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 Molecular camouflage is used by a diverse set of pathogens to disguise their identity 

and avoid recognition by protective host receptors. The opportunistic fungal pathogen Candida 

albicans is a good example, as it masks the inflammatory component β-glucan in its cell wall to 

evade detection by the immune receptor Dectin-1. Interestingly, it has been seen that β-glucan 

becomes unmasked during infection in vivo, though the underlying mechanisms remained 

unclear. Exposure levels of this epitope may be important, as Dectin-1 mediates protection from 

some strains of C. albicans and alterations in the organization and composition of the Candida 

cell wall can influence host responses. 

This research sought to understand C. albicans cell wall dynamics, particularly within the 

context of host-pathogen interactions. Special attention was paid to elucidating mechanisms of 

β-glucan unmasking and we have revealed a novel and dynamic interaction in which neutrophils 

damage the fungal cell wall via a mechanism involving neutrophil extracellular traps. This 

damage provoked the disruption of fungal cell wall architecture including increased chitin 

deposition and β-glucan unmasking at sites of immune attack. Surprisingly, these cell wall 

changes were also dependent on an active fungal response, which required cell wall integrity 

signaling and involved relocalization of cell wall remodeling components. Importantly, 

neutrophil mediated β-glucan unmasking could result in enhanced immune responses to fungi 



 
 

from macrophages, suggesting that this epitope unmasking could have functional consequences 

during infection. Work we participated in helped elucidate mechanisms involved in baseline 

fungal epitope masking in the form of Cho1 and phosphatidylserine biosynthesis and also 

demonstrated that changes to cell wall composition and architecture influence the importance 

of β-glucan exposure to host responses to C. albicans. 

Overall, this work helps elucidate the importance of host-pathogen interactions in 

influencing fungal cell wall dynamics during disseminated candidiasis. Given the importance of 

the cell wall as a drug target, understanding how this fungus maintains integrity and epitope 

masking during attack may identify therapeutic targets to aid the treatment of candidiasis. This 

work also highlights an important concept, which is that microbial cell walls can change 

dynamically during infection with important consequences for host recognition and immunity.
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CHAPTER 1 

REVIEW OF THE LITERATURE 

1.1 Host-Pathogen Interactions: Shaping the Outcome of Infection 

While humanity may like to think itself the masters of this planet, the world is truly 

dominated by microbes. In fact, the estimated 1012 bacteria on our skin, 1010 in our mouths and 

1014 in our GI tract leave the estimated 3.72 x 1013 trillion cells that compose our body 

hopelessly outnumbered before even considering the vast reservoirs of microbes in the 

environment (1, 2). The human body is therefore forced to exist in a state of eternal readiness, 

as we are constantly on the brink of being overrun by a horde of microbial invaders. When 

restricted to the appropriate locations, many microbes are benign or can even be beneficial, as 

the importance of the microbiota to nutrition and proper immune system development has 

begun to be elucidated (3). Unfortunately some microbes are pathogens which, upon successful 

invasion, can cause debilitating or lethal disease in their host. Indeed, even normally benign 

microbes cause harm if allowed to roam freely into normally sterile sites. In order to survive, a 

host must therefore be able to restrict where microbes are able to access and be ready to 

confront those which breach such barriers. The immune system is evolution’s answer to such a 

demanding request, representing a complex network which allows the host to maintain its vigil 

against foreign microbes and then decide how best to deal with any invaders which slip past 

those walls (4). This system is typically broken down into two main parts, the adaptive and the 

innate immune system. Adaptive immunity is usually associated with the development of a 

highly specific responses, with activation of immune cells like lymphocytes which include T cells 

and B cells. This arm of the immune system is primarily responsible for immunological memory 

and has been highly studied in relation to vaccine development. The innate immune system is 

usually thought of as providing less specific responses and is comprised of professional 
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phagocytes like macrophages and neutrophils as well as epithelial cells which provide an 

important front line as a barrier at mucosal surfaces (5). These two arms of immunity are a 

highly connected network, with phagocytes from innate immunity responsible for activating 

adaptive responses via antigen presentation and cytokine secretion (6). Activated adaptive 

responses can then direct innate immunity via further cytokine and chemokine production. 

Discoveries in recent years have begun to blur the lines between innate and adaptive immunity 

even further, with innate lymphoid cells that produce cytokines characteristic of adaptive 

lymphoid cells and “trained immunity” in which innate cells show limited immunological 

memory (7, 8).  

1.2 Host Recognition of Infection 

Every immune response begins with the host having to solve one seemingly simple 

question “What’s attacking me?” Unfortunately, the vast diversity of potential pathogens which 

the host may encounter, including bacteria, viruses, protozoans, helminths and fungi, make 

devising a system capable of correctly answering that question a daunting task. The stakes are 

quite high as individual pathogens often require a specific immune response to effectively clear 

them and mechanisms which function against one pathogen may be ineffective or worse, cause 

collateral damage or promote infection with another. The immune system must therefore have 

a toolset that allows for both exquisite sensitivity and the rapid initiation of a response. 

Evolution has provided this toolset in the form of pathogen recognition receptors (PRRs), which 

recognize a wide variety of pathogen associated molecular patterns (PAMPs) present in or on 

microbes. These PRRs include many receptor families such as the Toll-like receptors (TLRs), the 

C-type lectins receptors (CTLs), the nucleotide-binding oligomerization domain like receptors 

(NLRs), and the retinoic acid inducible gene (RIG-I) like receptors (9). Upon binding of their 

specific ligand, which can include PAMPs as diverse as bacterial lipopolysaccharide, nucleic acids 
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such as DNA or RNA, or carbohydrates like fungal β-glucan, these receptors activate signaling 

pathways which can induce important and protective immune functions (9). This includes 

responses like phagocytosis, the production and mobilization of antimicrobials (including 

reactive oxygen or nitrogen species, proteases and antimicrobial peptides), and cytokine and 

chemokine production which act together to help directly clear the pathogen and to activate 

adaptive immunity (9, 10).  

1.3 Fungal Infections 

Most people are familiar with the big name infections that stalk humanity. Malaria. 

Influenza. Tuberculosis. These infections represent a major global health burden and have, 

deservingly, received a great deal of attention. Unfortunately, while these type of infections 

hold everyone’s attention, few seem to be aware that another type of microbial predator has 

emerged from the shadows in the form of fungal infections. Fungi are an emerging threat to 

biodiversity, agriculture and human health on a global scale with examples of both primary and 

opportunistic pathogenic potential seen threatening plants, arthropods, amphibians, reptiles, 

fish, birds and mammals, including humans (11).  

Recent years have provided front row seats to the destructive power fungal infections 

can exert on biodiversity with Chytridiomycosis providing a particularly chilling example. This 

disease is caused by the fungus Batrachochytrium dendrobatidis and has an enormous host 

range, being shown to be able to infect over 500 different species often with a high degree of 

virulence. Chytridiomycosis has been decimating global amphibian populations with some areas 

of Central America losing over 40% of their amphibian species and causing nearly half of 

amphibian species worldwide to see population declines, representing one of the greatest 

disease driven losses of biodiversity ever documented (11). Chytridiomycosis is unfortunately 

not the only example of an emerging fungal infection wreaking havoc in the natural world. 



4 
 

Geomyces destructans, which causes white nose syndrome, has been devastating North 

American bat populations with afflicted sites showing up to 70% population decline and at least 

one species predicted to have a 99% chance of local extinction because of this disease. Beyond 

the cost to biodiversity and ecosystem health, it has been estimated that this decline in bat 

populations costs US agriculture more than $3.7 billion per year. Fungal infections also 

represent a significant direct agricultural threat as wheat stem rust and rice blast disease are 

estimated to account for loss of food for 414-2155 million people on an annual basis (11). 

During a survey of published literature it was determined that fungi were responsible for 72% of 

animal and 57.1% of plant extinctions or extirpations due to infectious disease, observations 

that may actually be underestimations due to poor surveillance of infectious disease in natural 

systems, especially in the tropics (11).  

Facing the global disruption of ecosystems and agriculture caused by fungal infection would be 

daunting enough, but fungi are also highly capable of preying directly on humans where they 

can act as either primary or opportunistic pathogens. Superficial infections of the skin and nails 

such as athlete’s foot and ringworm are incredibly common and are thought to affect up to 25% 

of the world’s population. Mucosal infections, such as oral thrush and vaginal yeast infections 

are also quite common, with up to 50-75% of women in their childbearing years experiencing at 

least one episode of vulvovaginitis (12). These superficial infections, while not usually life-

threatening, represent a major public health burden and can be the cause of significant 

discomfort. The more urgent issue however, is that fungi can also cause invasive and lethal 

infection. Histoplasma capsulatum, Paracoccidioides brasiliensis, Coccidioides immitis and 

Blastomyces dermatitidis can all act as primary pathogens with life threatening consequences 

for those afflicted and opportunistic fungal pathogens are targeting the substantial 

immunocompromised populations which have emerged due to modern medical interventions or 
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the rise of immune suppressing infections like HIV/AIDS. These opportunistic fungi include 

Candida albicans, Aspergillus fumigatus, Cryptococcus neoformans, Rhizopus oryzae and 

Pneumocystis jirovecii. It is thought that, globally, there are greater than 400,000 life 

threatening infections with C. albicans, greater than 200,000 with A. fumigatis and nearly 1 

million with C. neoformans on an annual basis. The mortality rate with these infections is 

currently unacceptably high, with C. albicans estimated at 28-46% and A. fumigatis estimated 

between 30-95% despite modern antifungal therapy. Cryptococcus infection also has a high 

mortality rate, with 15-20% seen in the United States despite medical treatment and even 

higher rates, up to 50-70%, in Latin America and sub-Saharan Africa where treatment is not as 

readily available. Out of the nearly 1 million estimated global cases of cryptoccocal meningitis 

that occur annually, over 620,000 deaths were estimated to have occurred in sub-Saharan Africa 

alone (12). In fact, there is an equal or greater number of deaths caused by the top 10 invasive 

fungal infections than by tuberculosis or malaria, demonstrating the devastating burden these 

fungal infections have on human health. The number of fungal outbreaks investigated each year 

by the Centers for Disease Control has increased considerably since the 1990s and, as modern 

medical procedures and the global AIDS pandemic continue to increase the number of 

susceptible immunocompromised individuals, this trend is not likely to reverse (13). Many 

fungal infections have limited therapeutic options and resistance to antifungal drugs has 

emerged which makes a greater understanding of these infections, especially the interactions 

which occur between host immunity and the fungus, a necessity if we are going to improve 

patient outcomes (12). 

1.4 Candida albicans 

C. albicans is a polymorphic fungus which can grow in the ovoid yeast form, the 

elongated hyphal form or as pseudohyphae (14). While often found as a commensal on the skin 
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and mucosal surfaces of healthy individuals, it can act as an opportunistic pathogen causing 

superficial mucosal diseases like oropharyngeal candidiasis and the vulvovaginal candidiasis as 

well as life threatening disseminated candidiasis, especially in the immunocompromised (12). 

Neutropenia, corticosteroid use, antibiotic use, invasive medical procedures such as indwelling 

catheters, major gut surgery or liver transplants and extended hospital stays in intensive care 

represent risk factors for developing disease (12). Candida species represent the 4th most 

common nosocomial cause of bloodstream infections and while there are over a dozen Candida 

species capable of infecting humans, C. albicans is by far the most common and mortality rates 

for invasive disease caused by C. albicans are estimated to extend as high as 46% even with 

modern drug treatments, demonstrating the severe burden that this fungus places on the health 

care system and individual patients (12). C. albicans has a number of abilities which influence 

virulence and allow it to thrive as a pathogen. Morphogenic switching, the ability to switch from 

growing as yeast to hyphae or vice versa, is thought to be of prominent importance for virulence 

and both morphotypes seem to play important roles as strains locked either as yeast or as 

hyphae show defects (15, 16, 14). Adhesins and numerous other factors allow C. albicans to bind 

effectively to host and environmental surfaces and establish biofilms or invade tissues (17, 18, 

19). C. albicans is highly capable of sensing and adapting to the stress from its environment, a 

key trait for surviving the highly varied and dynamic niches within a host. Important stresses 

include nutrient availability as well as pH and the presence of reactive oxygen and nitrogen 

species. Sensing of these stresses is typically done through cell wall integrity pathways. These 

pathways, which include Hog1, Mkc1 and Cek1 are all part of map kinase signal transduction 

pathways and can lead to the regulation of fungal responses at both the transcriptional and 

post-transcriptional level to specific stressors (20). Hog1 is important for adaption to stress 

including osmotic stress, oxidative stress as well as chemical cell wall stressors and antifungal 
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drugs (20, 21). Importantly, hog1 deficiency results in increased susceptibility to killing by 

immune cells, suggesting this pathway would be of great importance during interaction with the 

host (22). Mkc1 is also activated following numerous stresses including osmotic and oxidative 

stress as well as antifungal drugs (20, 23). The Cek1 pathway is important for cell wall growth 

and construction and cek1 deficient mutants show altered cell wall morphology (24) as well as 

susceptibility to cell wall stressors like antifungals (25). cek1 deficiency increases resistance to 

killing by some phagocytes (22), but decreases it against others (24). Unsurprisingly C. albicans 

deficient in hog1, mkc1 or cek1 show decreased virulence in infection models demonstrating the 

importance of all these pathways in adapting to the dynamic environments in a living host (26, 

27, 28). Finally, the ability to regulate cell wall architecture to hide immunogenic epitopes in the 

fungal cell wall from host recognition can contribute to immune evasion and virulence of this 

organism. Masking of these epitopes, particularly the carbohydrate β-glucan, requires a complex 

network of genes including those involved in cell wall integrity signaling, phospholipid 

biosynthesis and numerous other functions which will be explored in more detail later on (29, 

24, 30). 

1.5 Host Recognition of C. albicans Infection 

As alluded to above, host immune responses begin with recognition of PAMPs from the 

pathogen. The C. albicans cell wall consists of an outer layer of mannan and mannoproteins 

connected by β-1,6 glucan linkers to inner layers of β-1,3 glucan and chitin (31). Many of these 

components are capable of being recognized by the host and eliciting immune responses by a 

multitude of host PRRs including members of the TLR, CLR and NLR families (10). As 

carbohydrates make up the majority of the cell wall (90%), they tend to dominate host 

recognition, however proteins also represent important antigens (31).  
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1.5.1 Toll-like Receptors 

Fungal mannan can be recognized by members of the TLR family like TLR2, which 

recognizes phospholipomannans and TLR4 which recognizes O-linked mannans. TLR4 is 

important for host defense, as it induces inflammatory cytokines and both TLR2 and TLR4 

deficient mice are more susceptible to disseminated candidiasis (32, 33), though this depends 

on the C. albicans strain (34). TLR9 has been found to be able to collaborate with NOD2 and 

Mannose receptor (MR) to induce IL-10 in response to fungal chitin (35). Mice deficient in 

MyD88, the adaptor used by most TLR signaling, are also more susceptible to disseminated 

candidiasis (36), supporting the importance of TLRs for host defense in this model. The 

importance of TLRs in human defense against C. albicans is less clear, while some studies have 

found associations between polymorphisms in TLR2 or TLR4 and risk for candidemia, a larger 

study of patients found no association. TLR1 polymorphisms have also been linked with 

susceptibility to candidemia, but these findings have not yet been replicated. Polymorphisms in 

TLR3 have been suggested to be related to chronic mucocutaneous candidiasis (CMC) (37). 

Interestingly, humans with defects in MyD88 don’t appear particularly susceptible to candidiasis 

(38, 39), suggesting that in humans other PRR pathways play more prominent roles in organizing 

antifungal immunity. 

1.5.2 C-Type Lectin Receptors 

Members of the CLR family, which includes Dectin-1, Dectin-2, Dectin-3, Mincle, 

Mannose receptor (MR) and dendritic cell specific intercellular adhesion molecule-3 grabbing 

non-integrin (DC-SIGN), are thought to play critical roles in host detection of fungi. This is 

supported by the fact that many patients deficient in caspase recruitment domain containing 

protein 9 (CARD9), an important adaptor for many CTL signaling pathways, show increased 
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susceptibility to both CMC and invasive fungal disease (40). This stands in contrast to patients 

deficient in MyD88, the primary adaptor for most TLR signaling, who don’t show increased 

susceptibility to fungal infection (38, 39). 

1.5.2.1 Dectin-1 

The fungal cell wall component β-glucan is recognized by a wide variety of organisms, 

including invertebrates, plants and animals suggesting that it represents an evolutionarily 

important fungal PAMP. In mammalian systems like mice and humans, the major β-glucan 

receptors are Dectin-1 and Complement receptor 3 (CR3), though other receptors have also 

been reported to recognize this PAMP (41, 42). Dectin-1 activation results in direct signaling but 

can also influence the outcome of signaling by other PRRs like TLR2 and TLR6. Activation of 

Dectin-1 by fungal β-glucan signals via the spleen tyrosine kinase through CARD9-BCL10-MALT1 

and eventually to NF-κB (42). It can also result in signaling through other pathways that include 

Raf1 (43). Dectin-1 activation leads to immune responses including phagocytosis, activation of 

the oxidative burst, activation of both classical and non-classical inflammasomes (44, 45) and 

the production of cytokines including TNF-α, IL-1β, IFN-β, IL-6, IL-12 and Il-23 and CXCL2 (42, 43). 

This cytokine production can help shape adaptive immunity, as activation by the selective ligand 

curdlan (a β-glucan polymer) is sufficient for promoting the induction of Th1 and Th17 

responses. It may not be absolutely required however, since Dectin-1 deficient mice still 

developed Th17 responses during C. albicans infection (46), with another CTL, Dectin-2, able to 

compensate for its absence (47). Dectin-1 has been demonstrated to play critical roles in anti-

fungal defense in both humans and mice, though its importance during defense against 

candidiasis is still under debate (48, 49). Recent data suggests that the importance of Dectin-1 

for defense against disseminated candidiasis in a murine model depends on the C. albicans 

strain used (50). Humans with a Dectin-1 polymorphism are more susceptible to chronic 
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mucocutaneous candidiasis (CMC) and recurrent vulvovaginal candidiasis (51) and this 

polymorphism has been associated with C. albicans colonization in stem cell transplant patients 

(52). Dectin-1 polymorphism has also been linked to a severe form of ulcerative colitis (53). No 

link between Dectin-1 polymorphism and susceptibility to disseminated candidiasis in humans 

has been found yet however, suggesting other receptors play important roles in protection from 

this form of infection.  

1.5.2.2 Dectin-2 and Dectin-3 

Dectin-2, which recognizes α-mannan, can induce the production of cytokines like TNF-

α, Il-6, IL-1β and IL-23, and is thought to play a major role in signaling adaptive immunity to 

develop a Th17 response after C. albicans infection (10). These responses are important for host 

defense, as Dectin-2 deficient mice have been seen to be more susceptible to C. albicans 

infection, though its requirement is controversial (54, 55, 47). Recent work has demonstrated 

that the CLR Dectin-3 collaborates with Dectin-2 to mediate N-linked mannan recognition and 

proinflammatory responses. Dectin-3 is also important for host defense, as blocking Dectin-3 

makes mice more susceptible to disseminated candidiasis (55). 

1.5.2.3 Mincle and Mannose Receptor 

Mannan is also recognized by the CTL Mincle, and fungal recognition by this receptor 

can lead to phagocytosis, fungal killing, induction of cytokines like TNF-α and IL-6 and 

chemokines MIP-2 and KC (10). Mice deficient in Mincle have been seen to be more susceptible 

to disseminated candidiasis, though other studies have reported that Mincle isn’t required to 

recognize C. albicans (56, 57). This may be due to strain dependent differences in recognition, 

which has been seen for other C-type lectins like Dectin-1 (57, 50). The role of Mincle in human 

infection is not clear, as no defects in Mincle linked to susceptibility to fungal infection have 

been found yet (10). MR recognizes N-linked mannan in C. albicans and has been shown to be 
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able to promote IL-17 production (58). MR has also been demonstrated to play a role in the 

recognition of C. albicans chitin which induces IL-10 production in conjunction with TLR9 and 

NOD2 (35). MR deficient mice are not more susceptible to disseminated candidiasis however, 

suggesting either that there are differences between human and mouse MR, or that MR plays a 

redundant role which can be compensated for by other receptors (10). 

1.5.2.4 DC-SIGN 

DC-SIGN recognizes mannose and fucose carbohydrate structures. This receptor can 

activate Raf-1 signaling which allows it to influence signaling induced by receptors like the TLRs 

and other CLRs (43).  DC-SIGN has also been shown to be bind to C. albicans N-linked mannan 

with high affinity (59) and can mediate its uptake by dendritic cells (60, 61). The influence of DC-

SIGN on the adaptive response during C. albicans infection is unclear, though DC-SIGN can 

inhibit Dectin-1 mediated Th17 responses in a tuberculosis model (62) and those deficient in DC-

SIGN have increased susceptibility to invasive pulmonary aspergillosis during stem cell 

transplant of chemotherapy suggesting it can play a role during human infection (10). 

1.5.3 NOD-like Receptors 

The NOD like receptors (NLRs) are a group of cytosolic receptors that can recognize 

internalized PAMPs and include both the NOD and the NOD leucine rich repeat and pyrin 

domain containing protein (NLRP) subfamily. Members of the NOD family include NOD1 and 

NOD2. Recognition of chitin and the resulting induction of IL-10 was shown to depend on NOD2, 

in collaboration with TLR9 and MR (35). The importance of NOD1 and NOD2 in C. albicans 

recognition remain to be defined as only in vitro studies have been done. One study found no 

association between NOD2 polymorphisms and increased susceptibility to C. albicans in 

humans, suggesting that it may not play a critical role (63). NLRPs family members like NLRP3 

and NLRC4 do play an important role in antifungal defense. Mice deficient in NLRP3 are more 
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susceptible to disseminated candidiasis and NLRC4 is important for defense against oral 

infections (64, 65). Interestingly, NLRP3 and NLRC4 show compartment specific requirements, 

with NLRP3 being required in hematopoietic cells and NLRC4 in the mucosal stroma 

demonstrating the niche specific nature of host defenses (10). NLRP3 has also been implicated 

as contributing to host responses during vaginal infection of the mouse model (66). 

Polymorphisms in NLRP3 has been associated with increased risk for recurrent vulvovaginal 

candidiasis (RVVC) in humans, suggesting that these receptors do play a role in defense against 

C. albicans in humans (67). 

1.5.4 RIG-I like Receptors 

The RIG-I like receptor family are well characterized for their role in mediating antiviral 

responses. This family, which includes RIG-I and MDA5, are helicases which recognize nucleic 

acids and initiate signaling that leads to an immune response, often centering on type-1 

interferon, which is important for defense against viruses (68). A recent study has demonstrated 

that MDA5 is also capable of influencing the immune response against C. albicans infection in 

mice, and that polymorphisms in MDA5 may be associated with infection in humans as well, 

though what fungal component activates this receptor was not identified (69). Interestingly, a 

role for type 1 interferon in human responses to C. albicans has been suggested (37) which, 

given the central role RLRs can play in the induction of IFN responses to viral infection, suggests 

a possible mechanism for how MDA5 influences human responses to Candida infection. 

1.6 Host Defense against C. albicans Infection 

Once initiated by PAMP recognition, host defense against C. albicans involves a complex 

array of factors which vary depending on both the site and timing of the infection. Innate 

immunity plays a particularly important role, as defects in this arm of immunity are primary risk 
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factors for severe disseminated disease while defects in adaptive immunity are associated with 

mucosal disease (12, 63). 

1.6.1 Neutrophils 

The innate immune cell known as the neutrophil is well equipped to defend against 

invading microbes. They are usually recruited rapidly to the site of infection where they can 

deploy a highly diverse arsenal to contain or kill microbes including fungi (70). Neutrophils are 

one of the most critical innate immune cells in defense against invasive fungal infections 

including disseminated candidiasis, as neutropenia is a primary risk factor for developing this 

disease and is associated with poor patient outcomes from invasive fungal infection (71).  

1.6.1.1 Neutrophil Antimicrobial Mechanisms 

Neutrophils play a critical role in innate defenses and they are armed to the teeth with 

antimicrobial weapons to use against any invaders they encounter. The NADPH phagocyte 

oxidase plays a central role in these antimicrobial functions as it allows neutrophils to produce 

reactive oxygen species (ROS). These ROS can be used to generate reactive nitrogen species 

(RNS) or further processed by superoxide dismutase to create the antimicrobial hydrogen 

peroxide, which in turn can be used by myeloperoxidase (MPO) to generate the potently 

antimicrobial hypochlorite (70). Neutrophils also have antimicrobial peptides and proteases, 

which could also contribute to fungal killing (70, 72). The critical nature of neutrophils to 

defense against disseminated candidiasis can be seen in the highly susceptible nature of 

neutropenic humans or mice to this disease (73, 74, 75). When the neutrophils phagocytose a C. 

albicans yeast, ROS, hypochlorite, RNS, antimicrobial peptides and proteases combine to create 

an extremely hostile environment in the phagolysosome that is important for fungal killing (76). 

When confronted by particles too big for phagocytosis, such as the hyphal form of the fungus, 

neutrophils can attempt to deploy those same weapons by extruding them onto the hyphae via 
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frustrated phagocytosis or the can use a weapon known as neutrophil extracellular traps (NETs) 

(77, 78, 79). NETs occur when a neutrophil extrudes its DNA, which is both antimicrobial in itself 

and is coated in potent antimicrobials like citrullinated histones and MPO, out onto a pathogen. 

This creates a trap that is thought to contain the spread of infection as well as have direct 

antimicrobial function (80, 70). NETosis was initially thought to be a form of cell death that 

ended with the destruction of the neutrophil, however examples of NETosis have been seen 

which do not kill the cell, allowing the neutrophil to create a NET while remaining viable (81, 82). 

NETs have been shown to be deployed against C. albicans and are capable of killing both yeast 

and hyphae in vitro (79). It has also been demonstrated that they are preferentially deployed 

against C. albicans hyphae where phagocytosis is not an option due to the size of hyphal cells 

(83). The components required for NET formation appear to be highly context dependent, and 

could involve the NADPH oxidase, MPO and neutrophil proteases depending on the stimuli and 

conditions used (84, 83, 85). Unfortunately, the highly potent weapons neutrophils deploy 

against pathogens are equally destructive to host tissue and this collateral damage can sabotage 

efforts to survive infection. Aberrant recruitment and accumulation of neutrophils to the kidney 

of mice with disseminated candidiasis has been shown to be responsible for significant 

immunopathology during infection and is one of the primary factors driving the decline of the 

animal’s health (86). Therefore neutrophil responses, while absolutely critical for host defense, 

also need to be tightly regulated to minimize collateral damage to tissues and ensure the 

successful survival of the host.  

1.6.2 Mononuclear Phagocytes 

Mononuclear phagocytes, which include cells like monocytes, macrophages and 

dendritic cells are also involved in host defense against candidiasis. The ability of macrophages 

to control C. albicans is debated, as it has long been seen that C. albicans yeast can use 
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germination into hyphae as a mechanism to kill the immune cell and escape in vitro though 

many other studies have indicated their importance to defense against candidiasis (87). 

Macrophages have been demonstrated to be able to contain C. albicans in vivo in a zebrafish 

model however, raising the question of whether the in vitro environment has been providing an 

accurate reflection of macrophage’s abilities in vivo (88). Furthermore, mononuclear phagocytes 

have been shown to be critical for defense during disseminated candidiasis in a murine model, 

where they were required to limit fungal growth in the kidney at early timepoints (71, 89). This 

was dependent on Cx3cr1, as Cx3cr1 deficient mice had less macrophages in the kidney and 

were much more susceptible to disease. Humans with the dysfunctional CX3CR1-M280 allele 

show increased susceptibility to disseminated candidiasis as well, supporting the clinical 

relevance of these findings. Interestingly, Cx3cr1 does not seem to play a role in defense against 

mucosal candidiasis, demonstrating how unique factors are involved in host defense at different 

sites of infection (71). Mechanistically, mononuclear phagocytes can directly contain the fungus, 

assist other immune cells or act as bridges to activate adaptive immunity. Macrophage 

extracellular traps (METs) have been shown not to be able to control or kill C. albicans in vitro 

(90), however this work was done with cell culture and thioglycollate elicited macrophages 

which are different than macrophages from other sources (i.e. murine macrophages derived 

from bone marrow, resident macrophages from different organs or those from humans) 

suggesting that more work needs to be done to fully elucidate a definitive answer on the role of 

METs and macrophages in host defense. Dendritic cells have also been shown to be important 

for orchestrating both adaptive and innate immune responses against C. albicans. Human 

dendritic cells are critical for the expansion of an IL-17 producing subset of γδ T cells in response 

to C. albicans (91). Dendritic cell and Syk signaling are also involved in organizing natural killer 

cell (NK) mediated GM-CSF secretion, a process that enhances neutrophil antifungal function 
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(92). Furthermore, a dendritic cell mediated type-I INF-β response was also critical for host 

immunity to C. albicans (93), demonstrating the multifaceted role these cells can play. 

1.6.3 The Inflammasome 

The inflammasome is the term for a complex of proteins that are critical for the 

processing of immature cytokines like pro-IL-1β and pro-IL-18 into their mature functional 

forms. The classical inflammasome consists of sensor molecules like the NLRP family member 

NLRP3, the ASC adaptor protein and caspase-1. Upon recognition of microbial ligands, NLRPs will 

associate with ASC. ASC then assembles into a large complex of ASC dimer multimers, which can 

interact with pro-caspase-1. Bringing pro-caspase-1 monomers into proximity allows for self-

cleavage and the formation of active caspase-1 heterodimers. Caspase-1 can then proteolytically 

process many proteins, including pro-IL-1β and pro-IL-18, which are then active and can be 

released to influence immunity (94). The inflammasome is known to be activated by C. albicans 

infection, with inflammasome mediated processing of IL-1β shown to be downstream of TLR2 

and Dectin-1 signaling (44). Non-classical inflammasome activation of IL-1β in response to C. 

albicans can also occur, with ASC and caspase-8 responding directly to the CARD9-BCL10-MALT1 

complex following Dectin-1 signaling (45). The inflammasome plays an important role in defense 

against C. albicans, as mice deficient in inflammasome components NLRP3, NLRC4, ASC or 

caspase-1 are more susceptible to infection, though it makes them less susceptible to the 

immunopathology associated with vaginitis (10, 66). As mentioned above, NLRP3 polymorphism 

has been found to be associated with RVVC, suggesting the inflammasome can play a role in 

human infection (67).  

1.6.4 Natural Killer Cells 

NK cells, while largely appreciated for their roles in host defense against virus and other 

intracellular pathogens, have also been shown to play critical roles in protection against 



17 
 

disseminated candidiasis, where they act on neutrophils by secretion of GM-CSF, IFN-γ and TNF-

α (95, 96). NK cells can also phagocytose C. albicans, though this didn’t prevent hyphal growth 

suggesting that this ability may not be of primary importance for their antifungal contributions. 

Extracellular perforin from NK cells did have antifungal activity against C. albicans however, 

suggesting that NK cells can play both direct and indirect antifungal roles (96).   

1.6.5 Adaptive Immunity 

While innate immunity is primarily responsible for defense against disseminated 

candidiasis, adaptive immunity also responds to Candida infection and is important for defense 

against mucosal infection. The T-helper 17 (Th17) response in particular is thought to play an 

important role in antifungal responses, including those against C. albicans (97, 63). The 

cytokines IL-1β, IL-23, IL-6 and TGF-β help skew T-cells towards Th17 differentiation and these 

Th17 cells then produce the characteristic cytokines IL-17A, IL-17F and IL-22. Both IL-17A and IL-

17F signal through a common receptor composed of the subunits IL-17RA and IL-17RC (98). IL-17 

is thought to act largely through neutrophils to promote antifungal immunity. IL-17 is a potent 

inducer of neutrophil granulopoiesis and chemotaxis, able to induce mucosal epithelial cells and 

stroma to produce chemokines to promote neutrophil recruitment and cytokines like G-CSF 

which promotes granulopoiesis. IL-17 and IL-22 are also capable of inducing antimicrobial 

peptides such as β-defensin 2, β-defensin 3, S100A7, S100A8, S100A9 and histatin at the skin 

and mucosal surfaces including the lung, oral and vaginal cavities (63). There is also a report that 

IL-17 can directly bind C. albicans and induce nutrient starvation, suggesting it can act directly 

on the pathogen (99). IL-17 can act on NK cells as well, inducing them to produce GM-CSF which 

in turn promotes the function of neutrophils as outlined above. Humans with mutations in Th17 

related signaling or function including CARD9, STAT3, STAT1, RORC, IL17RA or IL-17F all show 

increased susceptibility to mucosal candidiasis, demonstrating the importance of this adaptive 
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response in defending against mucosal infection (100, 101). The importance of this response 

against disseminated candidiasis is less clear, as many patients with defective TH17 responses 

are not seen to be more susceptible to this disease. While CARD9 deficiency is linked to 

susceptibility to systemic disease and this deficiency does result in a lack of TH17 differentiation 

and response, CARD9 also plays critical roles in innate immunity making it impossible to 

attribute the increased susceptibility just to lack of Th17. Polymorphism in IL-12B, which is 

shared between IL-12 and IL-23, has been shown to be related to persisting candidemia 

however, suggesting either IL-12 (which promotes Th1 responses) and/or IL-23 (which promotes 

Th17 responses) may play roles in this form of infection (102). Taken together, these results 

demonstrate that TH17 responses play critical roles in host defense against C. albicans infection, 

but potentially in a tissue specific manner. Interestingly, polymorphisms in IL-4, a characteristic 

Th2 cytokine, have been associated with chronic disseminated candidiasis and RVVC suggesting 

important antifungal roles for adaptive responses beyond Th17 may exist (103).   

1.7 Pathogen Epitope Masking 

Pathogens, in an effort to persist and cause infection, have evolved ways to avoid 

detection by the host or suppress immune responses. Masking of epitopes the host could use to 

recognize the pathogen is a common strategy of immune evasion, having been demonstrated in 

bacteria, viruses, protozoans, helminths and fungi. 

1.7.1 Parasite Epitope Masking 

Both protozoan and helminth parasites are well known manipulators of host responses. 

One of the best characterized is the use of variable surface glycoproteins (VSG) by 

trypanosomes. These VSGs serve many purposes as they can provide protection from 

complement, the soluble form is capable of altering host immune responses and they mask the 

constant epitopes in the trypanosome cell membrane from host recognition (104, 105). While 
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the host eventually raises enough antibody against a particular VSG for antibody mediated 

killing to occur, trypanosomes are capable of antigenic switching with their VSG coat, allowing 

them to present an extremely diverse number of VSG epitopes within a population (an 

individual parasite will only express one VSG at a time). This means that, while many parasites 

will be killed by host antibody responses, those within the population that switched to different 

VSG coats will persist thereby allowing the population to stay one step ahead of host antibody 

responses. Malaria is also capable of masking its presence from the immune system. When it 

infects erythrocytes, Plasmodium falciparum, which causes the most virulent form of malaria, 

forces the expression of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) on 

the membrane. This protein plays important roles in virulence and can be targeted by IgG1 for 

protective host immunity (106). P. falciparum has evolved a mechanism to mask PfEMP1 from 

protective IgG1 responses, as it has an affinity for non-specific and non-protective IgM binding 

which then blocks access of protective IgG1 (107). It has also been shown that the 

circumsporozoite protein possessed by P. falciparum is capable of undergoing reversible 

conformational changes to allow masking its own epitopes (108).    

Helminths are also well known as master manipulators of their hosts, an essential skill 

for pathogens that can persist for years or even decades (109). While the epitopes important for 

recognition and host responses against helminths are poorly understood, some examples of 

epitope masking have been discovered. N-deglycoslation of Echinostoma caproni 

excretory/secretory products has been shown to increase IgM responses, suggesting that these 

carbohydrates mask epitopes important for IgM recognition (110). It is also thought that Taenia 

solium cysts, which are responsible for neurocysticercosis, mask themselves from host immunity 

and only elicit an immune response when they begin to degenerate and leak cyst fluid. This 

theory is supported by the observation that only cyst fluid, but not cyst cell wall or crude cyst 
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lysate, resulted in a proinflammatory response in peripheral blood monocytes and that viable 

cysts were associated with regulatory and anti-inflammatory responses instead (111, 112). It is 

also known that surface epitopes are inaccessible on schistosomes in the lung-stage and this 

masking was resistant to manipulation of nutrient availability and pH. Depletion of cholesterol 

lead to exposure of surface antigens on Schistosoma mansoni, suggesting that this molecule 

plays a crucial rule in epitope masking for this helminth. Interestingly, cholesterol depletion did 

not alter epitope availability for the related Schistosoma haematobium, suggesting it has distinct 

methods for epitope masking (113). Incubation with arachidonic acid or corn oil has also been 

shown to result in exposure of these surface epitopes on both S. mansoni and S. haematobium 

via a mechanism hypothesized to involve a parasite associated neutral sphingomyelinase and its 

ability to alter a tight hydrogen bond barrier around the worm that would otherwise shield 

proteins from outside access (113, 114).  

1.7.2 Bacterial Epitope Masking 

Despite being single celled prokaryotes, bacteria have evolved immune masking 

mechanisms just as intricate as their eukaryotic counterparts. In Neisseria meningitidis killing by 

complement in human serum was found to be related to the amount of available lacto-N-

neotetraose in its cell membrane. It resists this killing by sialylating its lipopolysaccharides which 

masks lacto-N-neotetraose (115).  

Capsule formation offers another mechanism by which bacteria can evade with host 

immunity, as the capsule can interfere with opsonization, phagocytosis and mask antigenic 

epitopes from the host and can be found in a diverse group of bacteria including Streptococcus 

pneumoniae, Haemophilus influenzae, Escherchia coli K1 and N. meningitidis (116). Pathogenic 

mycobacteria have been shown to evade TLR mediated immunity by masking PAMPs with cell 

surface associated pthiocerol dimycoceroserate (PDIM). PDIM deficient mycobacteria activated 
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MyD88 dependent signaling and recruited iNOS positive macrophages which were rarely seen to 

be recruited to wild type infection (117). 

1.7.3 Viral Epitope Masking 

Viruses are such a “simple” life form that it is debated whether or not they should even 

be considered as alive, having to hijack host cell systems in order to replicate. This obligate 

parasitic lifestyle has resulted in the evolution of numerous host immune evasion mechanisms 

in viruses, including epitope masking. The Hepatitis B preS1 domain of the large hepatitis B 

surface protein is N-myristolated and this N-myristolation masks important epitopes in the 

preS1 domain from binding by neutralizing antibodies (118).  

Ebola virus also makes extensive use of masking to evade host immunity. Ebola virus 

glycoproteins are highly glycosylated and these glycans shield critical components like the 

receptor binding site from being targeted for antibody generation by the host. These glycans 

instead promote the generation of antibodies against more variable (and dispensable) regions at 

the viral surface. Furthermore, when these Ebola virus glycoproteins are expressed at the 

membrane of infected host cells, they mask important host molecules like major 

histocompatibility class I and β-integrins from the rest of the immune system preventing their 

anti-viral functions (119). Glycan shielding is actually a common epitope masking strategy used 

by viruses and has been seen in hepatitis C, bovine herpes virus, influenza A, Nipah virus and 

HIV-1 (119). 

1.7.4 Fungal Epitope Masking 

Considering the massive burden fungal infections present worldwide (11, 12), it is not 

surprising that they too have evolved ways to subvert or avoid detection by the immune 

systems of their hosts. It has been seen that Magnaporthe oryzae, a famine causing rice 

pathogen, uses α-glucan to shield itself from plant immune recognition and responses (120, 121) 
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and that conversion of surface exposed chitin to chitosan by a number of fungal pathogens 

helps shield them from plant immune attack and detection (122). The fungus Normuraea rileyi, a 

pathogen of insects, seems to be able to have its surface epitopes mimic those found on host 

molecules, thereby masking its presence and escaping immune surveillance (123). In fact, some 

fungal pathogens of insects mask themselves by forgoing a cell wall altogether, forming 

protoplasts within the host which don’t elicit a significant host response (124).  

In terms of PAMP mediated recognition, one of the most attractive epitopes that fungi 

often contain in their cell wall is the sugar β-glucan, as this epitope is highly immunostimulatory 

to a wide variety of hosts including plants, arthropods, fish and mammals (41). It is therefore not 

surprising that many fungal pathogens go to great lengths to mask their β-glucan to avoid 

provoking robust immune responses against them and many examples of this are known in 

clinically relevant fungi. Histoplasma capsulatum masks its β-glucan with non-inflammatory α-

glucan and mutants which lack this α-glucan shield elicit increased Dectin-1 mediated responses 

from immune cells (125). The mold Aspergillus fumigatus also masks its β-glucan, which 

becomes exposed during germination or in hypoxic host environments resulting in increased 

Dectin-1 mediated responses in vitro and in vivo (126, 127). This basal masking depends on a cell 

surface protein, the hydrophobin RodA, as mutants deficient in RodA have increased β-glucan 

exposure and elicit increased Dectin-1 mediated responses both in vitro and in vivo (128). It also 

requires α-glucan, as aspergillus mutants with a triple knockout of the α-1,3 glucan synthases 

show cell wall architecture disruptions including increased β-glucan and chitin  exposure. 

Epitope masking has also been shown to involve the pigment protein pskP as mutants deficient 

in pskP have increased conidial β-glucan exposure and are phagocytosed at a much higher rate 

than wild type strains (129). Interestingly, A. fumigatus RodA also appears important for 

masking α-mannose and blocking Dectin-2 mediated responses as well.  Paracoccidioides 
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brasiliensis can convert its β-1,3 glucans to α-1,3 glucan while transitioning into pathogenic 

yeast in the host. Greater inflammatory responses to an avirulent strain of P. brasiliensis has 

been tied to greater β-glucan content in their cell wall, suggesting that the switch to α-1,3 

glucan helps mask the fungus from eliciting an immune reaction from the host (130). Fonsecaea 

pedrosoi, a major agent of chromoblastomycosis, masks β-glucan in the cell wall of its sclerotic 

cells with a chitin-like component (131). Cryptococcus neoformans masks PAMPs, including β-

glucan, behind a thick capsule.  

C. albicans also generally masks its β-glucan from Dectin-1, with limited exposure at 

sites like bud scars. It is known that a complex network controls masking of this epitope (29) and 

it is generally thought that the outer layer of mannan in its cell wall shields the inner β-glucan 

from Dectin-1 recognition. In agreement with this, it has been shown that disruptions of 

mannose structure and organization by targeting genes in the MNN2 family or MNT1 and MNT2 

can result in unmasking of β-glucan (132, 133) and that this unmasking can result in increased 

Dectin-1 mediated responses. Furthermore, disruption of proper GPI anchor synthesis by 

targeting genes like GWT1 or GPI7 as well as disruptions of the phosphotidylserine biosynthesis 

by targeting CHO1 results in increased unmasking of β-glucan along with increased Dectin-1 

dependent responses by the host (134, 135, 30). Exposure to echinocandins like caspofungin, 

which inhibits the β-glucan synthase, also results in β-glucan unmasking (136). Interestingly, β-

glucan becomes unmasked at later timepoints during disseminated infection in vivo, thereby 

allowing for increased Dectin-1 recognition, however the mechanism(s) for this unmasking 

remained unclear (136). Beyond epitope masking, C. albicans also appears to be able to actively 

suppress IL-17 production by PBMCs, a mechanism that involves regulation of tryptophan 

metabolism (137). 

 



24 
 

1.8 Summary 

Invasive fungal infections, including C. albicans, represent a significant and growing 

health problem, one for which current treatments are increasingly inadequate as demonstrated 

by the high mortality rate for disseminated candidiasis. Understanding the complex interactions 

between the host and C. albicans during infection, especially in relation to the immune 

response, holds the promise of highlighting targets for developing new, more effective 

therapies. Immunity to C. albicans begins with host recognition via many PRRs with the CLRs 

thought to play a primary role. A prominent CLR, Dectin-1, acts as the primary receptor for β-

glucan which is a component in the fungal cell wall. Recognition of fungi leads to a complex 

immune response that involves both innate immunity, of which the neutrophil plays a primary 

role, and adaptive immunity including Th17 mediated responses. Importantly, both innate and 

adaptive immune responses can be mediated via recognition of fungal β-glucan by Dectin-1 (10). 

As a fungal immune evasion tactic, β-glucan is often masked in order to avoid host recognition 

but it becomes unmasked later during infection (136). The mechanism by which this unmasking 

occurred in the host remained unclear and, given the potential importance of Dectin-1 mediated 

responses to host defense, this represents an important gap in our knowledge of host-pathogen 

interactions during candidiasis. Alterations in epitope availability are known to have 

consequences for immune responses during fungal infection both in animals and plants (50, 138, 

139, 140) but are poorly understood, so investigating this mechanism of β-glucan unmasking 

could not only help the design of novel therapies to assist the host during candidiasis but will 

also broadly benefit our understanding of an underappreciated concept, which is how host-

pathogen interactions can alter epitope availability dynamically during infection.  
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CHAPTER 2 
 

NEUTROPHIL ATTACK TRIGGERS EXTRACELLULAR TRAP-DEPENDENT CANDIDA 
ALBICANS CELL WALL REMODELING AND ALTERED IMMUNE RECOGNITION 

 
2.1 Summary 

Pathogens hide immunogenic epitopes from the host to evade immunity, persist and 

cause infection. The opportunistic human fungal pathogen Candida albicans, which can cause 

fatal disease in immunocompromised patient populations, offers a good example as it masks the 

inflammatory epitope β-glucan in its cell wall from host recognition. It has been demonstrated 

previously that β-glucan becomes exposed during infection in vivo but the mechanism behind 

this exposure was unknown. Here, we show that this unmasking involves neutrophil 

extracellular trap (NET) mediated attack, which triggers changes in fungal cell wall architecture 

that enhance recognition by the Dectin-1 β-glucan receptor in vitro. Furthermore, using a mouse 

model of disseminated candidiasis, we demonstrate the requirement for neutrophils in 

triggering these fungal cell wall changes in vivo. Importantly, we found that fungal epitope 

unmasking requires an active fungal response in addition to the stimulus provided by neutrophil 

attack. NET-mediated damage initiates fungal MAP kinase-driven responses, particularly by 

Hog1, that dynamically relocalize cell wall remodeling machinery including Chs3, Phr1 and Sur7. 

Neutrophil-initiated cell wall disruptions augment some macrophage cytokine responses to 

attacked fungi. This work provides insight into host-pathogen interactions during disseminated 

candidiasis, including valuable information about how the C. albicans cell wall responds to the 

biotic stress of immune attack. Our results highlight the important but underappreciated 

concept that pattern recognition during infection is dynamic and depends on the host-pathogen 

dialog. 
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2.2 Introduction 

Innate immune recognition of pathogen-specific patterns plays a crucial role in initial 

infection control and activation of appropriate adaptive immune responses (141, 142). 

Recognition though Toll-like, C-type lectin, Nod-like and Rig-I-like receptors elicits production of 

autocrine, paracrine and endocrine immunity. This includes activities as varied as deployment of 

neutrophil extracellular traps to directly attack pathogens and production of proinflammatory 

cytokines that recruit, activate and polarize additional innate and adaptive immune cells. 

Pattern recognition receptors have evolved over millions of generations, and pathogens 

have concurrently developed creative ways to avoid these receptors by hiding specific epitopes. 

Epitope masking is practiced by many pathogens including bacteria, viruses, fungi, protozoans 

and helminths (117, 143, 128, 144, 29, 145, 146). Work from a number of groups, including ours, 

has described how fungal cell wall architecture limits recognition of the β-glucan sugar by 

immune receptors that include Dectin-1, a C-type lectin crucial for resistance to fungal infections 

(128, 31, 144). This epitope masking can be observed in Candida albicans, an opportunistic 

human pathogen which can cause both superficial mucosal and life threatening disseminated 

disease, particularly in immune compromised patients. However, C. albicans β-glucan epitope 

availability increases dramatically in vivo during a phase of neutrophilic influx in experimental 

murine candidemia (147, 136). Although the dynamics of immune recognition during infection 

have implications for the trajectory of the immune response, the fungal and host mechanisms 

that lead to eventual β-glucan masking in vivo are unknown. 

It is possible that the host, the fungus or both contribute to these changes in immune 

recognition during infection. On the fungal side, the cell wall integrity (CWI) pathway is critical in 

maintaining this organelle in response to abiotic stresses, but we still don’t understand how it 

functions in the context of immune attack in the challenging host environment (148). We have 
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previously described how a highly interconnected cell wall remodeling network creates and 

maintains the cell wall architecture that masks β-glucan from Dectin-1 under steady-state 

conditions, and this network may also act in vivo (29). On the host side, cell-mediated immune 

attack by neutrophils can kill or incapacitate pathogens using reactive oxygen and nitrogen 

species, antimicrobial peptides, proteases, glycosidases, and extracellular traps (ETs) (70, 149). 

Proteases and glycosidases could act on the outer mannan layer to directly expose underlying β-

glucan, or phagocyte attack could indirectly trigger active fungal cell wall remodeling that 

unmasks underlying epitopes. 

Changes in C. albicans cell wall β-glucan exposure due to early host-pathogen 

interaction during infection may sufficiently alter availability of cell wall epitopes to affect 

subsequent immune responses. However, the complexity of in vivo systems has limited our 

understanding of whether immune attack regulates subsequent immune cytokine elicitation. 

Here, we use a combination of in vitro and in vivo tools to show that neutrophils counter β-

glucan masking by creating NETs that are required to trigger fungi to actively remodel local cell 

wall architecture. These disruptions of cell wall epitope masking alter recognition of the fungi 

and could enhance subsequent secondary immune responses. 

2.3 Materials and Methods 

2.3.1 C. albicans strains and Growth Conditions 

C. albicans strains used in this study are listed in the Table 1. C. albicans was maintained 

on YPD 37˚C. Single colonies were picked to 5 mL YPD liquid and grown at 30˚C overnight on a 

rotator wheel. For hyphal cells, a defined number of yeast cells were transferred into RPMI and 

grown in 5 mL tubes at 30˚C overnight on a rotator wheel. JC-94-2 was constructed from the JC-

94 parent (150). PHR1-GFP, along with 1kb upstream and 0.5 kb downstream regulatory 

sequence, was amplified from JC94 genomic DNA with primers PHR1-CIp20-FOR (5’-
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ATATTCGACTGAAAGCTTGATTACAAGTGGGATGCAAAA-3’), and PHR1-CIP20-REV (5’-

TCGTCGGGCTCAAAGCTTCGTTGAAAAAGCATAAGAAGG-3’) and cloned into pCIp20 (151) with 

HinDIII, after which it was sequence verified. Integration of Sal1-cut Cip20-PHR1-GFP at the RP10 

locus was confirmed by PCR and three independent clones had similar phenotypes. 
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Table 2.1. Fungal Strains 

Strain names 
used 

Parental 
Strain 

Source or 
reference Genotype 

SC5314-GFP SC5314 (136) Peno1::Peno1-EGFP-NATR 

hog1∆/∆-dTom JC50 (152) 

ura3:: λ imm434/ura3::limm434, 
his1::hisG/his1::hisG, hog1::loxP-ura3-loxP, 
hog1::loxP-HIS-loxP CIp20 (URA3, HIS1), 
Peno1::Peno1-dTom-NATR 

hog1/HOG1-dTom JC52 (152) 

ura3:: λ imm434/ura3::limm434, 
his1::hisG/his1::hisG, hog1::loxP-ura3-loxP, 
hog1::loxP-HIS-loxP CIp20-HOG1 (URA3, HIS1), 
Peno1::Peno1-dTom-NATR 

WT-dTom (for 
hog1 strains) JC21 (152) 

ura3:: λ imm434/ura3::limm434, 
his1::hisG/his1::hisG CIp20 (URA3, HIS1), 
Peno1::Peno1-dTom-NATR 

cap1/CAP1-dTom JC807 (153) 
cap1::loxP-HIS1-loxP/cap1::loxP-ARG4-loxP,CIp20-
CAP1 (URA3, HIS1), Peno1::Peno1-dTom-NATR 

WT-dTom (for 
cap1 strains) JC747 (154) 

SN148 + CIp30 (URA3 HIS1 ARG4), Peno1::Peno1-
dTom-NATR 

cap1∆/∆-dTom JC842 (154) 
cap1::loxP-HIS1-loxP/cap1::loxP-ARG4-loxP, CIp20 
(URA3), Peno1::Peno1-dTom-NATR 

Phr1-GFP CAS22 (150) 

phr1Δ::hisG/PHR1-GFP 
ura3Δ::imm434/ura3Δ::imm434 + CIp20 PHR1-
GFP 

  JC-94 (150) PHR1/PHR1-GFP ura3Δ::imm434/ura3Δ::imm434 

JC-94-2 JC-94 This work 
PHR1/PHR1-GFP ura3Δ::imm434/ura3Δ::imm434 
+ CIp20 PHR1-GFP 

CAI4-dTom CAI-4 (155) 
Δura3::imm434/Δura3::imm434, Peno1::Peno1-
dTom-NATR 

chs3∆/∆-dTom chs3∆/∆ (156) 
chs3Δ::hisG/chs3Δ::hisG, Peno1::Peno1-dTom-
NATR 

chs2∆/∆ chs8∆/∆ -
dTom NGY138 (157) 

chs2Δ::hisG/chs2Δ::hisG, chs8Δ::hisG/chs8Δ::hisG, 
Peno1::Peno1-dTom-NATR 

Sur7-GFP  YHXW4 (158) 

ura3Δ::λimm434/ura3Δ::λimm434 
his1::hisG/his1::hisG arg4::hisG/arg4::hisG SUR7-
GFPγ::URA3 

Hwp1-GFP YJB8250 (159) 

ura3::λimm434/ura3::λimm434 
his1::hisG/his1::hisG arg4::hisG/arg4::hisG 
Hwp1/Hwp1-GFP 

SC5314-FarRed  SC5314 This work Peno1::Peno1-FarRed670-NATR 

Chs3-YFP NGY477 (160) 

ura3::imm434/ura3::imm434, 
his1::hisG/his1::hisG, arg4::hisG/arg4::hisG, 
CHS3/CHS3–YFP:URA3, RPS1/RPS1::CIp30 
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2.3.2 Incubation of C. albicans and neutrophils ex vivo 

Neutrophils from 6-12 week old female C57BL/6J or gp91phox-/- (B6.129S-Cybbtm1Din/J 

(Jackson Laboratories) (161) mice were purified from bone marrow using biotin anti-Ly6G 

antibody (eBioscience) and AutoMACS separation (Miltenyi). Bone marrow from sex- and age-

matched C57BL/6-backcrossed DPPI -/- and control mice was extracted after overnight shipment 

on cold packs (162). C. albicans hyphae at a concentration of 3x108 cells/mL were labeled with 

Biotin-XX-SSE (Molecular Probes; 0.01 µg/µL). Cells were then labeled with Alexa Fluor®647-

conjugated Streptavidin (Jackson Immunoresearch; 36 µg/mL). 3 x107 hyphal cells were then 

incubated with or without 7 x 106 neutrophils in RPMI + 5% FBS for 2.5 hours. Neutrophils were 

lysed with 0.02% Triton X-100. C. albicans hyphae were then stained with sDectin-1-Fc (17 

µg/ml) followed by donkey anti-human IgG Cy3 antibody (Jackson Immunoresearch; 0.8 mg/ml) 

and Calcofluor White (Sigma Chemicals; 25 ng/mL). Purified sDectin-1-Fc was prepared from 

stably transfected HEK293T cells as previously described {Graham, 2006 #163}. Cells were 

visualized by optical sectioning fluorescence microscopy using a Zeiss Axiovision Vivotome 

microscope (Carl Zeiss Microscopy, LLC). Fields of view were chosen randomly and an equal 

number of images were obtained for each sample. Maximum image projections were used to 

score the percentage of cells with increased chitin deposition, β-glucan exposure and the 

overlap of both phenotypes.  

For post-challenge labeling experiments, hyphae were biotinylated, and incubated with 

neutrophils; after neutrophil lysis and staining, Alexa Fluor®647-conjugated Streptavidin was 

included along with the secondary antibody. For chemical inhibition, neutrophils were pre-

incubated with either the vehicle DMSO, 10 µM DPI, 300 µM Apocynin, 100 µM ABAH or 500 µM 

ABAH for 10 minutes before addition to C. albicans and samples were treated for the entire 2.5 

hours. For UV inactivation experiments, hyphal cells were UV inactivated as described (29). To 



31 
 

ensure that lack of damage was not due to altered neutrophil attack rates, staining in 

experiments with the hog1Δ/Δ, cap1Δ/Δ and chs2Δ/Δ chs8Δ/Δ and chs3Δ/Δ mutant strains was 

performed without neutrophil lysis with Triton X-100 treatment. To examine NETs, sDectin-1-Fc 

and CFW staining procedures were carried out as described above, with Sytox Green (Molecular 

Probes; 156 nM) added along with the secondary antibody and CFW.  We used Anti-Histone H3 

citrulline R2+R8+R17 (abcam; 0.014 mg/mL) and donkey anti-rabbit IgG Cy3 (Jackson 

Immunoresearch; 0.0075 mg/mL) as well as Anti-MPO (R&D Systems; 0.1 mg/mL) with Donkey 

anti-goat Cy3 (Jackson Immunoresearch; 0.007 mg/mL). In experiments with DNase 1, the RPMI 

used for the incubation was supplemented with 100 mM CaCl2 and 100 mM MgCl2. 

2.3.3 Imaging Dish Experiments 

Streptavidin-labeled hyphae of the indicated strain, at a concentration of 6x106 cells, 

were added to a Delta T imaging dish (Bioptechs Inc) with 8x105 neutrophils in 1 mL of Phenol 

red-free RPMI + 5%FBS (Lonza). The Chs3-YFP strain was not labeled and imaged in 1 mL of PBS 

with 5% FBS and 5.5 mM glucose. Imaging dishes were then either incubated at 37˚C in an 

incubator for the indicated amount of time or immediately imaged on the Zeiss Axiovision 

Vivotome microscope (Carl Zeiss Microscopy, LLC) or Nikon PerfectFocus microscope (Nikon) 

with a heated stage (Bioptechs, Inc) at 37˚C. Chs3-YFP timelapses were instead taken on a Nikon 

Ti-E PFS live cell microscope (Nikon, Inc). For staining in dishes, the sDectin-1-Fc and CFW 

staining was done as described in the above section except 4.25x106 neutrophils were added, 

they were not lysed and the process was carried out in the dish. 

2.3.4 In vivo infections and organ ex vivo fluorescence 

Six week old female Balb/cJ, C57BL/6J or gp91phox-/- mice (Jackson Laboratories) were 

infected via tail vein. WT, isotype controls (Rat IgG2a for 1A8 from Bio X cell) and RB6-8C5 (Bio X 

cell) treated mice received 1x105 cfu, those receiving 1A8 received 2.5x104 cfu and gp91phox-/- 
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mice received 500 cfu. Mice were treated with isotype, RB6-8C5 or 1A8 antibody (Bio X cell; 100 

µg in 200 µL of PBS) via i.p. injection on day 2 post-infection. On day 5 post-infection mice were 

sacrificed via CO2 inhalation followed by cervical dislocation. Neutropenia was confirmed by 

Wright staining of blood obtained by cardiac puncture. Organs were harvested and 

homogenized as described (136). For some experiments, kidneys were bisected with a razor and 

half was processed for histology. Homogenates were stained with sDectin-1-Fc (17 µg/ml) then 

donkey anti-human IgG Cy3 (0.8 mg/ml) and Calcofluor White (25 ng/mL). Alternatively, 

homogenates were stained with anti-β-glucan antibody (Biosupplies, Inc., Australia; 1.7 mg/mL) 

then with goat anti-mouse Cy3 antibody (Jackson Immunoresearch; 3.8 mg/mL). Cells were 

visualized by optical sectioning fluorescence microscopy using a Zeiss Axiovision Vivotome 

microscope (Carl Zeiss Microscopy, LLC). Maximum projection images were quantified using 

Cellprofiler (www.cellprofiler.org) as described (136). 

2.3.5 Macrophage cytokine elicitation 

RAW-blue macrophages (Invivogen) were maintained in DMEM + 10% FBS 

supplemented with sodium pyruvate, gentamicin and zeocin. For detection of cytokines by 

ELISA, unlabeled 3.0x107 C. albicans hyphae were incubated with or without 7x106 neutrophils 

overnight in RPMI+5%FBS. A neutrophil alone group was also included. The next morning RAW-

blue macrophages were harvested. Macrophages were resuspended at 2.77x106 cells/mL and 

pre-incubated with Anti-mDectin-1 (Bio-Rad; 10 µg) or IgG2b isotype control (Invivogen; 10 µg) 

for 90 minutes. Candida-neutrophil mixtures were treated with 0.05% Triton X-100 solution for 

5 minutes. As control for the impact of neutrophil debris in the context of fungal stimulation, 

one of the neutrophil alone samples was added to the C. albicans alone sample just before lysis. 

Samples were washed extensively and then incubated with 200 units of DNase1 for 1 hour. 

Samples were then washed extensively again and resuspended in 500 µL PBS. 25 µL of sample 
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was added to the wells of a 96 well plate in duplicate before UV inactivation by treatment with 5 

x 100,000 µJ/cm2. For a positive control, depleted zymosan (Invivogen) was added and for a 

negative control sterile water was added. RAW-blue cells, either Anti-mDectin-1 treated or not, 

were then added to the UV-inactivated fungal cells at 5x105 cells per well. Supernatants were 

harvested after 6 hours. ELISA was performed using Mouse TNF-α and IL-6 DuoSets (R&D 

Systems) according to manufacturer’s instructions and detected using Supersignal ELISA Femto 

Maximum Sensitivity Substrate (ThermoFisher Scientific) using a Biotek Synergy 2 plate reader 

(Biotek Instruments, Inc). 

2.3.6 Statistical Analysis 

Statistics were performed as described in figure legends. For normally distributed data, 

Student’s t test or one or two way ANOVA analysis with Tukey’s post-test were used. For non-

parametric data, Kruskal-Wallis with Dunn’s post-test was applied. ANOVA and Kruskal-Wallis 

were done using Prism software (Graphpad Software). p < 0.05 was considered significant. 

 

2.4 Results 

2.4.1 Neutrophils disrupt cell wall organization and cause β-glucan unmasking in vitro 

Changes to the cell wall during infection alter C. albicans recognition by pattern 

recognition receptors, but the mechanisms driving these changes are unknown (50, 136). Host 

defense against invasive candidiasis relies critically on neutrophils, evidenced by the increased 

susceptibility of neutropenic patients to candidemia (71). We reasoned that they may disrupt 

the fungal cell wall and mediate β-glucan unmasking because neutrophils can damage the C. 

albicans cell wall and are present in high numbers during infection when β-glucan unmasking 

appears (164, 147, 136). To determine the spatiotemporal dynamics of neutrophilic damage, we 

labeled biotinylated fungi with streptavidin-Alexa 647 and incubated with neutrophils. Time-



34 
 

lapse imaging shows that streptavidin fluorescence is lost rapidly at sites of neutrophil attack 

(Figure 2.1A-D, 2.1A-B Movie). Controls demonstrate that there is also a loss of labeled protein 

(Figure 2.2). Fluorescence of an Hwp1-GFP fusion protein, present in the hyphal cell wall, is also 

rapidly reduced upon neutrophil attack (Figure 2.3, 2.2A-B Movie). Overall, this suggests that 

neutrophils rapidly damage cell wall protein at sites of attack, in agreement with and extending 

previous reports (164).   
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Figure 2.1. Neutrophil attachment results in rapid cell wall damage to C.albicans 

(A-D) Streptavidin-Alexa 647-labeled SC5314-GFP was incubated with or without neutrophils. (A-

C) Representative timelapse images at one minute intervals for (A) attacked, (B) non-attacked 

and (C) control hyphal segments. (D) Relative streptavidin mean fluorescence intensity (MFI) at 

attacked and unattacked sites. Data represents the pooled average of thirteen cells measured in 

three experiments ± SEM. Scale bar = 10 µm. *** p≤0.001 (one-way ANOVA with Tukey’s post-

test).
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Figure 2.2. Neutrophil attack results in cell wall damage and protein loss 

(A-B) Streptavidin-HRP labeled SC5314-GFP was incubated with neutrophils or alone. 

Neutrophils were lysed and fungi were then stained with an anti-HRP Cy3 antibody and CFW. 

Representative images for each group are shown (A). Images were analysed by obtaining the 

mean fluorescent intensity at sites with and without chitin deposition and data is presented as 

the mean ± SEM of three independent experiments (B). (C-E) SC5314-GFP was pre-labeled with 

biotin and then incubated with neutrophils. After incubation, neutrophils were lysed and hyphae 

were stained with Streptavidin-A647, Dectin-1-fc and CFW. Images were analyzed by obtaining 

the mean fluorescent intensity in the blue, red and far red channels at sites of β-glucan 

exposure, at sites without β-glucan exposure and from sites in the no neutrophil control, limited 

to viable cell segments. (D) Streptavidin fluorescence at sites with sDectin-1 staining or no 

sDectin-1 staining. Mean MFI ± SEM of three independent experiments. (E) Streptavidin versus 

CFW fluorescence for individual sites from three pooled experiments, broken down into sites 

with sDectin-1 staining or not. Cell viability was confirmed based on the characteristic 

cytoplasmic EGFP expression of live cells (not shown here). * p ≤0.05 ** p-value ≤0.01 (one way 

ANOVA with Tukey’s post-test). Scale bar represents 10 μm.
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Figure 2.3 Neutrophil attachment results in rapid damage to cell wall proteins like Hwp1-GFP 

(A-D) Representative time-lapse images for (A) attacked, (B) unattacked and (C) control hyphal 

segments. (D) Relative streptavidin and Hwp1-GFP intensities for thirteen cells imaged in three 

independent experiments were measured and the pooled average ± SEM is shown. Scale bar = 

10 µm. ** p ≤0.01 and *** p≤0.001 (one-way ANOVA with Tukey’s post-test). 
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To determine if neutrophil attack disrupts other aspects of cell wall architecture to alter 

immune recognition, we stained attacked filaments with soluble Dectin-1-Fc (sDectin-1-Fc) to 

quantify β-glucan availability and Calcofluor white (CFW) to quantify chitin deposition. This 

revealed areas of the lateral cell wall with β-glucan unmasking and increased chitin deposition at 

sites with cell wall protein loss (Figure 2.4). These overlapping sites of cell wall disruption occur 

uniquely in the neutrophil challenged samples but not in the absence of neutrophils, 

demonstrating that they are a direct or indirect result of immune activity. Taken together, these 

results show that neutrophil attack can result in the disruption of C. albicans’ cell wall 

architecture and β-glucan unmasking in vitro. 
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Figure 2.4. Neutrophils cause β-glucan unmasking and disrupt cell wall architecture 

 (A-C) SC5314-GFP cells were biotinylated, labeled with Streptavidin-Alexa647 and incubated 

with neutrophils or alone. Neutrophils were lysed and fungi were stained with sDectin-1-Fc and 

Calcofluor White. (A) A representative set of images for pre-challenge streptavidin labeling. (B-C) 

Images were analyzed by obtaining the mean fluorescent intensity in the blue, red and far red 

channels at sites of β-glucan exposure, at sites without β-glucan exposure and from sites in the 

no neutrophil control, limited to viable cell segments. (B) Streptavidin versus CFW fluorescence 

for individual sites from three pooled experiments, broken down into sites with sDectin-1 

staining or not. (C) Streptavidin fluorescence at sites with sDectin-1 staining or no sDectin-1 

staining. Mean MFI ± SEM of three independent experiments. Cell viability was confirmed based 

on the characteristic cytoplasmic EGFP expression of live cells (not shown here). Scale bar 

represents 10 µm. * p ≤0.05 (one-way ANOVA with Tukey’s post-test).
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2.4.2 Neutrophils are critical for β-glucan unmasking during disseminated candidaisis 

We have previously shown β-glucan unmasking occurs during infection and our in vitro 

data suggests that neutrophils can mediate this exposure (Wheeler et al 2008 #136). To test if 

neutrophils are required for these fungal cell wall changes in vivo, we examined C. albicans 

epitope exposure in neutropenic mice at day 5 post-infection, when there is normally β-glucan 

unmasking. To interrogate the native state of the C. albicans cell surface we used the ex vivo 

fluorescence method, which involves no fixation or permeabilization (136). There is a significant 

reduction in β-glucan unmasking in neutropenic mice, demonstrating that neutrophils are 

critical for β-glucan unmasking in vivo (Figure 2.5 A-E). Similar results are seen in a second model 

of neutropenia (Figure 2.6). Levels of β-glucan unmasking were similar when detected via either 

anti-β-glucan antibody or sDectin-1-Fc staining, demonstrating that this is not an artifact of a 

specific probe (Figure 2.6). Further, chitin staining revealed that fungi from control mice have 

significantly stronger chitin deposition than neutropenic mice, suggesting that neutrophil attack 

is also important for increased chitin deposition in vivo (Figure 2.5 A-D). Fungi from neutropenic 

mice have slightly increased β-glucan unmasking and chitin levels as compared to in vitro RPMI-

grown control cells, suggesting that growth in the host or possibly attack by other immune cells 

may also yield minor but significant cell wall changes even without neutrophil attack. Taken 

together, these results demonstrate that neutrophils are critical drivers of β-glucan unmasking 

and increased chitin deposition during disseminated infection in vivo. 
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Figure 2.5. Neutrophils are critical for β-glucan unmasking in vivo in the kidney 

(A-E) BALB/cJ mice were injected in the tail vein with SC5314-GFP and were treated with either 

IgG2a isotype control or 1A8 antibody via i.p. injection before being sacrificed at day five post 

infection. (A-B) Representative images of kidney homogenates stained with sDectin-1-Fc and 

Calcofluor White. Bottom panels show homogenates treated with secondary antibody only as a 

control. (C) Representative images of an overnight culture of SC5314-GFP grown in RPMI.  Scale 

bar represents 10 µm. (D-E) Quantification of chitin staining (D) and sDectin-1-Fc staining (E). 

Data is presented as the mean ± SEM from three pooled experiments.  ** p-value ≤0.01 and *** 

p-value ≤0.001 (Kruskal-Wallis with Dunn’s post-test).
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Figure 2.6. Requirement of neutrophils for the development of β-glucan unmasking is 

independent of the method of neutropenia or β-glucan staining 

BALB/cJ mice were injected in the tail vein with SC5314-GFP and were treated with either PBS or 

RB6-8C5 antibody via i.p. injection before being sacrificed at day five post infection.  

(A-B) Representative images of kidney homogenates stained with sDectin-1-Fc. Bottom panels 

show homogenates treated with secondary antibody only. (C) Images were quantified by scoring 

Candida cell segments for β-glucan exposure (either exposed or non-exposed). Total number of 

cells found in each category were presented according to mouse treatment group. Three 

independent experiments were performed. A significant association between PBS treatment 

and exposed cells and between RB6-8C5 treatment and non-exposed cells was seen, p-

value<0.0001 (Fisher’s Exact test). (D-E) Representative images of kidney homogenates stained 

with anti-1,3-β-glucan antibody. Bottom panels show homogenates treated with secondary 

antibody only. (F) Images were quantified by scoring as described for (E). A significant 

association between PBS treatment and exposed cells and between RB6-8C5 treatment and 

non-exposed cells was seen, p-value<0.0001 (Fisher’s Exact test). Scale bar represents 10 µm.
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2.4.3 NET attack results in fungal cell wall disruption 

It was not previously known that neutrophils alter innate pattern recognition of fungi in 

vivo, so we sought to characterize the mechanisms required to alter epitope unmasking. NET 

production, in which neutrophils create traps out of DNA and numerous antimicrobial factors, is 

a means of NADPH oxidase-dependent neutrophil attack against C. albicans and other fungi in 

vivo and in vitro (83, 165). Despite the poor NET production of mouse neutrophils relative to 

human neutrophils, we find strong evidence of NET formation in vitro. These NETs stain positive 

with the membrane impermeant Sytox green DNA dye, anti-citrullinated histone antibody, and 

anti-myeloperoxidase (MPO) antibody (Figure 2.7). Furthermore, we observed that neutrophils 

could create ETs without dying (Figure 2.8, 2.3A-B Movie) Strikingly, treatment with DNase I to 

degrade extracellular DNA and prevent the establishment of NETs blocks both chitin deposition 

and β-glucan unmasking, functionally implicating NETs in driving this interaction (Figure 2.9A). In 

further support of NET-triggered changes during attack, inhibition of myeloperoxidase (MPO) 

with 4-aminobenzoic acid hydrazide (ABAH) prevents neutrophil attack from resulting in chitin 

deposition or β-glucan unmasking (Figure 2.9B). Taken together, these data provide strong 

evidence that NETs provide the initial stimulus that results in fungal cell wall changes including 

β-glucan exposure. 
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Figure 2.7. Neutrophil extracellular traps are deployed against C. albicans 

Neutrophils were incubated with SC5314-FarRed hyphae for 2.5 hours and then samples were 

stained to probe for the presence of specific NET components. (A-B) Representative images of 

MPO (A) and citrullinated H3 staining (B). Scale bar represents 20 µm.  
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Figure 2.8. Extracellular trap deployment by live neutrophils 

(A-B) SC5314-FarRed hyphae were incubated with neutrophils in an imaging dish with CFW and 

Sytox Green. Timelapses were obtained using binning 2x2 and 10 minute intervals. (A) Individual 

panels from the timelapse showing neutrophil ET deployment. (B) Image taken after the end of 

the timelapse of the area of ET deployment. Exclusion of Sytox Green from the neutrophil 

demonstrates it is still viable and that ETs can be deployed by live neutrophils in our assays. 

Scale bar represents 5 µm. 
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Figure 2.9. Neutrophil extracellular traps are critical for β-glucan unmasking  

(A-B) Neutrophils were pretreated with DNase I, DPI (A) or ABAH (B) and then incubated with 

SC5314-FarRed for 2.5 hours. Neutrophils were not lysed and samples were stained with CFW, 

sDectin-1-Fc and Sytox Green. Images were analyzed by scoring viable cell segments for the 

presence of the indicated phenotypes and results are presented as the percentage of total cell 

segments counted with the phenotype for each group. Data is presented as the mean ± SEM 

from three experiments. Cell viability was determined using characteristic cytoplasmic far red 

expression (not shown here). ‡ p-value ≤ 0.01 when comparing the sDectin-1-Fc  group from WT 

to other groups (Red). ¥ p-value ≤ 0.01 when comparing the chitin deposition group from WT to 

other groups (Blue). * p-value ≤ 0.01 when comparing the overlap group from WT to other 

groups (Purple). Comparisons done by one way ANOVA and Tukey’s post-test. 

A 
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Neutrophil proteases are thought to be an important component of NET formation in 

some contexts and neutrophil elastase trafficking is regulated during NETosis against C. albicans 

(83, 166, 167). However, neutrophils from mice deficient in the dipeptidyl peptidase (DPPI), 

which is required for the activation of the three major neutrophil proteases: elastase, cathepsin 

G and proteinase 3 (168), show no defect in their ability to cause β-glucan unmasking, chitin 

deposition or streptavidin loss (Figure 2.10, Figure 2.11).Thus, these three proteases do not 

appear to play an important role in the downstream cell wall remodeling triggered by neutrophil 

attack of C. albicans in this system. 
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Figure 2.10. The major neutrophil proteases are not required for C. albicans cell wall disruption 

Neutrophils from WT age and sex matched controls or DPPI KO mice were incubated with 

Streptavidin-Alexa 647 labelled SC5314-GFP hyphae. Neutrophils were lysed and the fungi were 

stained with sDectin-1-Fc and Calcofluor White. (A) Representative set of images for each group. 

(B) Images were analyzed by scoring all viable cell segments for the presence of the indicated 

phenotype and the results are presented as the percentage of total cell segments counted. Data 

is presented as the mean ± SEM from three experiments. Cell viability was determined using 

characteristic cytoplasmic GFP expression (not shown here). ‡ p-value ≤ 0.05 for comparing the 

sDectin-1-Fc  group from WT or DPPI KO to the no neutrophil group. ¥ p-value ≤ 0.05 for 

comparing the chitin deposition group from WT or DPPI KO to the no neutrophil group. * p-

value ≤ 0.05 for comparing the overlap group from WT or DPPI KO to the no neutrophil group. 

Comparisons done by one way ANOVA with Tukey’s post-test. Scale bar represents 10 µm.
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Figure 2.11. The major neutrophil proteases aren’t required for causing cell wall damage 

(A-D) Streptavidin-Alexa 647 labeled hyphae were incubated with either WT or DPPI KO 

neutrophils in an imaging dish for 30 minutes. (A-B) Representative images for each group. (C) 

The percent of neutrophil sites with streptavidin degradation for each group. Data represents 

the mean ± SEM from three independent experiments. (D) The average MFI in the far red 

channel at sites of neutrophil attachment for each group. Data represents the mean ± SEM from 

three pooled experiments. *** p-value ≤ 0.001 (one way ANOVA with Tukey’s post-test). n.s. 

means non-significant by Student’s Ttest (E) or one way ANOVA with Tukey’s post-test (B,F). 

Scale bar represents 10 µm. 
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Phagocyte NADPH oxidase is important in defense against candidemia and plays an 

important role in NET formation under many conditions, including in response to fungi (169, 83, 

170). We find that chemical or genetic disruption of NADPH oxidase function decreases cell wall 

damage and prevents immune attack from resulting in β-glucan unmasking or chitin deposition 

in vitro (Figure 2.12., Figure 2.13). This was not due to a complete lack of neutrophil attack on 

the hyphae (Figure 2.13). Similarly, fungi from the kidneys of gp91phox-/- mice had significantly 

less chitin staining and β-glucan unmasking, demonstrating the importance of phagocyte 

oxidase for causing cell wall remodeling in vivo (Figure 2.14). As expected, WT mice were able to 

control fungal growth while gp91phox-/- mice were unable to do so (Figure 2.15). Importantly, 

immune cells including many neutrophils were found surrounding hyphae in gp91phox-/- mice 

(Figure 2.15), suggesting that the loss of β-glucan unmasking was not due to lack of immune cell 

recruitment. Taken together, these data suggest that NETs also trigger C. albicans cell wall 

remodeling and enhanced Dectin-1 recognition in vivo and reveal a new way that immune cells 

counter fungal immune evasion. 
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Figure 2.12. The phagocyte NADPH oxidase is critical for fungal cell wall disruption in vitro  

(A-F) Neutrophils from C57BL/6J or gp91phox-/- mice were pretreated with the NADPH oxidase 

inhibitors DPI (10 μM) or Apocynin (300 μM), empty vehicle (DMSO) or nothing for 10 minutes 

before being incubated with Streptavidin-Alexa 647 labelled SC5314-GFP hyphae. Neutrophils 

were lysed and fungi were stained with sDectin-1-Fc and Calcofluor White. (A) A representative 

set of images are shown for each group. (C,E) Representative images of drug treatment 

experiments are shown. (B, D, F) Images were analyzed by scoring viable cells for the phenotype 

indicated and data is presented as the percent of total cells with the mean ± SEM for three 

independent experiments. . ‡ p-value ≤ 0.01 for comparing the sDectin-1-Fc  group from WT or 

DMSO to the gp91phox-/- , 10 µM DPI, 300 µM Apocynin or either no neutrophil groups. ¥ p-value 

≤ 0.01 for comparing the chitin deposition group from WT or DMSO to the gp91phox-/- ,10 µM DPI, 

300 µM Apocynin or either no neutrophil groups. * p-value ≤ 0.01 for comparing the overlap 

group from WT or DMSO to the gp91phox-/- , 10 µM DPI, 300 µM Apocynin or either no neutrophil 

groups. n.s. means non-significant. Comparisons done by one way ANOVA with Tukey’s post-

test. Scale bar represents 10 µm.
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Figure 2.13. Phagocyte NADPH oxidase is important for streptavidin fluorescence loss in vitro  

(A-E) Streptavidin-Alexa 647 labeled SC5314-GFP was incubated with either C57BL/6J or 

gp91phox-/- neutrophils in an imaging dish for 30 minutes. (A-B) Representative images for each 

group. (C) The percent of neutrophil sites with degradation for each group. Data represents the 

mean ± SEM from three independent experiments, with between 130 and 275 sites scored per 

experiment. (D) The average MFI in the far red channel at sites of neutrophil attachment. Data 

represents the mean ± SEM from three pooled experiments where n represents the number of 

neutrophil attachment sites where MFI was measured. (E) The average MFI for each group, 

including a no neutrophil control, from a single experiment. * p-value ≤ 0.05, ** p-value ≤ 0.01 

and *** p-value ≤0.001 by Student’s Ttest (C) or one way ANOVA with Tukey’s post-test (D). 

Scale bar represents 10 µm.
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Figure 2.14. The phagocyte NADPH oxidase is critical for β-glucan unmasking in vivo 

(A-E) C57BL/6J mice were injected in the tail vein with SC5314-GFP and kidneys were harvested 

on day 5 post infection. (A-B) Representative images of kidney homogenates stained with 

sDectin-1-Fc and CFW. Bottom panels show homogenates treated with secondary antibody only 

as a control. (C) Representative images of an overnight culture of SC5314-GFP grown in RPMI 

and then stained with Dectin-1-Fc and CFW. (D-E) Quantification of chitin staining (E) and 

sDectin-1-Fc staining (D). Data is presented as the mean ± SEM from two pooled experiments, 

except for the RPMI group which represents a single experiment. *** p-value ≤0.001 (Kruskal-

Wallis with Dunn’s post-test). n.s means non-significant. Scale bar represents 10 µm.
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Figure 2.15. Loss of β-glucan unmasking in gp91phox-/- mice is not due to lack of immune cell 

recruitment 

(A-B) Representative images of serial kidney sections from either C57BL/6J (A) or gp91-/-phox 

mice (B) after staining with hematoxylin and eosin or periodic acid-Schiff. The scale bar in the 

first column of each panel represents 200 µm and in the second column represents 100 µm. (B) 

Images were examined by a pathologist and example areas containing neutrophils are 

highlighted with red arrows. 

 

2.4.4 Chitin deposition and β-glucan unmasking are an active fungal response to neutrophil 

attack 

Although NET attack could directly cause these cell wall changes, NET damage could also 

initiate conserved fungal stress signaling pathways that are known to both respond to cell wall 

insults and mask β-glucan in steady-state (24, 29). We reasoned that if neutrophil-triggered 

changes are passive from the fungal perspective, they should occur rapidly and simultaneously, 

and should also occur in inactivated fungi. Surprisingly, although initial cell wall protein damage 

occurs within seconds (Figure 2.1), chitin deposition is not apparent until 30 minutes post-

challenge, and enhanced Dectin-1 recognition lags even further (Figure 2.16).  

A B 
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The nature of these sequential changes over hours suggests that unmasking results from 

an active fungal response rather than by direct immune mediated damage. In support of this 

hypothesis, UV-inactivated fungi lose streptavidin at attack sites but fail to develop sites of chitin 

deposition or β-glucan unmasking (Figure 2.16, Figure 2.17). UV inactivation is a minimally 

invasive means of killing fungi, so these results indicate that only initial cell wall damage is a 

direct result of immune attack (Figure 2.17, 2.4A-B Movie). Thus, it appears that immune attack 

triggers β-glucan unmasking and chitin deposition only indirectly, by promoting active fungal 

signaling in response to immune mediated attack. 
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Figure 2.16. Chitin deposition and β-glucan unmasking are the result of an active fungal process 

(A-B) Streptavidin-Alexa 647 labeled SC5314-GFP hyphae were either UV inactivated or not 

before being incubated with neutrophils or alone for the amount of time indicated. (A) 

Representative images of cells from each group at the three hour timepoint are shown. (B) 

Quantitation of cells for the phenotype indicated over the timecourse. Cells were scored for the 

indicated phenotype and results are presented as the percent of total cells for each time point. 

The data represents the mean ± SEM of three independent experiments. Scale bars represent 10 

μm. * p-value of < 0.05 and *** p-value of ≤ 0.001 (one way ANOVA with Tukey’s post-test). n.s. 

means non-significant. 
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Figure 2.17. Fungal cell wall protein loss is due to direct neutrophil mediated damage 

 (A-B) Streptavidin-Alexa 647-labeled SC5314-GFP was UV inactivated and incubated with or 

without neutrophils. (A) Representative images of the T(-1) and T(+2) timepoints from 

timelapses of UV inactivated Candida. (B) Results represent the pooled average MFI at sites 

from individual frames in timelapses. *** p-value of ≤ 0.001 (one way ANOVA with Tukey’s post-

test). Scale bars represent 10 μm. 
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2.4.5 The fungal response to neutrophil attack includes cell wall integrity signaling and 

remodeling 

The fungal cell wall integrity (CWI) signaling pathway plays a key role in stress responses 

and in maintaining the normal cell wall architecture that masks β-glucan (24, 29). However, it is 

not known how C. albicans responds to immune-mediated cell wall damage, so we sought to 

identify which signaling pathway(s) drives localized cell wall remodeling. Targeted screening of 

mutants deficient in individual CWI signaling components for defects in responding to 

neutrophil attack revealed that HOG1 is important for this process. The HOG1 deficient strain 

has a significantly decreased ability to respond to neutrophil attack with chitin deposition 

(Figure 2.18). This defect is not due to differences in fungal cell viability or attack rates between 

strains (Figure 2.19). Interestingly, C. albicans deficient in CAP1, which is involved in responding 

to some types of oxidative stress (153, 171), is not required for this response (Figure 2.18, Figure 

2.19). This primary dependence on Hog1p suggests that chitin deposition and enhanced Dectin-

1 binding result from post-transcriptional activities, as Hog1p plays a limited role in regulating 

stress-mediated transcription (148). 
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Figure 2.18. The Hog1 cell wall integrity sensing pathway is critical in the fungal response to 

neutrophil attack 

(A-C) Streptavidin-Alexa 647 labeled C. albicans of the indicated strains were incubated with 

neutrophils or alone. Neutrophils were not lysed and samples were stained with CFW. (A) 

Representative images of the Hog1 strain set. (B-C) Images were analyzed by scoring cells for 

localized chitin deposition. Data is presented as the percent of total cells with the phenotype 

and represents the mean ± SEM from three independent experiments. (C) ** p-value of ≤0.01 

and *** p-value of ≤0.001 (one way ANOVA with Tukey’s post-test). n.s. means non-significant. 

Scale bar represents 10 µm. 
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Figure 2.19. Lack of cell wall chitin deposition in hog1∆/∆ mutants is not due to differences in 

viability or amount of neutrophil attack 

(A-D) hog1∆/∆ and cap1∆/∆ strain experiments had all cells scored for the indicated phenotype. 

Data is presented as the mean ± SEM for three experiments. ***p-value ≤0.001. n.s. means non-

significant (one way ANOVA with Tukey’s post-test). 
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Increased chitin levels can rescue C. albicans from stress, including antifungal treatment 

(172). To implicate a specific synthase in enhanced chitin deposition at attack sites, we 

examined post-attack chitin deposition in mutants in either the major chitin synthase, CHS3, or 

both stress-activated synthases CHS2 and CHS8 (160). Both WT and chs2∆/∆ chs8∆/∆ strains 

have dramatic increases in areas with localized chitin deposition following interaction with 

neutrophils when compared to their no neutrophil controls (Figure 2.20). However, while the 

abnormal morphology of the chs3∆/∆ deletion mutant results in a high baseline number of areas 

with increased chitin deposition, there is very little increase in localized chitin deposition after 

neutrophil attack. This defect was not due to differences in cell viability, number of attacked 

sites, or lack of cell wall damage (Figure 2.21). Quantitative analysis of the intensity of chitin 

staining is consistent with a major role for Chs3p in driving neutrophil-triggered chitin 

deposition (Figure 2.21). The chs3∆/∆ mutant was not completely deficient in responding to 

attack with chitin deposition, however, suggesting that other chitin synthases may play a limited 

role in this process. In support of the idea that Chs3p is the major synthase in the response to 

neutrophil damage, timelapse of a Chs3-YFP fusion strain demonstrates recruitment of Chs3p-

YFP to most sites of increased chitin deposition (Figure 2.20, 2.5 Movie).  
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Figure 2.20. Chitin synthase 3 plays the major role in chitin deposition following neutrophil 

attack 

(A-C) Streptavidin-Alexa 647 labeled C. albicans of the indicated strains were incubated with 

neutrophils or alone. Neutrophils were not lysed and samples were stained with CFW. (A) 

Representative images of the chitin synthase strain set. Images were analyzed by scoring cells 

for increased chitin deposition. (B) Data is presented as the percent of total cells with the 

phenotype and represents the mean ± SEM from three independent experiments. The Chs3-YFP 

strain was incubated with neutrophils in an imaging dish and timelapses were taken. (C) Panels 

taken from a timelapse of the Chs3-YFP strain after neutrophil attack. * p-value of ≤0.05 and *** 

p-value of ≤0.001. (Student’s Ttest). n.s. means non-significant. Scale bar represents 10 µm. 
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Figure 2.21. The requirement for Chs3 is not due to differences in viability or decreased 

neutrophil attack 

(A-C) Streptavidin-Alexa 647 labeled C. albicans of the indicated strains were incubated with 

neutrophils or alone. Neutrophils were not lysed and samples were stained with CFW. (A) The 

MFI at equal numbers of sites with and without chitin deposition were obtained for all images 

from a representative chitin synthase experiment. Results are presented as the average MFI for 

the pooled sites from that experiment (B) chs3∆/∆ and chs2∆/∆ chs8∆/∆ chitin synthase strain 

experiments had all cells scored for the indicated phenotype. Data is presented as the mean ± 

SEM for three experiments. *p-value ≤0.05 and ** p-value ≤0.01. ¥ p-value ≤0.001 when 

compared to the respective no neutrophil control. n.s. means non-significant (one way ANOVA 

with Tukey’s post-test). 
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Cell wall remodeling is also crucial for response to stress, but we know little about the 

spatiotemporal dynamics of these responses, especially in the context of immune attack. We 

therefore characterized the post-attack movement of cell wall remodeling and biogenesis 

proteins, including Sur7p and Phr1p. Sur7p is deposited in new cell wall and marks eisosomes, 

and Phr1p is a glucan remodeling enzyme crucial to cell wall integrity (173, 150). Both Phr1p and 

Sur7p are recruited to sites of neutrophil attack. Sur7p was recruited early and coincident with 

chitin deposition while Phr1p accumulated at later times (Figure 2.22, 2.6A-B Movie). Overall, 

these results help elucidate important components of the fungal response to immune cell 

attack, suggesting Hog1p is important for the initial signaling response which leads to chitin 

deposition mainly through Chs3p localization and the later cell wall remodeling possibly 

involving Phr1p and Sur7p. 
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Figure 2.22. Sur7 and Phr1 are recruited to localized areas of immune attack 

The JC94-2 strain was incubated with neutrophils for the indicated time in an imaging dish 

before being imaged. (F) Representative images from the 3 hour timepoint. The red dotted line 

represents the outline of a neutrophil. (G) Images were analyzed by obtaining the mean 

fluorescent intensity of GFP at sites with or without chitin deposition and the data is presented 

as the mean MFI ± SEM at sites from three pooled experiments except the 1h timepoint, which 

represents two pooled experiments. (H-I) The Sur7-GFP strain was incubated with neutrophils. 

Following incubation, neutrophils were lysed and fungi were stained with sDectin-1-Fc and CFW.  

Data represents the MFI of GFP or Cy3 staining at sites with or without chitin deposition or from 

the no neutrophil control and is presented as the mean MFI ± SEM from three pooled 

experiments. * p-value of ≤0.05 and *** p-value of ≤0.001. For D, * p≤0.05 comparing Sur7-GFP 

at chitin deposition sites vs no chitin deposition or no PMN control. ‡ p≤ 0.01 comparing 

sDectin-1-Fc at chitin deposition sites vs no chitin deposition sites or no PMN control. (Student’s 

Ttest for C and one way ANOVA with Tukey’s post-test for D). n.s. means non-significant. Scale 

bar represents 10 µm.
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2.4.6 Neutrophil-mediated cell wall disruption results in enhanced immune responses 

Neutrophil-triggered enhancement of Dectin-1 binding may result in an altered 

secondary immune response to C. albicans or have no impact due to redundant recognition 

modalities. To assay secondary immune responses, we challenged C. albicans hyphae with 

neutrophils, then lysed the neutrophils. We treated the samples with DNase1 to reduce 

activation of macrophages by neutrophil debris before UV-inactivating the fungi and adding 

them to murine macrophages. A mixture of unattacked fungi with neutrophil lysate served as a 

control for activation by remaining neutrophil debris in the context of fungal stimulation (174). A 

schematic diagram of the experiments can be seen below (Figure 2.23). ELISA assays revealed 

that attacked fungi induced higher production of the proinflammatory cytokine IL-6 when 

compared to any of several controls (Figure 2.24). Interestingly, this increased cytokine 

production was not completely dampened by Dectin-1 inhibition suggesting other receptors 

may also be involved in this response. These results indicate that neutrophil attack and the 

resulting cell wall changes, including β-glucan unmasking, can lead to enhanced recognition and 

responses by other immune cells. 
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Figure 2.23. Schematic representation of RAW-Blue macrophage experiments 

1.) Neutrophils are incubated with C. albicans overnight. 2.) During this incubation, neutrophils 

attack C. albicans, initiating cell wall remodeling and resulting in β-glucan unmasking and chitin 

deposition. 3.) Following incubation, neutrophils are lysed and samples are treated with DNase 1 

to reduce activation by neutrophil debris. 4.) Samples are UV inactivated. 5.) Samples are then 

incubated with macrophages. Macrophages recognize the exposed fungal epitopes and produce 

cytokines in response. The attacked fungi with increased epitope unmasking elicit more IL-6 in 

comparison to the controls. 
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Figure 2.24. C. albicans induces an enhanced IL-6 response after neutrophil attack 

RAW-blue cells were treated as indicated and incubated for 6 hours. (A-B) ELISA was conducted 

on supernatants from RAW-Blue cells to detect (A) IL-6 or (B) TNF-α. A representative 

experiment is shown for each cytokine. Comparisons were done by two way ANOVA with 

Tukey’s post-test. ** p-value of ≤0.01 and *** p-value of ≤0.001. 
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2.5 Discussion 

Recognition of pathogens based on conserved molecular patterns is a cornerstone of 

innate immunity but it is a dynamic battlefield between host and pathogen. The host’s task is 

complicated because pathogens conceal essential molecular patterns from detection, thereby 

denying the host the knowledge it needs to initiate a response. Here, we build on previous work 

to show that although C. albicans masks β-glucan during infection, host immune cells can 

damage the invader and trigger the disruption of cell wall architecture in a manner that could 

enhance innate immune recognition, including the unmasking of β-glucan. Our findings echo 

work in diverse animal and plant hosts that suggest pathogen recognition and responses are 

dynamic and can impact immunity during infection (175, 138, 176, 50). Other types of 

“unmasking” might take place in a number of infections, as masking of epitopes has been 

demonstrated for bacteria, viruses, fungi, protozoans and helminths (117, 143, 128, 144, 29, 

145, 146). While the microbial cell wall is an adaptable landscape that is capable of responding 

to numerous stimuli, we still have a limited understanding of how cell wall architecture changes 

in vivo and how host-pathogen interactions influence PAMP availability during infection.  

We describe here how the host subverts a fungal evasion strategy, unmasking C. 

albicans to reveal fungal-specific epitopes like β-glucan. Surprisingly, this is a two-step process 

where NET-dependent neutrophil attack results in β-glucan unmasking via an active fungal 

process. The fungal response to localized cell wall stress includes a cascade of events, with chitin 

deposition mediated by Hog1p signaling and the major chitin synthase Chs3p. Remodeling of cell 

wall architecture enhanced recognition and could enhance responses by the host, but is also 

likely to protect the fungus, as is the case for plant cell walls that remodel upon fungal attack 

(140, 96). These mechanisms of cell wall architecture control during fungal infection are likely 

relevant for other fungi that hide immunogenic β-glucan from the host and thereby limit 
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immune responses (128, 177, 144). Given the importance of Dectin-1 signaling in anti-fungal 

defense, and the fact that NETs are deployed against other fungi, it seems likely that immune 

mediated unmasking may take place during other fungal infections (178, 179, 180). 

The ability of a host to recognize and respond to microbe-specific components is a key 

determinant to mounting an effective defense. Neutrophil unmasking of hyphal β-glucan, which 

is structurally distinct and elicits greater inflammatory cytokine responses than yeast β-glucan, 

could help the host discriminate between commensalism and opportunistic disease (181), 

especially since C. albicans hyphae are typically associated with invasion and greater recognition 

could enhance the “danger” response to invading hyphae (182). Unmasked epitopes could also 

assist in “trained immunity” for other innate immune cells like monocytes, which has been 

shown to depend on fungal β-glucan and Dectin-1 signaling for protection against C. albicans 

(183). Our results demonstrate that cell wall changes following neutrophil attack do increase 

recognition of β-glucan and also specifically elicit more IL-6, but not TNF-α, from macrophages 

when compared to controls. Elevated IL-6 production, in particular, may be important as it 

participates in the induction of Th17 responses which are important for antifungal immunity 

(184, 185, 186). Interestingly, some of the increased macrophage response was not dependent 

on Dectin-1, suggesting that other cell wall changes beyond β-glucan unmasking may play a role. 

In addition to enhanced Dectin-1 recognition, it is likely that post-attack disruption of cell wall 

architecture results in alterations to other fungal cell wall epitopes. Our preliminary data using 

wheat germ agglutinin as a probe suggests there is also increased availability of chitin at attack 

sites (data not shown). Because fungal chitin recognition can modulate inflammation, altered 

chitin recognition may contribute to secondary immune response (187, 35). 

The impact these epitope changes might have on the outcome of infection remains to 

be explored. While elevated IL-6 could contribute to the development of protective Th17 
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response after recognition of exposed fungal epitopes, hyperinflammation of the IL-17 axis and 

excessive neutrophilic influx are also risk factors, and recent work suggests that myeloid-derived 

suppressor cell-mediated immunomodulation is protective during this phase around 4-7 days 

post-infection (188, 189, 86, 190, 191, 192). Whether for protection or pathogenesis, the 

potential of immune attack to alter subsequent immune response suggests that immune 

dynamics may play an important regulatory role. 

Extracellular traps (ETs) function in pathogen containment and killing, and we find that 

they can also influence pathogen epitope exposure. The specific requirements for neutrophils 

and phagocyte oxidase to damage C. albicans and initiate unmasking in vivo fits with previous in 

vitro findings that ETs made by macrophages don’t damage Candida (Liu et al 2014 #90) and our 

own preliminary observations that macrophage attack doesn’t elicit the same changes to the C. 

albicans cell wall (data not shown). NADPH oxidase and MPO are known players in NET 

formation (84, 170), but NET formation has also been shown to occur in an ROS-independent 

manner so it is still unknown if or how these components contribute to the fungal damage that 

induces cell wall remodeling. While some NETs were still produced upon NADPH oxidase 

inhibition (data not shown), our data demonstrates the requirement for functional NADPH 

oxidase, MPO and extracellular DNA in NETs for inducing fungal cell wall changes following 

immune attack. This suggests that the role of the NADPH oxidase and MPO is not primarily in 

NET creation but instead may contribute to decorating NETs with damaging components which 

provoke fungal integrity responses (with the role of the NETs themselves to hold these 

components in close proximity to the fungal cell wall). Further experiments will be required to 

fully understand the exact role NETs and their components are playing. The MPO requirement 

suggests this is not strictly due to the neutrophil respiratory burst causing localized hypoxia, 

which is an environmental condition previously associated with fungal cell wall changes (127). 



82 
 

Surprisingly, our experiments suggest that neutrophil proteases are not required for NET-

dependent unmasking in our system, although they have been previously implicated in human 

and mouse NET formation (83, 166, 167). We tested this by using neutrophils deficient in DPPI, 

in which the three major neutrophil proteases couldn’t be processed properly (168). 

Interestingly, it has also been seen that DPPI deficiency limits PMA and ROS-induced NET 

production (85). As more research emerges, the requirement for different components in NET 

production has been found to be highly context and stimulus dependent, even for elements like 

the phagocyte NAPDH oxidase which were previously thought to be absolutely critical (170, 84). 

It is therefore possible that we have identified a situation in which these proteases do not play a 

critical role in NET formation or that the defects which result are not severe enough to 

compromise their function in the unmasking process. Further work will be required to 

determine if this lack of a requirement is because other proteases can fill in during this situation 

or if no protease activity is required at all. 

 The early initiation of NET-dependent C. albicans cell wall remodeling suggests a rapid 

deployment of NETs, which occurs in a subset of neutrophils in response to certain stimuli (166). 

Intriguingly, rapid NET deployment leaves neutrophils intact, consistent with our preliminary 

observations of early NETs and “live” NET production (82). A better understanding of neutrophil 

and NET function during infection could have clinical benefits, as defects in either result in 

increased susceptibility to many infections, including those caused by Candida (193, 71). 

The mechanism  whereby neutrophil attack reveals fungal epitopes is unexpected, as 

cell wall changes are not a direct result of immune attack but rather are initiated by signaling in 

the fungus. The importance of the Hog1p MAPK in response to neutrophil attack is consistent 

with its established roles in interactions with phagocytes and host immunity both in vitro and in 

vivo (26, 22). Further, our data suggest that hog1Δ/Δ hypersensitivity to neutrophil-mediated 
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killing may be due to a failure to deposit chitin and reinforce their cell wall, a process that 

rescues C. albicans from other stresses (172). The requirement for Hog1p, but not Cap1p, in 

sensing and responding to NET attack suggests that the neutrophil attack response is not simply 

a reaction to oxidative stress, and implies that Hog1p responds to immune attack in addition to 

its previously described roles in osmotic and oxidative stress (20). 

The localized cell wall stress caused by neutrophil attack provides an advantageous 

situation to dynamically model how C. albicans hyphae mobilize their cell wall machinery in 

response to neutrophil attack in vivo. Genetic deletion mutants show that Chs3 is responsible 

for the majority of this localized lateral cell wall chitin deposition, while Chs2 and Chs8 are not 

required. Time-lapse microscopy also demonstrated accumulation of Chs3-YFP at attack sites 

with chitin deposition. These observations suggest a new role of Chs3 in stress response, in 

addition to its responsibility for producing the majority of chitin in C. albicans (194). The 

requirement of individual synthases may be context dependent, as recent reports show Chs2 

and Chs8 are involved in maintaining cellular integrity during some forms of stress in vitro (195). 

This data, combined with that showing the importance of Hog1p signaling in responding with 

chitin deposition, supports previous observations that Hog1p can regulate and activate chitin 

synthesis (196). The recruitment of cell wall regulatory and remodeling enzymes Sur7p and 

Phr1p suggests a multistep process of remodeling post-attack. While Phr1p is known to be 

recruited to apical growth sites and septa and to respond to other stresses, this is the first time 

it has been found enriched in a localized section of lateral cell wall (197, 150). Sur7p is important 

in regulating cell wall organization and integrity (173). Early Sur7p enrichment at sites of chitin 

deposition and β-glucan unmasking suggests it plays an early role in cell wall reorganization at 

sites of neutrophil attack, in contrast with the later role for Phr1p. Beyond providing detailed 

insight into how C. albicans responds to neutrophil attack, this model of localized cell wall stress 
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offers a powerful new method to image the multistep dynamics of stress-stimulated cell wall 

remodeling. 

β-glucan recognition is relevant beyond mammalian immunity, as it has been 

demonstrated that both invertebrates and plants sense and respond to β-glucan, with important 

implications for antifungal immunity (41, 198). Indeed, dynamic host-pathogen interactions 

revolving around fungal β-glucan masking and host recognition also occur during infections in 

plants, suggesting parallels with important agricultural fungal infections (138, 139, 140). 

The game of pathogen camouflage and host-mediated unmasking has been played out over 

generations throughout the animal, fungal and plant kingdoms. The localized fungal cell wall 

remodeling we observe upon immune-mediated stress represents a novel model to probe basic 

mechanisms of cell wall dynamics and may identify novel therapeutic targets or strategies 

especially relevant to the in vivo infection environment. 
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CHAPTER 3 

PHOSPHATIDYLSERINE PLAYS A CRITICAL ROLE IN β-GLUCAN MASKING 

3.1 Introduction 

The maintenance of the fungal cell wall, including masking of β-glucan from the host, 

requires a complex network of genes and pathways (29) in C. albicans. The role of the plasma 

membrane in this process is not well understood. Phospholipids like phosphatidylethanolamine 

(PE) and phosphatidylserine (PS) are found in the plasma membrane and are known to be 

required for virulence in a systemic mouse model, though their importance to the cell wall and 

mechanisms of action are unknown (199). PS synthesis begins with Cho1p, the PS synthase and 

mutants deficient in Cho1p also lack virulence in a systemic infection model, suggesting a critical 

role for PS in the survival of the fungi in the host. PS also serves as the substrate for the de novo 

synthesis of PE and can be acted upon by Psd1p or Psd2p, which are phosphatidylserine 

decarboxylases, to convert PS to PE. This pathway also plays an important role in fungal survival 

in the host, as double mutants deficient in Psd1p and Psd2p have highly attenuated virulence 

(199). PS and PE are also involved in fungal extracellular vesicle formation and function as the 

cho1 Δ/Δ and the psd1 Δ/Δ psd2 Δ/Δ mutants showed altered vesicle cargo with decreased 

secreted protease and phospholipase activity. The cho1 Δ/Δ mutant vesicles also didn’t activate 

NF-κB in macrophages like wild type vesicles (200). Work we have published in collaboration 

with others (30) aimed to further elucidate the functions of these phospholipids and examined 

what role they might play in maintaining fungal cell wall architecture. 

3.2 Materials and Methods 

C. albicans strains were streaked onto YPD agar plates and left at 37°C overnight. A 

single colony per strain was picked and transferred into 5 ml YPD liquid, which was put into a 

rotator wheel and left overnight at 37°C. A sample of culture was centrifuged and washed three 
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times with PBS. Samples were blocked in PBS plus 2% bovine serum albumin for 1 h at room 

temperature. After blocking, samples were stained with sDectin-1–Fc at 16.5 µg/ml for 1.5 h on 

ice. Samples were washed with PBS five times and then stained with donkey anti-human IgG 

DyLight 488 antibody (Jackson ImmunoResearch) at 0.83 µg/ml for 20 min on ice. Samples were 

washed five times with PBS and then resuspended in 500 µl PBS for flow cytometry. Flow 

cytometry data were obtained for 10,000 gated events per strain, and statistics were calculated 

with the paired Student t test. For imaging, Candida cells were prepared as outlined above but 

were resuspended in 50 µl PBS and visualized with a Zeiss AxioVision Vivotome microscope (Carl 

Zeiss Microscopy, LLC). This experiment was repeated twice. 

3.3 Results and Discussion 

To investigate the role PS and PE may play in β-glucan masking, we took a wild type 

strain, cho1 Δ/Δ or psd1 Δ/Δ psd2 Δ/Δ mutants, and their reintegrants, grew them in YPD to 

examine their yeast form and stained with sDectin-1-Fc. Fungal cells were then examined by 

both flow cytometry and fluorescent microscopy, revealing that the cho1 Δ/Δ mutant had 

significantly increased β-glucan unmasking when compared with the wild type strain, its 

reintegrant and all other strains examined (Figure 3.1). Further work done by Davis et al 

demonstrated that the cho1Δ/Δ mutant also displayed this phenotype in the hyphal form and 

therefore that unmasking was not restricted to a particular fungal morphotype. Importantly, it 

was demonstrated that the unmasking on the cho1 Δ/Δ mutant resulted in increased Dectin-1 

mediated recognition by macrophages and increased TNF-α production (30). These results 

illustrate the importance of cho1 and presumably PS to the masking of β-glucan in the fungal cell 

wall, adding another pathway to the complex network involved in maintaining proper fungal cell 

wall architecture. As cho1 is necessary for virulence during systemic infection (199), plays a role 

in the function of extracellular vesicles carrying potential virulence factors like proteases and 
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phospholipases (200, 201), is required for efficient β-glucan masking (30) and does not have a 

mammalian homologue (202), it represents an attractive target for the development of novel 

therapeutics for candidiasis. 
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Figure 3.1. Cho1 plays an important role in β-glucan masking 

The cho1Δ/Δ mutant has increased binding to the Dectin1 receptor. (A) C. albicans strains grown 

overnight in YPD were stained with sDectin-1–Fc and a fluorescently labeled secondary 

antibody, showing that the cho1Δ/Δ mutant exhibits greater staining than all of the other 

strains. (B) Flow cytometry reveals that the cho1Δ/Δ mutant (solid red line) has greater binding 

to the Dectin-1 receptor than the other strains. (C) A graph of the relative mean staining 

intensity of each sample reveals that the cho1Δ/Δ mutant exhibits significantly greater staining 

with sDectin-1–Fc than the other strains. * P ≤ 0.05 (adapted from 30). 
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CHAPTER 4 

FUNGAL CELL WALL COMPOSITION INFLUENCES THE REQUIREMENT FOR SPECIFIC HOST 

IMMUNE RECEPTORS 

4.1 Introduction 

The host receptor Dectin-1 is well known to be the major β-glucan recognition receptor 

and is capable of inducing immune responses to many fungi. The importance of Dectin-1 for 

host defense against C. albicans has been the subject of debate however, as one group showed 

it was critical for survival in a mouse model of disseminated infection while another group 

showed that it was dispensable for protection (48, 49). These research groups used different 

mouse backgrounds and fungal strains, either of which could have contributed to these 

differences in requirement for Dectin-1. In published work that we contributed to, the cause for 

these conflicting results was investigated (50).  

4.2 Materials and Methods 

4.2.1 Strain Creation 

SC5314-GFP and ATCC18804-GFP strains were created by transformation with the 

pENO1-yEGFP3-NAT plasmid and verified by PCR as described previously (136). 

4.2.2 Ex vivo Staining 

C57BL/6J mice were injected in the tail vein with 5.2 x 104 cfu of either SC5314-GFP or 

ATCC18804-GFP. After nine days, mice were sacrificed and the kidneys were harvested, 

homogenized, and processed as described (136). Homogenates were stained with anti-β-glucan 

antibody (Biosupplies, Inc., Australia) at a concentration of 1.7 μg/ml, then stained with goat 

anti-mouse Cy3 antibody (Jackson Immunoresearch) at a concentration of 3.8 μg/ml. For soluble 

Dectin-1-Fc staining, homogenates were instead stained with Alexa647-labeled Dectin-1-Fc 
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(163) at a concentration of 17 μg/ml and then with donkey anti-human IgG Cy3 antibody 

(Jackson Immunoresearch) at a concentration of 0.8 μg/ml. Cells were visualized by optical 

sectioning fluorescence microscopy using a Ziess Axiovision Vivotome microscope (Carl Zeiss 

Microscopy, LLC). Live cells were identified based on characteristic EGFP fluorescence. 

Maximum projection images were quantified using Cellprofiler (www.cellprofiler.org) as 

described (136). Briefly, EGFP fluorescence was used to manually define individual cell segments 

and average fluorescence intensity of β-glucan or Dectin-1-CRD fluorescence was measured for 

the whole cell segment. Cells labeled without primary antibody or Dectin-1-CRD were used as 

negative controls. 

  
4.3 Results and Discussion 

It was discovered that the altered requirement of Dectin-1 for host protection from 

disseminated candidiasis was not related to different mouse genetic backgrounds, instead it was 

entirely dependent on fungal strain (50). In pursuit of the mechanism behind this, we 

investigated if it was due to differences between strains in β-glucan unmasking in vivo during 

infection. When examined, both displayed staining with anti-β-glucan antibodies and with 

Dectin-1-Fc at 9 days post infection. There was no significant differences in staining between 

strains seen with the antibody, but a significant difference was seen with Dectin-1-Fc. The 

Dectin-1-Fc probe is smaller than the antibody, which could allow it access to areas of the cell 

wall that the antibody is too large to access and suggests that these probes have different levels 

of sensitivity, something that should be considered in future studies looking to assay β-glucan 

availability. Surprisingly, the strain for which Dectin-1 was not required for protection 

(ATCC18804) showed significantly higher levels of soluble Dectin-1-Fc staining than the strain for 

which host defense depended on Dectin-1 (SC5314) suggesting that factors beyond just β-glucan 

availability are influencing the importance of Dectin-1 for host survival (Figure 4.1). In line with 

http://www.cellprofiler.org/
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this, it was found that differences in another fungal cell wall component, chitin, could be 

correlated with the strain dependent Dectin-1 importance (50). Indeed, manipulation of chitin 

content could make protection from the strain which is normally dependent on Dectin-1 

become Dectin-1 independent. These observations further demonstrate the ability of fungal cell 

wall composition and architecture to influence host immunity which, when combined with our 

observations of C. albicans’ rapid and dynamic cell wall changes in responses to immune cells, 

highlight the importance of studying these interactions to fully understand host immunity to this 

pathogen.  
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Figure 4.1 β-glucan unmasking does not explain the strain specific requirement for Dectin-1 

C57BL/6J mice were infected with the indicated strain via the tail vein. Fungal cells were isolated 

from the kidney at day 9 post infection and stained ex vivo with (A) anti-β-glucan antibodies or 

(B) soluble Dectin-1 to examine β-glucan unmasking. Control cells were stained with secondary 

antibody only. Data shown are from a representative experiment. Bar indicates the mean.* 

p<0.05. ns, not significant. Scale bar represents 10 µm (adapted from 50). 
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CHAPTER 5 

INTERACTIONS BETWEEN C. ALBICANS AND MACROPHAGES DIFFER BETWEEN IN VITRO AND 

IN VIVO ENVIRONMENTS 

5.1 Introduction 

In vitro modeling has long been used in an attempt to elucidate the contributions of 

different host immune cells to control and killing of C. albicans. These systems lead to the 

observations that, in vitro, neutrophils are much better at controlling the fungus than 

macrophages. Dramatic timelapses have shown for years that C. albicans yeast which are 

phagocytosed by murine macrophages in vitro will often germinate, eventually causing lysis of 

the macrophage and allowing escape from immune containment. The in vitro environment lacks 

many important cues that would be found in vivo and could enhance immune function however, 

which suggests that this interaction may not reflect what actually happens in the host. Indeed 

addition of cytokines like IFN-γ, IL-3, GM-CSF, CSF, M-CSF (87) or other factors like 

myeloperoxidase (203) can greatly increase the ability of macrophages to contain C. albicans. 

Recent work in an in vivo model, the zebrafish, demonstrates that macrophages can contain 

Candida during infection (204) with no evidence of germination by fungi contained within the 

immune cells over long periods of time. As these are fish, the question was raised as to whether 

or not this was simply due to some intrinsic differences between fish and mammalian 

macrophages. We therefore isolated macrophages from the zebrafish and incubated them with 

C. albicans in vitro to see if the interaction was similar to that observed with mammalian 

macrophages.  

5.2 Materials and Methods 

Zebrafish were spawned to create Tg(mpeg1:mcherry/UAS:Kaede) embryos for these 

experiments. Zebrafish were kept for 7 days before use. Macrophages were obtained via 
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homogenization as follows: Two frosted glass slides were obtained and cleaned with ethanol.  

Fish were placed on the “frosted” portion of one of the frosted glass slides. The other slide was 

then brought down on top of it (with the frosted portion facing the fish) and moved back and 

forth to achieve homogenization. Fish homogenate was washed into a 15 mL conical tube with a 

total of 2.5 mL media (L15 with glutamine and 5%FBS). The homogenate was then centrifuged 

@ 300xg for 15 minutes. The supernatant was discarded, resuspended in L15 with glutamine, 

1mM MgCl2, 1mM CaCl2 and 5% FBS. A solution of 100 mg/mL collagenase/dispase was added 

to get a final concentration of 0.1 mg/mL. This mixture was agitated at medium speed for 20 

minutes. An equal volume of stop solution (L15 with glutamine and EDTA with a final 

concentration of 0.01M) was added. The homogenate was centrifuged @ 1500xg for 5 minutes. 

The supernatant was discarded and the pellet was resuspended in 2 mL media (L15 with 

glutamine and 5% FBS). This was layered on top of 3mL of 1077 Histopaque in a 15mL conical 

tube. Centrifuge @ 400xg for 45 minutes. Collect the interphase of interest, dilute in media (L15 

with glutamine and 5% FBS). Centrifuge @ 300xg for 15 minutes. The pellet was resuspended in 

50 µL of media and transferred to an imaging dish and allowed to sit at 28°C for 4 hours. 

SC5314-GFP C. albicans yeast from an overnight YPD culture was prepared by collecting 500 µL 

and washing three times with 1x PBS. After the 4 hours, the macrophages were washed and 1 

mL fresh media was added. The C.albicans was added at a final dilution of 1:1000 and mixed. 

Fields of view containing both Candida and macrophages were found and timelapses were taken 

on the Zeiss Vivatome Axiovision microscope with 2 minute intervals. The imaging dish was 

maintained at 28°C for the duration of imaging. 

5.3 Results and Discussion 

Timelapse microscopy revealed that zebrafish macrophages are less able to control C. 

albicans in vitro, with examples of germination, budding and macrophage killing observed 
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(Figure 5.1). The relatively rare process of vomitocytosis was also seen. These observations 

demonstrate that zebrafish macrophages are less able to contain C. albicans in vitro than was 

seen in vivo and suggest that the ability of macrophages to contain C. albicans in the zebrafish 

model are more due to differences between the in vitro and in vivo environments as opposed to 

some intrinsic difference between fish and mammalian macrophages. This highlights the 

limitations of in vitro work in understanding complex host pathogen interactions and the 

importance of using in vivo models whenever possible. 
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Figure 5.1 Zebrafish Macrophages are unable to efficiently contain C.albicans in vitro 

Macrophages were harvested from Tg(mpeg1:mcherry/UAS:Kaede) zebrafish and incubated 

with SC5314-GFP in an imaging dish at 28°C. Timelapses with 2 minute intervals were obtained 

using a Zeiss Axiovision Vivatome microscope. (A) Panels from a timelapse of fungal germination 

and killing are shown. (B) Panels from a timelapse showing yeast budding, vomitocytosis and 

macrophage killing are shown. Scale bar represents 10 µm.  
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CHAPTER 6 

DISCUSSION AND FUTURE DIRECTIONS 

In the evolutionary arms race between host immunity and invading pathogens, many 

microbes have found that it is easier to avoid detection than to evolve ways to survive the full 

force of an immune response. Immune evasion is therefore a very common and frequently 

complex tactic used by a diverse array of pathogens to persist in their hosts. The opportunistic 

fungus C. albicans is a prime example, masking the inflammatory β-glucan in its cell wall from 

recognition by the host receptor Dectin-1. We have elucidated a novel host-pathogen 

interaction in which C. albicans actively responds to immune attack mediated by neutrophil 

extracellular traps, resulting in localized changes to the fungal cell wall composition and 

architecture including increased chitin deposition and β-glucan unmasking. In addition to this 

dynamic interaction, work in collaboration with others has revealed further pathways involved 

in the maintenance of baseline β-glucan masking (30) in the form of cho1 and 

phosphatidylserine synthesis as well as uncovering the ability of changes in cell wall composition 

and architecture beyond straight β-glucan availability, specifically in chitin content, to influence 

the importance of specific host components for defense against the fungi (50). These insights 

have important implications for our understanding of host immunity during candidiasis, as they 

indicate a far more dynamic interplay between host and pathogen than is currently 

characterized. The fungus induces a diverse cascade of responses after suffering the biotic stress 

of immune attack, resulting in numerous changes to normal cell wall architecture. These 

changes have important implications for host immunity, as increased β-glucan unmasking could 

result in increased Dectin-1 mediated host responses but it has been shown that other changes 

in the cell wall, like increased chitin, can change the importance of this host receptor (50). The 

ability of fungal cell wall changes to influence the importance of other host receptors beyond 
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Dectin-1 remains to be explored. This leaves the complex interplay of the effects these cell wall 

changes could have on host immunity and even the specific nature of these cell wall changes 

themselves largely unknown, though their elucidation will be instrumental if we are going to be 

able to design effective therapies for patients with candidiasis. Furthermore the fungal signaling 

pathways we have identified likely play a role in maintaining cell wall integrity during immune 

attack (22) and, as disruption of cell wall integrity is the mechanism of action for some existing 

antifungal drugs, these pathways could yield attractive targets for developing new standalone or 

combination therapeutics.  

While we have elucidated many components of this complex interaction between neutrophils 

and C. albicans, much remains to be explored. There are many neutrophil attack sites evident 

from areas with streptavidin fluorescence loss, though only a percentage of these sites go on to 

develop β-glucan unmasking. The reasons for this are currently unknown though, given that 

neutrophils can be a heterogeneous population with a variety of ages and activation states, it 

seems possible that attack by some will result in more damage than attack by others. Perhaps 

there is a threshold level of cell wall damage required before the fungus responds. The exact 

stimulus required to provoke fungal cell wall rearrangement is also still unclear. The 

requirement for the NADPH oxidase and MPO could suggest that this stimulus could involve 

damage mediated by MPO products like hypochlorite however, as both NADPH oxidase and 

MPO can be important for NETosis (84, 170), it may be required simply to regulate proper NET 

formation and another element provides the damaging stimulus. Furthermore, while many 

elements involved on the fungal side have been elucidated, many more steps in these pathways 

remain unknown. The upstream elements that initially sense NET mediated damage and activate 

Hog1p in this context remain to be discovered. Additionally, while we have begun to identify 

possibilities in the form of Phr1p and Sur7p, the specific elements actually required for cell wall 
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remodeling and eventual β-glucan unmasking to occur after attack remain to be identified. The 

model we have described here will serve as an important tool to further elucidate these 

elements and will therefore be invaluable in the dissection of fungal cell wall dynamics in 

response to immune stress. Beyond this narrow focus, our system is innovative as it allows 

interrogation of highly localized cell wall dynamics as opposed to cell wide responses to 

environmental stress which were typical of previous in vitro studies.  

This work has important implications beyond expanding our understanding of candidiasis. 

Epitope masking, which allows the pathogen to avoid detection during infection, represents a 

highly desirable advantage in the evolutionary arms race with the host, and shielding of β-glucan 

is a common strategy seen in numerous fungi (128, 177, 144). We demonstrate here that host-

pathogen interactions can trigger the unmasking of fungal epitopes in C. albicans but these type 

of interactions may also occur during infections with other fungi and this remains to be 

explored. The work outlined here could serve as the starting point for identifying evolutionarily 

conserved pathways which are critical for fungal cell wall integrity and remodeling following 

immune stress. Furthermore, this could identify both conserved and unique changes to fungal 

cell walls following interaction with host immunity which could have important implications for 

the outcome of immune responses.  Alternatively, research into these areas could highlight 

novel ways in which fungi have evolved to escape host immunity, including methods of 

circumventing attempts at epitope unmasking.  

The idea that the cell wall of pathogens can change dynamically during infection has 

implications which extend beyond the sphere of mycology. In addition to fungi, bacteria, 

protozoans, helminths and viruses can all manipulate how the host perceives them by altering 

epitope availability so, in order to truly understand infection, we will need to gain a more 

complete understanding of how these pathogens are adapting to face the dynamic 
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environments presented in a living host (117, 143, 128, 144, 29, 145, 146). Cell surface changes 

could benefit pathogens by allowing adaption to different host stresses, to attempt to salvage 

cellular integrity following damage, to evade recognition by host immunity or to manipulate 

host systems toward non-protective responses. The host could benefit from triggering cell wall 

changes if they expose important epitopes for furthering immune recognition and responses or 

make it more susceptible to sequential attack by immune stresses. In practice, it is likely that 

microbial cell wall changes could simultaneously benefit both the pathogen and the host and in 

order to understand the true implications of these changes to the overall outcome of infection 

we will need to examine them in vivo. This line of investigation could also identify previously 

unknown epitopes which only become exposed under certain conditions or in vivo, thereby 

providing novel targets for vaccine and therapeutic design. 

It is important to remember that, as demonstrated by our work with zebrafish macrophages, in 

vitro environments are not always the best systems for understanding complex immune cell 

interactions with pathogens. It will therefore be important to validate our results in vivo 

whenever possible. We have demonstrated the critical nature of neutrophils through ex vivo 

work however much, especially the requirement of different fungal signaling pathways to cell 

wall changes remain to be interrogated in vivo. The mouse model of disseminated candidiasis 

would continue to serve as a great system to interrogate these interactions and combining 

different C. albicans signaling mutants with the ex vivo fluorescence technique used here and 

described in (136) can allow us to probe the requirement of numerous fungal signaling elements 

in initiating cell wall changes in a mammalian host. Unfortunately, even when using advanced 

systems like 2-photon microscopy, the opaque nature of the mouse makes direct observation of 

host-C. albicans interactions in vivo extremely difficult. As an alternative, the zebrafish model 

offers many advantages, one of the most important being that they are optically transparent 
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and therefore provide a nearly unparalleled opportunity for the direct imaging of events in vivo 

in a vertebrate host. The zebrafish has many of the basic elements of mammalian immunity, 

including innate immune cells like neutrophils and macrophages, increasing the likelihood that 

observations made in this system will be translational as compared to other transparent models 

like the nematode Caenorhabditis elegans, which lacks many important immune features seen 

in vertebrates (205, 206). Multiple models of C. albicans infection have already been described 

in the zebrafish including mucosal infections and disseminated infection (88, 207, 208). 

Preliminary results suggest that β-glucan does become unmasked during C. albicans infection of 

the zebrafish (data not shown), meaning the interactions we have characterized with murine 

immune cells may be at least partially conserved in fish. This model system could therefore 

provide a powerful platform to observe neutrophil/C. albicans interactions directly in an in vivo 

environment. The zebrafish can also serve as a model for numerous other infections including 

bacteria, viruses and other fungi (209, 210, 211). In fact, an example of bacterial epitope 

masking was elucidated in the zebrafish model, demonstrating this system can be a powerful 

tool in probing the implications for changes in epitope availability during infection (117). The 

zebrafish is not a complete replacement for the mouse however, and its deficiencies must be 

taken into account when deciding what experiments to conduct with the model. Of particular 

importance to our work, zebrafish pattern recognition receptors are not nearly as well 

characterized as those in mice or man and it appears that zebrafish don’t have orthologs of 

many characterized mammalian pattern recognition receptors, particularly with respect to the 

CLRs including Dectin-1 (data not shown). This makes experiments centered on specific ligand-

receptor interactions better suited for the mouse model, where there is both better 

characterization and homology with what is seen in humans. With careful consideration, future 
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studies done with the mouse and zebrafish should be able to fill in many of the gaps in our 

understanding of the events which occur during candidiasis. 

Overall, this work has elucidated a novel and dynamic host pathogen interaction between the 

neutrophil and C. albicans, in which immune attack results in an active fungal response with cell 

wall remodeling and during which masked fungal epitopes become exposed. The elucidation of 

some of the pathways involved in this interaction has provided valuable insight into host-

pathogen interactions during candidiasis and our work has provided a model which can be used 

as the foundation for probing the dynamic and localized changes in the fungal cell wall during 

stress. As most antifungal drugs target the integrity of the fungal cell wall, this system can be 

leveraged to identify novel targets for drug design that, when combined with insights into how 

the host is interacting with C. albicans, can improve patient outcomes in the future. Finally, this 

work can serve as a spark to ignite interest in seeking these kinds of dynamic host-pathogen 

interactions during infections caused not only by other fungi but with all types of pathogens, 

research that could have a great impact by increasing our general understanding of the dynamic 

events that occur during infection and hopefully result in improved therapeutic options for 

numerous diseases.  
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