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In this project, we examined various hypotheses that address one of the 

fundamental questions in ecology and evolution: what determines the range of a species?  

We used demographic data for saltmarsh sparrows (Ammodramus caudacutus) collected 

over the majority of the global breeding range.  Saltmarsh sparrows are considered 

threatened by climate change, specifically sea level rise, which is predicted to result in 

loss of the tidal marsh habitat where saltmarsh sparrows live across their entire life cycle.  

For my dissertation, I investigated the reproductive biology of saltmarsh sparrows both to 

provide vital information for wildlife managers and to explore broad questions in 

ecological and evolutionary theory.  We examined the spatial variation in risks to 

fecundity, vital rates, and niches across the global range of a species.  We were thus able 

to investigate some of the most fundamental concepts in ecology, the drivers of species’ 

distributions and spatial and temporal variation in niches.  Specifically, I 1) explored 

competing risks to saltmarsh sparrow fecundity across their global range; 2) quantified 



saltmarsh sparrow fecundity across the range and tested whether fecundity decreases 

from the range center to its periphery; 3) characterized the nesting niche of saltmarsh 

sparrows across a large spatial scale to determine whether niche conservatism holds in 

this system; and 4) investigated differences in nesting niches between saltmarsh and 

sympatric Nelson’s sparrows and the fitness consequences of those differences.  The 

results of these chapters suggest that though saltmarsh sparrow fecundity is influenced by 

large-scale factors such as global predation gradients, the saltmarsh sparrow range is not 

determined by large-scale trends in demographic rates or habitat marginality with latitude 

or between sister species. 
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CHAPTER 1: INTRODUCTION 

Though they compose a very small percentage of the global habitat, tidal marshes 

host an uncommon amount of biodiversity because many are home to endemic species 

and subspecies (Greenberg et al. 2006).  Among these is the saltmarsh sparrow 

(Ammodramus caudacutus), which breeds exclusively in tidal marshes of the northeastern 

United States (Greenlaw and Rising 1994).  Saltmarsh sparrows are uniquely adapted to 

breeding in tidal marsh environments, which present various challenges such as 

freshwater limitation and little cover from predators (Greenberg, Maldonado, et al. 2006).  

Perhaps most importantly, the high marsh habitat in which saltmarsh sparrows breed 

typically floods at least once per month (during the highest astronomical tides), 

sometimes more often due to storms (Tiner 2013).  Because saltmarsh sparrows nest on 

the ground, building their nests from tidal marsh grasses, they experience catastrophic 

nest losses during high marsh flooding events.  Studies report that from 25% to over 60% 

of nest losses annually are caused by flooding (Greenlaw and Rising 1994; Shriver, 

Vickery, and Hodgman 2007; Gjerdrum, Elphick, and Rubega 2005).  However, 

saltmarsh sparrows are adapted to the harsh disturbance of tidal flooding.  Females renest 

quickly after nest loss and tend to synchronize with high tide events, completing their 

nesting cycle in as few as 26 days between astronomical high tide events (Greenlaw and 

Rising 1994; Shriver, Vickery, and Hodgman 2007). 

Despite their adaptations to flooding, saltmarsh sparrows are named on the 2014 

State of the Birds Watch List of species most in need of conservation action (Rosenberg 

et al. 2014), largely due to the threat of sea level rise.  The population status of saltmarsh 

sparrows has long been threatened by habitat loss and degradation via environmental 
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contamination from human development along the Atlantic coast.  Anthropogenic climate 

change further threatens saltmarsh sparrow populations, however.  Sea level rise is 

predicted to result in a net loss of high marsh habitat, and recent estimates of observed 

coastal wetland loss range from 1-2% per year (Pendleton et al. 2012).  A predicted rise 

in storm surge intensity and frequency that could introduce increased disturbance in the 

tidal marsh flooding regime (Wong et al. 2014) could also threaten saltmarsh sparrow 

populations by disrupting their distinctive breeding ecology (Greenberg, Maldonado, et 

al. 2006; Shriver, Vickery, and Hodgman 2007).  Specifically, sea level rise threatens to 

reduce the tidal marsh habitat in which saltmarsh sparrows breed and shorten the interval 

between tidal events that flood the high marsh zone, an interval that is fundamental to the 

saltmarsh sparrow nesting cycle. 

The persistence of saltmarsh sparrows in the face of climate change is not only 

important to global biodiversity, but also because the species provides an interesting 

study system for exploring mating systems.  Their mating system is highly promiscuous 

and “explosive”, with adults of both sexes gathering in high density areas of breeding 

habitat (S. T. Emlen and Oring 1977; Greenlaw and Rising 1994).  Genetic analysis has 

shown that in a third of nests, each egg was sired by a unique male (Hill, Gjerdrum, and 

Elphick 2010).  Neither males nor females are territorial, and males do not contribute to 

parental care (Greenlaw and Rising 1994).  Among songbirds, promiscuous breeding 

systems are globally very rare (Gill 2007). 

Saltmarsh sparrows also afford a unique opportunity to investigate evolutionary 

dynamics in the midst of a speciation event.  In the northern portion of its breeding range, 

the saltmarsh sparrow overlaps with its sister species, the Nelson’s sparrow 
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(Ammodramus nelsoni).  Though Nelson’s sparrow populations on the Atlantic Coast 

breed in tidal marshes, they also breed in non-tidal marshes found in the interior United 

States and Canada (Shriver, Hodgman, and Hanson 2011).  Until the mid-1990’s, 

saltmarsh and Nelson’s sparrows were considered two subspecies of the sharp-tailed 

sparrows, which refers to both species collectively (Greenlaw and Rising 1994; Rising 

and Avise 1993).  Nelson’s sparrows also exhibit a promiscuous mating system, but 

males have been observed to mate guard females after copulation for 15 minutes to 43 

hours (Shriver, Vickery, and Hodgman 2007).  Sharp-tailed sparrows hybridize in the 

zone of contact (Greenlaw and Rising 1994; Shriver, Vickery, and Hodgman 2007), 

between mid-coast Maine and northern Massachusetts (Jennifer Walsh et al. 2011; 

Hodgman, Shriver, and Vickery 2002; Jennifer Walsh et al. 2015).  There is some 

evidence that the Nelson’s sparrow is expanding southward, but other evidence points to 

a stable hybrid zone (Hodgman et al. 2002, Walsh et al. 2011, unpublished data).  

Regardless, sharp-tailed sparrows provide an exemplary study system for examining the 

ecological and evolutionary dynamics of sympatric sister species that are at some point in 

a speciation event. 

Due to the threats to the unique contributions of saltmarsh sparrows to global 

biodiversity, researchers joined together to gather information about their population 

status and ecology.  Under the moniker Saltmarsh Habitat and Avian Research Program 

(SHARP), researchers from five universities, federal and state governmental agencies, 

non-profit groups, and state wildlife conservation agencies from every coastal state in the 

northeast joined to study breeding saltmarsh sparrow populations across the northeastern 

United States (see www.tidalmarshbirds.org). 

http://www.tidalmarshbirds.org/
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 For my dissertation, I investigated the reproductive biology of saltmarsh 

sparrows in an ecological and adaptive framework as part of the larger SHARP project.  

With this research, I hope to inform conservation decisions for tidal marshes and explore 

the unique breeding ecology of saltmarsh sparrows.  More specifically, I 1) explored 

competing risks to saltmarsh sparrow fecundity across their global range; 2) quantified 

saltmarsh sparrow fecundity across the range and tested whether fecundity decreases 

from the range center to its periphery; 3) characterized the nesting niche of saltmarsh 

sparrows across a large spatial scale to determine whether niche conservatism holds in 

this system; and 4) investigated differences in nesting niches between saltmarsh and 

sympatric Nelson’s sparrows and the fitness consequences of those differences. 

For these analyses, I used demographic data I collected with the help of eight field 

technicians during the summers of 2011-2013 in Scarborough Marsh, Cumberland 

County, Maine, U.S.A.  Scarborough Marsh is located in southern Maine, at the center of 

the sharp-tailed sparrow hybrid zone.  At four demographic study plots, we captured 

adults, searched for and monitored nest success, and surveyed surrounding vegetation.  I 

also used demographic data collected with identical protocols in six other states by 

SHARP collaborators.  Members of SHARP implemented the same standardized data 

collection protocols at nineteen additional study plots, which combined with my 

demographic study plots in Maine, spans a great circle distance of approximately 575 km 

(Fig. 1.1).  Our survey covered 59% of the saltmarsh sparrow’s breeding range (W. Wiest 

et al. in review) and 89% of the breeding range of the nominate subspecies, Ammodramus 

caudacutus caudacutus (Montagna, 1942). 
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Across all SHARP study plots, we collected data from 1027 saltmarsh sparrow 

nests from 2011-2013 (Table 1.1, but see the SHARP 2011-2013 State Wildlife Grant 

report at www.tidalmarshbirds.org for details on all monitored species).  Of these nests, 

we identified the associated female for 631 nests by capturing the female at the nest with 

mist nets.  We also collected data from 80 Nelson’s sparrow nests and 364 sharp-tailed 

sparrow nests, which include both hybrids and nests for which the female was not trapped 

and identified within the hybrid zone.  We collectively made over 3,100 nest visits, 

totaling approximately 9,000 exposure days.  We recorded approximately 8,400 captures 

of sharp-tailed sparrows, for a total of approximately 5,000 unique individuals including 

adults, juveniles, and nestlings. 

Using this tremendous dataset, I investigated the reproductive biology of 

saltmarsh sparrows both to provide vital information for wildlife managers and to explore 

broad questions in ecological and evolutionary theory.  We examined the spatial variation 

in risks to fecundity, vital rates, and niches across the global range of a species.  We were 

thus able to investigate some of the most fundamental concepts in ecology: drivers of 

species’ distributions and spatial and temporal variation in niches.  In the process, we also 

have provided imperative information to wildlife managers: spatial patterns and 

predictors of saltmarsh sparrow productivity, locations of habitat patches that should be 

targeted for conservation, and prioritized threats to saltmarsh sparrow fecundity on both 

global and local scales.  Taken together, the work of my dissertation and the larger 

SHARP project will help determine how demographic rates vary across a species range 

and how we can best manage saltmarsh sparrow conservation actions to ensure their 

persistence. 

http://www.tidalmarshbirds.org/
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Figure 1.1. Saltmarsh sparrow breeding range map.  Demographic study plots surveyed 
by SHARP span seven states within the saltmarsh sparrow breeding range (shaded).  
Within each boxed area, we surveyed one to five study plots.  The star indicates the 
latitudinal center of the saltmarsh sparrow breeding range.  
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Table 1.1. Location and sample size for demographic study plots.  Demographic survey 
spanned Maine to New Jersey, 2011-2013. 

Study plot State 

Latitude 
(decimal 
degrees) 

Longitude 
(decimal 
degrees) 

Study 
Plot 
Area 
(ha) 

Nest 
Abundance Notes 

Oyster Creek NJ 39.5 -74.4 18.5 43 
 Mullica Wilderness NJ 39.5 -74.4 17.4 92 
 AT&T NJ 39.7 -74.2 14.3 111 
 

 
NJ 

  
50.2 246 

 Four Sparrow Marsh NY 40.6 -73.9 1.2 40 Surveyed 2012-2013 only 

Sawmill Creek NY 40.6 -74.2 3.9 41 Surveyed 2012-2013 only 

Marine Nature Park NY 40.6 -73.6 3.8 22 Surveyed 2012-2013 only 

Idlewild NY 40.7 -73.8 3.1 11 Surveyed 2012-2013 only 

 
NY 

  
12.0 114 Surveyed 2012-2013 only 

Hammonasset CT 41.3 -72.5 13.2 59 
 East River CT 41.3 -72.7 19.0 69 
 Waterford CT 41.3 -72.1 3.4 1 
 Pattagansett CT 41.3 -72.2 8.4 5 
 Barn Island CT 41.3 -71.9 23.5 40 
 

 
CT 

  
67.4 174 

 John H. Chaffee RI 41.4 -71.5 12.1 36 
 Sachuest Point RI 41.5 -71.2 3.7 35 
 

 
RI 

  
15.8 71 

 Parker River MA 42.8 -70.8 27.9 26 
 

 
MA 

  
27.9 26 

 Chapman's Landing NH 43.0 -70.9 12.0 129 
 Lubberland Creek NH 43.1 -70.9 8.1 25 Surveyed 2012-2013 only 

 
NH 

  
20.1 154 

 Eldridge Road ME 43.3 -70.6 11.5 62 
 Little River ME 43.3 -70.5 6.9 2 Surveyed 2011 only 

Jones Creek ME 43.5 -70.4 11.5 79 Surveyed 2012-2013 only 

Nonesuch River ME 43.6 -70.3 13.9 29 
 Libby River ME 43.6 -70.3 13.0 4 Surveyed 2011 only 

Scarborough Marsh ME 43.6 -70.4 9.8 61 
   ME     66.6 237   
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CHAPTER 2: DEMOGRAPHIC ANALYSIS DEMONSTRATES CONTRASTING 

ABIOTIC AND BIOTIC STRESSORS ACROSS A SPECIES RANGE 

 

2.1. Summary 

Sixty-five years ago, Theodosius Dobzhansky suggested that individuals of a 

species face greater challenges from abiotic stressors at high latitudes and from biotic 

stressors at their low-latitude range edges.  This idea has been expanded to the hypothesis 

that species’ ranges are limited by abiotic and biotic stressors at high and low latitudes, 

respectively (Asymmetric Abiotic Stress Limitation hypothesis, hereafter AASL).  

Support has been found in many systems, but this hypothesis has almost never been 

tested with demographic data.  We present an analysis of fecundity across the breeding 

range of a species as a test of this hypothesis.  We monitored saltmarsh sparrow 

(Ammodramus caudacutus) nests at twenty-three sites from Maine to New Jersey, USA.  

With data from 840 nests, we calculated daily nest failure probabilities due to competing 

abiotic (flooding) and biotic (depredation) stressors.  We observed that abiotic stress (nest 

flooding probability) was greater than biotic stress (nest depredation probability) at the 

high-latitude range edge of saltmarsh sparrows, consistent with the AASL hypothesis.  

Similarly, biotic stress decreased with increasing latitude throughout the range, whereas 

abiotic stress was not predicted by latitude alone.  Instead, nest flooding probability was 

best predicted by date, maximum high tide, and extremity of rare flooding events.  Our 

results provide support for the AASL hypothesis across the global range of a species.  We 

observed predictable variation in competing biotic and abiotic stressors to saltmarsh 

sparrow nest survival across the range.  However, our results do not indicate a direct 
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tradeoff between abiotic and biotic stressors along a single gradient.  Rather, we found 

that abiotic and biotic stressors were geographically independent. 

 

2.2. Introduction 

Theodosius Dobzhansky (1950) suggested that populations within the same 

species face systematically different types of stresses across the species range.  At high 

latitudes, he hypothesized that abiotic stressors such as climate pose greater challenges, 

while biotic stressors such as competition are more limiting for a species near its low-

latitude range edge.  In the years since its original publication, Dobzhansky’s hypothesis 

has been expanded by subsequent ecologists to the idea that the range of a species is 

limited by abiotic stressors at high latitudes and biotic stressors at low latitudes (Brown, 

Stevens, and Kaufman 1996; Brown 1995; MacArthur 1984).  The theory has also grown 

to include at least two other gradients of abiotic stress, elevation (Diamond 1973) and 

water depth (Connell 1961).  Normand et al. (2009) called this integrated theory the 

Asymmetric Abiotic Stress Limitation (AASL) hypothesis.  Broadly, it postulates that a 

tradeoff exists between physiological hardiness, which increases fitness in stressful 

abiotic conditions, and competitive ability, which increases fitness in areas of low abiotic 

stress. 

The AASL hypothesis has been supported by a wide range of tests in a diverse 

array of species (see Parmesan et al., 2005 for a review).  For instance, over half of 

European alpine plants exhibit range boundaries that correlate with climatic variables at 

the northern edges of their ranges, but not the southern range edge (Normand et al. 2009); 

common garden experiments have demonstrated a tradeoff between adaptation to cold 
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hardiness at high latitudes and competitive ability (growth rate) at low latitudes in a 

variety of temperate tree species (Loehle 1998); and algae species found in low tidal and 

subtidal depths take longer to recover photosynthetic capabilities following experimental 

desiccation stress than algae species found in the high tidal zone (Smith and Berry 1986). 

Most previous investigations of the AASL hypothesis have provided only indirect 

support, however.  Almost all previous studies have focused on either physiological 

tolerances of individuals or correlations between species’ ranges and climatic parameters 

(see Brewer & Gaston, 2003 for a notable exception).  Absolute empirical support for this 

hypothesis requires quantifying demographic rates as functions of biotic and abiotic 

stressors across the range of a species, but the AASL hypothesis has almost never been 

tested with demographic data. 

In this paper, we directly test the AASL hypothesis by investigating patterns of 

reproduction at sites across the latitudinal range of a species.  We quantified nest survival 

probabilities, a commonly-used measure of avian fecundity, across the majority of the 

breeding range of the saltmarsh sparrow (Ammodramus caudacutus).  Using a Markov 

chain method (Etterson, Nagy, and Robinson 2007; Etterson, Greenberg, and Hollenhorst 

2014), we separately estimated the probability of nest loss due to biotic (depredation) and 

abiotic (flooding) stressors.  Finally, we explored how the different failure probabilities 

vary across the landscape, to test whether biotic stressors become increasingly important 

moving toward low latitudes and abiotic stressors are more important toward high 

latitudes, in accordance with the AASL hypothesis. 
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2.3. Methods 

2.3.1. Study system 

The geographic range of saltmarsh sparrows is ideally suited for exploring 

latitudinal trends because of its unique configuration.   Saltmarsh sparrows breed 

exclusively in tidal marshes on the coast of the northeastern United States, from southern 

Maine to Virginia (Greenlaw and Rising 1994).  Thus, the breeding range of Saltmarsh 

Sparrows is linear, runs roughly north-south, and is clearly bounded on the east and west 

by absence of tidal marsh habitat.  Finally, tidal marshes are a relatively homogenous 

ecosystems that are defined by a simple structure and species assemblage (Greenberg, 

Maldonado, et al. 2006), allowing us to rule out many confounding factors associated 

with more diverse systems (Tiner 2013). 

Within the saltmarsh sparrow breeding range, abiotic stressors also follow a 

roughly north-south gradient.  Abiotic stressors include climate, the stressor that formed 

the basis of the AASL hypothesis, and  the magnitude of tidal flooding, which has been 

identified as the leading cause of saltmarsh sparrow nest failure across a wide geographic 

range (Gjerdrum, Sullivan-Wiley, and King 2008; Greenlaw and Rising 1994; Gjerdrum, 

Elphick, and Rubega 2005; Shriver, Vickery, and Hodgman 2007).  Saltmarsh sparrows 

build their nests a few centimeters above the ground in the high marsh zone (Humphreys 

et al. 2007), which typically floods only during monthly astronomical high tides and 

some storm events (Tiner 2013).  Marshes at the high-latitude edge of the saltmarsh 

sparrow range experience astronomical high tides that are almost two times greater than 

those experienced in more southerly marshes (Fig. 2.1). 
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There is also support for a latitudinal gradient in biotic stressors to saltmarsh 

sparrow fecundity.  In a wide array of other systems, studies have shown that predation 

and herbivory increase with decreasing latitude (Schemske et al. 2009), providing support 

for the AASL hypothesis.  In tidal marshes across the range of the saltmarsh sparrow, 

low-latitude wetlands host nest predators that have no high-latitude analog (e.g., rice rats, 

Oryzomys palustris (Post 1981)).  Further, in a meta-analysis of all the avian taxa 

endemic to tidal marshes in North America, nest predation rates decreased with latitude 

(Greenberg, Elphick, et al. 2006). 

 

 

Figure 2.1. Maximum high tide increases with latitude.  Maximum high tide height is 
shown by study plot, as measured by maximum observed water level, May-August in 
2011-2013. 
 

2.3.2. Data collection 

From 2011 to 2013, we implemented a standardized data collection protocol at 

twenty-three study plots spanning a great circle distance of approximately 575 km (Fig. 
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1.1, see Appendix C for protocol).  Our survey covered 59% of the saltmarsh sparrow’s 

breeding range (Wiest unpub.) and 89% of the breeding range of the nominate 

subspecies, Ammodramus caudacutus caudacutus (Montagna 1942).  Study plots 

consisted of 5-24 ha areas of tidal marsh in the high-marsh zone.  At each study plot, we 

searched for nests at least once per week throughout the breeding season (May to 

August).  Once we found a nest, we revisited it every 2-5 days to determine success or 

failure.  If a nest failed, we determined the cause of nest failure based on evidence at the 

nest site (Appendix C). 

We assigned depredation (biotic stressor) as the cause of nest failure to nests 

found with broken or punctured eggs, mangled chicks, or to nests that were empty and 

dry after nights that did not have tides high enough to flood the high marsh.  We assigned 

flooding (abiotic stressor) as the cause of failure to nests that were wet after nights with 

tides high enough to inundate the high marsh, contained drowned chicks, or had intact 

eggs outside the nest (presumably because they floated out).  We classified nests as failed 

for unknown reasons in cases of conflicting evidence (e.g., nest bowl was visibly wet and 

contained punctured eggs).  We considered nests successful if, after survival on all 

previous visits, they were found empty when at least one nestling would have been 10 

days old, the age at which chicks are able to leave the nest (Greenlaw and Rising 1994). 

We included two covariates as potential predictors of nest depredation 

probabilities: latitude and serial date.  We recorded the latitude and longitude of each 

study plot at its approximate center using ArcGIS version 10.1 (Environmental Systems 

Research Institute, Redlands, USA).  Inclusion of latitude in the top model, specifically 

that nest depredation probability increased with latitude, would provide support for the 
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AASL hypothesis.  We included serial date as a covariate to test an alternative 

hypothesis.  Nest predation increases throughout the breeding season in a variety of avian 

taxa, perhaps because nest predators increase foraging effort to feed their own growing 

young (see Verhulst & Nilsson, 2008 for a review).  Inclusion of serial date in the top 

model would demonstrate that biotic stress to saltmarsh sparrow fecundity changed 

seasonally across the species range. 

To measure nest flooding stress, we used three potential predictors to reflect 

distinct inputs to tidal marsh hydrology: maximum high tide, extremity of rare flooding 

events, and relative sea-level rise (Appendix A).  Tidal marshes are shaped by both 

regular flooding caused by astronomical tides and irregular flooding caused by weather.  

Both types of flooding contribute to marsh development and maintenance (Teal 1986).  In 

addition, recent anthropogenic sea-level rise has contributed to higher water levels and 

increased flooding of tidal marshes (Wong et al. 2014). 

We used latitude as a proxy for maximum high tide based on the observed 

relationship between the two variables in our study region (Fig. 2.1).  We also included 

maximum observed high tide within the study period as a direct measure of tidal height.  

We obtained water-level data from the National Oceanic and Atmospheric 

Administration (NOAA) using the observation station with available data that was closest 

to each demographic study plot (approximately 15-50 km by water).  We used NOAA’s 

recorded water levels above the mean daily high tide (mean higher high water datum, 

hereafter MHHW) for 1% annual exceedance probabilities to reflect the extremity of rare 

flooding events at a study plot.  Exceedance probabilities describe the likelihood that 

water level will surpass a given level; for example, a 1% annual exceedance probability 
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level of 1.23 m above MHHW means that only once in 100 years will the water level 

likely reach 1.23 m above MHHW.  This datum is corrected for local relative sea level 

rise.  Finally, we collected linear sea-level rise estimates based on 1969-2011 water levels 

from Boon et al. (2012), using the location nearest to each demographic study plot 

(approximately 15-55 km by water).  Finally, we included serial date as a covariate 

because monthly high tides decrease in height throughout the breeding season. 

Inclusion of latitude or maximum tidal height in the top model, specifically that 

nest flooding probability increased with either variable, would indicate that regular 

monthly flooding from astronomical tides posed the greatest abiotic stress to saltmarsh 

sparrow fecundity, as predicted by the AASL hypothesis.  Conversely, inclusion of either 

exceedance values or sea level rise in the top model, specifically that nest flooding 

probability increased with either variable, would indicate that irregular, anthropogenic 

flooding imposed greater stress to saltmarsh sparrow reproduction.  Furthermore, because 

extremity of rare flooding events and rate of sea-level rise are influenced by climate 

change, their inclusion in the top model would indicate that saltmarsh sparrows face 

growing abiotic stress under predicted climate change. 

 

2.3.3. Statistical analyses 

We used the program MCestimate (Etterson, Nagy, and Robinson 2007; Etterson, 

Greenberg, and Hollenhorst 2014) to calculate daily probabilities of nest survival and 

failure from competing risks.  MCestimate employs a Markov chain algorithm to estimate 

daily nest-failure probabilities via a generalization of the Mayfield method (Mayfield 

1975).  Unlike more traditional logistical exposure models (Rotella, Dinsmore, and 
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Shaffer 2004; Dinsmore, White, and Knopf 2002; Shaffer 2004), MCestimate separately 

estimates probabilities of failure due to competing risks, in additional to total daily nest 

survival probability. 

We used MCestimate to generate daily nest survival and failure probabilities as 

functions of nest- and study plot-level covariates from nest monitoring data (Shaffer 

2004; Etterson and Stanley 2008).  We adopted a two-stage approach for model selection 

(see Appendix B for full model lists).  First, we separately compared candidate models 

for biotic and abiotic nest failure probabilities.  We compared models containing all 

additive combinations of potential covariates of nest depredation probability (latitude and 

serial date) while modeling nest flooding probability as constant, plus an intercept-only 

null model (4 candidate models total).  Similarly, we modeled nest depredation 

probability as constant while we compared all additive combinations of the potential 

covariates of nest flooding probability (latitude, maximum high tide, 1% exceedance 

value, linear sea-level rise rate, and serial date).  Again, we also included an intercept-

only null model (32 candidate models total).  We used second order Akaike’s Information 

Criteria (AICc) to compare candidate models in each set while accounting for sample 

size.  We used a difference of 2 or more in AICc values to identify which models most 

parsimoniously described the biotic and abiotic nest failure probabilities (Burnham and 

Anderson 2002; Akaike 1974).  We chose the simplest model within 2 AICc values of the 

top model.  For the second stage of model selection, we built a combined model based on 

the best models for nest depredation and flooding probabilities, and compared the 

combined model to an intercept-only null model and the best models from the previous 

stage. 



17 
 

Finally, to report the daily probabilities of nest depredation, nest flooding, and 

total nest survival by study plot, we created models with study plot as the sole fixed-

effect covariate to allow for maximum variation.  We created a separate model for each 

nest depredation probability, nest flooding probability, and total nest survival probability 

as predicted by study plot. 

 

2.4. Results 

We analyzed nest monitoring data from 840 nests found over three years of study.  

We observed daily nest depredation probabilities that ranged from <0.001 to 0.046 and 

daily nest flooding probabilities that ranged from 0.016 to 0.116, depending on study 

plot.  Daily nest-survival probabilities ranged widely by study plot, from 0.857 to 0.970 

(2% to 48% total nest survival over the 24-day nesting period; Table 2.1). 

Despite much local heterogeneity, we observed clear large-scale patterns in nest 

failure probabilities of saltmarsh sparrows.  The model containing only latitude best 

predicted daily nest depredation probability (wi=0.57) and performed much better than 

the null model (ΔAICc=23.15, wi<0.01).  Nest depredation probability increased moving 

toward low latitudes (Table 2.2, Fig. 2.2). 

An additive combination of date, maximum high tide, and extremity of rare 

flooding events best predicted daily nest flooding probability (wi=0.43) and performed 

much better than the null model (ΔAICc=29.5, wi<0.01).  Nest flooding probability 

decreased throughout the breeding season, increased with increasing maximum high tide, 

and increased with increasing extremity of rare flooding events (Table 2, Fig. 2.3).  The 



18 
 

nest flooding model using latitude as the sole predictive variable performed worse than 

the null model (ΔAICc=30.01, wi<0.01; Fig. 2.2). 

The combined model (nest depredation probability predicted by latitude, nest 

flooding probability predicted by serial date, maximum high tide, and exceedance value; 

wi=1.0) predicted nest failure probabilities better than the top model for nest depredation 

probability (ΔAICc=28.86, wi<0.01), the top model for nest flooding probability 

(ΔAICc=20.52, wi=<0.01), and the null model (ΔAICc=50.2, wi<0.01). 

Total daily nest survival probability increased toward the high-latitude edge of the 

saltmarsh sparrow breeding range (Fig. 2.2).  Total nest survival probability decreased 

with increasing exceedance value and increased throughout the breeding season.  There 

was no relationship between maximum high tide and total nest survival probability. 
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Table 2.1. Global and local probabilities of nest failure and survival.  Shown are daily 
probabilities ± standard error for saltmarsh sparrows by study plot, 2011-2013. 

Study Plot 
Number 
of nests 

Global 
Daily Nest 
Depredation 
Probability1 

Local Daily 
Nest 
Depredation 
Probability2 

Global 
Daily Nest 
Flooding 
Probability1 

Local Daily 
Nest 
Flooding 
Probability2 

Global 
Daily Total 
Nest 
Survival 
Probability1 

Local Daily 
Total Nest 
Survival 
Probability2 

Oyster Creek 30 
0.034 ± 
0.005 

0.046 ± 
0.015 

0.028 ± 
0.003 

0.029 ± 
0.013 

0.938 ± 
0.006 

0.928 ± 
0.017 

Mullica 
Wilderness 70 

0.034 ± 
0.005 

0.045 ± 
0.009 

0.028 ± 
0.003 

0.021 ± 
0.01 

0.938 ± 
0.006 

0.936 ± 
0.011 

AT&T 68 
0.032 ± 
0.004 

0.033 ± 
0.007 

0.028 ± 
0.003 

0.040 ± 
0.008 

0.940 ± 
0.005 

0.930 ± 
0.011 

Four Sparrow 
Marsh 15 

0.025 ± 
0.003 

0.011 ± 
0.008 

0.050 ± 
0.007 

0.022 ± 
0.011 

0.925 ± 
0.007 

0.968 ± 
0.014 

Sawmill 
Creek 24 

0.025 ± 
0.003 

0.001 ± 
0.007 

0.036 ± 
0.004 

0.050 ± 
0.015 

0.939 ± 
0.004 

0.940 ± 
0.016 

Marine 
Nature Park 10 

0.025 ± 
0.003 

0.000 ± 
0.000 

0.050 ± 
0.007 

0.064 ± 
0.027 

0.925 ± 
0.007 

0.936 ± 
0.028 

Idlewild 7 
0.024 ± 
0.002 

0.023 ± 
0.023 

0.050 ± 
0.007 

0.093 ± 
0.042 

0.926 ± 
0.007 

0.883 ± 
0.051 

Hammonasset 50 
0.020 ± 
0.002 

0.004 ± 
0.003 

0.070 ± 
0.009 

0.062 ± 
0.010 

0.910 ± 
0.009 

0.934 ± 
0.011 

East River 60 
0.020 ± 
0.002 

0.020 ± 
0.007 

0.056 ± 
0.005 

0.061 ± 
0.011 

0.924 ± 
0.005 

0.921 ± 
0.012 

Waterford3 1 
0.021 ± 
0.002 NA 

0.040 ± 
0.005 NA 

0.940 ± 
0.005 NA 

Pattagansett 5 
0.021 ± 
0.002 

0.000 ± 
0.001 

0.040 ± 
0.005 

0.057 ± 
0.033 

0.940 ± 
0.005 

0.944 ± 
0.034 

Barn Island 33 
0.021 ± 
0.002 

0.018 ± 
0.008 

0.040 ± 
0.005 

0.103 ± 
0.020 

0.940 ± 
0.005 

0.885 ± 
0.023 

John H. 
Chaffee 29 

0.020 ± 
0.002 

0.016 ± 
0.007 

0.040 ± 
0.005 

0.019 ± 
0.008 

0.940 ± 
0.005 

0.965 ± 
0.011 

Sachuest 
Point 19 

0.020 ± 
0.002 

0.087 ± 
0.030 

0.040 ± 
0.005 

0.054 ± 
0.03 

0.943 ± 
0.005 

0.857 ± 
0.038 

Parker River 48 
0.014 ± 
0.002 

0.019 ± 
0.006 

0.031 ± 
0.002 

0.031 ± 
0.007 

0.955 ± 
0.003 

0.949 ± 
0.009 

Chapman's 
Landing 139 

0.013 ± 
0.002 

0.002 ± 
0.002 

0.031 ± 
0.002 

0.024 ± 
0.004 

0.956 ± 
0.003 

0.970 ± 
0.004 

Lubberland 
Creek 24 

0.013 ± 
0.002 

0.000 ± 
0.000 

0.031 ± 
0.002 

0.032 ± 
0.010 

0.956 ± 
0.003 

0.967 ± 
0.010 

Eldridge 
Road 64 

0.012 ± 
0.002 

0.017 ± 
0.005 

0.034 ± 
0.003 

0.061 ± 
0.010 

0.954 ± 
0.003 

0.923 ± 
0.010 

Little River 5 
0.012 ± 
0.002 

0.033 ± 
0.023 

0.034 ± 
0.003 

0.016 ± 
0.017 

0.954 ± 
0.003 

0.951 ± 
0.029 

Jones Creek 62 
0.011 ± 
0.002 

0.017 ± 
0.005 

0.038 ± 
0.003 

0.017 ± 
0.006 

0.951 ± 
0.003 

0.964 ± 
0.007 

Nonesuch 
River 25 

0.011 ± 
0.002 

0.036 ± 
0.012 

0.038 ± 
0.003 

0.032 ± 
0.011 

0.951 ± 
0.003 

0.936 ± 
0.014 

Libby River 3 
0.011 ± 
0.002 

0.002 ± 
0.014 

0.038 ± 
0.003 

0.116 ± 
0.069 

0.951 ± 
0.003 

0.879 ± 
0.068 

Scarborough 
River 49 

0.011 ± 
0.002 

0.015 ± 
0.006 

0.038 ± 
0.003 

0.050 ± 
0.010 

0.951 ± 
0.003 

0.936 ± 
0.012 

1 Global probabilities were calculated using the top-ranked combined model. 
2Local probabilities were calculated using study plot as the sole predictive variable in 
models of daily nest depredation, flooding, and survival. 
3Local probabilities could not be calculated for this study plot because it only had one 
nest.  
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Table 2.2. Multinomial logit scale estimates of nest fates.  Shown are the estimates from 
the top-ranked model of variables affecting nest fates of saltmarsh sparrows, 2011-2013. 

Nest Fate Predictor 
Effect 
size 

Standard 
Error 

Observed 
Minimum 

Observed 
Maximum 

Depredated Intercept 7.8233 2.3790 NA NA 

Depredated Latitude (decimal 
degrees) -0.2820 0.0574 39.5056 43.5655 

Flooded Intercept -3.7056 0.7225 NA NA 

Flooded Maximum Observed High 
Tide (m) 0.5910 0.1705 1.4377 2.5021 

Flooded 1% Exceedance Value 
above MHHW (m) 0.9660 0.1993 1.1400 2.0604 

Flooded serial date -0.0115 0.0031 138 244 
 

  



21 
 

 

 

  

Figure 2.2. Daily nest failure probabilities by latitude.  A) Daily nest predation 
probability for saltmarsh sparrows modeled as a function of latitude (nest depredation 
probability increased with increasing latitude); B) Daily nest flooding probability 
modeled as a function of latitude (daily nest flooding probability was not related to 
latitude); C) Total daily nest survival probability modeled as a function of latitude (total 
daily nest survival probability increased with increasing latitude). 
  

A) 

B) 

C) 
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Figure 2.3. Daily nest flooding probability predictors.  Daily nest flooding probability of 
saltmarsh sparrows was best predicted by A) maximum observed high tide during the 
study period (May-August, 2011-2013); B) meters above mean higher high water 
(MHHW, the monthly high tide) for the 1% annual exceedance probability; and C) serial 
date. 

A) 

B) 

C) 
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2.5. Discussion 

Our findings are consistent with the AASL hypothesis that abiotic stressors 

(flooding) pose greater risks to population growth at high latitudes than biotic stressors 

(depredation).  Further, we found that nest depredation probability varied with latitude, 

suggesting that biotic stressors become increasingly important moving toward low 

latitudes.  Nest flooding probability did not vary with latitude, however.  Instead, nest 

flooding probability was best predicted by an additive combination of three variables that 

vary independently from latitude.  Therefore, in opposition to modern formulations of the 

AASL hypothesis, our results suggest that in this system, there is not a direct tradeoff 

between physiological tolerance and competitive ability.  Without experimental 

manipulation, we cannot be certain that nest flooding and nest depredation probabilities 

limit saltmarsh sparrow populations where they are highest.  We can conclude, however, 

that the relative importance of each competing stressor changes across the species range 

and through time. 

We found evidence of a latitudinal trend in biotic stress (Fig. 2.2A).  Specifically, 

nest depredation probability increased toward low latitudes.  Large-scale patterns in 

species interactions are likely driving the observed decrease in nest predation with 

increasing latitude in saltmarsh sparrows.  Few data exist for the abundance and diversity 

of potential nest predators in tidal marshes.  However, the species richness of the major 

groups of nest predators (mammalian, reptilian, and avian) all increase toward low 

latitudes within the region (Cook 1969; Currie 1991). 

The observed increase in nest depredation probability toward low latitudes might 

also be explained by correlation with some additional metric, such as marsh size.  Rates 
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of adverse biotic interactions such as predation and parasitism, particularly well-studied 

for nests, increase with decreasing distance to the habitat patch edge in many ecosystems 

and taxa (Paton 1994; Ries and Fagan 2003; Etterson, Greenberg, and Hollenhorst 2014).  

We observed the highest nest depredation probabilities at the southern end of our study 

area, however, where marsh size is largest in this region.  Thus, we can rule out distance 

to the marsh perimeter as a confounding influence.  For saltmarsh sparrows, therefore, 

any potential increases in nest predation rate due to upland proximity were overcome by a 

latitudinal trend in predation risk.  Though we found that biotic stress intensified toward 

low latitudes within the saltmarsh sparrow range, nest flooding probability was still 

greater than nest depredation probability at one of our three lowest-latitude study plots.  

We should note, however, that we did not sample sites at the low-latitude margin of this 

species range. 

Consistent with the AASL hypothesis, nest flooding was much more important 

than nest depredation near the high-latitude margin of the saltmarsh sparrow range.  

However, we did not observe that abiotic stress varied with latitude across the range (Fig. 

2.2B).  We observed a variable landscape of competing abiotic and biotic stresses to 

saltmarsh sparrow fecundity across the species range, but our results suggest that there is 

not a direct tradeoff between abiotic and biotic stressors.  The increased relative 

importance of flooding among high-latitude populations was due more to the decreases in 

predation risk than any increase in flooding stress, which was high and variable across 

the range.  Thus, our results do not support the hypothesis that populations face a direct 

tradeoff between physiological hardiness and competitive ability across this species 

range. 
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These results suggest that saltmarsh sparrow reproduction may be shaped by two 

different gradients of stress that vary independently but act simultaneously.  The AASL 

hypothesis originally cited a single gradient, latitude, which explained both biotic 

diversity and abiotic stress gradients.  Extensions of this hypothesis have similarly used 

single gradients (e.g., elevation or water depth) to explain the strength of both biotic and 

abiotic stressors.  To our knowledge, multiple gradients have not been examined in the 

same species.  The underlying mechanisms structuring nest predator communities in our 

system appear to be independent of the controls on nest flooding stress at the scale we 

examined.  Thus, we hypothesize that saltmarsh sparrow population growth probabilities, 

and hence range edges, are simultaneously limited by biotic and abiotic stressors along 

two independent gradients: latitude (driving biotic interactions) and water depth, in this 

case tidal flooding (driving abiotic stress).  Latitude is an indirect gradient for abiotic 

stress (Austin and Smith 1990) that holds within many systems, but evidently not entirely 

for saltmarsh sparrows.  Similar patterns might be expected in other systems in which 

gradients of abiotic stress vary independently relative to broad latitudinal patterns in 

biodiversity (e.g., gradients of fire regime, wind damage, or urbanization).  Future studies 

should include comprehensive demographic analyses of species in such ecosystems to 

test whether a species can be simultaneously limited across multiple gradients of abiotic 

stress in the manner that the AASL hypothesis predicts.  If multiple stress gradients 

simultaneously affect population growth rates of a species on a large geographic scale, 

we face complications in attempting to understand range limits. 

Our study may have been limited by statistical power, however.  Though we 

sampled a large number of nests (n=840), our covariates were gathered at the level of 
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study plot (n=23).  In addition, the resolution of the water level covariates was limited by 

tidal stations with available data (n=9).  In particular, this resolution did not incorporate 

variation at a small spatial scale that appears important for saltmarsh sparrow fecundity.  

For example, water level data from the Portland, ME tide station was applied to 4 study 

plots.  Of these, two experience no tidal restrictions (Libby and Nonesuch rivers), one 

experiences mild restriction (Scarborough River), and one study plot experiences 

severely restricted tidal flow (Jones Creek).  The daily probability of nest flooding at the 

study plot level varies somewhat concomitantly with the level of tidal restriction (mean 

daily nest flooding probability for no tidal restriction: 0.07; mild restriction: 0.05; severe 

restriction: 0.02).  Based on our statistical approach, therefore, we cannot definitively say 

that there was no relationship between flooding (measured by either metric) and nest 

success, only that the relationship, if present, was of small enough magnitude to prevent 

detection given the variation in nest success from other sources and our sample size.  

Given that we were able to detect systematic variation between predation and latitude, 

however, we argue that a relationship between nest success and flooding, if present, is 

sufficiently small that variation from other sources is likely more biologically 

meaningful. 

In addition, the lack of a direct tradeoff between biotic and abiotic stress may be 

an artifact of human modification.  The fact that 1% exceedance values demonstrate a 

strong positive relationship with nest flooding probability is particularly telling.  Extreme 

water levels have increased on a global scale, but these trends are generally driven by 

sea-level rise (Wong et al. 2014).  However, New York and Connecticut host particularly 

high exceedance values for the region, and these conditions may be due to recent changes 
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that are independent of sea-level rise (Karl and Knight 1998; Menéndez and Woodworth 

2010).  Urbanization, largely through the increase of runoff caused by impermeable 

surfaces, has long been known to contribute to ‘flashier’ flooding patterns that result in 

increased exceedance values (Hollis 1975) and can degrade tidal marshes.  Tidal marshes 

in New York and Connecticut have particularly suffered, experiencing relatively high 

levels of marsh loss within the region (Tiner 2013; Hartig et al. 2002; Deegan et al. 

2012).  For example, some islands in Jamaica Bay, New York, USA have lost over 50% 

of their vegetated area since 1924, and probabilities of erosion have accelerated through 

time (Hartig et al. 2002). 

New York and Connecticut also include the study plots with high nest flooding 

probabilities relative to the local maxima of high tides.  Notably, these areas are the 

geographic center of the global saltmarsh sparrow population, which is considered 

imperiled (Greenlaw and Rising 1994; IUCN 2012; Butcher et al. 2007).  Latitude alone 

may have once been a good predictor of nest flooding in saltmarsh sparrows, as 

maximum high tides do show a latitudinal gradient (Fig. 2.1).  Locally heterogeneous 

responses to climate and landscape changes, however, may have altered any historical 

tradeoff between biotic and abiotic causes of nest failure.  Regardless, modern saltmarsh 

sparrow populations are affected by an axis of abiotic stress that is independent of 

latitude, whether heterogeneous flooding has existed throughout the Holocene or is a 

result of recent patterns of anthropogenic modification of the landscape. 

Like nest depredation probability, total nest survival probability was related to 

latitude (Fig. 2.2C).  We observed the highest predicted nest-survival probabilities at the 

highest latitudes.  This result serves as a single empirical example of how reproductive 
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success varies across a species’ range.  We suggest that more investigations in the same 

vein are necessary to understand how interactions between niches and environmental 

heterogeneity produce patterns of population growth through time and across space.  

Joseph Grinnell (1904) hypothesized that populations toward the center of a range exhibit 

the highest population growth, because the environmental conditions will be most 

favorable for a given species there (see Sagarin et al., 2006 for a recent review).  Our 

results do not support Grinnell’s hypothesis, though we do not consider this project a 

direct test of Grinnell’s hypothesis because we did not measure total population growth.  

Further, nest survival probability is commonly used as a proxy for fecundity in the 

ornithological literature, but it remains several steps removed from annual fecundity 

(Olsen et al. 2008; Etterson et al. 2011a; H. M. Streby et al. 2014).  Variations in life 

history traits such as clutch size or renesting probability could transform nest failure 

probabilities across the range into different spatial patterns of annual fecundity.  While 

life history adaptations may show different patterns than those reported here, the spatial 

pattern for exogenous drivers of fecundity remains clear. 

Our study suggests that while different range edges may occur due to different 

stressors, adaptation to abiotic stressors does not necessarily prevent adaptation to biotic 

stressors.  To understand what, if any, evolutionary consequences exist for the species 

due to the balance of abiotic and biotic stressors across the range, we must better quantify 

fecundity.  Future studies should include life history parameters such as clutch size or 

renesting rates and the variation associated with each across the global range of a species.  

Furthermore, we found that a single vital rate was independently affected by abiotic and 

biotic stressors across space.  However, range-limiting factors could affect multiple vital 
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rates, and future studies should include survivorship and population connectivity.  

Understanding the demographic and spatial dynamics of species’ ranges is an important 

topic in theoretical ecology, and will become increasingly important for conservation in 

the face of climate change.  
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CHAPTER 3: SEASONAL FECUNDITY IS NOT RELATED TO RANGE 

POSITION ACROSS A SPECIES’ GLOBAL RANGE 

 

3.1. Summary 

The range of a species is determined by the balance of its demographic rates 

across space. Population growth rates are widely hypothesized to be highest at the 

geographic center of the species range, but empirical support has been mixed, and it has 

rarely been studied with demographic data.  Therefore, which processes determine 

species’ ranges remains an open question and one of growing importance in light of 

climate change.  We quantified seasonal fecundity across the global range of a single 

species, the saltmarsh sparrow (Ammodramus caudacutus), which demonstrates a peak of 

abundance at the geographic center of its range.  We compared seasonal fecundity 

estimates replicated over 3 years of study to latitude.  We observed no linear relationships 

between fecundity and latitude.  While fecundity was generally consistent at the study 

plot scale, it varied greatly within the scale of tens of kilometers.  Further, fecundity 

estimates at study plots near to each other were as different as those from across the 

range.  Our results do not provide support for the hypothesis that demographic rates are 

highest at the geographic center of a species range.  These results instead suggest that 

local drivers strongly influence saltmarsh sparrow fecundity across their global range and 

that range edges in this species are likely determined by local environmental 

characteristics, not gradual declines in suitability. 

 

 



31 
 

3.2. Introduction 

 Identifying the processes that determine species’ distributions has long been a 

central topic of inquiry in ecology.  Fundamentally, the range of a species is determined 

by the balance of demographic rates, specifically birth, death, immigration, and 

emigration (Pulliam 1988), over space.  Grinnell highlighted this principle in his 

formulation of a hypothesis regarding the pattern and processes governing species’ 

ranges.  Grinnell (1904) wrote, “The center of distribution of any animal is where the 

greatest rate of increase is. The greatest rate of reproduction is presumably where the 

species finds itself best adapted to its environment.”  In other words, the core of the 

species niche is found at the center of the geographic range.  Moving away from the 

range center, population growth rates are thought to decline as habitat becomes 

increasingly marginal for the species, or toward the periphery of its niche (Pulliam 1988; 

Guo et al. 2005; Brussard 1984; Saetre et al. 2001; Haldane 1956). 

Little is known from empirical studies about how demographic rates vary across 

species’ ranges, however (Sagarin, Gaines, and Gaylord 2006; Gaston 2009).  Data on 

demographic processes of wildlife are difficult to collect, and as a result, few studies have 

quantified demographic rates across a wide geographic scale.  Those that have provide 

mixed support for Grinnell’s hypothesis that demographic rates decline from the 

geographic center of a species range toward the margins (Purves 2009; Samis and Eckert 

2007; Bradford, Taylor, and Allan 1997; Rhainds and Fagan 2010; Brewer and Gaston 

2003; Rogers and Randolph 1986).  As abundance data are much easier to collect, the 

majority of investigations of the processes that determine species’ ranges have focused on 

abundance and distribution data.  This constitutes a deep body of literature which has also 
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provided mixed support for Grinnell’s hypothesis (Gaston 2003).  In some systems, a 

central peak or broad plateau in abundance has been observed, with gradual declines 

toward the range margins (Brown 1984; Enquist, Jordan, and Brown 1995; Svensson 

1992; Hengeveld and Haeck 1982; J. T. Emlen et al. 1986; Pianka 1970; Rapoport 1982).  

Other researchers have found a central peak to be more the exception than the rule, 

instead observing that abundance was either unrelated to latitude or greatest toward range 

margins (Sagarin and Gaines 2002; Blackburn et al. 1999; Scott et al. 1986; Kluth and 

Bruelheide 2005).  Finally, multiple peaks of greatest abundance or demographic rates 

have been observed in some systems as well (Scott et al. 1986, Root 1988, Gibbons et al. 

1993, Lawton 1993, B. McGill unpublished data).  In spite of the mixed empirical 

evidence for Grinnell’s hypothesis, the idea that population growth rates decline toward 

range margins remains widespread in the literature. 

Grinnell also connected his hypothesis to evolutionary theory, venturing that at 

the geographic center of a species range where the population growth rate is highest, 

individuals emigrate to more marginal populations (Grinnell 1904).  This idea, in turn, 

has led to the hypothesis that evolution at range-edge populations is constrained by 

asymmetrical immigration from populations adapted to conditions at the center of the 

range (Guo et al. 2005; Haldane 1956; Pulliam 1988; Gaston 2009).  Subsequent 

researchers have advanced these ideas, using the abundant-center or center-marginal 

hypothesis as the basis for many ecological and evolutionary theories (see box 1 in 

Sagarin et al. 2006 for a list of examples). 

The interaction between ecological and evolutionary processes is important for 

predicting changes in species’ distributions, particularly in light of global climate change.  
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In general, species are expected to expand their ranges toward high latitudes and 

elevations in response to climate change, a pattern that has already been observed 

globally (Parmesan and Yohe 2003; T. L. Root et al. 2003; Chris D. Thomas and Lennon 

1999; Poloczanska et al. 2013).  Evolutionary processes at range margins have been 

shown to be important drivers of the speed and characteristics of range expansions (C D 

Thomas et al. 2001; Kolbe et al. 2004; Butin, Porter, and Elkinton 2005; Lee 2002).  If 

populations near high-latitude range margins are adaptively constrained by central 

populations, as Grinnell predicted, we would expect lower adaptive potential and slower 

expansions in the face of changing climate than for species with population growth rates 

that do not decline from the geographic center of the range.  Therefore, understanding the 

patterns of variation in demographic rates across space and the processes that govern 

them is of utmost importance for conserving global biodiversity in the face of climate 

change. 

To address the question of how demographic rates vary across species’ ranges, we 

quantified fecundity for multiple populations of a single species, the saltmarsh sparrow 

(Ammodramus caudacutus), across the majority of its range.  Specifically, we tested 

whether saltmarsh sparrow seasonal fecundity was related to latitude and decreased 

linearly with increasing distance from the geographic center of the species range. 

Saltmarsh sparrows breed exclusively in tidal marshes on the coast of the 

northeastern United States, from southern Maine to Virginia (Greenlaw and Rising 1994).  

Therefore, saltmarsh sparrows provide an ideal study system for exploring latitudinal 

patterns in demography because their geographic range is linear, runs roughly north-

south, and is clearly limited to the east and west by the absence of suitable habitat (Tiner 
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2013).  Further, the future distribution of saltmarsh sparrows is imperiled by sea-level 

rise.  Populations in the center of their range are predicted to experience complete 

reproductive failure by 2050 (C. Field and C. Elphick, unpublished data). 

Like many species, saltmarsh sparrows exhibit a peak of abundance at the 

geographic center of their range (W. Wiest et al. in review).  Daily nest survival 

probability, a commonly used proxy for avian fecundity, increases with latitude for 

saltmarsh sparrows, however (Ruskin et al. in review).  This pattern stands in contrast to 

Grinnell’s hypothesis, but daily nest survival probability is an imperfect index for 

fecundity.  Daily nest survival probability is several steps removed from and correlates 

poorly with seasonal fecundity, or the number of young produced by an individual in a 

given year (Etterson et al. 2011b; Anders and Marshall 2005; Jones et al. 2005; B. C. 

Thompson et al. 2001; Murray 2000).  Seasonal fecundity incorporates several other 

parameters, such as clutch size, brood size, and renesting rate (Etterson et al. 2011b; 

Etterson and Bennett 2013).  Each of these traits could serve as sites of adaptation, by 

which populations could alter seasonal fecundity without concomitant changes in nest 

survival (Peakall 1970).  To quantify seasonal fecundity of saltmarsh sparrow in 

populations across the species range, we used a novel method to incorporate both nest 

survival probabilities and a suite of life history parameters. 

 

3.3. Methods 

3.3.1. Data collection 

 From 2011 to 2013, we implemented a standardized data collection protocol 

(Ruskin et al. in review) at twenty-three study plots spanning a great circle distance of 
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approximately 575 km.  Our survey covered 59% of the saltmarsh sparrow’s global 

breeding range (Wiest et al. in review) and 89% of the breeding range of the nominate 

subspecies, Ammodramus caudacutus caudacutus (Montagna, 1942).  Study plots fall 

into four subregions (Gulf of Maine, Long Island Sound, New York Harbor, and Coastal 

New Jersey) based on watersheds and large geographic features (Table 3.1).  Each study 

plot consisted of a 1 to 28 ha area of tidal marsh in the high-marsh zone, the area of the 

marsh where saltmarsh sparrows nest.  In the northeastern United States, the high-marsh 

zone generally floods once or twice per month and is typically dominated by the grasses 

Spartina patens and S. alterniflora. 

We searched for nests at least once per week throughout the breeding season 

(May to August) at each study plot.  Once we found a nest, we revisited it every 2-5 days 

to determine success or failure.  We captured females associated with nests using mist 

nets and individually marked females with uniquely numbered aluminum leg bands to 

track multiple breeding attempts within the same season.  In part of their range (Gulf of 

Maine), saltmarsh sparrows are sympatric and interbreed with their sister species, the 

Nelson’s sparrow (Ammodramus nelsoni).  In the hybrid zone, we could only identify a 

nest as belonging to a saltmarsh sparrow if we successfully caught the female, whereas 

outside of the hybrid zone (Long Island Sound and south), saltmarsh sparrow nests could 

be identified by their eggs and location.  Species identity within the hybrid zone was 

assigned using a linear discriminant function analysis developed to predict the genetic 

species identity using morphometric and plumage characteristics (Jennifer Walsh et al. 

2015). 
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If a nest failed, we determined the cause of nest failure based on evidence at the 

nest site (e.g. drowned chicks, broken eggs, and whether the nest was wet, for example; 

see Ruskin et al. in review for full protocol).  We considered nests successful if, after 

survival on all previous visits, they were found empty when at least one nestling would 

be 10 days old, the age at which chicks are able to leave the nest (Greenlaw and Rising 

1994). 

Our previous work at these study plots (Ruskin et al. in review) showed that nest 

survival is best explained by a combination of nest depredation (as a function of latitude) 

and nest flooding (as a function of both regular tidal flooding and irregular storm events).  

To model nest survival similarly for this study, we recorded the latitude of each study 

plot at its approximate center using ArcGIS version 10.1 (Environmental Systems 

Research Institute, Redlands, CA, USA 2010).  To include variability in both regular and 

irregular flooding, we used the observed daily maximum water levels at the National 

Oceanic and Atmospheric Administration (NOAA) station nearest to each study plot 

(approximately 15-50 km by water).  We collected data from nine NOAA stations that 

each served one to five of our study plots. 
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Table 3.1. Location, sample size, and parameter information for all study plots.  
Demographic study plots spanned from New Jersey to Maine, USA, 2011-2013. 
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Oyster Creek NJ 39.5 -74.4 30 10 80 244 (daily water level)4  subregionalc 
Mullica Wilderness NJ 39.5 -74.4 70 40 178 588 (daily water level) 4 subregionalc 
AT&T NJ 39.7 -74.2 68 36 205 659 (daily water level) 4 subregionalc 
Four Sparrow Marsha NY 40.6 -73.9 15 12 86 326 (daily water level) 4 subregionald 
Sawmill Creek NY 40.6 -74.2 26 21 60 227 10(-daily water level) subregionald 
Marine Nature Parka NY 40.6 -73.6 10 7 86 326 (daily water level) 4 subregionald 
Idlewilda NY 40.7 -73.8 6 5 86 326 (daily water level) 4 subregionald 
East River CT 41.3 -72.7 60 24 145 511 10(-daily water level) subregionale 
Hammonasset CT 41.3 -72.5 50 33 140 486 2(-daily water level) subregionale 
Pattagansettb CT 41.3 -72.2 5 2 N/A N/A N/A N/A 
Waterfordb CT 41.3 -72.1 1 0 N/A N/A N/A N/A 
Barn Island CT 41.3 -71.9 33 8 62 238 1.5(-daily water level) subregionale 
John H. Chaffee RI 41.4 -71.5 28 4 74 263 (daily water level) 4 subregionale 
Sachuest Point RI 41.5 -71.2 20 0 33 126 (daily water level) 4 subregionale 
Parker River MA 42.8 -70.8 26 26 106 339 (daily water level) 4 subregionalf 
Chapman's Landing NH 43.0 -70.9 129 129 700 1648 (daily water level)2 study plot 
Lubberland Creek NH 43.1 -70.9 25 25 119 327 10(-daily water level) subregionalf 
Eldridge Road ME 43.3 -70.6 60 60 228 576 2(-daily water level) study plot 
Little Riverb ME 43.3 -70.5 4 2 N/A N/A N/A N/A 
Jones Creek ME 43.5 -70.4 78 78 337 886 10(-daily water level) study plot 
Nonesuch River ME 43.6 -70.3 28 28 124 308 (daily water level) 4 subregionalf 
Libby Riverb ME 43.6 -70.3 4 4 NA NA N/A N/A 
Scarborough Marsh ME 43.6 -70.4 58 58 235 593 (daily water level) 4 study plot 
aCombined for ‘Jamaica Bay’ study plot 
bDid not meet minimum number of observations for any parameter, no MCnest 
simulations performed 
cNew Jersey coast subregion 
dNew York Harbor subregion 
eLong Island Sound subregion 
fGulf of Maine subregion 
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3.3.2. Statistical analyses 

3.3.2.1. Overall procedure 

We used the program MCnest to estimate average seasonal fecundity of females 

at each study plot via population projections.  For full details on MCnest, see Bennett and 

Etterson (2007) as well as Etterson and Bennett (2013).  In short, MCnest creates a 

compound Markov chain composed of time-varying transition probabilities from one 

state to another based on daily nest failure probabilities and various life history 

parameters.  Each day of the breeding season is a separate state that falls within seven 

non-overlapping stages: pre-breeding, rapid follicle growth (beginning of egg formation), 

egg laying, incubation, nestling brooding, waiting to renest, and post-breeding.  The 

compound Markov chain ultimately describes the probabilities of every transition from 

one state to another, all of which can vary on each day of the breeding season.  For 

example, females can be more likely to renest early in the breeding season compared to 

late in the breeding season.  Projections then simulate females within this Markov chain 

and calculate the mean number of successful broods per season across all simulated 

females, as well as this value multiplied by brood size to calculate the mean number of 

young fledged per season by each female. 

For each study plot, we modeled a population of 100 females to estimate mean 

seasonal fecundity and its variance.  We parameterized the length of each stage and 

transition probabilities using either field data or values from the literature.  We included 

observed spatial variation in these parameters whenever possible and appropriate.  

Finally, we explored the relationship between seasonal fecundity and latitude across the 

saltmarsh sparrow range. 
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3.3.2.2. Building the Markov Chain – determining the length of each stage 

 While each state in the Markov chain is precisely one day, the length of each 

stage varies as a function of life history parameters.  We obtained values from the 

literature for three life history parameters that were outside of the scope of our study.  We 

assumed an egg-formation interval (i.e., rapid follicle growth stage) of 4 days based on 

the published relationship between egg mass and egg-formation (Alisauskas and Ankney 

1992).  We assumed females laid one egg per day, a pattern that is observed widely 

within songbirds (Gill 2007; Perrins 1970) and is consistent with our observations in the 

field.  Finally, we used a nestling interval of 10 days based on previous research on 

saltmarsh sparrows (Greenlaw and Rising 1994).  Again, our observations were 

consistent with this value, although our 2-5 day visit schedule did not permit precise 

estimation of this parameter using our data. 

We used our field data to calculate the remaining stage lengths: clutch size 

(contributes to the egg-laying stage length), incubation, wait interval before renesting, 

and total breeding season length.  Wait intervals before renesting were variable in all 

projections because MCnest randomly draws from the distribution of observed wait 

intervals for each female that renested.  For the remaining parameters as well as brood 

size, we chose values for each projection by testing for differences in the parameter by 

study plot using multinomial regressions (R Core Team 2014, base package) and 

comparing the resultant model to an intercept-only null model.  For parameters that did 

not vary significantly by study plot or for which we had too little data to test for 

differences among study plots, we used the global mean trait value (across nests at all 

study plots) in MCnest projections for all study plots and years.  For parameters that 



40 
 

varied significantly by study plot, we used the mean trait values at the study plot when 

the number of measurements at a study plot met a required minimum (justification for 

this minimum below).  For parameters that varied significantly by study plot but the 

number of cases at a study plot did not meet the required minimum in all years, we used 

the subregional mean trait values for the MCnest projections of that study plot.  We did 

not perform MCnest projections for study plots that failed to meet the minimum number 

of observations for all parameters, though nests at excluded study plots are included in 

the subregional and global mean trait value estimates.  For those life history parameters 

that varied by study plot, we used linear regressions to characterize the relationship 

between latitude and variation of each trait (R Core Team 2014, base package). 

We determined the start and end of the breeding season, or the number of states in 

the entire Markov chain, based on the earliest and latest breeding dates we observed in 

the field.  For all nests, we calculated first egg dates, or the date the first egg of each 

clutch was laid, in three ways: 1) for nests that were observed in the midst of egg-laying, 

we back-counted to the date the first egg was laid (assuming 1 egg per day); 2) for nests 

that hatched, we back-counted based on the estimated age of chicks at the first visit post-

hatch, combined with an incubation interval of 12 days (mean and mode of our data, 

inclusive of the final egg-laying day and hatch day); 3) for nests that were neither 

observed during egg-laying nor hatched, we used all the nests that were found during 

egg-laying or hatched from that year and study plot to estimate the average number of 

days between first egg date and when the nests were discovered.  We then subtracted this 

average from the discovery date for nests that neither were found during egg-laying nor 

hatched to estimate when the nest likely was initiated, assuming that the local habitat 
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(e.g. height of the vegetation, accessibility of the marsh) and observers (crews included 

different technicians in each year) were most likely to influence discovery rate of nests.  

Because our survey spanned three years, our replication was too limited to test for 

differences in earliest and latest first egg dates by study plot (n=3 for each study plot).  

Instead, we used linear regressions (R Core Team 2014, base package) to test whether 

earliest and latest first egg dates varied with latitude to conserve degrees of freedom. 

 

3.3.2.3. Minimum number of cases required for study plot –level parameter values 

We set a minimum sample size necessary to estimate parameters for a study plot 

(instead of using the subregional or global mean) to prevent bias due to low sample sizes 

at some study plots.  Using the most variable life history parameter (clutch size), we 

compared the mean and standard error for 20 random draws of nests at our largest study 

plot to the mean and standard error of the full sample at that study plot.  If the standard 

errors for more than one random draw of 20 did not overlap those of the population 

mean, we increased the size of our random draw and repeated the method.  By this 

process, we determined that 20 observations were sufficient to estimate study plot-level 

means for our most variable life history parameter.  Conservatively, we used this 

minimum sample size for all our parameters that were approximately normally 

distributed.  Earliest and latest first egg dates are based on maxima and were not normally 

distributed.  To be conservative, we doubled our minimum number of observations 

required for study plot-level estimates of these traits. 
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3.3.2.4. Building the Markov Chain – populating the Markov Chain with transition 

probabilities 

To estimate daily initiation probability, or the probability that a female begins 

breeding on any given day, we calculated the mean number of days each identified 

female waited until beginning to breed (earliest first egg date of a given identified female 

at a study plot minus the earliest first egg date for any female at the study plot).  We took 

the inverse of this value as the daily probability of breeding initiation, and calculated the 

mean daily probability of breeding initiation for females within a study plot and year.  

We used only nests that had both identified females and first egg dates that were 

observed during egg-laying or calculating based on hatching (excluding nests for which 

first egg date was estimated based on study-plot averages of discovery rates).  Finally, we 

averaged the daily probability of breeding initiation for all study plots with at least 10 and 

at least 20 nests that met these requirements, because no study plot had 40 nests that met 

this requirement in any year. 

At the completion of a female’s nesting attempt (success or failure), she was 

subject to renesting probability.  To determine whether to vary renesting probability 

across the range, we employed two tests; we used a multinomial regression to test 

whether number of nesting attempts per breeding season varied by study plot and a linear 

regression to test whether renesting probability was related to latitude (R Core Team 

2014, base package).  Based on the observed differences in renesting rate across the 

range, we characterized the daily transition probabilities of renesting throughout the 

breeding season for four study plots that met the minimum number of observations and 

for each subregion to use for the remaining study plots.  For each of the four study plots 
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and four subregions, we created a logistic regression (R Core Team 2014, base package) 

to model the relationship between date in the breeding season and whether a female 

renested following the completion of a nesting attempt.  The daily renesting probabilities 

serve as the transition probabilities in MCnest.  If a nesting attempt in our Markov chain 

model ended, however, after the latest field-observed nest initiation date for that 

subregion and year, the transition probability to post-breeding was set to one.  In this 

way, we did not model any nesting attempts that began later than our field observations. 

Between breeding initiation and post-breeding, females were subject to daily nest 

failure probabilities except during egg-formation and the wait interval before renesting 

because during those stages, females do not have nests with contents (presumably they 

are nest-building during these stages).  Daily probabilities of nest failure vary by latitude 

and in response to water level in our system (Ruskin et al. in review).  Based on this 

knowledge, we generated daily nest failure probabilities for each study plot based on 

these covariates.  We used the program MCestimate, which employs a Markov chain 

algorithm and a generalization of the Mayfield method, to estimate daily nest flooding 

and depredation probabilities from our nest monitoring data (Shaffer 2004; Etterson, 

Nagy, and Robinson 2007; Etterson, Greenberg, and Hollenhorst 2014; Mayfield 1975).  

Because we have previously found that latitude is the best predictor of nest depredation 

probability for these study plots and years (and thus we did expect depredation rates at a 

given site to vary through time; Ruskin et al. in review), we created an intercept-only 

model of nest depredation probability at each study plot.  We have also determined 

previously that nest flooding probability is best predicted by indices of flooding due to 

both regular astronomical tides and irregular, weather-related tides (Ruskin et al. in 
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review).  We therefore modeled nest flooding probability for each study plot as a function 

of the observed daily maximum water level at the nearest NOAA station to incorporate 

both types of flooding.  Thus, for each study plot, we used nest depredation probabilities 

that were constant throughout the breeding season and among years, whereas nest 

flooding probability varied through time. 

For saltmarsh sparrows, nest flooding probability is not a linear function of 

observed water depth due to the elevation profiles of tidal marshes.  Flooding risk is low 

until water spills over the stream channels of the lower marsh and into the high marsh 

plain.  Further, the steepness of the non-linear relationship between water depth and high 

marsh flooding probability varies by marsh according to local microtopography.  Thus, 

we tested a variety of transformations (Table 3.1) to model the threshold function of 

flooding probability in the high marsh zone by study plot.  We used second order 

Akaike’s Information Criterion (AICc) to compare candidate models while accounting for 

small sample size, using the criterion that models with ∆AICC < 2.0 were equivalent 

(Burnham and Anderson 2002; Akaike 1974).  We used the top model for each study plot 

as the transformation of water level data for all subsequent steps.  At two study plots 

(Hammonasset and Lubberland Creek), we observed no depredated nests.  For those 

study plots, we modeled overall daily nest failure probability, rather than just the 

component nest flooding probability, as functions of the observed daily maximum water 

level data. 
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3.3.2.5. Latitude versus seasonal fecundity 

To test our hypotheses regarding spatial variation in fecundity across the range, 

we used a linear regression (R Core Team 2014, base package) to compare our predicted 

seasonal fecundity (as estimated by MCnest population projections for each study plot 

and year) to study plot latitude.   We modeled a quadratic relationship between latitude 

and seasonal fecundity because we predicted that seasonal fecundity would be highest at 

the geographic center of the saltmarsh sparrow range and decline linearly toward the 

range margins.  We then quantified variance in seasonal fecundity via pairwise 

comparisons.  For each pair of projections (with separate projections for each plot-year), 

we calculated the differences in both seasonal fecundity and latitude.  We compared 

variance of seasonal fecundity within and among study plots, as well as within and 

among subregions with analyses of variance (R Core Team 2014, base package).  Finally, 

we used a linear regression to test whether the difference in latitude between projections 

predicted the difference in their seasonal fecundity estimates.  Because there were many 

more pairwise comparisons that were geographically close than distant, we controlled for 

sampling effort through subsampling.  We randomly subsampled within each distance 

band (degree of latitude), drawing the number of pairwise comparisons in the distance 

band with the fewest comparisons (i.e., the greatest distance).  We randomly subsampled 

the dataset 10 times and ran a linear regression between latitudinal distance and 

difference in seasonal fecundity for each subset of data. 
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3.4. Results 

3.4.1. Data collection 

 We collected nest monitoring data from 833 saltmarsh sparrow nests for this 

analysis.  The number of nests monitored at each study plot ranged from one to 129.  We 

found fewer than the minimum 20 nests at six study plots.  We did not create MCnest 

projections for the three study plots that hosted five or fewer nests.  The remaining three 

study plots that did not meet the minimum are all in New York City and are small, 

fragmented patches of Jamaica Bay.  No study plot in Jamaica Bay reached the minimum 

20 nests, but they had 30 nests combined.  We combined nests from these study plots into 

an additional “Jamaica Bay” site.  We characterized the relationship between latitude and 

seasonal fecundity both with and without this combined site. 

 Observations were made between May 17 and September 2 of each year.  We 

made 3,133 nest visits.  Only 3,084 of those nest visits were at study plots for which we 

estimated seasonal fecundity, yielding a total sample size of 8,997 exposure days. 

 

3.4.2. Building the Markov Chain – determining the length of each stage 

Clutch size varied by study plot (p<0.001 compared to the intercept-only null 

model) and there was a trend of increasing clutch size with latitude, but it was only 

marginally significant (F1,815=3.5, p=0.06, adjusted R2=0.003; Fig. 3.1).  The difference 

in mean clutch size between the study plots at lowest and highest latitudes was less than 

one egg, however, so we used the global modal clutch size of four eggs in MCnest 

projections at all study plots.  The global mean clutch size (± sd) was 3.66 (±0.74 sd) 

eggs or nestlings per clutch.  Incubation interval did not vary by study plot (p=0.27 
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compared to the intercept-only null model).  The global mean incubation interval (± sd) 

was 12.09 (±0.98 sd) days (inclusive of the final egg-laying day and hatch day) and the 

mode across all study plots was 12 days.  Thus, we used 12 days as the incubation 

interval in MCnest projections for all study plots.  We observed at least 20 wait intervals 

between nesting attempts at only one study plot, and so we could not test whether wait 

interval varied by study plot.  Instead, we used all of the observed wait intervals for 

MCnest projections at all study plots.  The global mean observed wait interval (± sd) was 

10.66 (±9.47) days after we observed the completion of the previous nesting attempt, 

which due to the nest monitoring schedule, would have been 0-4 days after actual 

completion. 

 

 

Figure 3.1. Clutch size increased with latitude.  Clutch size varied by study plot (p<0.01 
compared to the intercept-only null model) and we observed a trend of increasing clutch 
size with latitude, but it was only marginally significant (F1,815=3.5, p=0.06, adjusted 
R2=0.003). 
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3.4.3. Building the Markov Chain – populating the Markov Chain with transition 

probabilities 

Using only study plots with at least 20 nests to estimate breeding initiation 

probability (N=5), the mean number of days a female waited to begin breeding was 23.7, 

equaling a daily breeding initiation probability of 0.04.  Similarly, using study plots with 

at least 10 nests (N=24), the mean number of days a female waited to begin breeding was 

24.1, also equaling a daily breeding initiation probability of 0.04.  Too few study plots 

met our sample size requirements to test whether breeding initiation probability varied by 

study plot.  We therefore used a daily breeding initiation probability of 0.04 in MCnest 

projections at all study plots. 

Number of nesting attempts varied by study plot (p=0.007 compared to the 

intercept-only null model) and increased with latitude (F1,494=12.2, p<0.001, adjusted 

R2=0.02).  Only four study plots met the required minimum of observations to 

characterize number of renesting rate at the study-plot level.  Pooled subregional means 

(± sd) were as follows: NJ Coast = 1.06 ± 0.24 nesting attempts per female; NY Harbor = 

1.36 ± 0.60; Long Island Sound = 1.10 ± 0.30; Gulf of Maine = 1.29 ± 0.51.  

Concomitantly, females showed regional variation in their renesting propensity as the 

season progressed (Fig. 3.2).  Earliest first egg date varied by study plot (F22,30=2.0, 

p=0.04, adjusted R2=0.29) and increased with latitude (F1,51=11.2, p=0.002, adjusted 

R2=0.16).  Latest first egg date varied by study plot (F22,30=2.0, p=0.04, adjusted 

R2=0.30) but was not related to latitude (F1,51=1.7, p=0.20, R2=0.01). 

Various transformations were selected as the top models (Table 3.1) for the 

relationship between observed daily maximum water level and nest flooding probability 
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at each study plot.  For two study plots, the null model was better than the daily observed 

water level models.  For those two sites, daily flooding probability was held constant and 

therefore did not vary throughout the breeding season or among years. 

 

3.4.4. Latitude versus seasonal fecundity 

 Brood size did not vary by study plot (p=0.13 compared to the intercept-only null 

model).  As a result, the global mean brood size (± sd) of 2.73 (±1.05 sd) was used in all 

MCnest projections for all study plots, and we present seasonal fecundity estimates as 

measured by mean number of successful broods per season for each female.  We 

observed a wide range of estimated seasonal fecundity (95% confidence interval) across 

study plots, from 0.09 (0.05-0.13) and 0.78 (0.61-0.94) successful broods per season for 

each female.  Combined with the global mean brood size, this equates to means of 0.26 

(0.14-0.35) and 2.29 (1.67-2.57) fledged young per season for each female in a 

population.  The mean seasonal fecundity (± sd) across all populations and years was 

0.46 ± 0.16 successful broods per female per season, or 1.26 ± 0.45 young per female per 

season.  Within a single year, the maximum variation in seasonal fecundity among study 

plots was between 0.09 and 0.25 broods per season for each female at a single study plot. 

 Seasonal fecundity did not vary with latitude across the saltmarsh sparrow range, 

both with (F2,44=1.5, p=0.23 (overall model), p=0.09 (linear term), p=0.09 (quadratic 

term), adjusted R2=0.02; Fig. 3.3) and without the combined Jamaica Bay site (F2,42=1.8, 

p=0.18 (overall model), p=0.06 (linear term), p=0.06 (quadratic term), adjusted R2=0.04).  

We observed significantly more variance in seasonal fecundity estimates among study 

plots than within them (F1,1079=40.8, p<0.001, adjusted R2=0.04; Fig. 3.4A).  The 
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variance in seasonal fecundity estimates among subregions did not differ from variance 

within subregions (F1,1036=0.2, p=0.66, adjusted R2=<0.001; Fig.3.4B).  Similarity in 

seasonal fecundity estimates increased with the latitudinal distance between projections 

(F1,1036=17.9, p<0.001, R2=0.02; Fig. 3.4C).  This pattern was consistent in 9 of 10 

subsamples used to control for the effect of sampling size across different distance bands.  

However, when we removed study plots in Long Island Sound, which exhibited more 

variable seasonal fecundity estimates than the other subregions, there was no relationship 

between latitudinal distance and seasonal fecundity difference between projections 

(F1,494=0.2, p=0.63, adjusted R2<0.001; Fig. 3.4D).  This pattern was consistent in 10 of 

10 subsamples. 
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Figure 3.2. Observed cases and modeled probabilities of renesting.  Observed cases of 
females quitting their breeding attempt for the season versus renesting (circles) were used 
to model daily renesting probabilities (lines) within the four subregions (A-D) and at four 
study plots that met the required number of observations (E-H). 
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Figure 3.3. Seasonal (annual) fecundity by study plot.  The star denotes the geographic 
center of the saltmarsh sparrow’s latitudinal range.  The map below the figure is aligned 
to show the approximate locations of the estimates above.  Study plots were within the 
boxes and the breeding range of the Saltmarsh Sparrow is shaded. 
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Figure 3.4. Variation in seasonal fecundity.  A) Variation in seasonal fecundity among 
study plots was greater than variation within study plots (F1,1079=40.8, p<0.001, adjusted 
R2=0.04).  B) Variation among subregions was equivalent to variation within subregions 
(F1,1036=0.2, p=0.66, adjusted R2<0.001). 
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Figure 3.5. Seasonal fecundity estimate differences relative to distance.  A) Seasonal 
fecundity estimates were increasingly similar at greater distances in the entire sample 
(F1,1036=17.9, p<0.001, R2=0.02).  B) This trend did not persist when Long Island Sound 
study plots, which experienced particularly variable seasonal fecundity estimates, were 
removed (F1,494=0.2, p=0.63, adjusted R2=0.001). 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6

D
iff

er
en

ce
 in

 S
ea

so
na

l 
Fe

cu
nd

ity
 

Latitudinal Distance (decimal degrees) 

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 2 4 6

D
iff

er
en

ce
 in

 S
ea

so
na

l 
Fe

cu
nd

ity
 

Latitudinal Distance (decimal degrees) 

B) 

A) 



55 
 

3.5. Discussion 

 Though saltmarsh sparrow abundance peaks at the geographic center of their 

range (W. Wiest et al. in review), fecundity did not vary linearly throughout the range.  

Instead, seasonal fecundity estimates were relatively consistent within each study plot but 

varied widely even among nearby study plots.  These results suggest that local drivers, 

whether plasticity, adaptation, or exogenous factors related to local habitat, strongly 

influence saltmarsh sparrow fecundity across their global range. 

Species ranges, which are the product of demographic rates, are often thought to 

be governed by large-scale processes.  For example, abiotic stressors are thought to limit 

the distribution of species toward high latitudes while biotic stressors limit species toward 

low latitudes (Dobzhansky 1950; MacArthur 1984; Brown, Stevens, and Kaufman 1996).  

This theory has been supported in a wide array of systems (Loehle 1998; Normand et al. 

2009; Pianka 1970; Brown 1995), including saltmarsh sparrows (Ruskin et al. in review).  

Specifically, saltmarsh sparrow nest depredation probability increases with decreasing 

latitude, while probabilities of nest flooding outweigh probabilities of depredation for 

populations near the high-latitude range margin. 

Despite these large scale and latitudinal trends in the exogenous drivers of 

fecundity, female behavior appears to ameliorate macroecological patterns of nest 

success.  Our results thus do not support the hypothesis that populations at the 

geographical periphery of a species range are constrained by adaptations of populations at 

the center of the range.  Further, we find no evidence that range expansion due to climate 

change would be hindered by the demographic influence of central or peripheral 

populations in this species.  Our results instead point to the importance of local factors in 
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shaping seasonal fecundity.  We observed a mosaic of source and sink habitats 

throughout the range, rather than central source populations that transition to sinks 

toward the range margins.  These results are consistent with previous research that 

inferred both source and sink habitat patches at nine sites inhabited by saltmarsh 

sparrows using genetic data (J Walsh et al. 2012).  Walsh et al. also observed that 

saltmarsh sparrows exhibited relatively strong spatial patterns in population genetic 

structure, particularly compared to other migratory birds which are generally considered 

too mobile to exhibit strong spatial structure in populations (Crochet 2000). 

Habitat patchiness has been hypothesized as a potential disruptor of range-center 

peak fecundity.  One of the assumptions of Brown’s influential hypothesis on range-

center peak abundance is that environmental variables which affect the population growth 

rate of a species are autocorrelated (Brown 1995; Brown 1984; Brown, Mehlman, and 

Stevens 1997).  Patchy habitats like tidal marshes may violate this assumption, resulting 

in the variable mosaic of fecundity we observed (J. A. Wiens 1989; Brown 1995).  Future 

studies should characterize the variability of habitat among tidal marshes, test whether 

tidal marshes are more patchy and heterogeneous than other habitat types, and correlate 

habitat variables with saltmarsh sparrow seasonal fecundity.  Future studies should also 

test whether local adaptation or plasticity is shaping the observed heterogeneity in 

saltmarsh sparrow fecundity by examining saltmarsh sparrow fecundity at an individual, 

rather than population, level.  Local adaptation or plasticity might increase the capacity of 

saltmarsh sparrow populations to specialize on a small spatial scale in expanded or 

changing habitat. 
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Future studies should also examine individual fitness to expand the sample size 

from what is presented here.  Though we observed no large-scale trend in mean seasonal 

fecundity relative to latitude, perhaps instead we would expect to observe a filled curve 

of constraint where a peak in fecundity is only detectable among the top quantile of 

individuals within each population.  Such a pattern would indicate that the maximum 

fecundity is possible near the geographic range center of a species, but local processes 

can diminish the fecundity to zero at all sites.  In fact, the observed patterns of many 

studies of abundance over space suggest this pattern (Samis and Eckert 2007; Sagarin and 

Gaines 2002; Brown 1995; Gaston 2003).  Our sample size was likely too small to detect 

the pattern of a filled curve, as we observed only 19 study plots, but the study plot with 

highest estimated fecundity was indeed near the range center (Fig. 3.3). 

While this study is an empirical step forward in documenting range-wide 

variation in fecundity, seasonal fecundity is only part of the demographic equation.  It is 

possible that variation in adult survival and dispersal would cause population growth 

rates of saltmarsh sparrows to vary systematically across their geographic range.  

Preliminary analyses of adult survival at these same study locations, however, reveal no 

geographically systematic differences (C. Field unpublished data).  Further, fewer than 

<2% of individuals were observed to move among study plots, which were as little as 

<0.5 km apart (K. Ruskin unpublished data).  Therefore, it seems unlikely that either 

adult survival or movement is likely to produce rates of population growth that are 

fundamentally different from the pattern of seasonal fecundity. 

Regardless of the patterns of survival and movement, however, it remains 

interesting that seasonal fecundity shows no relationship with latitude though saltmarsh 
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sparrows reach peak abundance at the geographic center of their range.  Our results stand 

in contrast to a long history of theory and assumptions within the ecological literature and 

joins a growing body of evidence that fecundity does not decline linearly with distance 

from the geographic center of the range and peak abundance for many species.  Our 

results suggest that local drivers strongly influence large-scale patterns of fecundity in 

saltmarsh sparrows, and that range edges in this species are likely determined by local 

environmental characteristics, rather than declines in habitat suitability across a large 

spatial scale.  
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CHAPTER 4: INTRASPECIFIC NICHE BREADTH, BUT NOT POSITION, IS 

CONSTANT ACROSS A SPECIES RANGE 

 

4.1. Summary 

In the half-century since Hutchinson proposed the model of an n-dimensional 

hypervolume to describe a species’ niche, evidence suggests that niches, like any other 

phenotypic character, vary intraspecifically across a species’ geographic range.  

Intraspecific niche variation challenges the widely-held paradigm of niche conservatism, 

which predicts that niches are constant within a species or vary minimally, in concert 

with range position.  To explore the patterns, causes, and fitness consequences of 

intraspecific niche variation, we characterized the habitat selection of a single species, the 

saltmarsh sparrow (Ammodramus caudacutus).  We created 8-dimensional hypervolumes 

to describe the niche space of nest sites and available environmental space at 17 study 

plots spanning 59% of the global breeding range of saltmarsh sparrows.  We found that 

position of both nesting niche and available environmental space, as well as the similarity 

between locally available and selected habitat, differed over the range but were not 

related to range position.  Some, but not all, of the intraspecific niche variation we 

observed was related to local habitat availability.  The similarity between nesting niche 

and available habitat did not appear to have fitness consequences, and thus we observed 

no signs of habitat marginality near the range margin of saltmarsh sparrows.  Our results 

point to high levels of habitat heterogeneity and the importance of local drivers in 

shaping intraspecific niche variation.  The high-latitude range margin of saltmarsh 
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sparrows is not likely limited by available niche space at the spatial scales we examined, 

but rather may be governed by other axes of the niche at larger spatial scales. 

 

4.2. Introduction 

In the half-century since Hutchinson (1957) proposed the model of an n-

dimensional hypervolume to describe a species’ niche, multiple lines of evidence have 

suggested that niches, like any other phenotypic character, are not constant across a 

species’ geographic range.  For example, habitat preferences of a species may differ 

within its range (R. B. Root 1967; Pfenninger, Nowak, and Magnin 2007; Lennon and 

Martiny 2008); common garden experiments show that lineages from different regions of 

the geographic range of a species persist differently or not at all when displaced to 

another region (Svanbäck and Schluter 2012; Rehfeldt et al. 1999; Ying 1991); and in a 

wide range of systems, species do not occupy habitats that appear suitable as predicted by 

environmental variables shown to influence distribution (De Moraes Weber et al. 2014; 

Svenning and Skov 2004; Murphy and Lovett-Doust 2007; Ryan Shipley et al. 2013). 

Though intraspecific niche variation has been observed in situ, experimentally 

increased in the lab (Agashe and Bolnick 2010; D I Bolnick 2001; Daniel I Bolnick 2004; 

Parent, Agashe, and Bolnick 2014), and is thought to contribute to the most promising 

examples of sympatric speciation (Coyne and Orr), its existence challenges the widely-

held paradigm of niche conservatism.  The niche of a species is predicted to be constant 

over space or at most, vary minimally if niche is a conserved trait (J. J. Wiens and 

Graham 2005).  Grinnell (1904) postulated that populations at the geographic center of a 

species range exhibit the highest rates of increase, where the combination of 
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environmental variables is most favorable.  Moving away from the geographic center of 

the range, the habitat is thought to become more marginal (i.e., less of the available 

environmental space overlaps the species niche), supporting fewer individuals with lower 

rates of increase.  Thus, under a paradigm of niche conservatism, we would expect to see 

changes in both niche position (i.e., the values of the hyperdimensional centroid or 

boundaries) and niche breadth (i.e. the hypervolume of the niche) that parallel changes in 

available environmental space along species-relevant axes.  Niche conservatism also 

predicts that if a niche varies intraspecifically across space, it varies minimally, and in 

concert with genetic isolation.  Alternatively, intraspecific niche evolution would allow 

for different spatial patterns of variation, caused by evolution in response to local 

differences in habitat, predation pressure, or climate, for example. 

The first step to understanding intraspecific niche evolution is to describe the 

pattern of niche variation across a species’ range.  We present a characterization of the 

habitat selection of a single species, the saltmarsh sparrow (Ammodramus caudacutus), 

across the majority of its global breeding range.  We tested whether niche is conserved 

across the geographic range of a species and whether intraspecific niche variation is 

related to available environmental space and fitness.  While one can view the species 

niche as a whole, it is also possible to discretely quantify niche in a modular fashion, 

focusing on diet (Hindmarch and Elliott 2014; Bearhop et al. 2013; Ferreira and Absy 

2015), habitat (Ciechanowski 2015; Rehfeldt et al. 1999; Thuiller et al. 2005), 

ontogenetic variation (Olson 1996; Lima and Moreira 993; Scharf et al. 2000), or 

functional traits (Lamanna et al. 2014; Roscher et al. 2015; Van Valen 1965), for 
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example.  In this paper, we characterized the nesting niches of saltmarsh sparrows, a 

module of the species niche, using habitat characteristics associated with nest sites. 

We quantified nesting niche position and breadth with 8 habitat characteristics 

and tested whether the nesting niche of saltmarsh sparrows varies intraspecifically across 

the species range.  Under the paradigm of niche conservatism, we predicted that nesting 

niche position and breadth was conserved across the saltmarsh sparrow range, or varied 

minimally and in concert with distance as a proxy for genetic isolation (Table 4.1).  We 

also characterized available environmental space along the same 8 axes to test whether 

local habitat availability predicted local nesting niche.  We compared nesting niches and 

available environmental space across the species range to test whether saltmarsh sparrow 

habitat selection varies intraspecifically.  Finally, we tested whether intraspecific 

variation in nesting niche position and breadth correlated with fecundity to test whether 

intraspecific niche variation affects fitness. 
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Table 4.1. Predicted and observed patterns of intraspecific niche variation. 

 

Empirical 
Test Predicted Outcomes Empirical Result 

 
 Niche Conservatism Intraspecific Niche 

Variation  

1 

Variation in 
Niche 
Position and 
Breadth 

Nesting niche does 
not vary, or varies 

minimally in concert 
with latitudinal 

distance or range 
position (distance 

from center) 

Nesting niche varies 
independently of 

latitudinal distance 
or range position 
(distance from 

center) 

Nesting niche 
position varies, 

independently of 
distance or range 
position, niche 

breadth is constant 

2 
Available 
environmental 
space 

If available 
environmental space 
varies, niche position 

and breadth show 
signs of marginality; 
if it does not vary, 

neither does nesting 
niche 

Niche position and 
breadth vary either 

in concert with 
variation in available 

environment, or 
independently 

Available 
environmental 
space position 

varies and is not 
related to distance 
or range position, 
breadth increases 

with latitude 

3 Habitat 
Selection 

Evidence for similar 
preferences across 

range 

Evidence for some 
variable preferences 

across range 

Evidence for some 
variable preferences 

across range 

4 
Niche 
Position vs. 
Fecundity 

More similar niches 
have more similar 

fecundity 

Fecundity is 
independent of niche 

position 

Fecundity is 
independent of 
niche position 
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4.3. Methods 

4.3.1. Study species and site descriptions 

 The distribution of saltmarsh sparrows presents a number of characteristics that 

simplify niche variation comparisons.  First, saltmarsh sparrows breed exclusively in tidal 

marshes on the Atlantic coast of the United States, and thus the range is roughly linear in 

a north-south orientation (Greenlaw and Rising 1994, W. Wiest et al. in review; Fig. 1.1).  

Therefore, we expect linear trends in various environmental factors such as available 

habitat and predation pressure on nest sites, which has been shown to vary with latitude 

in a variety of systems (Schemske et al. 2009), including saltmarsh sparrows (Ruskin et 

al. in review).  Second, saltmarsh sparrows are thought to have colonized this range 

following the most recent glacial retreat (Rising and Avise 1993).  As a result, genetic 

isolation likely follows a linear gradient within the range, with the populations south of 

New York representing the ancestral population from which more northern populations 

became isolated and possibly evolved gradually as they colonized new areas of the 

current range.  In support of this hypothesis, the genetic structure of saltmarsh sparrow 

populations generally follows the pattern of isolation by distance (J Walsh et al. 2012).  

Third, tidal marshes possess a relatively simple species assemblage and community 

structure across this range (Tiner 2013), limiting the number of environmental axes that 

are relevant to the species. 

Saltmarsh sparrows exhibit a unique breeding system that further distills the 

number of dimensions relevant to their nesting niche.  Saltmarsh sparrows are 

promiscuous (individuals do not form pair bonds) and both sexes are non-territorial 

(Greenlaw and Rising 1994; Hill, Gjerdrum, and Elphick 2010).  Bayard and Elphick 
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(2010) found that saltmarsh sparrow nests were distributed randomly in space, showing 

no signs of intraspecific competition for nest sites.  Due to the high abundance of insects 

in tidal marshes, it is also thought that saltmarsh sparrows experience no competition for 

food (Greenlaw and Rising 1994).  Therefore, saltmarsh sparrows provide a unique 

opportunity to study habitat selection that is not likely influenced by territories, 

dominance hierarchies, or density-dependent factors common in other avian systems. 

 In 2012 and 2013, we monitored saltmarsh sparrow nests throughout the breeding 

season (May to early September) at 17 study plots.  Each study plot included high marsh 

habitat (areas with regular tidal flooding every two to four weeks), and ranged in size 

from 1 to 28 hectares.  Our study plots were between Maine and New Jersey and spanned 

4.1° latitude, which covers 59% of the global breeding range of saltmarsh sparrows and 

89% of the breeding range of the subspecies A. caudacutus caudacutus (Montagna 1942, 

W. Wiest et al. in review).  Our study plots included the geographic and abundance 

centers of the species (approximately 40.7°N and southern New England, respectively; 

W. Wiest unpublished data) and spanned to within 0.5° latitude (125 km) of the high 

latitude margin of the species range. 

In a portion of their range (Gulf of Maine), saltmarsh sparrows are sympatric and 

interbreed with their sister species, the Nelson’s sparrow (Ammodramus nelsoni).  We 

could only identify a nest as belonging to a saltmarsh sparrow in the hybrid zone if we 

successfully captured the female via mist nets, whereas we could identify saltmarsh 

sparrow nests by their eggs and location outside of the hybrid zone (Long Island Sound 

and south).  We assigned species identity within the hybrid zone using a linear 

discriminant function analysis developed to predict the genetic species identity using 
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morphometric and plumage characteristics (Jennifer Walsh et al. 2015).  We included 

only pure and back-crossed saltmarsh sparrows in these analyses, excluding Nelson’s 

sparrows and both first and second generation hybrids (F1 and F2). 

 

4.3.2. Field data collection 

We conducted vegetation surveys at nests within a week of the nest completion to 

minimize disturbance to females.  For each study plot, we generated randomly selected 

points using the “Create Random Points” tool in the “Data Management” toolbox of 

ArcGIS version 10.0 (Environmental Systems Research Institute, Redlands, CA 2010).  

We surveyed a randomly selected point for each nest within a week of its completion to 

control for plant phenology over the course of the breeding season.  Because we also 

surveyed randomly selected points in association with the nests of other species (not 

included in this study), we surveyed more random points than saltmarsh sparrow nests at 

most study plots.  We excluded randomly selected points which were in standing water 

during field surveys. 

 At both nest and randomly selected points, we collected various vegetation 

measurements within a 1-m2 quadrat surrounding each point.  We measured the depth of 

thatch (dead vegetation from previous years’ growth) and estimated the average 

vegetation height at five points: the center of the quadrat (immediately adjacent to the 

nest for nest sites) and at each midpoint of the quadrat sides. We then averaged the five 

measurements for each 1-m2 plot.  Finally, we visually estimated the percent cover of the 

following dominant types: wrack (unattached dead vegetation, usually floated to the site), 

bare ground (usually mud), standing water, Spartina patens, S. alterniflora, Distichlis 
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spicata, and Juncus gerardii.  We grouped all other cover types (typically rare species) in 

a single “other species” cover category. 

 

4.3.3. Statistical analyses 

 We performed  all statistical analyses in R (R Core Team 2014).  We excluded the 

percent cover of wrack and bare ground categories from statistical analyses to eliminate 

non-independence among cover categories and because they were rare on the landscape.  

Thus, we used two structural (average thatch depth and vegetation height) and six percent 

cover measurements for all of the following statistical analyses. 

 

4.3.3.1. Does niche position and breadth vary over the geographic range of a species? 

Using scaled data of these eight vegetation characteristics, we created 8-

dimensional hypervolumes to describe the niche space for points chosen as nest sites at 

each study plot using the “hypervolume” package in R (Blonder et al. 2014a; Blonder et 

al. 2014b), with years pooled.  The package infers the shape and volume of n-

dimensional objects through kernel density estimation.  We used a bandwidth for the 

kernel density estimation identified by the Silverman estimator and a quantile threshold 

of zero.  The estimated hypervolume thus included all observed points, rather than some 

percentage (e.g. 95%) of observed niche positions.  We then calculated the volume of the 

nesting niche at each study plot. 

To test whether nesting niche position varied across the geographic range of 

saltmarsh sparrows, we calculated the Sørensen overlap index for all pairwise 

comparisons of nesting niches among study plots.  The Sørensen overlap index is the 
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volume of overlapping space between two hypervolumes, divided by the mean volume of 

the two hypervolumes (Blonder et al. 2014b).  We then used a linear regression (R Core 

Team 2014, base package) to test whether the differences in overlap of nesting niches 

between study plots predicted the latitudinal distance between them. 

To describe variation in nesting niche breadth, we first created a linear regression 

to test whether niche volume was related to the number of observations that contributed 

to its estimation.  We then calculated the proportional volume of each hypervolume, 

which we define as the volume of the hypervolume divided by the number of 

observations used in its estimation (to control for the effect of sampling frequency).  

Finally, we created a linear regression to test whether niche breadth of selected habitat 

(proportional volume of the nesting niche hypervolume) varied with latitude. 

 

4.3.3.2. Does available habitat vary across the range of the species? 

We created 8-dimensional hypervolumes to describe the available environmental 

space using the scaled data from the randomly selected, non-nest points at each study 

plot, with both years pooled.  We then calculated the breadth of the available 

environmental space in the same way as the nesting niche.  To test whether the position 

and breadth of available environmental space varied across the range of saltmarsh 

sparrows, we calculated the Sørensen overlap index for the hypervolumes of available 

environmental space for all pairwise comparisons of study plots.  We then used a linear 

regression to test whether the differences in available environmental space between study 

plots predicted their latitudinal distances.  As with the nesting niche hypervolumes, we 
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created a linear regression to test whether the proportional volume of environmental 

space varied with latitude. 

 

4.3.3.3. Does habitat selection vary across the range of a species? 

We characterized patterns of habitat use relative to habitat availability across the 

geographic range of saltmarsh sparrows in three ways.  First, we used a multivariate 

logistic regression to model point type (nest or random) as a function of the eight 

vegetation characteristics, each nested within study plot (R Core Team 2014, base 

package).  We thus allowed both the intercepts and slopes of the fixed effects to vary 

with study plot.  As such, we controlled for local differences in available environmental 

space and the responses of saltmarsh sparrow habitat selection in response to the possibly 

heterogeneous habitat. 

Second, we characterized variation in habitat selection by quantifying the 

similarity between hypervolumes for nests and randomly selected points at each study 

plot using the Sørensen overlap index.  We then used a linear regression to test whether 

the similarity between available and selected habitat varied with latitude.  Arguably, both 

high and low levels of similarity between available and selected habitat could be signs of 

marginality for a species.  At sites with poor quality habitat for a species, individuals may 

choose very specific nest locations, resulting in a narrow nesting niche that is highly 

dissimilar to the available habitat.  Alternatively, they may be without the option to 

choose their preferred habitat and select broadly from the available habitat, resulting in a 

wide nesting niche that is similar to the available habitat. 
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Third, we tested whether available environmental space predicted selected habitat.  

We used a linear regression to test whether the similarity of available environmental 

space predicted the similarity between nesting niches (both as measured by the Sørensen 

overlap index) between study plot pairs.  Combined with previous analyses, this 

comparison allowed us to identify pairs of study plots where the environmental spaces 

were similar, but the nesting niches were not.  Such a scenario would be predicted where 

nesting niche preferences vary across a range. 

 

4.3.3.4. What are the fitness consequences of differences in niche across the range of a 

species? 

Finally, we tested whether the similarity between selected and available habitat at 

each site was related to seasonal fecundity, as measured by the average number of 

successful nests per year for each female.  We obtained average seasonal fecundity 

estimates that were calculated for populations at each study plot within overlapping years 

of study (2011-2013) by Ruskin et al. (in review).  We used a linear regression to test 

whether the Sørensen overlap index between nesting niche and random-point 

hypervolumes predicted seasonal fecundity by study plot.  We predicted that if the 

nesting niche were conserved across the range, but available environmental space varied, 

we would observe a relationship between habitat marginality (similarity of available and 

selected habitat) with seasonal fecundity.  Though high or low degrees of similarity 

between available and selected habitat could be signals of marginality, we expect a 

relationship between habitat similarity and seasonal fecundity if niche is conserved either 

way.  Alternatively, similar fecundity despite variations in habitat selection would be 
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consistent with variable niches across the range.  Further, we created a linear regression 

to test whether the Sørensen overlap between study plots (pairwise comparisons) 

predicted the difference in observed seasonal fecundity between them. 

 

4.4. Results 

4.4.1. Summary 

 We used vegetation measurements from 658 nests and 1292 randomly selected 

points.  We observed between 11 and 88 nests, and 10 and 147 randomly selected points 

by study plot (Table 4.2).  All points were surveyed between May 17th and September 

10th of each year. 

 

4.4.2. Does niche position and breadth vary over the geographic range of a species? 

 The units of all hypervolumes are standard deviations to the power of the number 

of trait dimensions used (Blonder et al. 2014a).  The breadths of nesting niches (volume 

of nest site hypervolumes) varied between 2.2 SD sd8 and 10.1 SD sd8 by study plot 

(n=17; Table 4.2).  Mean volume of nesting niche (±sd) was 5.4±2.2 SD sd8.  Sørensen 

overlap indices of nesting niches between study plots pairs varied from <0.0001 to 0.44, 

with a mean overlap (±sd) index of 0.16±0.09 (n=17).  Similarity among nesting niches 

between study plots did not predict latitudinal distance (F1,134=0.6, p=0.43, adjusted 

R2<0.001; Fig. 4.1A).  Number of observations significantly predicted the breadth of 

nesting niche (F1,15=84.8, p<0.0001, adjusted R2=0.84) for nests (Fig. 4.2).  Proportional 

volumes of nesting niches ranged between 0.10 SD sd8 and 0.20 SD sd8 by study plot, 
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with a mean (±sd) of 0.15±0.03 SD sd8.  Proportional volume of nesting niches by study 

plot did not vary with latitude (F1,15=0.005, p=0.94, adjusted R2<0.0001; Fig. 4.3). 

 

4.4.3. Does available habitat vary across the range of the species? 

 The breadths of available environmental spaces (random-point hypervolumes) 

varied between 15.1 SD sd8 and 196.7 SD sd8 by study plot (n=17; Table 4.3).  Mean 

volume of available environmental space (±sd) was 94.4±46.0 SD sd8.  Sørensen overlap 

indices of available environmental spaces between study plots pairs varied from 0.03 to 

0.52, with a mean overlap index (±sd) of 0.20±0.10 (n=17).  Similarity among available 

environmental space between study plots did not predict latitudinal distance (F= 1.61,134, 

p=0.20, adjusted R2=0.005; Fig. 4.1B).  Number of observations also significantly 

predicted the breadth of available environmental space (F=60.41,15, p<0.0001, adjusted 

R2=0.79), although this relationship was much steeper than the one for nesting niches 

(Fig. 4.2).  Proportional volumes of available environmental spaces ranged between 0.71 

SD sd8 and 1.71 SD sd8 by study plot, with a mean (±sd) of 1.27±0.25 SD sd8.  

Proportional volume of available environmental spaces by study plot varied with latitude 

(F=6.41,15, p=0.02, adjusted R2=0.25; Fig. 4.3). 
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Table 4.2.  Hypervolume summary.  Comparison of hypervolumes for randomly selected 
points and saltmarsh sparrow nest sites by study plot from New Jersey to Maine, U.S.A., 
2012-2013. 
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Oyster Creek NJ 39.5 -74.4 100 71.3 0.7 18 3.09 0.2 0.05 0.48 
Mullica 
Wilderness NJ 39.5 -74.4 100 93.1 0.9 54 5.70 0.1 0.09 0.54 

AT&T NJ 39.7 -74.2 87 86.3 1.0 59 5.97 0.1 0.09 0.49 
Four Sparrow 
Marsh NY 40.6 -73.9 68 101.3 1.5 37 5.87 0.2 0.03 0.59 

Sawmill Creek NY 40.6 -74.2 75 104.7 1.4 33 6.31 0.2 0.05 0.60 
Marine Nature 
Park NY 40.6 -73.6 51 56.2 1.1 19 2.95 0.2 0.04 0.59 

Idlewild NY 40.7 -73.8 80 118.8 1.5 11 2.19 0.2 0.01 0.59 

Hammonasset CT 41.3 -72.5 61 83.9 1.4 44 6.90 0.2 0.07 0.38 

East River CT 41.3 -72.7 76 84.3 1.1 48 6.53 0.1 0.05 0.37 

Barn Island CT 41.3 -71.9 47 65.5 1.4 30 5.41 0.2 0.05 0.16 

Parker River MA 42.8 -70.8 10 15.1 1.5 20 3.17 0.2 0.10 0.37 
Chapman’s 
Landing NH 43.0 -70.9 108 151.9 1.4 88 9.42 0.1 0.05 0.75 
Lubberland 
Creek NH 43.1 -70.9 35 37.9 1.1 25 3.82 0.2 0.06 0.48 

Eldridge Road ME 43.3 -70.6 53 74.6 1.4 35 5.01 0.1 0.05 0.34 

Jones Creek ME 43.5 -70.4 147 173.5 1.2 78 10.08 0.1 0.07 0.71 
Nonesuch 
River ME 43.6 -70.3 53 90.5 1.7 21 3.22 0.2 0.04 0.34 
Scarborough 
River ME 43.6 -70.4 141 196.7 1.4 38 6.65 0.2 0.03 0.49 
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Table 4.3. Habitat selection by study plot. 

Study plot 

Thatch 
height 
(cm) 

Average 
height 
(cm) 

Water 
(% 

cover) 

Spartina 
patens 

(% 
cover) 

Spartina 
alterniflora 
(% cover) 

Distichlis 
spicata 

(% cover) 

Juncus 
gerardii 

(% 
cover) 

Other 
species 

(% 
cover) 

Oyster Creek + +++ +++ +++ - - N/A - 
Mullica 
Wilderness ++ - - +++ - - - - - - N/A + 

AT&T + + N/A +++ - - - - N/A +++ 
Four Sparrow 
Marsh ++ + ++ - +++ - N/A - 

Sawmill 
Creek +++ ++ ++ + - ++ N/A + 

Marine Nature 
Park +++ + - - - +++ - +++ N/A - 

Idlewild + - - +++ - +++ N/A - 

Hammonasset ++ +++ + +++ - + - - 

East River +++ +++ - +++ - + + - 

Barn Island + +++ - + - + + - 

Parker River + + + - +++ + - + 
Chapman's 
Landing +++ - - - - +++ +++ - - - - - 

Lubberland 
Creek +++ - - - - - - - - +++ - + - 

Eldridge Road +++ +++ - - - - +++ - - - - - 

Jones Creek +++ + - +++ - - - - N/A - 
Nonesuch 
River + + +++ +++ + - - - 

Scarborough 
River +++ + - +++ +++ - - - 

 
Results from the nested multiple logistic regressions used to test whether means for 
vegetation characteristics of nest sites differed from randomly selected points at each 
study plot.  Plus signs indicate that nest sites exhibited higher means than randomly 
selected points (+++ when p<0.05, ++ when p<0.10, + when non-significant), while 
minus signs indicate that nests exhibited lower means than randomly selected points (- - - 
when p<0.05, - - when p<0.10, - when non-significant).  N/A indicates that there were no 
observations of the vegetation characteristic for either nest sites or randomly selected 
points at a study plot. 
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Figure 4.1. Similarity between nesting niches and available environmental space.  A) 
nesting niches of saltmarsh sparrows and B) available environmental space was not 
related to latitudinal distance for all pairwise comparisons of study plots from New Jersey 
to Maine, U.S.A., 2012-2013.  C) Similarity between nesting niches increased with 
similarity of available environmental space for pairwise comparisons of study plots, 
though variability was high. 
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Figure 4.2. Hypervolume breadth increased with number of observations.  Niche breadth 
(volume of the 8-dimensional hypervolume) increased with number of observations for 
both available habitat (randomly selected points, shown with squares; F=60.41,15, 
p<0.0001, adjusted R2=0.79) and saltmarsh sparrow nest points (shown with triangles; 
F1,15=84.8, p<0.0001, adjusted R2=0.84).  Nesting niche breadth increased with number 
of observations at a lesser rate for nests, however, indicating that female saltmarsh 
sparrows are exhibiting a habitat selection throughout all study plots. 
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Figure 4.3. Hypervolume breadth by latitude.  Niche breadth of available habitat 
(randomly selected points, shown with squares) increased with latitude (proportional 
volume; F=6.41,15, p=0.02, adjusted R2=0.25), while nesting niche breadth of saltmarsh 
sparrows (shown with triangles) was not related to latitude or distance from the range 
center (proportional volume; F1,15=0.005, p=0.94, adjusted R2<0.0001).  Instead, nesting 
niche breadth was remarkably consistent throughout the range.  The star indicates the 
latitudinal center of the global saltmarsh sparrow breeding range. 
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4.4.4. Does habitat selection vary across the range of a species? 

 The multivariate logistic regression demonstrated both that saltmarsh sparrows 

exhibit small scale habitat selection across their geographic range, and that their selection 

does not vary for some vegetation characteristics but does for others by study plot (Table 

4.3).  For example, nests were associated with a thicker thatch layer than randomly 

selected points at all study plots (p-values ranging from <0.0001 to 0.008 for the 8 of 17 

study plots where the effect was significant).  For other characteristics, such as the 

average vegetation height, nests were associated with both significantly higher and 

significantly lower vegetation than randomly selected points, depending on study plot.  

Sørensen overlap indices between nesting niches and available environmental space at 

each study plot ranged between 0.01 and 0.10, with a mean overlap index  (±sd) between 

selected and available habitat of 0.06 ±0.02 (n=17).  The similarity between available and 

selected environmental space at each study plot was not related to latitude (F=0.21,15, 

p=0.65, adjusted R2<0.0001; Fig. 4.4).  The proportional volume of available 

environmental space was greater than the proportional volume of nesting niche at every 

study plot (n=17; Table 4.2).  Finally, the similarity between nesting niches increased 

with similarity between available environmental spaces for study plot pairs (F=23.41,134, 

p<0.0001, adjusted R2=0.14; Fig. 4.1C). 
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Figure 4.4. Habitat marginality by latitude.  The similarity between available habitat and 
nesting niche for saltmarsh sparrows at each study plot was not predicted by latitude or 
distance from range center (F=0.21,15, p=0.65, adjusted R2<0.0001).  The star indicates 
the latitudinal center of the global saltmarsh sparrow breeding range. 
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4.4.5. What are the fitness consequences of differences in niche across the range of a 

species? 

 The similarity between available and selected habitat was not related to seasonal 

fecundity (F=0.21,15, p=0.67, adjusted R2<0.0001; Fig. 4.5).  Moreover, the similarity of 

nesting niches did not predict observed differences in seasonal fecundity in the pairwise 

study plot comparisons (F=0.51,134, p=0.48, adjusted R2<0.0001; Fig. 4.6). 

 

4.5. Discussion 

We observed that in contrast to the predictions consistent with niche 

conservatism, saltmarsh sparrow nesting niche varies intraspecifically across its 

geographic range.  Some axes of the nesting niche varied by study plot, while others 

appeared to be conserved.  The similarity between both nesting niches and available 

environmental space for pairwise comparisons of study plots was not related to latitudinal 

distance or range position.  Thus, saltmarsh sparrow habitat and habitat selection is 

variable on a local scale and its variation is not consistent with niche conservatism.  The 

similarity of available environmental space predicted the similarity of nesting niches 

between study plots, however, suggesting that some, but not all, of the intraspecific 

variation in nesting niche is explained by local habitat availability.  No aspects of the 

intraspecific niche variation we observed were related to seasonal fecundity.  Thus, we 

observed no signs of habitat marginality near the high-latitude margin of the saltmarsh 

sparrow range.  Instead, nest-site selection seems to vary locally and is not likely the 

driver of the high-latitude margin of the saltmarsh sparrow range. 
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Figure 4.5. Seasonal fecundity was not related to habitat marginality.  Our results suggest 
no patterns of habitat marginality near the periphery of the saltmarsh sparrow range. 

 

 

Figure 4.6. Similarity between nesting niches not related to the difference in fecundity.  
Our results suggest that intraspecific variation in saltmarsh sparrow nesting niches do not 
result in negative fitness consequences.  
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Saltmarsh sparrows exhibit clear habitat selection throughout their geographic 

range, and nesting niche was relatively constant in position for some habitat axes.  At all 

study plots, the breadth of available habitat was greater than that of habitat selected by 

saltmarsh sparrows for nest sites on a small spatial scale (Table 4.2).  Moreover, we 

observed a strong signal of selection for most of the vegetation characteristics, which 

were both structural and compositional, for at least several study plots (Table 4.3, 

Appendix D).  Our results are consistent with three previous studies of the small-scale 

habitat selection of saltmarsh sparrows.  All previous investigations have found that 

saltmarsh sparrows generally build their nests in areas with thicker thatch layers and 

greater cover of Spartina patens than randomly selected points (Gjerdrum et al 2005; 

Shriver et al 2007, Ruskin in press).  We also found that saltmarsh sparrow nests were 

associated with thicker thatch layers (p<0.10 for 11 of 17 study plots).  We found that 

nests were associated with a higher percent cover of S. patens at most study plots (p<0.05 

for 11 of 17 study plots), but at two study plots, nests were associated with significantly 

less S. patens than randomly selected points (p=0.005 and p=0.0003 for Eldridge Road 

and Lubberland Creek, respectively). 

 The position of the saltmarsh sparrow nesting niche differed for some axes across 

the range, however.  First, the magnitude of the coefficient of effect for habitat selection 

varied among study plots.  For example, across most study plots, saltmarsh sparrows 

selected nest sites with significantly deeper thatch than the available habitat, but the depth 

of the thatch they chose varied by study plot.  Similarity between available environmental 

space significantly predicted similarity of nesting niches between pairs of study plots, 

which suggests that for some habitat axes, saltmarsh sparrow nesting niche is influenced 
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by local habitat availability (Fig. 2).  However, we observed habitat selection that varied 

not only in the magnitude of selection by study plot, but also the direction of selection.  

For example, saltmarsh sparrows selected nest sites with significantly higher than average 

vegetation at some study plots and sites with significantly lower than average vegetation 

at other study plots; these differences were not due to convergence upon a single 

preferred vegetation height.  These differences likely contribute to the high amount of 

variability in the pairwise comparisons of available environmental space and nesting 

niches between study plots, which was statistically significant but noisy (Fig. 4.1).  Taken 

together, our results suggest that the saltmarsh sparrow nesting niche consists of both 

constant and variable elements, the latter of which are dependent on habitat availability 

and other drivers on a local scale. 

Though our results do not suggest that niche conservatism is upheld in this system 

for nesting niche position, the breadth of nesting niche was remarkably consistent across 

the species range (Fig. 4.3).  Our study may have been limited by statistical power, 

however, because our sampling unit was at the level of study plot and therefore led to a 

relatively small sample size (n=17).  Thus, we cannot differentiate between conservatism 

of niche breadth and a lack of statistical power.  We did, however, observe that the 

breadth of available environmental space increased with latitude using an identical 

sample size.  Given this result, we argue that a relationship between nesting niche breadth 

and latitude, if present, is sufficiently small that variation from other sources is likely 

more biologically meaningful. 

Habitat selection differed across the saltmarsh sparrow range but was not 

consistent with niche conservatism.  The similarity between available and selected habitat 
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did not vary with latitudinal distance or range position (Fig. 4.4).  The Sørensen index 

between nesting niches and the available environmental space varied by an order of 

magnitude among study plots, but was low across the range.  The similarity between 

study plots for both selected and available habitat was not related to their latitudinal 

distance; that is, the available habitat or nesting niche at any study plot can be, and often 

is, more similar to those of distant marshes than of nearby marshes.  These results point 

to high levels of local habitat heterogeneity (Fig. 4.1).  Some of this local heterogeneity is 

natural, because there are multiple types of marshes (e.g., marshes behind barrier 

beaches, marshes fringing rivers) and large differences in tidal amplitude on the Atlantic 

coast of North America (Tiner 2013).  Humans have also increased the heterogeneity of 

tidal marshes in this region, notably via ditching, channelizing, and tidally restricting 

marshes for human development (Silliman, Grosholz, and Bertness 2009). 

Further, the similarity between nest and random-point hypervolumes was not 

related to mean seasonal fecundity by study plot (Fig. 4.5), nor did the similarity of 

nesting niches between study plots predict their differences in fecundity (Fig. 4.6).  

Therefore, differences in nesting niche position and breadth did not appear to have fitness 

consequences for saltmarsh sparrows.  We observed no signal of range-wide trends in 

habitat marginality, either characterized by changes in niche breadth or a relationship 

between nesting niche and fecundity, as predicted under a paradigm of niche 

conservatism. 

These results suggest that rather than large-scale trends in habitat suitability, 

intraspecific variation in the saltmarsh sparrow nesting niche is shaped by local processes 

across the range.  Saltmarsh sparrow populations may adapt locally or vary plastically, 
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driven by spatially-variable risks to fecundity.  Previous research has demonstrated that 

populations at different points of the breeding range face different risks to fecundity.  

Specifically, risk of nest depredation increases toward low latitudes, while nest flooding 

poses greater risk near the high-latitude range margin (Ruskin et al. in review).  These 

large-scale patterns may influence saltmarsh sparrow habitat selection, as high predation 

risk has been shown to correlate with certain nest traits across several avian species (e.g. 

increased nest concealment, Martin 1992). 

Alternatively, intraspecific variation in saltmarsh sparrow nesting niche may be 

driven by local habitat availability.  Our results support this hypothesis in part.  Using 

comparisons of the Sørensen overlap index for nesting niches and available 

environmental space, we found that available environmental space predicted nesting 

niche characteristics across all study plots (Fig. 4.1).  However, the predictive power was 

low (adjusted R2=0.14) due to high amounts of scatter, likely because saltmarsh sparrows 

exhibited signs of variable nest preferences (e.g. used nest sites with higher than average 

vegetation at some study plots and lower than average vegetation at other study plots).  

Future studies should relate fecundity to habitat selection at an individual level to test 

whether local differences in habitat selection are adaptive or simply constrained by local 

habitat availability. 

Our results also suggest that the high-latitude margin of the saltmarsh sparrow 

breeding range is not caused by lack of habitat for the small-scale niche axes we 

examined.  We observed mosaics for both available and selected habitat across the range, 

with no changes in niche breadth to signal habitat marginality near the high-latitude range 

margin.  The niche space of available habitat increased with latitude toward the range 
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edge, while nesting niche breadth remained constant.  Based on the means of available 

habitat for the vegetation characteristics that appear to be relatively constant aspects of 

the saltmarsh sparrow nesting niche (S. patens, thick thatch layer), we observed no signs 

of saltmarsh sparrows being “squeezed out” of available habitat near the range margin.  

Further, those characteristics exist north of the saltmarsh sparrow range (Lonard et al. 

2010, M. Correll unpublished data).  Rather than running out of suitable habitat at the 

small spatial scale we examined, the saltmarsh sparrow range may be limited by axes of 

the species niche outside of the small-scale nesting niche we examined.  For example, the 

distribution of the saltmarsh sparrow breeding range may be caused by larger-scale 

factors such as habitat patch size.  Marsh patches become markedly smaller and patchier 

near the high-latitude range margin of saltmarsh sparrows (W. Wiest et al. in review).  

Future studies should include other modules of the saltmarsh sparrow niche, such as 

large-scale factors and biotic interactions.  Further, future studies should include data 

from the low-latitude range margin of saltmarsh sparrows, which we did not examine in 

this study.   
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CHAPTER 5: DIVERGENT OVIPOSITION PREFERENCES OF SISTER 

SPECIES ARE NOT DRIVEN BY NEST SURVIVAL: THE EVIDENCE 

FOR NEUTRALITY 

 

5.1. Summary 

Both adaptive and neutral trait evolution can contribute to divergence, but the 

relative contributions of the two remain unclear.  Oviposition preference, a trait that has 

been demonstrated to contribute to divergence among populations, is often presumed to 

be an adaptive trait.  Few studies explicitly test this assumption, however, and several 

researchers have demonstrated non-adaptive oviposition preferences in wildlife 

populations.  In this study, we test whether adaptive divergence can explain current 

differences in the oviposition preferences of two sister species.  In 2012 and 2013, we 

conducted a demographic study of sympatrically breeding populations of two sparrow 

species (Ammodramus caudacutus and A. nelsoni) and measured vegetation 

characteristics at nest and non-nest points.  We found evidence for oviposition preference 

in both species and significant differences between the species’ preferences.  The 

vegetation characteristics that vary between species did not predict nest survival or 

offspring production, however.  Our results provide an example of oviposition preference 

at a population level that appears non-adaptive as measured by productivity.  We discuss 

other mechanisms by which oviposition preference can be adaptive, and make a case for 

the role of neutral evolution in shaping the oviposition preferences of these species.  If 

divergence in oviposition preference is at least periodically neutral, as we hypothesize, 
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such differences could provide fodder for future adaptation or reproductive isolation 

among populations. 

 

5.2. Introduction 

Both adaptive and neutral trait evolution can contribute to divergence among 

populations, but the relative contributions of the two mechanisms remain unclear.  

Though genetic drift is acknowledged to contribute to divergence between populations in 

allopatry (Lenski and Travisano 1994; Gavrilets 2003; Papke et al. 2003; Coyne and Orr 

2004; Petren et al. 2005; Comes et al. 2008), much work on sympatric speciation centers 

on selective forces promoting divergence, such as in the model stickleback system 

(Rundle et al. 2000; Coyne and Orr 2004).  However, some authors argue that most 

evolution is neutral or nearly so.  They suggest that populations evolve along relatively 

flat planes within a highly dimensional niche space and have demonstrated these results 

with modeling experiments (Kimura 1983; Gavrilets 2003, 2004). 

Oviposition preference, specifically where an organism chooses to lay and keep 

its eggs, has been observed to contribute to divergence and is often presumed to be 

adaptive.  Oviposition preference has contributed to divergence among populations in a 

wide range of taxa (Brykov et al. 1996; Etges 1998; Hawthorne and Via 2001; Friesen et 

al. 2007).   In fact, the most convincing cases of sympatric speciation in animals are 

related to divergence  in oviposition preferences (Sorenson et al. 2003; Coyne and Orr 

2004; Machado 2005; Rønsted et al. 2005; Althoff et al. 2006).  Oviposition preference is 

often presumed adaptive for good reason; it can dramatically affect individual fitness via 

both fecundity (Resetarits 1996) and adult survival (Scheirs et al. 2000; Spencer 2002; 
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Miller et al. 2007).  Many ecological studies, however, presume oviposition preference is 

adaptive without explicitly testing for a relationship between oviposition behaviors and 

fitness (Arlt and Pärt 2007). 

In a review of bird nest site preferences, Clark and Shutler (1999) found that only 

54% of oviposition studies related preferences to nest success  and only 10% of studies 

examined found evidence for adaptive oviposition preference.  Finally, several 

researchers who have explicitly examined the relationship between oviposition 

preference and fecundity across a wide range of taxa have reported oviposition 

preferences that are not adaptive (Review: Robertson and Hutto, 2006; Birds: 

Dwernychuk and Boag 1972; Filliater, Breitwisch, and Nealen 1994; Arlt and Pärt, 2007; 

Chalfoun and Schmidt 2012; Insects: Rausher 1979; Thompson 1988; Kriska, Horváth, 

and Andrikovics 1998; Ries and Fagan 2003; Reptiles: Kamel and Mrosovsky 2005). 

There are many reasons why oviposition preference, or any trait that impacts 

fitness, can be non-adaptive.  In this study, we define non-adaptive as a trait that does not 

increase an organism’s fitness.  This definition includes both neutrality and 

maladaptation.  A characteristic is neutral if it confers no benefit or disadvantage to its 

carrier, whereas a trait is maladaptive if it decreases an organism’s fitness.  Gould and 

Lewontin’s (1979) classic “non-exhaustive list” of causes for lack of adaptation includes 

evolutionary constraints, methodological shortcomings, and neutral evolution.  It is 

important to understand the non-adaptive forces behind the evolution and divergence of 

oviposition preferences because differences in these traits appear to be important for 

multiple modes of speciation (e.g. allopatric, sympatric, and ecological). 
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In this study, we explicitly test for adaptive differences in the oviposition 

preferences of two Emberizid sparrows, saltmarsh (Ammodramus caudacutus) and 

Nelson’s (A. nelsoni) sparrows.  These sister species are known collectively as sharp-

tailed sparrows.  Together, they provide an exemplary study system for exploring the 

adaptive versus non-adaptive evolution of oviposition preferences because their 

distinctive life history sets the stage for non-adaptive divergence in a number of ways. 

First, the characteristics of the tidal marsh where sharp-tailed sparrows breed may 

weaken selective pressure.  Bayard and Elphick (2010) observed that saltmarsh sparrow 

nest placement was spatially random in Connecticut, and they suggested this random nest 

placement developed as a result of a lack of opportunity for adaptation.  Female sharp-

tailed sparrows nest a few centimeters above the ground in the high marsh zone, which is 

characterized by flooding events each month (Tiner 2013).  As a result, the majority of 

sharp-tailed sparrow nest failure is isolated in time, but spatially widespread.  The spatial 

homogeneity of nest failure in tidal marshes thus leaves little meaningful variation in 

oviposition preference upon which selection can act.  Previous research supports this 

hypothesis; saltmarsh sparrow oviposition preferences have not been predictive of nest 

success in multiple studies of the species across New England (Gjerdrum et al. 2005; 

Shriver et al. 2007). 

Second, the evolutionary history and breeding biology of sharp-tailed sparrows 

eliminate many mechanisms that would cause adaptive trait evolution.  There is no 

evidence for competitive exclusion between these species.  Males and females of both 

species are non-territorial, and the home ranges of both species overlap widely with both 

conspecifics and heterospecifics (Greenlaw and Rising 1994; Shriver et al. 2011).  
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Because males of both species do not contribute parental care, oviposition preferences 

and female fecundity are not constrained by territory availability, dominance hierarchies, 

or male behavior.  Given their overlapping home ranges, similar mating systems, and the 

spatial homogeneity of nest failure, saltmarsh and Nelson’s sparrows breeding in 

sympatry are subject to similar, if not equivalent, local selection for oviposition 

preference. 

Finally, evolutionary and developmental constraints are unlikely to be the cause 

of divergence between the taxa.  As sister species that became reproductively isolated as 

recently as 600,000 years ago (Rising and Avise 1993), saltmarsh and Nelson’s sparrows 

share most of their evolutionary history and the accompanying phylogenetic constraints.  

The two species also interbreed readily where their ranges overlap (Greenlaw and Rising 

1994; Walsh et al. 2011), illustrating that they share most developmental constraints.  

Through the process of elimination, we are left with genetic drift as one of the most likely 

drivers for the development, or at least maintenance, of divergence in oviposition 

preferences. 

 In this study, we use sympatrically breeding populations of sharp-tailed sparrows 

as a case study to investigate selection versus drift as major drivers of divergence in 

oviposition preferences.  We first confirm whether, consistent with previous studies, 

sharp-tailed sparrows exhibit oviposition preferences.  We then test whether oviposition 

preference differs between saltmarsh and Nelson’s sparrows with broadly overlapping 

home ranges.  Finally, we test whether any observed differences in oviposition preference 

between the species are positively related to fecundity, and therefore are potentially 

adaptive. 
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5.3. Methods 

5.3.1. Study site and field methods 

We compared oviposition preferences of saltmarsh and Nelson’s sparrows in 

Scarborough Marsh, Cumberland County, Maine, USA, located in the sympatric sharp-

tailed sparrow range (Hodgman et al. 2002).  We surveyed two, 10-ha study sites that are 

separated by 2.5 km, including a wide river and active train tracks.  In two years of study, 

we have captured over 450 unique individuals, only one of which was captured at both of 

these study sites.  Thus, we consider the populations to be largely independent. 

We searched for nests once or twice per week from May through August, 2012-

2013.  Following discovery, we revisited nests every one to three days until the nesting 

attempt was completed via fledging or failure.  We captured attending females at the nest 

site with mist nets to determine species.  Each female was uniquely marked a numbered 

aluminum leg band from the United States Geological Survey to track multiple nesting 

attempts throughout the breeding season and across multiple years. 

In Scarborough Marsh, saltmarsh and Nelson’s sparrows interbreed readily.  

Based on morphology, they exhibit a gradient of introgression.  Genetic analysis of 

sharp-tailed sparrows captured in northern New England indicate high levels of 

introgression, suggesting that the species have interbred extensively (Rising and Avise 

1993; Shriver et al. 2005; Walsh et al. 2011).  Samples collected in southern Maine in the 

late nineteenth century show characteristics of hybridization, suggestive that the species 

have interbred at our study site for at least 150 years (KJR unpub. data). 

Because of the extensive introgression between these species, we treated species 

as a continuous variable as measured by plumage (sensu Shriver et al. 2005) rather than 
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using a binary species assignment.  For each of 13 plumage characteristics (e.g. color and 

definition of breast streaking, width of crown stripes) we assigned each adult sparrow a 

score ranging from one to five.  Low scores represent traits typical of Nelson’s sparrows, 

while high scores represent traits typical of saltmarsh sparrows.  The scores in the 13 

categories are then summed to produce an integrated species index ranging from 13 to 65.  

Previous studies have found general concordance between plumage and genetic hybrid 

status (Shriver et al. 2005; Walsh et al. 2015).  To minimize observer subjectivity, we 

averaged the summed plumage score of each female across all captures within a single 

breeding season. 

At each nest site, we measured sixteen characteristics.  These included four 

characteristics of the built nest structure and twelve vegetation characteristics within a 

square 1-m2 plot centered on each nest.  Nest structure measurements included total nest 

height (lip of nest bowl to ground), nest depth, distance from bottom of the nest to the 

ground, and amount of nest canopy as measured by estimating the percentage of the nest 

bowl that was visible through the canopy while viewing the nest from directly above.  For 

vegetation characteristics, we measured thatch depth and maximum vegetation height, 

and we visually estimated average vegetation height at the center (at the nest) and 

midpoints of the 1-m2 plot sides.  We also visually estimated percent cover of all species 

present within the 1-m2 plot (Table 5.1), with all cover classes summing to 100%.  We 

chose characteristics based on previous research on sharp-tailed sparrows (Gjerdrum et 

al. 2005; Shriver et al. 2007) and the predominant vegetation at our site. 
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Table 5.1. Vegetation characteristics and nest and non-nest points.  Shown are vegetation 
characteristics (mean ± SD) at nest and non-nest points in current and previous studies of 
sharp-tailed sparrows in New England saltmarshes, USA. 

Vegetation Characteristic Nest site 

Non-nest 

point P 

Gjerdrum 

(2005)a 

Shriver 

(2007)b 

Thatch depth at 1 m2 quadrat 

midpoints (cm) 9.2 ± 3.7 6.4 ± 4.4 <0.001 - sig. 

Thatch depth at center (cm) 16.3 ± 5.7 6.9 ± 6.0 <0.001 sig. - 

Maximum vegetation height at 1 

m2 quadrat midpoints (cm) 54.3 ± 10.7 45.8 ± 13.8 <0.001 sig. - 

Maximum vegetation height at 

center (cm) 61.7 ± 12.4 

46.3  ± 

15.4 <0.001 - - 

Average vegetation height at 1 

m2 quadrat midpoints (cm) 37.5 ± 8.9 33.7 ± 11.6 <0.01 - - 

Average vegetation height at 

center (cm) 41.4 ± 9.9 33.6 ± 12.6 <0.001 - - 

Water (% cover ) 2.2 ± 5.7 3.7 ± 12.5 0.29 - - 

Spartina patens (% cover) 56.2 ± 26.2 33.9 ± 37.9 <0.001 sig. sig. 

Spartina alterniflora (% cover) 27.4 ± 24.4 22.1 ± 30.4 0.15 non-sig. non-sig. 

Distichlis spicata (% cover) 9.9 ± 20.3 9.8 ± 19.9 0.97 sig. non-sig. 

Juncus gerardii (% cover) 1.8 ± 9.3 10.6 ± 24.7 0.01 sig. non-sig. 

Other species (% cover) 1.8 ± 5.2 17.4 ± 28.1 <0.001 - - 

The means shown are averages among the midpoints of four sides on a 1-m2 quadrat.  For 
the present study, we show mean ± standard deviation of vegetation characteristics for 
nest site and non-nest points.  Reported P-values are derived from post hoc one-way 
comparisons of variance between nest and non-nest points.  We also include indications 
of vegetation characteristics found to be significantly related to nest sites in these species 
in previous studies.  Dashes indicate that a characteristic was not measured in the 
previous study. 
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We recorded the four nest structure characteristics upon discovery of the nest and 

the remaining vegetation characteristics upon nest completion (fledging or failure) to 

minimize disturbance to the nesting female.  We measured the same suite of vegetation 

structure and cover characteristics within a 1-m2 plot centered at non-nest points that we 

randomly selected within the study sites using the “Create Random Points” tool in the 

“Data Management” toolbox of ArcGIS version 10.0 (Environmental Systems Research 

Institute, Redlands, USA).  We surveyed non-nest points throughout the breeding season, 

within a week of the completion of a paired nest site to control for plant phenology over 

the study period.  We excluded randomly selected points that were located in standing 

water during field surveys. 

 

5.3.2. Statistical analyses 

Statistical analyses were performed using R 3.0.2 (R Core Team 2014).  We first 

used a multiple analysis of variance to test whether sharp-tailed sparrows as a whole 

exhibit an oviposition preference as measured by twelve vegetation characteristics (Table 

1).  We used one-way analyses of variance to identify whether mean vegetation 

characteristics differed significantly between nest and non-nest points.  To ensure that 

both species exhibit a preference, we performed a multiple analysis of variance on 

saltmarsh and Nelson’s sparrows separately as well.  We separated the dataset into two 

subsets based on plumage score limits.  We defined saltmarsh sparrows as females with 

summed plumage scores of 45 or greater, which is the 95th percentile of birds captured in 

Connecticut.  This is the closest breeding population outside of the hybrid zone where we 

collected plumage score data (Hodgman et al. 2002; Walsh et al. 2011).  We defined 
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Nelson’s sparrows as females with a summed plumage score of 31 or less based on the 

limit established by Shriver et al. (2005).  Hybrids were thus excluded from both subsets 

of data.  We tested for oviposition preferences in both species with the full analysis of 

variance model on each of these subsets. 

We then created a general linear model to test whether the species identity of 

nesting females (as measured continuously by summed plumage score, using all females) 

covaried with the same twelve vegetation characteristics and four additional nest 

characteristics.  We also included covariates to control for year and study site.  We used 

stepwise AIC model selection (R package MASS, Ripley et al. 2014) to choose the most 

parsimonious suite of nest and vegetation characteristics that predicted the species of 

nesting females as measured by summed plumage score. 

Finally, we modeled the relationship between the vegetation characteristics that 

best predicted species of a nesting female and two estimates of fecundity, daily nest 

survival probability and brood size (number of nestlings produced by a successful nest).  

First, we used the program MCestimate to generate daily nest survival probabilities.  

MCestimate estimates daily nest survival probabilities similarly to the logistic exposure 

method (Mayfield 1975; Dinsmore et al. 2002; Rotella et al. 2004; Shaffer 2004), but 

within a Markov-Chain framework (Environmental Protection Agency Mid-continent 

Ecology Division, Duluth, USA; see Etterson et al. 2007, 2014; Jackson et al. 2011).  For 

all nests, we estimated daily nest survival probability as a function of year and the 

vegetation characteristics from the top model for distinguishing among species as 

measured by summed plumage score from the previous step.  We created a null model in 

which daily nest survival rate was held constant among all nests.  We compared the top 
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model to the null model using Akaike’s Information Criterion (Akaike 1974; Burnham 

and Anderson 2002) to test whether differences in oviposition preferences can lead to 

differences in nest survival between saltmarsh and Nelson’s sparrows.  To estimate local 

variation in nest survival, we also used MCestimate to estimate daily nest survival rate as 

a function of study site.  Second, we used a Poisson regression to estimate brood size, an 

alternate estimate of fecundity, as a function of year and the nine vegetation 

characteristics from the top model for distinguishing among species as measured by 

summed plumage score (R base package, R Core Team 2014). 

Finally, we created two Poisson regression models to test for differences in 

additional fecundity parameters along the species gradient as measured by summed 

plumage score.  In separate models, we estimated number of nesting attempts and clutch 

size as functions of the summed plumage score of associated females (R base package, R 

Core Team 2014).  Goodness of fit tests indicated that for brood size, clutch size, and 

number of nesting attempts, the data fit the assumptions of Poisson regressions. 

 

5.4. Results 

 We compared vegetation characteristics at 190 randomly-selected points to 92 

sharp-tailed sparrow nest sites.  Of these, 27 nest sites were chosen by Nelson’s sparrow 

females, 47 by saltmarsh sparrows, and 18 by females within the hybrid range according 

to the plumage limits described.  With a total of 1159 exposure days, we observed daily 

nest survival probabilities of 0.9402 ± 0.01 (mean ± SE; n=33 nests) and 0.9486 ± 0.01 

(mean ± SE; n=59 nests) by study site. 
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Vegetation structure and cover characteristics reliably distinguished between nest 

and non-nest points (Table 1; n=282, approximate F= 18.712,269, P<0.001).  This pattern 

persisted in the subsets of data that included only saltmarsh (n=47 nests and 47 

randomly-selected points; F= 8.612,81, P<0.001) and Nelson’s sparrows (n=27 nests and 

27 randomly-selected points; F= 4.612,41, P<0.001), demonstrating that both species 

exhibit an oviposition site preference.  We found that nine of the vegetation 

characteristics examined had population means that significantly differ between nest and 

non-nest points (Table 5.1). 

Our results also indicated that nest and vegetation characteristics varied across the 

sharp-tailed sparrow species gradient (n=92, R2= 0.28, F=3.117,74, P<0.001; Table 5.2).  

The best model included nine of the sixteen measured nest and vegetation characteristics 

and the year covariate (n=92, R2= 0.33, F= 5.510,81, P<0.001).  The best model did not 

include study site, indicating that nest site preferences did not vary based on local habitat 

availability. 

Using year and the nine characteristics included in the best model for predicting 

species as measured by summed plumage score, oviposition site did not predict daily nest 

survival probability.  The nest characteristics that best predicted species performed worse 

than the null model for predicting daily nest survival probability (ΔAICc=+3.14, model 

weight=0.17; Table 5.3).  Using year and the nine characteristics included in the best 

model for predicting species, oviposition site also did not predict brood size (X2(10, 

n=30), P=0.82). 
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Table 5.2. Parameter estimates for predictors of female species.  Predictors of female 
species as measured by summed plumage score in Scarborough, ME, USA (positive beta 
values correspond to vegetation characteristics with higher values for females toward the 
saltmarsh sparrow end of the plumage gradient) for vegetation characteristics chosen in 
the top model. 

Predictor variable b SE t P 

Year -3.20 1.82 -1.75 0.08 
Distance from bottom of the nest to the ground (cm) 0.90 0.23 3.84 <0.001 
Nest depth (cm) -1.35 0.55 -2.44 0.02 
Thatch depth at center (cm) 0.44 0.17 2.61 0.01 
Thatch depth at 1 m2 quadrat midpoints (cm) -0.35 0.26 -1.36 0.18 
Maximum vegetation height at 1 m2 quadrat midpoints (cm) -0.18 0.10 -1.69 0.09 
Average vegetation height at center (cm) -0.36 0.12 -2.95 <0.01 
Spartina patens (% cover) -0.18 0.04 -4.79 <0.001 
Distichlis spicata (% cover) -0.18 0.04 -4.02 <0.001 
Juncus gerardii (% cover) -0.13 0.09 -1.50 0.14 
 
Table 5.3. Parameter estimates for predictors of daily nest survival probability.  
Predictors of daily nest survival probability in Scarborough, ME, USA for vegetation 
characteristics chosen in the top model. 

Predictor variable b SE 
Year 0.67 0.33 
Distance from bottom of the nest to the ground (cm) -0.07 0.04 
Nest depth (cm) -0.12 0.11 
Thatch depth at center (cm) -0.03 0.03 
Thatch depth at 1 m2 quadrat midpoints (cm) 0.05 0.05 
Maximum vegetation height at 1 m2 quadrat midpoints (cm) -0.01 0.02 
Average vegetation height at center (cm) 0.03 0.02 
Spartina patens (% cover) 0.01 0.01 
Distichlis spicata (% cover) -0.004 0.01 
Juncus gerardii (% cover) 0.002 0.01 
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Individual females nested an average of 1.26 ± 0.06 times per year (mean ± SE; 

n=73).  Mean clutch size across all nests was 3.65 ± 0.09 eggs or nestlings per nest (mean 

± SE; n=92).  Among successful nests, mean brood size was 2.53 ± 0.19 nestlings per 

nest (mean ± SE; n=30).  We found no evidence that number of nesting attempts (X2(71, 

n=73), P=0.50) or clutch size (X2(92, n=90), P=0.61) varied by species as measured by 

summed plumage score. 

 

5.5. Discussion 

 Differences  in oviposition preference have been often cited as mechanisms of 

reproductive isolation and a driver of ecological speciation between sister taxa (Coyne 

and Orr 2004; Nosil 2012).  However, we demonstrate evidence of sympatric sister taxa 

with oviposition preferences that are divergent but appear not to be under current 

selection pressure for maximizing nest survival.  Alternative mechanisms for maximizing 

fitness via oviposition site exist.  We present multiple lines of evidence that suggest that 

variation in oviposition site between Nelson’s and saltmarsh sparrows is maintained 

despite a lack of selective pressure, however. 

Similar to the two previous studies that examined small-scale nest-site preference 

in sharp-tailed sparrows, we found that both saltmarsh and Nelson’s sparrows breeding in 

Scarborough Marsh exhibit oviposition preferences (Table 5.1).  Previous studies and our 

own found that both structural and vegetation cover characteristics were important in 

distinguishing between nest and non-nest points (Gjerdrum et al. 2005; Shriver et al. 

2007).  Moreover, the characteristics in our best model were similar to those reported by 

previous studies.  For example, our results agree with those of both Gjerdrum et al. 
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(2005) and Shriver et al. (2007), who also found that nest sites were positively associated 

with percent cover of Spartina patens and exhibited a deeper thatch layer compared to 

randomly selected non-nest points.  The Gjerdrum et al. (2005) study was conducted in 

southern New England, and the Shriver et al. (2007) study was conducted in the same 

marshes as our investigation.  Together, this suggests that the oviposition preferences of 

sharp-tailed sparrows are similar across both space (~300 km) and time (~a decade).  

Additionally, we found that compared to randomly selected points, the 1-m2 plot 

surrounding nest sites included less water, a trait that was not examined by the two 

previous studies. 

Saltmarsh and Nelson’s sparrow females exhibit consistently different oviposition 

preferences as measured by vegetation characteristics.  For example, females with 

plumage more typical of saltmarsh sparrows built nests that were higher above the 

ground, had shallower nest bowls, and placed them in areas with less Spartina patens 

compared to females that exhibited plumage more typical Nelson’s sparrows.  Because 

these species interbreed in sympatry, the observed differences in oviposition preferences 

between them in this population are conservative underestimates for the species in 

general, because some degree of convergence is expected from genetic introgression. 

The nest characteristics that differed by species did not predict either of two 

estimates of fecundity, however.  Though the oviposition preferences of saltmarsh and 

Nelson’s sparrows vary consistently across study sites, they do not appear to confer any 

adaptive advantage in terms of fecundity as measured by nest survival or brood size 

during the years of our study.  In fact, the nest traits that together explain 33% of the 
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observed variance in female species perform worse at predicting nest survival than an 

intercept-only null model.   

We should note, however, that our sample size may have been too small to detect 

differences in fecundity, particularly because small differences in daily nest survival 

probability compound into larger differences in overall nest survival probability. 

Additionally, if even small differences in nest success have been consistent during the 

entire period of secondary contact (documented empirically for 150 years at our study 

site), this can lead to marked differences in selection and population growth rate between 

the species.  Thus, our findings of no selection should be interpreted cautiously. 

However, our findings are consistent with previous research, which has found no 

placement differences between successful and unsuccessful nests (Gjerdrum et al. 2005; 

Shriver et al. 2007).  Furthermore, we found no evidence that saltmarsh and Nelson’s 

sparrows exhibit differences in two life history traits that could result in patterns of 

fecundity that differ from those observed in nest survival probabilities (renesting rate and 

clutch size).  Thus, nest survival is likely a reasonable index of the fitness consequences 

of oviposition divergence in this system and a better index than has been reported in other 

songbirds (Streby and Andersen 2013; Streby et al. 2014). 

Here we show direct evidence that two estimates of fecundity are not related to 

divergent oviposition preferences of saltmarsh and Nelson’s sparrows.  However, 

oviposition preference can maximize fitness in a number of other ways.  Refsnider and 

Janzen ( 2010) review nest survival (more generally, embryo survival) in addition to five 

alternative hypotheses for how oviposition site can maximize fecundity.  Sharp-tailed 

sparrows provide an ideal system that offers good reason to eliminate the alternative 
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hypotheses, however, suggesting that the divergent oviposition preferences between 

saltmarsh and Nelson’s sparrows are currently non-adaptive. 

We can rule out four of Refsnider and Janzen’s (2010) hypotheses because of the 

unique mating systems and life histories of saltmarsh and Nelson’s sparrows.  First, 

Refsnider and Janzen describe a hypothesis that oviposition site can indirectly maximize 

fitness through mate choice, but both saltmarsh and Nelson’s sparrows are promiscuous, 

non-territorial, and males do not contribute to parental care (Greenlaw and Rising 1994; 

Shriver et al. 2010).  Second, the authors propose that oviposition site can impact fitness 

through offspring phenotype, usually via microclimatic conditions.  This hypothesis is 

commonly invoked for species that do not exhibit parental care, such as fish, amphibians, 

and reptiles.  In most bird species, including sharp-tailed sparrows, adults mediate the 

environmental conditions at the oviposition site through incubation and nest attendance.  

Nonetheless, this idea has been applied to several avian systems, providing mixed results 

as to whether differences in nest microclimates are typically ameliorated by parental 

behavior (Rauter et al. 2002; Amat and Masero 2004; Dawson et al. 2005; Robertson 

2009; Tieleman et al. 2014).  Sharp-tailed sparrow females nest under natural or woven 

grass canopies, which create shade and moderate the nest microclimate.  Thus, we think 

microclimate is unlikely to affect offspring phenotype in this system, but future studies 

should measure microclimatic conditions at the nest site to address this possibility.  

Third, oviposition site can also maximize fitness via juvenile survival, for example by 

proximity to suitable habitat for juveniles after leaving the nest.  Sharp-tailed sparrow 

juveniles roam the marsh after leaving the nest, however, in home ranges that overlap 

with non-parental adults and parental adults, conspecifics and heterospecifics (Shriver et 
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al. 2010; KJR unpub. data).  Therefore, juvenile habitat use and any consequent 

differences in juvenile survival are not likely to result from any differences in oviposition 

preference between the species.  Instead, juveniles of both of these non-territorial species 

are exposed to similar post-fledging risks to survival that are independent of oviposition 

site.  Fourth, oviposition preference is hypothesized to maximize fitness by maintaining 

natal philopatry in some systems.  Both saltmarsh and Nelson’s sparrows exhibit natal 

philopatry, but on the larger spatial scale of marsh habitat patches, which is on the order 

of hectares rather than within 1-m2 plots that were examined in this study (Greenlaw and 

Rising 1994; DiQuinzio et al. 2001; KJR unpub. data). 

The fifth and final alternative hypothesis described by Refsnider and Janzen 

(2010) is that oviposition site can maximize fitness via female survival.  We cannot 

conduct a survival analysis with only two years of data, and we observed too few females 

that nested in both years of this study to make any inferences about female survival based 

on species (2 within the saltmarsh sparrow plumage limit, 1 Nelson’s sparrow, and 2 

apparent hybrids).  However, we also conducted systematic mist-netting at these study 

sites for another project, and we detected similar proportions of saltmarsh and Nelson’s 

sparrow females captured in 2012 that returned in 2013 (8.7% of Nelson’s sparrow 

females, 5.5% of saltmarsh sparrow females; KJR unpub. data).  Additionally, adult 

survival estimates calculated from systematic mist-netting at these and additional sites 

demonstrated that saltmarsh and Nelson’s sparrow females exhibit equivalent adult 

survival rates across northern New England (CR Field unpub. data).  Moreover, Sillett 

and Holmes (2002) observed that monthly rates of mortality were fifteen times greater 

during migration months than in the breeding season for another songbird species.  While 
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oviposition site may influence female survival in sharp-tailed sparrows, in these and 

many songbirds, adult mortality related to oviposition site is likely small relative to 

migration-related mortality.  Nonetheless, future studies should include explicit tests for 

female survival and more robust estimates of fecundity that include juvenile survival. 

Despite the limitations of our study, our findings are consistent with the 

hypothesis that neutral processes have shaped or currently maintain species-level 

differences in oviposition preference.  The two sharp-tailed sparrow species in 

Scarborough Marsh share evolutionary history, sympatric habitat, a unique mating 

system, and developmental constraints, and thus we can reject many mechanisms for 

adaptive divergence.  We are left with drift as a likely driver of the maintenance of the 

observed divergence between saltmarsh and Nelson’s sparrow oviposition preferences.  

The possibility that either species currently exhibits an oviposition preference that arose 

through adaptive selection elsewhere in space or time is impossible to eliminate.  At the 

very least, we can conclude that the current divergence in saltmarsh and Nelson’s 

sparrow oviposition preferences is maintained without strong selection in sympatry.  

Should these traits become important for reproductive isolation between the species in the 

future, that outcome will have been shaped at least partly by periods of neutral evolution. 

These results challenge the often-assumed paradigm that traits, particularly those 

related to survival, fecundity, and reproductive isolation, are optimized.  In light of these 

and other similar findings, researchers should explicitly measure the fecundity 

consequences of variation in oviposition preferences.  In particular, wildlife managers 

should consider that observed preferences and behaviors in wildlife are not necessarily 

adaptive when planning for conservation action such as habitat restoration.  Otherwise, 
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they may take conservation action that while based on observed habitat use, will not 

result in increased population growth. 

Our results suggest that, as with all traits, oviposition preference can vary 

neutrally and is perhaps a work in progress.  Oviposition preference is not perfectly 

optimized to the environment, nor is it without superfluity.  This standing variation in 

oviposition preference, which exists not just at the individual but at the population level, 

provides fodder for divergence and ultimately could increase the probability of ecological 

speciation.  More research should address how common neutral variation in oviposition 

preferences is in nature, and its relative importance in the speciation process. 
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Appendix A – Chapter 1: Study plots and associated covariate information 

Table A.1. Study plots and associated covariate information. 
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Oyster Creek NJ 39.5 -74.4 Atlantic City, 
NJ 1.60 Atlantic 

City, NJ 1.47 Atlantic 
City, NJ 4.63 

Mullica 
Wilderness NJ 39.5 -74.4 Atlantic City, 

NJ 1.60 Atlantic 
City, NJ 1.47 Atlantic 

City, NJ 4.63 

AT&T NJ 39.7 -74.2 Atlantic City, 
NJ 1.60 Atlantic 

City, NJ 1.47 Atlantic 
City, NJ 4.63 

Four Sparrow 
Marsh1 NY 40.6 -73.9 Sandy Hook, 

NJ 1.64 Sandy 
Hook, NJ 2.06 Sandy 

Hook, NJ 4.19 

Sawmill 
Creek1 NY 40.6 -74.2 

Bergen Point 
West Reach, 
NY 

1.65 The Battery, 
NY 1.68 The Battery, 

NY 3.47 

Marine 
Nature Park1 NY 40.6 -73.6 Sandy Hook, 

NJ 1.64 Sandy 
Hook, NJ 2.06 Sandy 

Hook, NJ 4.19 

Idlewild1 NY 40.7 -73.8 Sandy Hook, 
NJ 1.64 Sandy 

Hook, NJ 2.06 Sandy 
Hook, NJ 4.19 

East River CT 41.3 -72.7 New Haven, 
CT 2.50 Bridgeport, 

CT 1.65 New 
London, CT 3.53 

Hammonasset CT 41.3 -72.5 New Haven, 
CT 2.50 New 

London, CT 1.89 New 
London, CT 3.53 

Pattagansett CT 41.3 -72.2 New London, 
CT 1.50 New 

London, CT 1.89 New 
London, CT 3.53 

Waterford CT 41.3 -72.1 New London, 
CT 1.50 New 

London, CT 1.89 New 
London, CT 3.53 

Barn Island CT 41.3 -71.9 New London, 
CT 1.50 New 

London, CT 1.89 New 
London, CT 3.53 

John H. 
Chaffee RI 41.4 -71.5 Newport, RI 1.44 Newport, RI 1.84 New 

London, CT 3.53 

Sachuest 
Point RI 41.5 -71.2 Newport, RI 1.44 Newport, RI 1.84 New 

London, CT 3.53 

Parker River MA 42.8 -70.8 Fort Point, NH 2.27 Seavey 
Island, ME 1.14 Boston, MA 2.88 

Chapman's 
Landing NH 43.0 -70.9 Fort Point, NH 2.27 Seavey 

Island, ME 1.14 Portland, 
ME 0.94 

Lubberland 
Creek NH 43.1 -70.9 Fort Point, NH 2.27 Seavey 

Island, ME 1.14 Portland, 
ME 0.94 

Eldridge 
Road ME 43.3 -70.6 Wells, ME 2.41 Seavey 

Island, ME 1.14 Portland, 
ME 0.94 

Little River ME 43.3 -70.5 Wells, ME 2.41 Seavey 
Island, ME 1.14 Portland, 

ME 0.94 

Jones Creek ME 43.5 -70.4 Portland, ME 2.46 Portland, 
ME 1.23 Portland, 

ME 0.94 

Nonesuch 
River ME 43.6 -70.3 Portland, ME 2.46 Portland, 

ME 1.23 Portland, 
ME 0.94 

Libby River ME 43.6 -70.3 Portland, ME 2.46 Portland, 
ME 1.23 Portland, 

ME 0.94 

Scarborough 
River ME 43.6 -70.4 Portland, ME 2.46 Portland, 

ME 1.23 Portland, 
ME 0.94 
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Appendix B – Chapter 1: Model Comparisons 

Table B.1. Model selection for daily nest depredation probability.  Latitude most 
parsimoniously predicted nest depredation probability. 

Predictors of nest 
depredation 

Predictors of nest 
flooding AICc ΔAICc weight 

latitude intercept-only 2996.59 0 0.57 
latitude + serial date intercept-only 2997.18 0.59 0.43 
intercept-only intercept-only 3017.74 21.15 <0.01 
serial date intercept-only 3019.74 23.15 <0.01 
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Table B.2. Model selection for daily nest flooding probability.  An additive combination 
of maximum high tide, exceedance value, and serial date were selected as the most 
parsimonious model of nest flooding probability. 

Predictors of 
nest depredation Predictors of nest flooding AICc ΔAICc weight 
intercept-only maximum high tide + 1% exceedance value + serial  date 2988.25 0 0.35 
intercept-only latitude + maximum high tide + 1% exceedance value + serial date 2989.20 0.95 0.22 

intercept-only maximum high tide + sea level rise rate + 1% exceedance value + 
serial date 2989.53 1.29 0.18 

intercept-only latitude + 1% exceedance value + serial date 2991.09 2.84 0.08 

intercept-only latitude + maximum high tide + sea level rise rate + serial date+ 1% 
exceedance value  2991.19 2.94 0.08 

intercept-only sea level rise rate + 1% exceedance value + serial date 2992.64 4.39 0.04 
intercept-only latitude + sea level rise rate + 1% exceedance value + serial date 2993.03 4.79 0.03 
intercept-only 1% exceedance value + serial date 2996.30 8.05 0.01 
intercept-only maximum high tide + 1% exceedance value  3002.21 13.97 <0.01 
intercept-only maximum high tide + sea level rise rate + serial date 3002.40 14.15 <0.01 
intercept-only latitude + maximum high tide + sea level rise rate + serial date 3003.43 15.18 <0.01 
intercept-only latitude + maximum high tide + 1% exceedance value  3004.14 15.89 <0.01 
intercept-only maximum high tide + sea level rise rate + 1% exceedance value  3004.21 15.97 <0.01 
intercept-only latitude + maximum high tide + serial date 3005.09 16.84 <0.01 
intercept-only latitude + 1% exceedance value  3005.15 16.91 <0.01 
intercept-only latitude + sea level rise rate + serial date 3005.35 17.10 <0.01 
intercept-only serial date 3005.86 17.61 <0.01 
intercept-only 1% exceedance value  3005.90 17.66 <0.01 

intercept-only latitude + maximum high tide + sea level rise rate + 1% exceedance 
value  3005.91 17.66 <0.01 

intercept-only maximum high tide + serial date 3006.17 17.93 <0.01 
intercept-only sea level rise rate + 1% exceedance value  3006.20 17.95 <0.01 
intercept-only latitude + sea level rise rate + 1% exceedance value  3006.81 18.56 <0.01 
intercept-only sea level rise rate + serial date 3007.15 18.90 <0.01 
intercept-only latitude + serial date 3007.83 19.58 <0.01 
intercept-only maximum high tide + sea level rise rate  3013.02 24.77 <0.01 
intercept-only latitude + maximum high tide + sea level rise rate  3014.20 25.95 <0.01 
intercept-only latitude + sea level rise rate  3015.25 27.01 <0.01 
intercept-only sea level rise rate  3016.36 28.12 <0.01 
intercept-only latitude + maximum high tide  3016.38 28.13 <0.01 
intercept-only intercept-only 3017.74 29.50 <0.01 
intercept-only latitude  3018.26 30.01 <0.01 
intercept-only maximum high tide  3019.63 31.39 <0.01 
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Table B.3. Best combined model.  The combined model performed better than the top 
models for either nest depredation probability or nest flooding probability. 

Predictors of 
nest depredation Predictors of nest flooding AICc ΔAICc weight 
latitude maximum high tide + 1% exceedance value + serial  date 2967.73 0 1 

intercept-only maximum high tide + 1% exceedance value + serial  date 2988.25 20.52 <0.01 

latitude intercept-only 2996.59 28.86 <0.01 

intercept-only intercept-only 3017.74 50.02 <0.01 
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Appendix C – Chapter 1: Saltmarsh Habitat and Avian Research Program 

(SHARP) Nest Protocols 

Saltmarsh Habitat and Avian Research Program Nest Protocols 

Available online at www.tidalmarshbirds.org 

 

6.3.1. Nest searching 

Formal nest searches should be conducted as frequently as possible, but not so 

frequently as to cause detrimental disturbance to the birds.  At a minimum, plots should 

be comprehensively searched at least once per week throughout the breeding season.  

When nest searching, the procedure is simply to walk back and forth in a zigzag fashion, 

with each path ~5-10 m from the previous one.  Look carefully for behavioral cues, 

particularly birds that flush within 15 meters of you as you walk.  Also watch for 

repeated flushes from the same spot, noticing when birds are carrying food (your 

impression will be of a decidedly "front-heavy" bird, because of the bits of prey sticking 

out of the bill) or fecal sacs (gleaming white).  There is also an indescribable element 

involved with finding nests that just comes with experience.  Your best bet is to go out 

with someone who has found some nests and look at where the nests are.  Most people 

get quite good at finding nests quite quickly, though no one ever believes that they will.  

Finally, always pay attention for behavioral cues and opportunistically nest search at all 

times on the plot (e.g. while conducting nest checks, vegetation surveys). 

 

 

 

http://www.tidalmarshbirds.org/
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6.3.2. Marking nests 

Once nests have been found, they should be marked with flags and the geographic 

coordinates taken directly over the nest recorded with a geographic positioning system 

device.  A nest card should be filled out right away, and it is usually helpful to draw a 

small map of the immediate area on the back of the card, in order to help re-find the nest 

on subsequent visits (especially if it is not you who will be coming back).  The types of 

thing worth marking on the map include the relative position within the plot, location of 

nearby ditches or pools, any boundaries between vegetation types (e.g., the border of a 

patch of Juncus sp.), etc. 

We avoid putting flags right next to nests so as not to alert predators to the nest’s 

location.  Instead, use one of these methods; (a) place a flag ~5 m (5 strides) away, such 

that the nest lies on a line between the flag and some easily identified marker (e.g., an 

osprey platform or plot boundary marker), (b) if there is no suitable marker, put out two 

flags each ~5 m away from the nest, such that the nest lies directly between them, or (c) 

use a standard compass bearing to set the line between the flag and the nest.  For any 

particular research group it is a good idea to make the convention consistent. 

 

6.3.2.1. Nest numbering 

To make it easier to combine data sets from different research groups, we will all 

use a common nest numbering system.  Each nest should be given a number that consists 

of (1) the two letter study plot code, (2) the last two digits of the year, (3) the 4-letter 

banding code denoting the species, and (4) three numbers denoting the Nth nest found 

that year, so that numbers take the form: ZZYYXXXX###, where ZZ is the two-letter 
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code for the study plot where the nest occurred, YY denotes the year, XXXX is the 

species code, and ### is the nest number. 

Within each research group, all nests are numbered sequentially, without regard to 

species.  For example, if the first three nests found in Connecticut in 2011 were a 

saltmarsh sparrow at Barn Island, a willet at Hammonasset, and another saltmarsh 

sparrow at East River, they would be numbered BI11SALS001, HM11WILL002, 

ER11SALS003. 

If multiple field teams are working in the same area in the same year, or if people 

are working separately during nest searching, then each should be designated a separate 

set of numbers to use, so as to ensure that no number is used twice.  For example, one 

person could take numbers starting from ZZYYXXXX001, while another takes numbers 

starting from ZZYYXXXX201. 

 

6.3.2.2. Under-construction nests 

For nests found without eggs, usually via a female flush during the construction 

phase, mark them as you would an active nest with a stake flag.  Record the date found 

and the location using geographic coordinates for each nest found under construction on a 

new nest card. 

To prevent disturbance that could lead a female to abandon her nesting attempt 

during the construction stage, do not revisit under-construction nest until at least 5 days 

after discovery when it might have eggs.  In the meantime, stay away from the nest as 

much as possible; ideally leave an approximately 50m buffer, although the presence of 

other nests that need monitoring may influence the buffer radius).  To this end, you might 
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find it useful to mark the flag differently, such as with colored flagging that denotes 

“under construction” so the area can be avoided at a distance. 

If an under-construction nest has eggs on a subsequent visit, assign it a unique 

number and open a new nest card for it if you haven’t already.  If the nest never has eggs 

on subsequent visits, be sure you recorded the date of discovery and geographic 

coordinates, and then remove the flag after a few weeks. 

 

6.3.3. Nest monitoring 

Nests should be visited every 3-4 days after finding to track nest contents.  Three 

days is preferred for use in the fecundity model required by a SHARP deliverable.  Nest 

visits should be brief and every attempt should be made to minimize disturbance.  If you 

can see into the nest and count contents without getting right up close, then do so 

(carrying a narrow bamboo stick can be helpful as it allows you to part the vegetation 

without getting right up next to the nest).  If nestlings are present, make note of physical 

features indicating their approximate age (feather development, body size, open eyes).  If 

any eggs or nestlings are seen outside of the nest (especially after a flooding event), make 

note of that. 

If any eggs or chicks are missing since your last visit, make a thorough search of 

the area around the nest to see if there are drowned chicks, or eggs that have floated out.  

If a nest appears to have flooded and has lost an egg or two, continue monitoring with 

nest checks at the normal intervals, because females will persist in incubation and the 

remaining eggs often hatch.  If a nest with chicks appears to be empty, but it is too soon 
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for them to fledge, also keep monitoring, because young chicks can climb out of nests 

and hide in the surrounding vegetation.  Make sure to check where you put your feet. 

Details of each visit should be recorded on the appropriate nest record card (see 

below).  When nest contents have gone missing, it is important to provide as much detail 

as possible, both about what you do see and what you do not (e.g., broken egg shell, 

chewed body parts, any nest damage, nest empty but dry, etc.)  Information about other 

nests lost in the same area and timeframe can be especially helpful to record, although the 

fate of one nest should not be simply inferred from the fate of others.  All of this 

information will be used to assign nest fates at a later date. 

 

6.3.4. Nest cards 

Whenever you go out in the field, carry a batch of blank nest cards so that you can 

fill in basic information when you first find a nest.  When doing a series of nest checks, 

take the relevant nest cards with you so that you (a) have a map and directions to the nest, 

(b) know the conditions on the last visit, which can sometimes help explain what you 

find, and (c) can fill the information in directly to avoid transcription errors later on.  Nest 

cards should be printed on fairly stiff card stock or Rite in the Rain paper so that they can 

withstand some abuse, but remember that these are primary data so take care not to get 

them wet, muddy, etc. 

 

6.3.4.1. General nest info 

Fill in the top section with the appropriate information about the nest and study 

plot when you first find the nest.  Use the nest numbering system described above.  
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Record the geographic coordinates of each nest using a geographic positioning system 

device.  Record the band number of the associated female if she is trapped off of the nest.  

As noted previously, sketch a map of the nest location on the back of the nest card to 

assist finding the nest on subsequent nest checks. 

 

6.3.4.1. Individual visit info 

For each nest visit, the nest card has places where you should note: 

• date and time of nest visit, observer initials 

• the number of eggs and chicks in the nest, 

• whether the nest bowl is wet (i.e. from flooding), 

• whether eggs were warm or not (lightly touch them in the nest to check), 

• the age of any chicks (estimated from the Nestling Aging SOP, available 

on SHARP website: www.tidalmarshbirds.org), 

• whether any dead eggs or chicks were collected, 

• whether a female was seen to flush as you approached the nest, 

• how far you were from the nest when the female flushed, 

• whether the female called (also known as ‘chipping’) at you as you 

approached the nest, 

• how far you were from the nest (NOT the female) when mobbing began. 

There is also a column for nest status on each visit (e.g., partially failed due to 

flooding, completely failed due to depredation).  Codes for use in this column are in the 

margin on the right of the card.  Assigning codes is not always straightforward and a full 

assessment may not be possible until after the nest has completed.  During the nest visits, 
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however, simply assign the code that you think most accurately reflects the nests’ status 

for the period since the previous visit.  Criteria for each status are described below. 

In the “Notes” space below each visit’s row of boxes you can describe any 

changes in the nest’s integrity (e.g., pulled apart by a predator), whether the nest appears 

damp (e.g., due to flooding), whether and how many dead eggs/chicks were found, and 

any other information that may help assign a fate to the nest. 

 

6.3.5. Nest fate assignment 

To minimize variation in how fates are assigned, nest fates should be completed 

by the graduate student responsible for each study plot (in consultation with others, as 

necessary).  Described below are nest fate assignment rules, which should be followed 

closely to ensure consistency across individuals. 

Ultimate nest fates relate to the factor that determined the “completion” of the 

nest, and is measured according to mutually exclusive categories.  In other words it is the 

fate that relates to the last individual(s) in a nest. 

• If any individual fledges, then the nest would be assigned an ultimate fate 

of “Fledged” (=“successful”). 

• If no individual fledges, then the nest would be assigned an ultimate fate 

of “flooded”, “depredated”, or “failed, unknown cause” (all of which = 

“unsuccessful”). 

• In cases of conflicting evidence, specifically both nest flooding and nest 

depredation evidence, nest fate is considered “completely failed, unknown 

cause”. 
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• If it is not certain whether any individuals fledge, then the nest would be 

assigned an ultimate fate of “unknown fate”. 

 Nest fate assignment requires tracking the nestling period of each nest that 

hatches to determine if missing chicks were old enough to fledge.  Although eggs are laid 

a day apart, most species (including sparrows, shorebirds, ducks) will not start incubating 

until the clutch is complete.  This means that the eggs will usually hatch on the same day.  

Our conventions are that the first day of the complete clutch is considered the first day 

(day 1) of incubation, and that the day on which eggs hatch is considered day 0 of the 

nestling phase (i.e., nestlings are considered 1 day old on the day after hatching occurs).  

Incubation lasts approximately 12 days for saltmarsh sparrows, and the last day of 

incubation is also hatch day when the chicks are aged 0 days.  Nestlings usually fledge 

after 10 days, when they are aged 9 days with our hatch day = 0 days old convention 

(Greenlaw and Rising 1994).  In summary, the entire brooding cycle proceeds as follows.  

Egg-laying: 1-5 days; incubation: approximately 12 days (last day is hatch day when 

chicks are 0 days old); nestling phase: typically 10 days, between 9 and 13 days. 

 

6.3.6. Nest fate assignment key 

Below is a dichotomous key for nest fate classification.  Apply these rules to the 

ultimate fate of the nest, as defined as the fate of the last egg or chick surviving within 

the nest.  For example, though a nest may lose an egg to flooding during incubation but 

the remaining eggs hatch and the chicks fledge, the ultimate nest fate is  
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1 - At previous visit, chicks were 9+ days old (5) 

1 - At previous visit, chicks were <9 days old (2) 

 

2 - At current visit, chicks would be 9+ days old (8)* 

2' - At current visit, chicks would be < 8 days old (13)* 

2'' - At current visit, chicks would be 8 days old (17)* 

 

5 - Spring tide or heavy rainfall occurred since previous visit (6) 

5' - No spring tide or heavy rainfall occurred since previous visit (7) 

 

6 - Evidence of flooding (flooded) 

− the nest is observed underwater during a high tide and a subsequent nest check 

confirms that the nest is missing contents 

− the nest is found with intact eggs outside the nest 

− the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently 

hatch 

− the nest is found with intact dead chicks in, or close to, the nest 

− the nest is found with barely-alive nestlings 

− the nest is found to be empty and soaking wet immediately (next day) after a high tide, 

was known to have been active immediately prior to the high tide, and there are no signs 

of depredation (see 7 for criteria required to assign depredation) 

6' - No evidence of flooding (7) 

6’’ – Evidence of flooding and depredation (failed, unknown cause) 
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7 - Evidence of depredation (depredated) 

− the nest is found with its structure pulled apart 

− the nest is found with obvious depredation remains 

− dead chicks or eggs are found with injuries that likely resulted in death 

− the nest is found empty, or with partial loss, on a day when the tides could not have 

accounted for the losses 

7' - No evidence of depredation (fledged) 

 

8 - No eggs/chicks missing, cold, or past hatch date (active) 

8' - At least one egg/chick missing, cold, or past hatch date (9) 

 

9 - Spring tide or heavy rainfall occurred since previous visit (10) 

9' - No spring tide or heavy rainfall occurred since previous visit (11) 

 

10 - Evidence of flooding (flooded) 

− the nest is observed underwater during a high tide and a subsequent nest check 

confirms that the nest is missing contents 

− the nest is found with intact eggs outside the nest 

− the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently 

hatch 

− the nest is found with intact dead chicks in, or close to, the nest 

− the nest is found with barely-alive nestlings 
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− the nest is found to be empty and soaking wet immediately (next day) after a high tide, 

was known to have been active immediately prior to the high tide, and there are no signs 

of depredation (see 7 for criteria required to assign depredation) 

10' - No evidence of flooding (11) 

10’’ – Evidence of flooding and depredation (failed, unknown cause) 

 

11 - Evidence of depredation (depredated) 

− the nest is found with its structure pulled apart 

− the nest is found with obvious depredation remains 

− dead chicks or eggs are found with injuries that likely resulted in death 

− the nest is found empty, or with partial loss, on a day when the tides could not have 

accounted for the losses 

11' - No evidence of depredation (12) 

 

12 - Nest intact, well worn, may have droppings in the nest or immediately adjacent 

(fledged) 

12' - Conflicting evidence (unknown if successful or failed) 

 

13 - No eggs/chicks missing, cold, or past hatch date (active) 

13' - At least one egg/chick missing, cold, or past hatch date (14) 

 

14 - Spring tide or heavy rainfall occurred since previous visit (15) 

14' - No spring tide or heavy rainfall occurred since previous visit (16) 
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15 - Evidence of flooding (flooded) 

− the nest is observed underwater during a high tide and a subsequent nest check 

confirms that the nest is missing contents 

− the nest is found with intact eggs outside the nest 

− the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently 

hatch 

− the nest is found with intact dead chicks in, or close to, the nest 

− the nest is found with barely-alive nestlings 

− the nest is found to be empty and soaking wet immediately (next day) after a high tide, 

was known to have been active immediately prior to the high tide, and there are no signs 

of depredation (see 7 for criteria required to assign depredation) 

15' - No evidence of flooding (16) 

15’’ – Evidence of flooding and depredation (failed, unknown cause) 

 

16 - Evidence of depredation (depredated) 

− the nest is found with its structure pulled apart 

− the nest is found with obvious depredation remains 

− dead chicks or eggs are found with injuries that likely resulted in death 

− the nest is found empty, or with partial loss, on a day when the tides could not have 

accounted for the losses 

16' - No evidence of depredation (failure, unknown cause) 
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17 - No eggs/chicks missing, cold, or past hatch date (active) 

17' - At least one egg/chick missing, cold, or past hatch date (18) 

 

18 - Spring tide or heavy rainfall occurred since previous visit (19) 

18' - No spring tide or heavy rainfall occurred since previous visit (20) 

 

19 - Evidence of flooding (flooded) 

− the nest is observed underwater during a high tide and a subsequent nest check 

confirms that the nest is missing contents 

− the nest is found with intact eggs outside the nest 

− the nest is found with intact cold or dirty eggs in the nest, and eggs do not subsequently 

hatch 

− the nest is found with intact dead chicks in, or close to, the nest 

− the nest is found with barely-alive nestlings 

− the nest is found to be empty and soaking wet immediately (next day) after a high tide, 

was known to have been active immediately prior to the high tide, and there are no signs 

of depredation (see 7 for criteria required to assign depredation) 

20' - No evidence of flooding (19) 

20’’ – Evidence of flooding and depredation (failed, unknown cause) 

 

20 - Evidence of depredation (depredated) 

− the nest is found with its structure pulled apart 

− the nest is found with obvious depredation remains 
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− dead chicks or eggs are found with injuries that likely resulted in death 

− the nest is found empty, or with partial loss, on a day when the tides could not have 

accounted for the losses 

20' - No evidence of depredation (unknown if successful or failed) 

 

6.3.7. Nest and visit censoring 

For nest survival analysis (e.g. logistic exposure), nest monitoring data must be 

censored to eliminate known biases.  For example, if nestlings could have fledged on a 

given visit date (chicks were 9+ days old, in the case of saltmarsh sparrows) and their 

nest is found empty, the visit must be removed.  In this case, the nest is assumed to be 

fledged while it may have failed after the previous visit with no evidence of failure left.  

By removing the final visit when the nestlings could have fledged, the potential positive 

bias is eliminated and all previous visits contribute to survival estimates.  See Shaffer 

(2004) for discussion of this issue and an illustrative example. 

 Data that must be censored from nest monitoring before deriving survival 

estimates and the known problems they introduce: 

• Nests that were found after failure – Even when evidence of cause of failure is 

available at the nest site, the timing of failure is not known and therefore the nest 

cannot be included. 

• Nest visits when nestlings could have fledged, specifically nests with chicks that 

would be 9+ days old – See above.  We also exclude nest visits when nestlings 

were 8 days old because previous research suggests that at 8 days (with hatch day 

= day 0), nestlings may fledge though it is rare (Greenlaw and Rising 1994).  To 
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correct nest visits when chicks were 8 days old, remove the final nest visit and 

change the ultimate nest fate from “unknown if fledged or failed” to “fledged”, 

which allows the nest to contribute to daily survival probabilities without 

introducing bias. 

• Nest visits when the nest was already inactive on the previous visit – Note that, in 

the field it is best to be conservative (continue to visit a nest until you are sure it 

has failed); however, this practice results in nests that were visited more than once 

after failure.  Left unchanged, these additional visits can result in erroneous 

assigned times of failure and exposure intervals. 

• Nest visits that are 6 or more days after the previous visit - We restrict our 

analyses to nests visited more frequently to limit uncertainty in nest fate 

assignment and the timing of nest completion. 
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Appendix D – Chapter 4: Comparison of vegetation characteristics of randomly 

selected points and saltmarsh sparrow nests 
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