry 
Fruit, Larix 

Arabinogalactan, Organic 
Ginger Root, Clove Bud, 
Hypromellose, Purified 

Water 

2 Capsules 
(950 mg) 

$14.90/ 
50 Capsules 

(www.eclecticherb. 
com) 

$0.30/ 
Capsule 

4 

Refer to Table 1 for product identification. 

 

Table 18 Compositional Profiles of Elderberry Capsules at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Shell 
(%) 

Total 
Unknown 

(%) 

NW 3.7b 0.013b 8.4c 0.0096b 3.9195b 16.8 67.1 

Swan 2.6c 2.866ab 52.8a 0.0029b 2.5762c 13.6 25.6 

Eclectic 4.4a 3.543a 29.1b 0.2501a 6.8637a 17.8 38.1 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses per 

variable. Limit of quantitation (proanthocyanidins)=0.51 ppm. 
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Table 19 Sugar Profiles of Elderberry Capsules at Week 0 

Product 
Code 

Xylo-
glucans 

(%) 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Sorbitol 
(%) 

Total 
Sugars (%) 

NW 5.6b 0.5b 1.0b 3.0b ND ND 10.1c 

Swan 55.1a 1.7a 1.1b 1.0c ND 2.4 61.1a 

Eclectic 8.3a ND 14.1a 13.1a ND ND 35.4b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. Values do 

not include shell material. n=2 replicates, 2 analyses. Limit of quantitation=0.05%. 

 

Table 20 Anthocyanin Profiles of Elderberry Capsules at Week 0 

Product 
Code 

cyan-3-
sambu 
(ppm) 

cyan-3-
sambu-
5-gluco 
(ppm) 

cyan-3-
galact 
(ppm) 

cyan-3-
gluco 
(ppm) 

cyan-3-
arabino 
(ppm) 

cyanidin 
(ppm) 

Total 
Anthocyanins 

(ppm) 

NW 36.7a 3.4 ND 76.6b ND ND 115.0b 

Swan 3.4b ND 1.8b 1.4c 4.0b 5.2b 33.5b 

Eclectic ND ND 316.4a 2199.0a 92.0a 78.9a 3043.9a 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. Values do 

not include shell material. n=2 replicates, 2 analyses. Eclectic=45.9a ppm peon-3-gluco, 

Swan=8.8b ppm peon-3-gluco, Eclectic=67.6 ppm peon-3-arabino, Swan=9.2b ppm total 

unknown, Eclectic=313.2a ppm total unknown. Limit of quantitation=0.2 ppm. 
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Table 21 Organic Acid Profiles of Elderberry Capsules at Week 0 

Product 
Code 

Quinic 
(ppm) 

Galac-
turonic 
(ppm) 

Malic 
(ppm) 

Tart-
aric 

(ppm) 

Fum-
aric 

(ppm) 

Citric 
(ppm) 

Iso-
citric 

(ppm) 

Total 
Organic 

Acids 
(ppm) 

NW 
9949.6
a 

45.1a 6644.1b 500.5b 
2106.4
a 

26376.5
b 

1305.6b 47087.3b 

Swan 
9194.0
a 

1021.3a 
14402.3
a 

1405.8
a 

ND 3487.2c 209.1b 29824.2c 

Eclectic 
2465.5
b 

788.0a 
13855.1
a 

1047.1
a 

1070.1
a 

34282.2
a 

29844.0
a 

83520.1a 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. Values do 

not include shell material. n=2 replicates, 2 analyses. NW=169.8a ppm benzoic, 

Swan=104.6a ppm benzoic, Eclectic=168.3a ppm benzoic. Limit of quantitation=90 ppm. 

 

Effects of Accelerated Storage 

 Similar to the other products tested in this study, significant (p≤0.05) losses of 

anthocyanin contents were detected in the elderberry capsules throughout accelerated 

temperature (32° C) storage (Figure 14). Although almost ⅓ of total anthocyanins were 

lost throughout 10 weeks of accelerated storage within Eclectic Institute™ Elderberry 

Capsules, a substantial amount of anthocyanins remained at the end of this study. No 

other notable storage effects were observed within the capsules, which indicates that 

elderberry capsules appeared to maintain color and nutrient stability throughout 

storage. The positive stability characteristics of the capsules are likely the result of the 

lack of water and encapsulation, which excludes oxygen and likely maintains 

anthocyanin stability. 
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Figure 14 Total anthocyanin values (ppm) of elderberry capsules throughout weeks of 

accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total anthocyanins by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 

 

Lozenges 

Compositional Analyses at Week 0 

 The analytical testing performed in this study determined between 16.7% and 

83.3% of the compounds within the elderberry lozenges (Tables 22+23). Sorbitol was 

detected as the primary sugar within Now® Elderberry and Zinc Lozenges, Sambucol® 

Chewable Tablets, and Rubini® ProFlavon Elderberry Complex Lozenges, and 

contributed to their moderate and high sugar contents (Table 24). Planetary™ Herbals 

Full Spectrum™ Elderberry Tablets contained the highest amount of xyloglucans among 

the lozenges analyzed, which indicated that it contained the highest amount of plant or 
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fruit cell wall material. Significantly (p≤0.05) higher levels of organic acids were detected 

within Sambucol® Chewable Tablets, which may have indicated that more fruit was used 

during production (Table 26). Although Sambucol® Chewable Tablets contained the 

highest organic acid contents, it contained the lowest amount of xyloglucans, which 

indicates that Sambucol® Chewable Tablets were processed to remove hemicellulose 

and other plant material, and possibly contained elderberry juice or concentrate. All of 

the lozenges tested in this study contained appreciable amounts of anthocyanins, and 

displayed anthocyanin profiles which were indicative of elderberry fruit (Table 25). 

Now® Elderberry and Zinc Lozenges, Sambucol® Chewable Tablets, and Rubini® 

ProFlavon Elderberry Complex Lozenges displayed high levels of fumaric and citric acids, 

and low levels of quinic acid, which indicated that another fruit was added along with 

elderberry in their production. These lozenges may contain additions of grape, 

raspberry, or cherry fruit; and/or fumaric and citric acids were added as flavor 

enhancers or antimicrobials. Now® Elderberry and Zinc Lozenges, Sambucol® Chewable 

Tablets, and Planetary™ Herbals Full Spectrum™ Elderberry Tablets were chewable 

tablets, and likely contained excipients, such as tableting agents (dibasic calcium 

phosphate, maltodextrin, tapioca starch), hydrocolloids (cellulose, acacia gum, 

hypromellose), and/or antiadherents (magnesium stearate, silica, stearic acid, colloidal 

silicon dioxide). Rubini® ProFlavon Elderberry Complex Lozenges appeared darker in 

color, were much chewier and gummier than the other lozenges tested in this study, 

and likely contained hydrocolloids as its other major fraction of ingredients, which were 

not detected by these analyses. All of the lozenges contained substantial 
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proanthocyanidin fractions compared to the other products tested in this study, which 

may indicate that lozenges maintain the stability characteristics of elderberry color and 

phytochemicals. 

 

Table 22 Labeled Ingredients and Price of Elderberry Lozenges 

Pro-
duct 
Code 

Labeled Ingredients 
Serving 

Size 
Retail Price (USD 
as of April 2016) 

Weighted 
Price 
(USD) 

Average 
Months 
in Distri-
bution 
Before 

Analysis 

Now 

Vitamin C (Ascorbic Acid and 
Sodium Ascorbate), 

Elderberry Fruit Concentrate, 
Echinacea purpurea, Bee 

Propolis, Slippery Elm Bark, 
Zinc Gluconate, Fructose, 

Cellulose, Vegetable Source 
Stearic Acid, Vegetable Source 

Magnesium Stearate, Silica, 
Natural Vanilla Flavor, Natural 

Raspberry Flavor 

1 
Lozenge 

$7.99/30 
Lozenges(www.vitac

ost.com) 

$0.27/ 
Lozenge 

5 

Sam 

Dried Elderberry Extract, 
Ascorbic Acid, Sorbitol, Xylitol, 

Natural Flavors, Silica, 
Magnesium Stearate, 

Hypromelose, Maltodextrin, 
Tapioca Starch 

1 Tablet 
$12.99/30 Tablets 

(www.sambucolusa.
com) 

$0.43/ 
Tablet 

5 

Rub 

Sorbitol and Malitol Syrup, 
Gum Arabic, Elderflower 

Extract (8.5%), Honey (2.8%), 
Elderberry Extract (1.4%), 

Citric Acid, Vitamin C, 
Beeswax, Stevia 

1 
Lozenge 
(465 mg) 

$11.33/24 Lozenges 
(www.rubiny.ie) 

$0.47/ 
Lozenge 

2 

Planet 

Elderberry, Elderberry Flower 
Extract, Elderberry Fruit 
Extract, Dibasic Calcium 
Phosphate, Stearic Acid, 
Acacia Gum, Modified 
Cellulose Gum, Silica 

2 Tablets 
(1050 
mg) 

$9.98/42 Tablets 
(www.planetaryher

bals.com) 

$0.24/ 
Tablet 

6 

Refer to Table 1 for product identification. 
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Table 23 Compositional Profiles of Elderberry Lozenges at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

Now 0.9d 0.229c 80.4a 0.0236c 0.7836c 17.7 

Sam 2.2c 1.151a 70.0b 0.0551b 8.3912a 18.2 

Rub 9.7a 0.558b 33.4c 0.0681a 1.5499b 54.7 

Planet 4.2b 0.228c 20.5d 0.0057d 1.7528b 73.3 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses per 

variable. Limit of quantitation (proanthocyanidins)=0.51 ppm. 

 

 

Table 24 Sugar Profiles of Elderberry Lozenges at Week 0 

Product 
Code 

Xylo-
glucans 

(%) 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Malitol 
(%) 

Sorbitol 
(%) 

Total 
Sugars 

(%) 

Now 2.4c ND 0.6c 16.9a ND 60.8a 80.4a 

Sam 1.5d ND 4.4a 4.4b ND 59.8a 70.0b 

Rub 3.0b ND 1.3b 2.0d 6.0 27.1b 33.4c 

Planet 18.2a ND ND 2.3c ND ND 20.5d 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 

 

Table 25 Anthocyanin Profiles of Elderberry Lozenges at Week 0 

Product 
Code 

cyan-
3-

sambu 
(ppm) 

cyan-3-
sambu-
5-gluco 
(ppm) 

cyan-
3-

galact 
(ppm) 

cyan-3-
gluco 
(ppm) 

peon-
3-

galact 
(ppm) 

Total 
Unknown 

(ppm) 

Total 
Anthocyanins 

(ppm) 

Now 29.1c 1.5b 0.8 203.5c 3.1a 1.3b 236.3c 

Sam 125.7a ND ND 425.6b ND ND 551.2b 

Rub 63.6b 6.5a ND 604.5a 6.5a ND 681.0a 

Planet 22.9c ND ND 27.7d ND 11.7a 56.5d 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.2 ppm. 
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Table 26 Organic Acid Profiles of Elderberry Lozenges at Week 0 

Product 
Code 

Quinic 
(ppm) 

Galac-
turonic 
(ppm) 

Malic 
(ppm) 

Tart-
aric 

(ppm) 

Fumaric 
(ppm) 

Citric 
(ppm) 

Iso-
citric 

(ppm) 

Total 
Organic 

Acids 
(ppm) 

Now 1265.2b 11.3b 753.4c 135.5b 4541.9b 463.0d 549.3b 7836.3c 

Sam 3250.6a 1869.8a 5386.5a 926.6a 52582.9a 17819.8a 1921.3a 83911.9a 

Rub 204.4c 45.8b 512.6c 129.7b 3402.4b 10815.8b 246.9c 15498.9b 

Planet 3199.6a 309.8b 2354.8b 237.9b 434.6c 10173.1c 671.0b 17528.3b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Now=117.0a ppm benzoic, Sam=154.6a ppm benzoic, 

Rub=141.4a ppm benzoic, Planet=147.5a ppm benzoic. Limit of quantitation=90 ppm. 

 

Effects of Accelerated Storage 

 Similar to the other products tested in this study, significant (p≤0.05) losses to 

the anthocyanin contents of the elderberry lozenges were detected throughout 

accelerated temperature (32° C) storage, with the exception of Planetary™ Herbals Full 

Spectrum™ Elderberry Tablets. In this product, relatively low anthocyanins were initially 

detected (Figure 15). Similar to the capsule anthocyanins results, approximately ⅓ of 

total anthocyanins were lost after the first 5 weeks of accelerated storage. No other 

notable storage effects were observed among the lozenges, which indicated that 

elderberry lozenges are a product that can maintain color and nutrient stability 

throughout storage. 
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Figure 15 Total anthocyanin values (ppm) of elderberry lozenges throughout weeks of 

accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total anthocyanins by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 

 

Dried Fruit 

Compositional Analyses at Week 0 

 Of the three brands of dried elderberry fruit tested in this study, only 25.3% to 

38.8% of ingredients were identified during initial compositional analyses (Tables 

27+28). The large unknown fractions were likely dietary fiber (pectin, cellulose), 

vitamins (A, B6), minerals (iron, phosphorous, potassium, calcium), flavonols (quercetin, 

kaempferol), as well as small fractions of unidentified organic acids (cinnamic, 

chlorogenic, neochlorogenic, caffeic, palmitic). Moisture contents varied between 8.4 

and 12.6%, and water activity levels were between 0.47 and 0.54. These values are 
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typical for dried fruit products. In comparison, sweetened dried cranberries have 

moisture contents between 15 and 20%, and values exceeding 20% are considered 'too 

wet' for positive consumer acceptability. The sugar profiles of all three brands of dried 

elderberry fruit consisted of fructose, sucrose, and xyloglucans, which are sugars 

naturally contained within elderberry fruit (Table 29). As with many other elderberry 

products in this study, the anthocyanin and organic acid profiles of the dried fruit were 

comprised of cyanidin-3-glucoside and cyanidin-3-sambubioside anthocyanins, as well as 

citric, quinic, and malic acids, which are representative of elderberry fruit (Tables 

30+31). Interestingly, Florida Herb House Minced Dried Elderberries contained 

significantly (p≤0.05) more organic acids, and slightly higher proanthocyanidins and 

anthocyanins compared to the other two dried fruit products tested in this study. 

Considering that both Florida Herb House Minced Dried Elderberries and Florida Herb 

House Dried Elderberries displayed the same lot number upon delivery, it is theorized 

that the higher nutrient values observed within the minced product were a result of 

better extraction efficiencies during the preparative phases of analyses.   

 

Table 27 Labeled Ingredients and Price of Dried Elderberry Fruit 

Product 
Code 

Labeled Ingredients 
Retail Price (USD as of 

April 2016) 
Weighted 

Price (USD) 

Average 
Months in 

Distribution 
Before 

Analysis 

Front Elderberry Fruit 
$18.00/16 oz 

(www.frontiercoop.com) 
$1.13/oz 3 

Flor M Elderberry Fruit N/A N/A 15 

Flor W Elderberry Fruit 
$22.99/16 oz 

(www.floridaherbhouse.com) 
$1.44/oz 15 

Refer to Table 1 for product identification. 
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Table 28 Compositional Profiles of Dried Elderberry Fruit at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

Front 12.6a 0.282a 21.7a 0.0158b 4.1598c 61.2 

Flor M 8.4b 0.976a 15.2b 0.0705a 7.1445a 68.2 

Flor W 8.9b 0.685a 10.4c 0.0241b 5.2655b 74.7 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses per 

variable. Limit of quantitation (proanthocyanidins)=0.51 ppm. 

 

Table 29 Sugar Profiles of Dried Elderberry Fruit at Week 0 

Product 
Code 

Xyloglucans 
(%) 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Total Sugars 
(%) 

Front 5.3a 0.3a 6.0a 10.0a 0.2a 21.7a 

Flor M 5.7a ND 3.3b 6.3b ND 15.2b 

Flor W 3.4b 0.1a 2.6c 4.4c 0.1a 10.4c 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 

 

Table 30 Anthocyanin Profiles of Dried Elderberry Fruit at Week 0 

Product 
Code 

cyan-3-
sambu 
(ppm) 

cyan-3-
sambu-
5-gluco 
(ppm) 

cyan-
3-

galact 
(ppm) 

cyan-
3-

gluco 
(ppm) 

cyan-3-
arabino 
(ppm) 

Total 
Unknown 

(ppm) 

Total 
Anthocyanins 

(ppm) 

Front 157.9a ND ND ND ND ND 157.9b 

Flor M 74.7b ND ND 568.4a ND 61.7a 704.8a 

Flor W 44.8b 2.4 1.4 178.7b 2.0 7.1b 241.0b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.2 ppm. 
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Table 31 Organic Acid Profiles of Dried Elderberry Fruit at Week 0 

Product 
Code 

Quinic 
(ppm) 

Galac-
turonic 
(ppm) 

Malic 
(ppm) 

Tart-
aric 

(ppm) 

Fumaric 
(ppm) 

Citric 
(ppm) 

Iso-
citric 

(ppm) 

Total 
Organic 

Acids 
(ppm) 

Front 
7828.5
c 

ND 5337.8b 293.9a 681.6a 
26062.4
c 

1343.2
c 

41598.3
c 

Flor M 
9039.1
a 

ND 
10325.6
a 

264.2a 399.4b 
49612.1
a 

1804.7
a 

71445.0
a 

Flor W 
8280.6
b 

185.3 5563.2b ND 363.7b 
36619.6
b 

1642.3
b 

52654.5
b 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Front=102.2a ppm benzoic, Flor W=97.3a ppm benzoic. Limit of 

quantitation=90 ppm. 

 

Effects of Accelerated Storage 

 Similar to the other products tested in this study, significant (p≤0.05) losses to 

the proanthocyanidin and anthocyanin contents of the dried elderberry fruit were 

detected throughout accelerated temperature (32° C) storage (Figures 16+17). 

After 10 weeks of storage time, less proanthocyanidins (66.4% decrease) and 

anthocyanins (35.7% decrease) were detected among all of the brands of dried 

elderberry fruit tested in this study. The only other product in this study to show 

significant (p≤0.05) losses of proanthocyanidins throughout accelerated storage was 

Kerr Elderberry Concentrate, in which a substantial proanthocyanidin content was 

detected during initial testing. These results indicate that although dried elderberry fruit 

contains appreciable amounts of healthful nutrients, there are other elderberry 

products with better stability characteristics throughout accelerated storage. Due to the 

relatively inexpensive cost of dried elderberry fruit, it is suggested to producers to 
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investigate other value-added products for the utilization of elderberry fruit for the 

creation of elderberry products which consumers can enjoy. 

 

 
Figure 16 Total proanthocyanidin values (ppm) of dried elderberry fruit throughout 

weeks of accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total proanthocyanidins by weeks of storage 

not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. n=2 replicates, 2 analyses. 
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Figure 17 Total anthocyanin alues (ppm) of dried elderberry fruit throughout weeks of 

accelerated temperature (32° C) storage. 

Refer to Table 1 for product identification. Total anthocyanins by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

n=2 replicates, 2 analyses. 

 

Powder 

Compositional Analyses at Week 0 

 Although there are other elderberry powders available within the wholesale 

market, NP Nutra® Elderberry P.E. 10:1 was the only powdered elderberry product to be 

tested in this study. Very high concentrations of proanthocyanidins (40.781% or 

407,810.0 ppm) were detected within the powder during initial analyses, which 

indicates that NP Nutra® Elderberry P.E. 10:1 powder was processed with the objective 

of concentrating elderberry fruit flavonoids (Table 32). Ten times the amount of 

anthocyanins were detected within the powder compared to the amounts detected 
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within the dried elderberry fruits tested in this study (Table 34). Very low moisture and 

sugar contents were detected within the powder, and the organic acids content was 

approximately one-tenth of the value observed within the dried elderberry fruit (Tables 

33+25). The powder was observed to be dark purple in color, which indicates its 

suitability as a natural food colorant. These results demonstrate that NP Nutra® 

Elderberry P.E. 10:1 powder has great potential for utilization within other value-added 

food products. 

 

Table 32 Compositional Profile of Elderberry Powder at Week 0 

Product 
Code 

Moisture 
(%) 

Total 
Proantho-
cyanidins 

(%) 

Total 
Sugars 

(%) 

Total 
Antho-
cyanins 

(%) 

Total 
Organic 

Acids 
(%) 

Total 
Unknown 

(%) 

NP 
Nutra 

0.1 40.781 3.3 0.1619 0.5095 55.1 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses per 

variable. Limit of quantitation (proanthocyanidins)=0.51 ppm. 

 

Table 33 Sugar Profile of Elderberry Powder at Week 0 

Product 
Code 

Xylo-
glucans 

(%) 

Sucrose 
(%) 

Sucrose 
(%) 

Fructose 
(%) 

Glycerin 
(%) 

Malitol 
(%) 

Total 
Sugars (%) 

NP 
Nutra 

ND 2.7 0.7 ND ND ND 3.3 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. Limit of quantitation=0.05%. 
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Table 34 Anthocyanin Profile of Elderberry Powder at Week 0 

Product 
Code 

cyan-3-
sambu 
(ppm) 

cyan-3-
sambu-
5-gluco 
(ppm) 

cyan-3-
galact 
(ppm) 

cyan-3-
gluco 
(ppm) 

cyan-3-
arabino 
(ppm) 

peon-3-
gluco 
(ppm) 

Total 
Anthocyanins 

(ppm) 

NP 
Nutra 

33.0 ND 34.0 923.7 12.8 438.0 1619.1 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. NP Nutra=184.0 ppm total unknown. Limit of quantitation=0.2 

ppm. 

 

Table 35 Organic Acid Profile of Elderberry Powder at Week 0 

Product 
Code 

Quinic 
(ppm) 

Galac-
turonic 
(ppm) 

Malic 
(ppm) 

Tartaric 
(ppm) 

Fumaric 
(ppm) 

Citric 
(ppm) 

Iso-
citric 

(ppm) 

Total 
Organic 

Acids 
(ppm) 

NP 
Nutra 

254.2 ND 1826.8 1648.1 ND 1003.6 175.6 5094.9 

Refer to Table 1 for product identification. Treatments not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. ND=non-detected. n=2 

replicates, 2 analyses. NP Nutra=377.4±5.7 ppm benzoic. Limit of quantitation=90 ppm. 

 

Effects of Accelerated Storage 

 Significant (p≤0.05) losses (29.9%) to the proanthocyanidins content of NP 

Nutra® Elderberry P.E. 10:1 powder were observed throughout the first 5 weeks of 

accelerated temperature (32° C) storage, although no further losses were observed 

between 5 and 10 weeks of storage (Figure 18). After 5 weeks of storage, the powder 

still contained a very high proanthocyanidin fraction (28.622%). No other significant 

effects were detected within the powder throughout accelerated storage. These results 

indicate that NP Nutra® Elderberry P.E. 10:1 powder has excellent stability 

characteristics compared to the other products tested in this study, and is a product 
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with promising potential to enhance color and phytochemical properties of other value-

added food products.  

 

 
Figure 18 Total proanthocyanidin values (ppm) of NP Nutra® Elderberry P.E. 10:1 

powder throughout weeks of accelerated temperature (32° C) storage. 

Total proanthocyanidins by weeks of storage not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=2 replicates, 2 analyses. 

 

Conclusions 

 Of the syrups tested in this study, Nature’s Way® Sugar-Free Sambucus Syrup, 

Nature’s Way® Sambucus Syrup, and Integrative Therapeutics™ Sambucus Extract were 

the syrups which utilized elderberry fruit most efficiently, due to their relatively low 

organic acid contents (i.e. amount of fruit used for production), high phytochemical 

contents, and excellent color stability throughout accelerated temperature (32° C) 
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17 (NW SF), 16 (NW), and 8 (Inte) months, with the average time in distribution of 8 

months among all syrups. This demonstrates their ability to retain their competitive 

properties throughout extended storage. Generally, there is a well established market 

for elderberry syrups, and they represent a good elderberry product due to their 

relatively high phytochemical contents and good stability.  

 Of the tinctures tested in this study, Quantum® Health Elderberry Liquid Extract 

contained the most appreciable amounts of anthocyanins and proanthocyanidins. 

Overall the elderberry tinctures were a poor product for the utilization of elderberry 

fruit due to their high moisture/alcohol contents, low phytochemical contents, poor 

color and nutrient stability, relatively high costs ($3.90/oz-$14.10/oz), and organic acid 

contents which were comparable to the syrups tested in this study. Although alcohol is 

an excellent extractive of elderberry color and phytochemicals, it may not be the best 

medium for preservation, due to its low surface tension, which can expose anthocyanin 

molecules to hydrolytic or oxidative degradation (Lapornik and other 2005, Tay and 

others 2014). Additionally, the high ethanol content of the tinctures likely resulted in 

the denaturation of elderberry polyphenolics (Lapornik and others 2005, Tay and others 

2014). Future product development studies should investigate the use of additives or 

processing techniques to improve the nutrient and color stability of elderberry tinctures.  

 Of the concentrates tested in this study, Kerr Elderberry Concentrate was the 

only concentrate which contained substantial amounts of vitamin C, anthocyanins, 

proanthocyanidins, and red pigmentation. Although large concentrations of organic 

acids were detected in Sambu® Wild Grown Elderberry Concentrate and Natural 
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Sources® Natural Elderberry Concentrate, they contained low proportions of 

anthocyanins and proanthocyanidins, and high amounts of sugars, which makes these 

two concentrates more comparable to the syrups tested in this study. These results 

identify Kerr Elderberry Concentrate as an excellent source of elderberry pigmentation 

and phytochemicals. 

 Of the capsules tested in this study, Eclectic Institute™ Elderberry Capsules 

contained the highest levels of anthocyanins, organic acids, and proanthocyanidins. 

Although interestingly, neither cyanidin-3-sambubioside or cyanidin-3-sambubioside-5-

glucoside anthocyanins were detected within Eclectic Institute™ Elderberry Capsules, 

indicating that it was made with another (non-elderberry) fruit and likely mislabeled. 

Generally, some anthocyanin degradation was detected among all of the capsules 

throughout accelerated storage, however the capsules displayed better color and 

nutrient stability compared to the fluid elderberry products tested in this study. The low  

moisture content and encapsulation of the anthocyanins may have excluded oxygen 

more effectively, which most likely reduced oxidative degradation.  

 All of the lozenges tested in this study contained appreciable amounts of 

phytochemicals, and displayed positive nutrient and color stability characteristics 

throughout accelerated storage. These results identify lozenges as an effective product 

form for the delivery of elderberry nutrients. Relatively high levels of proanthocyanidins, 

anthocyanins, and organic acids were detected within Rubini® ProFlavon Elderberry 

Complex Lozenges, which distinguishes Rubini® ProFlavon Elderberry Complex Lozenges 

as a valuable elderberry product. Sambucol® Chewable Tablets also contained high 
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phytochemical contents, however high levels of galacturonic and  fumaric acids were 

detected within this product, which is atypical of elderberry fruit.  

 Although appreciable amounts of phytochemicals were initially detected within 

the dried elderberry fruit tested in this study, significant (p≤0.05) losses of 

proanthocyanidins were observed throughout accelerated storage. Although there is a 

market for dried elderberry fruit, it may be desirable for processors to utilize elderberry 

fruit into other value-added elderberry products, since the fruit has a relatively low cost 

and moderate stability characteristics.  

 NP Nutra® Elderberry P.E. 10:1 was the only powdered elderberry product tested 

in this study, and displayed very high concentrations of proanthocyanidins and 

anthocyanins, as well as low moisture, sugars, and organic acid levels. These results 

indicate that NP Nutra® Elderberry P.E. 10:1 powder was formulated with the intention 

of maximizing phytochemical content. Additionally, NP Nutra® Elderberry P.E. 10:1 

powder had excellent nutrient and color stability throughout accelerated storage, which 

further distinguishes it as a high quality, value-added elderberry product. 

 Overall, this study evaluated a wide array of value-added elderberry fruit 

products, which were produced with varying intentions (sugar-free, high polyphenolics, 

contains vitamin C, use of by-product, etc.) and consumer markets (wholesale, health 

food, general markets). Although there is substantial research which implicates 

elderberry fruit as a healthful food, there is some skepticism by the researchers 

regarding the healthfulness of some of the products tested in this study. High 

proportions of moisture were detected within the elderberry tinctures. Elderberry 
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syrups contained high amounts of added sugars, and capsules and lozenges likely 

contained large fractions of excipients and tableting agents. These ingredients displace 

or offset the healthfulness of elderberry phytochemicals. Although many of the 

nutrients which were evaluated within the elderberry products remained unchanged 

throughout accelerated temperature (32° C) storage, losses of proanthocyanidins, 

anthocyanins, vitamin C, and color were observed among many of the products. Overall, 

better color and nutrient stability was observed within the dried elderberry products 

(capsules, lozenges, dried fruit, powder) compared to the fluid products (syrups, 

tinctures, concentrates) throughout storage time. Elderberry fruit was utilized more 

effectively within the elderberry syrups compared to the tinctures. The high sugar 

content within the syrups likely contributed to the preservation of elderberry 

phytochemicals and color by lowering water activity and preventing hydrolytic 

reactions, and likely contributed towards improved consumer acceptability. Future 

studies should investigate the effects of processing techniques and/or additives on the 

phytochemical and color stability of elderberry products; as well as identify the amount 

of flavonols (quercetin, kaempferol, rutin), flavonol glycosides, and additional organic 

acids (cinnamic, chlorogenic, neochlorogenic, caffic) within elderberry products. The 

results of this study provide insight into the chemistry and processing of elderberry fruit 

products, which has value to consumers who desire to make informed elderberry 

purchases, and to value-added elderberry fruit processors who want to improve upon 

their products and increase their competitiveness within elderberry fruit markets. 
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CHAPTER 3. COPIGMENTATION OF ELDERBERRY (SAMBUCUS NIGRA) TINCTURES TO 

ENHANCE NUTRIENT AND COLOR STABILITY THROUGHOUT STORAGE 

 

Objectives 

 The objectives of this study were to determine how additions of rosemary 

extract, tannic acid, black carrot color, purple sweet potato color, and enzymatically 

modified isoquercitrin affected the color, anthocyanin content, phenolic content, and 

antioxidant activity of elderberry tinctures at 0, 2, 4, and 6 weeks of storage at 21° C, 

with one week of accelerated temperature (32° C) storage which occurred between 5 

and 6 weeks. 

 

Materials and Methods 

Experimental Design 

 Elderberry tinctures were selected for product development within this study 

due to the unfavorable results of the commercialized tinctures analyzed in chapter 2. 

Previous studies have identified the effect of copigmentation as an effective treatment 

for the enhancement of color, pigment stability, and antioxidant activity of anthocyanin-

rich systems, and copigment additives were selected based on favorable results from 

previous research (Boulton 2001, Talcott and others 2003, Del Pozo-Insfran and others, 

Bąkowska-Barczak 2005, Rein 2005, Kammerer and others 2007). Although, previous 

research has shown that wines containing 10%-21% ethanol were susceptible to 

copigmentation reactions, no studies have demonstrated the effectiveness of 
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copigments within anthocyanin-rich products containing high ethanol content, such as 

tinctures (>25% ethanol) or liqueurs (15%-55% ethanol) (Boulton 2001).  

 Five copigmentation additives were tested three different concentrations against 

a control: rosemary extract (100, 200, 300 mg/100mL), tannic acid (2.5, 5.0, 7.5 

mg/100mL), black carrot color (100, 200, 300 mg/100mL), purple sweet potato color 

(100, 200, 300 mg/100mL), and enzymatically modified isoquercitrin (25, 50, 75 

mg/100mL) (Table 36). Levels of each additive were chosen to represent a range of 

recommended usage to upper limit levels, based on supplier specifications. The 

dependent variables tested in this study included: pH, titratable acidity, L*a*b* color, 

monomeric anthocyanins, color density, polymeric color, % polymeric color, total 

phenolics, and antioxidant activity (% inhibition of DPPH radical per 20 mg of tincture, 

IC₅₀ of DPPH radical, total antioxidants). Each tincture was produced in triplicate, tested 

initially, and retested at 2, 4, and weeks storage at 21° C, with one week of accelerated 

temperature (32° C) storage which occurred between weeks 5 and 6. 

 

Preparation of Elderberry Tinctures 

 Thirty-six pounds of elderberry fruit were harvested from Heath Hill Farm 

(Sumner, ME), frozen, delivered to the University of Maine Dr. Matthew Highlands Pilot 

Plant, and cleaned by hand to remove stems, leaves, and foreign material (Figure 19). 

The frozen elderberry fruit was then cooked on a double boiler for approximately 40 

minutes, so that the temperature of the fruit exceeded 71° C for approximately 10 

minutes to inactivate cyanogenic glycoside toxins (Conn 1979). The cooked fruit was 
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processed using an ACME™ Supreme Juicerator® Model 6001 (ACME™ Juicer Mfg. Co., 

Sierra Madre, CA), which yielded 61.6% (22.2 lbs) juice and 38.4% (13.8 lbs) pomace. 

The juice was immediately frozen and held at -26° C until further use.  

 The moisture content of the pomace was determined to be 71.9% using a draft-

drying technique based on AOAC method # 950.46 (AOAC 2005). The pomace (4,800 g) 

was separated into six 800 gram batches and placed into six 64 ounce wide mouth 

mason jars (Ball Corp., Broomfield, CO). Each jar was filled with 880 grams (~1100 mL) of 

95% ethanol (Thermo Fisher Scientific, Inc., Waltham, MA), which resulted in a 1:1.1 

marc (pomace) to menstruum (ethanol) ratio. The mixture was gently stirred using a stir 

rod to ensure complete homogenization, and the jars were sealed with their respective 

lids. The jars were placed into a covered box to eliminate light, and held at 21° C for a 

period of 6 weeks. Once per day throughout storage the jars were gently inverted ten 

times each, which aided in the extraction process.  

 After 6 weeks, the frozen elderberry juice was defrosted for 2 days under 

refrigeration temperature (3.3° C). Once the juice was defrosted, both the juice and the 

extract were separately filtered through a number 35, 500 micron, stainless steel USA 

standard testing sieve (W.S. Tyler® Industrial Group, Mentor, OH). Approximately 9.8 L 

of the elderberry juice (°brix=11.5) was mixed with approximately 5.3 L of the elderberry 

extract (°brix=22.2) and 0.9 L of 95% ethanol (Thermo Fisher Scientific, Inc., Waltham, 

MA), which yielded a final elderberry tincture (°brix=18.3) containing 30.1% alcohol, 

which is a typical alcohol content for tinctures. The elderberry tincture was then vacuum 
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filtered through a 150 mm diameter porcelain Büchner funnel, lined with cheesecloth to 

remove solids.  

 The elderberry tincture (12 L) was separated into sixteen, 750 mL treatment 

groups. Copigment additives were weighed (±0.0001) according to each treatment, and 

mixed into each batch of tincture using a magnetic stir bar for approximately 5 minutes 

(Table 36). Each 750 mL treatment group was then subdivided into three 250 mL wide-

mouth, amber glass bottles (Environmental Express®, Charleston, SC) for a total of 48 

samples (16 treatments, in triplicate). Samples were stored in a covered cardboard box 

throughout storage and analyses.  
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Figure 19 Flow chart of the preparation of elderberry tinctures and treatment groups. 
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Table 36 Concentration of Each Additive Used for the Copigmentation of Elderberry 

Tinctures 

Treatment 
Code 

Copigment Additive 
Copigment 

Concentration 
(mg/100mL) 

Copigment Source 

Control N/A N/A N/A 

RME100 Rosemary Extract 100.0 Water Soluble Herbalox® 
Rosemary Extract (Kalsec®, Inc., 

Kalamazoo, MI) 

RME200 Rosemary Extract 200.0 

RME300 Rosemary Extract 300.0 

TA2.5 Tannic Acid 2.5 
(Graham Chemical™ Corp., 

Barrington, IL) 
TA5.0 Tannic Acid 5.0 

TA7.5 Tannic Acid 7.5 

BCC100 Black Carrot Color 100.0 
(Food Ingredient Solutions, LLC., 

Teterboro, NJ) 
BCC200 Black Carrot Color 200.0 

BCC300 Black Carrot Color 300.0 

PSPC100 Purple Sweet Potato Color 100.0 
San Red YM (San-Ei Gen F.F.I. 
(U.S.A.), Inc., New York, NY) 

PSPC200 Purple Sweet Potato Color 200.0 

PSPC300 Purple Sweet Potato Color 300.0 

EMIQ25 EM Isoquercitrin 25.0 Sanmelin® Powder R-20 (San-Ei 
Gen F.F.I. (U.S.A.), Inc., New York, 

NY) 

EMIQ50 EM Isoquercitrin 50.0 

EMIQ75 EM Isoquercitrin 75.0 

n=3. 

 

pH and Titratable Acidity 

 pH was determined using an Orion™ PerpHecT™ LogR meter Model (Thermo 

Fisher Scientific, Inc., Orion™, Waltham, MA) with an Accumet® probe Cat. No. 13-620-

289 (Thermo Fisher Scientific, Inc., Accumet®, Waltham, MA). The pH meter was 

calibrate using 4.0 and 7.0 calibration solutions. Titratable acidity was determined by 

diluting 10 mL of sample with 90 mL of distilled water, and titrating with 0.1 N NaOH 

(Thermo Fisher Scientific, Inc., Waltham, MA) until a pH endpoint of 8.1 was reached. 

Titratable acidity was determined in duplicate based on a procedure by Cliff and others 

(2007), and expressed as % citric acid using the following calculation:  
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(mLs of 0.1 N NaOH x 0.1 x milliequivalent factor of citric acid x 100)/10. 

 

L*a*b* Color 

 Elderberry treatments were subjected to colorimetric analysis using a LabScan XE 

Hunter Lab colorimeter (Hunter Associates Laboratory, Reston, VA) to determine L*a*b* 

values. Elderberry treatments were poured into a 2.5 inch clear glass sample cup with a 

black ring and disk, and placed on a pre-calibrated 2.5 inch sample port. L*a*b* values 

were determined using the computer software.  

 

Monomeric Anthocyanins 

 Total monomeric anthocyanins were determined in duplicate based on AOAC 

method # 2005.02 (AOAC 2005), and a procedure by Lee and others (2005). One L of 

0.025 M potassium chloride buffer solution was prepared by mixing 1.86 g of KCl 

(Thermo Fisher Scientific, Inc., Waltham, MA) with 981 mL of distilled water, and 

adjusted to pH 1.0 using 12 N HCl (Thermo Fisher Scientific, Inc., Waltham, MA). One L 

of 0.4 M sodium acetate buffer solution was prepared by mixing 54.43 g of sodium 

acetate trihydrate (Thermo Fisher Scientific, Inc., Waltham, MA) with 960 mL of distilled 

water, and adjusted to pH 4.5 using 12 N HCl. Elderberry tinctures were volumetrically 

diluted with each of the buffer solutions in 50 mL polyethylene centrifuge tubes (VWR 

International, LLC., Radnor, PA) to a 1:101.5 ratio (dilution factor = 0.009852217) and 

vortexed. The instrument was zeroed, and the absorbances of the dilutions were 

determined at 520 nm and 700 nm using a Beckman Coulter™ DU® 530 Life Science 
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UV/Vis spectrophotometer with Fisherbrand™ disposable methacrylate cuvettes, Cat. 

No. 14-386-21 (Thermo Fisher Scientific, Inc., Waltham, MA). Total monomeric 

anthocyanins was determined as cyanidin-3-glucoside equivalents as mg/L, using the 

following calculation:  

(((Abs520nm pH 1.0 - Abs700nm pH 1.0) - (Abs520nm pH 4.5 - Abs700nm pH 4.5))/molar 
absorbance of cyanidin-3-glucoside) x 1000 x molecular wt. of cyanidin-3-glucoside x 
dilution factor. 

 

Color Density and Polymeric Color 

 Color density and polymeric color were determined in duplicate based on a 

procedure by Giusti and Wrolstad (2001). Fifteen mL of bisulfite solution was prepared 

by dissolving 5 g of potassium metabisulfite (Thermo Fisher Scientific, Inc., Waltham, 

MA) into 15 mL of distilled water. Elderberry tinctures were diluted in 50 mL centrifuge 

tubes (VWR International, LLC., Radnor, PA) to a 1:67 ratio with distilled water. Diluted 

samples (2.8 mL) were volumetrically transferred into each of two 4.5 mL Fisherbrand™ 

disposable polystyrene cuvettes (Thermo Fisher Scientific, Inc., Waltham, MA). For each 

sample, 0.2 mL of bisulfite solution was added to one of the cuvettes and 0.2 mL of 

distilled water was added to the other. The sample solutions were allowed to 

equilibrate for 15 minutes, and their absorbances were determined at 420 nm, 520 nm, 

and 700 nm using a Beckman Coulter™ DU® 530 Life Science UV/Vis spectrophotometer 

with Fisherbrand™ disposable methacrylate cuvettes, Cat. No. 14-386-21 (Thermo Fisher 

Scientific, Inc., Waltham, MA). Color density, polymeric color, and % polymeric color 

were determined using the following calculations: 
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Color density = ((Abs420nm water sample - Abs700nm water sample) + (Abs520nm 
water sample - Abs700nm water sample)) x dilution factor. 
 
Polymeric color = ((Abs420nm bisulfite sample - Abs700nm bisulfite sample) + 
(Abs520nm bisulfite sample - Abs700nm bisulfite sample)) x dilution factor. 
% Polymeric color = (polymeric color/color density) x 100. 

 

Total Phenolics 

 Total phenolics were determined in duplicate based on a procedure by Velioglu 

and others (1998). Elderberry tinctures were diluted in 50 mL centrifuge tubes (VWR 

International, LLC., Radnor, PA) to a 1:100 ratio with acidified methanol (0.1% v/v formic 

acid (Thermo Fisher Scientific, Inc., Waltham, MA) in methanol (Thermo Fisher Scientific, 

Inc., Waltham, MA)). Diluted samples (200 µL) were mixed with 1.5 mL of Folin-

Ciocalteu (Sigma-Aldrich Co., LLC., St. Louis, MO) reagent (diluted 1:10 with distilled 

water) in glass, screw-top, test tubes (Corning, Inc., Corning, NY), and allowed to stand 

at room temperature for 5 minutes. Sodium bicarbonate (Thermo Fisher Scientific, Inc., 

Waltham, MA) solution (6 g/100 mL distilled water) was then added to each test tube 

(1.5 mL), and the solutions were allowed to stand for 90 minutes at room temperature. 

After 90 minutes, the absorbance of each sample was read at 725 nm using a Beckman 

Coulter™ DU® 530 Life Science UV/Vis spectrophotometer with Fisherbrand™ disposable 

methacrylate cuvettes Cat. No. 14-386-21 (Thermo Fisher Scientific, Inc., Waltham, MA). 

A standard curve based on gallic acid (Thermo Fisher Scientific, Inc., Waltham, MA) 

standards of 0, 50, 100, 150, and 200 µg/mL was used to determine the regression 

equation. Total phenolics were determined as gallic acid equivalents as mg/L using the 

following calculation: 
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(((abs/slope) - (y-intercept/slope)) x total volume of sample)/sample weight. 
e.g. (((0.199/0.0056) - (-0.053/0.0056)) x 10.1 mL)/0.100 g = 4545.0 µg GAE/mL. 

 

Antioxidants 

 Total antioxidants were determined based on procedures by Brand-Williams and 

others (1995), D'Souza (2006), and Plank and others (2012). A 0.1 mM DPPH solution 

was prepared by mixing 40 mg of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) (Sigma-Aldrich®, 

Saint Louis, MO) radical into 500 mL of methanol (Thermo Fisher Scientific, Inc., 

Waltham, MA) for approximately 20 minutes, in a covered flask to exclude light. Distilled 

water (500 mL) was then added to the solution, and mixed for an additional 20 minutes. 

The absorbance of the DPPH solution was determined at 517 nm against a distilled 

water blank using a Beckman Coulter™ DU® 530 Life Science UV/Vis spectrophotometer 

with Fisherbrand™ disposable methacrylate cuvettes, Cat. No. 14-386-21 (Thermo Fisher 

Scientific, Inc., Waltham, MA), to determine target absorbance (Abs target = Abs of 

DPPH solution/2). 

 For each tincture sample, three subsamples were weighed into 60 mL amber, 

wide mouth, packer bottles (Qorpak®, Bridgeville, PA) to the nearest 0.1 mg. The weight 

of the subsamples were determined to be between 3.0 mg and 25.0 mg, with the goal of 

bracketing the target absorbance during final spectrophotometric analysis at 517 nm. 

Fifty mL of the 0.1 mM DPPH solution were added to each sample. The samples were 

swirled gently, covered, and placed on a BenchRocker™ 3d variable speed lab rocker 

Model B3D2300 (Benchmark Scientific, Inc., Edison, NJ), set to high for 4 hours at 21° C. 

After 4 hours of incubation, the absorbance of the samples were determined at 517 nm 
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against a distilled water blank. A standard curve based on trolox (Thermo Fisher 

Scientific, Inc., Waltham, MA) standards of 0.2, 0.4, 0.6, and 0.8 mg/mL were used to 

determine the regression equation. Total antioxidants was determined as trolox 

equivalents in µg/100 g, % inhibition in 20 mg of sample, and IC₅₀ (amount of sample in 

mg required to cause a 50% inhibition of DPPH) using the following calculations: 

µg TE/100 g = ((((-y-intercept of standard curve/2)/(2 x slope of standard curve x (((y-
intercept of standard curve/2) - (y-intercept of data))/slope of data))/molecular weight 
of trolox) x 1000) x 100). 
 
e.g. ((((-0.893/2)/(2 x -0.8625 x (((0.893/2) - (0.473555727))/-0.01467))/250) x 1000) x 
100) = 56.139 µg TE/100 g. 
 
% Inhibition of DPPH per 20 mg of Tincture = (100 - ((absorbance of sample/absorbance 
of DPPH blank) x 100)). 
 
IC₅₀ = ((50 - y-intercept of data)/slope of data). 

 

Statistical Analyses 

 Statistical differences among data to determine if copigment treatments and 

storage time had any effects were evaluated using JMP 7.0.1 (SAS Institute Inc., Cary, 

NC) statistical software using one-way analysis of variance (ANOVA) with a significance 

value of p≤0.05. Differences between means were evaluated using the Fisher's least 

significant difference test. A correlation analysis was also performed among dependent 

variables. 
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Results and Discussion 

pH and Titratable Acidity 

 pH is defined as the negative logarithm of the hydrogen ion concentration of an 

aqueous solution, and is used to measure its degree of acidity or alkalinity. In beverage 

manufacturing, pH is primarily used to control the growth of microorganisms and 

prevent spoilage by denaturation, however it has an equally important role in 

anthocyanin-rich beverages. The pH of anthocyanin-rich beverages determines which 

anthocyanin chromophore is the most dominant one within the solution, which can 

include either the red flavylium cation, blue or red quinonoidal base, colorless carbinol 

pseudobase, or colorless chalcone (Brouillard 1982, Hubbermann 2006). Anthocyanins 

are most stable around pH 3.0, in which the red flavylium cation dominates and gives 

the beverage a red color (Brouillard 1982, Rein 2005, Hubbermann 2006). 

 In this study, the average pH of elderberry tinctures was 4.8, with no significant 

differences (p≤0.05) among copigment treatments based on one-way ANOVA (Table 37). 

Although significant differences were noticed among weeks of storage, these results 

were likely due to experimental error during the calibration of the pH meter. Typically, 

elderberry juice has a pH of 3.5-5.0 which categorizes it as a low acid product, in which 

acidulants, such as malic or citric acid, are often added to lower the pH to increase shelf-

stability and reduce microbial contamination (Byers and others 2012, Casati and others 

2012, Garofulić and others 2012). Although spoilage was not a concern with the 

elderberry tinctures in this study, due to their ethanol content of 30.1%, it was 



113 
 

important to evaluate if any of the copigment treatments affected the pH levels or if 

there were any associations between pH and color stability.  

 

Table 37 pH Values of Elderberry Tinctures by Copigment Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0ab 

RME100 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

RME200 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

RME300 4.8±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

TA2.5 4.8±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

TA5.0 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

TA7.5 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

BCC100 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

BCC200 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

BCC300 4.7±0.0c 4.9±0.0a 4.8±0.0b 4.8±0.0b 

PSPC100 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

PSPC200 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

PSPC300 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

EMIQ25 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

EMIQ50 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

EMIQ75 4.7±0.0c 4.8±0.0a 4.8±0.0b 4.8±0.0b 

Refer to Table 36 for treatment identification. pH values by weeks of storage not sharing 

the same letter are significantly different (p≤0.05) based on one-way ANOVA. Analysis at 

6 Weeks includes one week of accelerated temperature storage (32° C). n=3 replicates 

(±SD).  

 

 Similar to pH, titratable acidity is also used to measure the acidity of a solution, 

and is defined as the quantity of protons present in a solution during titration with a 

strong base to a neutral endpoint. Titratable acidity is the measure of the amount of 

predominate acid in a solution, whereas pH is a measure of the strength of acid. 

Determining the titratable acidity of beverages is of great importance to beverage 
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manufactures because titratable acidity is a predictor of perceived tartness when 

related to a beverages sugar content.  

 In this study, the average titratable acidity (% citric acid) of elderberry tinctures 

was 0.57, with no significant differences (p≤0.05) among copigment treatments based 

on one-way ANOVA (Table 38). Although significant differences were noticed over 

storage time, as well as difference among pH levels, these results were likely due to 

experimental error during the calibration of the pH meter. Typically, elderberry juice 

contains 0.57-0.67 titratable acidity (% citric acid) and total soluble solids of 11-12° brix 

(Byers and others 2012). Although the determination of soluble solids was not an 

objective of this study, elderberry tinctures were initially determined to be 18.3° brix.  

 In a study by Garofulić and others (2012), six different elderberry wines were 

produced with varying levels of acidity (9.1-19.0 g/L), soluble solids (10.3-17.3° brix), and 

sugar contents (0.4-8.9 %), which were then subjected to sensory analysis. It was 

determined that wines which were produced with the highest amounts of sugar and 

water resulted in the best sugar/acid ratios, and had the best sensory characteristics 

during consumer evaluation (Garofulić and others 2012). 
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Table 38 Titratable Acidity (% Citric Acid) Values of Elderberry Tinctures by Copigment 

Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 0.58±0.00a 0.56±0.00b 0.57±0.00b 0.57±0.00b 

RME100 0.58±0.00a 0.57±0.00b 0.57±0.00b 0.57±0.00b 

RME200 0.58±0.00a 0.57±0.00b 0.57±0.00b 0.57±0.00c 

RME300 0.58±0.00a 0.56±0.00b 0.56±0.00b 0.57±0.00b 

TA2.5 0.57±0.00a 0.57±0.00ab 0.57±0.00b 0.57±0.00b 

TA5.0 0.57±0.00a 0.56±0.00b 0.57±0.00ab 0.57±0.00b 

TA7.5 0.58±0.00a 0.56±0.00b 0.57±0.00b 0.56±0.00b 

BCC100 0.57±0.00a 0.56±0.00b 0.56±0.00ab 0.57±0.00ab 

BCC200 0.58±0.00a 0.56±0.00b 0.57±0.00b 0.57±0.00b 

BCC300 0.57±0.00a 0.57±0.00a 0.57±0.00a 0.57±0.00a 

PSPC100 0.58±0.00a 0.57±0.00a 0.57±0.00b 0.57±0.00b 

PSPC200 0.58±0.00a 0.57±0.00b 0.57±0.00b 0.57±0.00b 

PSPC300 0.58±0.00a 0.57±0.00b 0.56±0.00b 0.57±0.00b 

EMIQ25 0.58±0.00a 0.57±0.00b 0.57±0.00b 0.57±0.00b 

EMIQ50 0.58±0.00a 0.57±0.00b 0.57±0.00b 0.57±0.00b 

EMIQ75 0.57±0.00a 0.56±0.00b 0.56±0.00b 0.57±0.00b 

Refer to Table 36 for treatment identification. Titratable acidity values by weeks of 

storage not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD). 

 

L*a*b* Color 

 In this study, the average L*, a*, and b* color values of elderberry tinctures was 

1.96, 3.86, and 0.96, regardless of copigment treatment or storage time, respectively. 

Although some significant differences (p≤0.05) were noticed among copigment 

treatments (Table 39), the only noteworthy effects to L*a*b* color among copigment 

treatments occurred with the additions of either black carrot color at 300 mg/100mL 

(BCC300) or purple sweet potato color at 300 mg/100mL (PSPC300). Regardless of 

storage time, BCC300 and PSPC300 consistently had the lowest L*, a*, and b* color 
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values, indicating that these two treatments were darker, less red, and bluer than the 

other copigment treatments tested in this study. Although significant effects were 

noticed within these two treatments, it is unlikely that these results are indicative of 

copigment reactions. It is more likely that these effects to L*a*b* color were simply a 

result of the initial deep purple color of the black carrot and purple sweet potato 

additives, and their additions above their recommended usage levels, which are 

typically 10-100 mg/100mL for beverages. 

 

Table 39 Mean L*a*b* Color Values of Elderberry Tinctures by Copigment Treatment 

Copigment 
Treatment 

L* a* b* 

Control 2.07±0.39ab 4.04±0.77a 1.07±0.29a 

RME100 1.91±0.42abcd 3.82±1.02a 0.96±0.22abc 

RME200 2.12±0.32ab 4.08±0.83a 1.05±0.23a 

RME300 1.94±0.28abc 3.80±0.89a 0.99±0.22ab 

TA2.5 2.04±0.29ab 4.04±0.86a 1.04±0.21a 

TA5.0 1.93±0.32abcd 3.73±0.79a 0.92±0.19abc 

TA7.5 2.11±0.27ab 4.12±0.86a 1.03±0.21a 

BCC100 2.15±0.23a 4.15±0.65a 1.01±0.19a 

BCC200 1.95±0.27abc 3.81±0.67a 0.91±0.17abc 

BCC300 1.67±0.19d 3.51±0.67a 0.82±0.17bc 

PSPC100 1.95±0.37abc 3.70±1.00a 0.90±0.29abc 

PSPC200 2.04±0.21ab 3.97±0.71a 0.95±0.20abc 

PSPC300 1.72±0.33cd 3.60±0.80a 0.79±0.18c 

EMIQ25 1.89±0.39bcd 3.69±0.96a 0.95±0.24abc 

EMIQ50 1.96±0.31abc 3.84±0.96a 1.01±0.27a 

EMIQ75 1.95±0.37abc 3.84±0.97a 0.98±0.26ab 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=16 analyses (±SD). 
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 Regardless of copigment treatment, average L* values of elderberry tinctures 

were 2.00, 1.89, 1.94, and 2.02 at 0, 2, 4, and 6 weeks of storage (Figure 20). Few 

significant differences (p≤0.05) were noticed among weeks of storage based on one-way 

ANOVA (Table 40), which indicates that the darkness/lightness of elderberry tinctures 

was not affected throughout 5 weeks of storage at room temperature (21° C) and 

throughout one week of accelerated temperature storage (32° C).  

 

Table 40 L* Color Values of Elderberry Tinctures by Copigment Treatment Over Storage 

Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 1.81±0.18a 2.15±0.20a 2.10±0.78a 2.22±0.05a 

RME100 2.09±0.12a 2.07±0.21a 1.77±0.76a 1.72±0.40a 

RME200 2.09±0.06a 2.00±0.44a 2.40±0.45a 2.00±0.05a 

RME300 2.15±0.12a 1.99±0.08a 1.76±0.50a 1.85±0.20a 

TA2.5 2.10±0.14a 1.98±0.38a 2.12±0.45a 1.94±0.33a 

TA5.0 1.96±0.22a 1.95±0.42a 1.91±0.37a 1.88±0.38a 

TA7.5 2.24±0.17a 2.02±0.19a 2.23±0.49a 1.95±0.09a 

BCC100 2.06±0.06ab 1.97±0.33b 2.40±0.16a 2.15±0.09ab 

BCC200 1.95±0.08ab 1.65±0.36b 2.04±0.13ab 2.16±0.17a 

BCC300 1.70±0.07ab 1.52±0.05b 1.59±0.27ab 1.87±0.13a 

PSPC100 2.07±0.14a 1.64±0.51a 1.98±0.32a 2.11±0.40a 

PSPC200 1.93±0.08a 2.05±0.29a 1.94±0.23a 2.25±0.05a 

PSPC300 1.67±0.11a 1.82±0.08a 1.44±0.59a 1.93±0.13a 

EMIQ25 2.03±0.05a 2.02±0.69a 1.51±0.12a 1.98±0.29a 

EMIQ50 2.07±0.10ab 1.71±0.29b 1.82±0.24ab 2.25±0.34a 

EMIQ75 2.00±0.14a 1.75±0.49a 2.06±0.48a 1.99±0.42a 

Refer to Table 36 for treatment identification. L* color values by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

Analysis at 6 Weeks includes one week of accelerated temperature storage (32° C). n=3 

replicates (±SD). 
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 Figure 20 Mean L* color values among copigment treatments over storage time.  

L* color values by weeks of storage not sharing the same letter are significantly different 

(p≤0.05) based on one-way ANOVA. n=48 analyses (±SD). 

 

 Average a* values of elderberry tinctures were 4.89, 3.60, 3.70, and 3.25 at 0, 2, 

4, and 6 weeks of storage (Figure 21). Significant differences (p≤0.05) were noticed 

among all copigment treatments between 0 and 2 weeks, as well as at 4 and 6 weeks of 

storage based on one-way ANOVA (Table 41). These results indicate that there were 

detectable degradations of red color within elderberry tinctures during the initial 2 

weeks of room temperature storage (21° C), as well as during the one week accelerated 

temperature storage (32° C), which occurred between 5 and 6 weeks of storage. It is 

likely that anthocyanin pigmentation metabolized into colorless and brown phenolic 

degradation compounds, resulting in elderberry tinctures with less red color during 

storage.  
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Table 41 a* Color Values of Elderberry Tinctures by Copigment Treatment Over Storage 

Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 4.58±0.44a 4.02±0.34a 3.75±1.51a 3.82±0.12a 

RME100 5.01±0.33a 3.99±0.41ab 3.34±1.18b 2.93±0.60b 

RME200 4.89±0.06a 3.75±0.78bc 4.50±0.74ab 3.20±0.03c 

RME300 5.10±0.09a 3.80±0.20b 3.27±0.68bc 3.03±0.24c 

TA2.5 5.05±0.24a 3.74±0.69b 4.09±0.80ab 3.28±0.59b 

TA5.0 4.61±0.36a 3.71±0.85ab 3.57±0.57ab 3.04±0.56b 

TA7.5 5.19±0.25a 3.89±0.37bc 4.20±0.84b 3.19±0.14c 

BCC100 4.89±0.07a 3.79±0.57b 4.50±0.25a 3.44±0.10b 

BCC200 4.68±0.23a 3.25±0.40c 4.03±0.31b 3.27±0.07c 

BCC300 4.44±0.13a 3.23±0.59b 3.19±0.48b 3.17±0.38b 

PSPC100 5.10±0.23a 2.73±0.28b 3.66±0.55b 3.31±0.74b 

PSPC200 4.97±0.15a 3.67±0.78b 3.77±0.32b 3.48±0.15b 

PSPC300 4.54±0.16a 3.71±0.27ab 2.89±1.06b 3.25±0.28b 

EMIQ25 5.07±0.11a 3.76±0.62b 2.85±0.25c 3.09±0.45bc 

EMIQ50 5.10±0.18a 3.24±1.16b 3.64±0.38b 3.38±0.50b 

EMIQ75 5.03±0.12a 3.26±0.92b 3.92±0.79ab 3.15±0.53b 

Refer to Table 36 for treatment identification. a* color values by weeks of storage not 

sharing the same letter are significantly different (p≤0.05) based on one-way ANOVA. 

Analysis at 6 Weeks includes one week of accelerated temperature storage (32° C). n=3 

replicates (±SD). 

 

 
Figure 21 Mean a* color values among copigment treatments over storage time.  

a* color values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=48 analyses (±SD). 
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 Average b* values of elderberry tinctures were 1.15, 0.75, 0.94, and 1.01 at 0, 2, 

4, and 6 weeks of storage (Figure 22). Overall, b* color values were significantly (p≤0.05) 

higher at 0 weeks compared to 2, 4, and 6 weeks storage based on one-way ANOVA 

(Table 42). These results indicate that the elderberry tinctures initially lost some of their 

yellow color and turned slightly bluer during the first 2 weeks of storage. A strong 

correlation (r=0.78) existed between a* and b* color values throughout weeks of 

storage. However, an inverse relationship was noted between a* and b* color values 

between 4 and 6 weeks of storage. As previously stated, it is likely that degradation of 

anthocyanin pigmentation occurred and colorless and brown phenolic degradation 

compounds formed (Gómez-Míguez and others 2006). Based on these results, it is 

theorized that the initial breakdown of anthocyanin pigmentation first resulted in the 

formation of colorless compounds, and later developed into brown compounds as 

storage time increased. After 2 weeks of storage, b* values began to increase, which 

signified the formation of these brown degradation compounds, which is substantiated 

by the inverse relationship between a* and b* color values which occurred between 4 

and 6 weeks of storage. As the elderberry tinctures lost their red color over time due to 

the degradation of anthocyanins, more yellow color was detected possibly as brown 

degradation compounds were formed, but only after the first 2 weeks of storage, in 

which colorless degradation compounds formed. 

 

 

 

http://pubs.acs.org/author/G%C3%B3mez-M%C3%ADguez%2C+Manuela
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Table 42 b* Color Values of Elderberry Tinctures by Copigment Treatment Over Storage 

Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 1.18±0.11ab 0.84±0.10b 0.95±0.47ab 1.32±0.14a 

RME100 1.19±0.11a 0.89±0.11ab 0.82±0.31b 0.94±0.16ab 

RME200 1.17±0.07a 0.79±0.22b 1.21±0.24a 1.02±0.04ab 

RME300 1.31±0.07a 0.84±0.09b 0.82±0.17b 0.99±0.02b 

TA2.5 1.15±0.05a 0.82±0.16a 1.13±0.28a 1.07±0.21a 

TA5.0 1.07±0.08a 0.77±0.24a 0.91±0.19a 0.92±0.17a 

TA7.5 1.24±0.07a 0.81±0.10c 1.13±0.26ab 0.96±0.01bc 

BCC100 1.10±0.05ab 0.76±0.14c 1.21±0.10a 0.97±0.03b 

BCC200 0.98±0.08a 0.66±0.11b 1.04±0.10a 0.95±0.03a 

BCC300 1.02±0.03a 0.67±0.16b 0.75±0.14b 0.84±0.14ab 

PSPC100 1.18±0.10a 0.54±0.10b 0.89±0.17a 0.99±0.28a 

PSPC200 1.15±0.04a 0.73±0.22c 0.87±0.05bc 1.05±0.10ab 

PSPC300 0.96±0.03a 0.67±0.10bc 0.64±0.21c 0.90±0.10ab 

EMIQ25 1.25±0.03a 0.84±0.16bc 0.68±0.07c 1.02±0.15b 

EMIQ50 1.22±0.07a 0.70±0.24b 0.96±0.13ab 1.16±0.19a 

EMIQ75 1.19±0.04a 0.66±0.33b 1.06±0.22a 1.02±0.18a 

Refer to Table 36 for treatment identification. b* color by weeks of storage not sharing 

the same letter are significantly different (p≤0.05) based on one-way ANOVA. Analysis at 

6 Weeks includes one week of accelerated temperature storage (32° C). n=3 replicates 

(±SD). 

 

 
Figure 22 Mean b* color values among copigment treatments over storage time. 

b* color values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=48 analyses (±SD).  
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Monomeric Anthocyanins 

 Anthocyanins in the monomeric form are directly responsible for the red or blue 

color of anthocyanin-rich foods or beverages. Total monomeric anthocyanins were 

determined within elderberry tinctures using the pH differential method (2005.02, 

AOAC 2005). At pH 1.0, monomeric anthocyanins exist in the red colored flavylium 

cation form, and at pH 4.5 exist in the colorless hemiketal form (Brouillard 1982, Clifford 

2000, AOAC 2005, Hubbermann 2006). The amount of monomeric anthocyanins within 

a beverage is calculated based on the difference of the pigments' absorbance at 520 nm 

between 1.0 and 4.5 pH. Degraded, polymeric anthocyanins are not expressed using this 

method because they are resistant to color change, despite shifts in pH, and absorb at 

both 1.0 and 4.5 pH used in this method (AOAC 2005). 

 In this study, the average monomeric anthocyanin content of elderberry 

tinctures was 5,561.6 mg/L, regardless of copigment treatment or weeks of storage. 

These results are in agreement with Garofulić and others (2012), who reported that the 

average anthocyanin contents in raw elderberry fruit and elderberry wine to be 8,527.0 

and 3597.8 mg/L. In this study, some significant differences (p≤0.05) were detected 

among copigment treatments based on one-way ANOVA (Table 43), which were similar 

to L*a*b* color results. Noteworthy effects to monomeric anthocyanins among 

copigment treatments occurred with the additions of either black carrot color at 300 

mg/100mL (BCC300) or purple sweet potato color at 300 mg/100mL (PSPC300). 

Regardless of weeks of storage, BCC300 and PSPC300 consistently had the highest 

monomeric anthocyanin contents compared to the other copigment treatments tested 
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in this study. These results simply indicate that black carrot or purple sweet potato color 

additives contributed to the overall anthocyanin content of elderberry tinctures. 

Unfortunately, this data does not support any inferences into the efficacy of the 

copigment additives as successful copigments within elderberry tinctures. It is likely that 

the high ethanol content (30.1%) of the tinctures prevented, or dissociated, 

intermolecular complexes between the copigment additives and the elderberry fruit 

anthocyanins, which otherwise would have resulted in successful copigmentation and 

enhanced pigment stability of the elderberry tinctures (Mazza and Brouillard 1990, 

Brouillard and others 1991, Gutiérrez 2003). These results are in agreement with 

Brouillard and others (1991), who evaluated the effects of ten different cosolvents on 

the extent of the copigmentation reaction, and determined that all of the cosolvents 

reduced the effect of copigmentation compared to water. The hydrogen-bonded 

network of water molecules, and the ability of water to hydrogen bond with flavonoids, 

strongly contributes to the stability of copigment complexes (Brouillard and others 

1991). These factors validate water as the most important cofactor for the copigment 

phenomenon, and that non-polar solvents, such as ethanol, disrupt hydrogen bonds 

which are required for effective intermolecular complexation. 
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Table 43 Mean Monomeric Anthocyanin Values (mg/L) of Elderberry Tinctures by 

Copigment Treatment 

Copigment 
Treatment 

Monomeric 
Anthocyanins 

(mg/L) 
Control 5433.2±625.6b 

RME100 5631.4±595.2ab 

RME200 5400.5±435.5b 

RME300 5613.3±446.5ab 

TA2.5 5614.0±547.3ab 

TA5.0 5590.8±455.8ab 

TA7.5 5628.8±736.5ab 

BCC100 5456.8±739.7b 

BCC200 5618.3±683.5ab 

BCC300 5701.2±657.2ab 

PSPC100 5607.1±641.7ab 

PSPC200 5598.9±784.9ab 

PSPC300 5969.5±674.4a 

EMIQ25 5438.7±493.5b 

EMIQ50 5416.2±626.0b 

EMIQ75 5267.2±682.7b 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=16 analyses (±SD). 

 

 Although few differences were detected among anthocyanin contents of 

elderberry tinctures, there were significant (p≤0.05) effects over storage time based on 

one-way ANOVA (Table 44). Average monomeric anthocyanins of elderberry tinctures 

were 6269.2, 5825.0, 5296.4, and 4856.0 mg/L at 0, 2, 4, and 6 weeks of storage, among 

all copigment treatments (Figure 23). Overall, there was a linear (R²=0.9987) 

degradation of the anthocyanin content of the elderberry tinctures throughout storage 

time, with 23% of the anthocyanin content degrading between 0 and 6 weeks of 

storage. There was a moderate correlation (r=0.49) between monomeric anthocyanins 
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and a* color among all treatments, which indicates a positive relationship between 

pigment concentration and the intensity of red color. Interestingly, there were no 

apparent effects to the anthocyanin content of elderberry tinctures during the one 

week of accelerated temperature (32° C) storage, which occurred between weeks 5 and 

6. 

 

Table 44 Mean Monomeric Anthocyanin Values (mg/L) of Elderberry Tinctures by 

Copigment Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 6337.9±392.7a 5499.6±92.4b 5044.2±177.9c 4850.8±124.3c 

RME100 6457.4±249.6a 5791.8±39.5b 5305.4±26.2c 4971.0±92.1d 

RME200 5537.0±529.6a 5823.6±69.0a 5389.8±40.1a 4851.6±88.1b 

RME300 6025.9±87.2a 5820.5±129.1ab 5686.7±54.6b 4920.0±143.4c 

TA2.5 6295.7±278.9a 5884.1±147.4b 5266.4±79.2c 5010.0±81.6c 

TA5.0 6103.9±79.1a 5847.5±113.7b 5431.9±119.5c 4979.7±132.5d 

TA7.5 6458.9±289.9a 6039.4±200.5b 5378.6±70.7c 4638.2±44.2d 

BCC100 6029.8±1162.0a 5836.4±116.8a 5256.0±97.4ab 4705.1±140.1b 

BCC200 6491.6±202.8a 5939.1±107.4b 5213.8±29.0c 4830.1±199.9d 

BCC300 6434.3±183.3a 6089.5±249.8a 5403.3±185.1b 4877.8±250.8c 

PSPC100 6333.2±76.4a 5992.4±189.6b 5329.2±89.4c 4773.6±208.4d 

PSPC200 6486.0±210.3a 6098.3±207.5b 5221.0±54.0c 4590.4±60.6d 

PSPC300 6892.0±495.3a 5857.1±110.3b 5943.9±132.1b 5185.1±82.9c 

EMIQ25 6033.8±72.5a 5619.8±219.4b 5303.0±163.3b 4798.2±189.2c 

EMIQ50 6290.2±382.3a 5498.8±143.2b 4787.1±240.6c 5088.8±142.0bc 

EMIQ75 6099.1±321.7a 5561.7±212.0a 4782.3±472.6b 4625.5±229.8b 

Refer to Table 36 for treatment identification. Monomeric anthocyanin values by weeks 

of storage not sharing the same letter are significantly different (p≤0.05) based on one-

way ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage 

(32° C). n=3 replicates (±SD), 2 analyses. 
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Figure 23 Mean total monomeric anthocyanins values (mg/L) among copigment 

treatments over storage time. 

Monomeric anthocyanin values by weeks of storage not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=96 analyses (±SD).  

 

Color Density and Polymeric Color 

 Determining color density is important for understanding depth of color and can 

provide information into the degradation characteristics of elderberry tinctures. Color 

density is calculated as the sum of absorbances at λvis-max (520 nm) and at 420 nm, after 

subtracting for haze (700 nm). In the case of elderberry tinctures, color density can be 

defined as the sum of monomeric red colored anthocyanin pigments, brown colored 

polymeric anthocyanin pigments, and brown colored melanoidin pigments. Increases of 

the color density of anthocyanin-rich beverages generally signifies the conversion of 

anthocyanin pigmentation into degraded, brown colored anthocyanin-tannin pigments. 

 In this study, the average color density of elderberry tinctures was 12.8, 

regardless of copigment treatment or weeks of storage. Similar to previous color results, 

the only noteworthy effects among copigment treatments occurred with the additions 
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300 mg/100mL (PSPC300), although some significant differences (p≤0.05) were noticed 

based on one-way ANOVA (Table 45). Regardless of weeks of storage, BCC300 and 

PSPC300 consistently had the highest color density compared to the other copigment 

treatments tested in this study. As previously stated, this result is likely due to the fact 

that the black carrot and purple sweet potato additives were dark purple when initially 

added into the elderberry tinctures and resulted in a darker colored tincture overall.  

 

Table 45 Mean Color Density Values of Elderberry Tinctures by Copigment Treatment 

Copigment 
Treatment 

Color Density 

Control 11.8±1.5e 

RME100 13.2±1.5bc 

RME200 13.0±0.9bc 

RME300 12.4±1.2cde 

TA2.5 12.7±1.9bcde 

TA5.0 13.0±1.3bc 

TA7.5 12.5±1.1cde 

BCC100 13.4±1.2bc 

BCC200 13.1±1.4bc 

BCC300 13.8±1.0ab 

PSPC100 12.5±1.7cde 

PSPC200 12.3±1.1cde 

PSPC300 14.7±1.2a 

EMIQ25 12.9±1.4bcd 

EMIQ50 11.8±2.2de 

EMIQ75 11.8±0.6e 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=24 analyses (±SD). 
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 Although few differences to the color density of elderberry tinctures were 

detected among copigment treatments, there were significant (p≤0.05) effects among 

weeks of storage based on one-way ANOVA (Table 46). The average color density of 

elderberry tinctures was 12.2, 12.7, 12.5, and 13.9 at 0, 2, 4, and 6 weeks of storage, 

among all copigment treatments (Figure 24). A moderate inverse correlation (r=-0.31) 

existed between color density and a* color value, which indicates a relationship 

between the depth of color and intensity of redness within the elderberry tinctures. 

Based on these results, it can be inferred that there were losses to anthocyanin 

pigmentation and increases of brown colored degradation products throughout storage 

time (Gómez-Míguez and others 2006). Interestingly, as there were noticeable 

decreases to the a* values of elderberry tinctures during the one week of accelerated 

temperature (32° C) storage, which occurred between weeks 5 and 6, there were also 

significant increases to color density during this time period.  
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Table 46 Color Density Values of Elderberry Tinctures by Copigment Treatment Over 

Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 11.5±1.2ab 12.9±0.5a 12.4±0.9ab 10.2±1.8b 

RME100 11.8±0.5c 12.5±0.8bc 13.9±1.4ab 14.6±1.4a 

RME200 12.2±0.3a 12.9±1.1a 13.7±0.5a 13.4±1.1a 

RME300 12.1±0.4a 12.1±0.2a 12.8±1.3a 12.6±2.4a 

TA2.5 12.0±0.3a 12.8±0.9a 11.5±0.9a 14.5±3.2a 

TA5.0 11.8±0.1c 12.4±1.2bc 14.3±1.2a 13.6±0.6ab 

TA7.5 11.9±0.4b 12.2±0.7b 11.9±1.1b 13.9±0.5a 

BCC100 12.6±0.6bc 12.4±0.7c 14.2±1.5ab 14.7±0.2a 

BCC200 12.7±0.4b 12.3±0.8b 12.2±0.3b 15.4±0.6a 

BCC300 13.7±0.2b 13.6±0.8b 12.7±0.7b 15.0±0.6a 

PSPC100 12.0±0.7b 13.5±0.6ab 10.2±0.8c 14.1±1.0a 

PSPC200 12.3±0.2a 11.8±0.3a 12.9±0.6a 12.3±2.3a 

PSPC300 13.7±0.3b 14.3±1.1b 14.6±0.5ab 16.0±1.4a 

EMIQ25 11.8±0.4b 13.1±0.7b 11.9±1.3b 14.8±0.7a 

EMIQ50 12.0±0.6b 12.4±0.4b 8.6±0.2c 14.2±0.7a 

EMIQ75 11.6±0.8b 11.5±0.2b 11.4±0.4b 12.6±0.3a 

Refer to Table 36 for treatment identification. Color density values by weeks of storage 

not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD), 2 analyses. 

 

 
Figure 24 Mean color density values among copigment treatments over storage time. 

Color density values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=96 analyses (±SD). 
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 Polymeric color is a measurement of brown colored, non-monomeric 

anthocyanin pigments, also referred to as tannins. Both polymeric color and color 

density determinations provide a similar function, which is to understand the 

degradation and shelf-life characteristics of anthocyanin-rich beverages. The difference 

being that polymeric color measures the depth of only brown pigmentation, whereas 

color density measures the depth of red and brown pigmentation combined. Polymeric 

color can be understood as the color density of a beverage excluding the monomeric 

anthocyanins. The assay takes advantage of the fact that anthocyanins in their 

monomeric form are easily bleached by bisulfite, whereas polymeric anthocyanin-tannin 

and melanoidin pigments are resistant and retain their color during bisulfite treatment 

(Giusti and Wrolstad 2001). 

 In this study, the average polymeric color of elderberry tinctures was 6.8, 

regardless of copigment treatment or weeks of storage. Unlike previous color results, no 

discernible effects to polymeric color were noticed among copigment treatments (Table 

47). These results indicate that copigment treatments did not prevent browning within 

elderberry tinctures and supports a lack of copigmentation, which is likely due to the 

high ethanol content (30.1%) of the tinctures which prevented intermolecular 

complexation between anthocyanins and copigments. Interestingly, although significant 

(p≤0.05) effects to a* color, monomeric anthocyanins, and color density were detected 

within BCC300 and PSPC300 treatments, no distinguishable effects were observed to 

polymeric color within these treatments. These result infer that although additions of 

black carrot or purple sweet potato color contributed significantly to the increase of red 
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pigmentation within elderberry tinctures, and that these added pigments did not 

degrade as readily as those naturally present within elderberry fruit. The lack of 

additional browning within BCC300 or PSPC300 treatments is likely due to the acylated 

structure of the anthocyanins contained in the black carrot and purple sweet potato 

copigments (Giusti and Wrolstad 2003, Bąkowska-Barczak 2005). Acylated anthocyanins 

contain covalently bonded organic or phenolic acids, which have an increased resistance 

to polymerization into brown colored degradation pigments (Giusti and Wrolstad 2003, 

Bąkowska-Barczak 2005). Conversely, elderberry fruit contains non-acylated 

anthocyanins, which occur primarily as anthocyanin glycosides that readily polymerize 

due to weak networks of hydrogen bonds (Giusti and Wrolstad 2003). 
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Table 47 Mean Polymeric Color Values of Elderberry Tinctures by Copigment Treatment 

Copigment 
Treatment 

Polymeric 
Color 

Control 6.6±1.0abc 

RME100 7.4±1.4a 

RME200 7.1±1.0ab 

RME300 6.9±0.9abc 

TA2.5 7.0±1.4abc 

TA5.0 7.0±1.4abc 

TA7.5 6.6±1.2abc 

BCC100 7.3±1.5a 

BCC200 6.8±1.5abc 

BCC300 6.7±1.3abc 

PSPC100 6.5±1.3abc 

PSPC200 6.2±0.9bc 

PSPC300 7.1±1.5ab 

EMIQ25 6.7±1.5abc 

EMIQ50 6.3±1.7abc 

EMIQ75 6.0±0.9c 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=24 analyses (±SD). 

 

 Although few differences to the polymeric color of elderberry tinctures were 

detected among copigment treatments, there were significant (p≤0.05) effects among 

storage time based on one-way ANOVA (Table 48). The average polymeric color of 

elderberry tinctures was 5.7, 6.5, 6.5, and 8.3 at 0, 2, 4, and 6 weeks of storage, among 

all copigment treatments (Figure 25). These results indicate that between 0 and 6 weeks 

of storage, there were noticeable increases to the amount of brown pigmentation 

within elderberry tinctures, regardless of copigment treatment. Additionally, there were 

sharp increases to polymeric color during the one week of accelerated temperature 

storage (32° C), which occurred between 5 and 6 weeks of storage. Strong inverse 
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correlations were noted between polymeric color and a* color (r=-0.46), as well as 

polymeric color and monomeric anthocyanins (r=-0.51). These relationships substantiate 

the belief that the red colored, anthocyanin pigments within the elderberry tinctures 

experienced observable degradations into colorless and brown colored anthocyanin-

tannin pigments throughout storage time. It is also theorized that between 0 and 4 

weeks of storage, the majority of polymerized anthocyanins occurred as colorless 

pigments, which subsequently degraded into brown colored pigments after 4 weeks. 

This theory is based on the evidence that although monomeric anthocyanins degraded 

linearly (R²=0.9987) throughout storage, there were no significant changes to the values 

of a* color, color density, or polymeric color between 2 and 4 weeks of storage among 

elderberry tinctures. Additionally, a strong correlation (r=0.78) existed between 

polymeric color and color density among elderberry tinctures, which was expected due 

to the fact that both variables are measures of pigment degradation and depth of color. 
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Table 48 Polymeric Color Values of Elderberry Tinctures by Copigment Treatment Over 

Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 5.7±0.7a 7.4±0.5a 6.7±1.1a 6.5±1.3a 

RME100 5.8±0.3c 6.8±0.7bc 7.8±0.3ab 9.1±1.2a 

RME200 5.8±0.3c 7.3±0.4b 6.9±0.1b 8.4±0.7a 

RME300 6.0±0.1b 6.7±0.2ab 7.2±1.0ab 7.8±1.0a 

TA2.5 5.7±0.3b 6.6±0.8b 6.6±0.6b 9.0±0.9a 

TA5.0 5.8±0.2b 6.1±0.7b 8.3±1.0a 7.7±1.6ab 

TA7.5 5.8±0.0b 6.3±0.7b 6.0±1.2b 8.4±0.5a 

BCC100 5.6±0.2c 6.8±1.0bc 8.0±1.2ab 8.9±0.5a 

BCC200 5.7±0.5b 6.3±0.2b 5.8±0.5b 9.1±0.6a 

BCC300 5.7±0.3b 6.1±0.9b 6.5±0.8b 8.7±0.3a 

PSPC100 5.4±0.1c 6.8±0.6b 5.3±0.5c 8.3±0.6a 

PSPC200 5.3±0.3b 6.0±0.3ab 6.7±0.6a 7.0±1.2a 

PSPC300 5.7±0.4c 6.7±0.3bc 6.8±0.2b 9.3±1.0a 

EMIQ25 5.5±0.1b 6.2±0.9b 6.0±1.0b 8.9±0.6a 

EMIQ50 5.4±0.4c 7.0±0.5b 4.2±0.5d 8.6±0.5a 

EMIQ75 5.5±0.6b 5.5±0.5b 5.7±0.6b 7.2±0.4a 

Refer to Table 36 for treatment identification. Polymeric color values by weeks of 

storage not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD), 2 analyses. 

 

 
Figure 25 Mean polymeric color values among copigment treatments over storage time. 

Polymeric color values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=96 analyses (±SD).   
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 Percent polymeric color is defined as the percentage of pigment contribution by 

tannins, or non-monomeric anthocyanins. It is simply calculated as polymeric color 

divided by color density, and provides additional insight into the browning 

characteristics of anthocyanin-rich beverages. 

 In this study, the average % polymeric color was 52.6%, regardless of copigment 

treatment or weeks of storage. Interestingly, elderberry tinctures which contained 

either black carrot or purple sweet potato color at the 200 mg/100mL or 300 mg/100mL 

levels (BCC200, BCC300, PSPC200, PSPC300) consistently exhibited the lowest % 

polymeric color throughout weeks of storage and overall, which were significantly 

(p≤0.05) lower than the control treatment based on one-way ANOVA (Table 49). Based 

on previous color density and polymeric color results, it was expected that BCC300 and 

PSPC300 treatments would exhibit the lowest % polymeric color values, however it was 

unexpected that the % polymeric color of BCC200 and PSPC200 treatments would be 

significantly lower than the control. Although there were no discernible effects to color 

density or polymeric color within the BCC200 and PSPC200 treatments, the analysis of % 

polymeric color indicated that there were observable effects to the depth of 

pigmentation within elderberry tinctures when either black carrot color or purple sweet 

potato color was added at a 200 mg/100mL level. As previously mentioned, the 

recommended usage level for either of these copigment additives is between 10-100 

mg/mL within beverages. This study demonstrated that these copigment additives must 

be utilized in excess of their recommended upper usage levels of 100 mg/100mL in 

order to affect the color of elderberry tinctures. Adding more than what is 
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recommended may not be a cost-effective technique for increasing the depth of color 

within elderberry tinctures. Although it is unlikely that any of the copigment additives 

tested in this study truly caused effective copigmentation within elderberry tinctures, 

this result should not discourage their potential use within other anthocyanin-rich food 

and beverage systems. As previously mentioned, the lack of copigmentation within 

elderberry tinctures is most likely a result of the high ethanol content of the tinctures 

(30.1%), which likely prevented intermolecular interactions among elderberry 

anthocyanins and copigment additives (Mazza and Brouillard 1990, Brouillard and 

others 1991, Gutiérrez 2003).  
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Table 49 Mean Polymeric Color Values (%) of Elderberry Tinctures by Copigment 

Treatment 

Copigment 
Treatment 

% Polymeric 
Color 

Control 56.2±6.4a 

RME100 55.5±5.4abc 

RME200 54.4±6.4abc 

RME300 55.9±5.6ab 

TA2.5 55.0±7.8abc 

TA5.0 53.2±7.4abcd 

TA7.5 52.8±6.4abcd 

BCC100 54.1±7.0abc 

BCC200 50.9±6.0bcd 

BCC300 48.8±7.2d 

PSPC100 51.5±5.8abcd 

PSPC200 50.6±5.5cd 

PSPC300 48.3±6.6d 

EMIQ25 51.0±6.8abcd 

EMIQ50 52.8±6.9abcd 

EMIQ75 50.7±5.7cd 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=24 analyses (±SD). 

 

 Although few differences to the % polymeric color of elderberry tinctures were 

detected among copigment treatments, there were significant (p≤0.05) effects among 

storage time based on one-way ANOVA (Table 50). The average % polymeric color of 

elderberry tinctures was 46.3%, 51.7%, 52.3%, and 60.1% at 0, 2, 4, and 6 weeks of 

storage, among all copigment treatments (Figure 26). Regardless of copigment 

treatment, elderberry tinctures gained an average of 13.8% polymeric color, or pigment 

contribution by tannins, between 0 and 6 weeks of storage. Similar to polymeric color, 

these results indicate that elderberry tinctures experienced significant browning 
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between 0 weeks and 2 weeks of storage, and again between 4 weeks and 6 weeks of 

storage which included one week of accelerated temperature (32° C) storage.  

 

Table 50 Percent Polymeric Color Values of Elderberry Tinctures by Copigment 

Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 49.8±1.1c 57.9±4.6ab 53.5±4.7bc 63.6±4.7a 

RME100 49.1±0.4c 54.2±2.7b 56.5±3.9b 62.2±2.1a 

RME200 47.6±2.3c 56.6±3.0b 50.6±2.1c 62.9±1.9a 

RME300 49.9±1.0b 55.2±1.9b 56.0±4.0ab 62.4±5.6a 

TA2.5 47.7±1.6b 51.9±5.2b 56.8±2.0ab 63.7±9.4a 

TA5.0 49.6±1.9a 49.1±6.7a 57.6±3.1a 56.4±12.3a 

TA7.5 48.8±2.0b 51.9±6.0ab 50.0±6.0b 60.6±4.6a 

BCC100 44.2±1.1b 55.1±5.3a 56.6±2.9a 60.6±2.8a 

BCC200 45.3±2.5c 51.4±2.2b 47.6±3.4bc 59.4±1.9a 

BCC300 41.6±1.6c 44.5±3.9c 51.1±4.3b 57.9±3.0a 

PSPC100 44.6±2.1c 50.3±2.3bc 52.3±4.6b 58.6±2.5a 

PSPC200 42.9±1.4c 50.4±1.8b 51.9±2.3b 57.0±1.4a 

PSPC300 41.4±2.4c 47.3±2.1b 46.4±1.9b 58.2±1.2a 

EMIQ25 46.4±2.0b 46.8±4.4b 50.4±3.7b 60.6±4.9a 

EMIQ50 44.9±1.1b 56.7±2.7a 49.1±4.6b 60.4±2.7a 

EMIQ75 47.7±2.4b 47.7±5.0b 49.9±6.6ab 57.5±2.4a 

Refer to Table 36 for treatment identification. Percent polymeric color values by weeks 

of storage not sharing the same letter are significantly different (p≤0.05) based on one-

way ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage 

(32° C). n=3 replicates (±SD), 2 analyses. 
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Figure 26 Mean polymeric color values (%) among copigment treatments over storage 

time. 

Percent polymeric color values by weeks of storage not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=96 analyses (±SD).   

 

Total Phenolics 

 Elderberry fruit is considered to be one of the richest sources of phenolic 

compounds among edible fruits and vegetables, containing approximate phenolic 

contents between 1,270-1,950 mg/100g fresh weight (Wu and others 2004, Rimpapa 

and others 2007). Casati and others (2012) reported that the phenolic contents of 

elderberry juice were 10,060 mg GAE/L, and 3.1-3.3 times higher than blueberry juice. 

The phenolic compounds in elderberry fruit have basically been identified as 

anthocyanins, tannins, proanthocyanidins, organic acids, and hydroxycinnamic acid 

derivatives (Lee and Finn 2007). These compounds are powerful antioxidants and have 

been implicated for their ability to reduce the risk of cardiovascular disease and cancer, 

improve visual acuity and cognition, as well as provide anti-inflammatory and 
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a preservative due to their natural antioxidant capacity (Proestos and others 2013). It 

was among the objectives of this study to determine how copigment additives and 

storage time affected the total phenolic content of elderberry tinctures. 

 In this study, total phenolics was determined using the Folin-Ciocalteu method 

based on a procedure by Velioglu and others (1998). The average total phenolics of 

elderberry tinctures was 3,804.1 mg GAE/L, regardless of copigment treatment or weeks 

of storage. These results are similar to those by Schmitzer and others (2010), who 

reported a phenolic content of elderberry wine to be 2004.1 mg GAE/L. Unfortunately, 

no significant (p≤0.05) effects were detected among copigment treatments based on 

one-way ANOVA (Table 51). At both 2 and 4 weeks of storage, the control treatment 

contained the least amount of phenolics among all of the copigment treatments, and 

contained the second lowest amount of phenolics overall (Table 51). Although not 

statistically significant, these results are likely due to the fact that all of the copigment 

additives initially contained phenolic compounds, which increased the phenolic contents 

of the tinctures compared to the control. Unfortunately, these results do not indicate 

effective copigmentation of elderberry anthocyanins within elderberry tinctures.  
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Table 51 Mean Total Phenolic Values (mg GAE/L) of Elderberry Tinctures by Copigment 

Treatment 

Copigment 
Treatment 

Total Phenolics 
(mg GAE/L) 

Control 3699.0±729.3a 

RME100 3791.0±707.5a 

RME200 3849.1±650.3a 

RME300 3989.2±778.3a 

TA2.5 3974.8±638.7a 

TA5.0 3794.7±758.5a 

TA7.5 3801.1±737.4a 

BCC100 3824.3±585.1a 

BCC200 3724.6±627.2a 

BCC300 3713.3±579.7a 

PSPC100 3848.7±563.7a 

PSPC200 3917.3±792.6a 

PSPC300 3879.8±704.3a 

EMIQ25 3621.3±825.2a 

EMIQ50 3723.1±708.1a 

EMIQ75 3827.4±722.0a 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=24 analyses (±SD). 

 

 Although no significant (p≤0.05) differences to the total phenolic content of 

elderberry tinctures were detected among copigment treatments, there were significant 

effects among storage time based on one-way ANOVA (Table 52). The average total 

phenolics of elderberry tinctures was 4454.1, 4129.5, 3869.3, and 2763.6 mg GAE/L at 0, 

2, 4, and 6 weeks of storage, respectively, among all copigment treatments (Figure 27). 

Regardless of copigment treatment, elderberry tinctures lost an average of 38.0% total 

phenolics between 0 and 6 weeks of storage. These results are in agreement with Casati 

and others (2012), who reported an average of a 40% reduction of phenolic contents of 

elderberry juice throughout the first 30 days of storage at 40° C.  
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 Correlations were detected between total phenolics and a* color (r=0.24), b* 

color (r=-0.37), total monomeric anthocyanins (r=0.75), color density (r=-0.30), 

polymeric color (r=-0.58), and % polymeric color (r=-0.60). Due to fact that anthocyanins 

are direct contributors to total phenolic content, it was expected that there would be 

relationships between total phenolics and color values within elderberry tinctures 

(Samee and others 2006). Additionally, the presence of some phenolic compounds, such 

as tannins, promote the formation of brown colored anthocyanin-tannin pigments. 

Interestingly, the control treatment contained the second lowest total phenolics overall 

and the lowest polymeric color at weeks 6 of storage, indicating that the presence of 

phenolics promotes browning within elderberry tinctures.  
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Table 52 Total Phenolic Values (mg GAE/L) of Elderberry Tinctures by Copigment 

Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control 4496.9±146.6a 3829.7±778.8ab 3694.3±155.4b 2774.9±109.2c 

RME100 4536.0±165.3a 4048.9±162.1b 3833.5±348.9b 2745.8±64.7c 

RME200 4307.5±489.4a 4166.4±176.3a 4060.1±238.3a 2862.3±68.2b 

RME300 4896.7±215.5a 4150.5±91.9b 4027.7±376.4b 2881.7±136.4c 

TA2.5 4587.1±105.5a 4344.3±280.9a 3930.6±102.9b 3037.1±233.1c 

TA5.0 4409.7±47.7a 4293.5±256.2a 3865.8±199.6b 2609.8±53.5c 

TA7.5 4424.8±160.4a 4087.0±45.0b 4069.8±253.5b 2622.8±40.4c 

BCC100 4415.7±49.7a 4166.4±83.2b 3768.7±39.2c 2946.5±105.0d 

BCC200 4331.6±108.3a 4033.0±38.5b 3778.4±171.1c 2755.5±113.8d 

BCC300 4061.0±136.6a 3940.9±78.0a 4047.1±351.0a 2804.0±184.6b 

PSPC100 4466.8±60.0a 4121.9±99.5b 3765.5±185.9c 3040.4±154.3d 

PSPC200 4899.7±393.7a 4109.2±138.8b 3807.6±231.7b 2852.6±75.4c 

PSPC300 4427.8±15.6a 4207.7±200.8ab 4137.8±34.1b 2745.8±213.7c 

EMIQ25 4397.7±159.4a 4125.1±131.5b 3250.8±87.6c 2257.0±68.7d 

EMIQ50 4214.3±107.6a 4153.7±129.4a 3940.3±252.6a 2583.9±91.8b 

EMIQ75 4391.7±86.0a 4293.5±147.9a 3930.6±230.1b 2694.0±196.4c 

Refer to Table 36 for treatment identification. Total phenolic values by weeks of storage 

not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD), 2 analyses. 
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Figure 27 Mean total phenolic values (mg GAE/L) among copigment treatments by 

weeks of storage. 

Total phenolic values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=96 analyses (±SD).   

 

Antioxidants 

  The antioxidant activities of edible fruits and vegetables are directly related to 

their phenolic contents (Wu and others 2004, Rimpapa and others 2007). Considering 

that elderberry fruit is one of the richest sources of phenolic compounds, it is also 

among the most abundant in antioxidants (Wu and others 2004, Özgen and others 

2010). Many of the healthful properties of elderberry fruit are a direct result of their 

high antioxidant activity. Generally, small, purple-black berries are very high in 

antioxidants, and have been implicated in holistic medicine for their curative properties 

(Bagchi and others 2004, Özgen and others 2010). 

 In this study, antioxidant capacity was determined by measuring the reaction of 

elderberry tinctures to 50 mL of a 0.1 mM DPPH solution, based on a procedure by 

Brand-Williams and others (1995), and was expressed as % inhibition of DPPH radical 

per 20 mg of tincture, IC₅₀ of DPPH radical, and total antioxidants (µg TE/100 g). The 
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average % inhibition per 20 mg of tincture was 78.7%, regardless of copigment 

treatment or storage time. Notably, the three treatments which contained purple sweet 

potato color caused the greatest % inhibition of DPPH among all of the copigment 

treatments, and the control treatment displayed one of the lowest vales for % inhibition 

per 20 mg of tincture (Table 53). These results indicate that the addition of copigment 

additives may have resulted in limited improvements to the antioxidant capacity of 

elderberry tinctures, which is likely a result of the additives initially containing phenolic 

compounds. It is unlikely that the addition of copigment additives resulted in effective 

copigmentation, or that any improvements to the antioxidant capacity of elderberry 

tinctures could be attributed to copigmentation. Additionally, it should be noted that 

rosemary extract, black carrot color, and purple sweet potato color were added into 

elderberry tinctures at much higher levels than the other copigment additives tested in 

this study (Table 36), which provoked greater % inhibition of DPPH. 
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Table 53 Mean Inhibition of DPPH Radical per 20 mg of Elderberry Tinctures (%) by 

Copigment Treatment 

Copigment 
Treatment 

% Inhibition 
per 20 mg 

Control 77.7±1.7cd 

RME100 78.0±1.7bcd 

RME200 79.2±1.4abc 

RME300 79.9±1.8a 

TA2.5 77.8±1.7bcd 

TA5.0 77.3±2.9d 

TA7.5 77.8±2.2bcd 

BCC100 78.1±1.4bcd 

BCC200 79.1±3.0abcd 

BCC300 79.6±2.1ab 

PSPC100 80.2±2.2a 

PSPC200 80.2±0.9a 

PSPC300 80.0±1.9a 

EMIQ25 77.6±1.6cd 

EMIQ50 77.7±2.4cd 

EMIQ75 79.2±1.9abcd 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=18 analyses (±SD). 

 

 In this study, no antioxidant data was reported at week 0 due to experimental 

error. Although few significant differences (p≤0.05) to % inhibition of DPPH were 

observed among weeks of storage within individual copigment treatments (Table 54). It 

was observed that there were decreases to % inhibition of DPPH during storage, and 

that there was a statistically significant decline of % inhibition of DPPH overall, based on 

one-way ANOVA (Figure 28). The average % inhibition of DPPH per 20 mg of tincture 

was 79.5%, 78.7%, and 77.9% at 2, 4, and 6 weeks of storage, among all copigment 

treatments (Figure 28). Correlations were observed between % inhibition of DPPH and 

a* color (r=0.36), monomeric anthocyanins (r=0.65), color density (r=-0.70), polymeric 
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color (r=-0.73), % polymeric color (r=-0.66), and total phenolics (r=0.79), indicating 

strong relationships among red color, phenolic content, and antioxidant capacity of 

elderberry tinctures. It is surmised that the loss of anthocyanins and phenolics within 

elderberry tinctures resulted in the decline of red color and antioxidant capacity 

throughout storage time.  

  

Table 54 Percent Inhibition of DPPH Radical per 20 mg of Elderberry Tinctures by 

Copigment Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control . 79.2±1.1a 76.9±1.3a 77.0±2.0a 

RME100 . 79.1±0.9a 77.9±1.4a 77.1±2.4a 

RME200 . 80.3±0.6a 78.5±0.4a 78.9±2.3a 

RME300 . 80.1±1.3a 80.6±2.1a 79.1±2.3a 

TA2.5 . 78.2±0.5a 77.4±0.7a 77.7±3.2a 

TA5.0 . 78.4±0.8a 79.6±2.0a 74.0±1.4b 

TA7.5 . 77.6±3.1a 79.0±1.5a 76.7±1.8a 

BCC100 . 79.1±0.3a 78.4±0.7ab 76.7±1.7b 

BCC200 . 81.3±2.9a 78.7±0.5a 77.3±3.8a 

BCC300 . 79.8±1.9a 79.5±0.9a 79.5±3.6a 

PSPC100 . 80.6±1.2a 78.8±1.2a 81.3±3.3a 

PSPC200 . 79.7±0.7a 80.1±0.1a 80.6±1.6a 

PSPC300 . 81.0±0.7a 79.8±0.7a 79.3±3.2a 

EMIQ25 . 78.9±1.1a 78.0±0.7ab 76.0±1.4b 

EMIQ50 . 78.9±0.4a 77.8±0.4a 76.4±4.2a 

EMIQ75 . 79.3±0.9a 78.8±0.9a 79.4±3.6a 

Refer to Table 36 for treatment identification. Percent inhibition of DPPH radical values 

by weeks of storage not sharing the same letter are significantly different (p≤0.05) 

based on one-way ANOVA. Analysis at 6 Weeks includes one week of accelerated 

temperature storage (32° C). n=3 replicates (±SD), 3 analyses. 
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Figure 28 Mean inhibition of DPPH radical per 20 mg of elderberry tinctures (%) among 

copigment treatments over storage time. 

Percent inhibition of DPPH radical values by weeks of storage not sharing the same 

letter are significantly different (p≤0.05) based on one-way ANOVA. n=144 analyses 

(±SD).  

  

 A second way of measuring the antioxidant capacity of elderberry tinctures is by 

reporting the IC₅₀ of DPPH radical. IC₅₀ is calculated as the amount of tincture in 

milligrams required to cause 50% inhibition of a 50 mL, 0.1 mM DPPH solution during 4 

hours of incubation at room temperature. In this study, the average IC₅₀ (mg) of 

elderberry tinctures was 3.0 mg, regardless of copigment treatment or weeks of 

storage. Although only few significant differences (p≤0.05) were observed in regards to 

the IC₅₀ of elderberry tinctures, based on one-way ANOVA, it was noted that there were 

step-wise decreases to the IC₅₀ values as amounts of copigment additives increased 

within elderberry tinctures; and the control treatment exhibited one of the highest IC₅₀ 

values (Table 55). Similar to previous antioxidant results, these results indicate that the 

copigment additives used in this study contributed to the antioxidant capacity of 
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elderberry tinctures, likely as a result of the increased inherent phenolic contents within 

the copigment additives. 

 

Table 55 Mean IC₅₀ (mg) of DPPH Radical Values of Elderberry Tinctures by Copigment 

Treatment 

Copigment 
Treatment 

IC₅₀ (mg) 

Control 3.7±0.9ab 

RME100 3.3±1.2abc 

RME200 2.9±0.8bcd 

RME300 3.0±1.2abcd 

TA2.5 3.8±1.1ab 

TA5.0 4.0±1.2a 

TA7.5 3.1±0.9abc 

BCC100 3.1±1.2abc 

BCC200 2.5±1.3cd 

BCC300 2.3±0.9cd 

PSPC100 3.0±1.1bcd 

PSPC200 3.1±1.3abcd 

PSPC300 2.6±0.9cd 

EMIQ25 3.0±1.3abcd 

EMIQ50 2.9±1.8bcd 

EMIQ75 2.0±0.5d 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=18 analyses (±SD). 

 

 Similar to previous antioxidant results, significant (p≤0.05) effects to the IC₅₀ 

(mg) values of elderberry tinctures were detected throughout storage time, based on 

one-way ANOVA (Table 56). The IC₅₀ of elderberry tinctures was 2.5 mg, 2.8 mg, and 3.8 

mg at 2, 4, and 6 weeks of storage among all copigment treatments, respectively (Figure 

29). These results demonstrate that greater amounts of tincture were required to 

provoke a 50% inhibition of DPPH as time progressed, and that there were losses to the 
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antioxidant capacity of elderberry tinctures throughout storage time. A moderate 

inverse correlation existed between IC₅₀ and % inhibition of DPPH per 20 mg (r=-0.43), 

which was expected, due to both results demonstrating losses to the antioxidant 

capacity of elderberry tinctures throughout storage.   

 

Table 56 IC₅₀ (mg) of DPPH Radical Values of Elderberry Tinctures by Copigment 

Treatment Over Storage Time 

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control . 2.9±0.5b 3.8±0.6ab 4.4±0.9a 

RME100 . 3.1±1.4a 3.3±0.6a 3.6±1.6a 

RME200 . 3.0±1.0a 2.4±0.9a 3.2±0.4a 

RME300 . 2.0±0.8b 3.0±1.4ab 4.0±0.3a 

TA2.5 . 3.0±1.1a 3.6±0.6a 4.7±1.0a 

TA5.0 . 3.1±0.4b 3.4±0.6b 5.6±0.4a 

TA7.5 . 2.7±1.1a 2.8±0.9a 3.9±0.6a 

BCC100 . 2.9±0.9a 2.6±1.1a 3.9±1.4a 

BCC200 . 1.9±0.7a 2.6±0.8a 3.0±2.1a 

BCC300 . 2.4±0.7a 1.6±0.1a 2.9±1.0a 

PSPC100 . 2.3±0.3a 2.6±0.5a 3.9±1.4a 

PSPC200 . 2.6±0.7a 3.2±1.8a 3.4±1.5a 

PSPC300 . 2.1±0.6a 2.9±0.3a 2.8±1.4a 

EMIQ25 . 1.8±0.3a 3.3±1.6a 3.8±1.0a 

EMIQ50 . 1.6±0.5b 2.5±0.9ab 4.6±2.2a 

EMIQ75 . 1.9±0.1a 1.8±0.2a 2.4±0.7a 

Refer to Table 36 for treatment identification. IC₅₀ of DPPH radical values by weeks of 

storage not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD), 3 analyses. 
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Figure 29 Mean IC₅₀ (mg) of DPPH radical values among copigment treatments over 

storage time. 

IC₅₀ of DPPH radical values by weeks of storage not sharing the same letter are 

significantly different (p≤0.05) based on one-way ANOVA. n=144 analyses (±SD).  

 

 In this study, average total antioxidants of elderberry tinctures was 40.1 

micrograms of trolox equivalents per 100 g (µg TE/100 g), regardless of copigment 

treatment or weeks of storage. Interestingly, the control treatment contained the 

lowest amount of total antioxidants (29.3 µg TE/100 g), and treatments which contained 

copigment additives showed increases to total antioxidant levels as their concentration 

increased (Table 57). These results substantiate the fact that all of the copigment 

additives used in this study contained phenolic compounds, which contributed to the 

antioxidant capacity of elderberry tinctures. It is unlikely that these increases to 

antioxidant capacity were a result of effective copigmentation, as it was previously 

theorized that the high ethanol content (30.1%) of the tinctures disrupted 

intermolecular associations (Mazza and Brouillard 1990, Brouillard and others 1991, 

Gutiérrez 2003). Although there were observable differences among the total 

antioxidant levels of elderberry tinctures, many statistically significant (p≤0.05) effects 
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were not observed among copigment treatments due to relatively large variation in 

data. Regardless, it is believed that these data are presented with good accuracy and 

relatively good precision, due to the high amount of analyses among copigment 

treatments (n=18) and overall (n=448).  

 

Table 57 Mean Total Antioxidant Values (µg TE/100 g) of Elderberry Tincture by 

Copigment Treatment 

Copigment 
Treatment 

Total Antioxidants 
(µg TE/100 g) 

Control 29.3±6.8cd 

RME100 35.3±15.5bcd 

RME200 39.5±15.2abcd 

RME300 42.0±23.2abcd 

TA2.5 29.6±9.0cd 

TA5.0 27.8±7.7d 

TA7.5 36.9±15.7bcd 

BCC100 38.0±16.9abcd 

BCC200 49.5±19.3ab 

BCC300 49.3±15.6ab 

PSPC100 37.7±9.8bcd 

PSPC200 41.6±23.4abcd 

PSPC300 44.0±14.9abc 

EMIQ25 40.8±16.5abcd 

EMIQ50 46.9±23.9ab 

EMIQ75 53.0±10.2a 

Refer to Table 36 for treatment identification. Treatments not sharing the same letter 

are significantly different (p≤0.05) among copigment treatments based on one-way 

ANOVA. n=18 analyses (±SD). 

 

 Similar to the previous antioxidant results, significant (p≤0.05) losses of total 

antioxidant levels (µg TE/100 g) of elderberry tinctures were detected throughout 

storage, based on one-way ANOVA (Table 58). The total antioxidants of elderberry 

tinctures were 46.8, 41.9, and 31.6 µg TE/100 g at 2, 4, and 6 weeks of storage among all 
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copigment treatments (Figure 30). The majority of antioxidant loss within elderberry 

tinctures occurred between 2 and 4 weeks of storage, which was likely a result of one 

week of accelerated temperature (32° C) storage which occurred within that period of 

time. A strong inverse correlation was noted between total antioxidants and IC₅₀ (r=-

0.89), and moderate correlations were detected between total antioxidants and color, 

anthocyanin, and phenolic variables which were previously mentioned within this 

chapter.  

   

Table 58 Total Antioxidant Values (µg TE/100 g) of Elderberry Tinctures by Copigment 

Treatment Over Storage Time  

Copigment 
Treatment 

0 Weeks 2 Weeks 4 Weeks 6 Weeks 

Control . 36.1±6.1a 27.6±3.8ab 24.2±4.7b 

RME100 . 39.2±21.1a 31.6±5.3a 35.2±20.9a 

RME200 . 37.1±10.4a 49.1±24.0a 32.4±4.4a 

RME300 . 58.5±28.5a 41.7±23.1a 25.7±2.3a 

TA2.5 . 36.7±11.2a 9.8±5.5a 22.4±4.2a 

TA5.0 . 33.6±3.8a 31.2±5.2b 18.6±1.2b 

TA7.5 . 44.2±23.2a 39.4±4.0a 27.1±4.5a 

BCC100 . 38.2±11.5a 47.2±25.7a 28.5±9.5a 

BCC200 . 59.5±19.0a 42.5±14.9a 46.6±25.8a 

BCC300 . 44.8±13.4a 63.9±2.0a 39.3±17.0a 

PSPC100 . 44.5±5.0a 40.3±7.8ab 28.4±9.4b 

PSPC200 . 42.3±13.0a 48.1±40.9a 34.5±14.4a 

PSPC300 . 52.9±18.1a 36.2±4.1a 42.8±18.1a 

EMIQ25 . 58.1±9.6a 35.8±14.6ab 28.4±8.3b 

EMIQ50 . 68.2±19.2a 46.3±21.3ab 26.0±11.1b 

EMIQ75 . 54.4±1.7a 59.5±8.8a 45.1±13.3a 

Refer to Table 36 for treatment identification. Total antioxidants values by weeks of 

storage not sharing the same letter are significantly different (p≤0.05) based on one-way 

ANOVA. Analysis at 6 Weeks includes one week of accelerated temperature storage (32° 

C). n=3 replicates (±SD), 3 analyses. 
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Figure 30 Mean total antioxidant values (µg TE/100 g) among copigment treatments 

over storage time. 

Total antioxidant values by weeks of storage not sharing the same letter are significantly 

different (p≤0.05) based on one-way ANOVA. n=144 analyses (±SD).  

 

 Although the DPPH assay was effective for comparing the total antioxidants of 

elderberry tinctures among copigment treatments, caution is advised when comparing 

these data among research studies. Varying types and amounts of phenolic compounds 

occur within elderberry fruit based on the cultivar, growing conditions, degree of 

ripeness at harvest, and post-harvest storage and processing conditions of the fruit, 

which affects the reaction kinetics of the DPPH radical and can result in significant 

variability of data among studies (Brand-Williams 1995). 

 

Conclusions 

 The elderberry tinctures which were tested in the previous study, entitled 'A 

Competitive Assessment of Commercial Elderberry (Sambucus sp.) Products', were 

identified as poor elderberry products, due to their high moisture/alcohol content, low 

phytochemical contents, poor color and nutrient stability, and relatively high costs. 
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Therefore, the major objective of this study was to evaluate the effectiveness of 

copigment additives on the color, phytochemical contents, and antioxidant capacity of 

elderberry tinctures throughout storage time. It was hypothesized that the copigment 

additives would complex with the natural elderberry anthocyanin pigments within the 

tinctures, resulting in enhanced color and phytochemical stability throughout storage. 

Although previous studies have evaluated the effectiveness of copigment additives on 

berry anthocyanins, no research has been conducted which evaluated copigmentation 

reactions within high alcohol anthocyanin systems, such as elderberry tinctures (Boulton 

2001, Talcott and others 2003, Del Pozo-Insfran and others, Kammerer and others 

2007).  

 Unfortunately, there are no results within this study which justify the effective 

copigmentation of elderberry tinctures by any of the copigment additives used in this 

study. However, some notable effects were observed among some copigment 

treatments. The additions of either black carrot color or purple sweet potato color at 

the 200 or 300 mg/100 mL levels resulted in significant (p≤0.05) effects to the L* color, 

b* color, monomeric anthocyanins, color density, and polymeric color of the elderberry 

tinctures. These two copigment additives were observed as dark purple in color, and 

likely contained substantial amounts of anthocyanins, which contributed to the lower L* 

and b* color values, higher anthocyanin content, and greater red and brown color depth 

of the elderberry tinctures. These effects are not attributed to effective copigmentation, 

and both black carrot color and purple sweet potato color were utilized between one 

and three times greater than their upper recommended usage levels (10-100 mg/100 
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mL) within juice products. Additionally, it was observed that all of the copigment 

additives (rosemary extract, tannic acid, black carrot color, purple sweet potato color, 

EM isoquercitrin) contributed to increased phenolic contents and antioxidant activities 

of the elderberry tinctures. The control treatment consistently displayed the lowest 

total phenolics and antioxidant values among the treatments, and few differences were 

observed among the tinctures which contained copigment additives. These results were 

expected considering that all of the copigment additives used in this study were 

phenolic compounds, and are typically effective copigments within low alcohol, 

anthocyanin-rich beverages. Unfortunately, these results do not signify the successful 

copigmentation of elderberry tinctures by any of the copigment additives, thus these 

additives were not utilized effectively within the tinctures. It is likely that the high 

ethanol content of the tinctures (30.1%) prevented, or dissociated, intermolecular 

complexation between the copigment additives and the elderberry fruit anthocyanins.  

 Many notable effects were observed to the dependent variables of the 

elderberry tinctures throughout 6 weeks of storage. Regardless of copigment treatment, 

significant (p≤0.05) losses of a* color (33% loss), monomeric anthocyanins (23% loss), 

total phenolics (38% loss), and total antioxidants (32% loss), and significant gains of 

color density (14% gain), and polymeric color (46% gain) were observed within the 

elderberry tinctures throughout 6 weeks of storage. These results demonstrated the 

susceptibility of anthocyanic pigmentation throughout storage, and indicate that 

copigment additives were not effective for enhancing the stability of elderberry 

tinctures. These results also showed an inverse relationship between anthocyanic 



157 
 

pigmentation and polymeric color, which signified that brown colored anthocyanin-

tannin products formed as red colored anthocyanin pigments degraded. Furthermore, it 

is theorized that anthocyanins degraded into colorless products prior to converting into 

brown colored products, due to the lack of effects to a* color, b* color, color density, 

and polymeric color between 2 and 4 weeks of storage, despite the linear degradation 

of monomeric anthocyanins. Interestingly, elderberry tinctures which contained either 

black carrot color or purple sweet potato color at the 200 or 300 mg/100 mL levels 

consistently displayed the lowest % polymeric color throughout storage, compared to all 

of the other treatments tested in this study. These results indicate that these 

treatments had greater resistance to anthocyanin degradation, which is likely due to the 

acylated structure of the anthocyanins present within the black carrot and purple sweet 

potato color additives (Bąkowska-Barczak 2005). Additionally, the results of this study 

demonstrated the susceptibility of phenolics to high temperature storage. Notable 

effects were observed during the one week of accelerated temperature (32° C) storage, 

which occurred between 5 and 6 weeks, to the total phenolics, antioxidants, color 

density, and polymeric color of the elderberry tinctures. It is believed that the higher 

temperature storage accelerated the degradation of phenolic compounds, which 

subsequently lowered the antioxidant activity and increased the color depth of the 

tinctures. 

 Overall, the elderberry tinctures produced in this study were representative of 

retail elderberry products. Unfortunately, effective copigmentation of elderberry 

tinctures was not observed among any of the copigment additives, and tinctures cannot 
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be recommended as a valuable product form for the delivery of elderberry 

phytonutrients. It is theorized that alcohol prevents copigmentation, and promotes 

hydrolytic and oxidative degradation of anthocyanins due to low surface tension. Future 

research should investigate the use of copigment additives within low alcohol 

elderberry products, such as syrups, juices, or concentrates.  
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CHAPTER 4. OVERALL CONCLUSIONS 

 Elderberry (Sambucus sp.) fruit is renowned for its healthfulness and has been 

identified among previous research studies to aid in the prevention or treatment of 

illnesses such as influenza, rheumatism, malaria, respiratory syncytial virus, type 1 

herpes, bladder or kidney infections, fever, edema, cancer, angiogenesis, and high 

cholesterol (Burge and others 1999, Youdim and others 2000, Barak and others 2001, 

Zakay-Rones and others 2004). Elderberry fruit has high antioxidant activity, and 

contains relatively large proportions of anthocyanins and other phenolic compounds, 

which contribute to its value as a natural food colorant in lieu of synthetic dyes or 

pigments. The healthfulness of elderberry fruit has been the major incentive for the 

production of value-added elderberry products, such as syrups, tinctures, concentrates, 

capsules, lozenges, dried elderberries, and powders. It was the objectives of the present 

study to analytically evaluate commercial elderberry products throughout accelerated 

temperature (32° C) storage, and to evaluate the effectiveness of copigment additives 

on the color and nutrient stability of elderberry tinctures throughout storage.  

 The majority of the commercial elderberry products tested in this study 

contained appreciable amounts of anthocyanins and other phytonutrients, which were 

generally in greater proportions than observed within raw elderberry fruit. However, 

very low levels of phytonutrients, and/or poor nutrient and color stability were 

observed within some of the value-added products. The elderberry tinctures tested in 

this study contained low levels of anthocyanins, proanthocyanidins, and sugars, high 

levels of moisture/alcohol, appreciable amounts of organic acids, and displayed poor 
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nutrient and color stability characteristics. Manufacturers of elderberry tinctures should 

reevaluate their processing techniques for elderberry fruit, and future research should 

be dedicated towards improving the tinctures' nutrient and color stability 

characteristics. Elderberry syrups represented a substantially better product compared 

to the tinctures tested in this study. The majority of the elderberry syrups displayed 

favorable nutrient and color stability characteristics, however, some of the syrups 

displayed poor characteristics, such as low phytochemical content or poor color. 

Although, the market for elderberry syrup is considered mature, these results signify 

that some of the leading commercial elderberry syrups could be improved upon. It may 

be beneficial for elderberry syrup manufactures to investigate enzymatic clarification, 

filtration, or encapsulation technologies to counter anthocyanic degradation effects. 

The elderberry capsules and lozenges tested in this study generally contained higher 

levels of phytonutrients, and displayed better nutrient and color stability than the 

elderberry syrups or tinctures. Additionally, the ability of the elderberry capsules to 

utilize pomace by-product, and the effective encapsulation of elderberry phytonutrients 

by the capsules and lozenges distinguishes both product forms for their value. The two 

elderberry products tested in this study which contained the highest concentrations of 

phytochemicals and anthocyanic pigmentation were Kerr Elderberry Concentrate and 

NP Nutra® Elderberry P.E. 10:1 powder. Both Kerr Elderberry Concentrate and NP 

Nutra® Elderberry P.E. 10:1 powder have great value-added potential as natural food 

colorants and phytochemical enhancers within wholesale food markets. Future product 
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development endeavors should develop value-added foods with the intention of 

exploiting the rich phytochemical contents of these two similar products.  

 Based on the poor performance of the elderberry tinctures which were analyzed 

in the first part of this research, it was the objective of the second study to evaluate the 

use of copigment additives (rosemary extract, tannic acid, black carrot color, purple 

sweet potato color, EM isoquercitrin) for the enhancement of phytochemical and color 

stability of elderberry tinctures. Unfortunately, the results of the second study did not 

demonstrate effective copigmentation among any of the copigment additives utilized 

within elderberry tinctures. It is believed that the high ethanol content (30.1%) of the 

tinctures prevented the pigments from forming a complex, which should have occurred 

between the copigment additives and the elderberry anthocyanins (Mazza and 

Brouillard 1990). Although, previous research studies have demonstrated effective 

copigmentation within berry wines, which typically contain 9%-21% ethanol, there are 

no studies which have evaluated copigmentation reactions within higher alcohol, 

anthocyanin-rich, beverage systems (Brouillard and others 1991, Gutiérrez 2003). 

Interestingly however, all of the copigment additives contributed to increased phenolic 

contents and antioxidant activity within the elderberry tinctures, and both black carrot 

color and purple sweet potato color additives affected the L*a*b* color values, 

monomeric anthocyanins, color density, and polymeric color of the tinctures. 

Additionally, this study provided insight into the degradation kinetics of elderberry 

tinctures throughout storage time. It is theorized that elderberry anthocyanins first 

degraded into colorless products prior to converting into brown tannin pigments, due to 
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the lack of effects on a*and b* color values, color density, and polymeric color between 

2 and 4 weeks of storage, despite the linear degradation of monomeric anthocyanins 

which was observed throughout the entire 6 weeks of storage. Although, the elderberry 

tinctures produced in this study initially displayed positive nutrient and color 

characteristics, their decrease in phytochemical content and lack of color stability 

throughout storage signified an insufficient product form for the utilization of elderberry 

fruit. Future research studies should investigate the effectiveness of copigment 

additives within elderberry tinctures which contain lower ethanol contents (i.e. 26%-

30%), and/or evaluate the effects of enzymatic clarification on copigmentation 

reactions.  

 Overall, this research is beneficial to consumers who desire to make informed 

elderberry product purchases, as well as to food or beverage processors who are 

looking to utilize elderberry or similar fruit crops. With the known healthfulness of 

elderberry fruit and the low market competitiveness of elderberry fruit products, there 

is great opportunity for the introduction of new elderberry products within the general 

consumer market (Cernusca and others 2011). Additionally, this research provides 

insight into the reaction kinetics of anthocyanin copigmentation, and should be 

beneficial to researchers who are attempting to develop anthocyanin-rich products with 

enhanced nutrient and color stability characteristics. Future research should be 

dedicated toward the development of a wider array of elderberry products and 

determining their acceptability by consumers. 
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