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Self-renewal and differentiation of nephron progenitor cells (NPCs) in the devel-

oping kidney is governed by three major growth factor pathways: BMP, FGF and WNT. 

Mechanisms underlying the cross-talk between these pathways at the molecular level are 

largely unknown.  

In this study, we demonstrate that BMP7 activates SMAD1/5 signaling in the dis-

tal region of the cap mesenchyme (CM) to promote the transition of early CITED1+ 

NPCs into the SIX2-only compartment. BMP7-mediated SMAD1/5 signaling synergizes 

with WNT9b-β-catenin signaling in SIX2-only cells to induce the pro-differentiation pro-

gram via Wnt4 activation. We show that the pharmacological inhibition of SMAD1/5 sig-

naling retains the NPCs in the CITED1+ progenitor state, delays cessation of nephrogen-

esis and increases nephron endowment in mice.   

 



 
 

We also delineate the pathway through which the proliferative BMP7 signal is 

transduced in CITED1+ NPCs. BMP7 activates the MAPKs TAK1 and JNK to phos-

phorylate the transcription factor JUN, which in turn governs the transcription of an AP-1 

element containing G1 phase cell cycle regulators such as Myc and Ccnd1 to promote 

NPC proliferation. Conditional inactivation of Tak1 or Jun in the cap mesenchyme causes 

identical phenotypes characterized by premature depletion of NPCs. While JUN is regu-

lated by BMP7, we find that its partner FOS is regulated by FGF9. We demonstrate that 

BMP7 and FGF9 coordinately regulate AP-1 transcription to promote G1-S cell cycle 

progression and NPC proliferation. Our findings identify a molecular mechanism ex-

plaining the important cooperation between two major NPC self-renewal pathways. 
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CHAPTER 1 

INTRODUCTION 

 

1.1. Overview of mammalian kidney development 

1.1.1.  Kidney structure and function 

Kidneys are bean-shaped, bilateral organs composed of three different layers: an outer 

fibrous layer called the renal capsule, a peripheral layer called the cortex, and an inner 

layer called the medulla. Nephrons, the structural and functional units of the kidney, are 

localized within the cortex and the medulla. A typical nephron contains two major com-

ponents: the glomerulus and the tubular epithelium
 
(Figure 1.1)

1,2
. The major functions of 

the kidney include excretion of waste from blood in the form of urine, regulating blood 

pressure, electrolyte balance and red blood cell production. 

 

Figure 1.1: Anatomy of an adult kidney: Cross-section of a kidney showing the 

localization of nephrons in the cortex and medulla and the structural components of a 

nephron
3
. 
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A human kidney has anywhere between 200,000 and 2 million nephrons, displaying a 10-

fold variability in number
4
. A reduced nephron number is associated with hypertension 

and chronic kidney disease (CKD) in adult life. The final nephron number is determined 

during the embryonic period by two key factors: the growth and branching of the collect-

ing duct (CD) and the supply of nephron progenitor cells (NPCs) that give rise to the tub-

ular epithelial system of the nephrons
5-7

. Nephrogenesis ceases at 36
th

 week of pregnancy 

in humans and shortly after birth in mice, with no evidence of de novo nephron formation 

in the adult kidney. Therefore, the final complement of nephrons is established during 

embryonic development
8
. Determining the molecular underpinnings governing NPC re-

newal and differentiation in the embryonic kidney will be essential for our understanding 

of renal organogenesis and disease. 

1.1.2. Metanephric kidney development 

In mice, the formation of a permanent metanephric kidney begins at embryonic day 10.5 

(E10.5), when a subset of metanephric mesenchyme (MM) cells is induced by a permis-

sive signal from the invading ureteric bud (UB) to condense and form a 4-5 cell layer 

thick, morphologically distinguishable structure from the more peripheral MM, called the 

capping or cap mesenchyme (CM)
9-11

. Genetic ablation experiments revealed that Wnt9b 

secreted from the UB acts as an inducer of the condensation of the MM
12

. The UB induc-

es the NPCs within the CM to undergo mesenchymal to epithelial transition (MET) to 

form the epithelial components of the nephron
13

. Reciprocally, CM signals promote itera-

tive branching of the UB to form the CD system, and thus the formation of the permanent 

metanephric kidney is initiated at E11.5 (Figure 1.2)
9-14

.  
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Figure 1.2: Stages of metanephric kidney development: A) At E11.5, the cap 

mesenchyme (CM) cells condense around the ureteric bud (UB) tip and become 

distinct from the surrounding cortical stromal mesenchyme. Signals from the UB 

induce the CM cells to differentiate, resulting in the appearance of the first pre-

tubular aggregate underneath the tips.  B) The renal vesicle (RV) is evident as 

polarized columnar epithelial cells at E12.5, following which it elongates to form the 

comma- and S-shaped bodies. The distal segment of the RV fuses with the UB 

epithelium, and the endothelial cells invade the glomerular cleft of the S-shaped body. 

C) After E16.5, there is increased growth and patterning of nephron segments 

associated with expansion of the renal cortex and patterning of the medullary region 

of the kidney
14

. 
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1.1.3.   Compartmentalization of cap mesenchyme 

Within the CM, the transcription factor Six2 (Sine-oculus homeobox homolog 2) is 

strongly expressed in the undifferentiated NPCs and becomes down-regulated upon dif-

ferentiation
15

. Six2-deficient kidneys exhibit precocious differentiation leading to ectopic 

nephrogenesis and premature depletion of NPCs, indicating that Six2 is essential for 

maintaining the “stemness” or progenitor state and self-renewal of NPCs
15,16

. Cited1 

(Cbp/p300-interacting transactivator 1), a transcriptional regulator is also expressed in the 

early undifferentiated NPCs
17

. Inactivation of Cited1 has no effect on kidney develop-

ment, suggesting that Cited1 is not essential for the maintenance or self-renewal of 

NPCs
26

. Fate mapping studies have established that the population of CM cells express-

ing Cited1 and Six2 marks the undifferentiated multipotent and self-renewing NPCs that 

generate all of the epithelial components of the nephron (tubular epithelium, podocytes) 

and do not contribute to non-epithelial lineages within the adult kidney
16,18

. 

 

Figure 1.3: Cap mesenchyme sub-compartments: The early progenitor compartment with-

in the cap mesenchyme express CITED1, PAX2 and SIX2 (light blue). The pre-tubular 

aggregate (purple) compartment continues to express PAX2 and low level SIX2, and ac-

quires expression of LEF1. Epithelialized renal vesicles (dark blue) express LEF1 and 

PAX2
21

.  
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Microanatomical and gene expression studies have demonstrated that the CM can be sub-

divided into the capping or un-induced mesenchyme (Six2+, Cited1+), which is spatially 

restricted to the cortical aspect of the collecting duct tips and the induced mesenchyme or 

pre-tubular aggregates (PTA) (Six2+, Cited1- Lef1+) localized to the distal or medullary 

region under the CD tips
19,20

. PTAs subsequently undergo MET to form a single epithelial 

renal vesicle (RV, Wnt4+), an early precursor of the nephron (Figure 1.3)
19-21

. Although 

these structures can be identified as morphologically distinct entities in histological sec-

tions, the transition from the un-induced CM to the induced PTA and RV represents a 

continuum of differentiation states
9-13

. The functional epithelial nephrons form via the 

elongation, segmentation and patterning of the RV to the comma and S-shaped body 

stages, after which the distinct tubule segments arise, separated by the loop of Henle
9-13

.  

The non-condensed mesenchymal cells of the MM express the forkhead transcription fac-

tor Foxd1 and represent the metanephric stromal progenitor population. Foxd1+ cortical 

stromal progenitors are molecularly distinct from the Six2-expressing NPCs
22-24

. Lineage 

tracing analyses have shown that Foxd1-expressing stromal cells represent a multipotent, 

self-renewing progenitor pool that give rise to the non-epithelial vascular smooth muscle 

cells, mesangial cells and mature stromal interstitial cell types in the kidney
25,26

. Stromal 

progenitor-derived signals (Retinoic acid, FGFs, BMP4, and FAT4) are crucial for UB 

branching, NPC maintenance and differentiation
27

.  

In addition to the CM and stroma, a population of Flk1-expressing angioblasts/vascular 

precursors is present within the early MM.  Flk+ angioblasts cluster around the UB, and 

VEGF signaling from these cells is integral to the development of the glomerular tuft
27,28

.  
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Coordinated development and reciprocal signaling interactions between the UB, CM, 

stroma and endothelial precursors ensures that a full complement of functional nephrons 

is established before the cessation of nephrogenesis at postnatal day 3 (P3). Between P2 

and P3, the CM markers SIX2 and CITED1 disappear, and the NPCs are terminally ex-

hausted. With this, the kidney loses the capacity for de novo nephrogenesis
8
. The signal-

ing mechanisms involved in the alteration of the balance between NPC self-renewal and 

commitment to differentiation during the cessation of nephrogenesis is poorly under-

stood. 

1.2.   Molecular regulation of NPC self-renewal and differentiation 

The self-renewal and differentiation of NPCs are combinatorially regulated by multiple 

growth factor signaling pathways, including Bone Morphogenetic Protein 7 (BMP7), Fi-

broblast Growth Factor (FGF) 9/20, and Wingless-Type MMTV Integration Site Family 

member 9b (WNT9b). 

1.2.1.   BMP7 signaling  

BMP7 belongs to the transforming growth factor-β (TGF-β) superfamily and binds to 

type I and type II transmembrane serine-threonine kinase receptors to activate the canoni-

cal SMAD and non-canonical MAPK signaling pathways (Figure 1.4)
29,30

.  

Although several BMP ligands (BMPs 2, 4, 6 and 7) are expressed in the embryonic 

kidney, Bmp7 is exclusively expressed in the CM and CD cells
32-34

. Bmp7 null mice 

display premature arrest in kidney development by E16.5 due to cell death and the early 
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depletion of CM, suggesting that BMP7 is required for the maintenance and self-renewal 

of NPCs
33,34

. Organ explant experiments also demonstrated that BMP7 acts as a survival 

factor for the maintenance of the CM
45

. UB-MM separation experiments suggested that 

CD signaling is necessary to maintain the CM expression of Bmp7, and WNT9b secreted 

from the UB may be involved in this function
36,37

. Global conditional inactivation of 

Bmp7 at E12.5, after the onset of metanephric kidney development, recapitulated the 

Bmp7 null phenotype, confirming that BMP7 is required during metanephrogenesis
38

. 

The BMP signal is transduced by the type I BMP receptors ALK2, ALK3 and ALK6
29,30

. 

Conditional inactivation of Alk3 in the early MM using Rarb2-cre results in hypomorphic 

kidneys
39

. However, cell death and premature depletion of NPCs, which are characteristic 

of the Bmp7 null phenotype, are not features of this mutation, indicating that ALK3 acts 

redundantly with the other type I receptors ALK2 and ALK6 and may not serve as the 

cognate type I receptor for BMP7 in NPCs. Type II BMP receptors include BMPR2, 

ACVR2A and ACVR2B
40

. Compound inactivation of Acvr2a and Acvr2b causes kidney 

agenesis. However, their specific effects on CM survival and self-renewal remain to be 

elucidated
40

. The roles of ALK2, ALK6 and BMPR2 in kidney development have not yet 

been explored.  

BMP7-mediated SMAD and MAPK signaling occurs in the CM
41-45

. Previous studies 

have reported that CITED1+ NPCs within the CM have low levels of activated 

SMAD1/5
43-45

. Binding of activated SMAD1/5 transcription factors to co-SMAD4 is 

essential for translocation and accumulation in the nucleus
46,47

. Inactivation of Smad4 in 

the CM only partially recapitulates the Bmp7 null phenotype, with premature cessation of 

nephrogenesis and cell death in the nephrogenic zone
41

. 
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Figure 1.4: BMP-mediated signaling pathways: Extracellular BMP ligands bind to the 

type I and type II BMP receptors on the cell membrane. Ligand binding induces hetero-

tetrameric receptor complex formation and activates signaling through type II-receptor-

mediated phosphorylation of the type I receptor on the GS domain. Activated type I re-

ceptors phosphorylate cytoplasmic signal transduction proteins such as R-SMADs and 

MAPKs (including JNK, ERK and p38), which in turn regulate the transcription of target 

genes in the nucleus
31

.  

 

Progenitor marker analysis showed that substantial numbers of NPCs remained in the 

mutant kidneys but lacked cap-like organization and were interspersed with the surround-

ing cortical interstitial (CI) cells
41

. An extracellular modifier of BMP signaling, Cv2 

(Bmper), is expressed in the CM, and its inactivation results in reduced activation of the 

SMAD1/5 transcription factors
45

. Compound inactivation of Cv2 and Bmp7 results in the 

mixing of NPCs with CI cells, recapitulating the Smad4 mutant phenotype and strongly 

suggesting that SMAD4-dependent BMP7 signaling is essential for the proper segrega-

tion of NPCs from the CI
45

. Interestingly, the suppression of SMAD1/5 activation in 
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NPCs in the Cv2 null and the associated hypomorphic phenotype is reversed by com-

pound inactivation of another BMP modulator, Twsg (Twisted gastrulation)
45

. This inter-

action suggests that a network of extracellular modifiers control BMP7-mediated SMAD 

signaling in the CM.  

Previous studies from our laboratory have demonstrated that the inhibition of MAP3K7 

(TAK1) and JNK in BMP7-treated NZC cultures in vitro blocked the proliferative re-

sponse of cells to BMP7, providing an explanation for the reduced proliferation of NPCs 

in the Bmp7 null
43

. Activation of the downstream transcription factors JUN and ATF2 is 

also reduced in the Bmp7 null, indicating that the proliferative signal is mediated through 

a BMP7-TAK1-JNK-JUN pathway
43

.  However, the molecular mechanism by which 

BMP7 activates TAK1-JNK-JUN signaling to regulate NPC proliferation is yet to be de-

termined.  

One aim of the current study is to map the TAK1-JNK-JUN signaling pathway compo-

nents in vivo and to determine the underlying molecular mechanism by which BMP7 con-

trols NPC self-renewal. 

1.2.2.   FGF9/20 signaling  

FGF signaling is initiated by the binding of the FGF ligands to tyrosine-kinase fibroblast 

growth factor receptors (FGFRs), resulting in the activation of the RAS-MAPK, 

PI3K/AKT and PLC-γ pathways (Figure 1.5)
48

. Early studies of the roles of FGFs in the 

developing kidney revealed that FGF2 promotes CM survival and maintenance
49,50

.
 
Inhi-

bition of FGF receptor activity by transgenic expression of soluble dominant negative 
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receptors or conditional gene inactivation in the MM causes severe renal dysplasia due to 

a failure of MM growth, demonstrating an essential role for FGF-mediated signaling in 

NPC maintenance
51,52

.  

Overexpression of the RTK signaling inhibitor Spry1 specifically in CM cells using the 

Cited1-creER strain resulted in the apoptosis of CITED1+ cells, confirming the require-

ment for FGF- and RTK-mediated signaling in NPC survival and maintenance
21

. Because 

the MM fails to survive once the UB is removed from explant cultures, FGFs produced 

by the UB are primary candidates for the natural signal to the CM.  

Of the FGFs expressed in the UB, FGF2 and FGF9 efficiently promote the survival and 

proliferation of NPCs in vitro
21

. Fgf9 is also expressed in the CM. However, mice lacking 

these genes exhibit normal kidney development, suggesting that they may act redundant-

ly
54,55

. FGF20, which is exclusively expressed in the CM, is essential for the maintenance 

of NPCs
55

. 

Compound inactivation of Fgf9 and Fgf20 results in NPC apoptosis and loss of the MM, 

similar to the effect of conditionally inactivating FGF receptors 1 and 2
52,55

. Fgf9 in the 

CM is activated by WNT9b, but a mechanism for the control of Fgf20 in these cells is yet 

to be elucidated
56

. Compound inactivation of Fgf2 with Fgf9 or Fgf20 has not yet been 

reported, and the in vivo contribution of FGF2 remains unknown. Genetic inactivation 

studies also revealed that NPC survival is dependent on Fgf8, which is expressed in the 

epithelializing PTA
57,58

.  
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Figure 1.5: FGF signaling cascades: FGF signaling is initiated by the ligand-dependent 

dimerization of the tyrosine-kinase FGF receptors, which leads to the cross-

phosphorylation (P) of tyrosine residues in the intracellular domain of the receptors. The 

phosphorylated residues are specifically bound by several intracellular signal transduc-

tion proteins, including PLC-γ, FRS2 and Src family members. These initiate several in-

tracellular signaling pathways, including the (A) PLC-γ pathway, (B) PI3K/PKB pathway 

and (C) the Ras/ERK pathway, which regulate key cellular processes such as survival, 

proliferation, differentiation and migration
48

.  

 

The tyrosine-kinase receptors involved in the transduction of FGF9 and FGF20 signals in 

NPCs are not fully understood. Conditional inactivation of genes encoding either FGFR1 

or FGFR2 in the MM has no major effect on metanephric development, whereas com-

pound conditional inactivation of both genes completely arrests kidney development at 

E10.5
62

. CITED1+ NPCs exclusively express the c forms of FGFRs 1 and 2, and com-

pound inactivation of the Fgfr2IIIc splice form with Fgfr1 in the MM results in a pheno-

type resembling the Fgfr1;Fgfr2 compound mutation
59

. However, neither Fgfr3 nor Fgfr4 

appear to play a role in signal transduction in NPCs, as kidney development is unper-

turbed in the Fgfr3;Fgfr4 compound mutants
60

.  
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In addition to the specific high-affinity FGF receptors, FGF signal transduction is also 

dependent on the presence of low-affinity heparin sulfate proteoglycan (HSPG) recep-

tors
61

. Hs2st1 (heparan sulfate 2-O-sulfotransferase 1) is expressed throughout the E11.5 

MM and in the CM, but not in the UB or CD. A gene trap mutation in Hst2st1 causes 

premature arrest of metanephric development by E11.5, with the formation of a small 

MM and the absence of UB branching
62

. Failure of MM growth at this developmental 

stage suggests that Hs2st1 may operate in the FGF pathway.  

Intracellular signal transduction mechanisms utilized by FGF ligands in NPCs remain 

incompletely understood, but essential roles for RAS and PI3K pathways have been iden-

tified.  In vitro observations in primary cells stimulated with FGF2 support a requirement 

for RAS activation in the maintenance of CITED1 expression in NPCs and demonstrate a 

requirement for PI3K signaling but not ERK for NPC proliferation
21

.   

A recent study reported that the scaffolding proteins CASK and DLG1 may be required to 

establish the FGF signaling complex in NPCs
63

. Cask;Dlg1 inactivation in the CM causes 

a reduction in the activation of RAS/RAF/ERK, p38 and JUN, with premature depletion 

of the CM. CASK interacts with the HSPG Syndecan 2, and DLG1 interacts with MEK2, 

potentially forming a signaling complex
64-66

. Several distinct signaling pathways are per-

turbed in the Six2-cre;Cask;Dlg1 mutants, and further studies will be needed to under-

stand if expression of these scaffolding proteins in NPCs is essential for the transduction 

of multiple growth factor signals.  

In summary, FGF9/20 signaling is essential for the survival, proliferation and mainte-

nance of CITED1+ NPCs. 
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1.2.3.   WNT9b signaling  

Secreted WNT ligands bind to cell surface receptors of the frizzled and LRP families and 

activate canonical β-catenin/TCF/LEF signaling and non-canonical Ca
2+

-dependent and 

Rho/JNK pathways (Figure 1.6)
67

.  

In the embryonic kidney, Wnt9b secreted from the UB is essential for the inductive re-

sponse of the CM
12,56

. In Wnt9b null mutants, the CM fails to aggregate and undergo 

MET to form renal vesicles
12

. Wnt9b promotes the expression of Wnt4 and Fgf8 in the 

PTA but not in the CITED1+/SIX2+ compartment of the CM. Despite the graded expres-

sion pattern of Wnt9b in the CD tip, some level of signaling occurs in the undifferentiated 

CITED1+ SIX2+ compartment within the CM
12

. Recent studies revealed that -catenin 

signaling is indeed activated in the SIX2+ cells of the CM in response to WNT9b
68,69

. 

Although the CM is correctly specified in Wnt9b mutants, proliferation is reduced in 

CITED1+ cells compared with wild type, indicating that WNT9b signaling is also in-

volved in the regulation of NPC proliferation
56

. 

More recent studies have suggested that the switch between the pro-proliferative function 

and the pro-differentiation function of WNT9b/-catenin signaling in the CM could be 

determined by the amplitude of -catenin signaling relative to expression of the anti-

differentiation transcription factor SIX2
47

.  

The cell surface receptors through which WNT9b signals are transduced in NPCs remain 

to be identified. Transcriptome data from the GUDMAP database shows the expression of 

several frizzled and LRP receptors in the CM, indicating redundant functions of these re-

ceptors
70

. 
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Figure 1.6: Canonical and non-canonical WNT signaling pathways: WNT signals are 

transduced through canonical and non-canonical pathways to control cell fate, cell 

movement and tissue polarity. Canonical WNT signals are transduced through Frizzled 

family receptors and LRP5/LRP6 co-receptors to the β-catenin signaling cascade. Non-

canonical WNT signals are transduced through Frizzled family receptors and ROR2/RYK 

co-receptors to the DVL-dependent (Rho family GTPases and JNK) or the Ca
2+

-

dependent (NLK and NFAT) signaling cascades
67

.  

 

Wnt4 is activated by WNT9b/-catenin signaling and is essential for CM differentiation 

into the renal vesicle
12,71

. Sustained activation of -catenin blocks the epithelial differen-

tiation of CM cells, indicating that -catenin activation needs to be down-regulated once 

Wnt4 expression has been acquired. WNT4 induces calcium influx in primary MM cells, 

and treatment with the ionophore ionomycin to raise intracellular calcium causes epithe-

lialization
72,73

. The calcium influx following WNT signaling may regulate the calcineu-

rin-activated NFAT transcription factors that are expressed in the developing kidney.  
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Increasing intracellular calcium partially rescues the loss of epithelial differentiation in 

the Wnt4 null, and calcineurin inhibition with cyclosporine A arrests the epithelial differ-

entiation of NPCs
73

. Whether WNT4 signals in an autocrine or paracrine manner is un-

known. The receptors used to transduce the non-canonical WNT4 signal in the PTA are 

also undetermined.  Further studies are required to elucidate the molecular mechanisms 

underlying the pro-proliferative and pro-differentiation functions of WNT9b signaling in 

NPCs. 

1.3.   Signaling cross-talk between BMP, FGF, WNT pathways 

NPCs within the CM are subject to multiple signaling inputs from the nephrogenic niche 

that includes signals from the CD cells, cortical stromal progenitors and endothelial pre-

cursors. BMP7, FGF9/20 and WNT9b signaling control NPC maintenance, self-renewal 

and differentiation, and previous studies have reported important interactions between 

these growth factors.  Examples include BMP7 and FGF2 interaction in the synergistic 

maintenance of the CM in organ explant cultures and the activation of common targets by 

FGF and WNT9b/β-catenin signaling in the CM
21,35,55

. These studies strongly suggest a 

potential convergence and cross-talk among these signaling pathways. A plethora of can-

didate mechanisms for the molecular cross-talk between these pathways can be found in 

the literature. However, the mechanistic bases for these interactions in NPCs in the con-

text of kidney development remain unknown. We are only now beginning to uncover the 

intracellular signal transduction mechanisms utilized by these distinct pathways.   
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Previous findings indicate that BMP7 activates the TAK1-JNK-JUN signaling cascade to 

promote NPC proliferation, and FGF-dependent RAS signaling is essential for the 

maintenance of NPCs
21,43

. FGF-mediated RAS/MAPK and WNT-activated β-catenin sig-

naling regulate JUN activation and the transcription of AP-1 target genes in other cellular 

contexts
74-76

. Therefore, regulation of JUN/AP-1 transcriptional activity could be a poten-

tial mechanism by which these distinct NPC self-renewal pathways collaboratively regu-

late NPC self-renewal.  

1.4.   AP-1 transcription factors and targets in NPCs 

The activating protein 1 (AP-1) transcription factor family consists mainly of JUN, FOS 

and ATF protein dimers
77

. Members of the AP-1 transcription factor family are involved 

in the regulation of many cellular processes including survival, proliferation and differen-

tiation in normal development and cancer
78,79

.  A prototypical AP-1 dimer chiefly con-

sists of a JUN and FOS heterodimer (Figure 1.7)
80

.  

While JUN can form homodimers and bind to AP-1 sites in the promoters of early re-

sponse genes, FOS proteins cannot homodimerize but form stable, heterodimeric com-

plexes with JUN, enhancing its DNA-binding activity
80

.  

JUN-FOS heterodimers act as stronger transactivators of AP-1 transcription than JUN-

JUN homodimers, and the composition of AP-1 dimers strongly determines the amplitude 

of AP-1 activity
80

.  
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AP-1 activity is also determined by the phosphorylation status and transcriptional activa-

tion of its individual components. JUN proteins are phosphorylated by JNK on the resi-

dues Ser63 and Ser73 within the N-terminal transactivation domain
78-80

.  

The specific kinases that regulate FOS activation are not clear, but FRK (Fos-related ki-

nase) and ERK phosphorylate FOS in a RAS-MAPK dependent manner (Figure 1.8)
80

.  

 

Figure 1.7: AP-1 transcription factor families: AP-1 transcription factor family consists of 

FOS, JUN, ATF, and MAF sub-family members that form homo or heterodimers to acti-

vate target transcription
80

. 

The Jun promoter contains the AP-1 sites/TRE-sequences. Therefore, Jun is auto-

regulated by its protein product
81

. Transcription of Fos is regulated by ERK/Elk/SRF 

transcription factors binding to SRE sequences in its promoter (Figure 1.8)
80

. 
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Binding of the AP-1 complexes to canonical AP-1 target sites (consensus sequence 5’-

TGAG/CTCA-3’, TRE sequence) on genes results in their transcriptional activation. 

Some of the well-characterized AP-1 transcriptional targets include apoptotic and cell 

cycle regulatory genes such as Ccnd1, p53, Myc, Bim, Bcl-2, p21
82,83

.
 
Of these targets, 

Myc has been demonstrated to be important for NPC self-renewal
84

.  

 

Figure 1.8: Phosphorylation and transcriptional activation of the AP-1 factors: JNK po-

tentiates the activation of c-jun. Frk and ERK phosphorylate c-fos
80

. 

Interestingly, inactivation of Myc in the CM results in the reduced proliferation of NPCs 

specifically in the later stages of nephrogenesis from E15-E18
84

. In contrast, N-Myc is 

required for CM maintenance and renewal during early stages (E11-E14) of nephrogene-

sis, indicating differential regulation and activation of Myc genes during different phases 

of nephrogenesis
85

.  
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The anti-apoptotic regulator Bcl-2 is also highly expressed in NPCs and is essential for 

metanephric kidney development. Bcl-2 null kidneys display normal MM specification 

until E12 but undergo apoptosis after E12.5, resulting in severely hypoplastic kidneys by 

P0
86

. More recent studies have delineated a role for p53 in the regulation of Pax2 expres-

sion in the CM, and inactivation of p53 in the NPCs results in kidney hypoplasia
87

. These 

studies strongly suggest a potential role for AP-1 function in NPCs.   

A major aim of this study is to determine if BMP7 and FGF9 cooperatively control AP-1 

transcriptional activity, which will potentially provide an explanation for their combina-

torial regulation of NPC self-renewal.   
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CHAPTER 2 

MATERIALS AND METHODS 

2.1.   Mouse strains and treatments 

Cited1-creER
T2

 mice, R26RlacZ mice and Spry1-Tg mice were maintained on an FVB/NJ 

background
18,88, 89

. Bmp7
+/cre

 mice were maintained on an ICR background. Six2-cre-

EGFP mice, Tak1
c/c 

mice, Tak1
+/c

 mice, and Jun
c/c 

mice were maintained on a C57BL/6 

background
16, 90,91

.  

For tamoxifen-inducible Cre mice, pregnant dams were injected with 3 mg tamoxifen in 

corn oil per 40 g mouse weight at the indicated time points.  

LDN-193189 (3mg/kg) in 20 ml of DMSO/PBS was administered intraperitoneally into 

newborn pups (P0) at 12 hour internals daily for two days (P2)
98

.  

Animal care was in accordance with the National Research Council Guide for the Care 

and Use of Laboratory Animals, and protocols were approved by the Institutional Animal 

Care and Use Committee of Maine Medical Center.  

2.2.   Histology, immunohistochemistry and morphometrics 

Dissected whole kidneys were fixed in 4% paraformaldehyde for 30 minutes (E14.5 and 

E17.5) to 1 hour (P0) at room temperature. Paraffin embedded sections were incubated 

with blocking solution containing phosphate buffered saline (PBS), 1% bovine serum al-

bumin (BSA), 5% serum of the secondary antibody species (Jackson ImmunoResearch) 

and 0.05% hydrogen peroxide (Sigma) for 1 hour at room temperature. The following 
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primary antibodies were diluted in PBS and incubated at 4C overnight: anti-SIX2 

(1:200, Proteintech), anti-CITED1 (1:200, Neomarkers), anti-GFP (1:100, Abcam), anti-

pHH3 (1:100, Cell Signaling), anti-Ki67 (1:100, Abcam), anti-PAX2 (1:100, Invitrogen), 

anti-pSMAD1/5 (1:50, Cell Signaling), anti-Caspase3 (1:100, Cell Signaling), anti-

Cytokeratin8/TROMA-I (1:100, DSHB), anti-DBA Lectin (1:500, Vector Laboratories), 

anti-JUN and anti-pJUN (1:200, 1:1,000, Cell Signaling), anti-FOS and anti-pFOS 

(1:400, Cell Signaling), anti-CCND1 (1:100, Cell Signaling), anti-CCND3 (1:100, Cell 

Signaling), anti-MYC (1:100, Abcam), anti-CCNE1 (1:250, Santa Cruz), and anti-PCNA 

(1:200, Santa Cruz).  

Alexa Fluor-488/568/647 conjugated secondary antibodies were used at 1:250 to detect 

labeled cells. Nuclei were stained using DAPI (Molecular Probes) for immunofluores-

cence and hematoxylin for immunohistochemistry. Sections were mounted using Vec-

tashield (Vector Laboratories).  

TUNEL staining was performed using ApopTagPlus peroxidase in situ apoptosis detec-

tion kit according to the manufacturer’s instructions (EMD Millipore).  

2.2.1.   Quantification of NPCs, collecting duct tips and glomeruli 

Quantification of NPC number and NPC proliferation was performed manually on E14.5, 

E17.5 and P0 whole kidney sections stained with CITED1 or SIX2 (NPC markers) and a 

proliferation marker (Ki67 or pHH3).  A minimum of five serial sections 100 µM apart 

per kidney per genotype was scored to determine the total number of CITED1+ or SIX2+ 

NPCs and SIX2+Ki67+, CITED1+ pHH3+ and CITED1-SIX2+PHH3+ proliferating 

NPCs.  
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For collecting duct (CD) tip quantification, E14.5 whole kidney sections were stained 

with Cytokeratin8 to label the CD tips. A minimum of 5-10 serial sections 100 µM apart 

per kidney per genotype was scored to calculate the number of CD tips per group. Whole 

kidneys from mice were serially sectioned and stained with hematoxylin and eosin 

(H&E). The relative number of glomeruli per kidney section was counted in sections eve-

ry 100 µM. Seven mice per group were analyzed, and the number of glomeruli scored 

was represented as the glomerular index per experimental group.  

2.2.2.   Whole mount immunostaining 

Dissected kidneys were fixed in 4% paraformaldehyde for 10 minutes at room tempera-

ture and washed with 1X PBS for 5 minutes at 4ºC. Kidneys were permeabilized with 1X 

PBS containing 0.1% Triton-X for 10 minutes at 4ºC, followed by a wash in 1X PBS con-

taining 0.01% Tween. Kidneys were incubated with blocking solution of 1X PBS con-

taining 0.01% Tween with serum of secondary antibody species for 8 hours. Primary an-

tibodies to anti-SIX2 (1:200, Proteintech) and anti-Cytokeratin8 (1:100, DSHB) were di-

luted in blocking solution, added to the wells containing the kidneys and incubated for 24 

hours at 4ºC. Alexa-Fluor 488/568 secondary antibodies (Molecular Probes) were used at 

1:250 and incubated for 24 hours to detect staining in the kidneys.   

2.2.3.   Body weight, kidney weight, kidney size 

Kidney weight measurements were normalized to body weight to account for differences 

in body size. Data are represented in grams (g) for body weight and milligrams (mg) for 

kidney weight for each experimental animal analyzed. For kidney size measurements, 

images of dissected whole kidneys were taken on a stereomicroscope, and the pole-to-
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pole distance of each kidney was calculated using Spot 5.1 Imaging software. The cross-

sectional area per kidney is depicted in the scatter plots. 

2.3.   Cell culture: isolation, purification and monolayer culture of NPCs 

Total NZCs were isolated from the dissected kidneys of E14.5 and E17.5 ICR mice by 

enzymatic digestion with a collagenase A/pancreatin enzyme mix
43

. For isolation of 

NZCs from E14.5, E17.5 and P0 conditional mutants, control and mutant kidneys were 

sorted based on size and GFP expression (Six2-cre-EGFP and Cited1-creER
T2

-EGFP) 

and confirmed by genotyping.  

NZCs were isolated from E13.5 to P1 kidneys and cultured in monolayer in keratinocyte 

serum-free medium (Thermo Fisher Scientific) supplemented with FGF2 (50 ng/ml, 

R&D Systems). Cultures were treated with 50 ng/mL BMP7 (R&DSystems), 50 nM 

TAK1 inhibitor (Analyticon Discovery), and 2.5 M dorsomorphin (DM, Sigma).  

Enrichment for CITED1+ NPCs was performed by negative depletion with magnetic ac-

tivated cell sorting (MACS), phycoerythrin (PE)–conjugated antibodies and anti-PE mi-

crobeads following the manufacturer’s protocol (Miltenyi Biotec). NPCs were purified by 

passing PE-labeled NZCs through an autoMACS separator using the “Deplete S” pro-

gram setting.  

Purified NPCs were cultured in monolayer under serum-free conditions in KSFM sup-

plemented with FGF2 (50 ng/ml, R&D Systems) and 100 U/ml penicillin-streptomycin in 

plates coated with human plasma fibronectin (100 g/ml, EMD Millipore). The identity 

of purified NPCs from ICR and conditional mutant mice was verified by immunostaining 
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using anti-CITED1 (1:200, Cell Signaling), anti-SIX2 (1:200, Proteintech), and anti-

LEF1 (1:100, Cell Signaling) antibodies and RT-qPCR analysis of cap mesenchyme and 

cortical interstitium markers before and after growth factor/inhibitor treatments. 

2.4.   Plasmid constructs: 

Wild type and kinase-defective TAK1 (K63W) plasmids were procured from Dr. Jun 

Ninomiya-Tsuji
92

. The pCX-EGFP construct was a gift from Dr. Andreas Nagy
93

. FLAG-

JUNWT-Myc and FLAG-JUN4A-MYC were gifts from Dr. Axel Behrens (Addgene # 

47443, 47444)
94

. FOS-DD was a gift from Dr. John Blenis (Addgene # 8698)
95

.  

3xAP1-pGL3 was a gift from Dr. Alexander Dent (Addgene # 40342)
96

.  pGL3Basic-962 

CCND1 promoter luciferase and the pGL3Basic-962 CCND1 promoter AP-1 site mutant 

(Addgene #32727 and # 32728) were gifts from Dr. Frank McCormick
97

. pRL-CMV 

(Renilla-Luciferase) was obtained from Promega.  

2.5.   Adeno-viral vectors and transduction:  

E17.5 NPCs harvested from Tak1
c/c

 and Jun
c/c

 were cultured in monolayer in KSFM 

(Gibco) supplemented with FGF2 (50 ng/ml, R&D Systems) overnight. Adeno-viral vec-

tors (Ad-Cre and Ad-GFP) were transduced at a multiplicity of infection (MOI) of 500 or 

1,000 for 40 hours.  

GFP expression was used to estimate transduction efficiency. RNA was harvested to ana-

lyze the reduction in Tak1 and Jun transcripts in Ad-Cre transduced NPCs. 
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2.6.   Growth curve analysis of NPCs:  

Freshly isolated E17.5 NPCs plated in monolayer in KSFM with FGF2 (50 ng/ml) were 

treated with TAK1 and JNK inhibitors for 1 hour, after which BMP7 (50 ng/ml, R&D 

Systems) was added and cells were incubated overnight at 37*c. Fresh media was added 

to cells every day, and cell proliferation over 3 days was measured by counting cells with 

a hemocytometer.  A minimum of 3-5 biological replicates per condition from three inde-

pendent experiments was analyzed.  

2.7.   Lipofectamine mediated transfection in NPCs:  

E17.5 NPCs cultured in KSFM media with rh-FGF2 (50 ng/ml) were transfected for 24 

hours using Lipofectamine® 2000 (Life Technologies). Plasmid DNA (2 µg) and  lipid (2 

µl) were mixed in a 1:1 ratio in Opti-MEM (Life Technologies), added to NPCs in KSFM 

without antibiotics and incubated for 1 hour at 37ºC. Media was replaced with fresh 

KSFM with FGF2 1 hour after transfection to minimize cytotoxicity. Transfection effi-

ciency was estimated using a pCX-EGFP construct at 24 and 48 hours after transfection 

and by RT-qPCR for transcript levels of over-expressed genes.  

2.8.   Dual-luciferase reporter assays in NPCs:  

Between 50,000 and 100,000 NPCs from E17.5 ICR mice and conditional mutants were 

plated in monolayer culture containing KSFM with FGF2 for 2 hours. The 3XAP1-Luc 

and Renilla-Luc constructs were transfected with Lipofectamine in KSFM media without 

antibiotics and incubated at 37ºC for 1 hour. Media was replaced with fresh KSFM with 

antibiotics and FGF2, and cells were allowed to grow overnight.  
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The next day, transfected cells were stimulated with vehicle, FGF9 and BMP7 for 24 

hours. Cells were lysed, and luciferase activity was measured using the Dual-Luciferase 

Reporter Assay Kit (Promega). Relative luciferase activity was normalized to Renilla-

luciferase. The average fold changes relative to vehicle treatment from four biological 

replicates and two independent experiments are presented in the graphs.  

2.9.   Immunoblotting:  

E17.5 NZCs and NPCs were cultured in monolayer for 2 hours in KSFM with rh-FGF2. 

For inhibitor treatments, TAK1i (0.5 µM, Analyticon Discovery) and JNKi (10 µM, Cal-

biochem) were added to cells and incubated for 1 hour. BMP7 or FGF9 (50 and 100 

ng/ml, R&D systems) were added and incubated for 15 minutes. Total protein was ex-

tracted using SDS lysis buffer containing protease inhibitors. Antibodies used were: anti-

pSMAD1/5 (Ser 463/465), anti-pTAK1 (Thr184/187), anti-pJNK (Thr183/Tyr185), anti-

pJUN (S73), anti-JNK1/2, anti-pFOS (S32) (1:1,000, Cell Signaling), anti-β-tubulin 

(1:5,000, Santa Cruz), anti-JUN (1:1,000, sc-45 Santa Cruz), and anti-TAK1 (1:500, Up-

state). Protein levels were quantified using ImageJ software by measuring the integrated 

density of the indicated proteins and normalizing to β-tubulin, the loading control.  

2.10.   Quantitative RT-PCR:  

RNA extraction from E14.5 and E17.5 NPCs was performed using the RNeasy Microkit 

(Qiagen). The RNA concentration was measured using a NanoDrop 2000 Spectropho-

tometer (Thermo Fisher Scientific), and a final concentration of 100-250 ng/l of RNA 

was used for cDNA synthesis by iScript
TM

 Reverse Transcription Super Mix (BioRad). 

Quantitative RT-PCR was performed using iQ-SYBR Green Super Mix (BioRad). Primer 
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sequences used in the study are listed in Table 1. Fold changes were normalized to the 

housekeeping gene β-actin, and average values (mean ± SD) of three technical replicates 

and from 2 to 3 independent experiments (n = 2 or 3) are shown in the figures. P-values 

were calculated using a two-tailed Student’s t-test, and P<0.05 was considered signifi-

cant. 

Table 1.1: Primer Sequences I 

Gene Primer Sequence (Forward) Primer Sequence (Reverse) 

 

Actin CGTGCGTGACATTAAAGAGAAG 

 

TGGATGCCACAGCATTCCATA 

Tak1 CGGATGAGCCGTTACAGTATC ACTCCAAGCGTTTAATAGTGTCG 

 

Jun CAGTCCAGCAATGGGCACATCA GGAAGCGTGTTCTGGCTATGCA 

 

Myc TCGCTGCTGTCCTCCGAGTCC GGTTTGCCTCTTCTCCACAGAC 

 

Cited1 CCACTAGCTCCTCTGGATCG 

 

AGCCCCTTGGTACTGGCTAT 

 

Six2 CACCTCCACAAGAATGAAAGCG 

 

CTCCGCCTCGATGTAGTGC 

 

Dpf3 CCTCTCAGGAAGACCACGACAA 

 

CCAGGTGAGTATGAGCGTAGTG 

 

Meox1 GGAGGATTGCATGGTACTTGGG 

 

CTTTGCTGCTGCCTTCTGGCTT 

 

Foxd1 CCTACTCGTACATCGCGCTCAT 

 

TAAGGGAAGCGGCTGCTGATGA 

 

Sfrp1 CAATACCACGGAAGCCTCTAAGC 

 

GCAAACTCGCTTGCACAGAGATG 

 

Ccnd1 GCAGAAGGAGATTGTGCCATCC 

 

AGGAAGCGGTCCAGGTAGTTCA 

 

Ccnd3 CGAGCCTCCTACTTCCAGTG 

 

GGACAGGTAGCGATCCAGGT 

 

p21 TCGCTGTCTTGCACTCTGGTGT 

 

CCAATCTGCGCTTGGAGTGATAG 

 

p27 TCAAACGTGAGAGTGTCTAACG CCGGGCCGAAGAGATTTCTG 
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 Table 1.2: Primer sequences II 

 

Pea3 

 

CACAGACTTCGCCTACGACTCA 

 

GCAGACATCATCTGGGAATGGTC 

 

Cv2 CCTGCTGTGAACGATGCAAAGG ACCTCAGACTCTGTCACCACAC 

 

Id1 TTGGTCTGTCGGAGCAAAGCGT 

 

CGTGAGTAGCAGCCGTTCATGT 

Id3 GCGTGTCATAGACTACATCCTCG GTCCTTGGAGATCACAAGTTCCG 

 

Id4 AGTGCGATATGAACGACTGCTAC AGCAAAGCAGGGTGAGTCTCCA 

 

Hoxb7 GCCGCAAGTTCGGTTTTCG GCAAAGGCGAAGAAGTTTGT 

 

Wnt4 GAGAACTGGAGAAGTGTGGCTG CTGTGAGAAGGCTACGCCATAG 

 

Sp5 TCGCACCGATACCAGTTGTCTC AGGTGATCGCTTCGCATGAAGC 

 

Cdc25a ACAGCAGTCTACAGAGAATGGG GATGAGGTGAAAGGTGTCTTGG 

 

Ccne1 GTGGCTCCGACCTTTCAGTC CACAGTCTTGTCAATCTTGGCA 

 

Fos GGGAATGGTGAAGACCGTGTCA GCAGCCATCTTATTCCGTTCCC 

 

Spry1 ATGGATTCCCCAAGTCAGCAT 

 

CCTGTCATAGTCTAACCTCTGCC 

 

 

2.11.   5’-Ethynyl-2’deoxy-uridine (EdU) labeling of NPCs:  

 E17.5 NPCs were cultured in monolayer with BMP7 and FGF9 (50 and 100ng/ml, R&D 

systems) in KSFM. Cultures were incubated with 20 M EdU (Click-iT® EdU Alexa 

Fluor® 488 Imaging Kit, Life Technologies) 4 hours after growth factor stimulation and 

pulse-chased for 20 hours. Fixation, permeabilization and Click-iT reaction were per-

formed according to the manufacturer’s instructions. Cultures were incubated with anti-

pHH3 (1:100, Cell Signaling) antibody for 1 hour, and AlexaFluor-568 secondary anti-

body was used to visualize the staining. Nuclei were stained with Hoechst 33342 (Life 

Technologies). Between 5-10 images were taken per well for each condition, with a min-
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imum of three biological replicates from two independent experiments (n = 2). Pooled 

images were analyzed by ImageJ, and the number of EdU+ (S-phase) and/or pHH3+ (Mi-

tosis or M-phase) nuclei were counted and divided by the total number of nuclei to de-

termine the percentage of cells in S- and M-phase. Data are represented as percentage of 

S- or M- phase cells in each condition. 

2.12.   Cell cycle marker analysis:  

NPCs were cultured in monolayer with BMP7 and/or FGF9 (50 and 100 ng/ml, respec-

tively, R&D systems) in KSFM for 24 hours. Cells were fixed in 4% PFA and blocked in 

PBS containing serum of the secondary antibody species, after which they were incubat-

ed in primary antibodies to CCNE1 and PCNA. AlexaFluor-488 (CCNE1) and Alexa-

Fluor-568 (PCNA) secondary antibodies were used to visualize the staining. Between 

five and eight images were taken per well for each condition, with a minimum of three 

biological replicates and three independent experiments. Pooled images were analyzed by 

ImageJ, and the number of cells positive for G1 (CCNE1+), G1-S (CCNE1+/PCNA+) 

and S (PCNA+) phases were counted and divided by the total number of nuclei (DAPI+) 

to determine the percentage of cells representing G1, G1-S or S phase. Data are repre-

sented as the percentage of G1 or S phase cells in each condition. 

2.13.   Statistical analyses:  

For statistical analyses, unpaired two-tailed Student’s t-tests were performed, and P-

values of less than 0.05 were deemed significant.  
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CHAPTER 3 

ELUCIDATING THE ROLE OF BMP7-SMAD SIGNALING IN NPC 

DIFFERENTIATION 

3.1.   Requirement for BMP7-pSMAD1/5 signaling in the transition from the early 

CITED1+ to the SIX2-only compartment  

NPCs are arranged in distinct compartments within the CM marked by the expression of 

the transcription factors CITED1, SIX2 and LEF1, representing a continuum of differen-

tiation states
19-21

. To better define the compartments within the CM of the E17.5 kidney 

from which we derived our nephrogenic zone cell (NZC) cultures, we conducted fluores-

cent immunostaining in tissue sections. The earliest progenitor cells associated with the 

cortical aspect of the CD tip expressed CITED1, whereas the slightly more differentiated 

population associated with the internal or distal aspect of the CD tip lost expression of 

CITED1 but maintained expression of SIX2 (Figure 3.1A,B). LEF1 expression was lim-

ited to the more differentiated PTA compartment that is primed for epithelial conversion 

(Figure 3.1C).  

Triple immunofluorescence staining with CITED1, SIX2 and LEF1 showed that both 

high (white arrows) and low (gray arrows) expressing sub-populations of “SIX2- only” 

progenitors reside between the CITED1 and LEF1 compartments (Figure 3.1D). These 

results indicated an arrangement of distinct cell states or compartments within the CM in 

which CITED1 expression is lost as cells differentiate to a SIX2-only state before finally 

entering the LEF1+ PTA and renal vesicle (RV) compartments (Figure 3.1E).  
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Previously, we demonstrated that CITED1+ progenitors in NZC cultures depend on 

FGF/RTK signaling for the maintenance of their phenotype
21

. We therefore sought to un-

derstand which signals push CITED1+ cells into the SIX2-only and the LEF1+ PTA 

compartments. To screen for pathways that promote CITED1+ progenitor differentiation, 

we used the primary NZC culture system. BMP7 treatment of NZC cultures resulted in 

loss of CITED1 and maintenance of SIX2 expression. However, BMP7 treatment did not 

promote LEF1 expression, indicating that cells do not differentiate all the way to the PTA 

compartment but remain in the SIX2-only compartment (Figure 3.1F).  

To understand if this pro-differentiative effect of BMP7 is a feature of the culture system 

or if it occurs in vivo, we analyzed CITED1 and SIX2 expression in kidneys from Bmp7 

null mutants. By E17.5, Bmp7 null kidneys are severely dysplastic, precluding analy-

sis
33,34

. However, at E14.5 Bmp7 null kidneys are approximately half of the size of their 

wild type counterparts, and the nephrogenic zone can be studied. As expected, CITED1 

immunostaining showed a reduction in the number of CITED1+ cells in the mutant kid-

neys compared to wild type (Figure 3.1G). CITED1+ progenitors in mutant kidneys were 

more linearly arranged around the periphery, in contrast to wild type kidneys in which 

they wrap around CD tips (Figure 3.1G). CITED1 and SIX2 co-staining revealed that loss 

of Bmp7 was associated with a more substantial decrease in the SIX2-only population 

(Figure 3.1H). These results strongly support a role for BMP7 in promoting the transition 

of undifferentiated NPCs from the CITED1+ compartment to the SIX2-only compartment 

in vivo. 
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Figure 3.1: BMP7 promotes the transition of CITED1+ NPCs into the SIX2-only com-

partment: (A) CITED1 (red) localizes to the cortical aspect of the collecting duct (green). 

Scale bar, 200 μM. (B) Progenitors in the cap lose CITED1 (red) but retain SIX2 (white, 

arrows). Scale bar, 50 μM. (C) LEF1 (red) is limited to the pre-tubular aggregate and re-

nal vesicles. Scale bar, 100 μM. (D) A “SIX2 only” progenitor population (green, arrows) 

resides between the CITED1+ (orange/yellow) and LEF1+ compartments (red). Scale 

bar, 50 μM. (E) Schematic representation of compartments showing loss of CITED1 as 

cells differentiate to SIX2-only before entering the LEF1+ pretubular aggregate and renal 

vesicle compartments. (F) BMP7 treatment showing loss of CITED1 (red), maintenance 

of SIX2 (green), and no LEF1 expression (red, absent). Scale bars, 200 μM. (G) E14.5 

Bmp7 null kidneys display reduced numbers of CITED1+ progenitors (G, H) Reduction 

in SIX2-only population. Scale bars, 500 μM and 50 μM. (H) Quantification of SIX2-

only clusters in E14.5 Bmp7 null (n = 4, 130 total tips) and wild-type kidneys (n = 6, 510 

total tips). Error bars represent S.D. *** P<0.0001, Student’s t-test. 

 



33 

 

We previously showed that BMP7 promotes proliferation of NZCs through TAK1-

MAPK, explaining the reduction of CITED1+ progenitors seen in E14.5 Bmp7 null kid-

neys
43

. However, SMAD signaling is also activated by BMP7 in the CM
42,45

. To confirm 

that BMP7-mediated SMAD signaling occurs in isolated NZCs, we immunostained 

BMP7 treated NZC cultures with PAX2 (CM marker) and co-stained with phospho-

SMAD1/5. PAX2 expression co-localized with phospho-SMAD1/5, suggesting that 

BMP7 does indeed activate SMAD1/5 signaling in NPCs (Figure 3.2A).  

Furthermore, phospho-SMAD1/5 expression was also observed in PAX2-expressing pro-

genitors in a region of the CM just underneath the CD tip in vivo (Figure 3.2B). This was 

further confirmed by co-staining with CITED1, which revealed that nuclear phospho-

SMAD1/5 localized in a subset of progenitors underneath the CD tip at the junction be-

tween CITED1+ and CITED1− cells, which represents the SIX2-only compartment (Inset 

in Figure 3.2B). 

To determine which BMP7-initiated signaling branch (MAPK versus SMAD) is respon-

sible for the shift of progenitors from the CITED1+ compartment to the SIX2-only com-

partment, NZCs were treated with BMP7 with or without addition of dorsomorphin 

(DM), a small molecule inhibitor of SMAD signaling, or TAK1 inhibitor (Figure 3.2C). 

BMP7 treatment with DM but not with TAK1 inhibitor blocked the ability of BMP7 to 

promote transition out of the CITED1+ compartment, showing that SMAD-mediated sig-

naling is essential for this effect (Figure 3.2C).  
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Figure 3.2: BMP7 activates pSMAD1/5 signaling in SIX2-only NPCs: (A) BMP7 treat-

ment results in pSMAD1/5 (green) activation in PAX2 progenitors (red); costaining is 

yellow. Scale bars, 100 μM (B) Immunofluorescence of E17.5 kidney sections shows nu-

clear pSMAD1/5 in the distal cap underneath collecting duct tips (arrows). Inset shows 

CITED1 (red) and pSMAD1/5 (green) at the CITED1+/CITED1− border. Scale bars, 100 

μM and 50 μM. (C) CITED1 staining (red) of NZCs pretreated with vehicle, BMP7, 

BMP7 + dorsomorphin (DM), or BMP7 + TAK1 inhibitor (TAK1i) shows that SMAD1/5 

inhibition blocks the ability of BMP7 to reduce CITED1 expression. Scale bars, 100 μM 

(D) Quantitative RT-PCR analysis shows that inhibition of SMAD dependent signaling 

by DM, compared with TAK1i, blocks the ability of BMP7 to reduce transcription (48 

hours) of a group of early progenitor markers (Cited1, Meox1, Dpf3). Raw data are nor-

malized to β-actin expression, and fold changes are relative to the vehicle control. (E) 

pSMAD1/5 (black arrows) in the distal cap mesenchyme is lost in the E14.5 Bmp7 null 

kidneys. Scale bars, 100 μM.  
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To confirm that this transition reflects a change in cellular state rather than simply a re-

duction of CITED1, we evaluated the expression of Meox1 and Dpf3, which are co-

expressed with Cited1 in the CM. Meox1 and Dpf3 were indeed co-regulated with Cited1 

following BMP7 treatment, indicating that the transition out of the CITED1+ compart-

ment represents a change of cellular state (Figure 3.2D).  

Tissue staining for phospho-SMAD1/5 in the Bmp7 null kidney at E14.5 revealed loss of 

nuclear phospho-SMAD1/5 in the mutants, confirming that SMADs are activated in the 

distal cap specifically by BMP7 in vivo (Figure 3.2E). In summary, these results suggest 

that BMP7 promotes the transition of progenitors out of the CITED1+ compartment to 

the SIX2-only compartment in a SMAD-signaling dependent manner. 

3.2.   Inhibition of phospho-SMAD1/5 signaling in vivo retains NPCs in the 

CITED1+ progenitor state 

BMP7-SMAD1/5 signaling is required for undifferentiated CITED1+ NPCs to transition 

to a CITED1-/SIX2+ state in which they are sensitized to epithelial induction by 

WNT9b/β-catenin signaling
56

 (Figure 3.3A). We reasoned that SMAD1/5 signaling might 

increase during the terminal phase of nephrogenesis, skewing the renewal versus differ-

entiation balance and depleting the CM. Cessation of nephrogenesis is defined as the final 

round of new nephron formation in which the last wave of NPCs undergo MET
8
. In mice, 

this occurs shortly after birth and is accompanied by a reduction in Cited1+ CM by P2 

(Figure 3.3B).   
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Figure 3.3: Pharmacological SMAD1/5 inhibition retains NPCs in the early CITED1+ 

compartment: (A) Schematic of cap mesenchyme compartments and key signaling path-

ways required for their maintenance and differentiation. (B) Cited1creERT2-EGFP kid-

neys harvested at postnatal stages showing GFP expression in cap mesenchymes. (C) 

Immunostaining of pSMAD1/5 (black arrows) in E17.5 to P1 kidneys. Cap mesenchymes 

are outlined with dotted black lines. (D) pSMAD1/5 immunoblot of NZCs. Graph shows 

percent remaining after LDN treatment quantified by densitometry and normalized to β-

tubulin. NZCs were isolated from four kidney pairs per treatment group and pooled. (E) 

Fluorescent imaging of kidneys from Cited1- or Six2-EGFP mice in vehicle and LDN-

treated animals. n = 4. (F) Transcriptional analysis of cap mesenchyme markers in isolat-

ed NZCs. Error bars represent s.d from five technical replicates from five (DMSO) and 

six (LDN) pooled kidney pairs. (G) Distribution of kidney weights from P0 mice treated 

for 2 days with DMSO or LDN and harvested at 2 weeks. Error bars represent S.E.M. P = 

0.07, Student’s t-test. (H) Relative number of glomeruli counted per kidney (glomerular 

index). Error bars represent S.E.M. ***P<0.0001, Student’s t test. 
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Immunostaining of E17.5 to P2 wild type kidneys for activated phospho-SMAD1/5 

(pSMAD1/5) showed that an expanded domain of SMAD1/5 activation in many CMs 

associates with cessation of nephrogenesis (Figure 3.3C). To understand if CM cells in 

their natural signaling environment could be prevented from transitioning out of the na-

tive CITED1+ progenitor cell state, we treated newborn animals with the SMAD1/5 

small molecule inhibitor LDN-193189 (LDN) during the first two postnatal days. LDN is 

highly specific for SMAD1/5 and has been successfully used in vivo
98

. Immunoblot of 

NZCs isolated from LDN-treated animals showed greater than 95% reduction in 

SMAD1/5 phosphorylation compared to controls, confirming efficient inhibition of 

SMAD1/5 signaling (Figure 3.3D).  

 

To measure the differentiation status of NPCs, we used the Cited1creERT2-EGFP and 

Six2cre-EGFP mouse strains, which dynamically express fluorescent protein under the 

control of the Cited1 and Six2 promoters
14,16

. While untreated animals lost Cited1 and 

Six2 expression in the CM at P2 and P3, respectively, expression was maintained in 

LDN-treated pups (Figure 3.3E). RT-qPCR analysis of isolated NZCs with additional 

marker genes expressed within these two compartments confirmed that the progenitor 

state was rescued in LDN-treated pups (Figure 3.3F).  

 

We observed the expression of CITED1+/SIX2+ compartment-specific transcripts such 

as Cited1, Meox1 and Six2 and loss of markers for the CITED1-/SIX2+ and PTA com-

partments, including the WNT/β-catenin response genes Wnt4, Lef1 and Sp5. Transcrip-

tion of BMP response genes including Cv2 and several inhibitors of differentiation (Ids) 



38 

 

was also decreased, consistent with suppression of SMAD signaling by LDN (Figure 

3.3F).  

 

Kidneys of treated mice aged for two weeks after LDN administration were slightly larg-

er and contained more nephrons than vehicle-treated controls, as determined by counting 

glomeruli in serial kidney sections spaced 100 µm apart (Figure 3.3G,H). Although less 

precise than counting all glomeruli using stereology, this index is proportional to the 

number of glomeruli and nephrons in each kidney.  

 

Taken together, these findings suggest that inhibition of pSMAD1/5 activation retains 

NPCs in the Cited1+/Six2+ progenitor cell state within their natural signaling niche and 

that pharmacological delay of CITED1+ depletion with LDN results in increased nephron 

endowment. 
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CHAPTER 4 

MAPPING BMP7-MAPK SIGNALING COMPONENTS IN NPCS  

4.1.   Functional dissection of BMP7-MAPK pathway components in NPCs 

Previous work from our laboratory indicated that BMP7 promotes the proliferation of 

NZCs through MAPK signaling
43

. However, NZC cultures comprise a mixture of cell 

types: CITED1+ NPCs, FOXD1+ CI cells and CD31+ endothelial cells. To understand if 

BMP7 activates the MAPK pathway specifically in CITED1+ NPCs and to determine the 

kinetics of pathway activation, we measured the phosphorylation states of each of the 

MAPK components TAK1, JNK, and JUN in response to BMP7 in NPCs purified by 

immunomagnetic separation (Figure 4.1A). Following BMP7 stimulation, we detected a 

sequence of phosphorylation events with peak activation of pTAK1 at 10 minutes, pJNK 

at 15 minutes, and pJUN at 20 minutes, suggesting that BMP7 activates the TAK1-JNK-

JUN signaling cascade specifically in NPCs (Figures 4.1B,C).  

Activated JUN binds to AP-1 elements in target gene promoters, including itself and 

Myc
77-81

. In NPCs, Jun and Myc were up-regulated 2 hours after BMP7 stimulation, and 

pre-treatment with TAK1 and JNK inhibitors significantly reduced this response, indicat-

ing that they are early transcriptional targets of the pathway in these cells (Figure 4.1D). 

Tak1- and Jun-deficient NPCs showed a significant reduction in BMP7 stimulation of Jun 

and Myc transcription, corroborating the finding that BMP7 controls the transcription of 

Jun and Myc through TAK1-JNK signaling (Figures 4.1E,F). Myc is required for the re-
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newal of NPCs in vivo, and our findings outline one signaling mechanism for the control 

of Myc expression in these cells
84

. 

 

Figure 4.1: BMP7 activates TAK1-JNK-JUN pathway in NPCs: (A) CITED1 and LEF1 

immunostaining of freshly purified E17.5 NPCs. Scale bars, 50 μM. (B) Immunoblot 

shows the time course of activation of pTAK1, pJNK, and pJUN in NPCs stimulated with 

BMP7. (C) Average protein densities measured at each time point from two independent 

experiments (n = 2). Error bars represent S.D. (D) RT-qPCR of Myc and Jun on NPCs 

treated with vehicle, BMP7, TAK1, and JNK inhibitors for 2 hours. Error bars represent 

S.D.  **P<0.005, Student’s t-test. Three biological replicates analyzed per condition, n = 

3. (E,F) RT-qPCR of Tak1, Jun, and Myc on Tak1- and Jun-inactivated NPCs stimulated 

with BMP7 for 2 hours. Error bars represent S.D. **P<0.05, Student’s t-test. Two biolog-

ical replicates analyzed per condition, n = 2. 

 

To evaluate the role of the BMP7-TAK1-JNK-JUN pathway in cellular proliferation, we 

assessed the growth curves of BMP7-stimulated NPCs treated with TAK1 or JNK inhibi-

tors. As expected, BMP7-stimulated proliferation was reversed by TAK1 or JNK inhibi-

tion, indicating that BMP7 promotes NPC proliferation in a TAK1- and JNK-dependent 

manner (Figure 4.2A).  
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Figure 4.2: BMP7 promotes NPC proliferation through TAK1-JNK-JUN signaling: (A) 

Growth curve of NPCs treated with vehicle, BMP7, TAK1, and JNK inhibitors. Average 

numbers are derived from five biological replicates per condition, n = 5. Error bars repre-

sent S.D.  **P<0.005, Student’s t-test. (B,C) Growth curve of vehicle or BMP7-treated 

NPCs transfected with wild type or kinase dead TAK1 and JUN constructs. Average 

numbers are derived from three biological replicates per condition, n = 3.  Error bars rep-

resent S.D. **P<0.009 and **P<0.005, Student’s t-test. (D) Panels show GFP expression 

in isolated NPCs transfected with pCX-EGFP using Lipofectamine for 24 hours. Scale 

bars, 200 μM. (E) RT-qPCR of Tak1 and Jun expression in NPCs transfected with pCX-

EGFP, pCMV-TAK1 and pCMV-JUN for 24 hours. Error bars represent S.D.  Two bio-

logical replicates per condition, n=2. 
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Figure 4.3: Cellular identity of NPCs during growth factor treatments: (A) CITED1, SIX2 

and LEF1 immunostaining of NPCs treated with vehicle, BMP7, TAK1i and JNKi for 24 

hours. Scale bars, 100 μM. (B) RT-qPCR of cap mesenchyme and cortical interstitium 

markers in NPCs treated with BMP7 and TAK1 and JNK inhibitors for 24 hours. Error 

bars indicate S.D.  Three biological replicates per condition, n=3.  

To confirm that BMP7-stimulated proliferation depends on the kinase activity of pathway 

components, wild type and kinase dead versions of TAK1 and JUN were expressed in 

NPCs, which were stimulated with BMP7. Wild type TAK1 and JUN expression aug-

mented the BMP7-induced proliferative response, whereas kinase dead variants reduced 

it, confirming that the phosphorylation of pathway components is essential for the prolif-
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eration of NPCs (Figure 4.2C). Transfection efficiency was analyzed by expressing a GFP 

construct and by measuring the expression of Tak1 and Jun transcript levels in transfected 

NPCs (Figures 4.2D,E). 

To confirm that NPCs retained their phenotype in the experimental conditions, we meas-

ured the expression of CITED1, SIX2, and LEF1 as well as evaluated a panel of cap mes-

enchyme and cortical interstitium markers (Figures 4.3A,B). Based on our primary cell 

analysis, we conclude that BMP7 promotes NPC proliferation through activation of the 

TAK1-JNK-JUN signaling cascade.  

4.2.   Establishing a genetic interaction between Bmp7 and Tak1 in NPCs  

To confirm the BMP7-TAK1 relationship in vivo, we utilized the Bmp7
+/cre 

strain to inac-

tivate one copy of Tak1. Bmp7
+/cre

 is an inactivating mutation, and heterozygous animals 

express only one copy of the gene
 41

. We reasoned that limiting the availability of TAK1 

would exacerbate the effect of reduced BMP7 ligand availability if these molecules oper-

ate in the same pathway.  

Although the body weight of Bmp7
+/cre 

embryos appeared slightly smaller than wild type, 

no significant difference could be detected between Bmp7
+/cre

 and Bmp7
+/cre

;Tak1
+/c

 mice 

(Figures 4.4A,B). Morphometric analysis at E14.5 and P0 revealed significant reductions 

in size and weight of Bmp7
+/cre

;Tak1
+/c

 kidneys compared to Bmp7
+/cre

, supporting the no-

tion that BMP7 indeed does signal through TAK1 in vivo (Figures 4.4B-E). 
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Figure 4.4: Bmp7 and Tak1 interact to control NPC self-renewal: (A) H&E staining of 

E14.5 wild type, Tak1
+/c

, Bmp7
+/cre

, and Bmp7
+/cre

;Tak1
+/c

 kidneys. Scale bars, 500 μM. 

(B) Body and kidney weights and kidney size of E14.5 and P0 wild type, Tak1
+/c

, 

Bmp7
+/cre

 and Bmp7
+/cre

;Tak1
+/c

 kidneys. *P<0.01, **P<0.005 and *P<0.05, Student’s t-

test. Number of mice analyzed per genotype (n) is shown on the panels.  

To verify the loss of Tak1 and Jun in mutant kidneys, we measured the expression of 

Tak1, Jun and their downstream target Myc in isolated NPCs from P0 wild type, Tak1
+/c

,
 

Bmp7
+/cre

 and Bmp7
+/cre

;Tak1
+/c

. Tak1, Jun, and Myc were reduced by approximately 60% 

in Bmp7
+/cre

;Tak1
+/c

 compared to wild type (Figure 4.5A).  

Activated pJUN levels were decreased in the cap mesenchyme but not in the ureteric bud 

tips of Bmp7
+/cre

;Tak1
+/c

 kidneys compared to Bmp7
+/cre

 and wild type, confirming that 

compound heterozygosity for Bmp7 and Tak1 results in reduced activation of JNK-JUN 

signaling specifically in NPCs (Figures 4.5B,C). 
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Figure 4.5: JNK-JUN signaling is reduced in Bmp7;Tak1 compound mutants: (A)RT-

qPCR of NPCs from P0 kidneys for Tak1, Jun, and Myc in mutants and wild type con-

trols. Error bars represent S.D. Two biological replicates analyzed per genotype, n = 2. 

(B) pJUN immunostaining in E14.5 wild type, Tak1
+/c

, Bmp7
+/cre

 and Bmp7
+/cre

;Tak1
+/c

 

kidneys. (C) Ratio of pJUN+ cells to the total number of cells per cap mesenchyme and 

collecting duct tip is represented in the graph. Between 10-15 collecting duct tips and cap 

mesenchymes were analyzed per kidney per genotype. *P<0.05, Student’s t-test. Scale 

bars, 50 μM. 

Cell death in the nephrogenic zone and premature loss of NPCs are hallmarks of Bmp7 

null mutants
33,34

.
 
We therefore measured proliferation and cell death in NPCs of single 

and compound mutants. Using SIX2 with the proliferation marker Ki67, we observed a 

significant reduction in Ki67+/SIX2+ cells at E14.5 (15%) and P0 (10%) and a concomi-

tant decrease in the number of SIX2+ cells per kidney in the Bmp7
+/cre

;Tak1
+/c 

kidneys 

relative to the Bmp7
+/cre

 mutant (Figures 4.6A-H).  
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Figure 4.6: Tak1 controls NPC proliferation downstream of BMP7: (A-D) SIX2 (red, cap 

mesenchyme) and Cytokeratin8 (green, collecting duct) immunostaining of E14.5 whole 

kidney sections. Scale bars, 500 μM. Co-immunostaining of SIX2 and the proliferation 

marker Ki67. Scale bars, 50 μM. Quantification of SIX2+, SIX2+/Ki67+, and collecting 

duct tips from 5-10 serial sections per kidney per genotype. Arrows point to 

Ki67+/SIX2+ cells in the cap mesenchyme, which is highlighted by white dashed lines. 

Error bars represent S.D. **P<0.005 and *P<0.05, Student’s t-test. (E-G) SIX2 (red, cap 

mesenchyme), DBA Lectin (green, collecting duct) and Ki67 staining in P0 wild type, 

Tak1
+/c

, Bmp7
+/cre

 and Bmp7
+/cre

;Tak1
+/c

 kidneys. Number of SIX2+ NPCs and 

Ki67+/SIX2+ cells (white arrows) per kidney section for the indicated genotypes. Error 

bars indicate S.D. **P<0.005, Student’s t-test. Scale bars, 100μM and 50 μM.  

 



47 

 

Apoptosis analysis showed no evidence of increased cell death in the E14.5 

Bmp7
+/cre

;Tak1
+/c 

or Bmp7
+/cre 

kidneys, suggesting that Tak1 is involved only in the pro-

liferative response of NPCs to BMP7 (Figure 4.7A).
 

 

 

Figure 4.7: Reduction in collecting duct tips in Bmp7;Tak1 compound mutants: A) Caspa-

se3 (red, apoptosis marker) and Cytokeratin8 (green, collecting duct) staining in the con-

ditional mutants. Scale bars, 50 μM. (B) Whole mount immunostained images showing 

SIX2 + NPCs and Cytokeratin8+ collecting duct tips in the conditional mutants. Number 

of collecting duct tips scored per kidney per genotype (n = 3) is shown in the graph. Error 

bars represent S.D. *P<0.05, Student’s t-test. Scale bars, 500 μM.  

Growth and branching of the ureteric bud is controlled by factors secreted by NPCs. To 

determine if ureteric bud branching was secondarily affected in Bmp7
+/cre

;Tak1
+/c

 kid-

neys, we quantified the number of collecting duct tips. Bmp7
+/cre

 kidneys show reduced 

branching relative to wild type, which strongly suggests an effect of diminished NPC 

numbers in this mutant, considering that the reduction of Bmp7 caused by heterozygosity 

is predicted to promote ureteric bud outgrowth and branching
99,100

. Compared to 

Bmp7
+/cre

, Bmp7
+/cre

;Tak1
+/c 

kidneys showed a further reduction of ureteric bud branching 
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proportional to the reduction in NPC number (Figure 4.7B). Overall, our genetic interac-

tion study supports the control of NPC renewal by BMP7 signaling through TAK1 in the 

developing kidney. 

3.3.   Conditional deletion of Tak1 and Jun in NPCs 

To stringently determine the requirement for the components of the BMP7-TAK1-JNK-

JUN pathway in NPCs in vivo, we inactivated Tak1 and Jun using Six2-cre. Both Tak1
NPC

 

(Six2-cre;Tak1
c/c

) and Jun
NPC 

(Six2-cre;Jun
c/c

) P0 kidneys showed significant reduction in 

kidney weight (50%) and size (30% to 40%) compared to Tak1
het 

(Six2-cre;Tak1
+/c

) and 

Jun
het 

(Six2-cre;Jun
+/c

)
 
kidneys, confirming that these genes are essential in the Six2 line-

age, which is limited to NPCs and their derivatives (Figures 4.8A-D)
16

.  Body weights of 

these different strains did not show significant differences (Figure 4.8B).  

To verify loss of Tak1 and Jun, we measured the expression of Tak1, Jun and their target 

Myc in NPCs isolated at E17.5 (Tak1
NPC

 and Tak1
het

) or E14.5 (Jun
NPC 

and Jun
het

). Tak1 

and Jun were reduced by 80% and Myc by approximately 50% to 60% in Tak1
NPC 

and 

Jun
NPC 

NPCs, respectively (Figures 4.8E,F).  

pJUN and MYC protein levels were also reduced in mutant kidneys, confirming that in-

activation of Tak1 and Jun results in reduced activation of JNK-JUN signaling and down-

stream targets in NPCs (Figure 4.8H).  

Morphological analysis of Tak1
NPC 

and Jun
NPC 

kidneys revealed several atypically orga-

nized cap mesenchymes containing few NPCs (Figure 4.9A). SIX2+ cells were reduced 
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by approximately 50% in mutant kidneys, suggesting that Tak1 and Jun inactivation re-

sults in premature loss of NPCs (Figures 4.9A,B,E).   

 

Figure 4.8: Tak1 and Jun are essential for NPC proliferation: (A) H&E staining of P0 

Tak1
het

, Tak1
NPC

, Jun
het

,
 
and Jun

NPC
 kidneys. Scale bars, 500 μM. (B-D) Kidney and body 

weights and kidney size of P0 Tak1
het

, Tak1
NPC

, Jun
het

 and Jun
NPC

 kidneys. Number of 

mice analyzed per genotype (n) is noted in the graphs. **P<0.005, Student’s t-test. (E,F) 

Transcriptional analysis of Tak1, Jun, Myc, and cap mesenchyme markers in NPCs isolat-

ed from E17.5 Tak1
het

 and Tak1
NPC

 and E14.5 Jun
het

 and Jun
NPC

 kidneys. (G) E17.5 

Tak1
het

 and Tak1
NPC 

and E14.5 Jun
het

 and Jun
NPC

 whole kidneys showing GFP fluores-

cence.  RT-qPCR of the cortical interstitial markers Foxd1 and Sfrp1 in NZCs and NPCs 

isolated from the indicated genotypes. Error bars represent S.D. Two biological replicates 

per group, n = 2. (H) pJUN and MYC immunostaining in E14.5 Jun
het

 and Jun
NPC

 kid-

neys. Cap mesenchyme marked by white/black dotted lines. Scale bars, 50 μM.  
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Figure 4.9: Premature depletion of NPCs in Tak1 and Jun conditional mutants: (A) H&E 

and co-immunostaining of SIX2 (green, cap mesenchyme) and DBA lectin (red, collect-

ing duct) in P0 Tak1
NPC 

and Jun
NPC

 kidneys. Scale bars, 25 μM. (B) Average number of 

SIX2+ NPCs per kidney section per genotype. Number of mice (n) analyzed per group is 

noted in the graph. Error bars indicate S.D. **P<0.005, Student’s t-test. (C) Ki67 (green) 

and SIX2 (red) co-immunostaining of P0 Tak1
het

, Tak1
NPC

, Jun
het

, and Jun
NPC

 kidneys. 

Insets show magnifications of cap mesenchymes with arrows pointing to Ki67+ cells. 

Scale bars, 100 μM. (D) Number of SIX2+/Ki67+ cells per kidney section. Error bars in-

dicate S.D.  **P<0.005, Student’s t-test. (E) SIX2 (red, cap mesenchyme) and pHH3 

(blue, proliferation marker) co-immunostaining in E14.5 Jun
het

 and Jun
NPC

 kidneys. 

Number of SIX2+ NPCs and pHH3+/SIX2+ cells (white arrows) per kidney section is 

represented in the graph. Error bars indicate S.D.  **P<0.005, Student’s t-test. Scale bars, 

50 μM. (F) TUNEL (black arrows) and Caspase3 (red, apoptosis marker/white arrows) 

and SIX2 (green, cap mesenchyme) immunostaining in P0 and E17.5 Tak1
het

 and Tak1
NPC

 

kidneys. Scale bars, 100 μM. (G) β-galactosidase (red) and SIX2 (green) co-

immunostaining of E17.5 Tak1
het

 (Six2
+/cre

;Tak1
+/c

;R26RLacZ) and Tak1
NPC

 

(Six2
+/cre

;Tak1
c/c

;R26RLacZ) kidneys. Three mice were analyzed per genotype at E14.5 

and E17.5 (n = 3). Abbreviations: CD, Collecting duct; CM, Cap mesenchyme; PTA, Pre-

tubular aggregate. 
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To understand if this was due to reduced proliferation, we measured the coexpression of 

Ki67 or pHH3 and SIX2 in Tak1
NPC 

(P0)
 
and Jun

NPC 
(E14.5

 
and P0) kidneys. We observed 

a 50% reduction of Ki67+/SIX2+ cells and pHH3+/SIX2+ cells in the Tak1
NPC 

(P0)
 
and 

Jun
NPC 

(E14.5, P0) kidneys (Figures 4.9C,D). TUNEL and Caspase3 staining showed no 

evidence of cell death in the Tak1
NPC 

kidneys, suggesting that loss of NPCs was strictly 

due to reduced proliferation (Figure 4.9F).  

To rule out the possibility that Tak1 and Jun mutant NPCs may take on a cortical intersti-

tial fate, we analyzed Tak1
NPC 

(E17.5) and Jun
NPC 

(E14.5) NPCs for markers of cap mes-

enchyme (Cited1, Six2, Dpf3, and Meox1) and cortical interstitium (Foxd1 and Sfrp1). 

Cap mesenchyme markers either remained unchanged or showed a slight increase in 

Tak1
NPC 

(E17.5) and Jun
NPC 

(E14.5). However, neither Foxd1 nor Sfrp1 were elevated in 

Tak1
NPC 

or Jun
NPC

, indicating that the cellular identity of NPCs was unaltered (Figure 

4.9E,F,G).  

To confirm that Tak1 and Jun mutant NPCs retain their cellular identity in vivo, we per-

formed lineage tracing analysis by crossing the Six2
+/cre

;Tak1
+/c

 and Six2
+/cre

;Jun
+/c

 mice 

with the R26RLacZ reporter. β-galactosidase and SIX2 immunostaining revealed that 

tagged cells were confined to the SIX2+ cap mesenchyme and its derivatives in both 

Tak1
NPC

 and Jun
NPC

 kidneys (Figure 4.9G). Thus, inactivation of Tak1 and Jun in NPCs 

partially phenocopies the Bmp7 null phenotype, suggesting that they operate in the same 

pathway to regulate NPC self-renewal.   
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Figure 4.10: Tak1 is essential for renewal of the early CITED1+ NPCs: (A-D) H&E stain-

ing of E14.5 and E17.5 whole Tak1
C-WT

 and Tak1
C-NPC

 kidneys. Insets show nephrogenic 

units in which cap mesenchymes are outlined with black dashed lines. (C,D) Kidney size. 

Number of mice analyzed per genotype (n) is noted in the graphs. **P<0.005, Student’s 

t-test. Scale bars, 500 μM, 50 μM and 1 mm. (E) RT-qPCR of Tak1, Jun, and Myc in 

NPCs isolated from E17.5 Tak1
C-WT

 and Tak1
C-NPC

 kidneys. Error bars indicate S.D. Two 

biological replicates analyzed per genotype (n = 2). (F) Immunoblot of TAK1 and β-

Tubulin in NPCs isolated from E17.5 Tak1
C-WT

 and Tak1
C-NPC

 kidneys. (G) pJUN and 

MYC immunostaining of E14.5 and E17.5 Tak1
C-WT

 and Tak1
C-NPC

 kidneys. Scale bars, 

50 μM. Abbreviations: CM, cap mesenchyme; CD, collecting duct. 

The few Ki67+/SIX2+ NPCs we observed in Tak1
NPC

 kidneys localized predominantly to 

the distal cap mesenchyme under the collecting duct tips, where CITED1 expression is 

normally lost (See insets in Figure 4.9C). To understand if the Tak1
NPC

 phenotype results 

from gene inactivation specifically in the CITED1+ compartment, we used the Cited1-

creER
T2 

strain. Cited1-creER
T2

;Tak1
c/c 

(Tak1
C-NPC

) and Tak1
c/c

 (Tak1
C-WT

, littermate con-

trol) mice were tamoxifen-injected at either E11.5 or E14.5 and harvested after 72 hours. 
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Figure 4.11: Reduced proliferation of CITED1+ NPCs in Tak1 mutant: (A) CITED1 (red, 

cap mesenchyme) and DBA lectin (green, collecting duct) staining of E17.5 Tak1
C-WT

 and 

Tak1
C-NPC

 kidneys. Scale bars, 50 μM. (B) Quantification of numbers of CITED1+ cells 

per E14.5 and E17.5 kidney section per genotype. Number of mice (n) per genotype is 

noted in the graph. Error bars represent S.D. **P<0.005, Student’s t-test. (C,D) CITED1 

(green), SIX2 (red), and pHH3 (orange/proliferation marker) staining in Tak1
C-WT

 and 

Tak1
C-NPC

 kidneys. Scale bars, 150 μM. Quantification of the number of 

pHH3+CITED1+SIX2+ and pHH3+CITED1-SIX2+ cells per kidney section per geno-

type. Error bars indicate S.D. **P<0.005 and P = 0.03 (N.S, not significant), Student’s t-

test. (E) RT-qPCR of cap mesenchyme markers in NPCs isolated from E17.5 kidneys. 

Error bars indicate S.D. Two biological replicates per condition, n = 2.Cap mesenchymes 

highlighted with black or white dotted lines. Abbreviations: CD, Collecting Duct; CM, 

Cap mesenchyme. 

Tak1
C-NPC

 kidneys were significantly smaller than Tak1
C-WT 

at both time points, and their 

cap mesenchymes were depleted (Figures 4.10A-D). Tak1 transcript was reduced by 

80%, and both Jun and Myc were reduced in mutant NPCs (Figure 4.8E). Immunoblot-

ting confirmed the reduction of TAK1 in mutant NPCs (Figure 4.10D). pJUN and MYC 
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were also reduced, indicating that Tak1 inactivation results in reduced JNK-JUN signal-

ing in NPCs (Figure 4.10G).  

To understand if Tak1 is required to maintain NPCs in the CITED1+/SIX2+ state, we ana-

lyzed cap mesenchyme markers in Tak1
C-NPC

 NPCs. Tak1-inactivated NPCs maintained 

Cited1 and Six2 expression at levels similar to wild type, indicating that they retained the 

appropriate cellular identity. However, the number of CITED1+ NPCs was reduced by 

25% to 30% at both E14.5 and E17.5 (Figures 4.11A,B,E).  

Coimmunostaining for CITED1, SIX2 and pHH3 confirmed decreased pHH3 staining in 

CITED1+/SIX2+ cells of Tak1
C-NPC

 kidneys relative to Tak1
C-WT

 but no significant differ-

ence in the CITED1-/SIX2+ compartment at both E14.5 and E17.5, validating our find-

ings from the Tak1
NPC

 mutants (Figures 4.11C,D). Collectively, our genetic analyses sug-

gest that the BMP7-TAK1-JNK-JUN pathway is required for proliferation of the early 

CITED1+/SIX2+ compartment in vivo. 

3.5.   Defining cell cycle control mechanisms regulated by BMP7 in NPCs 

Having defined the requirements for the components of the BMP7-TAK1-JNK-JUN sig-

naling cascade in NPCs, we wanted to understand how this pathway interfaces with cellu-

lar proliferation control mechanisms. We have shown that the BMP7-TAK1-JNK-JUN 

pathway activates Jun and Myc transcription in NPCs (Figures 4.1 and 4.10). JUN and 

MYC are key transcriptional regulators of the cell cycle that modulate the expression of 

genes involved in the G1 to S phase transition
82,101

.   
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To test how the BMP7-TAK1-JNK-JUN pathway controls NPC proliferation, we investi-

gated the effects of inhibiting pathway components on the G1 to S transition in BMP7-

stimulated NPCs. Immunostaining for specific markers of G1 (CCNE1) and S (PCNA) 

phase was performed to calculate the percentages of G1 and S phase cells in each exper-

imental condition. After 24 hours of stimulation, BMP7 robustly promoted G1 to S transi-

tion in both E14.5 and E17.5 NPCs. TAK1 or JNK inhibition significantly reversed this 

effect, confirming that BMP7 promotes proliferation by controlling G1 to S transition in 

NPCs through TAK1-JNK signaling (Figures 4.12A-D).   

To understand the mechanism underlying the effect of BMP7-TAK1-JNK-JUN signaling 

on the G1 to S transition, we set out to define the repertoire of G1 phase cell cycle regula-

tory genes modulated by the pathway in NPCs. Several cell cycle regulators containing 

AP-1 binding sites are JUN targets, including Ccnd1, Ccnd3, p21, p16, Jun, and Myc
 82,83

.  

Like JUN, MYC regulates the cell cycle by controlling G1 phase genes. Although a num-

ber of targets are shared, MYC also has a unique repertoire, including Ccne1, Cdc25a, 

p27, and Ccna2
101

. BMP7 may therefore control G1-S cell cycle regulators not only 

through JUN but also through MYC. Conditional gene inactivation shows that Myc is re-

quired for NPC renewal at E15.5-E18.5 but not earlier in nephrogenesis, suggesting that 

the contribution of MYC to cell cycle control by BMP7 might be limited to later stages of 

nephrogenesis
84

.  
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Figure 4.12: BMP promotes G1 to S cell cycle progression in NPCs: (A-D) CCNE1 (G1 

phase) and PCNA (S phase) immunostaining of E14.5 and E17.5 NPCs treated for 24 

hours with BMP7, TAK1, and JNK inhibitors. Graphs show the percentage of G1, G1-S 

and S phase cells per condition. Three biological replicates analyzed per condition (n=3). 

Error bars represent S.D. **P<0.005 and **P<0.001, Student’s t-test. (E,H) RT-qPCR of 

JUN and MYC and their targets in E14.5 and E17.5 NPCs treated with vehicle, BMP7, 

TAK1, and JNK inhibitors for 2 hours. Error bars indicate S.D. Three biological repli-

cates analyzed per condition (n=3).  
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To understand if this is the case, we compared the responsiveness of MYC and JUN tar-

gets to BMP7 in NPCs at E14.5 and E17.5. The JUN targets Ccnd1, Ccnd3, and p21 were 

regulated by BMP7 in a TAK1- and JNK-dependent manner in both E14.5 and E17.5 

NPCs (Figures 4.12E-H). However, the MYC targets Ccne1, Cdc25a, and p27 were 

regulated by BMP7 in a TAK1- and JNK-dependent manner only in E17.5 NPCs (Figures 

4.12E-H).  

Our analysis indicates that the BMP7-TAK1-JNK-JUN pathway regulates JUN cell cycle 

targets including Myc throughout nephrogenesis, but that the contribution of MYC itself 

to the control of G1 targets is limited to later stages of nephrogenesis. 

To confirm these observations in vivo, we first measured target gene activation in NPCs 

isolated from E14.5 Jun
NPC

 and E17.5 Tak1
NPC

 kidneys. As expected, JUN targets were 

misregulated in mutant NPCs at both E14.5 and E17.5, whereas MYC targets were 

misregulated only at E17.5 (Figure 4.13A,B). Next, we immunostained Bmp7 null, 

Jun
NPC

 and Tak1
C-NPC

 kidneys for the JUN-activated target CCND1 and the MYC-

activated target CCNE1 at E14.5 and E17.5. CCND1 has been used as a marker of the 

distal tubule. Therefore, we first verified its expression in cap mesenchyme using two dif-

ferent antibodies
102

.  

CCND1 was expressed in a salt-and-pepper distribution in wild type cap mesenchyme. 

This was expected, considering that its expression is limited to the G1 phase of the cell 

cycle (Figure 4.13C). CCND1 expression was reduced in the cap mesenchymes of all 

mutants, suggesting that the BMP7-TAK1-JNK-JUN pathway indeed controls CCND1 in 

vivo and regulates JUN targets both early and late in nephrogenesis (Figure 4.13C).  
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To understand if this could represent a general reduction in the expression of G1 cell cy-

cle genes in the NPCs of mutant kidneys, we also measured the expression of Ccnd3, 

which is expressed in a temporally overlapping manner to Ccnd1. Although RNA expres-

sion was reduced by 20%, protein expression was not significantly altered in mutants, 

supporting the notion that CCND1 is specifically misregulated in BMP7-TAK1-JNK-

JUN pathway mutants in vivo (Figure 4.13D).  

Expression of the MYC-activated target CCNE1 was reduced in the E17.5 mutant kid-

neys but not in the E14.5 mutants, confirming our previous observation that MYC targets 

are regulated by the BMP7-TAK1-JNK-JUN pathway preferentially at later stages of 

nephrogenesis (Figure 4.13E). 

From these analyses, we conclude that the BMP7-TAK1-JNK-JUN pathway controls cel-

lular proliferation of NPCs by regulating different G1 phase cell cycle regulators in early 

and later phases of nephrogenesis (Figure 4.14). 
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Figure 4.13: BMP7 controls JUN- and MYC-activated targets in NPCs (A,B) RT-qPCR 

of JUN and MYC targets in NPCs isolated from E14.5 Jun
het

 and Jun
NPC

 and E17.5 

Tak1
het

 and Tak1
NPC

 kidneys. Error bars represent S.D.  Two biological replicates ana-

lyzed per genotype (n=2). (C-E) CCND1, CCND3 and CCNE1 immunostaining in E14.5 

Jun
het

 and Jun
NPC

 and E17.5 Tak1
C-WT

 and Tak1
C-NPC

 kidneys. Scale bars, 150 μM, 100 

μM and 50 μM. Quantification of CCND1+, CCND3+ and CCNE1+ cells per cap mes-

enchyme was calculated by scoring at least 30 random cap mesenchymes per kidney sec-

tion per genotype for a total of five sections from each experimental group. Number of 

mice (n) is indicated in the graphs. Error bars indicate S.D. **P<0.005, N.S indicates not-

significant (P>0.05), Student’s t-test.  
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Figure 4.14: Model of BMP7 regulation of the cell cycle in NPCs. 
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CHAPTER 5 

IDENTIFYING POINTS OF INTERSECTION BETWEEN THE NPC RENEWAL 

PATHWAYS 

5.1.   Control of NPC proliferation by combinatorial BMP7 and FGF9 signaling 

FGF9 synergizes with BMP7 to promote the maintenance of isolated metanephric mesen-

chyme in vitro. However, the molecular mechanism(s) underlying this cross-talk remains 

unknown
 35,55

. Metanephric mesenchyme consists of a mixture of cell types, and we first 

analyzed proliferation in BMP7 and FGF9 treated purified E17.5 NPCs to understand if 

the pathways intersect in this cell type.  

Using EdU (5’-Ethynyl-2’deoxy-uridine) to label the S-phase and pHH3 to mark cells 

undergoing mitosis (M), we measured the overall proliferation of NPCs stimulated with 

BMP7, FGF9, or BMP7+FGF9. BMP7 or FGF9 stimulation showed a significant in-

crease in EdU+ and pHH3+ nuclei compared to vehicle, and this effect was further aug-

mented in BMP7+FGF9 stimulated cultures (Figure 5.1A).  

Quantification of the number of EdU+ and pHH3+ nuclei revealed a significant increase 

in S and M phase cells in BMP7+FGF9 treated cultures relative to either BMP7 or FGF9 

stimulation, suggesting that these growth factors indeed collaboratively promote NPC 

proliferation (Figure 5.1B). Immunostaining and transcriptional analysis of cap mesen-

chyme markers showed that BMP7+FGF9 stimulated cultures remained in the CITED1+ 

state following treatment (Figures 5.1C,D).  
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Figure 5.1: BMP7 and FGF9 combinatorially control NPC proliferation: (A,B) EdU (S 

phase) and pHH3 (M phase) immunostaining in E17.5 NPCs stimulated with vehicle, 

BMP7, FGF9, or BMP7+FGF9 for 24 hours. Graph shows the percentage of 

EdU+pHH3+ cells in each condition. Error bars represent S.D. **P<0.005 (Student’s t-

test). Two biological replicates analyzed per condition (n = 2). (C) CITED1 and LEF1 

immunostaining in freshly purified E17.5 NPCs treated with vehicle, FGF9 or BMP7 for 

24 hours. Scale bars, 50 μM. (D) RT-qPCR of cap mesenchyme markers in NPCs treated 

with BMP7 and FGF9 for 24 hours. Error bars indicate S.D. Three biological replicates 

per condition, n=3. (E,F) CCNE1 (G1 phase) and PCNA (S phase) immunostaining of 

E17.5 NPCs stimulated with vehicle, BMP7, FGF9, or BMP7+FGF9 for 24 hours. Scale 

bars, 50 μM. Graph shows the percentage of G1, G1-S and S phase cells in each condi-

tion. Error bars represent S.D. **P<0.001 (Student’s t-test). Three biological replicates 

analyzed per condition (n=3). (G,H) RT-qPCR of cell cycle genes (Ccnd1 and Myc, 

Ccnd3, Cdc25a, and Ccne1) in NPCs stimulated with vehicle, BMP7, FGF9, or 

BMP7+FGF9 for 2 hours. Error bars represent S.D. Three biological replicates analyzed 

per condition, n=3.  
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To understand if FGF9 interfaces with BMP7 to regulate G1 to S cell cycle progression, 

we labeled NPCs treated with BMP7, FGF9, or BMP7+FGF9 with CCNE1 and PCNA to 

distinguish cells in G1 and S phases respectively. BMP7+FGF9 stimulation resulted in 

approximately 50% fewer G1 and G1-S cells and 30% more S phase cells compared to 

BMP7 or FGF9 treatment, suggesting that BMP7 and FGF9 promote NPC proliferation 

by accelerating the G1 to S cell cycle progression (Figure 5.1E,F).  

To determine how FGF9 and BMP7 control the G1-S transition, we analyzed the expres-

sion of G1 phase cell cycle regulatory genes (Ccnd1, Ccnd3, Myc, Ccne1, Cdc25a) con-

trolled by the BMP7-TAK1-JNK-JUN pathway in response to either growth factor or 

combinatorial stimulation. Expression of all five transcripts was up-regulated by BMP7. 

Interestingly, FGF9 stimulation also increased their transcription, indicating that FGF9 

contributes to the regulation of AP-1 targets. BMP7+FGF9 combinatorial stimulation 

showed an additive effect on these targets, indicating that BMP7 and FGF9 coordinately 

control transcription of G1 phase cell cycle regulators (Figures 5.1G,H). 

5.2.   Distinct control of AP-1 transcription factors by BMP7 and FGF9 

AP-1 function is regulated by dimer composition as well as the phosphorylation status of 

its constituents, and activated JUN-FOS heterodimers activate targets more efficiently 

than JUN homodimers
77-80

. Given that BMP7 and FGF9 combinatorial stimulation in-

creased the transcription of G1 phase cell cycle regulators containing AP-1 binding ele-

ments, we speculated that FGF9 may modulate the transcription and phosphorylation of 

JUN or its dimeric partner FOS concomitantly with BMP7 to regulate AP-1 function.  
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Figure 5.2: BMP7 and FGF9 distinctly control JUN and FOS activation: (A,B) RT-qPCR 

of Jun and Fos  and Spry1 (FGF-Target) in NPCs stimulated with vehicle, BMP7, FGF9, 

or BMP7+FGF9 for 2 hours. Error bars represent S.D. Three biological replicates ana-

lyzed per condition, n=3. (C,D) pJUN and pFOS immunoblot of NPCs stimulated with 

vehicle, BMP7, FGF9, or BMP7+FGF9 for 20 minutes. Graph shows the relative density 

of pJUN and pFOS normalized to β-tubulin in each condition. (E-G) Bars in the graphs 

represent the average fold change in luciferase activity of 3XAP1-Luc, CCND1-Luc, and 

CCND1
ΔAP-1

-Luc in NPCs stimulated with BMP7 and FGF9 relative to vehicle treatment 

for 24 hours. Three biological replicates analyzed per condition (n=3). Error bars repre-

sent S.D. **P<0.005, N.S, non-significant, Student’s t-test. 

We first measured the effects of FGF9 and BMP7 stimulation on Jun and Fos transcrip-

tion. As expected, Jun transcription was up-regulated by BMP7, but surprisingly it was 

unaffected by FGF9 (Figure 5.2A). FGF9 stimulation of cells was verified by measuring 

the expression of the FGF-target gene Spry1 (Figure 5.2B).  

Fos transcription, on the other hand, was strongly induced by FGF9 compared to BMP7, 

and this effect was further enhanced by combined stimulation with BMP7. Thus, while 

FGF9 and BMP7 cooperatively promote Fos transcription, the obligate DNA-binding 

partner Jun is controlled by BMP7 alone (Figure 5.2A).  



65 

 

Examination of JUN and FOS phosphorylation showed that BMP7 robustly activates 

JUN (3.15-fold), whereas FGF9 activates FOS (2.85 fold) (Figure 5.2C). BMP7+FGF9 

stimulation resulted in simultaneous phosphorylation of FOS and JUN, suggesting that 

AP-1 transcriptional activation may be potentiated (Figure 5.2D). To test this, we trans-

fected the AP-1 luciferase reporter (3XAP1-Luc) and measured reporter activity in re-

sponse to BMP7 and FGF9 stimulation
96

. BMP7 or FGF9 treatment resulted in less than a 

2-fold luciferase response, but combined treatment caused more than a 2.5-fold increase, 

indicating that simultaneous JUN and FOS activation promotes AP-1 transcriptional ac-

tivity (Figure 5.2E).  

To test this in a gene that directly influences proliferation in NPCs, we compared activa-

tion of a Ccnd1 luciferase reporter (CCND1-Luc) with a variant in which the AP-1 bind-

ing site has been mutated (CCND1
ΔAP-1

-Luc)
 97

. BMP7 or FGF9 treatment alone showed 

a less than 2-fold luciferase response, whereas BMP7+FGF9 stimulation resulted in a 3-

fold increase, demonstrating that concurrent BMP7 and FGF9 signaling strongly pro-

motes AP-1 function compared to either factor alone (Figure 5.2F).  

Dependence on the AP-1 element for this transcriptional activity was confirmed by the 

finding that the Ccnd1 promoter with a mutated AP-1 binding site was unresponsive to 

BMP7 and/or FGF9 stimulation (Figure 5.2H). These findings suggest that BMP7 and 

FGF9 distinctly control the activation of JUN and FOS and regulate AP-1 transcriptional 

activity in NPCs. 
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5.3.   Inhibition of FGF signaling in vivo by conditional overexpression of the Spry1 

transgene 

We previously reported that transgenic expression of the FGF feedback regulator Spry1 in 

NPCs results in increased apoptosis in cap mesenchyme
21,89

. To confirm the contribution 

of FGF signaling to FOS regulation in vivo, we generated the Six2-cre;Spry1-Tg (Spry1-

Tg) strain. Kidneys were severely hypoplastic at P0. Body weight was also reduced com-

pared to wild type littermate controls (Figures 5.3A-D).  

Spry1-Tg kidneys displayed a thin nephrogenic zone with depleted cap mesenchymes and 

distended tubules (Insets in Figures 5.3A). SIX2 immunostaining confirmed the prema-

ture loss of NPCs in Spry1-Tg kidneys, with approximately 65% reduction in NPC num-

ber (Figures 5.3E-G).  

Spry1 expression increased 7-fold in Spry1-Tg NPCs, whereas the FGF target gene Pea3 

was reduced by 55%, confirming the inhibition of FGF signaling. Fos transcript dimin-

ished by 70%, whereas Jun and its upstream regulator Tak1 remained unchanged, sug-

gesting that FGF signaling distinctly controls Fos transcription in NPCs (Figure 5.3H). 
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Figure 5.3: Spry1-Tg kidneys display premature depletion of NPCs: (A-D) H&E staining 

of P0 wild type/WT (Six2-cre or Spry1-Tg littermate controls) and Spry1-Tg (Six2-

cre;Spry1-Tg) kidneys. Insets show higher magnification images of the nephrogenic zone. 

Scale bars, 500 μM and 50 μM. Scatter plots show body and kidney weights, and kidney 

sizes of P0 WT and Spry1-Tg kidneys. * P<0.05, **P<0.0005, Student’s t-test. Number 

of mice (n) per genotype is indicated in the graph. (E-G) SIX2 (green, cap mesenchyme) 

and DBA lectin (red, collecting duct) immunostaining of Spry1-Tg kidneys. Scale bars, 

500 μM, 200 μM and 25 μM (d) Number of SIX2+ NPCs per section in P0 WT and 

Spry1-Tg kidneys. Error bars represent S.D. ***P<0.0005, Student’ t-test. (H) RT-qPCR 

of Spry1, Pea3 (FGF target), Fos and Jun (AP-1 components) and Tak1 in E17.5 WT and 

Spry1-Tg NPCs. Two biological replicates analyzed per genotype (n=2). Error bars repre-

sent S.D.  

 

5.4.   Comparative analysis of AP-1 function in Jun mutant and Spry1-tg NPCs 

To determine if the Spry1- mediated attenuation of FGF signaling strictly results in re-

duced activation of FOS, we compared pFOS and pJUN expression in cap mesenchymes 

of P0 WT and Spry1-Tg versus Jun
het

 and Jun
NPC

 kidneys.  Expression of pFOS was re-

duced, whereas pJUN levels remained intact in cap mesenchymes of Spry1-Tg kidneys. 

Reciprocally, pFOS levels were unperturbed, while pJUN was strongly reduced in the cap 

mesenchymes of Jun
NPC 

kidneys (Figure 5.4A) 
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We next asked if reduced activation of JUN and FOS in Jun
NPC 

and Spry1-Tg NPCs re-

spectively decreases AP-1 transcriptional activity in response to BMP7 or FGF9 stimula-

tion and whether this effect can be rescued by expressing JUN or FOS in mutant NPCs. 

We treated 3XAP-1Luc-transfected E17.5 NPCs isolated from Jun
het

, Jun
NPC

, WT and 

Spry1-Tg kidneys with BMP7 and/or FGF9.  Interestingly, Jun-deficient NPCs failed to 

activate the AP-1 reporter in response to both BMP7 and FGF9 treatment. Spry1-Tg 

NPCs only showed a slight reduction in AP-1 reporter activity in response to BMP7 but 

were completely unresponsive to FGF9 (Figures 5.4B,C). 

Expression of a wild type JUN construct (pCMV-JUN) rescued AP-1 reporter activation 

in both BMP7 and FGF9 stimulated Jun-deficient NPCs, and the expression of a FOS 

phosphorylation-mimic construct (pcDNA-FOSDD) rescued AP-1 reporter activity in 

FGF9 stimulated Spry1-Tg NPCs (Figures 5.4B,C)
94,95

. This suggests that JUN is essen-

tial for AP-1 activation by both growth factors, and the availability of FOS determines the 

amplitude of AP-1 activity.  

 To determine whether JUN and FOS are required for the proliferative response of NPCs 

to BMP7 and FGF9, we performed EdU labeling of NPCs isolated from E17.5 Jun
het

, 

Jun
NPC

, WT and Spry1-Tg kidneys and stimulated with BMP7 and/or FGF9. Jun-deficient 

NPCs failed to respond to both BMP7 and FGF9 stimulation.  
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Figure 5.4: BMP7 and FGF9 cooperatively regulate AP-1 function in NPCs: (A) pFOS, 

FOS, pJUN and JUN (black arrows) immunostaining in P0 WT, Spry1-Tg and Jun
het

, 

Jun
NPC

 kidneys. Scale bars, 50 μM. (B,C) Luciferase activity relative to vehicle treatment 

in E17.5 Jun
het

, Jun
NPC

, WT, and Spry1-Tg NPCs transfected with 3XAP1-Luc and 

pCMV-JUN or pcDNA-FOSDD and treated with BMP7, FGF9, and BMP7+FGF9 for 24 

hours. Error bars represent S.D.  Three biological replicates analyzed per condition (n=3). 

(D,E) EdU-labeling (green, proliferation marker) of E17.5 NPCs isolated from Jun
het

, 

Jun
NPC

, WT and Spry1-Tg kidneys and treated with vehicle, BMP7, FGF9, and 

BMP7+FGF9 for 24 hours. Average number of EdU+ NPCs scored in each condition. 

Two biological replicates analyzed per condition (n = 2). Error bars represent S.D. 

**P<0.005, Student’s t-test. Scale bars, 50 μM.   
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Figure 5.5: Marker analysis of Spry1-Tg and Jun conditional mutant kidneys: (A,B) 

E17.5 WT, Spry1-Tg, Jun
het

 and Jun
NPC

 whole kidneys showing GFP fluorescence. (C,D) 

Transcriptional analysis of cap mesenchyme (CM) markers in E17.5 WT, Spry1-Tg, Jun-
het

 and Jun
NPC

 kidneys. (E) CITED1, SIX2 and LEF1 immunostaining in E17.5 NPCs iso-

lated from WT, Spry1-Tg, Jun
het

 and Jun
NPC

 kidneys. Scale bars, 50 μM. (F) JUN and 

pJUN immunostaining in freshly purified NPCs isolated from E17.5 Jun
het

 and Jun
NPC

 

kidneys. NPCs transfected with pCX-EGFP showing GFP expression at 24 hours. pJUN 

and JUN immunostaining in pCMV-JUN transfected NPCs showing endogenous (e, yel-

low arrows) and over-expressed JUN (t, red arrows) 24 hours after transfection. Scale 

bars, 50 μM.  (G) GFP expression at 48 hours in pCX-EGFP transfected E17.5 NPCs iso-

lated from WT and Spry1-Tg kidneys. Scale bars, 50 μM. (H) DAPI staining of un-

transfected cells. RT-qPCR of Jun expression in NPCs transfected with pCMV-JUN for 

24 hours. Error bars represent S.D. Two biological replicates per condition, n=2.  
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However, proliferation of Spry1-Tg NPCs in response to FGF9 was severely attenuated 

but only slightly reduced in response to BMP7, suggesting that Jun is essential for the 

proliferative response of NPCs to both BMP7 and FGF9 (Figures 5.4D,E). Cellular iden-

tity of isolated E17.5 Jun mutant and Spry1-Tg NPCs was verified by examining cap 

mesenchyme and pre-tubular aggregate markers, which revealed that NPCs are retained 

in the CITED1+ state in mutant NPCs (Figures 5.5A-D). The transfection efficiency of 

NPCs was estimated by expression of a GFP construct, JUN and pJUN immunostaining 

and RT-qPCR analysis of Jun transcript levels in transfected cells (Figures 5.5E-H). 

Based on these studies, we propose that BMP7 and FGF9 cooperatively control the com-

position of AP-1 dimers in NPCs and that AP-1 composition influences the strength of 

activation of cell cycle regulators such as Ccnd1 (Figure 5.6). 

 

Figure 5.6: Model of BMP7 and FGF9 combinatorial control of NPC renewal. 
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CHAPTER 6 

DISCUSSION AND FUTURE DIRECTIONS 

6.1.   BMP7-SMAD1/5 signaling in NPC differentiation 

BMP7 is essential for NPC maintenance and self-renewal in the developing kidney
33,34

. 

In this study, we identified an important role for BMP7-mediated SMAD signaling in 

priming NPCs for differentiation. We demonstrate that a SIX2-only sub-compartment re-

sides between the early CITED1+SIX2+ progenitor compartment and the differentiated 

LEF1+ PTA compartment within the CM. We also show that the SIX2-only sub-

compartment represents a functionally distinct progenitor state, and the transition from 

the CITED1+ progenitor state to the SIX2-only state requires BMP7 signaling.  

Previous studies indicated that low-level SMAD signaling occurs in the CM
42,45

. Here, 

we clearly show that activated phospho-SMAD1/5 is localized to the SIX2-only com-

partment in the distal region of the CM underneath the CD tips. We find that BMP7 pro-

motes the transition between compartments through activation of SMAD1/5 signaling, in 

contrast to the progenitor renewal effect mediated through the MAPK pathway in 

CITED1+ cells
43

. In E14.5 Bmp7 null mutants, in addition to a reduction in CITED1+ 

NPCs, we also see a loss of the SIX2-only compartment with a concomitant reduction in 

pSMAD1/5 in the region, supporting a role for BMP7-mediated SMAD signaling in NPC 

differentiation. However, we cannot rule out that this effect could be due to premature 

depletion of progenitors rather than a differentiation defect due to loss of SMAD1/5 sig-

naling. Conditional inactivation of SMAD1/5 transcription factors specifically in the 
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NPCs would be important to distinguish these effects and to confirm the role of SMAD 

signaling in NPC differentiation in vivo.  

A previous study suggested that the anti-differentiation factor SIX2 interacts with β-

catenin/LEF/TCF complex in CITED1+ NPCs, preventing the activation of pro-

differentiation genes. However, in a subset of progenitors with low SIX2 activity, β-

catenin/LEF/TCF signaling induces NPC differentiation through activation of Fgf8 and 

Wnt4
68,69

. Our findings indicate that BMP7-SMAD1/5 signaling synergizes with β-

catenin to induce the pro-differentiation program via Wnt4 activation. Whether SMAD1/5 

transcription factors interact in the SIX2/β-catenin/LEF/TCF complex in SIX2-only 

NPCs to promote the pro-differentiation program remains to be determined.  

Several molecular cross-talk mechanisms can be found in the literature supporting a di-

rect or indirect involvement of SMADs in the regulation of β-catenin transcriptional ac-

tivity. SMAD transcription factors interact with β-catenin and form a transcriptional 

complex on target genes such as c-Myc, Slug, and Msx2
103-105

. Therefore, SMAD1/5 

could directly bind to β-catenin to drive the expression of Wnt4 in differentiating NPCs. 

Alternatively; SMAD1/5 could be involved in the recruitment of co-activators necessary 

for β-catenin to induce transcription
103-106

. Future biochemical studies will be required to 

elucidate the mechanistic bases for this synergistic interaction in NPC differentiation. 

Based on our findings, we propose that the compartmentalization of the CM into a series 

of functionally distinct progenitor cell sub-compartments might be necessary to ensure 

that CITED1+ NPCs are prevented from undergoing premature induction and are retained 

for future rounds of nephrogenesis.  
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Cessation of nephrogenesis occurs shortly after birth between P2 and P3, resulting in the 

terminal differentiation and exhaustion of all undifferentiated CITED1+ NPCs
8
. What 

causes the shift in balance between self-renewal and differentiation during this terminal 

phase of nephrogenesis has not been determined. We find that activated pSMAD1/5 sig-

naling, which is initially restricted to the distal region of the CM until E18.5, expands in-

to the cortical aspect between P0 and P1. Pharmacological inhibition of pSMAD1/5 sig-

naling in newborn pups retained the NPCs in the CITED1+ state and increased nephron 

endowment, indicating that increased pSMAD1/5 signaling between P0 and P1 skews the 

balance towards NPC differentiation. Whether the expansion in activated SMAD1/5 sig-

naling domain is accompanied by a reduction in pro-renewal MAPK signaling in the CM 

is yet to be determined.   

The mechanisms by which activated SMAD1/5 signaling is suppressed in CITED1+ 

NPCs are currently less well understood. However, a recent work indicated that FGF sig-

naling may negatively regulate SMAD signaling, providing an explanation for the lack of 

SMAD signaling seen in the CITED1+ compartment
107

. Extracellular modifiers of BMP7 

signaling such as CV2 and TWSG regulate SMAD1/5 signaling in the CM during the 

embryonic period
45

. However, their effects on MAPK signaling were not studied.   

How BMP7 differentially activates MAPK versus SMAD1/5 signaling in the CM is not 

known. It is also not clear whether MAPK activation displays an inverse relationship to 

SMAD1/5 activation. One possible mechanism by which SMAD1/5 signaling increases 

during the terminal stages of nephrogenesis could be due to an increase or a reduction in 

the levels of extracellular modifiers that regulate the activation of MAPK versus SMAD 

signaling. Further studies to investigate if the levels of CV2, TWSG and possibly other 
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modifiers change during the different stages of nephrogenesis, influencing the activation 

of MAPK and SMAD1/5 signaling in response to BMP7 will be essential to understand 

the mechanisms affecting NPC renewal versus differentiation.  

Previous studies have proposed two distinct models to explain the premature exhaustion 

of NPCs during the cessation of nephrogenesis. The first model postulates that changes in 

gene expression within the CM or other cell types in the niche caused by changes in oxy-

gen tension during parturition could serve as a trigger to end NPC renewal
108

.  However, 

it is not clear how the changes in gene expression skew the balance towards NPC differ-

entiation. A de novo parturition-based trigger also does not support the reported cessation 

of nephrogenesis in humans that occurs at 36
th

 week of pregnancy
109

.  An alternative 

model suggested that the termination of nephrogenesis occurs due to a gradual depletion 

of the renewing population of NPCs within the CM due to a shift in growth factors within 

the niche
110

. Our finding that SMAD1/5 signaling increases in the CM after P0, possibly 

due to the altered equilibrium between growth factors and their modifiers expressed with-

in the niche, supports the second model of a progressive loss of renewing progenitors. 

Taken together, our data suggests that BMP7-mediated SMAD1/5 signaling is essential 

for NPC differentiation. 

6.2.   BMP7-TAK1-JNK-JUN signaling in NPC proliferation 

Previously, we showed that BMP7 promotes proliferation of NPCs through MAPK sig-

naling
43

. Here, we have defined the molecular components of the signaling cascade 

through which BMP7 promotes proliferation of NPCs. The signaling cascade is initiated 

by the activation of the MAPKKK TAK1 in response to BMP7 stimulation. Although 
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TAK1 can be activated by numerous stimuli, the finding that Bmp7 and Tak1 interact to 

regulate NPC renewal in vivo indicates an essential role for TAK1 specifically in the 

BMP7 pathway
75

.  

TAK1 activates JNK, which in turn phosphorylates the transcription factor JUN, and the 

kinase activity of each of these components is essential for the proliferation of NPCs. 

Kidneys lacking Tak1 or Jun in the cap mesenchyme display identical phenotypes charac-

terized by premature depletion of NPCs, indicating that JUN may be the sole essential 

mediator downstream of TAK1 in this signaling process. This is unanticipated, as a pre-

vious study demonstrated a role for p38 in SMAD-independent signaling downstream of 

the BMP receptor ALK3 in the developing kidney
39

. However, Alk3 was inactivated 

throughout the kidney with the exception of the collecting duct in this experiment, and it 

is probable that SMAD-independent signaling in cell types other than NPCs accounts for 

the difference. We show that Myc is a transcriptional target of the BMP7-TAK1-JNK-

JUN pathway in NPCs. Myc is essential for cap mesenchyme proliferation in vivo and 

undergoes complex posttranslational regulation by the EYA1 phosphatase
84,111

. Together 

with JUN, MYC activates G1 phase cell cycle regulators in NPCs, explaining the prolif-

erative effect of BMP7 stimulation.  

NPCs display different average cell cycle lengths during early (E13.5) and later (E17.5) 

stages of nephrogenesis. Proliferation profiles of cap mesenchymes at these stages sug-

gest that they are heterogeneous, containing both slowly and rapidly dividing cells
112

. An 

interpretation consistent with models of other stem/progenitor cell populations is that the 

slowly-dividing subset may represent the self-renewing CITED1+/SIX2+ population, 

whereas the rapidly-dividing subset represents the CITED1-/SIX2+ population that is dif-
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ferentiating
113,114

. Our finding that the CITED1+/SIX2+ population is reduced following 

conditional inactivation of Tak1 using Six2-cre and Cited1-creER
T2

 drivers without a sig-

nificant effect on the proliferation of the CITED1-/SIX2+ population indicates that the 

BMP7-TAK1-JNK-JUN pathway is utilized primarily by the slowly-dividing, self-

renewing cells in the CM.  

The cycle length of NPCs increases as the embryo ages, indicating that control mecha-

nisms are added as development progresses
112

. Interestingly, targets of MYC are primari-

ly regulated late in nephrogenesis, which is consistent with the observation that condi-

tional Myc inactivation slows cap mesenchyme proliferation only after E15.5
85

. Whether 

cell cycle control through MYC late in nephrogenesis represents the addition of a control 

mechanism or simply redundancy with N-MYC, whose expression is lost late in nephro-

genesis, will need to be answered by comparing the conditional inactivation of both fac-

tors
84,85

.  

6.3.   BMP7 regulation of NPC survival 

In addition to reduced proliferation in the CM, loss of Bmp7 causes ectopic cell death 

within the nephrogenic zone of the developing kidney
33,34,43

. However, we do not see any 

effects on survival in kidneys in which Tak1 or Jun have been inactivated in the CM. 

However, inactivation of Smad4 using Bmp7-cre results in ectopic cell death within the 

nephrogenic zone of mutant kidneys, indicating that cell survival may be regulated 

through the SMAD pathway
41

.  
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Our findings show that SMAD signaling is limited to the CITED1-/SIX2+ compartment 

of the cap mesenchyme and that it is this specific compartment that is lost in the Bmp7 

null. Based on this, we hypothesize that SMAD signaling promotes cell survival once 

they have exited the CITED1+ compartment. The gene encoding the anti-apoptotic regu-

lator Bcl-2 is highly expressed in NPCs, and its inactivation results in the development of 

a hypomorphic kidney
86

. The metanephric kidney forms in both Bcl-2 and Bmp7 null mu-

tants, and growth is noticeably retarded at approximately E12 in both, suggesting that 

they may operate in the same pathway
33,34

. Studies aimed at understanding how SMAD 

signaling integrates with the upstream regulators of Bcl-2 such as PAX2 and p53 will be 

needed to test this hypothesis
87

.  

6.4.   BMP7 and FGF9 combinatorial regulation of AP-1 function  

JUN, FOS and ATF proteins comprise the AP-1 transcription factor family, with JUN and 

FOS constituting the prototypical form of the AP-1 dimer
77-81

. Composition of the AP-1 

dimer is a critical factor in determining cellular fates such as proliferation, apoptosis and 

differentiation
80

. We find that BMP7 robustly controls transcription and activation of 

JUN, whereas FGF9 strongly induces transcription and phosphorylation of FOS. Anal-

yses of the Six2-cre;Spry1-Tg mouse strain in which the FGF feedback inhibitor SPRY1 

is expressed in NPCs and primary cell transcriptional reporter assays indicate that the ac-

tivation of JUN and FOS by simultaneous BMP7 and FGF9 signaling potentiates AP-1 

transcription
89

. We propose that co-regulation of the AP-1 transcription factor is one basis 

for the cooperative effect of BMP7 and FGF9 in kidney development
35,55

. While we have 

defined the signaling cascade between BMP7 and Jun, the pathway between FGF9 and 
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Fos is less clear. The inhibitory effect of Spry1 indicates that RAS is essential, and a re-

cent report showing that NPC self-renewal is dependent on PI3K suggests that FGF9-

RAS-PI3K may be the pathway governing Fos expression
115

.  

 

Although JUN can form homodimers to activate target transcription, these bind to AP-1 

elements less tightly than JUN-FOS heterodimers and have weaker transcriptional activi-

ty
80

. In the case of BMP7 stimulation alone, the ratio would be skewed toward homodi-

mer formation, whereas concurrent FGF9 signaling would skew the ratio toward JUN-

FOS heterodimers, thus amplifying target transcription. Combinatorial BMP7 and FGF9 

stimulation promotes the robust transcription of the G1 regulator Ccnd1 in an AP-1 de-

pendent manner, and we propose that control of AP-1 targets by combinatorial BMP7 and 

FGF9 signaling promotes G1-S transition, providing a mechanism for the cooperative 

effects of these growth factors on NPC proliferation. 

Our current findings identify AP-1 as a specific point of interaction of the BMP and FGF 

pathways in NPCs. We have previously shown that WNT and FGF activate common tar-

gets in NPCs
21

. WNT9b-β-catenin signaling could converge with BMP7 and FGF9 on the 

regulation of AP-1 in CITED1+ NPCs. Signaling cross-talk between BMP, FGF, and 

WNT pathways is a recurring theme in organogenesis, and WNT/β-catenin signaling can 

ββregulate the transcription of AP-1 targets such as Myc, Ccnd1 and Ccnd2
74,116

. Under-

standing this point of intersection further could explain the molecular basis for the com-

binatorial effects of these three distinct pathways on NPC proliferation. 
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6.5.   Future directions 

Our understanding of the growth factor signaling involved in the regulation of NPC 

maintenance, self-renewal and differentiation has significantly expanded over the years, 

but several questions are still unanswered. We have yet to fully understand how the dis-

tinct growth factor signaling pathways integrate to combinatorially regulate these dispar-

ate cellular events. Given the array of candidate cross-talk mechanisms available in the 

literature, a systematic approach is required to map individual components of the signal 

transduction cascade and identify mechanisms involved in regulating the balance between 

renewal and differentiation of NPCs.  

The molecular and biochemical tools developed in this study along with the primary NPC 

culture system will allow us to investigate the pathway interactions and test them in vivo 

using conditional gene inactivation approaches. Understanding the developmental signal-

ing mechanisms that balance NPC renewal and differentiation will be essential to develop 

an in vitro culture system for the simultaneous propagation and generation of nephrons 

from embryonic stem (ES) cell-derived NPCs and for clinical applications.  

In the current study, we have mapped the MAPK components downstream of BMP7 in 

NPCs. However, it is not clear which type I and type II receptors are expressed and re-

quired for activation of the TAK1-JNK-JUN pathway in CITED1+ NPCs. The GUDMAP 

database shows expression for all three type I (Alk2/3/6) and type II (Bmpr2, Acvr2a/b) 

BMP-receptors in the CM
81

. Of these receptors, kidney phenotypes have been reported 

for Alk3, Acvr2a and Acvr2b
39,40

. However, their potential role and requirement in the 
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activation of MAPK and SMAD signaling in NPC renewal and differentiation has not 

been explored.  

Differential receptor expression, oligomerization and utilization in different CM com-

partments could be a potential mechanism by which BMP7 bimodally activates MAPK 

versus SMAD pathways in CITED1+ and SIX2-only NPCs
117,118

.  Preliminary un-

published findings indicate that BMP7 activates TAK1 and SMAD pathways in a dose-

dependent manner (data not shown). It will be interesting to see if co-expression of a spe-

cific receptor switches the activation of MAPK versus SMAD by BMP7 in CITED1+ 

NPCs.  Additionally, the role of extracellular modifiers such as CV2 or TWSG or other 

proteins should be examined in this setting to see if they affect the response to BMP7 in 

skewing the activation of TAK1 versus SMAD signaling
45

.  

SMAD and TAK1 pathways act redundantly to regulate the development of different or-

gan systems
119-121

. However, our preliminary data show that activated SMAD1/5 signal-

ing increases in Tak1 mutants, suggesting an inverse relationship between TAK1 and 

SMAD in CITED1+ NPCs (data not shown). In addition to other reported mechanisms, 

TAK1 suppression of pSMAD1/5 signaling may explain the lack of activated SMAD sig-

naling in CITED1+ NPCs
107

. 

Conditional inactivation of the common-mediator co-SMAD Smad4 only partially reca-

pitulates the Bmp7 null phenotype, with premature cessation of nephrogenesis and cell 

death in the nephrogenic zone
41

. Given that SMAD4 is shared by the TGF-β pathway, 

conditional inactivation of the receptor-SMADs Smad1 and Smad5 will be required to 

clearly demonstrate the role of BMP7-mediated SMAD1/5 signaling in NPC differentia-
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tion
75

. Global Smad1 and Smad5 knockouts are embryonic lethal and die by E11.5 before 

the onset of metanephric kidney development
122,123

.  Hence, single and compound inacti-

vation of Smad1 and Smad5 specifically in NPCs should be carried out to accommodate 

the effects of redundancy between these factors and to define the specific R-SMADs in-

volved in control of NPC differentiation.  

An important feature of the Smad4 mutant is the improper segregation of CM and CI 

cells that is distinct from Bmp7 null and Tak1 mutants. However, this phenotype is reca-

pitulated by compound inactivation of Cv2 and Bmp7, indicating that SMAD4-dependent 

BMP7 signaling is essential for NPC segregation from the CI. The molecular mechanism 

underlying this phenotype is not clear. Kif26b and Itga8 are implicated in the regulation 

of CM adhesion and the segregation of NPCs from the CI
124,125

. Preliminary studies indi-

cate that SMAD signaling regulates Kif26b expression in NPCs (data not shown). Further 

experiments will be needed to understand this interaction and elucidate the role of 

SMAD1/5 signaling in CM adhesion and the segregation of NPCs from the CI. Because 

conditional mutants of Tak1 and Smad4 do not fully recapitulate the Bmp7 null pheno-

type, compound inactivation of Tak1 and Smad4 in NPCs and comparison with single 

mutants should shed light on their specific roles downstream of BMP7 in NPC adhesion, 

survival, self-renewal and differentiation.  

BMP7 and FGF9 synergistically promote NPC maintenance in organ culture experi-

ments
35,55

. Our findings suggest that BMP7 and FGF9 co-operatively control AP-1 activa-

tion and NPC proliferation, indicating that additional cross-talk mechanisms may under-

lie their synergistic interaction during kidney development.  
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The intracellular signal transduction mechanisms utilized by FGF9/20 in NPCs are still 

not understood. RAS and PI3K pathways play an essential role in the maintenance of 

NPCs
31

.  A recent study reported that PI3K has dose-dependent effects on NPC self-

renewal and differentiation through regulation of β-catenin signaling in vitro
115

.  Howev-

er, the function of the ERK/MAPK pathway downstream of FGF signaling remains to be 

elucidated. Our preliminary findings indicate that both ERK and PI3K pathways may be 

involved in the regulation of AP-1 transcription and NPC proliferation downstream of 

FGF9 (data not shown). Generating conditional mutants of these key pathway compo-

nents will uncover their putative functions in the regulation of NPC renewal and differen-

tiation. 

Recent work indicates that FGF20 through the ERK/MAPK pathway antagonizes BMP-

SMAD activation in the CM to promote NPC survival
107

. ERK/MAPK regulates SMADs 

through linker modification, resulting in their degradation. However, linker phosphoryla-

tion and degradation of SMADs can be regulated by several kinases, including TAK1 and 

GSK3β, implying that BMP7-TAK1 and WNT signaling may also be involved in regulat-

ing SMAD activation in CITED1+ NPCs
126,127

.   

WT1, an anti-apoptotic factor in NPCs, was shown to modulate both FGF-ERK and 

BMP-SMAD activity in the CM. More recently, WT1 was shown to regulate FGF-PI3K 

signaling via activation of a novel modulator of FGF signaling called Growth arrest-

specific 1 (GAS1) in NPCs. Kidney development proceeds normally in Gas1 mutants un-

til E15.5.  However, proliferation is then reduced in NPCs leading to their premature de-

pletion by E18.5 and indicating that Gas1 is required for the regulation of FGF signaling 

and NPC proliferation during the late stages of nephrogenesis
128

.  
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 Our findings on BMP7 regulation of the cell cycle in NPCs also indicates that different 

cell cycle regulatory mechanisms are utilized during early and late phases of nephrogene-

sis. Comprehensive analyses of conditional mutants of genes essential to kidney devel-

opment at different stages of nephrogenesis will be needed to fully understand and delin-

eate their specific functions in NPC renewal and differentiation.  

The receptors involved in the activation of β-catenin signaling downstream of WNT9b in 

NPCs have not yet been identified. The amplitude of β-catenin activity is a determining 

factor in maintaining the undifferentiated state of NPCs and for the induction of a pro-

differentiation program
56,69

. A cross-talk mechanism between BMP-SMAD and WNT 

signaling at the level of receptor regulation has been demonstrated in other cellular con-

texts
129

. Determining if such regulatory mechanisms are utilized in the context of NPC 

differentiation is important to understand the molecular mechanism driving the nephron 

induction program.   

An essential role for stroma-derived signals in regulation of NPC self-renewal and differ-

entiation has been demonstrated over the years. The earliest evidence came from Foxd1 

null mutants that displayed large clusters of undifferentiated CM cells in their kidneys
22

. 

The proliferative index of the CM cells in the mutants was comparable to the wild type, 

indicating that a block in differentiation caused the accumulation of CM cells. Work from 

our laboratory has shown that Decorin, small leucine-rich proteoglycan, is regulated by 

FOXD1 and antagonizes BMP7 activation of SMAD signaling, thereby blocking NPC 

differentiation
130

. Other studies have highlighted a role for the stromal-derived proto-

cadherin FAT4 in the regulation of WNT9b-β-catenin signaling in NPC self-renewal and 

differentiation
131

. Several models have been proposed for FAT4 interaction with NPCs. 
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However, the downstream components activated by FAT4 are unclear 
142,143

. Microana-

tomical and histological analyses show that as kidney development proceeds towards the 

final phase, cortical stromal progenitors reduce in numbers and differentiate into mature 

cell types by P3.  

One possible trigger for the initiation of terminal nephron differentiation could be that 

stroma-derived signals necessary for NPC renewal (FAT4) or inhibitors of NPC differen-

tiation (Decorin) are altered in the terminal phase of nephrogenesis, skewing the balance 

towards differentiation. Understanding the changes in the molecular and cellular land-

scape of the nephrogenic niche during the cessation of nephrogenesis can have important 

clinical ramifications.  

Building an integrated model of NPC self-renewal and differentiation will require a com-

plete understanding of the molecular underpinnings governing these interactions at spe-

cific stages of nephrogenesis. Future work aimed at teasing out these signaling networks 

and cross-talk mechanisms will significantly expand our knowledge of renal organogene-

sis.   
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