3-2007

The University of Maine Historic Preservation Master Plan

SMRT Architects Engineers Planners

Carol R. Johnson & Associates Landscape Architects

Turk, Tracey & Larry Architects

University of Maine

Follow this and additional works at: https://digitalcommons.library.umaine.edu/univ_publications

Part of the Higher Education Commons, and the History Commons

This Plan is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in General University of Maine Publications by an authorized administrator of DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu.
The University of Maine
Historic Preservation Master Plan

March 2007

Prepared for The University of Maine by
SMRT Architects Engineers Planners
leading the following project team:

SMRT Architects Engineers Planners
Malcolm Collins
Scott Benson
Andrew Bradley
Jon Perruzzi
David Reinheimer
Laurie Warhol

Carol R. Johnson & Associates Landscape Architects
Jennifer Jones
Ruth Loetterle
Alison Amherst

Turk Tracey & Larry Architects
John Turk
Geoffrey Melhuish

The University of Maine
Martha McNamara
Sara Martin
Anu Dudley
Valerie Mitchell
THE UNIVERSITY OF MAINE
HISTORIC PRESERVATION MASTER PLAN

TABLE OF CONTENTS

March 2007

I. Acknowledgements

II. Introduction

III. A Brief History of the University of Maine at Orono Campus

IV. The Historic Architecture of the University of Maine Campus
 A. Introduction
 B. Tier One Buildings
 C. Tier Two Buildings
 D. Tier Three Buildings
 E. General Architectural Guidelines for Capital Improvements to Historic Buildings
 F. Maintenance Plan and Practices for Historic Buildings

V. The Historic Landscapes of the University of Maine Campus
 A. Introduction
 B. A History of the Campus Landscape
 C. Analysis of Existing Conditions
 D. Design Guidelines and Recommendations

VI. Recognition and Designation
 A. Summary of Findings
 B. Recommendations for Recognition, Designation and Boundaries

VII. Implementation: Protection and Process
 A. Preservation Policies and Procedures
 B. Education and Training
 C. Implementation

VIII. Appendices
 A. Maine Historic Preservation Commission Survey Forms
 B. Tier Two Candidate Building Inventory Forms
 C. National Register of Historic Places Inventory-Nomination Forms
The University of Maine and the Historic Preservation Master Plan project team thank the Getty Foundation for providing the major funding for this project through the Campus Heritage Grants Program.

The Getty Foundation’s Campus Heritage Grants are designed to support the efforts of colleges and universities throughout the United States to understand and preserve the unique historic resources of their campuses. Since the program began in 2002, the Getty Foundation has funded preservation projects at 71 colleges and universities from Alaska to Florida and Maine to California. The grant to the University of Maine for the Historic Preservation Master Plan was one of 25 awarded in 2004.

Further information about the Getty Foundation and the Campus Heritage Grants Program can be found at www.getty.edu/grants.
II. Introduction

University campuses maintain a unique spot in our imagination. Linked to nostalgia for youth, they follow us in memory and their physical aspects, particularly those that are most imageable, come to stand for the whole. Images of the campus stay with us on our life’s journey and are thereby broadcast throughout the world.¹

When the first students, thirteen men, arrived at the Maine State College of Agriculture and the Mechanic Arts in the fall of 1868, they found one new structure built expressly for the college, and two farmhouses and attendant agricultural buildings available for their use. Founded in 1865 with funding from the Morrill Land Grant College Act of 1862, the institution grew from those few buildings along the banks of the Stillwater River in Orono, Maine, to today’s University of Maine with 600 acres, 183 buildings, and more than 11,400 women and men enrolled in graduate and undergraduate programs.

From its founding until about 1910, campus development consisted primarily of academic buildings that faced the Stillwater River across a rolling open lawn down to College Avenue, which had been the focus of landscape architect Frederick Law Olmsted’s first plan for the new campus.

¹ The first sentence in this paragraph is a modified version of a sentence from the original text.
During this time, some original buildings were lost and eleven new campus buildings were constructed. All eleven remain standing today, most looking much as they did when built. They form the core of the campus and all but one constitute the ten designated buildings of the University of Maine at Orono National Register Historic District. Two other early buildings outside the District have been individually listed on the National Register.

From the 1910s through the years following World War II, the campus expanded to the east, behind the historic core and away from the river onto agricultural land. In 1932, the University retained Frederick Law Olmsted’s successor firm, Olmsted Brothers, to provide a new campus plan. The landscape architects oversaw the creation of a campus mall as the organizing centerpiece of new academic building construction for the next twenty years. During this period, about a dozen buildings, including such major campus landmarks as the Memorial Gymnasium and Field House and the Fogler Library, were constructed on or near the Mall. Enrollment was well over 2,000 students by the end of this period.

The University grew rapidly following the end of World War II, with the influx of veterans seeking higher education under the “G. I. Bill.” Several new residence halls and academic buildings were constructed through the early 1950s. These early modern buildings were located around the periphery of the Mall as the University continued to expand outward from the campus core.
Preservation on the University Campus

As the flagship of the University of Maine system, the Orono campus represents the historic heart of higher education in Maine. It also stands as the physical embodiment of the relationship of alumni to the University. The core campus landscape and buildings are among the most intact of those of any land grant university. However, it cannot be said that the buildings and grounds are well preserved. Historic preservation has not been a high priority, or even a movement, until quite recently. The fact that almost all of the significant original buildings of the early growth period of the institution are still in place and relatively unchanged is more a function of the lack of resources to renovate or replace them than of a concerted effort to preserve them. With a few exceptions, the buildings and landscapes within the National Register Historic District are in need of rehabilitation and restoration.

The initial general recognition of the value and importance of the core Orono campus came with the nomination of the University of Maine at Orono Historic District to the National Register of Historic Places in 1978. Two additional individual University properties were added to the National Register in subsequent years: the Maine Experiment Station Barn (Page Farm Barn) in 1990, and the Edith Marion Patch House in 2001.
Not much was made of this designation at the time, as there was little activity, other than some interior renovation projects, relating to the contributing buildings. However, in 2001, with some University programs growing and needing additional space, pressures began to build on existing buildings, not only in the core, but around the Mall as well. A proposal to remove a large and graceful elm tree that possibly pre-dated the campus generated widespread concern among faculty, students and alumni about the University’s historic landscapes and buildings. This concern led to a redesign of additions to Hitchner Hall that would have replaced the tree, and it was subsequently dedicated as the “Campana Elm” in honor of University professor Dr. Richard Campana for his path-breaking work on plant pathogens including “Dutch Elm Disease.” Four years earlier, University faculty and members of the local community had also rallied to oppose the destruction of the Edith Marion Patch House located one-half mile from campus, on College Avenue.
The fact that there was no process in place to afford an informed review of development projects affecting existing buildings on the University campus caused those concerned with historic preservation at the University to begin a dialogue with the administration and the Maine Historic Preservation Commission (MHPC). The result was the University of Maine Architectural Survey, begun in 2001 and completed in 2002. Dr. Martha McNamara, Associate Professor, Department of History, supervised the project. Sara K. Martin, a local architectural historian and University of Maine alumna, conducted the survey, inventorying all buildings dating from before 1952, and documenting 66 buildings on the Orono campus. (Both Dr. McNamara and Ms. Martin are members of the Preservation Plan project team.) The MHPC and the University of Maine Facilities Management Department were also involved in the project.

The survey revealed that two structures possibly faced the threat of demolition at the time: Crossland Hall and the Machine Tool Laboratory. Both occupy prime real estate, represent important reuse issues, and remain in place today. Fortunately, the Maine Department of Environmental Protection permitting process that applies to the campus requires a Maine Historic Preservation Commission review of development proposals, and as one of two formal review processes affecting historic resources on the campus, it is effective in promoting discussions of alternatives to demolition.

With the information contained in the completed survey, a growing historic preservation constituency began to lobby the administration for a campus master plan, with a major component to be a plan for the recognition, designation and protection of the historic buildings and landscapes of the University campus. The growth of this constituency corresponded with an increasing interest on the part of University alumni in the preservation of the significant buildings and landscape of the campus. A group of faculty members and others, with the support of the MHPC, made presentations to the senior staff to generate interest in and show the benefits of a historic preservation master plan. Acknowledging that the University should work toward the stewardship of its historic resources, the administration agreed to consider ways to allow those responsible for the development of the campus to make informed choices about the management of campus real estate.
While the survey was underway, the University formed two campus-wide committees to address planning and preservation issues. The Campus Planning Committee (CPC), established in 2001, was tasked with developing a comprehensive campus master plan. The Campus Beautification and Arboretum Committee (CBAC) was assigned the preservation and enhancement of the natural environment of the campus.

The CPC took an important step in 2003 by hiring a consulting firm to begin preparing a scope of work for a new campus master plan and, while that effort was underway, to assist with planning issues as they arose. In the fall of 2003, the consulting team learned of the Getty Grant Program Campus Heritage Grants, and suggested that the University apply for a grant to fund a preservation plan. The administration agreed that a preservation plan should be one of the first steps in the master planning process, and supported the preparation of an application for a 2004 Campus Heritage Grant. The application was successful. The report that follows presents the University of Maine Historic Preservation Master Plan.

Project Goals

The Getty Grant funds offered the University of Maine the opportunity to plan for the protection of an irreplaceable resource at an opportune time. The remarkably-intact nineteenth-century core of the University’s land grant campus was in critical need of an evaluation of the opportunities and constraints offered by its historic resources during a time of accelerating change and increasing demands on the University’s physical plant.
The oldest buildings and landscapes need to be recognized, preserved, and utilized as the unique physical and cultural resources they are. In addition, the mid-twentieth-century buildings around the campus Mall, as well as the Mall itself, are at or approaching the age when they should be evaluated for historic significance. Identified as part of the Historic Preservation Master Plan, the nineteenth-century core campus and the twentieth-century Mall will serve as the foundation for campus master planning efforts to come.

The Historic Preservation Master Plan represents the efforts of University of Maine personnel, including administrators, Facilities Management staff, faculty and students; and consulting architects, historians, and landscape architects, working closely with the CPC (and through representation on the CPC, the CBAC) and the MHPC. The University’s Board of Visitors periodically reviewed the work of the planning team and offered enthusiastic support.

The goals of the Historic Preservation Master Plan are to:

- identify and document historic resources of the core campus of the University of Maine;
- identify more recent buildings and landscapes of the University of Maine that have acquired or are expected to acquire significance in the future;
- determine and document existing conditions of these resources;
- recommend appropriate preservation treatments and uses for these resources;
- publicize and protect these resources through designation under institutional, local, state and federal historic preservation processes;
- put in place University policies and procedures that will assure adequate protection, maintenance, and appropriate use of these resources;
- use University resources to educate the University community about the importance and value of campus historic resources;
- protect the historic resources of the University in order to maintain strong ties between the institution and its alumni family; and
- provide campus planners with specific and practical information to assist them with the day-to-day management of the physical plant and with long-range development decisions.
Buildings included in the Historic Preservation Master Plan Scope. Map by Michael Hermann,Canadian-American Center
Project Scope

The preservation plan is a means to identify and evaluate the historic buildings, structures and landscapes of the University of Maine and develop procedures for their protection, enhancement and use. The plan is, therefore, comprehensive and integrated, relating the institution’s preservation efforts to campus development planning as a whole.

The plan’s focus is the core land grant campus – the buildings and landscapes of the National Register Historic District – as well as three other individual buildings outside of the district. Beyond that, the plan also addresses more recent buildings and landscapes, including the Mall and structures that were erected 50 or more years ago.

While the plan is designed to preserve and protect the historic resources of the campus, it must be used within the context of overall campus master planning. The implementation and application of the plan must take into account that the University of Maine campus is subject to constantly changing social, economic and programmatic forces. The University must evolve, responding to the strategic plan and academic mission, to financial realities, to educational, environmental and regulatory requirements, to alumni relations, and to many other influences that administrators and planners must consider. The preservation plan can best be used to inform the day-to-day routine projects and the momentous decisions that will shape the future of the University of Maine campus, and to establish a process by which the entire University
community may participate in a dialogue about the highest and best use of these resources.

Philosophy of the Plan

Those who guide the development of the University through campus planning and preservation efforts work to enable the campus as a stage set for the life of the community.

> . . . the campus is the common ground that unifies the diversity of activities in which students and faculty are engaged, and the diversity of buildings in which those activities take place. On a campus built over the years, this common ground brings order and stability to the diversity that has accompanied growth and change.²

The Historic Preservation Master Plan will institutionalize appropriate recognition and treatment of the University of Maine’s irreplaceable historic resources. Through preservation and daily use of these buildings and landscapes, we can illuminate the past, sharing knowledge and wisdom while fostering a dynamic learning environment representing the past, present and future. With these buildings and grounds in appropriate use as integral parts of the campus scene, we preserve the diversity of the culture of higher education in America.

The University community, through libraries, publications, clubs and groups, preserves the social, cultural and intellectual traditions of the University. Through the

Merrill and Colvin Halls were part of the second major growth period of the University, both having been built in a newly-developing southern precinct of the campus in the early 1930s.

implementation of the Historic Preservation Master Plan, we can preserve the physical traditions as well, to acquaint faculty, staff, students and campus visitors with the past, and to enhance their learning and working experiences.

By preserving and using the University’s historic resources to their fullest potential, we save valuable economic resources (some would call it “Yankee thrift;” others would call it “sustainable design”). Preservation activities have a proven track record with the citizens of Maine. Our elected officials will recognize our efforts and give us credit for frugality and common sense in making the best use of what we have.

The University of Maine Historic Preservation Master Plan will serve as a framework to bring experienced and thoughtful people together to apply a planning process that will enrich and sustain the University community, create a safe and welcoming environment for learning, contribute to the humanity of the campus, and create a cohesive physical setting for University life.

The preserved historic buildings and landscapes of the University of Maine will remind visitors of campus history, continuity, heritage, and tradition – all basic ingredients of a scholarly community. They will assure a rich integration of old and new, reminding the members of the University community that they are part of a dynamic institution built upon the contributions of the students, faculty and administrations of the past.

Implementing the preservation plan will require hard work and dedication but will offer great rewards. Campuses present unique challenges and opportunities. They are multiple resource, closed communities, usually controlled by a single authority. Thus there is the ability to unilaterally shape the physical campus environment.

To some extent, universities are protected from the cyclical economic, and even some social, forces that can affect historic preservation efforts in other types of communities. The University can act in its own best interests, controlling its destiny, accepting and responding to the opinions of constituent groups at whatever level it chooses. With historic preservation as an integral element of its campus planning philosophy, the University of Maine can use its control, in concert with responsiveness to the campus

Introduction

II. - 11
community, to shape future development around recognized and protected historic resources.

Architectural critic Robert Campbell recommends that we should not try to reconstruct the past, real or imagined, nor build with contempt for what is already there. New buildings should express a visible enthusiasm for the future, “. . . inventing at the edge of a tradition without losing touch with it.”

Organization and Format of the Plan

The Preservation Plan is divided into four broad components with subcategories as follows:

I. Identification: Historical Research and Documentation
 - Historical research and inventory
 - Individual buildings and structures
 - Historic contexts
 - Landscapes
 - Narrative history of the campus
 - Identification of significant and contributing resources
 - National Register criteria/eligibility

II. Evaluation: Existing Conditions, Recommendations, and Use Analyses
 - Existing conditions assessment
 - Buildings
Introduction

II. - 13

- Landscapes
- Structures
 • Recommendations for treatment
 • Building use/re-use analyses
 • Design guidelines
 - Buildings
 - Landscapes

III. Recognition and Designation
 • Validation of identification findings
 • Recommendations for designation and listing
 • Prioritization of designation changes

IV. Protection
 • Recommendations for implementation policies and procedures
 • Recommendations for training and education activities

Conclusion

For many of us, our college years are when we become most conscious of our physical environment; and for some of us, this time may be the only time when we encounter on a daily basis a setting that refers to the past. Upon leaving the campus, many of us, now alumni, worry that the surroundings we came to regard with affection and respect (if only, in some cases, after we leave) will change to the point they will not represent our memories, that our links to the campus may be altered or destroyed. Campbell

The overlay of roof lines, dormers, and arches presents a lively architectural context, while common materials - slate, brick, stone, steel, wood – provide a uniformity that can represent new as well as traditional construction.
suggests that if the campus never changes, it becomes cliché; but if it changes too quickly, it becomes unintelligible.4

Through the Historic Preservation Master Plan, we seek to preserve historic places both grand and intimate, stately national icon or quirky local landmark, along with the memories and traditions we associate with them. The result will be a cultural landscape embodying shared meanings and experiences, a physical record of a social and learning community for the enlightenment and enjoyment of future members of that community.

The past is never dead; it’s not even past.

III. History of the University of Maine Campus

Introduction

The University of Maine was founded as the Maine State College of Agriculture and Mechanic Arts in 1865, with federal funding derived from the Morrill Act of 1862. This piece of legislation granted federal land to states as a means of financing higher education in agriculture and “the mechanic arts.” Schools that were established throughout the United States with funding from the Morrill Act have therefore come to be known as “land grant” colleges and universities.¹

A site for Maine’s land grant college was chosen along the Stillwater River in Orono, Maine, and the property acquired in 1866. The campus expanded from this original site containing two farmhouses and their dependencies to a
Over the years, the Campus grew in roughly three phases. The initial phase began with the arrival of the College’s first freshman class in 1868 and extended to approximately 1915. By 1915 the campus consisted of academic buildings facing the Stillwater River and agricultural buildings for the college farm located to the east. Initially, the College’s Trustees hired the renowned landscape architect Frederick Law Olmsted to design a plan for the campus that used an open space fronting the river as its focal point. Although they never executed Olmsted’s design, the Trustees adopted many of his ideas in the early years of campus planning.

During the second phase of campus development, from the early 1920s to the end of World War II, the central campus mall became the locus for new construction. The University hired the Olmsted Brothers, Frederick Law Olmsted’s successor firm, to provide a campus plan in 1932. They proposed a campus mall, a smaller central green space for the south end of campus oriented on a north-south axis, and other landscape features. While the University’s administration implemented the plan for a mall, it decided not to incorporate many of the other Olmsted Brothers’ suggestions.

Veterans’ educational benefits following World War II launched the third phase of campus growth, accelerating construction primarily around the immediate periphery of the mall. In the following years, the University continued to expand outward from the campus core.

Nineteenth-Century Agricultural Education

The establishment of land grant colleges and universities in the United States can be traced to the late eighteenth and early nineteenth-century interest in reforming agriculture and fostering agricultural education. In the 1850s, over eighty percent of the United States’ population lived in rural areas and over sixty percent of American workers were farmers. Farm production at this time, though, was inefficient, with most farmers producing only enough crops to feed their families. To counter this trend, agricultural organizations emerged to encourage more efficient farming through educational programs and the publication of
agricultural journals. These “agricultural improvement societies” became popular in the nineteenth century; by 1861, there were over 900 societies in the United States. Their efforts to educate farmers about the latest methods for increasing farm efficiency eventually led to a concern for providing agricultural curricula in institutions of higher education.2

Early nineteenth-century colleges and universities had traditionally focused on classical education (the study of Latin, Greek, rhetoric, and oratory) for young men of means. By the mid-nineteenth century, educators, agricultural reformers, and politicians became interested in broadening college education and making it available and relevant to rural and working-class populations. In the late 1840s, the Massachusetts Agricultural Society called for state-supported agricultural education, and in 1850, Jonathan Baldwin Turner, an Illinois College professor, published a “Plan for a State University for the Industrial Classes.” About the same time, Pennsylvania, Michigan, Maryland and Iowa all established colleges of agriculture.3

In Maine, the state legislature responded to these educational reforms by founding the Gardiner Lyceum in 1823 to provide agricultural education. By the 1850s, editors of Maine agricultural journals such as William Drew, Ezekiel Holmes, and Darius Forbes, as well as the York Agricultural Society, all called for the formation of an agricultural college.4

These writers and politicians had good reason to be concerned about Maine agriculture. Like the rest of New England, Maine has a comparatively short growing season. Weather patterns in the nineteenth century were notoriously inconsistent, with frosts arriving early in the fall or late in the spring. Summer weather was often cool and damp. Moreover, the land itself is often strewn with granite boulders and much of the soil, comprised of sand, clay, and broken rock deposited by glaciers, is low in organic matter, making it relatively infertile. In the middle of the nineteenth century, Maine’s biggest crops—wheat, potatoes, and apples—had declined due to disease and poor weather. Aroostook County, which was to become the largest source of Maine potatoes, was still largely unsettled. Last, the construction of the Erie Canal made the Midwest more accessible, enticing many New England farmers to abandon unpromising farms and look for livelihoods in the

Agriculture was a mainstay of Maine’s 19th century economy. Courtesy Bangor Museum & Center for History
rich farmlands of western states. Stemming this tide of out-migration from Maine became another compelling reason for agricultural reformers to advocate broadening education to include rural and working class populations.5

Establishing the Land Grants: The Morrill Act of 1862

The efforts of nineteenth-century agricultural reformers and educators to promote a more broad-based educational system were given life when Congress passed the Morrill Act in 1862, which provided funds for the establishment of college curricula based on agriculture, the mechanic arts, and military tactics.

Vermont’s representative to Congress, Justin Morrill, introduced the first “land grant” bill in 1857. This legislation proposed granting public land to every state in the union. Income from selling this land was to be used for establishing colleges that would teach technical as well as classical subjects. The goal was to make education accessible—and worthwhile—to members of “the industrial classes.”

After a two-year battle, Morrill’s bill passed both the House and the Senate, only to be vetoed by President James Buchanan. Following the outbreak of the Civil War, Morrill introduced a second “land grant” bill that increased the acreage and included a requirement to teach military tactics. This stipulation that land grant colleges provide military training later evolved into the Reserved Officer Training Corps. Because many opponents of the first bill were congressmen from Southern states, their departure from Congress during the Civil War, along with an increased need for military training nationally, helped speed the bill’s passage. President Lincoln signed it into law on July 2, 1862.

The Morrill Act gave every state in the union 30,000 acres of public land per senator and representative in Congress. It resulted in the federal government giving grants of over seventeen million acres of land to the states, valued at approximately seven million dollars. Today there are 105 land grant colleges and universities.6

A second Morrill Act passed in 1890 allotted a greater endowment for the land grant colleges and expanded the scope of the original legislation from teaching agriculture
and the mechanic arts to providing education in all of the sciences and some of the arts. It also stipulated that states needed to provide education to citizens of all races, resulting in the establishment of sixteen African-American land grant colleges in the South. Most recently, the Elementary and Secondary Education Reauthorization Act of 1994 gave land grant status to twenty-nine Native American colleges.

The Morrill Act in Maine

A proposal to accept the Morrill funds passed the Maine legislature in March of 1863. Legislators and members of the State Board of Agriculture debated whether Maine should establish a new college or give the funds to one of the state’s older liberal arts colleges. Bowdoin College offered to use the money to establish a professorship in chemistry. This plan won the approval of a commission appointed by Governor Abner Coburn to evaluate proposals for using the land grant, but leaders in state agricultural politics, especially Ezekiel Holmes, lobbied strenuously for a separate agricultural college. These efforts finally persuaded the legislature, who voted to establish a new college in early 1865 and appointed sixteen trustees for the institution, one from each county in the state. Hannibal Hamlin of Bangor, Abraham Lincoln’s first vice president, became president of the Board of Trustees, although, like several of the Trustees, he agreed to serve only until they found a home for the college.

At the Trustees’ first meeting in April, finding a suitable site and bolstering support for the college ranked as the top priorities. To publicize the project and garner support, they penned an address laying out plans for the school and distributed it around the state to newspapers and as printed fliers and broadside posters. In this document the Trustees offered a poignant and compelling argument for providing the working men of Maine with an education: the great sacrifices endured in the Civil War. “It will be a noble memorial of this eventful year, if we now devote a generous and grateful endowment to the better education of our working young men. It is they who have won our victories, it is they who are to constitute the life of this state. They have defended our national integrity in perilous war—let us open to them the highest blessings of peace.”

The Civil War had ended just three weeks earlier, with Lee’s surrender to Grant at Appomattox Courthouse, so this
elegant plea to make education accessible to a wider segment of society undoubtedly resonated with Maine citizens.10

In addition to tugging on the state’s heartstrings, the Trustees argued that there was unmet demand for this new type of education, claiming that there were fifty thousand potential students in the state. They also articulated their vision for the college: it would be situated on a working farm; students would be required to engage in physical labor at the school; students would live in a household situation in order to receive the moral benefits of family life, and military strategy and tactics would be part of the curriculum.11

Finding a Site for Maine’s Land Grant College, 1866

Through the spring and summer of 1865, trustee committees examined four potential sites—all farms—for the college. They looked at two locations in the Topsham area and one each in Orrington and Fairfield. One of the Board’s most important requirements was that local residents raise fifty thousand dollars for the honor of having the college sited in their town. In a four-day meeting in early 1866, the Board debated the proposal of two adjacent farmsteads, the Frost and the White farms, in Orono, eight miles north of Bangor. Together the towns of Orono, Bangor and Old Town, demonstrated that they were able to raise the necessary funds. Hannibal Hamlin, a prominent member of Bangor society, no doubt used his influence to help raise the money. The Board voted eight to seven to accept the Orono site. The seven votes against the location came from representatives of counties in southern Maine, who were lobbying for a location in the southern part of the state.12

Orono, on the banks of the Penobscot and Stillwater Rivers and home to lumber mills and small manufacturing plants, had a population of just over twenty-five hundred in 1860. In the mid-nineteenth century, northern Maine’s rivers were full of lumbermen in the spring, driving logs to be cut into lumber in mill towns like Orono. The falls on the Stillwater River provided some of the best water power in the state, making for productive and profitable sawmills.13 Milled lumber was then floated further downriver or put on railroad cars to the busy port of Bangor and shipped down
the coast to growing cities as well as across the Atlantic to England, and south to the West Indies. Henry David Thoreau captured the excitement of the river drive, as well as Orono’s place in it, when he visited Maine in 1846.

All winter long the logger goes on piling up the trees … and then in the spring he stands on the bank and whistles for Rain and Thaw . . . till suddenly, with a whoop and halloo from him . . . a fair portion of his winter’s work goes scrambling down the country, followed by his faithful dogs, Thaw and Rain and Freshet and Wind, the whole pack in full cry, toward the Orono Mills.14

The Stillwater River splits off from the Penobscot River four miles north of Old Town and then bisects Orono to rejoin the Penobscot, forming Marsh Island. The Frost and White farms were located on the west side of Marsh Island, overlooking the Stillwater River. Nathan Frost and Samuel White sold their land to the town of Orono in the spring of 1866 and the town then quickly sold the farms to the Trustees of the Maine State College.15
The Frederic Law Olmsted Plan, 1866-67

In early October 1866, Samuel Boardman, editor of the Maine Farmer, an influential agricultural periodical, wrote to Frederick Law Olmsted of New York requesting a copy of a report Olmsted had prepared for the Massachusetts Agricultural College. Olmsted was well known as one of the designers of New York City’s Central Park in 1858, the first public park in the United States. He served as the park’s chief architect for five years and in 1865 established a landscape architecture firm with Calvert Vaux who had worked with him to design the park.\footnote{16}

Olmsted had also gained fame as an author of a book describing life in the Southern states before the Civil War; as Executive Secretary of the Sanitary Commission—the agency charged with providing medical care for soldiers during the Civil War; as an advocate for the establishment of Yosemite National Park in northern California; and as an editor of The Nation, a weekly periodical of national affairs. While in California, Olmsted had designed a campus for the College of California (later the University of California at Berkeley), but his plan was never fully implemented. His tenure at the Sanitary Commission and The Nation, along with his skills as a landscape architect, had prepared him well for seriously considering the issues involved in planning the grounds of the new agricultural colleges. Olmsted articulated his views about the ideal plan for land grant colleges in his 1866 report to the trustees of the Massachusetts Agricultural College, which was later published in pamphlet form. He felt strongly that the Morrill funds should not be given to older, established liberal arts colleges as endowed chairs, but rather that separate colleges should be established. He believed that grouping the students obtaining a liberal education with students following a more practically-oriented curriculum would produce an undemocratic class system. Olmsted also advocated a quasi-military structure for the land grant colleges’ campus plans and student life. These ideas stemmed from his experience trying to provide sanitary conditions and medical care to soldiers in the Union Army. In that role, he became convinced that there was a great need to prepare young men for military service.\footnote{17}

Boardman and the other Trustees of the Maine State College must have been impressed with Olmsted’s Massachusetts plan, because in November, 1866 they
invited Olmsted to visit Orono and make a plan for the college. Olmsted surveyed the site in December and prepared a written report and a plan for the campus. In his report, Olmsted outlined his theory behind the college’s plan. Besides his strong opinions about the necessity of training future military leaders, Olmsted wrote that the college should prepare students for their future lives as farmers or mechanics. “The first important study of your College will be a study of means and methods for giving a liberal education to young men without unfitting them for or disinclining them to industrial callings.” In this respect, Olmsted echoed the sentiments of those who had advocated for land-grant colleges to educate the “industrial classes,” in Maine and across the nation. In 1866, Phineas T. Barnes, editor of the Portland Advertiser, had written an influential series of articles in the Maine Farmer about how best to educate the “sons of working men” at a Maine agricultural college so that they “continue to be hand-workers.” Like Olmsted, Barnes argued that the state needed to establish a separate college rather than give the funds to one of the older liberal arts colleges. He thought this would keep young men in Maine so that they would provide the state with the farmers and mechanics it needed. Barnes wrote that the college should teach both practical and liberal arts courses. He emphasized the need for including physical labor in the curriculum, to keep the students’ minds sharp, to educate them in the labor they would be returning to once they graduated, and to keep costs low by working the college farm.

Olmsted’s proposed plan reveals that both he and the Trustees embraced this vision of the new college as essentially founded on agricultural labor. Olmsted described the property as having a flat, cleared eastern section that would be suitable for experimental fields, surrounded by pasture and woodland. The western section, closest to the Stillwater, sloped down to the river and was fairly steep in places. Because this section was not fit for farmland, Olmsted proposed that the north end be used for an orchard, the south end for an arboretum and botanic garden, and that the existing road be altered to create more room. He further suggested that the farm buildings be placed south and east of the orchard, and the academic buildings—a library, museum, laboratory, and classrooms—be centrally located between the orchard and the gardens. Olmsted also suggested that a parade ground, or green, to be used for military drills should be placed in a

Sophomore mechanic arts students, c. 1900

Phineas T. Barnes
flood plain directly east of the river. He sited workshops north of the parade ground, between the road and the river. He also suggested that the Frost farmstead become a residence for the farm superintendent, because it was closest to the proposed farm buildings and that the White farmstead could house the college’s president until a new president’s house could be built.\(^20\)

Olmsted had very specific ideas about boarding and lodging facilities for students. He thought that the students should be organized into military units in houses located near the academic buildings. As Executive Secretary of the Sanitary Commission during the Civil War, Olmsted observed that the Union’s volunteer officers had not been trained in establishing sanitary conditions or procuring proper food for their men. This ignorance had led to devastating and unnecessary loss of life. To encourage military discipline and training, therefore, Olmsted advised that lodging houses should accommodate a platoon of twenty students, including one commanding officer. He argued that these houses should be built in pairs facing each other in order to hold an entire company of forty men (women were not admitted to the college until 1872). Each
company’s boarding house, containing a kitchen, mess-room, commissary & office, sick room and study-room, would stand on the lawn behind the lodging houses. Olmsted recommended that the houses themselves should be “healthy, cheerful, convenient family homes,” surrounded by a lawn. Each platoon was responsible for its own house, including tending to the flower boxes, gardens and trellised vines Olmsted proposed. This home-like atmosphere (as opposed to dormitory life), Olmsted thought, would best prepare the students for the type of living arrangements they would most likely inhabit as adults. It would also accommodate the students’ need to live close enough to the fields to be able to earn their room and board by working on the college farm and yet remain near to the academic buildings in order to complete their coursework efficiently.21 Olmsted advised that the campus function as a small village with the buildings surrounding a proposed parade ground that would serve as the “village green.”

Early Campus Construction

Before Olmsted’s report was published in early 1867, Governor Joshua Chamberlain appointed an entirely new board of trustees for the Maine State College. This new board rejected Olmsted’s plan for the campus for financial reasons. The Maine State Legislature limited the college to constructing two buildings while Olmsted’s plan required, at the minimum, three buildings for every forty students.22 Olmsted was paid $196.00 for his plan and the treasurer of the “new Board” later asked him to donate $100 to the college upon receipt of a second bill.23

Despite their rejection of his plan, there were some key aspects of Olmsted’s work that the Trustees clearly adopted: the earliest buildings constructed for the campus faced the Stillwater River; the academic buildings roughly followed Olmsted’s recommendations; the University administration eventually planted a forest nursery on the site of Olmsted’s arboretum; and the earliest student residence was built on a domestic model rather than as a dormitory. This plan for student housing reflected a widely-held concern for properly lodging students. When accepting land grant funds, the Maine legislature stipulated that the students should be housed in family-like setting with their professors. Phineas Barnes also argued for this
type of arrangement in his fourth article about agricultural schools in the *Maine Farmer*.

The Trustees decided to build a frame building to accommodate the students—although they did not live with their professors—and a brick laboratory at the crest of the hill overlooking the Stillwater. Both buildings included classroom space. The dormitory building, White Hall, was built in 1867-68 followed by the academic building, which included chemistry laboratories on the first floor and was built of bricks manufactured on campus in 1869-70. Originally called Chemical Hall, the University administration changed the name to Fernald Hall in 1895 after the college’s first professor and second president, Merritt C. Fernald.

The college Trustees did not implement Olmsted’s recommendation for housing the first University employees. The Frost farmstead needed some repair and briefly served as the home for J. F. Gilman, who initially managed the college farm. When Merritt C. Fernald was hired as a professor of mathematics and acting president, he moved into the Frost farmstead and lived there from 1868 to 1879. Samuel Johnson became the farm superintendent—he and his wife, the college matron and dairy supervisor, were the first of several farm superintendent families to live in the White farmhouse until it was leased to the Q. T. V. Fraternity in 1889.

For the next twenty years, the Trustees constructed buildings on the campus oriented toward the Stillwater River and the public road. Academic and agricultural buildings were sited on the hill facing the river, while
residential buildings were either on the hill or on the road facing campus. Utilitarian buildings were placed wherever it was most convenient. Shortly after the construction of Chemical Hall, laborers finished a dormitory known as Brick Hall (later called Oak Hall) and a boarding house connected to it. White Hall was then converted to classroom space. When the president’s house was finally built in 1873, the Frost farmstead became faculty housing and the college built another house that same year for a professor and his family on the river side of the public road. In 1877, the college built a new farm house to accompany the college barn built four years earlier.

The year 1888 brought construction of two important buildings: Coburn Hall, for natural sciences, which also held a museum and library, and the Agricultural Experiment Station. Another piece of federal legislation, the Hatch Act of 1887, provided funds for land grant institutions to establish agricultural experiment stations, to conduct agricultural research, to publish the results, and to make recommendations to farmers in the state. The University of Maine had established an “experiment station” in 1885, two years prior to the Hatch Act, but because the funds could be used for new construction, the University built the Experiment Station building in 1888, later renamed Holmes Hall. When White Hall burned in 1890, the college replaced it with a brick building for engineering called Wingate Hall on the same site. With its elegant five-story clock tower, Wingate became the campus’ signature building.

Wingate and Fernald Halls

Maine State Campus from Stillwater River, 1890
From left: Oak Hall, White Hall, Fernald Hall, QTV (fraternity) Building, Coburn Hall, Extension Building (later Holmes Hall), President’s House, College Farm (later The Maples)
The Munson Plan

While the Trustees responded to the immediate demand for new construction, they were also foresighted enough to plan for the campus’ future. In the late nineteenth century, they instituted a plan to preserve campus green space and they funded a new campus plan. As early as 1884, the Trustees determined that an area between the public road and the river and between the driveways to the farmhouse and the president’s house would remain undeveloped for use as a lawn. Nine years later, the Trustees agreed to implement a plan for the campus by Welton M. Munson, a newly hired professor of horticulture. The plan developed by Munson created a road to the east of the first academic buildings allowing access to buildings constructed behind the College’s original buildings. Of course, the College’s farmhouse and the Experiment Station had been built well before Munson’s plans, so it is very likely that this aspect of Munson’s plan simply formalized an already well-trafficked pathway on campus. Nevertheless, the Munson plan helped to begin to define the southeast part of campus as the focus of agricultural activity.

Inset of Maine State College from 1875 Atlas of Penobscot County

“A Plan of the Maine State Campus,” by George F. Rowe, 1901. Rowe was a Maine State College student at the time. This may have been Munson’s plan; Rowe simply drew it.
Concerned with broadening the curriculum and attracting more students during the 1890s, the College’s president, Abram Harris, led a successful campaign to change the name of the College from the Maine State College for Agriculture and the Mechanic Arts to the University of Maine. The agricultural curriculum did not attract many students after the early 1870s. Engineering and science degrees and the Bachelor of Science and Literature had become much more popular. Harris and others maintained that the College needed to provide education to those students who aspired to professional careers as well as those who chose to be farmers and mechanics. He further argued that with the growth of manufacturing in the United States, more students needed to be educated in science and engineering. Indeed, by the close of the nineteenth century, the percentage of workers engaged in farming in Maine had fallen from sixty percent of the population in 1860 to thirty-eight percent. Although agricultural interests opposed changing the College’s name, the Maine Legislature bestowed the new title on the College in 1897. As part of expanding the professional programs, the University added a Law School in 1898 and a short course in Pharmacy in 1900. The College also offered a course in Library Economy designed to appeal to women, but it did not attract many students and was discontinued after its third year. The building program of the 1890s—and particularly the construction of Wingate Hall—reflects the College’s growing interest in engineering. The campus farm, however, was not neglected. In 1891, the College farm added two vernacular frame structures: a dairy house and a horticultural building.29
Women Students Arrive on Campus

Perhaps more important than the shifting curriculum was the arrival of women students on campus. Less than ten years after the College’s founding, the Maine Legislature allowed women to attend. In the fall of 1872, Louise Ramsdell entered the college as the first female student. She was a family friend of the Fernalds and lived with them while at the College. The following year, four more women enrolled and they also lived with faculty members. While the College had begun admitting women, they required that female students live with families in Orono or with members of the faculty. Finally, in the last decade of the nineteenth century, President Harris drew up plans to expand the White farmhouse into a residence for women students. The resulting building was quickly renamed “Mount Vernon,” because of its resemblance to George Washington’s home in Virginia. Kate Estabrooke was the matron of the house.

The faculty allowed some substitution of coursework for the first women students in agricultural and technical subjects. For example, women did not have to take cattle feeding and were able to substitute freehand drawing for mechanical drawing. Into the twentieth and twenty-first centuries, women have enrolled in the College of Arts and Sciences in greater numbers than in engineering or the sciences.

Growth Period, 1910-45

The University grew dramatically from the first decade of the twentieth century to the end of WWII, and new campus planning and construction projects increased accordingly. While the College of Agriculture had been the focus of educational and research pursuits at the University of Maine for most of the nineteenth century, by the turn of the twentieth century, the University had grown well beyond this traditional concentration. Nationwide demand for engineers rose as the country continued to industrialize, and the University responded to this burgeoning field by expanding the College of Technology. In addition, the growing numbers of women students on campus resulted in increased enrollment in the College of Arts and Sciences.

Louise Ramsdell, first female student at the University of Maine

Parlor in Mt. Vernon

The Field House under construction, 1926
In the 1920s, the focal point of the campus began to shift from the river to the area that would eventually become the campus mall. The well-known geneticist Clarence Cook Little (who later went on to found Jackson Laboratory in Bar Harbor) became the University of Maine’s president in 1922. He hired his brother’s architecture firm, Little and Russell of Boston, to produce a campus plan. Their design included a green space along a north-south axis, east of the academic buildings facing the Stillwater. In 1923, the Bangor architectural firm of Crowell and Lancaster designed the Arts and Sciences Building (later Stevens Hall), which was sited to the east of the proposed mall. Three years later, Crowell and Lancaster designed Crosby Hall, which also sat on the east side of the proposed mall. Last, Little and Russell designed the Field House that same year, which would anchor the north end of the mall.33

While academic building was expanding eastward, the thirty-year period between the Munson Plan and the Little and Russell Plan also witnessed the University’s growth along College Avenue, the road that parallels the Stillwater River. Ten fraternities built chapter houses and the University administration built three faculty houses on College Avenue. Also during this time the University constructed three houses for faculty and farm workers on the campus proper and an Observatory. In the 1910s, two dormitories were also built, including the first dormitory for women students, Balentine Hall. The Maine Legislature appropriated funds for three academic buildings (Lord, Aubert, and Winslow Halls), two buildings for student life...
The University administration adopted some aspects of Little and Russell’s campus plan and ignored others. They included the green space envisioned for the northern part of campus, on a north-south axis, that would become the campus mall. Little and Russell called for monumental buildings on the north and south termini of this green space, proposed an Arts and Sciences building on the east side, as well as an armory and field house complex to anchor the northern end. They also intended adding new buildings to the “agricultural group” that formed the south part of campus. The siting of Rogers Hall and the New Horticultural Building (later renamed the Roger Clapp Greenhouses), across from Winslow, suggest that Little and Russell also planned a second north-south mall at the south end of campus to mirror the mall at the north end. Further, the location of Colvin Hall, a dormitory for women, suggests that Little and Russell’s plan called for a dormitory group at the south end of campus. (When Colvin
Hall was built in 1930 it overlooked two houses for faculty and staff and seemed to have no relation to the rest of the campus. See 1932 map of campus reproduced on p. III-25.)

Leon S. Merrill and the College of Agriculture

Leon Merrill, Dean of the College of Agriculture, objected to the way that the Little and Russell plan isolated the agriculture school from the rest of the campus. As a professor of agriculture at the University for thirty years, Dean of the College of Agriculture for more than twenty, and the first director of Cooperative Extension, Merrill felt very protective of the land that he thought belonged to the Agricultural College. His objection to Little and Russell’s plan was the first of many he voiced about the changes taking place on the campus.

Merrill’s concerns about the College of Agriculture’s physical plant may have reflected a larger worry over declining enrollment and potential loss of political power on campus. By the early 1920s, College of Agriculture’s student numbers had fallen behind those of both the College of Technology and the College of Arts and Sciences—hovering throughout the 1920s between eighteen and twenty-two percent of the undergraduate population. By contrast, Arts and Sciences could claim thirty-three to forty-nine percent of the students and Technology taught between thirty-one and thirty-eight percent of the student body. By 1926, Agriculture’s student enrollment was only slightly more than half that of the Arts and Sciences, and nearly two-thirds the size of Technology’s undergraduate population.
Despite (or perhaps because of) these low student numbers, Dean Merrill began a quest in 1926 to secure a portion of campus land for agricultural research. He initiated a series of steps to formalize boundaries for the College of Agriculture by appealing to the acting president of the University “to allocate certain land to certain departments for permanent experimental purposes and … [not] to have this area encroached upon in the future.” The Board of Trustees appointed a committee, including Merrill, to set boundaries for the College. The Trustees approved the committee’s recommendations in April of the following year.

Carl Rust Parker and the Olmsted Brothers

Merrill’s efforts to preserve land for agricultural activity on campus would prove fortuitous six years later. In 1932, the University Trustees hired Frederick Law Olmsted’s successor firm, the Olmsted Brothers of Brookline, Massachusetts, to provide a campus plan. Dean Merrill was the only person at the University who objected to the new Olmsted plan and, due to his influence, the firm was asked to create an entirely new design for the south end of campus.

Carl Rust Parker, a landscape architect with Olmsted Brothers, was assigned to the University of Maine’s campus project. Parker had worked quite a bit in the state of Maine. After working for almost ten years with the Olmsted Brothers firm in the first decade of the twentieth century, Parker established his own landscape architecture firm in Portland, Maine and later in Springfield, Massachusetts. While in Maine, he worked on the landscapes for the Percy V. Hill House in Augusta and the Hyde Estate in Bath. After returning to the Olmsted firm, he designed the grounds of the Blaine House in Augusta, the future governor’s mansion.

When Parker arrived at the University of Maine for his first campus visit in early April 1932, he found a university of sixteen hundred students and an administration that wanted to expand that enrollment to 3,000. The Trustees asked Parker to follow the parts of the Little and Russell plan that had already been implemented, but, because of disagreement among various campus constituencies, to come up with an entirely new design. The president of the University, Harold Boardman, told Parker that he thought...
Little and Russell’s plan was “too pretentious in other ways, particularly in the development of the Agricultural Department.” Although he did not agree with Boardman’s assessment, and wrote that he thought it was a good plan, Parker was critical that it did not recommend abandoning several “unattractive” buildings or changing the tree growth in the older section of the campus. Parker suspected that Boardman’s comment about the “pretension” of the Little and Russell plan stemmed from interdepartmental politics, as the “Agriculture Department is apparently not now in favor, or at least it will not get any new buildings for some time to come.”

Parker met with the Board of Trustees during his visit, and they decided to hire the Olmsted Brothers to make a general plan of the campus and a report for $1500.

Parker predicted a gloomy future for agriculture, but during the 1920s and early 1930s the University had built more structures for the College of Agriculture than for the other two colleges: the milk house, Rogers Hall, and the New Horticultural Building (later renamed the Roger Clapp Greenhouses) were built in 1928 followed by the poultry plant in 1930, and Merrill Hall for Home Economics and a horse barn (now the Maine Bound Barn) in 1931. These new buildings clustered agricultural research on the south end of campus.
Parker may not have appreciated the effect of the College of Agriculture’s strong, federally-funded research and education outreach component. Dean Merrill’s crusade for agricultural land on campus had more to do with enhancing the Agricultural Experiment Station and the Cooperative Extension Service than with teaching undergraduates. Federal funds earmarked for schools of agriculture through the Hatch Act (1887) were augmented when Congress passed the Smith-Lever Act in 1917. Smith-Lever provided financing for land grant colleges to work with the Department of Agriculture to teach rural residents a wide range of subjects relating to agriculture including topics like home economics and rural energy.45

Leon Merrill was a powerful and effective advocate for agricultural research at the University. His work to maintain the College of Agriculture’s physical presence on campus arose, in part, from recent purchases of land for research away from Orono: Highmoor Farm in Monmouth acquired in 1909 for research into fruit, corn and other crops—primarily apples—and Aroostook Farm in Presque Isle purchased in 1913 for potato research.
may have feared that the dispersal of agricultural research to remote sites, coupled with declining undergraduate enrollment, would imperil the College’s future. And he was right to be concerned. In 1882, the campus had 370 acres of farmland, in 1920, it had less than half that amount (116 acres of farmland—44 located nearby in Stillwater) and in 1950, campus farmland had declined to a mere 34 acres, with 189 acres in Stillwater and Old Town, Maine. The fact that the University administration was led by men with backgrounds in science and technology did not help the agricultural school’s situation.46

Merrill’s arguments about preserving land for the agriculture school now fell on unsympathetic ears. Harold S. Boardman (who had been the dean of the College of Technology) followed Little as president of the University in 1925. Although Boardman was president when the Trustees agreed to set aside land for agricultural research, tensions between the two over the Olmsted Plan simmered through the 1930s. When Parker met with Merrill about the plan in spring 1932, the dean offered many objections to the campus design. Parker observed that the dean was intensely protective of land he thought belonged to the agriculture school: “The Dean will fight any scheme that does not leave his group as part of the main campus, and apparently he can fight. Later the President said not to pay too much attention to him, but to modify our plan in some respects to keep him pacified.” Clearly Boardman thought Merrill could be largely ignored or easily placated.47

In his plan, Parker had to accommodate an ambitious building program laid out by the University administration. In 1932 alone, the University wanted to add two wings to the Arts and Sciences Building, enlarge the Armory with a new gymnasium addition, construct a Home Management House, and build an Infirmary.48
Walter Lancaster of the Bangor firm, Crowell and Lancaster had already drawn up plans for the additions to the Arts and Sciences Building (which he had also designed). In addition to these projects already on the boards, Parker thought the University needed a union building, with a hall and administrative offices; a new library (“the present antique [Carnegie Hall] to be used by the Law School”); an engineering building added to Crosby Laboratory; five new dormitories (three for women and two for men); and various service buildings, including additions to the existing steam plant. Parker also thought it was important to design a new main entrance and to find parking for six hundred cars per day (with expansion space for two thousand to twenty-seven hundred at sporting events). Along with new construction, Parker wanted to make dramatic changes to the existing campus landscape. He thought the University should consider removing some buildings. “[D]o not hesitate to urge [their] removal in the report,” he wrote, “even though it will pain some of the old mossbacks on the Board.” A particularly dramatic example of the changes he advocated was his plan to cut or move some of the trees on the older part of the campus and tear down Lord Hall to create a vista to the river on axis with the Arts and Science Building. Although thankfully not implemented, this was the first design idea to mention using the river as a focal point for the campus. Parker also noted that the view of the campus from the road would be dramatically improved.49
Negotiation, Accommodation, and Compromise

New construction was not Parker’s only challenge. Others emerged, which, though relatively inconsequential, must have shed light for Parker (if he needed any) on campus politics. Llewellyn N. Edwards, an 1898 alumnus of the University, wanted to give two pair of Civil War cannon surplused by the U.S. Navy to the University of Maine. Two of the cannon had been removed from the U. S. S. Constitution in 1930 when the Navy reconditioned the ship. Ironically, at just the moment that the Trustees were bringing rationalization and expertise to their planning decisions, they agreed to accept the obsolete ordinance despite its lack of association with the campus. Along with the gift came Edwards’ dogged determination to have the cannon sited prominently on the campus. He made all of the necessary arrangements with the Navy, financed the entire project and asked an engineering student, Robert M. Vickery, to determine the suitability of Edwards’ preferred locations and oversee construction of their emplacements.
Not surprisingly, Parker regarded the cannon as a nuisance, but one that he could not shake because of the Trustees’ commitment to the donor. While Edwards was eager to put the cannon in place, Parker dragged his feet to buy time for finishing the general campus plan.

Edwards, clearly frustrated by Parker’s slow-paced decision-making about their location, at one point threatened to withdraw from the entire project. Edwards’ and Parker’s mutual irritation boiled over in an ironic letter from Edwards to the Olmsted Brothers: “I find myself in complete accord with your view that the determinations of the locations for display of the obsolete navy ordnance...is by no means a matter of great importance.” Someone, presumably Parker, wrote in the margin, “We think so, but we carefully never said so!” In the end, Parker agreed to Edward’s locations, and both sets of cannon were placed on campus on the hill overlooking the Stillwater River.

In early May, Parker returned to the campus with a preliminary plan which sited a student union building at the southern terminus of the campus mall, flanked by a library to the east. Although President Boardman was pleased with the plan, Dean Merrill objected to it on three counts: the location of the student union cut the College of Agriculture off from the rest of the campus; the women’s dormitory group impinged on the agriculture school’s land, and the plan did not retain the buildings that Little and Russell had proposed for the agriculture school. Parker went back to the drawing board and produced a revised plan that situated a library at the southern end of the mall, added the Little and Russell agricultural buildings, included a new engineering building in front of Crosby and another large building opposite it, on the west side of the mall “to shut out Aubert Hall.” He also recommended the removal of Alumni and Lord Halls, but if the Trustees balked at that suggestion, he planned new facades so that the buildings would relate to the mall. Last, he designed a new athletic field to accommodate all sports and a new northern entrance, predicting that the University would eventually purchase the farm directly north of campus.
President Boardman again expressed approval of Parker’s work and brought it to the Board of Trustees who voted to accept the plan in principle. They authorized a full discussion of the plan with the Board’s Campus Planning Committee and the Alumni after June 20. Parker looked forward to a summer starting date for building new drives and parking areas as well as thinning out some trees. Unfortunately, for Parker, the committee did not meet until the fall and, at that point, Dean Merrill had weighed in on the plan.

In early September 1932, Merrill wrote a six-page letter to Parker outlining his objections, most of which focused on the plan’s encroachment on College of Agriculture land. But Merrill also expressed concern about the new road system’s effect on the classroom buildings (automobile noise), the greenhouses (encouraging pilfering of plants), grazing area for poultry (interfering with), and the circulation of farm machinery (too many curves). Merrill did like Parker’s plans for a quadrangle in the agricultural group of buildings just north of the greenhouses which would be formed by adding wings to the north and south ends of Winslow and Rogers Halls.

Two days after receiving Merrill’s letter, Parker penned his response: “After a careful study of the Dean’s letter, we find that if we accept all of his criticisms and objections, our plan for this portion of the campus is completely destroyed.” Was the Olmsted firm obligated to make the changes Merrill demanded? Ultimately, Boardman
informed him, the final decision was up to the Board’s Campus Planning Committee. Because the College of Agriculture had been actively involved in decisions about the agricultural land in Little and Russell’s plan, so, he reasoned, the landscape architects should take the ideas into consideration and invite Merrill to voice his opinion of the plan at the next Campus Planning Committee meeting.\(^{56}\)

Parker revised his campus plan, sent it to Merrill, and traveled to Orono on October 5\(^{th}\). There he learned that Merrill and Paul Cloke, Dean of the College of Technology, had discussed the plan, and, allowing for some minor alterations to reduce traffic noise—including removing the road in front of Wingate and Fernald—they would not oppose it. Parker was delighted to take out the road in front of Wingate and Fernald because it fit with his goal of reorienting the campus toward the mall. Ultimately the front entrances of those buildings were relocated to their rear facades to provide direct access to the new road. Parker noted that Dean Cloke’s “attitude was far more free and cooperative than was the case when I discussed the plan with Dean Merrill.” \(^{57}\)

That evening, the Board of Trustees expressed confidence in the new campus plan. They did not object to Parker’s proposed removal of Holmes Hall to make room for the new student union building. Parker defended the decision by pointing out that Holmes and the stock judging pavilion were the only two brick buildings that would be destroyed. Despite the simple beauty and elegance of the wood frame structures on campus, Parker and the Board had no appreciation for the University’s typical New England farm buildings. “No serious objections were offered to the removal of the various wooden buildings…and the Board agreed that it was only a question of time before all of them must be removed and be replaced by more permanent structures.” Fortunately, the campus has retained some of these earliest examples of New England’s vernacular building tradition.\(^{58}\)
The University of Maine Campus

The Olmsted Brothers Plan, 1932

Parker’s design challenge had been to follow as much of Little and Russell’s plan as possible and to expand the campus eventually to accommodate 3,000 students. He also had to integrate the older part of the campus which was oriented toward the public road and the Stillwater River. Parker’s plan divided the campus into three areas, the original site and “two new campuses” located to the east of the older campus. These two new areas would run on a north-south axis and be joined by a group of centrally-located, community buildings to be used both by members of the University community and any campus visitors. Parker was confident that the north-south emphasis would not detract from the “old campus.” In fact, Parker thought “the proposed removal of some of the roads and all of the wooden buildings will tend to enhance its picturesqueness and delightful informality.” Here he contrasted a formal, linear, beaux-arts design for the “new” campus—very symmetrical and linear—with the earlier, informal “old” campus that was characteristic of mid-nineteenth-century landscape planning. He wrote that the most important new
construction for the University would be a library, a student union building, and an auditorium. These buildings, he argued, had to be centrally located because they would house the administrative offices and the University’s social and community functions. They would be easy for the general public to reach via a campus road and there was nearby parking behind Stevens Hall.\(^\text{59}\)

Parker noted that once he made the decision to create a central grouping of community-oriented buildings, the other aspects of the plan fell into place. The northern group of buildings was to hold the College of Technology, the College of Arts and Sciences, and men’s dormitories. The southern group of buildings was to include the College of Agriculture and the women’s dormitories. Parker thought the most drastic change would be enlarging the athletic field and relocating it further north away from its site adjacent to Hannibal Hamlin Hall (see 1932 map). This change would provide an unobstructed view of the Memorial Gymnasium (see Olmsted Brothers “General Plan for the Campus”). Additional parking for athletic events could be obtained if the University purchased land just north of campus.\(^\text{60}\)

The 1932 plan also addressed vehicular circulation and parking. Parker wanted to create a better-defined main entrance that would lead directly to the three main buildings. He suggested that the main entry, the second entrance from the south on College Road, should be used for pleasure traffic only, and that farm traffic be required to use a dedicated farm entrance at the south end of campus. He further stated that traffic regulations could be used to cut down on traffic noise, including assigning students their own parking spot and requiring them to only drive when they were coming to classes or leaving for the day.\(^\text{61}\)

Parker urged the Trustees to consider the order in which they would implement the plan and to come up with a rational program to follow. This would allow the University to make changes as funds became available and to prioritize needs so that, in the event of unforeseen circumstances, they could decide on the best direction to take. Parker’s report included a list of new buildings to be built and those to be torn down, in order of their importance.\(^\text{62}\)
The Trustees accepted the 1932 Olmsted Brothers plan that Parker created and, in December of 1933, they authorized the firm to proceed with a more detailed plan for construction, grading, and planting of the mall area of the campus. But, Edward Chase, a member of the Board’s Campus Planning Committee warned the firm that the “Board is uncertain about the financial future of the University, on account of several impending developments.” Landscaping work could begin soon, but the Olmsted Brothers should not be “very optimistic” about the amount of work that would be accomplished in the spring of 1933. In January of 1933, the Trustees approved the Olmsted Brothers’ detailed plan and appropriated ten thousand dollars for the landscape work of the mall, including the Olmsted Brothers’ services.

Implementing the Plan

By 1940, none of the three central buildings Parker proposed had been built. The economic decline of the Great Depression ensured that any large-scale projects on campus would come to a screeching halt. Construction on Fogler Library (on the site proposed for an auditorium, anchoring the mall at the southern end) started the following year, but the outbreak of WWII brought work to a standstill and the building stood as an unfinished shell until 1947.

Less prominent and ambitious aspects of the Olmsted Brothers’ plan were adopted during the 1930s and early 1940s: North and South Stevens Hall were connected with arcaded walkways to Stevens Hall; the Mechanical Engineering Shops went up in 1934 (although Parker had a recitation hall for mechanical engineering in mind rather than a shop building); the men’s dormitory; Oak Hall, was built after the old one burned down in 1936; and a new dormitory for women—Estabrooke Hall—appeared in 1940. On the campus periphery, the University built a new infirmary on the eastern side of College Road (just south of Sigma Alpha Epsilon) and the carpenter shop was relocated from behind Lord Hall to the western edge of campus, just north of Parker’s proposed site. Last, the Observatory was moved to its present location, and the grandstand and the athletic field were moved in the mid-1940s.
The administration also erected some buildings by 1940 that Parker did not anticipate: an Agricultural Engineering Shop (now Norman Smith Hall) to the west of Rogers Hall and University Cabins, constructed with funding from the National Youth Administration (NYA), a New Deal program. Thankfully, many of the buildings Parker recommended for removal were never taken down, including North Hall (now Crossland), Holmes Hall, the Maples and the Stock Judging Pavilion.
Phase 3: The Modern Period, 1945-present

Following the war, the University administration scrambled to keep up with increased enrollment due to the Servicemen’s Readjustment Act of 1944, commonly known as the “G.I. Bill,” which provided for veterans’ educational benefits. The University found temporary solutions to the housing problem: it leased thirty-two trailers; built two barracks for women students; and, for a short time, one hundred and twenty men slept in the women’s gymnasium in Alumni Hall. Students were also housed at the Dow Air Force Base in Bangor and bussed to campus. President Hauck agreed to open a satellite campus on the Naval Air Station in Brunswick to accommodate eight hundred students. The federal government funded the construction of the North Dormitories for single men and the South Apartments for married veterans and faculty. Although these buildings were eventually replaced, the East Annex, moved from the Sanford Naval Air Field in 1947 as a temporary classroom building, still stands to the east of the campus mall.

These temporary solutions gave way to the construction in 1947 of three new dormitory buildings. For men, Corbett and Dunn Halls were built on the site Parker had identified for a quadrangle of dormitories in the 1932 plan. A women’s dormitory, Chadbourne Hall, was also constructed, but Parker’s elegant vision of a women’s dormitory quadrangle was never realized.

The Olmsted Plan, 1948

By 1948, the hodge-podge development taking place in response to the University’s expansion encouraged the Trustees to reconsider the 1932 Olmsted plan. They hired Carl Parker of Olmsted Brothers again, and, as in the 1932 plan, Parker tried to create a balanced, linear campus around earlier, ad-hoc decision making about the placement of buildings.

Parker’s plan had to accommodate the veritable building boom underway on the Orono campus. In 1949, just two years after the construction of three new dormitories, the University built Boardman Hall, a classroom building for Engineering on the Mall’s northeast corner, and Deering Hall for plant sciences at the campus’ southern end. The siting of these buildings emphasized the axial planning that
Parker favored for the twentieth-century section of the campus. Further, he called for replacing Alumni and Lord Halls with buildings that would relate to the Mall and, for the southern part of campus, Parker pushed the idea he put forward in his 1932 plan of creating essentially a “mirror mall.” He recommended, therefore, the removal of the Stock Judging Pavilion and the New Horticulture Building (now the Roger Clapp Greenhouses) to create an uninterrupted vista from Fogler Library to the Plant Science Building (Deering Hall) soon to be constructed.\(^6\)

Fortunately, the University did not act on his recommendation to raze these important early structures.

Departing somewhat from his 1932 planning principle of centrally grouping the campus community building, Parker proposed placing a student union building on a grassy area to the west of Fernald Hall, near a site he called “the Bowl.” He also proposed to eliminate Wingate Hall. Wingate had suffered a devastating fire in the early 1940s, losing its top floor and tower, and thus was robbed of its most architecturally-distinct feature. Perhaps Parker wanted to replace this now rather shorn building with a more
distinctive structure that could anchor that corner of the nineteenth-century section of campus. Ultimately, though, the University chose another site, centrally located and adjacent to the library and Mall for the important student union building. Memorial Union, named in honor of those who had served in WWII, was designed by the nationally-recognized architectural firm of Cram and Ferguson in 1951-53. It provided an updated central student service center, in addition to dining and recreational outlets.

The University continued building, somewhat according to Parker’s 1948 plan, into the 1950s and 1960s. New buildings included Hart Hall, a men’s dormitory, built on the north end of the campus mall facing Boardman in 1954, and a women’s gymnasium, Lengyel Gym, adjacent to the women’s dorms, in 1963.

Conclusion

As of the early 1950s, the overall design principles of the University of Maine’s campus were in place. The older, nineteenth-century portion of the campus retained its early buildings and the relatively informal landscape design typical of the period. The Mall, lined with classroom buildings and anchored at either end by the library and gymnasium, became the campus’ symbolic center. Over the course of the last half of the twentieth century, new construction took place largely in an arc around the campus center from the Alfond Sports Arena, north to the Hilltop student dormitories, east with the construction of new engineering, education and arts buildings, and south to structures devoted to forestry, natural resources and environmental sciences.

Most noticeable in this late-twentieth-century campus growth is the lack of any comprehensive campus planning. Buildings have largely been constructed in a reactive and opportunistic manner, resulting in a campus that, outside its nineteenth and early twentieth century core, lacks clarity and coherence. Perhaps more important, however, has been the University’s neglect of its historic structures and landscapes. In some cases, this neglect (often the result of thin resources) may have kept important buildings from the wrath of the wrecking ball, but in many other cases, it has resulted in the dramatic deterioration of important structures and the destruction many buildings’ historic
integrity through improper maintenance, renovation, and unsightly or unfortunate additions.

The Historic Preservation Master Plan is the first step toward returning the campus to a thoughtful, deliberate, and reasoned planning process that works to promote both stewardship of the University’s important historic resources and allows for its growth and change into the twenty-first century.

4 Smith, 1-4.

7 National Research Council, 9-14.

8 Smith, 3-6.

12 Smith, 6-7.

13 The average yield of the Orono mills was 50,000 board feet. “Orono: An Enterprising Penobscot County Town,” Industrial Journal, September 19, 1890, 1-6, United States Census of Population, 1860.

22 Smith, 6-10. Abner Coburn, “Annual Report of the Trustees of the State College of Agriculture and Mechanic Arts,” Forty-seventh Legislature, Senate, No. 3, January 11, 1868, 3-4. The Board of Trustees was disingenuous in its claim that they could not follow Olmsted’s plan because it would require twelve buildings over the course of four years. That number of buildings was based on a class size of forty students per class, a rate the college did not reach until 1894. The Trustees could have adopted Olmsted’s plan and implemented it over time as their funds allowed. This point was made by a member of Olmsted’s successor firm, the Olmsted Brothers, in 1906. “Registration of Fall Semesters, 1868-1926,” Office of Student Records, University of Maine, Orono, Maine.
24 The State Forest Nursery does not appear on a campus map until 1922. “Campus: University of Maine, Orono, Maine, 1922.” University Collection, University Photograph Archives—Architects’ Drawings, Special Collections, Fogler Library, University of Maine; Barnes, 220-221.
25 Coburn, 4. White Hall was later renamed Wingate Hall and destroyed by fire in 1890. A second Wingate Hall, this one of brick, was built on its site in 1892 as an Engineering building. Merritt C. Fernald, History of the Maine State College and the University of Maine (Orono: University of Maine, 1916), 332.
The university registrar first began to track enrollment by degree program in 1919. In the decade of the 1920s, undergraduate enrollment in the College of Arts and Sciences surpassed undergraduate enrollment in the Colleges of Agriculture and Technology. Although men outnumbered women in the Arts and Sciences, far more women were enrolled in the Arts and Sciences than the other two colleges. Throughout the 1920s, more than 75% of women undergraduates were enrolled in Arts and Sciences (the university registrar first began to divide enrollment in the separate academic divisions by gender in 1923). The College of Agriculture had offered a Home Economics program since 1911, but this apparently did not alter the trend of women attending Arts and Sciences in disproportionate numbers. “Registration of Fall Semesters, 1868-1926,” Office of Student Records, University of Maine.
of Little and Russell’s plan for the University of Maine, or any correspondence or reports about the plan.

37 “Registration of Fall Semesters, 1868-1926,” Office of Student Records, University of Maine.

38 “Extract from Record of Meeting of Board of Trustees,” May 21, 1926. Olmsted Brothers Papers, Library of Congress.

39 Merrill had thought the Little and Russell plan encroached on agricultural school land when it was presented in the early 1920s. He did not take action until 1926, the year that Clarence Cook Little resigned as president, perhaps because he did not feel comfortable critiquing a plan prepared by the president’s brother’s architectural firm.

40 Carl Rust Parker to Mr. [Edward] E. Chase, Maine Securities Company (University of Maine trustee), March 11, 1932; Carl Parker, “University of Maine, Orono, Maine, Report of Visit, May 4, 1932”; Leon S. Merrill, Dean, to Carl R. Parker, Olmsted Brothers, September 2, 1932 (this is a six-page letter detailing Merrill’s objections to Parker’s plan for the campus); Parker to Dr. Henry S. Boardman, President, University of Maine, September 8, 1932; H. S. Boardman to Olmsted Brothers, September 13, 1932; Parker, “University of Maine, Orono, Maine, Report of Visit, October 5, 1932, p. 1,” Olmsted Brothers Papers, Library of Congress.

43 In 2005, the current student population of the university was over 11,000, including undergraduate and graduate students. Parker told the Board of Trustees that making a plan would cost at least $1,000 and $2,000 at the most. After leaving the trustee’s meeting for a few minutes, President Boardman came out to tell him the Board authorized $1,500 for the plan. Parker wrote, “Apparently they simply averaged up my two figures.” Parker, “Report of Visit, April 6 and 7, 1932,” 2, Olmsted Brothers Papers, Library of Congress; “Registration of Fall Semesters, 1868-1926,” Office of Student Records, University of Maine; The Olmsted Brothers’ fee for preparing the University of Maine plan would be $18,226 in 2005 dollars.

44 The university administration also renovated two buildings for the College of Agriculture: the dairy creamery was remodeled into classroom and laboratory space for the poultry department, and the Frost farm barn, which had been moved to the south end of campus, was refitted to store the college farm machinery. “Agricultural End of Campus Shows Change,” The Maine Alumnus, vol. 13, no. 7, April, 1932.

45 National Research Council, 9-10; Smith, 28, 219, 227, 228, 245.

46 Smith, 245.

48 At the time of Parker’s visit, the Home Management House was located in North Hall, one of the original farmhouses on campus. The infirmary was in a frame building east of Hannibal Hamlin Hall.
Parker, “Report of Visit, April 6 and 7, 1932, 1; Campus: University of Maine, Orono, Maine, 1932 (map).

49 Parker, “Report of Visit, April 6 and 7, 1932”, 1-3; A Twentieth-century History: WBRC Architects, Engineers, 1902-2002, p. 21 (Bangor, Me.: WBRC, 2001). The Arts & Sciences Building wings were constructed in 1932-33, and the building was renamed Stevens Hall at this time. The Gymnasium was added to the Armory/Field House in 1933. A new infirmary was not built until 1969. North Hall (now Crossland Hall) housed the infirmary from 1946-1969.

50 Llewellyn N. Edwards to Olmsted [sic] Brothers, June 8, 1932, Olmsted Brothers Papers, Library of Congress.

51 Llewellyn N. Edwards to H. S. Boardman, February 12, 1932, March 15, 1932; Edwards to Robert Vickery, March 15, 1932; Boardman to Edwards, March 29, 1932; Vickery to C. R. Parker, Olmsted Brothers, April 11, 1932, June 6, 1932; Parker to Vickery, April 12, 1932; Parker to Edwards, June 3, 1932, June 13, 1932; Edwards to Olmsted Brothers, ca. June 14, 1932, Olmsted Brothers Papers, Library of Congress; “U. S. S. Constitution Cannon,” The University of Maine Campus Map and Guide: UMaine History, Buildings, Parking, Recreation and Walking Tour, 2004-05. Edwards worked as a senior highway bridge engineer for the Bureau of Public Roads in the U. S. Department of Agriculture, so it is surprising that he would find it so difficult to understand the need for a planning time schedule.

52 Carl Parker, “University of Maine, Orono, Maine, Report of Visit, May 4, 1932.” Olmsted Brothers Papers, Library of Congress. Parker’s drawing of the preliminary plan does not survive. This description has been extrapolated from Parker’s written report.

53 Carl Parker, “University of Maine, Orono, Maine, Report of Visit, June 10-11, 1932.” Parker to Hosea B. Buck (member of the Trustees’ Campus Planning Committee), June 16, 1932; Parker to Frederick S. Youngs, Treasurer, University of Maine, June 23, 1932; H. S. Boardman to Olmsted Brothers, August 19, 1932. Olmsted Brothers Papers, Library of Congress.

54 Leon S. Merrill, Dean, to Mr. Carl R. Parker, September 2, 1932. The vehicle used to transport hay from the farms north of the university may have been powered by animals, but Merrill was not clear about that. The road he did not want disturbed is called Sebago Road today (2005). The Experiment Station was very active in poultry research at this time. Smith, 253.

55 Carl Parker to Dr. Henry S. Boardman, President, University of Maine, September 8, 1932, Olmsted Brothers Papers, Library of Congress.

56 Carl Parker to Dr. Henry S. Boardman, President, University of Maine, September 8, 1932, 1; Boardman, President, University of Maine, to Olmsted Brothers, September 13, 1932, Olmsted Brothers Papers, Library of Congress.

58 A road in front of Balentine Hall created the only serious opposition to the plan. The president and secretary of the Alumni Association, who, Parker noted, were only invited to the meeting as a courtesy, thought it was too close to the building. Parker also told the Board President that the Olmsted Brothers were close to the end of the amount the University appropriated for their services. The President recommended that he turn in his plan and send the University a final
The University of Maine

Historic Preservation Master Plan

bill, as well as an estimate for making the detailed construction and planting plan for the north part of campus. Carl Parker, “University of Maine, Orono, Maine, Report of Visit, October 5, 1932,” 2-3; Parker to Mr. F. S. Youngs, Treasurer, University of Maine, October 7, 1932, Olmsted Brothers Papers, Library of Congress.

Carl Parker to H. S. Boardman, University of Maine, November 10, 1932, 2, Olmsted Brothers Papers, Library of Congress.

Parker to Boardman, University of Maine, November 10, 1932, 3-4, Olmsted Brothers Papers, Library of Congress. President Boardman suggested putting a water feature in front of Balentine Hall, which Parker included in his plan.

Carl Parker to H. S. Boardman, University of Maine, November 10, 1932, 4-6, Olmsted Brothers Papers, Library of Congress.

Parker to Boardman, University of Maine, November 10, 1932, 8-9, Olmsted Brothers Papers, Library of Congress. In this letter, Parker neglected to prioritize a new engineering building by putting it near the top of the list of new buildings. Boardman pointed out the error in a letter to Parker dated November 11, 1932. Parker apologized and enclosed a new page 8 to go in the report on November 14. Boardman to Olmsted Brothers, November 11, 1932; Parker to Boardman, November 14, 1932. Based on the drawings for the plan, Parker may have also meant to list three dormitories for women and four dormitories for men, instead of what appeared in his November 10 letter to Boardman. “University of Maine, Orono, Maine, General Plan for the Campus: Showing Proposed Buildings and Roads, Also Existing Buildings and Roads to be Retained (Brookline, MA: Olmsted Brothers, Landscape Architects),” October 1932. Olmsted Brothers Papers, Library of Congress.

Edward Chase to Olmsted Brothers, Brookline, Massachusetts, December 10, 1932, Olmsted Brothers Papers, Library of Congress.

Edward Chase to Olmsted Brothers, Brookline, Massachusetts, December 10, 1932; Parker to Boardman, January 16, 1933, Olmsted Brothers Papers, Library of Congress.

Campus: University of Maine: Orono, 1940 (map); Smith, 163.

Campus: University of Maine, Orono, Maine, 1940 (map).

Campus: University of Maine, Orono, Maine, 1940 (map); Smith, 149. Some alumni recall that the University Cabins were in poor shape by the early 1950s.

Smith, 161-172.

Smith, 161-172; Olmsted Brothers Landscape Architects, “University of Maine, Orono, Maine: General Plan for Campus Showing Proposed Buildings and Roads Also Existing Buildings and Roads to be Retained,” 1932, Revised to February 23, 1948, Job #3090, Olmsted Plans & Drawings Collection, Olmsted National Historic Site, National Park Service, Brookline, MA (hereafter Olmsted Drawings Collection). Unfortunately, we do not have the correspondence leading up to this plan as we did for the 1932 plan.

Smith, 161-172; Olmsted Brothers Landscape Architects, “University of Maine, Orono, Maine: General Plan for Campus,” 1932, Revised to February 23, 1948. (Olmsted Drawing Collection)
IV. The Historic Architecture of the University of Maine Campus

A. Introduction

The existing buildings of the University of Maine represent a unique and priceless resource for the people of Maine and the students, employees and guests of the University. Representing architectural styles from pre-Civil War days to the present, the University’s building collection includes samples of almost every architectural style that was popular over the nearly 150-year existence of the institution, the work of many prominent Maine and New England architects, and examples of high-level craftsmanship and building materials. In addition, many of the buildings are associated with University faculty and alumni of local, state, regional and national stature.

The three periods of growth defined in the Campus History are well represented by the architecture of the University of Maine campus. In describing and evaluating the existing buildings of the campus, the Historic Preservation Master Plan team has used these growth periods to define three
levels of significance, based on present-day conditions and National Register of Historic Places criteria. These levels of significance are referred to in the following pages as Tier One, Tier Two, and Tier Three, with Tier One being the most significant.

Tier One Building Designation

The Tier One category includes contributing buildings in the University of Maine at Orono National Register Historic District, and those buildings that are individually listed on the National Register. Tier One also includes Crossland Hall, one of the three remaining buildings on campus that predate the founding of the University.

Part B of this section includes detailed information on these buildings, including a brief history, an existing conditions survey, recommendations for preservation, and a use analysis.

Tier Two Building Designation

Most of the Tier Two buildings date from 1910 to 1945, thus representing a range of styles spanning from the important institutional Colonial Revival to the early modern. These are buildings that are likely to be considered eligible for listing on the National Register.

Part C of this section includes historical, architectural, existing conditions, and use information for each of the Tier Two buildings.

Tier Three Building Designation

Eight of the ten Tier Three buildings date from 1946 to 1965. These buildings are currently considered to be less significant and/or have reduced integrity due to their relative modernity in relation to the National Register fifty-year criteria, their degree of alteration, or their utilitarian character.

Part D of this section includes histories, architectural descriptions, and use recommendations for the Tier Three buildings.
Together, the Tier One, Two and Three buildings represent 39 of the University’s 200-plus existing buildings on the Orono campus. By expanding the reader’s interest and knowledge from the twelve buildings now listed on the National Register to 39 structures worthy of immediate consideration or further study as historic resources, the University of Maine will foster an attitude of stewardship and appreciation for the cultural and economic value these structures and sites represent. Thus these important resources will be assured a continued place in the life of Maine’s flagship institution of higher education.
B. Tier One Buildings

Introduction

The Tier One buildings, those considered at present to have the highest level of historic and architectural significance, are those that are included as contributing buildings in the University of Maine at Orono National Register Historic District, or that are individually listed on the National Register. Tier One also includes Crossland Hall, the former Frost Farm House, which is one of the three existing buildings on campus that predates the University.

The thirteen Tier One buildings range in date of construction from 1833 (Crossland Hall, originally the Frost Farm House) to Winslow Hall, built in 1909, representing the Heritage Period of campus development.

Coburn Hall, one of the University's most distinctive buildings, is a contributing building in the National Register Historic District and is identified as a Tier One building in the Historic Preservation Master Plan.
The Tier One buildings include:

- Alumni Hall
- Carnegie Hall
- Coburn Hall
- Crossland Hall
- Cyrus Pavilion
- Fernald Hall
- Holmes Hall
- Lord Hall
- The Maples
- Page Barn
- Edith Patch House and Barn
- President’s House
- Winslow Hall

This section includes a wealth of information on these buildings, including:

- a brief history of each building;
- an architectural description of each building;
- a conditions assessment and recommendations for preservation;
- description of present use(s);
- recommendations for reuse;
- contemporary CAD floor plans; and
- historic and contemporary photographs.

Together, this information represents an abbreviated historic structures report for each building, intended to be used by campus administrators, planners and designers, and others with an interest in the continued presence, care, and use of these buildings.
Map of Tier One Buildings. Map by Michael Hermann, UMaine Canadian-American Center
Tier One Buildings

Alumni Hall

A Brief History of Alumni Hall

Built in 1901, and named in honor of University alumni who contributed to its construction, Alumni Hall originally housed a chapel, drill hall, and gymnasium. Designed by the architectural firm of Newman, Woodman and Harris, the exterior is largely unaltered, although the interior has been dramatically changed. Weekly chapel attendance was compulsory for students from the time of the University’s founding and, before the construction of Alumni Hall, students went to Orono for religious services. Many students vigorously resisted weekly chapel: in 1886, the administration suspended seven students for their refusal to attend. Compulsory chapel ended in 1925 and in 1934, the space became administrative offices, utility shops and the Little Theatre. University officials assigned the gym to female students after Memorial Gymnasium was built in 1933, and after the construction of Lengyl Gymnasium for women, the space became a public television studio.
Alumni Hall is a two-and-one-half story brick Renaissance Revival building with a T-shaped footprint on a granite foundation. The building features a hipped slate roof. A bell tower is centered over the front façade (west elevation). The bell tower is capped with a dome roof supported by wood columns. Three dormers are located on the façade. The two outer dormers have gable roofs, while the center dormer has an arched roof. A bracketed wood cornice defines the eaves. Access to the principal block is provided by a deeply-recessed arched entranceway on the west elevation. The entrance features a pair of nine-light over two panel wood doors set within a wood surround topped by a four-light fanlight. The first floor windows are double-hung wood sash located to each side of the entranceway. The windows are accented by pedimented wood frames. Double-hung wood sash windows at the second floor are set within wide arch brick surrounds. Multi-light fixed wood sash are located to each side of the double-hung windows.

The two-story rear ell terminates in a gabled roof sheathed with slate. A wood frame hipped roof monitor runs along most of the length of the ridge. Groups of three double-hung wood sash windows set within brick surrounds are located at the first floor while the second floor features a row of brick arches, each containing a window group consisting of a large center double-hung wood sash flanked by smaller fixed multi-light wood sash, repeating the design motif of the second story windows of the west elevation.

A two-story flat-roofed wing projects from the east elevation. The wing is constructed of brick and rests on a poured concrete foundation. Double-hung wood sash windows are located on each of the three sides of this structure.

The interior of the building, which has been extensively renovated several times (most recently in the late 1980’s and early 1990’s) is divided into administrative office spaces by gypsum wall board walls. Many of the floors are covered with vinyl composition tiles or carpet. The second floor, like the first, contains office spaces featuring plasterboard and suspended acoustical tile ceilings and walls and carpeted floors. Additionally, a portion of the
original gymnasium on the south side of the building has been converted into a studio/soundstage. Old finishes such as the poured rubber floor and exposed wood deck ceiling with thin wood purlins and metal trusses remain.

The third floor of the building features a mechanical space amidst the trusses of the original chapel space in the west wing of the building and office spaces along the north wall. Although disfigured by the mechanical installation and not visible to the public, the decorative woodwork and wood trusses of the chapel remain in place.

Condition Assessment and Recommendations

Site Conditions

Overall, the site is in fair condition. The lawn around Alumni Hall is worn, but well maintained. However, it does not appear to have a positive slope away from the building, which would allow water to drain away from the building. There is heavy vegetation growth along the foundation, and heavy vine growth on the side and rear elevations of the building.

Site Work Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Cut back vines to a one-story height for ease of maintenance.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation, and roots may push into or under the foundation.

Roofing and Drainage

The slate roof is in fair condition; there are broken or cracked slates on each side of the roof. The drainage system is in fair to poor condition. Many portions of the gutter system have been covered over, and eaves are in a deteriorated condition. Additionally, downspouts are missing on the north side of the building. The roofline of the monitor is warped (see Structural Report).
Roofing and Drainage Recommendations

- Repair roof slates. Slide in a replacement slate with a pre-punched nail hole, to fit between upper two slates. Carefully nail slate in place. Fashion a piece of copper to cover the nail hole in the slot between the slates above. The copper should be 3 inches wide and long enough to hook over the top of the replaced slate and cover the nail by three inches. Bend the top 3/4-inch of the copper strip. Then insert the strip, bent side down between the slates above. The bent end should hook onto the top of the replaced slate, covering the nail. Install new slate that visually matches the historic material in size, shape, and color.

If field investigation results in the determination that repair or restoration of the existing slate roof is not possible, replace the existing slate roofing material with new slate roofing material once subsurface and structural issues have been resolved. While alternative materials are available, consider these only if restoring the original material or installing new slate is not technically or financially feasible. The alternative material should match as closely as possible the scale, texture, and coloration of the historic roofing material so as not to alter the significant architectural character of the building.

- Investigate gutters to determine why they have been covered over.
- Further investigate monitor to determine the condition and integrity of its structure.
- Install extensions at the ends of the existing downspouts that will carry water at least 18” away from the foundation of the building.

Masonry

The brick and mortar walls of the building are in very good condition. There is slight staining of the brick in areas where water has run down the walls or where vegetation had grown up the walls.
Masonry Recommendations

Cleaning of the brick surfaces is not recommended unless soiling leads to deterioration of the masonry and mortar. If cleaning is proposed, test patches should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Wood Trim

The trim of the building is in poor shape, and the paint is peeling.

Wood Trim Recommendations

- Repair existing wood trim wherever possible; if necessary, replace deteriorated wood trim elements with new material to match original in size and profile. Paint with primer and finish coats as recommended below.
- Repaint existing wood trim to remain. Thoroughly scrape the paint from the wood surfaces and properly prepare the wood. Existing paint layers may contain lead. Remove and dispose of lead paint refuse according to University and local, state and federal requirements. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors and windows are generally in fair condition. The glazing compound on many of the sash is deteriorated and paint is peeling on all of the windows. Storm windows have been added to the exterior of some of the windows, which helps to protect them from the elements. Some windows do not have storm windows.
Door and Window Recommendations

- Restore the existing windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

- Storm windows should be installed over all of the windows. Use historically compatible storm/screen units designed to harmonize with the existing sash.

Foundation

The foundation is in good condition.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. There were no structural deficiencies identified in the area that could be causing the problem, so settlement is most likely the cause. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care. The removal of historic fabric in the second floor sanctuary for the installation of mechanicals was an unfortunate loss of a significant interior space on campus.

Flooring

The tile flooring is generally in good condition and should be refinished as part of routine maintenance. Carpeting is in fair to good condition.
Code Compliance

Having been last renovated in the early 1990’s, Alumni Hall meets many ADA and life safety requirements – it has an elevator and the requisite number of exit stairs. However, there are still deficiencies with regard to the most current life safety and ADA requirements.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety and ADA deficiencies. Specific recommendations should be made which do not destroy or diminish the character defining features of the property.

Recommendations for Reuse

Alumni Hall currently houses the senior administration offices and a television studio. The television studio should be relocated to a more technically flexible space, leaving additional space available for more appropriate uses such as office, conference, performance, or instructional space.

Space at the third floor of the main building and in the rear addition is underutilized. Consider removing the rear addition, which is not constructed with the same quality design or materials as the original building, and creating a new entrance and gathering space opening onto the Mall and Fogler Library. The mezzanine in the gym wing should be removed, restoring the gymnasium space to its original character and volume. A new use should be found that would benefit from the large, high spatial volume and ample natural light.

The second floor chapel space is likewise deserving of restoration through the removal of the existing mechanical equipment and the introduction of a new use that could take advantage of the original space and detail of this grand and forgotten space.

There has been considerable discussion in recent years regarding the creation of new and inviting spaces for students and others along the campus mall. The rehabilitation of Lord Hall has resulted in a major new presence on the Mall, in addition to the restoration of the original main entrance on Munson Road facing the river.
In that spirit, we suggest that the 1934 addition to the rear (east) of Alumni Hall be removed (it is not of the same quality of design or construction as the main building, has a problematic interior layout, and is currently underutilized); and that it be replaced with a new contemporary addition to serve as a main entrance and gathering space (perhaps a winter garden to enliven the Mall in the cooler months of the year). Such an addition could also resolve circulation and egress issues at the east end of the building, and also provide program space.

Designers might also consider an addition extending north from the rear of Alumni Hall to form an architectural edge for this portion of the Mall, as suggested in some of the early campus plans.
Carnegie Hall

A Brief History of Carnegie Hall

Carnegie Hall was constructed in 1906 as a library for the University. Built of granite in the classical revival style and sited on a hill overlooking the Stillwater River, the library made an impressive addition to the campus. Prior to Carnegie’s construction, the University library was housed in rooms in other campus buildings. Fernald Hall, the first building constructed for the College, contained the library until Coburn Hall was built in 1888. The College library remained in Coburn until it was moved to the basement of Alumni Hall in 1901. Carnegie Hall was simply called “The Library” for a decade or so after it was built, but was given the name “Carnegie Hall” because its construction was funded with a gift of $50,000 from Andrew Carnegie, a wealthy industrialist and philanthropist. Carnegie funded over fifteen hundred libraries for small towns across the United States from 1886-1919. The University of Maine’s library is one of a handful of so-called Carnegie libraries on
Carnegie Hall is a two-story, three-bay granite on steel frame Neo-Classical building with a T-shaped footprint on college campuses. Brainerd and Leeds, an architectural firm from Boston, designed the library, and Horace Purinton of Waterville served as the general contractor. The library originally had a copper and glass dome topped with a copper finial in the shape of a pineapple. It is the only building on campus made of granite, which came from a Maine company, Hallowell Granite Works. A writer for *The Industrial Journal*, a Maine business publication around the turn of the twentieth century, was so impressed with how the library improved the campus that he wrote, “. . . there is no educational institution in the state with a campus that will compare in attractiveness with that of the University of Maine.”

Contemporary accounts of the building’s interior note the impressive rotunda, flooded with natural light from the dome above, and the fact that the entire interior was finished in Flemish Oak. In addition to supplying funds for the library’s construction, Carnegie also donated $5000 for furnishings. The stack room, which could hold 73,000 volumes, was comprised of iron stacks with glass floors, designed and built by A D. Houghton, a Maine State College alumnus of 1887. Aside from its function as a library, the new building provided space for other cultural activities. The University’s art guild displayed members’ work in the upper gallery, student clubs gathered in meeting rooms, and public presentations were held in the library’s lecture hall.

Unfortunately, the University administration removed some of the building’s most significant architectural features in the mid-twentieth century when they retrofitted the building for other purposes. After Fogler Library was built in 1947, the stack room of Carnegie was renovated for the Music and Art departments, obscuring the iron and glass stacks. Twenty years later, the interior was gutted to remodel the space for studio and exhibit space for the Art Department. In the process, the rotunda was filled in, much of the Flemish Oak was demolished, and the dome was removed, as it was deemed to be too expensive to maintain.

Architectural Description

Carnegie Hall is a two-story, three-bay granite on steel frame Neo-Classical building with a T-shaped footprint on
a poured concrete foundation. Originally a copper-sheathed dome provided a ceremonial cap for the building, but it was removed at the time of a major renovation in 1967. The remainder of the building terminates in a flat roof with parapet. A projecting pedimented gable centered on the west elevation marks the principal entrance. The pediment is supported by two robust granite columns. The main entrance consists of a modern storefront-type glass and metal frame door set within a metal frame. The entrance is reached by a flight of monumental granite stairs flanked by granite cheek walls. To each side of the entryway pediment is a three-part window featuring a one-over-one double-hung wood sash window flanked by narrow one-over-one double-hung wood windows. An identical grouping below each of these brings light into the basement level.

A two-story rear ell projects from the east elevation of the principal block. The ell terminates in a flat roof. The ell is constructed of granite and rests on a concrete foundation. Double-hung wood sash windows are located on each side of the ell. One-story wings project from the northwest and southwest corners of the ell. Each wing terminates in a flat roof.

The basement of Carnegie Hall is finished and contains art production spaces and classrooms. Many of the spaces are divided by wood frame and plaster walls; however, there are several new walls constructed of concrete masonry units. The foundation of the building is concrete. The floor is poured concrete over much of the basement while a room at the west end of the building features a plywood floor. It is unknown at this time what is under the plywood.

The first and second floors of the building are divided into artist galleries, classrooms, and office spaces. Much of the interior finishes are from renovations undertaken in 1947 and 1967. The first floor entrance hall and large central gallery space feature wood paneled walls. The gallery space also features a metal ceiling grid for lights. The classrooms flanking the gallery space on the first floor feature 8-inch by 8-inch vinyl asbestos tile floors and 1-foot by 1-foot suspended acoustical tile ceilings. The offices within the east wing feature similar finishes. Offices of the first floor mezzanine in the east end of the building feature flush panel doors, vinyl asbestos tile floors and suspended acoustical tile ceilings. An open stairwell in
the southwest corner of the principal block and a stairway in the center of the ell provide access to the third floor.

The second floor features spaces and finishes similar to those of the first floor. The center of the building contains a large central gallery space, with wood paneled walls and a metal ceiling grid for lights. The floor is carpeted. The classrooms and offices flanking the gallery space feature 8-inch by 8-inch vinyl asbestos tile floors and suspended acoustical tile ceilings. A classroom at the east end of the building features an 8-inch by 8-inch vinyl asbestos tile floor and exposed beam and plaster ceiling.

Condition Assessment and Recommendations

Site Conditions

The site is in poor condition. The lawn around the building is worn and does not appear to have a positive slope away from the building. There is heavy vegetation growth along the foundation. When plantings are too close to a building, the roots may cause damage to the masonry. No evidence of such damage to the foundation was observed at this time. Additionally, there is heavy vine growth on the side and rear elevations of the building. The building is obscured by large pine trees that surround the building.

Site Recommendations

- Regrade the lawns to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Cut back vines to a one-story height for ease of maintenance.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and its roots may begin to push into or under the foundation.
Roofing and Drainage

Access to the roof was unavailable. The roof should be inspected for standing water or any open seams. The current drainage system is visually inappropriate.

- Replace the existing gutters with a more historically compatible and appropriate gutter and downspout system. Use lead coated copper or tin/zinc coated copper gutter and downspouts.
- Consider restoring the roof dome. The modification of the dome was an unfortunate loss of an architecturally significant, character defining feature of a building of national significance.

Masonry

The granite blocks of the building are in very good condition, but the mortar has deteriorated in many areas. There is slight staining of the granite in areas where water has run down the walls or where vegetation has grown up the walls. Additionally, there is splattered asphalt on the east wall from when the flat roof was installed.

Masonry Recommendations

- Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to ensure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling which cannot be repaired easily. Finish joints should match the width and profile of the original.
• Cleaning of the granite surfaces is not recommended, unless the soiling begins to cause deterioration of the stone and mortar. If cleaning is necessary, tests should be undertaken to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains and the asphalt should be left to a conservator.

Doors and Windows

The doors and windows are generally in fair condition. The wooden ramp on the ground floor used for handicap accessibility does not meet ADA guidelines. The glazing compound on many of the sash is deteriorated; and paint is peeling on all of the windows. Storm windows have been added to the exterior of some of the windows, which help to protect them from the elements. Screens are torn on several of the basement windows, with the result that debris is accumulating between the screen and the sash.

Door and Window Recommendations

- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future. Several of the basement windows will need to be replaced. Use an existing historic window to guide the replacement.

- Storm windows should be installed over all of the windows. Use historically compatible storm/screen units designed to harmonize with the existing sash.

Foundation

The foundation is in good condition.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. There were no structural deficiencies identified in the area that could be causing the problem, so
settlement is most likely the cause. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim remaining in the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The tile flooring is generally in good condition. Vinyl asbestos tile should not be disturbed until it can be removed and disposed of according to University-approved asbestos removal procedures. The majority of the rooms are carpeted and the carpet is in fair condition.

Code Compliance

Carnegie Hall has an accessible entrance at the ground level but it has no elevator and therefore the upper floors are not accessible. There may be life safety code deficiencies, although there are two egress stairways that appear to meet code applicable code requirements.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety and ADA deficiencies. Specific recommendations should be made which do not destroy or diminish the character defining features of the property.

Recommendations for Reuse

Carnegie Hall currently houses art studios and exhibition space. Interior rehabilitations to the building have made the finishes and layout appropriate for its current use. Because of the building’s national significance as a Carnegie Library, consideration should be given to returning the building to a library or institute function. Perhaps the University could identify a department library that would fit the existing floor space. Other potential units might include a special collections gallery or administrative/office and conference space. In any case, the next use
should be more sympathetic to the original building plan and section.

Expansion of Carnegie Hall through the construction of an addition designed to harmonize with the historic character of the main building could be accommodated to the east. However, the lawn area formed by the back of Carnegie and Schoodic and Munson Roads is an important green space on campus, with a major walkway connecting the southwest student residence halls with the main campus running through it. Any addition to Carnegie would have to take these important site issues, as well as issues of compatible architectural design, into account.
Coburn Hall

A Brief History of Coburn Hall

Coburn Hall was built in 1887-88 for the Departments of Agriculture and Natural History. In addition to administrative offices and classrooms, Coburn also contained the college library and a natural history museum. The building was named in honor of Abner Coburn, who had been chairman of the Board of Trustees for many years and a Governor of Maine in the 1860s. Frank E. Kidder, a Boston architect and an 1879 Maine State College alumnus, designed this massive brick building trimmed with red Portland sandstone. Kidder was also the author of *The Architects’ and Builders’ Pocket-Book* (later *The Architects’ and Builders’ Handbook*), a technical book of building construction which has been used by several generations of builders and architects.

Coburn Hall was considered a very important addition to the campus when it was built because it was the second...
classroom building erected on the Maine State College campus and because it was the third building constructed of brick, and thus considered to be a permanent addition to the campus landscape. Moreover, it represented the importance of agriculture to the college and to the state. Because of its significance, the college left detailed records of its construction. George H. Hamlin, a professor of Civil Engineering at the college, was the superintendent of construction, and J. and J. Philbrook of Portland were carpentry and masonry contractors. Getchell and Company of Bangor provided the steam-heating apparatus, and W. O. White of Boston supplied the fixtures and furniture.

In 1897, University of Maine undergraduate Marcus L. Urann and nine others joined University President Abram Harris and two faculty members in Coburn Hall to create Phi Kappa Phi, a national honor society that pays tribute to high achievement in all academic disciplines.

Coburn Hall has one extant and evidence of one missing marble Ivy Day plaque. Ivy Day plaques commemorate Ivy Day, a University of Maine tradition in the late nineteenth century. Graduating seniors would plant ivy and place ivy-shaped stone plaques engraved with their year of graduation on buildings.

Architectural Description

Coburn Hall is a two-and-one-half story, three-bay Richardsonian Romanesque building. The rectangular principal block is constructed of brick and rests on a granite foundation. The block terminates in a mansard roof sheathed with slate. A stepped brick cornice defines the eave. A center gable, located on the west rise of the roof, marks the principal entrance to the building. A band of three arched topped windows are featured in the gable. A series of three brownstone arches cap the opening. A dormer is located to each side of the gable. Each dormer features a paired 3/1 double-hung wood sash. Access to the principal block is provided by an inset entranceway on the west elevation. A wide arch opening marks the entranceway. The entranceway is comprised of two single-light over two panel wood doors set within a wood surround featuring multi-light sidelights and a multi-light transom. Poured concrete steps provide access to the entry.
Double-hung wood sash windows set within an arched opening are located to each side of the entranceway. A brick arch similar to that at the main entry highlights each opening.

A two-and-one-half story rear ell features a mansard roof sheathed with slate. Two-story wall dormers featuring double-hung wood sash windows and wood paneling are featured on the north, east, and south elevations.

The basement of Coburn Hall is finished with offices and storage spaces. The foundation is constructed of brick resting on fieldstone. The floor is poured concrete and is covered with carpet in several of the rooms. Additionally, original tin ceilings are featured in several of the rooms.

The interior of the main block is organized in a central hall plan. The main block retains many of its original finishes, including plaster walls and tin ceilings. The primary entrance leads directly into the hall. The stairs and banister rise along the south wall to the second floor. The formality of the main block contrasts with the less formal spatial arrangements and lack of decorative features of the rear ell. The ell features gypsum wallboard partitions, carpeted floors, and suspended acoustical tile ceilings. The spaces of the main floor are used as offices and support space.

The second and third floor rooms are used as offices as well. Second floor finishes include carpeted floors, painted plaster and plasterboard walls, and suspended acoustical tile ceilings. The third floor features vinyl composition tile floors, suspended acoustical tile ceilings and painted plasterboard partition walls.

Condition Assessment and Recommendations

Site Conditions

The site is in fair condition. The lawn around the building is worn, but well maintained. Asphalt paving lays along the north and south elevations of the building. It does not appear to have a positive slope that would allow water to drain away from the building. Accumulation of debris along the base of the wall helps to retain moisture, and has led to organic growth on the wall. Additionally, vegetation
has grown up the walls of the building and is starting to attach to the masonry, where it will damage the mortar if left unchecked. Asphalt paving is deteriorating in certain areas, directing water into the foundation.

Site Recommendations

- Regrade the lawn and pavement to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Cut back vines to a one-story height for ease of maintenance.

Roofing and Drainage

The slate roof is in fair condition with broken or cracked slates on each side of the roof. Flashing is deteriorated and exhibits loose and open joints. The drainage system is in poor condition. Many of the downspouts drain at the foundation, causing deterioration of the mortar by splashback. A gutter at the southwest corner of the principal block is clogged.

Roofing and Drainage Recommendations

- Repair roof slates (see detailed instructions for slate roof repair under the Roofing Recommendations for Fernald Hall). Install new slate that visually matches the historic material in size, shape, and color. While alternative materials are available, consider them only if restoration of the original material is not technically or financially feasible. Alternative material should match as closely as possible the scale, texture, and coloration of the historic roofing material.
- Replace flashing. Each piece of base flashing should extend under the roof sheathing a minimum of four inches. Base flashing should be nailed to the roof deck. Stepped flashing at vertical joints between sections should overlap a minimum of three inches, and extend up along the vertical surface a minimum of four inches.
- Clean out gutters and install drainage system to carry water away from the foundation. The downspouts should have extensions on the ends that will carry water away from the foundations.
Masonry

The brick and mortar walls of the building and rear addition are in good condition. There is slight staining of the brick in areas where water has run down the walls, and some mortar loss caused by splashback. Additionally, there is a small area of brick deterioration near the cornice on the east elevation. The decorative marble elements on the sides of the building are stained from the environment, and one has been removed from the building. Metal flashings at brick belts are deteriorated and should be replaced.

The set of concrete steps that rises from grade to the entrance door on the first floor is in fair condition, with rust jacking evident on the steel nosing. The rust jacking is causing the concrete to break apart.

Masonry Recommendations

- Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to ensure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, which cannot be repaired easily. Finish joints should match the width and profile of the original.

- Patch deteriorated/cracked concrete. The patching should match the existing concrete as closely as possible, both visually and structurally. Proper placement and finishing of the repair is important in achieving a match with the original concrete.

- Cleaning of the brick and stone surfaces is not recommended unless the masonry shows signs of deterioration. If the brick and/or mortar begins to

Brick deterioration near cornice

Stained marble element

Missing marble element

Deteriorated metal flashings
deteriorate, test procedures should be used to determine the gentlest and most appropriate cleaning method. The removal of environmental stains should be left to a conservator.

Wood Trim

The trim of the building for the most part is in fair shape but the paint is peeling and in poor condition.

Wood Trim Recommendations

Repaint the wood trim. Thoroughly scrape the paint from the wood surfaces and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors and windows are generally in fair condition. The glazing compound on many of the sash is deteriorated, and paint is peeling on all of the windows. Storm windows have been added to the exterior of some of the windows, which helps to protect them from the elements. The fire escape is rusted.

Door and Window Recommendations

- Thoroughly scrape the paint from the building and properly prepare the wood. The paint should be removed by hand scraping and sanding down to a sound surface. An orbital disk sander can be used only if operated by an experienced mechanic. Care must be taken not to damage the wood. A rotary sander should not be used as this will damage the wood and leave circular sanding patterns. A heat gun can be used in select locations, but must be monitored at all times to make sure the wood does not catch on fire. Lead paint may be present. Precautions should be taken to remove and dispose of the paint according to state and local regulations. If there is mildew present, it can be removed by washing with a solution of one part bleach
to one part water. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

- Storm windows should be installed over all of the windows. Use historically compatible storm/screen units designed to harmonize with the existing sash.
- Scrape loose flaking paint; sand to remove rust; apply rust inhibitive primer; and re-paint entire fire escape.

Foundation

The foundation is in generally good condition. There are several areas where water splashing on the foundation from faulty downspouts has led to deteriorated mortar and loose bricks.

Foundation Recommendations

- See Masonry Recommendations above for repair of deteriorated brick and mortar.
- Repair gutters and downspouts, use downspouts to direct runoff away from foundation.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. There were no structural deficiencies identified in the area that could be causing the problem, so settlement is most likely the cause. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.
Flooring

The tile flooring is generally in good condition and should be refinished as part of routine maintenance. The majority of the rooms are carpeted. The carpet is in fair condition.

Code Compliance

The building does not appear to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is no entry ramp, and the building does not have an elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not be the character defining features of the property.

Recommendations for Reuse

Coburn Hall currently houses the Margaret Chase Smith Center for Public Policy as well as the Wild Blueberry Commission and the Potato Association of America. Administrative and/or departmental offices, support spaces, meeting and conferencing rooms, and/or instructional spaces are all appropriate uses for a rehabilitated Coburn Hall. The removal of partitions from past renovations to return the building to its original floor plan would provide a fresh start for a successful reuse plan. It would make an ideal home for a “center for centers,” an institute or an interdisciplinary program, or a department.

Coburn Hall should not be expanded. The building’s pure architectural form, with important entrances on both the east and west elevations; and its serene and significant setting on the front lawn warrant preservation. Emphasis should be placed on finding an appropriate use for the building and restoring its original exterior and interior features, allowing it to once again assume a role of importance at the University of Maine.
Crossland Hall

A Brief History of Crossland Hall

Originally a simple farmhouse located at the north entrance to campus off College Avenue near the Alfond Arena, Crossland Hall predates the University. Built in 1833 by Colonel John Goddard, and then sold to Nathan Frost in 1852, the building was one of two farms acquired for the Maine State College campus in 1866. After repairs were made to the building, it became the home of Merritt Fernald, the College’s first faculty member, until he became the College’s second president in 1879. Professor Allen E. Rogers and his family then lived in the house until 1886. The fraternity Beta Theta Pi occupied Crossland from 1886 until 1904, when the building was moved to its present location to make room for the fraternity’s new chapter house. Theta Epsilon, another campus fraternity, used the building as its chapter house until 1915, when it built its own house just south of Crossland (in 1913, Theta
Epsilon became a chapter of Sigma Nu, a national fraternity).

The University then renamed the building “North Hall,” and continued to use it for the next three decades as a domestic structure, primarily for female students. In this capacity, North Hall functioned as housing for female students; as a Home Economics Practice House, where senior home economics students spent several weeks in residence practicing their newly acquired skills; and during the Great Depression of the 1930s, as a women’s cooperative dormitory, where thirty students of modest means earned one-third of their tuition by working in the dormitory for an hour and a half a day.

After serving for a short time as the men’s freshmen dormitory, North Hall became the campus infirmary from 1946 until 1969, and then housed the Alumni Center for the next thirty-three years. In 1980, the University renamed the building Crossland Hall, after Charles Crossland, a 1917 University alumnus, who had served the University in a wide range of positions, including eighteen years as Director of the General Alumni Association, Vice President for Administration, and Acting President. When the Alumni Association moved to the Buchanan Alumni Center in 2002, Crossland Hall became administrative offices for a variety of University programs, most notably the Franco-American Center.

Architectural Description

Crossland Hall is two-story vernacular farmhouse. The building is constructed of wood-frame and rests on a
masonry foundation. The building is comprised of a west facing principal block and several additions at the east end of the block. The principal block terminates in a front gable roof sheathed with asphalt shingles. An interior brick chimney pierces the north plane of the roof.

The building is clad with vinyl siding. The north elevation doorway features a three-light replacement door flanked by two-light sidelights. The doorway is reached by a short flight of wood stairs. Two, 6/6, double hung replacement windows are located to the south of the opening. A one-story, one-bay wide by three-bay deep enclosed porch is located along the north elevation of the principal block. The porch terminates in a shallow shed roof.

Like the principal block, the rear additions terminate in gable roofs sheathed with asphalt shingles. The additions are clad with vinyl siding. Secondary entrances to the building are located on the north, east, and south elevations.

The interior of the main block is organized in a central hall plan. The main block retains many of its original finishes, including plaster walls, woodwork, and hardware. The primary entrance leads directly into the hall. The stairs and banister rise along the north wall to the second floor. Each room of the principal block is detailed with door and window surrounds. The rooms are used as office space and meeting rooms. Stairs in the center of the house provide access to the basement. A secondary set of stairs at the east end of the building provides access to the second floor.

The second floor rooms are used as office space and meeting rooms. Second floor finishes include plaster walls, simple moldings, and carpeted floors within the principal block and plaster walls and carpeted or vinyl tile floors within the rear additions. The north side of the hallway features acoustical tile ceilings while plaster ceilings remain on the south side. The windows on the second floor of the principal block are vinyl replacement windows.

Condition Assessment and Recommendations

Site Conditions

Overall the site is in fair condition. The lawn around Crossland Hall is worn, but well maintained. However, it does not appear to have a positive slope away from the
building on the north, east, and south sides that would allow water to drain away from the building. A depression near the entry porch on the east elevation directs water from the roof into the basement. There are large shrubs along the foundation on the north, south, and west elevations, which could cause damage to the masonry. No evidence of damage to the foundation was identified at present.

Site Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade to at least 18” away from the foundation.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation.

Roofing, Chimneys and Drainage

The asphalt shingle roof is in fair condition. Several of the shingles are loose or cupping, which is an indication that there is too much heat in the attic and more ventilation is required. Joints in chimney flashing are loose and open.

There are no gutters or downspouts on the building. This could lead to further water damage to the foundation and leaking into the basement. A depression near the entry porch on the east elevation directs water from the roof into the basement.

The membrane roof over the porch is in good condition. While no evidence of damage to the roof was identified, ponding water may eventually leak and cause damage to the internal structure of the building.

A poorly designed roof shape at the east entry is contributing to long-term drainage problems.

Roofing and Drainage Recommendations

- Repoint the chimneys. New mortar should match the original mortar used in color, texture and strength.
- Replace flashing around chimneys. This should be done when the chimney is repointed and roof is reshingled.
• Replace roof with slate shingles or higher grade asphalt shingles.
• Install drainage system to carry water away from the foundation.
• Consider developing a more functional and aesthetic east entry roofline.

Siding

The building is clad with vinyl siding. Mold and mildew are present in some areas, and the siding is starting to become brittle and crack. Weather extremes cause vinyl products to expand and contract, which over time will lead to unsightly cracking, buckling, and bowing of vinyl siding.

Siding Recommendations

Consider removing deteriorated synthetic siding and installing historically-appropriate wood or composite siding.

Doors and Windows

The doors and windows are generally in fair condition; however, many of the window units have been replaced with vinyl replacement units. Older windows that have not been replaced show signs of deteriorated glazing compound and peeling paint. Storm sash have been added to the exterior of the windows, which helps to protect them from the elements.

Doors and Windows Recommendations

Restore wood windows. Re-glaze the windows with a linseed based glazing compound. Weather-stripping should be installed. Windows may be left operable when reinstalled with new locks at each meeting rail as needed. This would allow for easier maintenance in the future. The storms/screen units should be carefully removed and reinstalled once the windows have been restored.

Foundation

The foundation is in good condition but there are areas of deterioration. Loose stones and areas of deteriorated mortar can be found along the north wall. Water may have
been coming in along the west wall where the roof runoff discharged. Foam insulation covers a portion of the foundation along the exterior of the north wall. Mold and organic growth cover the insulation.

The basement is damp. A relative humidity of above 70% will encourage mold and mildew. In addition, moisture levels above 19% promote insect infestation and rot.

Foundation Recommendations

- Install a vapor retarder at the basement floor after the drainage problems are resolved on the exterior of the building.
- Repair area of spalling foundation.
- Remove foam insulation from north foundation wall.
- Monitor basement humidity levels to determine if mechanical dehumidification will be necessary.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. There were no structural deficiencies identified in the area that could be causing the problem, so settlement is most likely the cause. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The majority of the rooms are carpeted and the carpet is in fair condition.

Code Compliance

A code search was not part of the scope of this report. The building however, does not appear to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is a wheelchair entry
ramp at the south entry, but the layout does not conform to the ADA. The building does not have an elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not alter the character defining features of the property.

Recommendations for Reuse

Crossland houses the Franco-American Center. Interior finishes and layout of the building are appropriate for it to remain in its present use. It might also be converted to visitor housing. In either case, consideration should be given to restoring the west block of the house and porch to its original historic appearance.

The removal of some or all partitions from past renovations to return the building to its original floor plan would provide a fresh start for a successful reuse plan.

Crossland Hall should not be expanded; rather some of the additions of recent times should be removed to restore the original Greek Revival farmhouse character of the Frost House.
Cyrus Pavilion Theatre

A Brief History of the Cyrus Pavilion

The Stock Judging Pavilion, now known as the Cyrus Pavilion Theatre, was constructed in 1908 to select cattle and other farm animals for breeding, and very likely as a classroom for teaching livestock management. Stock judging pavilions were a common feature of land-grant college campuses. William Hart Taylor of Boston designed the building and E. H. Wilbur and Son of Bangor served as the general contractor. Taylor also designed Winslow Hall, which stands just west of the pavilion, and housed offices and classrooms for the School of Agriculture.

In 1979-80, University officials decided to refashion the pavilion as a theater; William E. Nemmers of Belfast was the architect for the remodeling. The large door for bringing in cattle was replaced with an insulated panel, which has subsequently been painted in bright colors. The
The theater was named the Cyrus Pavilion Theatre in the early 1990s after Edgar Allan Cyrus, a theater professor.

Architectural Description

The Cyrus Pavilion is a one-story, octagonal, brick building constructed in the Jacobean Revival style. The pavilion’s distinctive polygonal roof is covered with slate. A cupola, also sheathed with slate, is located at the peak of the roof. Each side of the cupola features a twenty-light fixed wood sash. Access to the pavilion is through a pair of modern solid metal doors on the west elevation. The doors are set within a simple wood surround capped by a cast stone drip mould. Two small square windows are located above the door opening. Each of the remaining seven sides of the pavilion has a pair of one-over-one double-hung wood sash windows set below the eave. Each window opening has a cast stone sill and drip mould.

The entrance doors open to a small lobby, which in turn leads to the main performance space. Two single-fixture bathrooms flank the lobby. The theater space is divided into a stage area to the south and tiered seating to the north and east. The floor of the performance area is painted plywood, as are the seating risers. Dressing rooms are located underneath the seating risers. The roof of the structure is supported by 6 x 6 posts. A catwalk hung from 2 x 4’s bolted to the posts is located above the stage area.

Condition Assessment and Recommendations

Site Conditions

Overall the site is in fair condition. The lawn around the building is worn, but well maintained. Asphalt paving along the west elevation of the building does not appear to have a positive slope away from the building. Accumulation of debris along the base of the wall retains moisture and promotes organic growth on the wall.

Site Work Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18”, if possible.
- Remove asphalt paving to a distance of at least 24” away from the building.
Roofing and Drainage

The slate roof is in fair condition with several broken or cracked slates on each side of the roof. There is no gutter, so runoff from the roof is directed back at the wall. Ponding water around the building may eventually cause damage to the internal structure of the building.

Roofing and Drainage Recommendations

- Repair roof slates. Slide in a replacement slate with a pre-punched nail hole, to fit between upper two slates. Carefully nail slate in place. Fashion a piece of copper to cover the nail hole in the slot between the slates above. The copper should be 3 inches wide and long enough to hook over the top of the replaced slate and cover the nail by three inches. Bend the top 3/4-inch of the copper strip. Then insert the strip, bent side down between the slates above. The bent end should hook onto the top of the replaced slate, covering the nail. Install new slate that visually matches the historic material in size, shape, and color. Consider alternative materials only if restoration of the original slate is not technically or financially feasible. Alternative material should match as closely as possible the scale, texture, and coloration of the historic roofing material.

- Install drainage system to carry water away from the foundation.

Wood Trim

The exterior wood trim is in fair condition, exhibiting minor deterioration of moldings and soffit panels along the eave and around the entry door. The paint is typically peeling and in poor condition.

- Repair and repaint the wood trim. Thoroughly scrape the paint from the wood surfaces and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.
Masonry

The brick and mortar walls of the building are in good condition. However, there are a few spalling bricks at the edges of the buttresses. Additionally, there is slight staining of the brick in areas where water has run down the walls or has splashed back from grade. Cast stone lintels and sills are cracking as a result of the rust-jacking of internal steel reinforcement.

Masonry Recommendations

- Replace the spalling bricks with new or salvaged matching units.
- Cleaning of the masonry surfaces is not recommended, unless the soiling begins to cause deterioration of the stone and mortar. If cleaning is necessary, tests should be undertaken to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Replace deteriorated cast stone with new material to match existing.

Doors and Windows

The doors and windows are generally in fair to poor condition. There is some minor wood rot at the base of the entry door trim. The glazing compound on many of the window sash is deteriorated, and paint is peeling on many of the windows. Several of the window sash are missing and have been infilled with painted insulation. Significant corrosion is visible on the reinforcement bars of the door; resulting in spalling of the surround. If left untreated the rust jacking could lead to further splitting of the sills and surround.

Door and Window Recommendations

- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.
Several of the windows will need to be replaced. Use an existing historic window to guide the replacement.

- Storm windows should be installed over all of the windows. Use historically compatible storm/screen units designed to harmonize with the existing sash.
- Restore lintels and surrounds using a vapor permeable mortar that contains no latex or acrylic bonding agents or additives. Cast stone lintels may need to be replaced where internal steel reinforcing is rusting.
- Replace metal entry doors and frame with wood panel doors and frame. Use historical photos to select or design these doors.

Foundation

The foundation is in generally good condition. There are areas exhibiting deteriorated mortar where water is directed at the foundation.

Foundation Recommendations

Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to ensure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling which cannot be repaired easily. Finish joints should match the width and profile of the original.

Flooring

The plywood flooring is generally in good condition and should be repainted as part of routine maintenance.
Code Compliance

There appear to be some ADA and life safety code deficiencies, including inaccessible restrooms and lack of wheelchair seating options.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety and ADA deficiencies. Specific recommendations should be made which do not destroy or diminish the character defining features of the property.

Recommendations for Reuse

Cyrus Pavilion currently provides small theater space for the University’s theater program. The jewel-like nature of this building lends itself perfectly to its current use as a setting for an intimate theater. A more sensitive treatment of the entrance and windows should be applied to take advantage of the unique character of the building and its use. More attractive and professional signage, together with appropriate lighting, would add the “sparkle” that theaters need to convey the vitality within.

Due to its unique shape and prominent location, no expansion of the Cyrus Pavilion is recommended. At the same time, any expansion of Fogler Library to the south should set aside sufficient space around Cyrus and preserve views to the building from surrounding open spaces.
Fernald Hall

A Brief History of Fernald Hall

Fernald Hall was the first building constructed for the campus that is still extant. Called “Chemical Hall” when it was first built, it contained classrooms and chemical laboratories, as well as a small library in the basement. Alpheus C. Morse of Providence, Rhode Island designed the building. Fernald Hall is very similar to another classroom building Morse designed for Brown University, also named Chemical Hall. The bricks used in the building’s construction were manufactured on campus by a local contractor. Chemical Hall’s name was changed to “Fernald Hall” in 1896 in honor of Merritt C. Fernald, first member of the faculty and second president of Maine State College. Fernald Hall has, at various times in its history, housed chemical laboratories, classrooms, a bookstore, a chapel and a snack bar, as well as faculty offices and the Women’s Resource Center.
Fernald Hall has traces of Ivy Day plaques between the windows on first story of the building. Ivy Day plaques commemorate Ivy Day, a University of Maine tradition in the late nineteenth century. Graduating seniors would plant ivy and place ivy-shaped stone plaques engraved with their year of graduation on buildings.

Fernald Hall has been remodeled a number of times. In 1896, the original one-story ell was destroyed by fire and replaced with a two-story ell. In 1934, two new second-story windows were added to the rear of the building (facing Munsun Road), and new granite steps, taken from Lord Hall, were added to the rear entry. The façade direction changed from west to east (from facing the Stillwater River to facing Munson Road) in 1968. The west entry door was taken out and a window was added in its place. A new stairwell and entrance were added to the south elevation, and a new service door entrance was added to the north elevation. In 1984, part of Fernald’s slate roof was removed and was replaced with EDPM.

Architectural Description

Fernald Hall is a two-story brick Italianate structure with a granite foundation, and is comprised of a principal block and a rear ell. The principal block is five-bays wide by three bays deep and the rear two-story ell is four bays deep by one bay wide. Both blocks terminate in a hipped roof sheathed with slate. Wooden decorative brackets are featured at the eave of both blocks. The original central entrance on the west elevation is infilled by a sixteen-light sash window. Window openings on the building feature 6/6 double-hung wood sash windows; several of the openings feature an arched upper sash. A granite sill and arched granite crowns highlight the principal block openings. Openings are located on the north, east, and south elevations of the secondary block.

The interior of the main block is organized in a central hall plan with offices to the north and south. The finished spaces of the building allow for approximately 16,000 square feet of useable space. The main block features suspended acoustical tile ceilings, carpeted floors and gypsum wallboard partition walls. The rear block, once used as a coffee shop, is abandoned. The space features a vinyl composition tile floor, painted plasterboard walls and suspended acoustical tile ceiling. Stairs between the
principal block and the rear block provide access to the basement and upper floors. The basement is divided into office, meeting, and storage spaces. Brick, concrete masonry units and gypsum wallboard are used to divide the spaces.

The second floor rooms are used as office space and meeting rooms. Second floor finishes include carpeted floors with 4” vinyl base, painted plasterboard walls and suspended acoustical tile ceilings. The third floor features two spaces, one partially unfinished space with exposed steel trusses and plywood floor over the principal block and a studio space with wood floor and exposed trusses over the rear block.

Conditions Assessment and Recommendations

Overall, Fernald Hall is in fair to good condition with only a few exceptions noted. The majority of the damage is a result of the age of materials, moisture infiltration, and/or lack of cyclical maintenance.

Site Conditions

Overall the site is in fair condition. Asphalt paving directly abuts the building along the north and south wall. The existing grade at the building perimeter does not appear to have a positive slope away from the foundation. There are small shrubs along the foundation on the south and east elevations and vine growth on the south wall. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation, and root growth may push into or under the foundation.

Site Recommendations

- Where possible, hold paving back from the foundation. Re-grade the lawn to create positive drainage away from the building. Direct runoff by sloping the grade away from the building a minimum of 2% and to a minimum of 18” away from the foundation.
- Cut back plantings so there is at least a 1’-0” air space between the structure and the vegetation. Confine vines to below the second floor level for ease of maintenance. If vine tendrils have worked their way into mortar joints, pulling the live vines from the building wall will cause...
added damage. Dead vine tendrils remaining on a wall are not harmful, but they can be removed using low-pressure steam and a bristle brush.

Roofing and Drainage

The slate roof is in good condition; there are only a few broken or cracked slates on each side of the roof. The drainage system is in fair to poor condition. Many portions of the gutter have been covered over and the wood gutter is in deteriorated condition. Additionally, the downspouts on the east elevation drain onto the foundation, staining the wall and causing water to pond at the foundation.

Roofing and Drainage Recommendations

- Repair roof slates. Slide in a replacement slate with a pre-punched nail hole, to fit between upper two slates. Carefully nail slate in place. Fashion a piece of copper to cover the nail hole in the slot between the slates above. The copper should be 3 inches wide and long enough to hook over the top of the replaced slate and cover the nail by three inches. Bend the top 3/4-inch of the copper strip. Then insert the strip, bent side down between the slates above. The bent end should hook onto the top of the replaced slate, covering the nail. Install new slate that visually matches the historic material in size, shape, and color. While alternative materials are available, consider them only if restoring or replacing the original material in-kind is not technically or financially feasible. Weigh the use of alternatives carefully to assure that the historic character of the building is not compromised. The alternative material should match as closely as possible the scale, texture, and coloration of the historic roofing material.
- Repair gutters and install extensions on the ends of the existing downspouts that will carry water at least 18” away from the foundation of the building.

Masonry

The brick and mortar walls of the principal block and the rear addition are in very good condition. There is slight staining of the brick in areas where water has run down the walls.
Masonry Recommendations

- Cleaning of the exterior brick at this time is not recommended because the soiling is not damaging the masonry. If the soiling begins to cause deterioration of the bricks or mortar, or if the decision is made to clean the property for purely aesthetic reasons, the bricks should be cleaned using a nonabrasive cleanser and the gentlest means of application and removal possible. Using test panels on the building (preferably in an obscure area), apply cleaning methods starting with the gentlest means possible until an acceptable approach is identified.

- Undertake laboratory analysis of samples of original mortar to ensure a compatible formula for future repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, that cannot be repaired easily. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Finish joints should match the width and profile of the original joints.

Wood Trim

The trim of the building for the most part is in fair shape, it is the paint which is peeling and in poor condition.

Wood Trim Recommendations

Repaint the wood trim. Thoroughly scrape the paint from the wood surfaces and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future. Lead paint removal may be required.
Doors and Windows

The doors and windows are generally in fair condition. The glazing compound on many of the windows is deteriorated; and paint is peeling on all of the windows. Storm sash have been added to the exterior of some of the windows, helping to protect them from the elements.

Door and Window Recommendations

Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

Storm windows should be installed over all of the windows. Use historically appropriate storm/screen units.

Foundation

The granite foundation is in good condition with some cracking at mortar joints. There is some staining on the granite from dirt as well as moss. The basement is damp, with mold observed at the west end of the building. The rugs in the west end of the basement have been removed and dehumidifiers have been installed to help address the situation.

Foundation Recommendations

- Monitor the basement for dampness after roof drainage and grading problems are corrected.
- Repoint granite foundation at deteriorated mortar joints.

Interior Partitions

The plasterboard and paint on the interior is in good condition and for the most part needs no work beyond regular maintenance and care.
Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The rooms are carpeted and the carpet is in fair condition.

Code Compliance

A code search was not part of the scope of this report. The building does not appear to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is a wheelchair entry ramp at the north entry, but the layout does not conform to the ADA. The building does not have an elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not alter the character defining features of the property.

Recommendations for Reuse

Fernald Hall was originally constructed to house the school’s first chemistry laboratory. The layout and interior finishes have been updated. The building is currently used as administration and office space for the Department of Sociology; the Women in Curriculum Program/Women's Studies; and the Women's Resource Center. Interior finishes and layout of the building are appropriate for the building to be used as administrative and office space. Small instructional spaces, such as seminar rooms, could also be easily accommodated without significant changes in the existing floor plan.

Consideration should be given to restoring the original west facing entry to its original historic appearance. Any restoration work should be based on photographic or other documentary evidence.
The removal of partitions from past renovations to return the building to its original floor plan would provide a fresh start for a successful reuse plan.

Fernald Hall should not be expanded. With Sebec and Munson roads close by the east and south elevations, Wingate Hall directly adjacent to the north elevation, and the west elevation facing the “front lawn” and the river, Fernald should remain in its present configuration. Attention should be focused on an appropriate rehabilitation of its interior spaces and the restoration/preservation of its historic exterior.
Holmes Hall

A Brief History of Holmes Hall

Holmes Hall was built after the University received funds from the Hatch Act of 1887, which provided federal money for agricultural experiment stations at land-grant institutions. Frank Kidder, the architect responsible for Coburn and Wingate Halls, also designed the Experiment Station building. It was originally a five-bay, two-story building. In 1899, the south wing was added to the building. The north wing was added in 1904. At the building’s dedication, it was renamed Holmes Hall—previously it had been simply called “Experiment Station.” The projecting entry was added at a later date. In 1955, a one-story addition was added to the north side of the building. Ezekiel Holmes, after whom Holmes Hall is named, is an important figure in the early history of the College. As editor of The Maine Farmer, he used his influence to persuade the public and the Maine legislature of the importance of establishing an agricultural college in...
the state. He also supported other forms of agricultural education, years before the federal government passed the Morrill Act. It is largely due to Holmes’ influence that the state legislature decided to use the Morrill grant money to establish a separate college, rather than giving the funds to Bowdoin to establish an endowed chair.

Architectural Description

Holmes Hall is a two-story Richardsonian Romanesque building. The principal block is constructed of brick and rests on a granite foundation. The building is configured in a u-shaped plan. The building terminates in an intersecting gable roof sheathed with slate on the west plane and asphalt shingle on the east. A stepped brick cornice defines the eave. A one-bay center projection, capped by an arched roof, marks the principal entrance to the building. Access to the principal block is provided by a pair of three-light wood doors. Double-hung wood sash windows are located to each side of the entrance bay. All first floor openings in the principal block are marked by granite lintels. Openings of the second floor are headed by brick arches. Decorative brickwork is located between the first and second floor windows.

A one-and-a-half story wing with a flat roof projects from the north elevation. The wing is constructed of brick and rests on a poured concrete foundation. Double-hung wood sash windows are located on each side of the wing. Decorative brickwork is located between the stacked window openings.

The basement contains offices and chemistry lab spaces. The foundation of the building is granite and brick. The floor is poured concrete and the ceiling is exposed wood frame. Several of the rooms contain laboratory equipment. Wood frame hopper windows provide natural light to the basement. A modern wood bulkhead on the east elevation provides access to the basement.

The interior of the building is divided by plaster walls into offices and classrooms. The hallways features an 8-inch by 8-inch vinyl asbestos tile floor and tin ceiling while the offices feature plaster ceilings. A stairway along the south wall of the hall provides access to the second floor. A laboratory space at the north end of the building features a poured concrete ceiling with exposed steel girders. The
second floor rooms are also used as offices and classrooms. Second floor finishes include vinyl asbestos floor tiles and plaster ceilings and walls. Six-over-six double-hung wood sash windows provide light for these rooms.

The attic of the building is used for storage. The floor is of wood plank. The ceiling is exposed roof deck and roof rafters.

Condition Assessment and Recommendations

Site Conditions

Overall the site is in fair condition. The lawn around Holmes Hall is worn, but well maintained. However, it does not appear to have a positive slope away from the building, so water does not drain away from the building. The perimeter drain may be directing water back at the foundation. There is heavy vegetation along the foundation, but there is no evidence of damage to the foundation at this time.

Site Recommendations

- Re-grade the lawn to create positive drainage away from the building by sloping the grade away from the building to a distance of eighteen inches from the foundation. Investigate the condition of the perimeter drain.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and roots may push into or under the foundation.

Roofing, Chimneys and Drainage

The slate roof on the west elevation is in good condition; there are only a few broken or cracked slates. The asphalt shingles on the east elevation are in fair condition. The drainage system is in fair to poor condition. The chimney flashing exhibits loose and open joints.
Roofing and Drainage Recommendations

- Repair roof slates. Slide in a replacement slate with a pre-punched nail hole, to fit between upper two slates. Carefully nail slate in place. Fashion a piece of copper to cover the nail hole in the slot between the slates above. The copper should be 3 inches wide and long enough to hook over the top of the replaced slate and cover the nail by three inches. Bend the top 3/4-inch of the copper strip. Then insert the strip, bent side down between the slates above. The bent end should hook onto the top of the replaced slate, covering the nail. Install new slate that visually matches the historic material in size, shape, and color. While alternative materials are available, consider them only if restoration of the original material is not technically or financially feasible. The alternative material should match as closely as possible the scale, texture, and coloration of the historic roofing material.

- Replace flashing. Each piece of base flashing should extend under the roof sheathing a minimum of four inches. Base flashing should be nailed to the roof deck. Stepped flashing at vertical joints between sections should overlap a minimum of three inches and extend up along vertical surfaces a minimum of four inches.

- Repair gutters. Remove all organic matter from the gutters and install extensions on the ends of the existing downspouts to carry water at least 18” away from the foundation.

Masonry

The brick and mortar walls of the building are in very good condition. There is slight staining of the brick in areas where water has run down the walls or where vegetation has grown up the walls. Several areas of brickwork have been inappropriately patched with a colored mortar; and caulk has been smeared into granite belt course joints.

Masonry Recommendations

- Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar...
and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, which cannot be repaired easily. Finish joints should match the width and profile of the original.

- Cleaning of the brick and stone surfaces is not recommended unless the masonry shows signs of deterioration. If the brick and/or mortar begins to deteriorate, test procedures should be used to determine the gentlest and most appropriate cleaning method. The removal of environmental stains should be left to a conservator.

Wood Trim

The trim of the building for the most part is in fair shape, but the paint is peeling and in poor condition.

Wood Trim Recommendations

Repaint the wood trim. Thoroughly scrape the paint from the wood surfaces and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors and windows are generally in fair condition. The basement windows are deteriorated. The glazing compound on many of the sash is deteriorated, and paint is peeling on all of the windows. Storm windows have been
added to the exterior of some of the windows, protecting them from the elements to some extent.

Door and Window Recommendations

- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future. Several of the basement windows will need to be replaced. Use an existing historic window to guide the replacement.
- Storm windows should be installed over all of the windows. Use historically compatible storms/screen units.

Foundation

The foundation is in good condition, but there are some areas where water directed at the foundation by faulty downspouts has caused loose bricks and areas of deteriorated mortar.

Foundation Recommendations

See Masonry Recommendations above for proper masonry foundation repair techniques.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. There were no structural deficiencies identified in the area that could be causing the problem, so settlement is most likely the cause. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.
Flooring

The tile flooring is in good condition and should not be disturbed until it can be removed and disposed of according to University hazardous materials handling policies.

Code Compliance

The building does not appear to meet many requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is no entry ramp nor elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not compromise the character defining features of the property.

Recommendations for Reuse

Holmes Hall is underutilized - there is one office being used on the second floor. The rest of the building is vacant. Equipment remains in many of the spaces from when the building housed the Agricultural Experiment Station. The equipment should be inventoried and removed or displayed. Interior finishes and layout for the building are appropriate for the building to be used as administration and office space. With interior rehabilitation and possibly one or two additions, Holmes Hall could include some seminar-sized instructional spaces.

The removal of some or all partitions from past renovations to return the building to its original floor plan would provide a fresh start for a successful re-use plan.

Holmes Hall could be easily expanded through the construction of a sensitively-designed addition to the rear (east). However, any such expansion would impact Moosehead Road and the parking area at the rear of the building. Future master planning may lead in the direction of significant modification of the campus roadway and parking systems. The expansion of the Fogler Library might also result in a reconfiguration of service access and parking. The possible expansion of Holmes Hall should be one element of the master planning discussion.
Lord Hall

A Brief History of Lord Hall

Lord Hall was built in 1904 as a laboratory and shop building for the Mechanical and Electrical Engineering Departments. A forge and foundry were located in the one-story rear ell. It was named for Henry Lord, a lumberman from Bangor and president of the Board of Trustees at the time the building was constructed. Thomas and Crowell, a Bangor architectural firm, designed the building. Both John F. Thomas and C. Parker Crowell were 1898 graduates of the University of Maine. Lord Hall was the first of many buildings they and their successor firms would design for the campus.

All of the materials for the building came from Maine sources: the stone in the foundation, the exterior fieldstone and brick came from Penobscot County; the granite for the exterior trim came from Kennebec County; lime to make mortar for the bricks came from Knox County; lumber in
The walls, roof and floors was made from hemlock, pine, and spruce from northern Maine; and the slate roof—recently removed—came from Piscataquis County.

Lord Hall has been remodeled three times. In 1934, the forge and foundry moved to the newly-constructed Machine Tool Laboratory and the rear ell was raised to two stories to make more room for the engineering program. Thirty years later, the building was renovated for the Music Department, including the installation of recital halls and studios. Lord Hall was remodeled in 2005 for the Art Department.

Architectural Description

Lord Hall is a two-and one-half story brick Richardsonian Romanesque building with a T-shaped footprint. It sits on a raised granite block foundation and is topped with a hipped roof originally sheathed with slate. A projecting pedimented gable centered on the west elevation marks the principal entrance. Two arched single-hung wood sash windows are located in the gable. A bracketed wood cornice defines the eave around the building perimeter. The main entrance to the building is connoted by a deeply-recessed entrance within a wide arched opening on the west elevation (façade). Above the entryway are two arched openings, each with a pair of one-over-one windows and a two-light fanlight. To each side of the entry is a band of three double-hung windows at both the first and second floor. Each of the window openings is marked by a granite sill and keystone at the first floor, and a granite sill and massive granite lintel at the second floor.

The two-story rear ell terminates in a hipped roof which was originally covered with slate shingles. The ell is constructed of brick and rests on a raised ashlar veneer foundation. Paired double-hung wood sash windows are located on each side of the ell. As on the façade, the lower level windows have granite sills and keystones; the upper level windows have a granite sill at each sash and a granite lintel over each pair of sash.

The building recently underwent an extensive rehabilitation and was not included in the Phase I conditions assessment survey. The floor plans on the following pages represent pre-rehabilitation layouts. As noted in the building history, Lord Hall has been the home of a variety of uses over its
life to date. The prior occupant of the building was the Music Department. The new occupant is the Art Department. Thus Lord Hall stands as an example of how an historic building can satisfy the needs of a variety of users while retaining its original character.
The Maples

A Brief History of The Maples

Built in 1877 as the college farmhouse, the Maples reflects the University’s heritage as an agricultural college. Initially the building stood on nearly 400 acres of farmland; faculty and students used the farmland both to raise crops for their own sustenance and as a testing ground for agricultural experiments. The farm superintendent originally lived in the house, which was surrounded by several barns and outbuildings into the 1930s. Early in its history, the building was known simply as the Farmhouse—its name was changed to the Maples in the early twentieth century.

Following World War I, land for agricultural experimentation was increasingly moved from the campus to University-owned farms in Stillwater and Old Town. The University also acquired land in other parts of Maine for specialized farming practices. Farmland on the Orono campus gradually decreased from 370 acres in the early 1880s to 34 acres in 1950. The University administration...
adapted the farmhouse for different purposes, including housing for agricultural professors, a campus hospital and a home economics practice house. Part of the building was used to accommodate increasing numbers of women students before Colvin Hall was built in 1930; it was called “Balentine West,” after the first women’s dormitory. Victor Hodgins, an architect from Bangor, formally remodeled the building as a women’s dormitory in 1931. In 1940, Crowell and Lancaster of Bangor renovated it as offices and laboratories for the Agriculture Experiment Station and the College of Agriculture. The Maples currently contains faculty and administrative offices.

Architectural Description

The Maples is a two-and-one-half story, three-bay vernacular farmhouse. It is comprised of a rectangular plan principal block (a former farmhouse), a two-story side ell to the south and a two-story rear ell to the east. The farmhouse is constructed of wood-frame and rests on a brick and granite fieldstone foundation. The principal block has a gable roof sheathed with asphalt. A three-bay shed dormer is featured on the west plane of the roof. The building is clad with vinyl siding. A three-bay entry porch is centrally located on the west elevation. The porch terminates in a hipped roof. Wood posts resting on a wood deck support the roof. A set of wood stairs provides access to the porch. Access to the building is gained through a pair of wood doors at the main entrance. A single six-over-six, double hung wood sash window is located to each side of the opening.

The two-story, four-bay wide by three-bay deep side ell is capped with a side gable, slate-covered roof. The ell is constructed of wood-frame and rests on a granite fieldstone foundation. The ell is clad with vinyl siding. A two-bay entry porch is located at the northwest end of the west elevation. The porch is sheltered by a shed roof sheathed with asphalt shingles. Wood posts resting on a wood deck support the roof. A set of wood stairs provides access to the porch. Access to the building is gained through a two-light over two-panel wood door.

A two-story, two-bay wide by two-bay deep addition projects from the east elevation of the farmhouse. This ell, clad with vinyl siding, is constructed of wood-frame and rests on a granite fieldstone foundation.
The foundation of the building is brick resting on fieldstone. The floor is poured concrete with trenches along the east and west walls to direct water. The basement is divided into storage spaces by wood frame walls.

The interior of the main block is organized around a central hall with offices to the north and south. The main block features plaster ceilings, plaster walls, both wood and carpeted floors, and many original fixtures. The rear block is partitioned into office space that features suspended acoustical tile ceilings, carpeted floors, and a mix of plaster and gypsum wallboard walls. Stairways at the north entrance of the principal block and at the north entrance of the ell provide access to the second floor. The stairway in the main block provides access to the third floor.

The second and third floor rooms are used as offices. Second floor finishes include wood floors, many covered with carpet; painted plaster and plasterboard walls; and suspended acoustical tile ceilings.

Conditions Assessment and Recommendations

Site Conditions

Overall the site is in fair condition. The lawn around the building is worn and it does not appear to have a positive slope away from the building that would allow water to drain away from the foundation. A depression along the west wall directs water from the roof into the basement. Additionally, asphalt paving comes right up to the building along the north wall.

Site Recommendations

- Re-grade the yard to create positive drainage away from the building by sloping the grade at least eighteen inches away from the building.
- Remove the asphalt paving to a distance of 24” from the foundation to provide positive drainage.

Roofing and Drainage

The slate roof is in fair condition with broken or cracked slates on each side of the roof. The flashing shows loose...
and open joints. The drainage system is in fair to poor condition. Many of the downspouts drain at the foundation rather than away from the building.

Roofing and Drainage Recommendations

- Replace broken, loose, or missing slates. New slates should match existing in composition, color, width, and exposure. See Roof Recommendations for Fernald Hall for detailed slate repair procedures.
- Repair flashing.
- Downspouts should connect into drainage pipes that will carry water away from the foundation. The drainage pipes should carry the water to a dry well at least ten feet away from the foundation. This will require excavation, laying a gravel base for the dry well, installing a pre-cast concrete dry well and backfilling. Several downspouts can connect into one dry well.

Siding

The building is clad with vinyl siding. Mold and mildew are present in some areas, and the siding is starting to become brittle and crack. Weather extremes cause vinyl products to expand and contract, which over time will lead to unsightly cracking, buckling, and bowing of vinyl siding.

Siding Recommendations

Consider removing synthetic siding and installing historically appropriate siding.

Doors and Windows

The doors and windows are generally in fair condition. The glazing compound on many of the windows is deteriorated and paint is peeling on all of the windows. Storm windows have been added to the exterior of some of the windows, protecting them from the elements.

Door and Window Recommendations

- Thoroughly scrape the paint from the building and properly prepare the wood. The paint should be removed by hand scraping and sanding down to a sound surface. An orbital disk sander should be used only if
operated by an experienced mechanic. Care must be taken not to damage the wood. A rotary sander should not be used as this will damage the wood and leave circular sanding patterns. A heat gun can be used in select locations, but must be monitored at all times to make sure the wood does not catch on fire. Lead paint may be present; precautions should be taken to remove and dispose of lead paint according to state and local regulations. If there is mildew present, it can be removed by washing with a solution of one part bleach to one part water. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

- Storm windows should be installed over all of the windows. These should be historically appropriate storm/screen units.

Foundation

The foundation is in generally good condition. There are areas of deteriorated mortar along the foundation wall, and organic growth on some surfaces. A concrete skirt wraps portions of the foundation. The skirt is broken and cracked in areas and allows moisture to penetrate. The basement is damp with standing water in the south room.

Foundation Recommendations

- Repair areas of deteriorated mortar. Undertake laboratory analysis of samples of original mortar to ensure a compatible formula for future repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, that cannot be repaired easily. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Finish joints should match the width and profile of original mortar joints.
• Remove poured concrete skirt on the exterior of the building.
• Monitor the basement for dampness after drainage and foundation problems are corrected. If moisture is still appearing install a dehumidifier or use a fan to circulate air and ventilate the basement. Consider installing a sump pump if wet conditions persist.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from wall movement. These types of cracks are most likely caused by settlement, because there were no structural deficiencies identified in the area that could be causing the cracks. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the house is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The wood flooring is generally in good condition and should be refinished as part of routine maintenance. The majority of the rooms are carpeted. The carpet is in poor condition and should be replaced.

Code Compliance

A code search was not part of the scope of this report. The building does not appear to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is no entry ramp, and the building does not have an elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies.
Bringing the building into code compliance need not the character defining features of the property.

Recommendations for Reuse

The Maples is currently used as the administration and office space for the Department of Philosophy. Interior finishes and layout for the building are appropriate for the building to be used as administrative and office space. Some of the larger rooms could also function as small instructional spaces such as seminar rooms.

The removal of partitions from past renovations to return the building to its original floor plan would provide a fresh start for a successful re-use plan.

There is potential for some expansion of the Maples to the east, though any addition should not extend any further to the east than the existing ell.
Page Barn

A Brief History of the Page Barn

The main building of the Page Farm and Home Museum is a wood frame barn that was originally part of the Frost Farm, one of two adjoining farms that the Trustees of the Maine State College bought in 1866 for the college campus. In 1886, the college administration moved the barn from its original lot (near the present-day Beta Theta Pi fraternity house) to a site near the Maples farmhouse. At this location, it functioned as part of the college farm complex, and was used to house livestock. It became known as Barn 2, located behind and south of Barn 1, a larger barn, built in 1874 as an ideal barn to house cattle. By the mid-twentieth century, much of the university’s experimental farmland was situated away from the main campus, so the administration found new uses for the original college farmhouse and barns. In 1931, Barn 2 was moved east of Rogers Hall to serve as a storage building for agricultural machinery. In the early 1990s, the University...
planned to demolish the building. Agricultural alumni raised funds to preserve the barn and turn it into a museum to highlight rural life around the turn of the twentieth century. In 1992, the barn was moved to its present site. The museum opened its doors to the public in 1995 and acquired the wood plank silo from the Witter Farm. It was named the Page Farm and Home Museum after the Henry Page family, the naming benefactor of the museum, who had owned and operated the Page Dairy Farm in Bangor.

Architectural Description

The Page Barn is rectangular in plan, two-and-one-half stories high, and features a gable roof clad with asphalt shingles. The barn, constructed of heavy timber frame, is three bays wide and rests on a modern poured concrete foundation. The front elevation features a centered wood sliding track door constructed of vertical wood boards. The opening is capped by a thirty-light transom, which provides light to the interior. The main opening is flanked by nine-light replacement doors. The side elevations feature four-over-four double-hung wood sash windows. The openings are highlighted by a simple wood surround. The barn is clad with wood clapboards.

A wood plank silo is located at the northwest corner of the barn. The silo terminates in a conical roof sheathed with asphalt shingles and a pointed cap piece. The silo is connected to the barn by a two-story wood frame addition that terminates in a gable roof.

An aisle that extends down the central axis divides each of the floors of the barn. The barn is currently used as exhibit/display and meeting space. The first and second floors of the barn are unfinished and feature exposed framing and random width wood flooring. Stairs in the northwest corner provide access to the basement and stairs in the southeast corner provide access to the basement and loft. The elevator shaft contained within the silo has sheetrock interior walls and modern plank flooring.

Conditions Assessment and Recommendations

Site Conditions

Overall the site is in fair condition. The lawn around the barn is worn, but well maintained. However, it does not
appear to have a positive slope away from the barn near the northeast corner that would allow water to drain away from the building. There are small bushes along the foundation on the west side of the barn. When plantings are too close to a building, the roots may cause damage to the masonry; however, there is no evidence of damage to the foundation at present. The retaining wall at the southeast corner of the barn appears to be in danger of collapsing.

Site Recommendations

- Create positive drainage away from the barn by sloping the grade away from the building to at least eighteen inches from the foundation if possible; channel runoff to a drainage swale.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Reconstruct retaining wall at southeast corner of the barn.

Roofing and Drainage

The asphalt roof of the barn is in fair to good condition. Several of the shingles are cupping or are loose. There are no gutters or downspouts on the barn to draw water away from the foundation; however, a perimeter drain has been placed around the foundation.

Roofing and Drainage Recommendations

Consider replacing roof with higher grade asphalt shingles.

Clapboards and Wood Trim

The clapboards and wood trim are generally in good condition. Some of the trim needs to be scraped and painted. Metal strap ties at the elevator silo are rusting.

Clapboard and Wood Trim Recommendations

Where repainting is necessary, thoroughly scrape the paint from the barn and properly prepare the wood and metal. The paint should be removed by hand scraping and sanding down to a sound surface. An orbital disk sander can be used only if operated by an experienced mechanic. Care must be taken not to damage the wood. A rotary sander should not be used as this will damage the wood and leave circular sanding patterns. A heat gun can be used in select
locations, but must be monitored at all times to make sure the wood does not catch on fire. Lead paint may be present. Precautions should be taken to remove and dispose of the paint according to state and local regulations. If there is mildew present, it can be removed by washing with a solution of one part bleach to one part water. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors on the barn are in good condition. The entrance doors have a small area of deterioration at the base of each. The windows are in good condition. The eave lights have been removed and rigid insulation has been installed behind the openings.

The two entrance doors on the façade are inappropriate in appearance and materials.

Door and Window Recommendations

- Restore the eave windows. Use historic photographs as a guide.
- Repaint windows as part of routine maintenance.
- Replace two front entrance doors with new wood doors designed according to photographic evidence of the appearance and configuration of original doors on the building.

Foundation

The foundation is in good condition.

Interior Woodwork

The wood trim throughout the barn is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.
Flooring

The wood flooring, which has been sanded but not finished, is generally in good condition and needs no work beyond regular maintenance and care. The carpet in the elevator is in poor condition.

Code Compliance

The building appears to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). The building contains a new elevator which serves all floors.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not alter the character-defining features of the property.

Recommendations for Reuse

The Page Farm & Home Museum is located in the last original agricultural building on the campus. Interior finishes and layout for the barn are appropriate for the barn to be used as a museum space for a collection of regional farm implements and household items.

Should program growth require expansion of the Page Barn, there is ample precedent for attaching “lean-to” or “saddle bag” additions to one or both sides of the building. More likely is the use of the adjacent school house and other buildings that have been moved to the site for expanded programming and exhibition space.
A Brief History of the Edith Marion Patch House

The Edith Patch House is located on College Avenue, just north of the University of Maine campus. Dr. Edith Marion Patch joined the University of Maine faculty in 1903 as an entomologist. Because women had few opportunities in higher education at that time, Patch worked her first year at the University without pay to prove her competence as a scientist. She established the entomology department at the Maine Agricultural Experiment Station. In fact, she was the first woman to become a director of state agricultural experiment station in the United States. Patch became an internationally-known scientist for her work on aphids and, as a result, was elected president of the American Entomological Society. In addition to her scholarly writing, Patch also wrote popular non-fiction works to educate children and adults about the natural world.

Patch bought the property on College Avenue when she started working at the University and called the house “Braeside.” She found inspiration for both her scholarly work and children’s books in the wildlife that inhabited the
grounds of the property. After her death in 1954, Braeside came into the possession of the University of Maine, and the house was used for student housing until 1994 when it was found to be in violation of safety codes. Three years later, University officials agreed to let local firefighting units use the house for a firefighting practice exercise. The local community and university faculty responded to the potential destruction of the Patch house and formed the Friends of Dr. Edith Patch, a non-profit, volunteer organization that saved the house from demolition. The organization intends to make Braeside a centerpiece of the Edith Marion Patch Center of Entomology, an education center for students and the general public.

Architectural Description

The Edith Marion Patch House is a one-and-one-half story, three-bay Gothic Revival residence with Italianate influences. The rectangular block is constructed of wood-frame and rests on a masonry foundation. The block terminates in a steeply pitched side gable roof sheathed with asphalt shingles. A center gable is located on the west rise of the roof marking the principal entrance to the building. A single six-over-one, double-hung wood sash window is located within each gable. A simple box cornice defines the building eaves. The building is clad with wood clapboards. The doorway features a wood panel door flanked by five-light sidelights. The doorway is reached by a short flight of modern cast concrete stairs. A single 6/1, double hung wood sash window is located to each side of the projecting entry. All openings on the principal block are marked by a wide drip mold. A secondary entrance located on the south elevation and is accessed by a short flight of modern wood steps with a wood deck landing.

The one-and-one-half story rear ell terminates in a side gable roof. Two gable roof dormers are located on the north and south planes of the roof. Four 6/1, double hung wood sash windows are located along the south elevation.

A two-story, three-bay wide by three-bay deep addition constructed during the early twentieth century is located at the northeast intersection of the principal block and rear ell. The addition extends to the north beyond the north end of the principal block and terminates in a flat roof. A secondary entrance is located on the west elevation of this projection. Two, two-over-one, double-hung wood sash
windows are located on the first and second floors of the north elevation.

The barn is located to the northeast of the residence and faces south. This one-and-one-half story barn is built of wood frame and sits on a modern poured concrete foundation. The clapboard walls rise to terminate in a side gable roof sheathed with asphalt shingles. The south elevation features two sliding track wood doors. A surround of simple flat stock trim frames each opening. The west elevation features a centrally located 6/6 double-hung wood sash window on the first floor and a slightly smaller scale 6/6 window above. A single 6/6, double-hung sash is located within the gable end on the east elevation.

Conditions Assessment and Recommendations

A comprehensive conditions assessment of the Dr. Edith Marion Patch House and barn was undertaken in 2001 for the Friends of Dr. Edith Marion Patch by Turk Tracey & Larry Architects, LLC. The study included architectural, structural, and mechanical systems. The following assessment looked only at the exterior of the resources. The 2001 report should be referenced for further detail.

Site Conditions

Overall the site is in fair condition. The lawn around the house and barn is worn, but well maintained. However, it does not appear to have a positive slope away from the house on the north and south sides that would allow water to drain away from the building. The walkway at the front of the house is cracked and uneven. Not only is this a tripping hazard but also water may drain into the foundation causing further damage.

Site Recommendations

- Re-grade the yard to create positive drainage away from the buildings. A minimum of eight inches should be maintained between the ground and the bottom of the clapboards.
- Replace both sets of concrete steps at west elevation.
- Replace walkway to front door on west elevation so that walkway meets steps to sidewalk.
Roofing and Drainage

The asphalt shingle roofs are in fair condition. Several of the shingles are loose or cupping, which is an indication that there is too much heat build-up in the attic and ventilation needs to be improved. Gable vents can be seen on the exterior; however the amount of ventilation provided from the vents is not adequate for the size of the space being vented. The flashing around the chimneys exhibits loose and open joints.

There are no gutters or downspouts on the building. This could lead to further water damage to the foundation in the future and water leaking into the basement.

Roofing, Chimney and Drainage Recommendations

- Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Avoid damaging the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling which cannot be repaired easily. Finish joints should match the width and profile of the original.
- Replace flashing around chimneys. This should be done when the chimney is repointed and the roof is reshingled.
- Replace roof of house and barn with better grade asphalt shingles.
- Install drainage system to carry water away from the foundation of the house. The downspouts should have extensions on the ends that will carry water away from the foundations.
• Install a roof exhaust fan that vents out the east gable vent of the attic of the back addition.

Clapboards and Wood Trim

The clapboards and wood trim of the house and barn are in good condition, but the paint is peeling and in fair condition. Several areas of deteriorated clapboards were identified and include the north end of the principal block, the east end of the rear ell and the east elevation of the addition.

Clapboard and Wood Trim Recommendations

• Thoroughly scrape the paint from the house and barn and properly prepare the wood. The paint should be removed by hand scraping and sanding down to a sound surface. An orbital disk sander can be used only if operated by an experienced craftsman. Care must be taken not to damage the wood. A rotary sander should not be used as this will damage the wood and leave circular sanding patterns. A heat gun can be used in select locations, but must be monitored at all times to make sure the wood does not catch on fire. Lead paint may be present, and precautions should be taken to remove and dispose of the paint according to state and local regulations. If there is mildew present it can be removed by washing with a solution of one part bleach to one part water. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors and windows are generally in fair condition. The doors are in good condition, but weather-stripping should be added and the doors should be repainted.

The windows of the building are in good condition. The glazing compound is typically deteriorated and loose or missing, paint is peeling on most of the windows, and several panes are cracked. Storm sash added to the
exterior of the windows help to protect them from the elements. Screens on a few of the windows are ripped or missing and should be replaced.

The small basement windows are in fair condition. One of the windows on the north elevation has been boarded over and several of the panes are cracked or broken.

Door and Window Recommendations

- Provide weather-stripping at the doors on the west elevation. Some of the doors require minor repairs. The bottom edge of some doors may require consolidation repair.
- Restore the windows. Re-glaze all of the windows with a linseed based glazing compound. Weather-stripping should be added to the windows. Windows may be left operable when reinstalled with new locks at each meeting rail as needed. This would allow for easier maintenance in the future. The storms/screen units should be carefully removed and reinstalled once the windows have been restored.

Foundation

The foundation is in fair condition with centralized areas of severe deterioration. Consideration should be given to removing the 4” thick concrete shelf poured around the foundation. While the shelf is in good condition around the principal block, it is broken and cracked around the ell allowing moisture to penetrate. There is a crack that should be patched at the northeast corner of the addition.

Foundation Recommendations

- Repair area of spalling foundation on the northeast side of the addition and the east end of the rear ell.
- Remove poured concrete shelf at building exterior.

Code Compliance

The building does not appear to meet the requirements of modern life safety codes or the Americans with Disabilities Act (ADA).
Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not the character defining features of the property.

Recommendations for Reuse

The University used the Dr. Edith Marion Patch Home for student housing until the mid 1990s when it was slated for demolition. The Friends, faculty, and local community saved the property in 1997. The building is currently vacant. Volunteer groups are working toward restoring and using the building as an Entomology Center. The barn could be used for seasonal exhibit space.

Any need for expanded program space could be accommodated by a rehabilitation of the existing barn, or by the construction of one or more appropriately-sited and designed outbuildings.
A Brief History of the President’s House

The President’s House is located on the University of Maine campus, standing between Coburn and Carnegie Halls. It was built in 1873, and first became the home of the Maine State College’s second president and first faculty member, Merritt C. Fernald, and his family. It was originally a Federal house with Italianate ornamentation. In 1893, the house suffered a fire, leaving the Fernalds temporarily without a home. During the renovations, they stayed in the Maples with Professor and Mrs. Balentine. The house was remodeled into a Queen Anne, with the addition of a three-story tower and a wrap-around porch. In 1931, President Boardman had the reception area of the main floor greatly expanded by adding a room at the north side of the bottom floor. The carriage house was converted to living quarters and the south portion of the wraparound porch was enclosed sometime in the late 1920s or early 1930s.
Architectural Description

The President’s House is a two-and-one-half story, three-bay Queen Anne-style residence. The house is T-shaped in plan, and is constructed of wood-frame on a masonry foundation. The house features a gable roof sheathed with slate. Paired brackets highlight the eaves. An interior brick chimney pierces the east plane of the roof. A one-story, four-sided tower pierces the southwest corner of the roof. The tower terminates in a bell roof sheathed with slate. Double-hung wood sash windows are featured on the sides of the tower. The upper sash of each window features true divided multi-lights while the lower sash is a single-light. A simple wood frame highlights each opening. A pedimented gable is located near the northwest corner of the roof. A multi-light casement window is featured in the gable.

The exterior walls of the house are clad with wood clapboards. A wrap-around hipped roof porch is located along the west and south elevations. A gabled portico that extends from the west elevation marks entry to the porch. Slender wood columns resting on a wood deck support the roof of the porch and portico. Between each column is a simple balustrade with wood spindles. Decorative spindlework is featured between each post at the eave. The south elevation of the porch is enclosed. A one-story block extends from the north elevation of the residence. The wing terminates in a flat roof.

A two-story, wood frame rear ell terminates in a gable roof. The rear ell has architectural characteristics similar to the principal block, including the paired brackets at the eaves. A secondary entrance is located on the south elevation of the ell. East of the ell is a carriage house which has been converted into residential space. The two-story wood frame carriage house terminates in a side gable roof sheathed with asphalt shingles. A one-story, two-car garage is located on the east elevation of the carriage house.

The interior of the main block of the house is organized in a central hall plan. The main block retains many of its original finishes, including plaster walls, tongue and groove wood flooring, woodwork, and hardware. The primary entrance leads directly into the hall. The stairs and banister rise along the south wall to the second floor. Each room of
the principal block is simply detailed with door and window surrounds.

The second floor rooms are used as bedchambers. Second floor finishes include plaster walls, simple moldings, and wood floors. The third floor features a game room with beadboard ceiling and walls.

The symmetry and formality of the main block contrast with the less formal spatial arrangements and lack of decorative features of the rear ell and carriage barn. Both the rear ell and the carriage barn exhibit simple finishes, detailing, and hardware.

Conditions Assessment and Recommendations

Overall, the existing condition of the President’s House is good. The building has been well-maintained.

Site Conditions

Overall the site is in fair condition. The lawn around the building is well maintained; but it does not appear to have a positive slope away from the building that would allow water to drain away from the foundation. Accumulation of debris along the base of the wall helps to retain moisture and organic growth is visible on the wall. There are large trees close to the building on the north and south elevations. Plantings that are too close to a building may cause damage to the masonry, but no evidence of damage to the foundation was observed at present.

Site Recommendations

- Re-grade the yard to create positive drainage away from the building by sloping the grade away from the building; eighteen inches if possible and creating a drainage swale.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall will lead to premature deterioration of the mortar joints because it holds moisture against the foundation and its roots will begin to push into or under the foundation.
Roofing and Drainage

The roofs are in good condition. There are no gutters or downspouts on the building. This could lead to further water damage to the foundation in the future and leaking into the basement.

Roofing and Drainage Recommendations

Consider adding gutters and downspouts to keep moisture away from the foundation.

Clapboards and Wood Trim

The clapboards and wood trim of the house are in good condition, but the paint is peeling.

Clapboard and Wood Trim Recommendations

Thoroughly scrape the paint from the building and properly prepare the wood. The paint should be removed by hand scraping and sanding down to a sound surface. An orbital disk sander can be used only if operated by an experienced mechanic. Care must be taken not to damage the wood. A rotary sander should not be used as this will damage the wood and leave circular sanding patterns. A heat gun can be used in select locations, but must be monitored at all times to make sure the wood does not catch on fire. Lead paint may be present. Precautions should be taken to remove and dispose of lead paint according to state and local regulations. If there is mildew present, it can be removed by washing with a solution of one part bleach to one part water. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.

Doors and Windows

The doors and windows are generally in fair condition. Interior doors appear to be in good condition with only minor scratches or scrapes.
The windows of the building are in good condition. The glazing compound is typically deteriorated and loose or missing and paint is peeling on most of the windows. The small basement windows are in fair condition.

Door and Window Recommendations

- Restore wood windows. Re-glaze the windows with a linseed based glazing compound. Weather-stripping should be added to the windows, which could be left operable when reinstalled with new locks at each meeting rail as needed. This would allow for easier maintenance in the future. The storms/screen units should be carefully removed and reinstalled once the windows have been restored.
- The window wells should be cleared of all debris so that water drains properly.

Foundation

The foundation is in good condition.

Plaster and Interior Partitions

The plaster and paint on the interior is in fair condition. There are several small diagonal cracks in the house mostly caused by settlement. Routine plaster maintenance and repainting should return these elements to good condition.

Interior Woodwork

The wood trim throughout the house is in good condition, but there are areas where it is worn or shows cuts and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The wood flooring is generally in good condition and should be refinished as part of routine maintenance. The wood floor in the tower is stained from moisture entering from windows left open.

Flooring Recommendations

Rerinish stained wood floors. Close tower windows in inclement weather.
Code Compliance

A code search was not part of the scope of this report. Code requirements for single family residences are much less stringent than for other occupancy types. However, the building should be provided with an accessible route, and the interior should be made accessible for residents and visitors according to ADA guidelines.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not alter the character-defining features of the property.

Recommendations for Reuse

This iconic building should remain the President’s House. Expansion, if required, could be accommodated by traditional “big house, back house, little house, barn” additions to the rear (east) of the house, though the lawn between the house and Munson Road is a very important campus green space. Any expansion option should therefore be carefully considered.
A Brief History of Winslow Hall

Winslow Hall was originally dedicated as the “Hall of Agriculture,” but was renamed Winslow Hall for Edward Brackett Winslow, President of the Board of Trustees at the University of Maine from 1908 to 1911. Winslow Hall provided administrative space for the departments that formed the College of Agriculture and also provided classrooms and laboratories for agriculture courses. Bronze plaques honoring promoters of Maine agriculture in the nineteenth and early twentieth century line the stairwells.

William Hart Taylor of Boston designed the building, and E. H. Wilbur and Son of Bangor served as the contractor. Building construction began in 1908 and was completed in 1909. Eugene L. Davenport of the University of Illinois, another land-grant college, gave the dedicatory address at the building’s dedication ceremony in January of 1909.
Winslow now houses administrative offices for the University.

Architectural Description

Winslow Hall is a two-and-one-half story, thirteen-bay wide by seven-bay deep Jacobean Revival building. The rectangular brick structure stands on a raised poured concrete foundation with fieldstone veneer. The building features a side gable roof sheathed with slate. Raised brick parapets capped by cast stone define the gable ends. An octagonal cupola with domed roof is centered on the ridge. The sides of the cupola are louvered. A smaller cupola is located near each end of the ridge. A projecting Flemish gable centered on the west elevation marks the principal entrance. A small single-pane window is located near the top of the gable. Directly below it is a pair of two-over-two double-hung wood sash windows. A single two-over-two double-hung wood sash window is located to each side. All openings feature a cast stone sill and drip mould. A Flemish gable roof dormer is located to each side of the center gable. The dormers feature paired double-hung wood sash windows. The main entrance consists of a recessed doorway comprised of paired three-light doors set within a surround featuring side-lights and multi-light fanlight above. A cast stone surround marks the entry. Ionic pilasters support a wide entablature containing the word “Agriculture.” To each side of the entryway are one-over-one double-hung wood sash windows. All openings feature cast stone sills and drip moulds. The rear elevation features a central, cross gable form with two abutting Flemish gabled dormers.

The basement of Winslow Hall is finished with offices, storage spaces, and mechanical rooms. The floor is poured concrete and is covered with carpet or vinyl composition tiles in several of the rooms. Original tin ceilings remain in several of the rooms.

The first floor of the building is divided into offices and storage spaces. The interior retains many of its original finishes, including plaster walls and door casings. The primary entrance on the west elevation leads directly into a center hall. A full-length corridor is perpendicular to the entrance hall. Interior end stairways are located at the north and south end of the corridor. The floor of the hall
and corridor is vinyl composition tile while many of the offices are carpeted.

The second and third floor rooms are used as offices, conference rooms, and storage spaces. Second and third floor finishes include vinyl composition tile flooring in the hallways and carpeted floors in many of the offices. The offices and hallways also feature painted plaster walls and ceilings. Tin ceilings remain in several of the offices.

Condition Assessment and Recommendations

Site Conditions

The site is in poor condition. The lawn around the building is worn, and does not appear to have a positive slope away from the building. There is heavy vegetation growth along the foundation. There is heavy vine growth on the exterior walls of the building.

Site Work Recommendations

- Regrade lawns to slope away from the building to a distance of at least 18” from the foundation to create positive drainage.
- Cut back vines to a one-story height for ease of maintenance.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and promotes root growth into or under the foundation.

Roofing and Drainage

The slate roof is in good condition. There appear to be only a few broken or cracked slates on each side of the roof. Metal flashing covers the capstones of the parapet walls.
- Repair roof slates. Slide in a replacement slate with a pre-punched nail hole, to fit between upper two slates. Carefully nail slate in place. Fashion a piece of copper to cover the nail hole in the slot between the slates above. The copper should be 3 inches wide and long enough to hook over the top of the replaced slate and cover the nail by three inches. Bend the top 3/4-inch of the copper
strip. Then insert the strip, bent side down between the slates above. The bent end should hook onto the top of the replaced slate, covering the nail. Install new slate that visually matches the historic material in size, shape, and color. Consider alternative materials only if the restoration of the original material is not technically or financially feasible. Alternative material should match as closely as possible the scale, texture, and coloration of the original historic roofing material.

- Remove parapet flashing and use lead t-caps at the mortar joints.

Masonry

The brick and mortar walls of the building are in very good condition. There is slight staining of the brick in areas where water has run down the walls or where vegetation had grown up the walls.

Masonry Recommendations

Cleaning of the masonry surfaces is not recommended, unless the soiling begins to cause deterioration of the stone and mortar. If cleaning is necessary, tests should be undertaken to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Doors and Windows

The doors and windows are generally in fair condition. The glazing compound on many of the sash is deteriorated, however, and paint is peeling on all of the windows. Storm windows have been added to the exterior of some of the windows, helping to protect them from the elements.

Door and Window Recommendations

- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.
• Storm windows should be installed over all of the windows. Use historically compatible storm/screen units designed to harmonize with the existing sash.

Foundation

The foundation is in good condition with centralized areas of deterioration. There are minor areas of deteriorated mortar and stone along the rear foundation.

Foundation Recommendations

Remove inappropriate/deteriorated mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, which cannot be repaired easily. Finished joints should match the width and profile of the original.

Plaster and Interior Partitions

The plaster and paint on the interior is in good condition. There are several locations where the plaster is cracked from movement. These types of cracks are most likely caused by settlement because there were no structural deficiencies identified in the area that could be causing the cracks. The cracks could be patched, but would most likely reappear again in the future.

Interior Woodwork

The wood trim throughout the building is in good condition, but there are areas where it is worn or shows cuts.
and scratches. For the most part, the trim needs no work beyond regular maintenance and care.

Flooring

The tile flooring is generally in good condition and should be refinished as part of routine maintenance.

Code Compliance

The building does not appear to meet many of the requirements of modern life safety codes or the Americans with Disabilities Act (ADA). There is no entry ramp and the building does not have an elevator.

Code Compliance Recommendations

An architect experienced in the treatment of historic properties should be retained to perform a detailed survey of life safety, building code, and ADA deficiencies. Bringing the building into code compliance need not the character defining features of the property.

Recommendations for Reuse

Winslow currently houses classrooms as well as the administrative offices of the Graduate School, the Office of International Programs, the Department of Resource Economics and Policy, and the College of Natural Sciences, Forestry, and Agriculture. Interior finishes and layout of the building are appropriate for the building to be used for its present purpose. The return of some or all of the floors to their original configuration would allow the creation of instructional spaces, from seminar-sized rooms to standard-sized classrooms, along with office and support areas.

There does not appear to be any potential for expansion of Winslow Hall. The only open area adjacent to the building is to the north. An addition at the north end of the building would result in an asymmetrical composition that would be inappropriate the Winslow’s architectural style and character.
C. Tier Two Buildings

Introduction

Tier Two buildings are the physical manifestations of the Growth Period of campus development from 1910 to 1945. They form a concentric ring around the historic campus core (the Tier One buildings of the existing National Register District). Fifteen of the buildings date from this period. Wingate Hall is the sixteenth structure. Built in 1892, this building is accorded a lower level of significance than its date of construction would normally warrant because it was extensively damaged by fire in 1943. As a result of the blaze, Wingate’s distinctive five-story bell and clock tower and hipped roof were lost, as well as the entire third story. What remains is a two-story flat-roofed building retaining some of its original handsome brick and stone work. So although dramatically altered, the building retains some of its original character, anchors an important location on the Front Lawn, and therefore has been put into the Tier Two category.

The Arts and Crafts-style details of Balentine Hall are unique on the University of Maine campus.
The University of Maine

Historic Preservation Master Plan

The Tier Two buildings include:

- Aubert Hall
- Balentine Hall
- Roger Clapp Greenhouse
- Colvin Hall
- Crosby Hall
- Estabrooke Hall
- Fogler Library
- Hannibal Hamlin Hall
- Machine Tool Laboratory
- Merrill Hall
- Memorial Gymnasium
- Oak Hall
- Rogers Hall
- Norman Smith Hall
- Stevens Hall (North, Central, South)
- Wingate Hall

This section includes the following information for each of the Tier Two buildings:

- a brief history of each building;
- an architectural description of each building;
- a conditions assessment and recommendations for preservation;
- description of present use(s);
- recommendations for reuse; and
- historic and contemporary photographs.

This information represents a brief for use by those planning for the preservation and use of each building.
Map of Tier Two Buildings. Map by Michael Hermann, UMaine Canadian-American Center
Tier Two Buildings

Aubert Hall

A Brief History of Aubert Hall

Aubert Hall was built in 1914 to house the Departments of Chemistry and Physics; an eighteen-inch concrete wall bisected the interior of the building to divide the two departments. It was named for Alfred Bellamy Aubert, Professor of Chemistry and head of that department. William Hart Taylor and Son of Boston designed the building, which features chemistry and physics instruments carved in cast stone between the second and third story windows on the west façade, facing the Stillwater River. The first pulp and paper curriculum in the United States was located in Aubert Hall.

In 1940, a four-story Art Deco addition was added to Aubert Hall. Crowell and Lancaster of Bangor designed the new addition which gave the building a separate orientation to the campus mall. The addition appears to be a separate
building attached to the original structure; it was built to provide additional classrooms and laboratories for chemistry, chemical engineering, and pulp and paper technology. T. W. Cunningham, Inc. of Winchester, Massachusetts was the contractor for the 1940 addition.

In 1958, four-story, ten-bay International Style wings were added to the north and south ends of the 1940 addition for the Departments of Chemistry and Chemical Engineering. A stairwell on the south side of the original building was also added, probably in 1958. The interiors of the 1940 and 1958 additions were reconfigured in 2001-02.

Architectural Description

Aubert Hall is comprised of two large blocks; west and east. The west block is a four-story, fifteen by one bay Renaissance Revival building and the east block is a thirteen by five bay brick block which has recently undergone exterior and interior renovations.

The west block rests on a poured concrete foundation, and terminates in a flat roof with a crenellated parapet. The building is constructed of brick. A cast stone belt-course is located between the raised basement and the first floor. Cast stone quoins are located at each corner. Access to the building is through a centrally-located recessed entry on the west elevation, facing Munson Road. The entry is located within a four-story three by one bay block which projects from the west elevation. The entry features paired one-light metal doors with a two-light transom above. The entry is set within a cast stone pointed arched opening. Concrete steps provide access to each entry.

Windows above the entry are multi-light over two and are marked by cast stone sills and lintels. To either side of the entry way are bands of three four-over-one and two-over-one windows. Each opening is marked by a continuous cast stone lintel and sill. The other window openings on the façade also feature cast stone sills and lintels. The elevations of the west block are unusual for the large amount of glass that brings substantial amounts of daylight deep into the building.

The east block rests on a poured concrete foundation. Like the west block, the east block is constructed of brick and terminates in a flat roof. Access to the building is gained
through a centrally-located entry on the east elevation. The entry is marked by a portico which terminates in a glass roof. Windows of the east block are double-hung replacement sash with brick lintels overhead.

The two blocks of Aubert Hall are two separate buildings connected by a multi-story corridor. The west block contains historic finishes including painted brick walls, tile floors, and exposed decking at the ceiling. The east block has recently been substantially rehabilitated with significant floor plan modifications, new infrastructure, new circulation system (including elevator), and new finishes.

The building is not accessible from its historic, main entry. The new wing to the north is fully accessible and provides elevator service to all floor levels. The interior of the original block of the building does not meet the requirements of the Americans with Disabilities Act.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- Vegetation is growing up the exterior walls and is starting to attach to the masonry.
- Access to the roof was unavailable; therefore the roof was not inspected.
- The windows of the building are in good condition. There is some deterioration of the wooden windows of the west block.
- Cast stone trim exhibits some minor cracking.

Recommendations

- Cut back vines to a one-story height for ease of maintenance.
- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.
- Patch deteriorated/cracked portions of cast stone. The patching should match the existing material as
closely as possible, both visually and structurally. Restore the cast stone using a vapor permeable mortar that contains no latex or acrylic bonding agents or additives.

Recommendations for Reuse

Aubert Hall was constructed for and still houses the Chemical Engineering department as well as other departmental spaces. Interior finishes and layout for the buildings are appropriate for continued use for instructional spaces and departmental office space. Rehabilitation of the west wing should include preservation of some of the original spaces and finishes.

Because of its proximity to the Mall on the east and the importance of Aubert’s west façade, expansion is not recommended.
A Brief History of Balentine Hall

C. Parker Crowell, a Bangor architect, designed Balentine Hall, the first women’s dormitory built on the University of Maine campus. Prior to the construction of Balentine Hall, women students resided in Mount Vernon, one of the original farmhouses on campus—the White Farm—which had been remodeled to accommodate women students. The north wing of Balentine was built in 1914, and the main part of the building and the south wing were built two years later. The dormitory was named for Elizabeth Abbott Balentine, who served the university in various capacities as secretary to the president, the faculty, & the university, and as university registrar from 1894 to 1913. Elizabeth Balentine was married to Walter Balentine, a professor of agriculture on campus; she was also the niece of Dr. Charles Allen, President of Maine State College in the 1870s.
When it was first constructed, the interior spaces of Balentine Hall reflected society’s ideals for young women, most of whom were living away from home for the first time. While University administration allowed male students to board in nearby towns with families, female students were mandated to live on campus in an environment that was structured like a home. The first floor contained quarters for the matron (a living room and a chamber), who supervised the residents, as well as a reception room and a library, where the young women could entertain in a supervised environment. The women students had meals in the building: a kitchen occupied part of the basement, and servants’ rooms were located on the top floor. In addition, the basement contained a gymnasium, which was equipped with a maple floor, a spectator gallery, a locker room and shower room. This semi-private gym allowed women to engage in physical activity separately from the men on campus. In 1957, Crowell, Lancaster and Higgins of Bangor designed alterations to the interior of Balentine. The renovations included taking out the matron’s rooms and the gymnasium.

Architectural Description Exterior

Balentine Hall is a three-and-one-half story Renaissance Revival building with interesting Arts and Crafts characteristics. The building is configured in a compressed “H”-shaped plan. The poured concrete foundation extends one half story above grade, reflecting the high-ceilinged basement within. Balentine terminates in a hipped roof.
sheathed with slate shingles. There are some flat or shallow-pitch roof areas that are covered with metal. Several shed roof dormers of varying sizes provide light to the attic spaces. The building is constructed of brick, probably on a steel frame. There are decorative stucco panels with raised bricks arranged in patterns between the window openings of the third floor as well as under the first floor window sills. The third floor panels are further highlighted by wood trim. The eave line features a wide bracketed overhang.

A single-story sun porch extends from the south elevation. Covered porches provide access and protection from the elements at northwest and southwest main entrance doors. The entrance porches and the sun porch have wrought-iron railings around the perimeter of their flat roofs.

Balentine Hall functions as a co-ed dormitory and the first floor was recently refurbished to provide handicap accessibility. Interior finishes consist of vinyl tile flooring at the entry level, plaster ceilings and walls and carpeted floors on the dorm levels. The top floor is currently abandoned, but was once used as dormitory space.

The first floor level appears to meet the requirements of the Americans with Disabilities Act; and a new elevator serves the basement through third floor levels. The second and third floor levels appear to meet some of the requirements of the ADA. The fourth floor is not accessible.

The building has undergone some rehabilitation work recently.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- The concrete stairs at entryways are deteriorated. Additionally, the joints of the concrete foundation have been inappropriately pointed with caulk; and small areas of concrete have been inappropriately patched.
- The brick and mortar walls of the building are in good condition.
- There is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.
New vinyl tile floors at the interior are cracked and peeling. The underlayment may have been installed incorrectly.

The top floor level is finished, but has been abandoned because the new elevator only serves the basement and floors one through three.

There are some missing downspouts, allowing storm water to pour directly onto the face of the building. There are also inappropriate PVC downspouts.

Recommendations

- Patch deteriorated/cracked concrete. The patching should match the existing concrete as closely as possible, both visually and structurally. Proper placement and finishing of the repair is important in achieving a match with the original concrete.
- Remove inappropriate caulk by raking the joints to a depth of 1/2”-1”, or a minimum depth of 2 1/2 times the joint width. Repoint with mortar to match the original with respect to strength, color, texture and joint profile.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Remove peeling vinyl tile and determine adequacy of underlayment. Develop appropriate remedy solution.
- Install new copper downspouts. Drain into perimeter drain system or extend downspouts at least 24” away from foundation.

Recommendations for Reuse

Balentine Hall is currently used as a student residence hall. The rehabilitation of the building should be continued and completed to allow the building’s distinctive exterior architecture and generous public spaces to be restored to their original character and grace of function. Potential rehabilitation and reuse of the top floor should be investigated.
Balentine could be appropriately expanded to the east, but a parking lot directly adjacent to the east elevation would be affected.
Roger Clapp Greenhouses

A Brief History of Roger Clapp Greenhouses

The Roger Clapp head house was designed by Crowell and Lancaster of Bangor and built in 1928. Greenhouse #1 was built four years earlier and designed by Lord and Burnham Company of Boston; it was used for growing flowers. Greenhouse #2 was built in 1928 and designed by King Construction Company of Tonawanda, New York; it was used for growing vegetables. The greenhouse complex replaces the Horticulture Building and greenhouses constructed in 1981, located east of Holmes Hall.
The greenhouse complex was called “New Horticultural Building” for over fifty years. In 1980 it was renamed “Roger Clapp Greenhouses” in memory of Roger Clapp, Professor of Ornamental Horticulture and Landscape Design, 1929-1969.

Rear view of Roger Clapp Greenhouses & Head House. The greenhouse closest to the service building was built in 1924, the middle greenhouse was built in 1928 (the same year as the head house). There is no documentation of the third greenhouse.

Elevation drawings for the headhouse, by Crowell and Lancaster of Bangor - Courtesy WBRC Architects/Engineers

Architectural Description

The Roger Clapp Greenhouses building group includes a Colonial Revival brick headhouse and metal frame and glass panel greenhouses to the south. The headhouse is a one-and-one-half story, seven-by-three bay rectangular block constructed of brick on a concrete foundation. The gable roof is sheathed with slate. The peak of each gable terminates in a brick parapet. A wood cornice with returns defines the eave. A center gable is located on the north rise of the roof marking the principal entrance to the building. A paired 6/6, double-hung wood sash window is located within the gable. A simple wood surround set on a cast sill highlights the opening. A batten wood shutter is located to each side of the window opening. A three bay entry porch is centered on the north elevation. Wood posts resting on a poured concrete pad support the
hipped roof of the porch. A simple balustrade spans between each post. The doorway features a three-light over wood panel door flanked by four-light sidelights. Three 6/6, double hung wood sash windows are located to each side of the entry. Each of the window openings features a cast sill and flat brick arch with cast keystone.

The metal-framed glass greenhouses extend to the south. The greenhouses sit on low concrete foundations and have gable roofs constructed of glass panels.

The interior of the headhouse is organized in a central hall plan and retains many of its original finishes, including painted brick walls, woodwork, and hardware. The primary entrance leads directly into the hall. The stairs and banister rise along the west wall to the second floor. Each room of the principal block is simply-detailed with door and window surrounds. The second floor rooms were used as bedchambers. Second floor finishes include simple moldings, plaster ceilings, and wood and tile floors.

The first floor of the building including, including the greenhouses, is accessible, though it does not meet all the requirements of the Americans with Disabilities Act.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north and west sides that would allow water to drain away from the building.
- Vegetation is growing up the south and east elevations and is starting to attach to the masonry.
- The slate roof is in fair to good condition. Several of the slates are loose or missing.
- The wood trim of the building is in good condition, but the paint is peeling on the south, east, and west elevations.
- The windows of the building on the north elevation are in good condition; the remaining windows are in fair condition. The glazing compound is typically dried out, loose or missing. Paint is peeling on most of the windows on the south, east and west elevations.
- The foundation is in fair condition with small areas of cracking which may be allowing moisture to
The basement is very humid and extremely hot.

- The metal frame of the greenhouses is beginning to corrode.

Recommendations

- Re-grade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation, if possible.
- Cut back vines to a one-story height for ease of maintenance.
- Install new slate that visually matches the historic material in size, shape, and color.
- Repaint the trim. Thoroughly scrape the paint from the trim and treat dry wood with a linseed oil – turpentine solution. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.
- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.
- Patch deteriorated/cracked portions of concrete wall. The patching should match the existing concrete as closely as possible, both visually and structurally.
- Monitor the basement for dampness after the drainage problems are corrected. If moisture is still appearing install a dehumidifier or use a fan to circulate air and ventilate the basement. Consider addition of sump pump if wet condition persists.
- Assess condition of wood framing in basement for potential damage caused by excessive moisture and heat. Pay particular attention to the presence of mold. If damage is more than cosmetic, a structural
engineer will need to determine loss of sectional strength and develop a remedy.

- Clean greenhouse metal frames with distilled water and consider application of a clear coat finish to prevent further corrosion.

Recommendations for Reuse

The Roger Clapp Greenhouse serves as a research and teaching facility for the departments of Plant, Soil and Environmental Sciences; Plant Biology and Pathology; and Entomology. The interior finishes and layout of the buildings are appropriate for continuation of current uses. If the greenhouses were to be relocated, the headhouse would make a delightful small office building, seminar/conference facility, or visitors’ house.
A Brief History of Colvin Hall

Colvin Hall was the second dormitory on campus built for women students. The new dormitory, designed by Crowell and Lancaster of Bangor, was built several years after the University administration identified the need for more residential space for women. Female students were not admitted to the University of Maine unless they lived in dormitories or with relatives; male students were allowed to board in nearby homes or live in fraternity houses. President Boardman, in his 1926 Annual Report of the University to the Maine Legislature, stated that the University had had to turn away forty to fifty females for admittance in the preceding academic year because of lack of dormitory space for women. Apparently the University could not obtain the funds they needed—from the state legislature or elsewhere—to build residential space for women. Like Balentine Hall, Covin Hall originally had...
rooms for a matron, servants, and a kitchen for meal preparation.

Dr. Caroline Colvin, for whom the dormitory is named, advocated for additional dormitory space. Colvin was the first female faculty member on the campus. She began her career at the University of Maine in 1902 as an instructor of History. She became chairperson of Department of History in 1906, one of the first women to serve as a chair of a history department in the United States. In the mid-1920s, President Little appointed Colvin the University’s first Dean of Women Students. In this capacity, she tried to help women students expand their opportunities. She helped establish a chapter of the American Association of University Women on campus, the first in Maine, and she also worked to obtain suffrage for women. Dr. Colvin retired from the University in 1932.

Colvin Hall now serves as administrative offices for the Honors Center and as dormitory space for students in the honors program.

Architectural Description Exterior

Colvin Hall is a three-story rectangular Colonial Revival building with a concrete foundation and a slate-covered gable roof. A brick parapet with oculus windows and dual chimney forms is featured at each gable end. The building is constructed of brick, accented with brick quoins at each corner. An entrance bay located in the center of the southeast elevation projects slightly from the facade. A shallow gabled portico marks the entranceway. A one-story sun porch extends from the rear elevation of the building.

Colvin Hall was constructed as a dormitory. The first floor is now the Robert B. Thomson Honors Center, which includes classrooms, a library, reading and study rooms, and the administrative offices of the Honors College. The second and third floors provide housing for students enrolled in the Honors College.

The building has a new entry ramp and appears to meet the requirements of the Americans with Disabilities Act.
Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- The asphalt roof is in fair to good condition.
- The doors and windows are in fair condition. Moisture infiltration is visible at the circular windows in the attic. The moisture appears to be infiltrating from the brick corbelling above and the steel lintels appear to be rusting.
- There is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.
- The basement and first floor levels have modern finishes from the recent renovation and are in excellent condition.
- The finishes in the dormitory levels are in fair condition.

Recommendations

- Consider replacing asphalt roof shingles with a higher quality shingle.
- Perform mortar analysis to determine appropriate mortar mix for repointing. Repoint mortar as required at parapets.
- Sand all rust and loose paint from steel lintels and repaint. Caulk joint between steel and mortar.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Patch interior plaster walls after the exterior of the building is sealed from the elements.

Recommendations for Reuse

Colvin Hall is currently used as instructional and meeting space, offices, and student housing for the Honors College. The building as it currently stands is well-suited for these purposes. The main floor has been handsomely rehabilitated. The remainder of the building may warrant rehabilitation in the near future.
There are expansion opportunities to the north and east, though in both cases, care in preparing a contextual and historically-appropriate design would be in order. An expansion to the east would impinge on a major campus walkway, so first floor design work would need to take this route into account.
Crosby Hall

A Brief History of Crosby Hall

Oliver Crosby, a Dexter, Maine native and an 1876 alumnus of Maine State College, bequeathed $100,000 in 1923 to the University of Maine to construct a building to house the Department of Mechanical Engineering. Mr. Crosby spent most of his adult life in St. Paul, Minnesota, where he established The American Hoist and Derrick Company. At the time of its construction, Crosby Mechanical Laboratory was the first building constructed with funds from an alumnus.

A building committee of the Board of Trustees held an architectural competition to design the building, which would house the Departments of Engineering Drawing and Mechanics as well as Mechanical Engineering. The winning entry by Strickland, Blodgett and Law of Boston, depicted a building with classrooms, a lecture hall and faculty offices fronting the Mall, connected to a laboratory
behind the main section of the structure. However, the cost of the building—$450,000—far outweighed Crosby’s bequest, and the University did not have additional income for building. Harold Boardman, the Dean of the College of Technology, and the Trustees decided to use the Crosby funds to build the laboratory part of the building and add the rest of the building when they could raise the necessary funds. The Dean and the Trustees further scaled back their plans for the building when they found out that construction costs would outweigh the money available for construction. After taking a closer look at Crosby’s bequest, they realized that it stipulated a separate building for Mechanical Engineering. Therefore, they asked the architect to revise the building plans and they moved the laboratory back 30 feet from the initial plan, so it would not longer be connected to the building for the College of Technology as they had originally planned. (This space on the Mall would stand empty for almost forty years, until Little Hall was built in 1965.) Crosby Mechanical Laboratory originally contained a hydraulic laboratory, as well as many other state-of-the-art mechanical devises to teach engineering students.

In 1967, the façade of the laboratory was changed from west to east. At that time, a pre-cast concrete barrel canopy was installed over the central east entry, new brick entry projections were installed over two flanking east entry doorways, and a pre-cast belt course was added to the area above the first story windows.

Architectural Description

Crosby Hall is a two-story brick Colonial Revival building organized around a modified rectangular plan. It features a concrete foundation with a hipped slate roof over the two-story central portion, and flat roofs over the two flanking one-story wings. A simple stone cornice band defines the eaves and parapets. A pedimented gable bay on the west elevation identifies what was the principal entrance to the building. The gable is supported by pilasters comprised of alternating bands of brick and cast stone. The same decorative feature is used at the corners of each elevation to represent quoins. Access is provided through a recessed pair of single-light wood doors centered within the bay. A four-light transom is located above the doors. The lights of the transom are arched. Multi-light metal sash windows are located to each side of the opening.
One-story wings extend on the north and south elevations. Both wings have flat roofs and exhibit similar architectural features as the principal block. Original windows have been replaced with modern fixed panel over hopper aluminum replacement sash on the north, south and east elevations. The east entrance, now the most used, is marked by a modern detached curved canopy with metal columns.

The interior of the building is divided into laboratory, shop and classroom spaces by brick and concrete masonry unit walls. The ceilings are suspended acoustical tiles. The floors are covered with resilient tiles or are exposed, painted concrete.

The rear entry has a makeshift ramp providing access to the first floor. The ramp and the interior do not meet the requirements of the Americans with Disabilities Act. The second floor is not accessible.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north elevation that would allow water to drain away from the building.
- The concrete pads at entryways are deteriorated.
- The slate roof is in fair to good condition. Several of the slates are loose or missing.
- The windows of the building are in good condition; however, the paint is peeling on most of the steel lintels.
- The brick and mortar walls of the building are in good condition.
- There is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.

Recommendations

- Regrade the yard to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Patch deteriorated/cracked concrete. The patching should match the existing concrete as closely as
possible, both visually and structurally. Proper placement and finishing of the repair is important in achieving a match with the original concrete.

- Repair the slate hipped roof by installing new slate that visually matches the historic material in size, shape, and color.
- Repaint metal windows and lintels. Remove any visible rust or blistered and peeling paint. The window frames should be rinsed, treated with a rust-inhibitive primer, and coated with a modern polymeric coating that adheres well and prevents rust. Test paint finishes for lead content prior to removal.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

Crosby currently houses Mechanical Engineering Research and Development laboratory space. Interior finishes and the flexible layout permit the building to function easily as classroom and lab space. It could be appropriate for any use that requires substantially-constructed high-ceilinged classroom-sized spaces with generous daylighting.

Crosby Hall could easily be restored to its original appearance by removing the detached east entrance canopy and replacing the inefficient and inappropriate aluminum windows on the north, south and east elevations with new replacement sash to match the original units (original sash remain in place on the west elevation and can serve as models for the new units). The building should be made fully accessible as part of any rehabilitation project, or as soon as possible if no other work is anticipated.

The only potential for expansion of Crosby Lab would be to add second stories to the two side wings. This would be difficult to accomplish structurally, and would reduce the substantial amount of daylight entering the existing labs.
Estabrooke Hall

A Brief History of Estabrooke Hall

Estabrooke Hall, constructed in 1940, was the third women’s dormitory built on the University of Maine campus. It is named for Kate Estabrooke, who had been the long-time matron of Mount Vernon. Designed by the Bangor architectural firm Crowell and Lancaster, Estabrooke Hall originally had a kitchen in the central ell on the first floor, four dining rooms, two living rooms, apartments for two directors, and dormitory rooms for 160 students. It is the one of the few buildings on campus built with Public Works Administration funds. The Public Works Administration was a New Deal program, like the better-known WPA, that hired skilled workers to build federally-funded public works projects.

This is the second building on the University of Maine campus called Estabrooke Hall. The first Estabrooke Hall was a wood frame building behind the original Oak Hall, used for making and serving meals, on the site where Wells...
Commons stands now. It was renamed Estabrooke Hall in 1911 when it was used for the English Department. It was named for Horace Estabrooke, Kate Estabrooke’s husband, who was a Professor of English from 1891 to 1908. The building was later named the Maine Christian Association and used for student meeting and recreational purposes.

Architectural Description Exterior

Estabrooke Hall is a four-story Colonial Revival building. E-shaped in plan, the building rests on a concrete foundation. The building is constructed of brick. A cast stone belt-course is located between the first and second floors. A slate roof above a colonial cornice at the eaves completes the building composition. Two projecting entrance bays are located on the southwest elevation. Each bay terminates in a pedimented gable roof. Each of the bays features three windows across at the second, third and fourth floors above the entry.

Estabrooke Hall is a coed student residence hall. The first floor features open spaces that historically were used as a dining hall and kitchen. These rooms, featuring several large arched windows, are among the most gracious public interior spaces on campus. Interior finishes consist of plaster ceilings and walls, and carpeted and wood floors.

The building is somewhat accessible, but does not meet all the requirements of the Americans with Disabilities Act. The building has elevator service to all levels.

Condition Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- Vegetation is growing up along the south and east elevations.
- Access to the roofs was unavailable. The roof should be inspected.
- Many dead cockroaches were seen in the boiler room.

Recommendations

- Cut back plantings along the south and east elevations so there is at least a 1’- 0” air space between the structure and the vegetation.
Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and its roots may push into or under the foundation.

- The presence of the dead cockroaches suggests that insect infestation either was or currently is a problem. The building should be inspected by a professional pest control company to determine current state.

Recommendations for Reuse

Estabrooke Hall is currently used as a student residence and it is appropriate to continue using the building for this purpose. The large amount of public space in the building might allow it to function gracefully as a program-centered residence such as an honors college building or a major- or interest-centered residence.

Expansion to the rear (to the southeast) may be possible but parking resources would be affected.
Fogler Library

A Brief History of Fogler Library

Fogler Library anchors the southern end of the campus mall. The shell of the library was built in 1941-42, but World War II forestalled its completion until 1947. W. H. Lee of Philadelphia designed the library. The main foyer of the library has walls made of marble, and the steps leading to the second story are also made of marble. Figures of classical antiquity are carved in stone in the main foyer.

In 1962, the library was named for Raymond H. Fogler, a 1915 alumnus of the University of Maine who headed the fundraising campaign for the building. Fogler had been the president of both the W. T. Grant and Montgomery Ward department store chains. In the 1950s, he served as assistant secretary of the United States Navy.
In 1976, the library was enlarged by a 60,000 square foot International Style addition, designed by Alonzo Harriman Associates of Auburn, Maine. Prior to the new addition, the library had closed stacks. The new addition increased seating capacity by 2500 and provided room for 250,000 more volumes.

Architectural Description

The Fogler Library is a two- and three-story brick building constructed in the Colonial Revival style. The primary, center block features a rectangular footprint on a concrete foundation. The building is comprised of the center block with a gable roof sheathed with slate, flanked by two-story flat roofed wings to the east and west. A wide limestone cornice defines the eave of the central block. A brick parapet tops the exterior walls of the two wings. The fenestration of the building is symmetrical. A three bay entrance is centrally located on the north elevation. A limestone surround frames the entry. The first and second floors feature double-hung wood sash windows marked by a limestone sill. The second floor windows of the central block are arched. Third story windows of the wings are truncated double-hung units.

A large modern three-story poured concrete addition, constructed in 1976, extends from the south elevation.

The interior of the main section of the library is organized around a grand marble central stair and two-story entrance hall. The public spaces retain many original finishes, including decorative plaster walls and ceilings, terrazzo flooring, and art deco woodwork and hardware. The first floor has recently been renovated. The primary entrances lead directly into the hall, with the grand stair rising along the south wall to the second floor. Periodicals are located in the east wing and a coffee shop is located in the west wing. The second floor of the main section contains the two-story-high main reading room. Finishes of the second
The symmetry, formality, materials, and decorative detail of the main block contrast with the less formal spatial arrangements and lack of decorative features of the rear addition. The rear addition exhibits simple finishes, detailing, and hardware. Much of the space in the addition is occupied by book stacks.

The building appears to meet the requirements of the Americans with Disabilities Act. Each floor level is served by an elevator.

Conditions Assessment

- Vegetation has grown up the east elevation and is starting to attach to the masonry.
- The slate roof is in good condition.
- The exterior doors are in fair condition; wood service doors on the west elevation exhibit peeling paint and wood deterioration at their bottom rails.
- The interior doors appear to be in good condition, with only minor scratches or scrapes.
- The windows of the building are in fair condition. The glazing compound is typically deteriorated and loose or missing. Paint is peeling on most of the windows on the south, east and west elevations.
- The foundation is in good condition; however, portions of the limestone veneer are broken and cracked on the west elevation.

Recommendations

- Cut back vines to a one-story height for ease of maintenance.
- Repair and paint the service doors on the west elevation. Thoroughly scrape the paint from the doors and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and the finish coats should be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the
future. There may need to be some repair work to the doors and an allowance should be made for consolidation of the bottom edges of the doors.

- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

- Patch deteriorated/cracked portions of limestone veneer. The patching should match the existing as closely as possible, both visually and structurally. Restore the limestone using a vapor permeable mortar that contains no latex or acrylic bonding agents or additives.

Recommendations for Reuse

This imposing building occupies a pivotal location at the south end of the Mall, befitting its importance to the mission and life of the University of Maine. Although the building needs to be rehabilitated in some areas and restored in others, and must be expanded to meet today’s and future program and technology requirements, Fogler Library should remain in this use for the foreseeable future.

The pending and any future expansions of Fogler should be very carefully considered, in terms of how expansion might affect the historic mall, the character of the historic main block of the building, and the relationship of the library to its neighbors to the rear. Particular care should be given so as not to crowd the Cyrus Pavilion. Site issues, such as pedestrian circulation, service access, and open space to the south of the building should also play major roles in the design of additions to Fogler Library.
Hannibal Hamlin Hall

A Brief History of Hannibal Hamlin Hall

Hannibal Hamlin Hall was built in 1909-1910 as the second men’s dormitory on campus, accommodating seventy-five students. It was named for Hannibal Hamlin, the first president of the Maine State College Board of Trustees and Abraham Lincoln’s first vice president. William Hart Taylor of Boston designed the dormitory, which is constructed of red brick with cast limestone trimmings. The building was originally separated by fireproof walls into three sections. The dormitory rooms were configured into suites, with two rooms flanking a study room. The basement of the building contained a large dining room with seats for three hundred and a sitting room with a fireplace. The kitchen was located just east of the building. The dining room was connected to Oak Hall, the other men’s dormitory on campus, by a passageway. The new dining room made the Commons, a wood frame building used for meal service behind Oak Hall, unnecessary, so it
was remodeled into a lecture hall for the English Department and renamed Estabrooke Hall.

In World War II, Hannibal Hamlin Hall housed members of the Army Specialized Training Service (ASTP) of the United States Army, which provided technical and military training to enlisted men to become officers in the war and the subsequent restoration of civilian governments in Europe after the war ended. The ASTP program at the University of Maine trained soldiers in electrical engineering. In February of 1942 a fire broke out in the dormitory, destroying the two north bays of the building. Private Herbert E. Gunther of Evanston, Illinois and Private Thomas M. Gooden of Dover, Delaware died in the blaze. Private Dawley Webster of Plainfield, New Jersey broke his back and suffered severe burns when he jumped from a third-story window. It was the only fire on the campus in which individuals lost their lives.

Architectural Description

Hannibal Hamlin Hall is a four-story, nine-by-three bay Renaissance Revival building. The rectangular block with projecting bays rests on a poured concrete foundation and is capped by a flat roof with crenellated parapet. A bracketed cast stone cornice is located at the base of the crenellations. The building is constructed of brick. A cast stone belt course is located between the raised basement and the first floor. Main entrances face west to Munson Road at the north and south ends of the west elevation. Each entry features a pair of one-light metal doors with a six-light transom and multi-light fanlight above. The doorframe is set within an arched opening. Concrete steps provide access to each entry. Two projecting three-story bay windows are located on the west elevation. The bay windows terminate in flat roofs. One-over-one double-hung windows feature cast stone surrounds, sills and lintels. Metal fire escapes are located on the north, south, and east elevations of the building.

Hannibal Hamlin Hall is divided into two separate buildings, the north and the south; neither is accessible from the other on the interior. The two have similar layouts comprised of a stair tower and landings at each entranceway and offices located to the north and south. Finishes include plaster walls and ceilings and linoleum
tiles in the stairwells. Many of the office floors are carpeted. Door and window openings feature wood trim.

The building is inaccessible and does not meet the requirements of the Americans with Disabilities Act. There is no elevator in the building.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. Asphalt paving comes right up to the building along the east wall, and it does not appear to slope away from the building to allow water to drain away.
- Access to the roof was unavailable, so the roof was not observed.
- The windows of the building are in fair condition. The basement windows are typically deteriorated and paint is peeling.
- Rusted metal is visible on the fire escape.
- The brick and mortar walls of the building are in fair condition. There is minor staining of the brick in areas where water has run down the walls or has splashed back from grade.
- The cast stone trim is beginning to exhibit minor cracking.

Recommendations

- Restore the windows.
- Scrape loose flaking paint, sand to remove rust, paint with rust inhibitive primer and re-paint entire fire escapes.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Patch deteriorated/cracked portions of cast stone. The patching should match the existing material as closely as possible, both visually and structurally. Restore the cast stone using a vapor permeable mortar that contains no latex or acrylic bonding agents or additives.
Recommendations for Reuse

Hannibal Hamlin Hall currently houses the Intensive English Institute. The building is underutilized. Interior finishes and layout for the buildings are appropriate for the building to be continually used for classroom and department office space. The building is currently divided vertically by a firewall. Consideration should be given to connecting the two parts by opening the corridors to one another. This would allow for the sharing of a single elevator and provide more efficient use of all amenities. Life safety and ADA upgrades would be necessary.

The only potential for expansion would be to continue the building to the north. To do so would impinge upon a potentially important open space in front of Wells Commons.

There may be some potential for converting Hannibal Hamlin to a student residence hall, if such a change in use would be in keeping with the University’s future strategic and campus master plans.
Machine Tool Lab

A Brief History of Machine Tool Lab

The Machine Tool Laboratory is a unique architectural structure on the campus, and it reflects an important era in the University's history. Crowell and Lancaster, a prominent Bangor architectural firm, designed the Machine Tool Lab—then called the Mechanical Shops—in 1934 to provide vocational training space for mechanical engineering students. The Superintendent of Buildings for the University, J. Albert Ross, oversaw construction. The Machine Tool Lab was built just north of the Crosby Laboratory, which had been constructed in 1926-27 to provide laboratory space for the Mechanical Engineering Department. The previous machine shop and the laboratory had been located across the mall in Lord Hall; the removal of those functions allowed the Electrical Engineering Department to expand into the vacated space in Lord Hall.
The Machine Tool Lab is surprisingly elegant for a utilitarian structure. It is one of the few Art Deco buildings on the University of Maine campus and is a lovely example of the restrained balance and proportion that informs the best early twentieth-century architecture. The function of the building as a training space for future engineers is beautifully reflected in the form and ornamentation of the building. The one-story brick structure has three wings which originally housed a pattern shop, a forge shop, and a machine shop (the plan of the building resembles a large letter E). Each wing has a separate entrance articulated by a stepped projection with a central door framed by sidelights. Each entrance is labeled with the name of the shop in metal Art Deco lettering.

Architectural Description

The Machine Tool Lab is a one-story brick utilitarian building comprised of three facilities: the Pattern Shop, the Foundry, and the Machine Shop. This three-part organization caused the plan of the building to be designed and constructed as with an E-shaped footprint on a concrete foundation. The building is covered by a flat roof. Access to each wing is provided by a separate entrance marked by a stepped parapet on the west elevation. Each entrance features a four-light wood door framed by full-length four-light sidelights and a three-part multi-light transom. Twenty-light metal industrial sash windows are located to
each side of the entries. Several of the windows have been removed and the opening infilled with brick and smaller scale vinyl windows.

The interior of the building is divided into laboratory, shop and classroom spaces by brick walls. The ceiling is exposed roof sheathing supported by wood and steel I-beams.

One of the courtyards formed by the main wings opening to the east has been filled in with new office space. This work represents wood frame construction with sheetrock walls and suspended tile ceilings.

The building is currently inaccessible.

Condition Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north and east elevations that would allow water to drain away from the building.
- Access to the roof was unavailable. The roof should be inspected for standing water or any open seams.
- The exterior doors are in fair condition. The doors feature peeling paint and wood deterioration at the base and on the frames and trim.
- The windows of the building are in good condition; however, the paint is peeling on most of the steel lintels.
- The brick and mortar walls of the building are in good condition.
- There is slight staining of the brick in areas where water has run down the walls or has splashbacked.

Recommendations

- Regrade the yard to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Repaint metal windows and lintels. Remove any visible rust or blistered and peeling paint. The windows should be rinsed, treated with a rust-inhibitive primer, and coated with a modern polymeric coating that adheres well and prevents
rust. Test paint finishes for lead content prior to removal.

- Repair and paint the doors. Thoroughly scrape the paint from the doors and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and the finish coats should be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future. Door bottoms may need to be repaired using epoxy consolidation techniques prior to repainting.

- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

The Machine Tool Lab currently houses lab and shop space. Interior finishes, the well-defined layout, as well as the history of the building suggest that the building should continue in its current use. If the existing uses were to relocate, the open spaces and quality of light of the Machine Tool lab suggest possible reuse as artist studios, exhibit space, or any use that could benefit from high, open spaces with substantial daylighting and rugged finishes.

The building area could be expanded by filling in the north courtyard. It might be possible to incorporate some vertical expansion, connecting the north and south courtyard inserts, into this project.

Further expansion would necessitate building along the north and south facades, eliminating or reducing the massive window walls that are one of the character-defining features of the building. With the exception of the infilling of the courtyard, no expansion of this building is recommended.
Memorial Gym

A Brief History of Memorial Gym

When the university built the indoor Field House-Armory in 1926, the Bangor Daily News reported that it was the largest structure of its kind in the country. It was designed by the Boston architectural firm of Little and Russell, who were also developing a campus plan for the university. The Memorial Fund Committee, through a gift of Walter Morse, director of the Maine Experiment Station, bought the Graves Farm, just north of the campus, for land on which to build the Field House. In 1933, the Gymnasium was added to the south end of the Field House, facing the campus mall. This complex was dedicated to the forty-two alumni and students of the University of Maine who died in the Spanish-American War and World War I. Steel Art Deco athletic figures adorn the south entries to the gymnasium. Money to build the Field House and Gymnasium came from contributions from alumni, faculty, staff and students. In 1969, wings were added to the east and west of the
gymnasium, and in 1988, an addition was built to the east side for the Latti Fitness Center.

Architectural Description

The original field house and armory of the Memorial Gymnasium complex was a massive rectangular structure with unusual multi-faceted endwalls reflecting the curvature of the running track within. The building consists of a steel structure with a concrete foundation, brick exterior walls, and a hipped roof. In 1933, a 3-story 11-bay brick and stone gymnasium, rectangular in plan with a flat roof, was added to the south side of the field house. The gymnasium introduced unique but somewhat subdued Art Deco motifs at the interior and exterior, including athletic figures, created of brick and terra cotta, on the upper façade under the parapet.

The gym façade, effectively screening the original field house façade, faces the mall, and is comprised of three symmetrically placed entries set within cast stone surrounds. Each entry features paired single-lite and metal frame doors with silhouettes of athletic figures above. Each entry is set within a brick arch which extends approximately two-thirds up the façade. A single nine-light casement window and a decorative medallion are located within the arch above each entry.

The main front entry off the mall is not accessible, though a utilitarian entry on the south side provides an accessible entry. The interior is partially accessible, but does not meet the requirements of the Americans with Disabilities Act. The main lobby retains much of its original Art Deco detailing and materials, though higher-quality exhibit casework and ambient and exhibit lighting would bring more prominence to this space which is unique on campus.

Condition Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- Vegetation is growing up along the south and west elevations.
- Access to the roofs was unavailable; therefore, roof conditions was not observed.
Recommendations

- Cut back plantings along the south and west elevations so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and its roots may push into or under the foundation.
- The art deco façade of the gymnasium should be preserved as it creates a strong terminus to the west end of the mall.

Recommendations for Reuse

Memorial Gym is still in use as an athletics and recreational facility and contains courts of various types and sizes, a pool, locker rooms, offices, and support spaces. Interior finishes and layout for the buildings are appropriate for the building to continue in its present uses. Consideration should be given to upgrading the entry lobby by introducing appropriately designed exhibit display and lighting.

The large interior spaces lend themselves to renovation for continued athletics and recreational uses. Many of these spaces may now fall short of current or future competitive athletics standards, thus requiring the eventual construction of new facilities. However, the major spaces of Memorial Gym should be large enough that, with suitable renovation, they can continue to serve useful purposes and provide suitable venues for other programs within the athletic and recreation realms.

Expansion of this complex to the south, toward the mall, is not recommended as the open space between the building and the mall is significant. Expansion to the east is possible but would impact the adjacent tennis courts and parking lots. Expansion to the north and west would eliminate close-by parking areas.
Merrill Hall

A Brief History of Merrill Hall

Merrill Hall was built in 1931 as the Home Economics Building. It was designed by Crowell and Lancaster of Bangor and named for Leon S. Merrill, Dean of the School of Agriculture from 1911 to 1933. Merrill Hall is a brick neoclassical building with limestone trim and parapet gables, similar to other campus buildings constructed in the inter-war years (e.g., Roger Clapp Headhouse, Colvin Hall, Fogler Library). When first built, it had laboratory facilities at the north and south ends of each floor for child development, food science, home management, institutional management, and clothing care and design; offices and classroom space were located off the corridor connecting the north and south wings. The child care laboratory had a small playground in the back of the building. A green ceramic water fountain in the front entry, surrounded by a mosaic of ceramic tiles, including ceramic
seahorses, was a gift from home economic students and alumni when Merrill Hall was built.

The Department of Home Economics started at the University of Maine as a teaching program in the School of Agriculture in 1909. In 1915, it became part of agricultural extension, and in 1927, part of the Experiment Station. It was housed in various agricultural buildings on campus, including Winslow Hall, North Hall, the Maples, Rogers Hall, and the Roger Clapp Headhouse. Merrill Hall was the first building on campus to house research, teaching, and extension work for a single subject field.

Architectural Description Exterior

Merrill Hall is a three-story rectangular brick Colonial Revival building. The building rests on a concrete foundation, and has an asphalt shingle roof that features gable forms for the main block and end ells, and hipped forms on two three-bay-wide projections at the rear elevation. Brick and stone parapets with integral brick chimney forms provide the building with a distinctive roofline. Wood and limestone trim and brick quoins at each corner contribute decorative detail. A small one-story addition was constructed at the east side of the north wing. A wooden canopy shelters the south entrance. The interior of the building is divided into instructional, administrative, office and support spaces. The floors are covered with resilient tile or carpet. The top floor features interesting interior spaces under the gables and hips, and retains original skylights. The entry is enhanced by an original recessed mosaic tile water fountain.
The current wooden entry ramp does not meet the requirements of the Americans with Disabilities Act. The building does not have an elevator. Some toilet rooms are approaching being accessible.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- The asphalt shingle roof is in fair to good condition.
- The doors and windows are in fair to good condition.
- There is slight staining of the brick in areas where water has run down the walls or has splashbacked.

Recommendations

- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Upgrade accessibility at exterior ramp and at interior.

Recommendations for Reuse

Merrill Hall houses the Human Development and Family Studies program. Interior finishes and layouts are appropriate for the building to continue in use as instructional and departmental office space. One classroom has been handsomely renovated. The remainder of the building would benefit from an interior finish and infrastructure upgrade that would take remaining historical features (water fountain, woodwork, skylights) into account.

The building could be converted to a residence hall or an interdisciplinary center if such uses were consistent with future strategic and master planning recommendations.

Merrill Hall could be expanded to the east or south; however, a parking area and a major pedestrian path would be affected.
Oak Hall

A Brief History of Oak Hall

Oak Hall, designed by Crowell and Lancaster of Bangor, was built in 1937 as a men’s dormitory to accommodate ninety-five men. It replaced the first dormitory built on campus, also named Oak Hall, which was destroyed by fire in January of 1936. The first Oak Hall was called Brick Hall when it was built in 1871 because it was made of bricks manufactured on campus. Both Oak Halls were named for Lyndon Oak of Garland, a member of the Board of Trustees from 1867 to 1889, who served as both Secretary and President of the Board.

Oak Hall has very little common space—there is no lobby on the first floor. This stands in marked contrast to the women’s dormitories built in the first half of the twentieth century (Balentine, Colvin, and Estabrooke Halls), which had parlors, sitting rooms and dining rooms. The students
in Oak Hall are in a dining hall situated in the basement of Hannibal Hamlin Hall, another men’s dormitory to its north. Oak Hall was connected to Hannibal Hamlin Hall by a passageway on the ground floor, but the connecting door is now locked.

Architectural Description

Oak Hall is a four-story, nineteen-by-two bay Colonial Revival student residence hall. The rectangular block rests on a poured concrete foundation. Oak Hall terminates in a hipped roof sheathed with asphalt shingles. The building is constructed of brick. A cast stone belt course is located between the first and second floors and below the fourth floor windows. Three projecting entrance bays are located on the south elevation. Each bay terminates in a pedimented gable roof and features an entranceway with three vertically-stacked windows above. The two outer bays are topped by flat roofed porticos supported by Doric columns. The center bay features a broken triangular pediment. The third floor window is a replacement arched window while those at the other floor levels are six-over-six double-hung replacement sash. All windows of the dormitory are replacement units.

Oak Hall was recently refurbished as a coed student residence hall. Each floor is laid out in a similar plan with a center through hall with rooms on either side. Stair towers are located at the entry bays and an elevator is located within the center bay. Interior finishes consist of plaster ceilings and walls and carpeted floors.

The building appears to be completely accessible. An elevator serves all floor levels.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained.
- Vegetation is growing up the elevations and is starting to attach to the masonry.
- The asphalt roof is in good condition.
- The doors are in fair condition. There is some deterioration of the wood doors and trim.
- There is slight staining of the brick in areas where water has run down the walls or has splashbacked.
Recommendations

- Cut back vines to a one-story height for ease of maintenance.
- Consider replacing asphalt shingle roof with a higher quality asphalt or preferably slate shingle.
- Repair and paint the doors. Thoroughly scrape the paint from the doors and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and it is recommended that the finish coats be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future. The doors may require minor repairs, including consolidation of bottom edges.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

With its recent major rehabilitation, Oak Hall should be in condition to function gracefully as a student residence for many years to come.
Rogers Hall

A Brief History of Rogers Hall

Rogers Hall, designed by Crowell and Lancaster of Bangor, was built in 1928 to house the Dairy Husbandry division of the Department of Animal Industry. The first floor of the building had laboratories for milk testing, butter making, market milk processing, cheese making and ice cream making. It also contained cold storage rooms for storing the dairy items used for, and produced from, the laboratories. The second and third floors of the building held classrooms and faculty offices. The interior of the building contains added glass block partitions in the first floor corridor door surrounds and the second floor stairwell.

Rogers Hall was named for Dr. Lore Alfred Rogers, an 1896 alumnus of the University of Maine, who went on to become Chief of Research Laboratories at the Bureau of Dairy Industry at the United States Department of Agriculture.
Architectural Description

Rogers Hall is a two-story brick building designed in the Colonial Revival style. The rectangular building has a concrete foundation and a hipped roof sheathed with slate. A limestone cornice defines the eave. The fenestration of the building is symmetrical. An entrance is located at each end of the west elevation. A cast stone surround frames each doorway. The first and second floors feature double-hung six-over-six wood sash windows marked by limestone sills. A multi-light arched top double-hung window is located above each entryway.

The interior of the building is divided into office spaces and classrooms by plaster walls, interior wood frame windows and glass blocks. The first floor features a concrete floor. The second floor, like the first, contains office spaces and classrooms featuring plaster ceilings and walls.

The building is partially accessible and contains an elevator. A new entry ramp is located along the rear, east elevation. The building does not meet other aspects of the Americans with Disabilities Act, including toilet room arrangements and lever hardware.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north elevation that would allow water to drain away from the building.
Vegetation is growing up the exterior walls and is starting to attach to the masonry.

The slate roof is in fair to good condition. Several of the slates are loose or missing.

The windows of the building are in fair condition. The glazing compound is typically dried out, loose or missing; and paint is peeling on most of the windows.

The brick and mortar walls of the building are in good condition. However, there is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.

Recommendations

Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.

Cut back vines to a one-story height for ease of maintenance.

Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

Cleaning of the brick and stone surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning is necessary, tests should be undertaken to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

Rogers Hall currently houses the Lobster Institute, laboratories of the School of Marine Sciences faculty, and offices and research laboratories of the Animal and Veterinary Sciences Department. Interior finishes and the layout of the building are appropriate for continuation of these or similar uses.
The interior of the building is remarkably intact, preserving the character of laboratory spaces of the early 20th century. These spaces and their character-defining features such as corridor window walls and wood trim should be preserved, whether current uses are maintained or new uses introduced. If the lab spaces are considered obsolete in the future, a new use such as interdisciplinary program space or seminar/meeting space should be found that can make use of the existing floor plan and interior finishes and materials.
A Brief History of Norman Smith Hall

Called “Agricultural Engineering Building” for over fifty years, Norman Smith Hall was designed by Crowell and Lancaster of Bangor and built in 1937. When it was first built, the Department of Agronomy and Agricultural Education shared the building with Agricultural Engineering. It originally contained classrooms; a drawing room for farm surveying and mapping; a farm shop for carpentry work; and crops, soils, hydraulic, and electrical laboratories. Two wide vertical-lift doors were installed in the two wings of the building, to make it easier to bring in farm equipment. The building was renamed in the early 1990s for Norman Smith, a Bio-Resource Engineering Professor.

Architectural Description

Norman Smith Hall, originally named the Agricultural Engineering Building, is a U-shaped, one-story building with a small two-story portion at the center of the bottom of
the U. The main entrance is centered in the two-story section. It is a simply-detailed building exhibiting some characteristics of the Colonial Revival style and some of the Art Deco style. This is appropriate for the building’s date of construction, 1937. The late 30s were a transitional period in architectural design when the colonial and European revival styles were giving way to Art Deco and early Moderne.

All of the building except for the two-story section has a slate-covered hipped roof. A simple wood fascia and soffit closes the eaves. The center portion appears to have a flat roof with a stepped parapet at the façade. The north and south walls of the two-story section, above the first story roof, are sheathed with slate matching that covering the hipped roofs. Exterior walls are of brick over a concrete foundation. Original windows were multi-light steel industrial sash. These have been replaced with six-over-six wood units with wood trim at the first floor, but the six-over-three metal windows remain at the second floor. The main entrance, which is defined by a shallow recessed brick arch, is comprised of a new wood panel door with sidelights in a wood surround. Handsome original light fixtures remain to either side of the main entrance. These should be retained.

Much of the interior has been renovated to house the George Mitchell Center. These spaces have carpet and vinyl asbestos tile floors; asbestos ceiling tile; and terracotta block and drywall walls. The interior surfaces of exterior walls are painted brick. There are some demountable partitions in place. Interior doors consist of some new units and some original doors with upper glass lights and lower panels. Some areas of the interior retain their original industrial/shop character.

The second floor is not in use except for one restroom. Only the main floor is accessible from the exterior; and elements of the first floor, such as bathroom fixtures and hardware, are not fully compliant.
Conditions Assessment

- The site is in fair condition. The ground does not slope adequately away from the foundation to provide positive drainage.
- There are no gutters or downspouts to direct rainwater away from the building.
- Vegetation is growing close to the foundation, and is growing up portions of the exterior wall.
- Access to the roof of the two-story portion was unavailable; therefore the roof was not inspected.
- The replacement windows are in good condition. The steel sashes at the upper façade are in fair condition and contrast inappropriately with the new units.
- The masonry is in generally good condition, although there are areas where repairs were poorly-executed with inappropriate materials.
- Slate roofing and associated flashing appears to be in fair to good condition.
- Interior spaces that have not been renovated exhibit finishes that are in fair condition.
- Some of the renovation materials are of lesser quality (this may be due to the temporary occupancy by at least one of the occupant departments).

Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Install new copper downspouts. Drain into perimeter drain system or extend downspouts at least 24” away from foundation.
- Cut back vines to the top of the first floor for ease of maintenance.
- Cut back plantings so there is at least a 1’- 0” air space between the structure and the vegetation. Vegetation growing against the foundation wall may lead to premature deterioration of the mortar joints because it holds moisture against the foundation and its roots may push into or under the foundation.
• Replace second story windows with new replacement units to match those of first floor (retain six-over-three fenestration).

• Remove inappropriate mortar by raking the joints to sound mortar or 2½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling which cannot be repaired easily. Finish joints should match the width and profile of the original.

• Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

• Inspect and repair slate roofing and flashing as required using traditional slate repair techniques.

• The building should be subject to an appropriate renovation throughout prior to the next change of occupant(s). Abatement of asbestos floor and ceiling materials may be required.

Recommendations for Re-Use

Smith Hall makes a delightful home for a small department or multiple small administrative units such as those that now occupy it. It could remain in its current use, or, with some renovation, it could function very well as a conference or meeting center, an institute or center, or a small laboratory facility. Due to its strategic location in the heart of the campus and near

Tier Two Buildings
the Union and the Library, it might also be considered for use as a visitor/welcome center.

The building could be expanded to the east, though this would impact valuable center-campus parking.
Stevens Hall Central Block

A Brief History of Stevens Hall Central Block

Stevens Hall was the first building to be built on the campus mall and is connected by open arcades to North and South Stevens Halls. The University of Maine hired the Boston architectural firm of Little and Russell to provide a campus plan in the early 1920s; the campus mall was the most prominent aspect of that plan. Stevens Hall was built in 1923-24 as the Arts and Sciences Building. It was designed by Crowell and Lancaster of Bangor, and Little and Russell served as consulting architects for the building.

In 1932-33, North and South Stevens were added to Stevens. According to a 1932 Bangor Daily News article, University administrators decided it was a good time to construct buildings on campus for much-needed space, as materials and labor costs were much lower than they had been in previous years due to the Great Depression. Moreover, they felt it was a way to provide jobs for the
unemployed in Maine. In fact, when construction began on the project, fifty-three men showed up at campus for work, but were turned away because contractors had brought workers with them.

The first floor of North Stevens was constructed with a large sound-proof music hall and stage on the first floor that was used for orchestra, chorus and band rehearsals, and for music courses. North Stevens also contained administrative and classroom space for the Departments of Spanish, Italian, Chemistry and Physics. South Stevens housed the Departments of Education, Economics and Sociology.

When North and South Stevens were added in 1933, university officials changed the name of the central portion of the building from “Arts and Sciences Building” to “Stevens Hall,” after James Stacy Stevens, the first Dean of the College of Arts and Sciences.

Architectural Description

The central block of Stevens Hall is a three-story brick Classical Revival building, serving as the center of an H-shaped group of three buildings connected by brick arcades. The central block, like the north and south blocks, terminates in a hipped roof sheathed with asphalt shingles. A bell tower is centered on the hip. The domed roof of the cupola is supported by wood columns. A simple cornice defines the eave line. A centered three-part (base, middle, top) pedimented gable bay on the west elevation identifies the principal entrance to the building. The gable is supported by cast stone pilasters resting on a cast stone beltcourse between the first and second floors of the building. Access is provided by a recessed double door entranceway centered within the bay. The entranceway is marked by a wide arch opening. A single arched, multi-light double-hung wood sash window is located to each side of the opening. Typical windows are fifteen-over-fifteen double-hung wood sash in wood frames with cast stone sills.

The interior of the building is divided into administration and office spaces by plasterboard partitions with dark stained wood trim. Ceilings are typically of suspended acoustic tiles. The floors are covered with vinyl tiles or carpet.
The first floor of the building is partially accessible, though it does not meet all of the requirements of the Americans with Disabilities Act. An elevator gives access to the upper floors.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north elevation that would allow water to drain away from the building.
- Vegetation is growing up the elevations and is starting to attach to the masonry.
- The roof is in good condition.
- The wood trim of the building is in good condition, but the paint is peeling on the cupola.
- The windows of the building are in fair condition. The glazing compound is typically deteriorated and loose or missing and paint is peeling on most of the windows on the south, east and west elevations.
- The brick and mortar walls of the building are in good condition. However, there is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.
- There is flashing and masonry deterioration at the connecting loggias.

Recommendations

- Regrade adjacent lawns to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Cut back vines to a one-story height for ease of maintenance.
- Repaint the cupola. Thoroughly scrape the paint from the trim and properly prepare the wood. Repaint the dry substrate using a primer and two finish coats of paint that are compatible with each other and from the same manufacturer. The primer coat should be an alkyd-resin (oil-based) paint and the finish coats should be alkyd resin. If an acrylic-emulsion (latex) paint is used as the finish coat, it can only be painted over with acrylic-emulsion paints in the future.
• Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

• Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

• Install new flashings at the arcades, and restore deteriorated masonry.

Recommendations for Reuse

The main block of the Stevens Hall complex currently houses the offices and instructional and support spaces of variety of departments and programs. Interior finishes and layout are appropriate for the building to continue in use as instructional and departmental office space. Its prominent place on the Mall and imposing presence should assure active and significant use for the future.

There is no potential for expansion of Stevens Hall due to the close proximity of other buildings and the Mall.
Stevens Hall (North)

A Brief History of Stevens Hall North

See Stevens Hall Central Block, page 59.

Architectural Description

The north block of Stevens Hall is a rectangular two-and-one-half-story brick Classical Revival building matching the previously-described central block in style and detail. The three bay by nine bay building sits on a concrete foundation. The building terminates in an asphalt shingle-covered, hipped roof. Three eyebrow dormers are located on each of the north and south roof planes. A simple cornice defines the eave. A two-story pedimented gable bay on the west elevation identifies the principal entrance to the building. The gable is supported by brick pilasters with cast stone capitals. Access is provided by an inset entranceway centered within the bay. The entrance is marked by an arched opening. A single fifteen-over-fifteen
Double-hung wood sash window is located to each side of the opening. The windows are set within wood frames resting on cast stone sills. A cast stone keystone caps each opening. A brick arcade on the south elevation of the hall connects the building to the central block of Stevens Hall. A new three-story, one-bay-wide by one-bay-deep elevator tower is centered on the east elevation.

The interior of the building is divided into administrative, classroom, and office spaces by plasterboard walls trimmed with dark stained wood. The ceiling is suspended tiles and many of the floors are terrazzo.

The new elevator provides access to all floor levels of the north building. The building does not meet all requirements of the Americans with Disabilities Act.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained, but it does not appear to slope away from the building on the south elevation to allow water to drain away from the foundation. The north and east elevations have recently been graded.
- Vegetation is growing up the elevations and is starting to attach to the masonry.
- The roof is in good condition.
- The windows of the building are in fair condition. The glazing compound is typically dried out, loose or missing. Paint is peeling on most of the windows on the south, east and west elevations.
- The brick and mortar walls of the building are in fair condition. However, the building was recently repointed and the joints were retooled incorrectly so that the joints appear visually wider than they should. This is visually unattractive and has the potential to crack the surrounding masonry.
- There is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.

Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
• Cut back vines to a one-story height for ease of maintenance.
• Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.
• Remove inappropriate mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling, which is expensive to repair. Finish joints should match the width and profile of the original.
• Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

The north block of Stevens Hall complex currently houses the offices and instructional and support spaces of variety of departments and programs. Interior finishes and layout are appropriate for the building to continue in use as instructional and departmental office space. Its prominent
place on the Mall and imposing presence should assure active and significant use for the future.

Due to its location in the most dense precinct of the campus, there is no potential for the expansion of this building.
A Brief History of Stevens Hall South

See Stevens Hall Central Block, page 59.

Architectural Description

The south block of Stevens Hall is a rectangular two-and-one-half-story brick Classical Revival building matching the previously-described north and central blocks in style and detail. The three bay by nine bay building sits on a concrete foundation. The building terminates in an asphalt shingle-covered, hipped roof. Three eyebrow dormers are located on each of the north and south roof planes. A simple cornice defines the eave. A two-story pedimented gable bay on the west elevation identifies the principal entrance to the building. The gable is supported by brick pilasters with cast stone capitals. Access is provided by an inset entranceway centered within the bay. The entrance is marked by an arched opening. A single fifteen-over-fifteen double-hung wood sash window is located to each side of the opening. The windows are set within wood frames.
resting on cast stone sills. A cast stone keystone caps each opening. A brick arcade on the north elevation of the hall connects the building to the central block of Stevens Hall.

The interior of the building is divided into administrative, classroom, and office spaces by plasterboard walls trimmed with dark stained wood. The ceiling is suspended tiles and many of the floors are terrazzo.

The building is not accessible and does not meet the requirements of the Americans with Disabilities Act.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building that would allow water to drain away from the building.
- Vegetation is growing up the elevations and is starting to attach to the masonry.
- The slate roof is in good condition.
- The windows of the building are in fair condition. The glazing compound is typically dried out, loose or missing. Paint is peeling on most of the windows on the south, east and west elevations.
- The brick and mortar walls of the building are in fair condition. However, there are areas of deterioration and through brick cracking on the arcade. A primary load-bearing masonry pier supporting the roof is significantly deteriorated and in poor condition.
- There is slight staining of the brick in areas where water has run down the walls or has splashed back from grade.

Recommendations

- Regrade the yard to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Cut back vines to a one-story height for ease of maintenance.
- Restore the windows. Re-glaze all of the windows with a linseed-based glazing compound. Add zinc or bronze weather-stripping to the windows and make operable with new pulleys, weights, cord, and
locks at each meeting rail as needed. This will make the windows weathertight and improve the thermal efficiency of the windows, improve the visual appearance of the building, and allow for easier maintenance in the future.

- Reconstruct arcade pier and examine flashings to find any leaks. The reconstruction of the pier will require temporary support of the roof. Restore masonry using techniques proscribed for the Stevens Hall central block.
- Repair mortar joints using the repointing techniques proscribed for the Stevens Hall central block.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.

Recommendations for Reuse

The south block of the Stevens Hall complex currently houses the offices and instructional and support spaces of variety of departments and programs. Interior finishes and layout are appropriate for the building to continue in use as instructional and departmental office space. The building should be brought into compliance with the ADA as soon as possible.

Its prominent place on the Mall and imposing presence should assure active and significant use for the future. Due to its location in the most dense precinct of the campus, there is no potential for the expansion of this building.
Wingate Hall

A Brief History of Wingate Hall

Wingate Hall was built in 1891-92 for the Departments of Civil and Mechanical Engineering. Wingate was designed by Kidder and Humphreys of Denver, Colorado. Frank E. Kidder was an 1876 alumnus of the University of Maine and he also designed Coburn Hall on campus. When it was built, Wingate was oriented to the Stillwater River, was three stories tall and had a five-story bell tower which announced the beginning and end of classes. The granite belt course below the first floor has “95,” “96,” “97,” and “99” chiseled into it; these are presumably the class years of graduating seniors.

Wingate Hall replaced an earlier building on this site, also called Wingate Hall, although it was first named White Hall. White Hall, a wood-frame building used as dormitory and classroom space, was the first building constructed for the Maine State College. It was destroyed by fire in 1891. The College received ten thousand dollars in insurance...
money for the building, and the state legislature appropriated sixteen thousand dollars to construct a new building. Both Wingate Halls were named for William P. Wingate of Bangor, who was a member of the Board of Trustees from 1867 to 1884, and President of the Board from 1879 to 1883.

Wingate Hall’s appearance has been altered since it was built, mainly due to a devastating fire, but also due to university renovations. A fire broke out in the fourth floor of Wingate Hall on February 16, 1943. The third floor and the tower were lost in the blaze, and the hip roof was replaced by a flat roof. The source of the fire remains unknown, though an inquest ruled that it was not of a suspicious origin. In 1953 a planetarium was added to the second floor of the building. In 1993, the building underwent accessibility renovations to comply with the Americans with Disability Act. It was probably at this time that the orientation of the building was changed from west, facing the Stillwater River, to east, facing Munson Road.

Architectural Description

Wingate is a two-story, five by four bay Classical Revival building which has been heavily modified over the years. The rectangular block rests on a granite foundation and terminates in a flat roof. The building is constructed of brick laid in four course bands on the first floor and stretcher course above. A granite watertable is located directly above the basement window openings. A projecting bay, centered on the west elevation, marks the original principal entrance to the building. Entry is through a pair of one-light metal replacement doors set within a brick arch. An original fan-shaped transom has been covered over or replaced. The word “engineering” is spelled out in brick above the arch. Two casement windows capped by smaller casement windows are grouped above the entrance. The word “engineering” is spelled out in brick above the arch. Two casement windows capped by smaller casement windows are grouped above the entrance. Openings are highlighted by granite sills and lintels. At the top of the bay, the words “Wingate Hall” are spelled out in brick. Modern poured concrete steps provide access to the entry. First floor window openings feature stepped brick arches and granite sills.

Another entrance faces Munson Road to the east. It consists of a single modern one-light metal door with a modern canopy above. This was a service door when the building was first constructed and the focus of the campus
The ground has settled over the years due to roof runoff, resulting in grade sloping down toward the foundation.

Mortar and application methods used for repointing do not match those of original brickwork.

Blacked-out windows at planetarium

was the river. Now this door is the most often used point of access to the building. It is a plain entrance in a plain façade, meant to be the rear of the building.

The interior of Wingate has been reorganized and extensively remodeled. Interior spaces are used for offices and support spaces. The floor is covered with vinyl tiles in the corridor and carpet in the offices. The walls and ceiling are painted sheetrock. The north half of the second floor houses the University’s planetarium.

The building contains an elevator and appears to meet the requirements of the Americans with Disabilities Act.

Conditions Assessment

- Overall the site is in fair condition. The lawn around the building is well maintained. However, it does not appear to have a positive slope away from the building on the north and south elevations that would allow water to drain away from the building.
- There is a cracked concrete path along the north wall.
- Access to the roof was unavailable. The roof should be inspected for standing water or any open seams.
- The windows of the building are in fair condition. The basement windows are deteriorated; peeling paint is typical.
- The brick and mortar walls of the building are in fair condition; however, there is slight staining of the brick in areas where water has run down the walls or has splashed back from grade. Additionally, portions of the building were recently repointed with inappropriate mortar, which has the potential to crack the surrounding masonry.
- The windows at the planetarium space have been blacked out, presenting a lifeless appearance to Munson Road.
- Original entry doors have been removed and replaced with utilitarian metal doors. The original arched opening has been infilled with brick and the original entry stairs have been replaced with concrete.
Recommendations

- Regrade the lawn to create positive drainage away from the building by sloping the grade a distance of at least 18” out from the foundation.
- Patch deteriorated/cracked portions of concrete wall. The patching should match the existing concrete as closely as possible, both visually and structurally.
- Restore the windows.
- Remove inappropriate mortar by raking the joints to sound mortar or 2 ½ times the joint width, whichever comes first. All joints should however be raked to a minimum depth of ½”. Chisels should be smaller than the masonry joints. Be careful not to damage the masonry edges. Brush out all loose mortar and hose wall lightly with water. Repointing mortar mix should match the original in strength, color, texture, and hardness (density and porosity). In general, mortar should be slightly weaker than the masonry unit. Laboratory analysis of samples of original mortar is recommended to insure that a compatible formula is used in repointing and repair. A mortar that is harder (stronger in compressive strength) than the surrounding masonry is unable to absorb the slightest movement in the masonry, causing stresses to be relieved through the masonry. This results in permanent damage to the masonry, such as cracking and spalling which cannot be repaired easily. Finish joints should match the width and profile of the original.
- Cleaning of the brick surfaces is not recommended, unless the soiling begins to cause deterioration of the masonry and mortar. If cleaning becomes necessary, tests should be used to determine the gentlest and most appropriate method for removing the soiling. The removal of environmental stains should be left to a conservator.
- Develop a more aesthetic window darkening approach for the planetarium windows. Alternatively, find a more compatible use for this space and reopen the windows to restore the north and east elevations to their original appearance.
Recommendations for Reuse

Wingate currently houses Student Financial Aid offices, the Office of Student Records, the Office of Veterans Affairs and the Jordan Planetarium. Interior finishes and layout for the building are appropriate for the current uses or similar uses. The planetarium function is well established in its space, but consideration should be given to finding a more suitable use for this space, which in turn would allow the building’s exterior to read as it was originally intended.

Expansion is not recommended for this building, due to its prominent place on the front lawn to the west and north, and to Munson Road on the east and Fernald Hall on the south.

In light of the age and significance of Wingate as the University’s first dedicated engineering building, and the loss of the impressive tower that once adorned the west elevation, we recommend that the University consider as a long-term project the reconstruction of the tower. With the sesquicentennial of the institution coming up in 10 years, it is not too early to think of undertaking this high-profile project as a signature sesquicentennial marker. There is sufficient historical evidence to allow the reconstruction of the tower according to its original design. With the reconstruction of the Wingate tower and the rediscovery and recovery of the Front Lawn and the riverfront, the University community would be highlighting the traditions, history and beauty of the campus at the same time that the institution’s contributions to and accomplishments within Maine’s creative economy are being recognized by new directions in education and research.
D. Tier Three Buildings

Introduction

The Modern Period of campus development provides the framework for the Tier Three buildings. Eight of the ten Tier Three buildings date from 1946 to 1965, with four of the eight being student residence halls constructed to house the postwar student population boom.

The other two buildings are earlier structures. The Jordan Observatory was built in 1900 as a delightful Colonial Revival building, but has been renovated extensively and has lost much of its original detail. However, it could easily be restored to its original appearance, and thus is included in the Tier Three category.

The tenth building is the Steam Plant, a handsome, utilitarian structure on the Stillwater banks, a good representative of its building type. Portions of the building...
date from 1907, while others were constructed in 1931, 1946, 1958, 1966, and 1979, reflecting the demands of changing technologies on the structure.

All of the Tier Three buildings represent a lesser degree of architectural significance and/or integrity than the Tier One and Tier Two buildings, either due to their relative modernity in relation to the National Register fifty-year criteria, their degree of alteration, or their utilitarian character.

The Tier Three buildings include:

- Boardman Hall
- Chadbourne Hall
- Corbett Hall
- Deering Hall
- Dunn Hall
- Hart Hall
- Jordan Observatory
- Little Hall
- Memorial Union
- Steam Plant

The information provided in Part D of this section reflects the lower priority of these buildings but also establishes the need for further study of these resources as they age. The Tier Three information consists of:

- brief history;
- architectural description;
- abbreviated existing conditions assessment; and
- abbreviated statement of existing use and potential reuse.

This information will serve as a “placeholder” to address key aspects of the Tier Three buildings until additional research findings are available.
Map of Tier Three Buildings. Map by Michael Hermann, UMaine Canadian-American Center
Tier Three Buildings

Boardman Hall

A Brief History of Boardman Hall

Boardman Hall was built in 1949 to house the Departments of Civil Engineering, including Geology and Sanitary Engineering, and Mechanical Engineering, as well as the Technology Experiment Station laboratories. The building was named for Harold S. Boardman, President of the University of Maine, 1926-1933, Dean of the College of Technology, and an 1895 alumnus.

In 1945, Crowell and Lancaster of Bangor conducted a study for an Engineering building. Leland and Larsen of Boston drew heavily on the Crowell and Lancaster plan when they ultimately designed the building in 1948; Crowell and Lancaster served as advisory architects. In 1964, the two rear wings of the building were expanded to three stories to equal the height of the main block of the building. In 1990, the Dr. Llewellyn N. Edwards wing, a
The University of Maine
Historic Preservation Master Plan

three-story, three-bay addition, was constructed on the east end of the south wing of the building.

Architectural Description

Boardman Hall, completed in 1949, was originally constructed as a three-story brick building with granite trim, a concrete foundation, and a flat roof. It represents a good example of the International style as interpreted in a Maine educational setting; however the original wood multi-light windows represent a reference to the more traditional architecture of the pre-World War II campus. The only decoration on the original building is a wrought-iron railing at the balcony over the main entrance. The original entrance doors have been replaced with modern metal doors.

Interior finishes consist of concrete block walls, resilient floor tiles, and suspended acoustic ceilings. Some interior doors are original wood units, while some are modern wood replacements. The main entry lobby of the original building retains many of its original finishes: oak wall paneling, terrazzo tile floor, and aluminum interior doors.

Designed by Leland & Larsen of Boston, Boardman has been expanded several times. In 1964, one-story wings on the east elevation were replaced with three-story wings. In 1990, the Dr. Llewellyn N. Edwards Wing was added to the southeast wing. The latter contains a new stairway, elevator, and a lecture hall, among other spaces.

Conditions Assessment

Boardman Hall is in good condition. Interior finishes in the original and 1964 portions of the building are dated and, in some instances, worn. Lighting needs to be upgraded, as do door and bathroom hardware in some areas.

Recommendations for Use/Reuse

The building functions well in its current use as instructional spaces and offices. By virtue of being located on prime real estate on the Mall and in the engineering precinct, it should remain in use for these purposes. It does not appear that Boardman can be expanded any further due to its restricted Mall-side site.
Chadbourne Hall

A Brief History of Chadbourne Hall

Chadbourne Hall was built in 1947 as a women’s dormitory to accommodate the enormous influx of students after the end of World War II due to the Servicemen’s Readjustment Act of 1944 (better known as the G. I. Bill). In fact, although it was built as a women’s dormitory, it was occupied by male students for the first two years after it was built. Chadbourne Hall was designed by Crowell and Lancaster of Bangor, who designed two men’s dormitories the same year, Corbett and Dunn Halls at the north end of campus.

Chadbourne Hall was the fourth women’s dormitory built on campus. It was named for Ava H. Chadbourne, a 1915 alumna of the University of Maine. Chadbourne was hired upon her graduation to teach in the Education Department. She received her Master of Arts degree from the University
in 1918, and her PhD from Columbia University in 1922. She researched the history of education in Maine and published books about the subject while teaching at the University. Following her retirement in 1942, she wrote several books about Maine place names; these works are still used by students of local Maine history. She also wrote two books about women students at the University of Maine in the 1870s and 1880s. Ava Chadbourne died in 1964.

Architectural Description

Chadbourne Hall, built in 1947, is a four-story limestone-trimmed brick Neoclassical-style former residence hall. It features a slate hipped roof with a central three-story high projecting dormer as well as small hipped roof dormers at either end. The main entrance is marked by a classically-detailed one-story entry porch. There are wrought iron balconies above the east and west entries, and a wrought iron railing decorates the entrance porch. Original double-hung eight-over-eight windows are typical at all levels. A pediment with fanlight provides interest above the entry porch. Main entrance doors are modern replacement units.

Interior finishes consist of concrete block walls, suspended acoustical tile ceilings, and carpeted floors.

The exterior of the building has changed little since its construction. The interior was reconfigured in 1984, 1989, and 1993. The building has been converted to administrative use, and has received accessibility upgrades.

Conditions Assessment

Chadbourne is in good condition; however it still retains the feel of a dormitory due to its small rooms and narrow corridors. The public spaces on the main floor, now the main lobby and waiting area for the Undergraduate Admissions office, do not represent the University appropriately to the visitor. Finishes appear to be in good condition.

Recommendations for Use/Reuse

If the building is to continue in its present use as administrative offices, including the Admissions Office, interior renovation should be considered, especially in the...
public areas at the main entrance. Chadbourne could be expanded to the north, though doing so would impinge upon the important green space formed by this building, Balentine, Penobscot and Stodder halls.
Corbett Hall

A Brief History of Corbett Hall

Corbett Hall was built in 1947 as a men’s dormitory to house 226 men. The Olmsted Brothers’ plan of the campus of 1932 calls for a quadrangle of four men’s dormitories, and Corbett and Dunn Halls sit on this site. Corbett faces Dunn, another men’s dormitory which is its mirror image. These two buildings were designed by Crowell and Lancaster, an architectural firm in Bangor, Maine. These dormitories were built to accommodate the explosive enrollment following World War II, due to the Servicemen’s Readjustment Act of 1944—also known as the G. I. Bill—which provided educational benefits for veterans. Corbett was named for Dean Lambert Seymour Corbett, a professor of Animal Industry and Dean of Men. This building now houses faculty and administrative offices.
Architectural Description

Corbett Hall is a U-shaped, four-story Neoclassical brick building with limestone trim, a flat roof, and a concrete foundation. It was built in 1947 to the design of Crowell & Lancaster of Bangor. Built as a student dormitory, it was renovated in 1967 and 1993 and converted to offices and meeting spaces. Decoration is limited to wrought iron railings above the three entrances on the west elevation. These entrances also feature neoclassical doors with pilasters and entablatures with dentils. These doorways face across a courtyard to Dunn Hall, which is a mirror image of Corbett. Windows are original wood multiple-light units. The building appears to be accessible at all levels.

Interior finishes are new throughout the building and include suspended acoustical tile ceilings, concrete block and sheetrock walls, and carpeted, resilient tile and quarry tile floors.

Conditions Assessment

Corbett Hall is in good condition.

Recommendations for Use/Reuse

Corbett appears to be very serviceable for its current use. It could easily be converted back to residential use if the need arose. The building could be expanded to the west, though this would reduce the size of the nicely-scaled courtyard between Corbett and Dunn.
Deering Hall

A Brief History of Deering Hall

Deering Hall was built as the Plant Science Building in 1949. The University named the building after Arthur Lowell Deering, a 1912 alumnus, who was Director of Farm Demonstrations for Kennebec County after his graduation, then Director of the Cooperative Extension until 1933. He then served the University as Dean of the Agriculture College from 1933 to 1950, and worked for the USDA overseas. The original plans for the Plant Science Building were designed by the Bangor architectural firm of Crowell and Lancaster in the Neoclassical style. The University then hired Leland and Larsen from Boston, who chose an Art Deco style for the building. When it was built, Deering Hall contained the Departments of Agronomy, Botany and Entomology, Forestry and Horticulture, as well as part of the facilities for the Agriculture Experiment.
Architectural Description

Deering Hall is one of the few Art Deco-styled buildings on the University of Maine campus. It is rectangular in plan with slightly projecting wings on the east and west ends. The main block of the building is four stories in height, while the wings are three stories high. There are two single-story penthouses on the roof of the main building. It was designed by Leland & Larsen of Boston and completed in 1949. Originally designated the Plant Science Building, it is now the home of the Departments of Plant, Soil and Environmental Sciences and Biological Sciences.

The brick exterior features horizontal limestone and granite trim in horizontal bands at the main entrance. Original wood sash remain in place. The building has flat roofs with two clerestory cupolas atop the main building block.

The only distinctive interior space is the main entry lobby, which features wood-paneled walls, terrazzo flooring, an acoustical tile ceiling, cove lighting, and original exterior and interior doors of polished aluminum. The remainder of the building has concrete block walls, vinyl asbestos tile floors, suspended acoustical tile ceilings, and original wood doors. Some original fiberboard and plastic partitions remain in some of the small labs. The building appears to be accessible at all levels.
Conditions Assessment

The exterior of Deering Hall appears to be in fair to good condition. Masonry is in good condition, though plant materials have grown too close to the building and should be removed. The original windows are in fair condition and should be restored and equipped with storm sash or provided with double-glazed replacement sash in the same configuration as the originals. Roofs were not inspected. Interior finishes are in fair condition. The interior would benefit from a significant renovation, a project that should include preservation of the entrance lobby.

Recommendations for Use/Reuse

Deering Hall is currently used as laboratory and classroom space and departmental offices. It should continue in those uses, though it and the programs housed within it would benefit from an interior renovation. It appears as though the building could accommodate updated laboratory spaces, though a definitive opinion can only be derived from a feasibility study based on current and anticipated future program requirements.

Deering could be easily expanded to the south, into a current parking lot. Vertical expansion might be possible over the two wings.
Dunn Hall

A Brief History of Dunn Hall

Dunn Hall is a mirror image of Corbett Hall. They were designed by Crowell and Lancaster, an architectural firm of Bangor, Maine. On the original plans, Dunn Hall was labeled “Men’s Dormitory No. 1.” They were built in 1947 to accommodate the explosive enrollment following World War II, due to the Servicemen’s Readjustment Act of 1944, more commonly known as the G.I. Bill, which provided educational benefits for veterans. Dunn was named in honor of Charles John Dunn, former Chief Justice of the Supreme judicial Court of Maine, and Treasurer of the University from 1909 to 1923. Dunn currently houses administrative and faculty offices.
Architectural Description

Dunn Hall is a U-shaped, four-story Neoclassical brick building with limestone trim, a flat roof, and a concrete foundation. It was built in 1947 to the design of Crowell & Lancaster of Bangor. Built as a student dormitory, it was renovated in 1993 for use as offices and meeting spaces. Decoration is limited to wrought iron railings above the three entrances on the east elevation. These entrances also feature neoclassical doors with pilasters and entablatures with dentils. These doorways face across a courtyard to Corbett Hall, which is a mirror image of Dunn. Windows are original wood multiple-light units. The building appears to be accessible at all levels.

Interior finishes are new throughout the building and include suspended acoustical tile ceilings, concrete block and sheetrock walls, and carpeted, resilient tile and quarry tile floors. The original interior of Dunn differed from that of Corbett in that it featured a significant amount of public space at the first and second floors. These spaces have been provided with upgraded finishes and remain in use as lounge, meeting and study areas.

Conditions Assessment

Dunn Hall is in good condition.

Recommendations for Use/Reuse

Dunn appears to be very serviceable for its current use. It could easily be converted back to residential use if the need arose. The building could be expanded to the east, though this would reduce the size of the nicely-scaled courtyard between Corbett and Dunn.
Hart Hall

A Brief History of Hart Hall

Hart Hall, designed by Alonzo J. Harriman of Auburn, Maine, is the only residence hall on the campus mall. It was built in 1955 with accommodations for 130 men. The dormitory was named for James Norris Hart, Professor of Mathematics and Astronomy, first dean of the University, acting president and an 1885 alumnus. Dr. Hart spoke at the dedication of the building in 1956.

Architectural Description

Hart Hall is a four-story, L-shaped brick building with granite and cast stone trim. True to the International Style, it has a flat roof and trim bands that emphasize its horizontal lines. Original windows have been replaced with modern units, and new aluminum doors are in place at
all entrances. Minimal decoration in the form of a severe stone surround defines the main entrance.

The interior features modern materials such as plywood veneer paneling throughout the public areas and bullseye glass in a finned wood partition at the main entrance.

Recommendations for Use/Reuse

Hart Hall appears to function satisfactorily in its original and current use as a student residence hall. However, the floor plans and level of student amenities are outdated and not up to current student expectations. Given its prime location on the Mall, consideration should be given to future conversion to academic space or, with due consideration of the building’s possible historic significance, replacement with a new academic building.

Hart could be expanded by infilling the “crook” of the L, but doing so would result in the loss of a significant small space between Hart and Wells Common.
Marion F. Jordan Observatory

A Brief History of Marion F. Jordan Observatory

The observatory was built in 1900 on the present site of Fogler Library. It originally had Colonial Revival detailing, with a pediment above the windows in the main part of the building, an arched entrance door, and round windows in the entryway. In 1933, the observatory was moved to its present location, most likely to accommodate the Olmsted Brothers’ plan for the campus mall.

By the 1960s, the building had fallen into disrepair—a student on campus wrote, “The cannon balls upon which the revolving dome rides are no longer round and when the dome is moved the entire building is set into violent vibrations.” (Reginald C. Williams, Jr., English Report, 1967, Special Collections, Fogler Library) Interest in the moon landing in the late 1960s galvanized support for repairs to the structure. In 1972-73, the University replaced the wooden dome with an aluminum dome and repaired the rest of the observatory. Changes to the door and windows, and removal of the earlier detailing probably occurred at this time. Vinyl siding was applied in the mid-1980s.
1992, the observatory was named “Maynard F. Jordan Observatory” after a University of Maine mathematics professor (1925-1960). A one-million dollar bequest was given by his daughter and son-in-law.

Architectural Description

The Jordan Observatory is a wood frame building on a concrete foundation. The central block is roughly cubical, with a hipped roof topped by an aluminum dome. A one-bay rectangular block with a gable roof provides the entrance to the building.

Conditions Assessment

The exterior of the Observatory is in fair condition. The installation of artificial siding materials over the original wood siding and/or wood structure will likely lead to deterioration of the building over time. The location of the building at the center of campus does not lend itself to satisfactory night sky viewing, as there is considerable glare from nearby parking lots and walkway lighting.

The building is not accessible.

Recommendations for Use/Reuse

Removal of the synthetic siding materials and a return to wood clapboard siding (through restoration if the original remains in place or through replacement) would be to the long term benefit of the building. At the same time, the original detail, including windows and doors, could be reconstructed to reveal the original uniqueness, charm, and dignity of the original structure.

Prior to restoration of the Observatory, it would make sense to find a new location for the building, one that would provide viewers with a dark sky. Perhaps a location on one of the University farms would be appropriate. Although it would be missed when removed from its center campus location, the building would better serve its intended purpose when isolated from the many light sources that currently surround it.
Little Hall

A Brief History of Little Hall

Little Hall was built in 1965 for the College of Arts and Sciences to house the Foreign Languages and Psychology departments. The architect was Alonzo Harriman Associates of Auburn, Maine, and the contractor was Paul B. McLellan, Inc. of Portland. It was constructed with state funds from a referendum passed in 1963.

Little Hall was named for Clarence Cook Little, sixth president of the University of Maine, 1922-1925. At the time of his appointment, he was thirty-three years of age and the youngest college president in the country. Dr. Little was a leading researcher in genetics, and while at Maine, he started a small genetics laboratory in Bar Harbor. After his retirement as president of the University of Michigan in 1929, he returned to Maine to devote his attention to the Bar Harbor lab he had founded, and later renamed it Jackson Laboratory after a donor. Dr. Little was also a
leading cancer researcher and a co-founder of the American Birth Control League with Margaret Sanger in 1921.

Architectural Description

Little Hall is a large, linear rectangular building occupying a prime location on the campus mall. Little Hall is the home of the Psychology, Modern Languages, and Classics departments. It includes offices, classrooms, lecture halls and support spaces. It is a Modern building, with an idiosyncratic façade, dominated by a projecting structure containing entrances and lobby space and comprised of large expanses of aluminum-framed windows and doors under long row of barrel-vaulted canopy roofs. This particular feature clearly dates the building and has presented maintenance challenges since soon after the building was constructed.

Exterior materials are brick with limestone trim; replacement windows and doors; and a flat roof on the main block of the building.

The interior features a group of tiered-floor lecture halls that have never been renovated and clearly require rehabilitation. Resilient tile floors, plaster walls, and suspended acoustical tile ceilings comprise the interior finish palette. Most doors are hollow-core wood and are in fair to poor condition. There is extensive wood paneling at the main lobby, first floor corridors, and lecture hall vestibules. The interior of the building has a mezzanine for faculty offices and language laboratories.

The first, second and third floors are served by an elevator, but the mezzanines are not, and the lecture halls do not meet ADA requirements.

Conditions Assessment

The exterior of the building is in fair condition. The masonry appears to be in good condition, but the first story lobby structure, including the vaulted canopies, appears to need attention.

Recommendations for Use/Reuse

It does not appear that Little Hall has ever been subject to a significant renovation. At the age of 40 years, the building...
should be a candidate for a major interior renovation in the near future. At such time, consideration should be given to removing the existing one-story arcade along the Mall, and replacing it with a contemporary, welcoming multi-story space with a simpler exterior envelope that would improve the functioning of the building and, at the same time, enliven the Mall and the walk along the façade. By doing so, the existing, rather plain upper two stories of the façade could be covered by more attractive architecture, providing additional space at the same time.

Depending on a determination of eligibility of this building for listing on the National Register or for local historic designation, this building might also be a candidate for replacement due to the importance of its location on the Mall. Although the footprint of a new building could not be much larger than that of Little, a new structure could be one or two stories higher and still remain in harmony with the other buildings lining the Mall.

A renovated Little Hall or a replacement structure should continue to house academic uses.
Memorial Union

A Brief History of Memorial Union

The Memorial Union, designed by Cram and Ferguson of Boston and opened in 1953, was built in honor of the 3,882 members of the University community who served in World War II and the 175 who lost their lives. Prior to the construction of the Union, there were only two buildings on campus for social activity. An 1872 structure that housed the Maine Christian Association at the north end of campus was built as a dining hall and later remodeled as a social center. It housed offices for the student newspaper and the class yearbook, but its only recreational facilities were two ping-pong tables and a few tables for playing cards or games. Carnegie Hall also had some student meeting rooms. As the student body burgeoned following the war due to the Servicemen’s Readjustment Act of 1944 (the G. I. Bill), many felt that the campus needed a building to accommodate student life. Student, faculty and alumni
committees met to decide which functions should be included in the new union building. Once built, the facility contained lounges, meeting rooms, offices for student organizations, dining facilities, and game and hobby rooms, including a dark room and a bowling alley. The Memorial Room contained a book listing those who died in the Second World War. The Hauck Auditorium was added to the rear of the Union in 1963. The building was expanded in 2001 with the addition of a larger dining area and more spacious quarters for the University bookstore.

Architectural Description

Originally slated for construction on a site overlooking the Stillwater River, the Memorial Union was instead constructed at the southeast corner of the Mall, adjacent to the Fogler Library.

The original Colonial Revival-style building consisted of a hipped slate-roofed three-story rectangular block of brick with limestone trim, broken on the façade by a gambrel-roofed three-bay classically-detailed entrance projection. Multiple chimneys and large multi-light windows added to the colonial look.

In 1963, the Hauck Auditorium was added to the rear (east) of the building; and two five-bay one-and-one-half story wings were added to the north and south of the original block (housing the University Bookstore and other support spaces). It was again expanded significantly in 2001 when additional dining facilities and offices and a greatly-enlarged bookstore were created to the south of the original building. This latest expansion included the construction of a new porte cochere at the main building entrance, and a second story was added to the north wing, drastically changing the appearance of the original building. The front porch and main entrance steps of the union addition have become favorite gathering spots for students and visitors.

Conditions Assessment

With recent additions and interior renovations, the building is in good condition.
Recommendations for Use/Reuse

The building continues to function well as the center of student life on the campus.

No further expansion of the Union is likely, as it is confined by neighboring structures and roadways.
Steam Plant

A Brief History of Steam Plant

The Heating Plant, as it was originally called, is a two-story, five-bay, brick structure built in 1907 as a central heating plant at the University of Maine. It burned coal to heat the buildings on campus. The Richard D. Kimball Company of Boston, an engineering company, designed the building.

The Steam Plant was expanded several times to keep pace with the growth on campus. In 1931, the Richard D. Kimball Company designed a three-story, nine-bay, addition for the plant; two new boilers were also installed at this time. In 1946, a two-story, two-bay addition was added to the west of the plant, designed by Crowell and Lancaster.
of Bangor. Crowell and Lancaster and its successor firms provided the plans for the next three additions as well. In 1958, a two-story, three-bay addition was added to the north of the plant, and in 1966 another addition was added to the south. In 1979, a condensate tank room was added to the northeast corner of the steam plant by Webster/Baldwin/Day/Rohman, a successor firm to Crowell and Lancaster.

Architectural Description

The original Heating Plant consists of the initial three-story five-bay brick boiler house and smokestack. It has been an industrial landmark on the bank of the Stillwater since its construction in 1907. The building is a simple, utilitarian structure of brick with minimal wood trim and with detailing that recalls Colonial Revival stylistic characteristics. Original multi-light industrial steel sashes remain in place on the main building. The interior consists of high-bay space for machinery, surrounded by mezzanines with offices and supply and mechanical rooms. Interior elements consist of concrete floors, exposed brick walls, and exposed structural ceilings.

Additions were constructed in 1931, 1946, 1958, 1966, and 1979, greatly expanding the building. While the original façade is still highly visible on College Avenue, the building with its additions sprawls outward toward the river to the rear. The basic industrial nature of the original boiler plant is diluted somewhat in the additions, because of the use of residential-type windows and more domestically-scaled massing.

Conditions Assessment

The building and additions appear to be in serviceable condition.

Recommendations for Use/Reuse

As long as a central heating plant is required, this building should continue to function properly in its present use.

Should the University decide to supply heat to its buildings through a different system or source, such as cogeneration or individual building systems, and this building becomes surplus, the original structure would be suitable for a
variety of potential uses. With its riverfront location, expansive windows and flexible, tall interior space, it could become a food service venue, student activities space, boat house, visitor center, black box theater – there are many opportunities for such a flexible space. As part of a creative adaptive reuse, some of the additions could be removed and new, more aesthetically-appropriate space could be constructed to expand the building, principally to the north but possibly to the west, toward the river, as well (zoning, environmental and land use restrictions might preclude expansion toward the water).
E. General Architectural Guidelines

Introduction

The following Guidelines are general in nature and include references to existing historic buildings, additions to historic buildings, new buildings constructed within historic contexts, and site issues. The goal of these Guidelines is to preserve and protect the historic and character-defining features of the historic resources of the University of Maine campus. It is those essential qualities that give the Orono campus a sense of heritage and place. These Guidelines are also designed to protect the architectural integrity of the campus and promote the goal of historic preservation, while accommodating the diversity of site conditions and architectural styles.

These general Guidelines are based on The Secretary of the Interior Standards for the Treatment of Historic Properties With Guidelines for Preserving, Rehabilitating, Restoring...

The Guidelines in this report are largely based on a rehabilitation philosophy which ensures the preservation of a building’s historic and character-defining features while allowing for sensitive rehabilitation in response to contemporary needs. Recommendations for individual structures and certain landscape features, however, may be based on a preservation philosophy which attempts to preserve as much historic fabric as possible. This philosophy is more appropriate for the landscape features because they generally do not require alterations or additions. Preservation and rehabilitation are usually the most appropriate treatments for historic campus structures, as accurate restoration to an earlier time (a restoration philosophy) is rare and reconstruction of vanished buildings (a reconstruction philosophy) may not be considered appropriate. These Guidelines encourage the preservation of the core campus, 1865 through 1910, and offer proven solutions to repair and maintenance problems.

The Guidelines proposed for the University of Maine recognize that historic materials and details have proven records for durability and compatibility, and that routine maintenance avoids costly repairs. The careful consideration of materials, finishes, proportions, and design elements, consistent with the style of the structure, will maintain or add value to the property and enhance its character. Inappropriate replacement materials detract from the campus character.

If new materials are incorporated, care must be taken to assure that their physical properties do not conflict with the
physical properties of surrounding materials. If materials are improperly applied, they may cause or accelerate physical deterioration of historic fabric. An example of this is the incorporation of copper into a building that already includes aluminum, tin, or iron elements. If the metals come directly into contact with each other, or indirectly by the flow of water, corrosion can occur in the original material because copper is higher on the galvanic scale.

Prior to starting any preservation or rehabilitation work, the project should be clearly defined by the appropriate committee and deemed feasible by the University. An initial feasibility study should be conducted to address the needs, the anticipated activities, the anticipated area required, and budget. To make responsible decisions about improvements to historic properties, existing information must be used to the maximum extent and new information must be acquired as needed. The emphasis on all future projects is to establish strict financial targets and adhere to them. A project that must be stopped due to financial constraints may cause more harm than if the project was not begun.

Guidelines

The following Guidelines should be applied to all projects in a reasonable manner, taking into consideration economic and technical feasibility. More detailed recommendations for application to specific buildings are provided for the Tier One and Tier Two buildings in Sections IV-B and IV-C, respectively. These Guidelines are drawn from the Secretary of the Interior’s Standards.

1. A property should be used for its historic purpose or be placed in a new use that requires minimal change to the defining characteristics of the building and its site and environment.

2. The historic character of a property should be retained and preserved. The removal of historic materials or alteration of features and spaces that characterize a property should be avoided.

3. Each property should be recognized as a physical record of its time, place, and use. Changes that create a false sense of historical development, such as adding conjectural features or architectural elements from other buildings, should be avoided.
4. Most properties change over time; those changes that have acquired historic significance in their own right should be retained and preserved.

5. Distinctive features, finishes, and construction techniques or examples of craftsmanship that characterize a property should be preserved.

6. Historic architectural features should be maintained and included in a routine maintenance schedule.

7. Deteriorated historic features should be repaired rather than replaced. Where the severity of deterioration requires replacement of a distinctive feature, the new feature should match the old in design, color, texture, and other visual qualities and, where possible, materials. Replacement of missing features should be substantiated by documentary, physical, or pictorial evidence.

8. Chemical or physical treatments, such as sandblasting, that cause damage to historic materials should not be used. The surface cleaning of structures, if appropriate, should be undertaken using the gentlest means possible.

9. New additions, exterior alterations, or related new construction should not destroy historic materials that characterize the property. The new work should be differentiated from the old and should be compatible with the massing, size, scale, and architectural features to protect the historic integrity of the property and its environment.

10. When planning an addition to an historic building, the following factors must be considered:

 - Context: consider the architectural character and significant features of the existing building and nearby structures, including the relationship of the building to the site and to other buildings.

 - Placement: locate the addition on a secondary or rear elevation to maintain the integrity of the principal facade. Additions should be attached to existing buildings in such a way that the form and integrity of the original building would not be damaged if the addition were removed.
• Scale: the scale of the addition should relate to that of the original building, and should not overwhelm the historic structure.

• Materials and Textures: use materials and textures that are compatible with the historic structure to be expanded.

11. A new building being constructed in the Historic District or adjacent to an historic building should adhere to the following Guidelines:

• The new building’s scale and massing should not overwhelm the scale and massing of its neighbors.

• The new building should incorporate at least some of the materials used in the construction of the buildings that surround it.

• The new building should respect the context of the site and its historic neighbors.

• Textures and details of the new building should complement those of the historic buildings nearby.

• New buildings should be representative of their own time, differentiated from but respectful of the historic context.

12. New additions and adjacent or related new construction should be undertaken in such a manner that if the new work were removed in the future, the essential form and integrity of the historic property and its environment would exist unimpaired.

13. Site planning for new development projects should incorporate appropriate plant materials, sensitive placement of utilities, and accessibility.

14. New construction should be situated in areas where it will have a minimal impact on the historic setting of the campus. New construction should sensitively incorporate historic components such as circulation patterns, vegetation, and the views and vistas to preserve the historic integrity of both the landscape and the built resources of the campus.
15. New construction or addition projects should maintain existing spatial configurations and layouts within the campus, especially if historic landscape features are present. Development projects should be designed to improve and recapture connections to adjacent landscapes such as views to the river.

16. Significant archeological resources affected by a project should be protected and preserved. If such resources must be disturbed, mitigation measures should be undertaken.
F. Maintenance Plan and Practices for Historic Buildings

The following maintenance plan identifies daily housekeeping and routine maintenance items as well as long-term cyclical maintenance procedures such as landscape requirements and the replacement of materials or equipment due to expected wear and tear. The purpose of the maintenance plan is to prevent costly problems by monitoring and maintaining the cultural resources of the University of Maine campus.

Maintenance is essential to the long-term well being of historic buildings, yet inappropriate maintenance may be as damaging as no maintenance at all. The excessive build-up of dirt, grime and pollutants, establishment of invasive plants, and blocked drainage systems are just a few of the ways in which lack of maintenance promotes the deterioration of building materials, components and systems. Examples of inappropriate repair and maintenance include inexpertly applied or inappropriate...
cleaning chemicals, application of unsuitable paints and surface treatments, and inappropriate mortar repointing.

Proper care of materials and systems acts to slow the inevitable process of deterioration and decay of natural materials, and precludes more elaborate, disruptive, and expensive “restoration” projects. Proper care depends on several factors:

- Assigning the appropriate personnel to carry out the maintenance tasks.
- Developing a clear and efficient means for keeping records of the completed maintenance projects.
- Developing a budget to cover the costs of annual maintenance.
- Planning for and carrying out maintenance tasks on a regular basis.
- Identifying new or potential problems early by means of a regular inspection program.

Personnel

Maintenance personnel and volunteers, rather than contractors, often have the most contact with the landscape and building elements. Maintenance personnel and volunteers should be the eyes and ears of the campus, identifying changes in the landscape and buildings and monitoring those changes rather than just fixing them. Significant damage can be done to historic elements by placing them in the care of personnel who are not properly trained in the required specialized maintenance procedures.

Properly trained staff will be more responsive to the needs of the campus and will better protect and preserve buildings and landscape features, by following the procedures outlined in a maintenance plan. The staff must address day-to-day maintenance issues, as well as manage maturing vegetation in order to perpetuate the site aesthetics and historic character of the campus. As landscape features change over time, the challenge of understanding these changes increases. If properly trained, facilities staff will be better prepared to address these ongoing challenges. Their firsthand knowledge of the needs of the physical resources of the University will permit them to make allowances for change, which then must be incorporated into the long-range management plan.
The following are comments relating to the personnel in charge of facilities maintenance. The position names may differ from those on the Facilities Management organization chart, but the duties as described should be assigned to an existing or a new position.

Director/Chief of Maintenance

This person is responsible for reporting building maintenance issues to the University’s operations committee, buildings and grounds committee, or planning committee, and implementing the committee’s decisions regarding the day-to-day care of the landscape and buildings. The maintenance director sees the buildings on a regular basis, reviews the reports filed by the maintenance staff, documents maintenance issues, and reports these to the appropriate University committee. The director should:

- inspect the landscape and buildings on a regular basis;
- review and update the maintenance schedule and budget as needed at appropriate intervals;
- maintain records of work carried out and keep files up to date; and
- document actions and mobilize staff to take corrective measures.

Maintenance and Trades Craftspeople

The people who maintain the buildings and grounds of the University of Maine are the front line in the preservation of the historic resources of the campus. In all probability, they have an affection for these resources and take pride in their abilities to keep them looking good, functioning well, and representing the institution in a positive way. The recognition that many aspects of the maintenance of historic resources require specialized analytical and technical abilities is relatively new on institutional campuses. This Historic Preservation Master Plan contains technical information to begin the process of assuring that University facilities staff members have the training they need, or at least know when to seek assistance from other staff or from skilled outside contractors, to take care of historic building and landscape materials and systems.

The men and women of Facilities Management should be trained in the thorough documentation of their activities so that their experiences can benefit those who follow them.
Solutions to special problems need to be recorded and passed on; and the special needs of a building or landscape should be noted and incorporated into cyclical maintenance planning for that resource.

The Implementation section of this report contains suggestions for creating a training program for the facilities staff, with the goal of elevating their capabilities to the point that they can train their colleagues at other system institutions in the care of historic buildings and landscapes.

Volunteers

If unpaid volunteers help at the campus, whether it is cleaning, setting up programs or exhibits, or doing garden work or minor maintenance, they will require training as well. Human contact is a major cause of damage to historic materials, whether it is hitting a baseboard with a broom or vacuum cleaner, or scratching the floor by sliding a heavy object across the room. The tasks performed by volunteers should be carefully outlined and monitored to achieve the desired results without damage to historic fabric. Volunteers should be trained periodically on the proper care and maintenance of the landscape and buildings.

Consultants

A file with the name, address, e-mail address and phone number of all private-sector maintenance and consultants should be maintained, along with a description of the special or unique skills which each brings to the campus.

Construction Contractors and Subcontractors

Construction contractors carry out tasks that require special skills and equipment, such as periodic and emergency repairs too large or specialized for Facilities Management to perform. The Contractor should have significant experience and/or training in the rehabilitation of historic structures or landscapes. When possible, this work should be scheduled as part of maintenance planning, ensuring that the scope and cost of the work are clearly established; that work means and methods are closely monitored; and that the result is what was intended.

Service Technician
Service contracts for building systems such as heating and security should include provisions for periodic inspections and adjustments, in addition to emergency repairs. These contracts should be reviewed on a yearly basis to ensure that adequate service is being provided. Service technicians should be made aware of the special procedures required for the care and maintenance of historic buildings and landscapes.

Data and Record Keeping

The key to an efficient maintenance program is good record keeping. Complete and well-organized maintenance records ensure that staff can find appropriate data or directions for the task at hand, that the frequency of maintenance tasks is monitored, and that maintenance planning and budgeting responds to current and projected needs. It is important to maintain accurate and timely records that document the ongoing history of a feature, beginning at the present and continuing into the future. As records are developed and staff changes, these documents become sources of information pertaining to the history, maintenance, and development of the campus. This information will permit educated decisions to be made regarding modifications to all programmatic and maintenance strategies. Records, including written reports and photographs, should be kept in a central location and should include the following:

- **Directory of key contacts**, including names, addresses, and telephone numbers. The list should specify numbers to contact in an emergency, and should be coordinated with the preparation of any future Disaster Preparedness Plan. Regular contractors and suppliers of equipment should also be included. The directory should be updated as needed.

- **Records of all past work**, indexed for easy reference. Records should be updated as new projects are completed. Recommendations for the care of newly repaired elements should be submitted by the contractor and included in the maintenance program. All contractors for any major landscape, architectural, structural, mechanical, plumbing, or electrical work should submit as-built drawings.
• **Maintenance log**, with brief daily entries for each maintenance activity describing all work carried out by regular maintenance personnel or contractors. The log can be used to record the corrective actions taken for the recommendations listed in this report and for future maintenance work carried out.

At a minimum, the following log or data sheets should be developed. The forms should be kept in one location and be readily available so that everyone involved with building maintenance is aware of any problems and what has been reported. (A sample Incident Report and Repair Log are included on the following pages.)

- Areas and Categories of Features – which divides the campus into clearly defined areas;
- Inventory of Landscape Features and Built Resources – where each feature is located and described;
- Field Inspection – to document damage, deterioration, or potential problems;
- Summary of Work – identification of problems or issues to address and scope of work required to address them;
- Feature Data – contains detailed information on each feature;
- Incident report - filled out immediately after an incident occurs or a problem is identified (see sample, next pages); and
- Repair Log – records specific work performed on every feature, one sheet per feature (see sample, next pages).

Stockpiles

Stockpiles of special, difficult-to-obtain materials should be maintained to ensure that minor repairs can be executed with minimal effort. The supply should be developed by purchasing extra items during restoration projects, such as reproduced brick, cast stone, specially-mixed paints, roofing slates or wood trim elements. An inventory should be kept of these materials as they are purchased. Safe, secure, and well-organized storage space should be provided so that these materials can be located when needed.
Maintenance Budget

A maintenance budget should be developed and reviewed each year. A suggested budget format is divided into categories with each category budgeted separately. These categories are:

- General housekeeping.
- Building infrastructure: repairs to and upkeep of heating, plumbing, telecommunications and electrical systems.
- Annual repairs: the cost of yearly repairs required for preventive maintenance. Examples of this would be fixing a broken window or repairing a section of deteriorated flashing.
- Cyclical repairs or replacement of major items such as a new boiler, new roof, or new coat of paint on an appropriate, periodic basis.
- Emergency fund: a reserve account equal to approximately 10% of the annual maintenance budget.
The maintenance plan takes into consideration the five basic systems of a building and their interrelationship to the structure as a whole. These systems are:

- site;
- building envelope;
- structural components;
- infrastructure; and
- interior.

The elements of nature can affect each of the systems at the same time. An example of this is moisture infiltration. Moisture can enter the building if the site is not properly maintained; migrate through the building envelope if it is not sealed tight; and cause deterioration of the infrastructure, individual structural elements, and interior finishes. This deterioration can be in the form of corrosion, mold formation, wood deterioration, or peeling paint as examples. Equally as hazardous would be an infrastructure failure such as a slowly-leaking pipe. The other four systems could be affected in much the same way as if the moisture was coming in from the outside.

Site

A major cause of materials deterioration at the base of a building is water penetration. This situation can often be resolved by simply regrading around the building foundation or providing adequate drainage from the roof to grade. In other cases, problems may be caused by loose,
missing, or eroded mortar joints that allow water to penetrate the building envelope. Clogged basement window wells can lead to more serious problems such as water penetration and deteriorated windows.

Vegetation can be harmful to buildings and structures by putting pressure on exterior walls, trapping moisture against building walls, undermining footings, or preventing effective drainage. If vegetation has entered a crack and is left unattended, the crack will be enlarged. The roots of trees planted near the foundation can extract large quantities of water from the soil. If the soil has a high clay content, this can cause shrinkage and uneven settling of the building.

Recommended Site Maintenance Procedures

Good maintenance practices with regard to building sites include:

- Cut back plantings from building facades.
- Remove vegetation if roots are damaging a foundation.
- Cut back ivy to first floor height and maintain it at that height.
- Keep soil, mulch, and other items from piling up against a foundation wall.
- Make sure the ground has a positive slope away from the foundation. Monitor site drainage periodically to ensure that water is adequately directed away from the foundation.
- Remove debris from basement window wells and storm drains. Clogged drains should be cleaned with a plumber’s snake.
- Connect downspouts to underground drains, or equip them with extensions or splash blocks to keep water from pouring into the ground adjacent to the foundation.

Building Envelope

Implementation of a preventive maintenance program for the building envelope, including gutters, downspouts, and flashing components, can prevent water problems and avoid costly repairs and replacements.
Basement Windows

- If basement window openings are to be covered, avoid filling them permanently with brick, stone, or concrete block. Use wood panels fastened to the window framing, or replace the window glass with a wooden or metal panel painted to blend in with the foundation color.
- Provide adequate ventilation if basement windows are covered. Use a louvered vent or electric fans in a wooden window covering.

Gutters and Downspouts

- Remove leaves, branches, and debris from gutters on a routine basis. Conduct an inspection of the gutters, downspouts, and flashing every spring and fall. The best time to inspect a building's drainage system is during or shortly after a rainstorm to check for possible leaks or clogs.
- Flush out gutter troughs using a garden hose or rake. Use the hose to flush out downspouts. If downspouts are clogged, clear them with a plumber's snake.
- Inspect gutters and downspouts for holes and cracks. Check gutter and downspout support brackets to be sure they are intact and secure. Replace broken, missing, deteriorated fasteners with compatible fasteners.
- Ensure that downspouts are not detached from gutters. Reattach any loose or detached sections of downspout.
- Make sure joints and seams are watertight. This includes solder on metal gutters.
- Check flashing to make sure it is not loose, corroded, or missing.

Woodwork

Protect and maintain architectural woodwork through appropriate surface treatments. Maintenance treatments include cleaning, limited paint removal, and re-application of protective coatings. Repainting woodwork on a routine basis helps to minimize moisture damage by ensuring that the wood is protected and not susceptible to rot. The following routine maintenance tasks should be followed:

- Test for the presence of lead paint on exterior and interior woodwork; initiate appropriate abatement process if required.
• Remove loose, blistering, and excess paint.
• Replace missing screws or fasteners.
• Sand and spot-prime wood surfaces with compatible primer.
• Repaint all wood components with paint that is compatible with the historic finish.
• Repair existing wood components; replace in-kind if repair is not feasible.

Wood Windows

Protect and maintain window components (i.e., frame, sash, muntins, and trim) through appropriate surface treatments. Maintenance treatments include cleaning, limited paint removal, and re-application of protective coatings. Repainting windows on a routine basis helps to minimize moisture damage by ensuring that the wood is protected and not susceptible to rot. The following routine maintenance tasks relevant to wood windows should be followed:

• Test for the presence of lead paint on exterior and interior woodwork; initiate appropriate abatement process if required.
• Remove loose, blistering, and excess paint.
• Replace missing screws or fasteners.
• Sand and spot-prime wood surfaces with compatible primer.
• Replace cracked or broken glass and glazing compound
• Replace missing screws or fasteners.
• Clean and lubricate hinges.
• Repair deteriorated sills and sash components using epoxy consolidation procedures; if sash are original and otherwise in good condition, replace only those sash components that are damaged if repair is not feasible.
• Repaint all wood components with paint that is compatible with the primer.
• Caulk window frames.

Masonry Surfaces

Proper maintenance of historic masonry walls and other building elements is critical for the longevity of these structures. With appropriate masonry preservation and restoration procedures, brick and stone walls can last indefinitely and require only minimal periodic maintenance. Once repairs itemized in the individual
building assessments have been completed (including the removal of inappropriate masonry repair materials and replacement with correct materials), a cyclical maintenance and inspection program should be established.

- Check for loose, missing, eroded mortar joints. Perform mortar analysis to determine compatible mortar and selectively repoint masonry. (See U. S. Department of the Interior Preservation Briefs for descriptions of the most widely-accepted masonry preservation/restoration means and methods. These can be downloaded from the National Park Service’s website at www.cr.nps.gov/hps/tps/briefs/presbhom.htm.).
- All repairs, resetting and cleaning should be done by professional masonry conservators.
- If replacement of masonry units is necessary, use salvaged material from the building, if possible; or research original sources to secure replacement units; or find the closest possible match.
- Vine growth should be removed with the gentlest means possible as should moss and lichen growth.

Slate Roofing

- Roofs should be inspected annually for loose flashing; broken, loose, or missing slates; and clogged gutters. Additionally, the underside of the roof sheathing should be inspected for leaks. Signs of water damage include discolored or deteriorated wood.
• Slate is particularly susceptible to breakage by ice or ice dams in the winter. Therefore, slate roofs need to be well drained and the roof structures well-ventilated.
• Schedule periodic in-kind replacement of roof slates for buildings in active service. Although more expensive than asphalt or fiberglass shingles, they can be in service for three or four times the useful life of most modern shingles; slate roofs should last approximately 80-100 years.
• Repair flashing at the first sign of deterioration or leaking. Determine source of problems and repair within flashing system using historically appropriate materials; do not rely on modern sealants alone.
• All slate should be repaired or replaced by a qualified roofer with demonstrated experience with slate roofs.

Metal

To minimize moisture damage to painted metal elements including iron gates and railings, they should be repainted on a routine basis. The following routine maintenance tasks relevant to metal elements should be followed:

• Remove light rust and excess paint
• Prime any exposed metal with a rust-inhibiting primer
• Replace missing screws or fasteners
• Clean and lubricate hinges
• Repaint with paint that is compatible with the primer and formulated for use on architectural metals.

Structure

A major cause of structural deterioration is water penetration. Often this situation can be resolved simply by cleaning the roof gutters and downspouts; replacing roof flashing; and keeping masonry, wood, and architectural metals in sound condition. The following routine maintenance tasks relevant to a building’s structural system should be followed:

• The structural system should be examined and evaluated to determine its physical condition. Non-destructive techniques such as X-ray photography should be used to read complex situations. Some invasive techniques may need to be used; and some selective demolition may be required to reach enclosed key structural elements.
• Repairs to building foundations should take into consideration materials and methods that are compatible with the historic building fabric. Preservation treatments that address symptoms without seeking solutions to the conditions leading to the material deterioration are temporary at best, and may accelerate the deterioration of building fabric. Water penetration of foundation walls should be addressed with properly installed and maintained drainage systems rather than with the application of a waterproof or impervious coating on the exterior or interior foundation wall. Such coatings will alter the building's historic appearance, and may accelerate materials deterioration due to trapped moisture.

• Small cracks in brick and stone masonry foundations may be repaired easily by selectively repointing loose, missing, or deteriorated mortar joints. Consultation with a structural engineer experienced in historic preservation, however, is recommended for problems that are more extensive. The structural engineer should conduct non-invasive tests to determine the extent of damage and recommend strategies for restoring the structural integrity of the building.

• Code-driven structural upgrades that may be required as a result of substantial rehabilitation, restoration or expansion projects should be approached with care for the historic building structural components. Changes in floor load, roof load, seismic resistance, and other code requirements may have a significant impact on the structural systems of older buildings. A creative approach to structural engineering is required when upgrading historic buildings.

Infrastructure

Worn or improperly functioning building systems are not only costly to run but can lead to costlier repairs or replacements if not properly maintained.

• Check fire detection systems to make sure that they are functioning properly.
• Change broken/defective bulbs and attend to minor faults in the electrical system including inoperable outlets.
• Check heating system, including controls, radiators, and boilers.
• Insulate pipes to prevent condensation.
• Check water supply pipes including sinks and toilets and attend to leaks or dripping/running water.
• Monitor the temperature and humidity of interior spaces. High relative humidity levels, above 65%, in the summer months, can damage finishes and the structure and contribute to mold growth. Likewise, humidity levels below 40% during the winter can damage objects by drying them out. The monitor should be checked on a monthly basis or measurements should be taken in the same location on a monthly basis.
• Perform a check each evening to make sure window and door locks are operable and secure.

Interior

General housekeeping must be a primary concern of maintenance staff. Although long-term deterioration cannot be halted, ongoing maintenance can slow the effects of time and is cheaper than undertaking major repairs or restoration. The following routine maintenance tasks relevant to the interior surfaces of buildings should be followed:

Floors

Floors should be cleaned as often as needed to remove grime and sand. Soil acts as an abrasive and damages the floors and finishes.

Wood Floors

- Vacuum the floor to pick up loose dirt
- Damp mop floor. Test a small inconspicuous area first to make sure the finish isn’t removed or turns cloudy.
- Wax floors; use a slip-resistant, low gloss wax for wooden steps.

Ceramic Tile Floors

- Damp mop floor. Do not let water sit on tile surface for long periods of time. Standing water can cause staining.
- If there is a build up of dirt, the tiles can be washed off with a household dishwashing liquid or a teaspoon of baking soda in a bucket of water. Premixed tile cleaners are caustic and must be used with care as they can cause certain glazes to fade. It is best not to use bleach as stains may be absorbed.
Terrazzo Floors

- Dust and mop using a non-ionic neutral liquid cleaner or a commercial cleaner made especially for terrazzo. All-purpose household cleaners, soaps, detergents, and wax removers usually contain one or more alkalis, and should not be used on terrazzo.
- For general cleaning, use one cup of neutral cleaner with each three gallons of water. Wet mop the solution onto the floor and mop up the dirt-filled solution, changing rinse water often to prevent dissolved soil from remaining on the floor.
- To remove stubborn soil, periodically use an electric scrubbing machine with a stronger solution of the neutral cleaner. Daily sweeping or dusting will mean easier weekly care and floors that are more attractive.
- Do not use an oiled mop or oily sweeping compound. Oils in any form can penetrate the surface and permanently discolor terrazzo floors.

Linoleum/Vinyl Floors

- Dust and mop with a mild mixture of soap and water.

Vinyl/Asbestos Floor Tile

Many institutional buildings dating from prior to the 1970s contain vinyl asbestos floor tiles. In general, v.a.t. is a very durable material, but when disturbed such that asbestos particles become airborne, it is a very hazardous material. In practice, most institutions leave it in place when it can remain undisturbed. Often the material is encapsulated when minor interior renovation work is carried out, i.e. covered with a monolithic new material without disturbing the existing floor tile. If disturbance of the material is likely as part of any construction project, it should be removed by a hazardous material abatement specialist according to the University’s hazardous material abatement policies and procedures.

Woodwork

Protect and maintain architectural woodwork through appropriate surface treatments. Maintenance treatments include cleaning, limited paint removal, and re-application of protective coatings. Repainting woodwork on a routine basis helps to minimize moisture damage by ensuring that the wood is protected and not susceptible to rot.
• Remove loose, blistering, and excess paint.
• Sand and spot-prime painted wood surfaces with compatible primer.
• Replace missing screws or fasteners.
• Repaint/refinish all wood components with finish that is compatible with the adjacent finish.

Walls and Ceilings

If the wall and ceiling surface is secure, the surfaces can be dusted with a dust mop fitted with an absorbent cotton cover. If the surfaces are very dirty, the surfaces should be vacuumed first using a soft brush attachment. Washing with a mild soap and water may be required to remove accumulated dirt and grime.

Plaster walls and ceilings should be repaired by a craftsman skilled in plaster preservation and restoration. If done properly, plaster repair can result in a high-quality surface that will last for many years. Replacement with gypsum board should be considered only as a last resort.

Windows

• Glass panes should be cleaned using a clean white soft cloth and a solution of equal parts of distilled water and isopropyl alcohol to which a few drops of household ammonia has been added.
• The cleaning solution should not come in contact with any varnished or painted wood surfaces, as the alcohol in the solution may harm the finishes.
• Commercial window cleaners which contain silicone or detergents should not be used. Silicone and many detergents leave residue films on the windows that are difficult to remove.

Hazardous Materials

Historic buildings often contain materials now known or considered to be hazardous, such as asbestos (found in floor tile, ceiling tile, pipe insulation, roof and siding shingles, some paints and wall coverings, and in other materials), and lead paint. The University of Maine is responsible for documenting the location and condition of these materials and should retain specialists in hazardous material identification and abatement for this purpose. Abatement procedures can range from encapsulation, if the material is in
The abatement procedure that most often affects character-defining features of historic buildings is lead paint abatement. Removal of lead paint from wood and metal surfaces of historic buildings must be carried out according to mandated abatement procedures but also must be executed with care to avoid damaging important historic features such as molding profiles, cornices, window mullions, etc. Such efforts may require the use of specialty subcontractors whose project credits include significant historic preservation projects.

Maintenance Schedule

The following maintenance schedule suggests a daily, weekly, and monthly basis. Annual and cyclical activities have been included in the same schedule with notations indicating the periods of cyclic activity. A sample cyclical maintenance schedule is included as well. The maintenance staff should record all activities performed.

Daily/Weekly

The following schedule describes maintenance tasks to be performed on daily/weekly basis.

Daily

- Turn off all water sources.
- Perform a security check of the buildings.
- Change defective light bulbs.
- Clean public areas.

Weekly

- Pick up litter and debris.
- Sweep/vacuum interior building surfaces.
- Check all automatic fire alarms and security devices in addition to the daily check.
- Inspect interior woodwork, especially stair treads and risers.
Monitor the temperature and humidity of interior spaces.

Monthly/Seasonal

The following maintenance schedule describes the maintenance staff’s duties on a month-by-month basis. Annual and cyclical activities have been included in the same schedule with notations indicating the periods of cyclic activity.

April

General Tasks
- Carry out daily/weekly maintenance tasks and identify any signs of deterioration.
- Rake and clean beds and lawn.
- Undertake a thorough inspection and testing of electrical and mechanical systems to identify any signs of deterioration.
- Check all log books.

Buildings
- Clean windows; inspect glazing.
- Inspect roof, roof framing, and flashing.
- Inspect mortar for cracks and deterioration. Inspect masonry for cracks or spalling.
- Touch up exterior painted elements.
- Clean out gutters and downspouts.
- Inspect drainage system including grade abutting the building.

May through September

General Tasks
- Carry out daily/weekly maintenance tasks and identify any signs of deterioration.
- Undertake a thorough inspection and testing of electrical and mechanical systems monthly to identify any signs of deterioration.
- Check all log books.

October

General Tasks
- Carry out daily/weekly maintenance tasks and identify any signs of deterioration.
• Undertake a thorough inspection and testing of electrical and mechanical systems to identify any signs of deterioration.
• Check all log books.

Buildings
• Clean windows; inspect glazing.
• Inspect roof, roof framing, and flashing.
• Inspect mortar for cracks and deterioration. Inspect masonry for cracks and spalling
• Touch up exterior painted elements.
• Clean out gutters and downspouts after leaf drop is over; inspect drainage system.
• Inspect heating system including controls and radiators.

November through March

General Tasks
• Carry out daily/weekly maintenance tasks and identify any signs of deterioration.
• Undertake a thorough inspection and testing of electrical and mechanical systems to identify any signs of deterioration.
• Check all log books.

Longer-Term Maintenance Activities

Proper yearly maintenance will alleviate most problems. Most maintenance tasks require annual attention and should be addressed in a routine and timely manner. There are a few items that require maintenance on a longer schedule including:

• Hire an architect or contractor to perform work of a scale larger than can be handled by Facilities Management.
• Analyze service records and log books. The careful scrutiny of repair records can help determine the frequency of repair or servicing. This can be used to help plan for and budget future preventive work.
• Use records and log books to establish customized maintenance routines for each building if necessary.
• Mechanical systems should be subject to their own cyclical maintenance plan to include filter replacements, boiler and burner maintenance and

The canopy of Little Hall's mall façade is a unique design element that is characteristic of its time, but the shape and materials have led to maintenance problems.
replacement, damper and thermostat checks, motor maintenance, etc.

- Electrical systems, including emergency notification and lighting systems, should be subject to periodic testing and maintenance according to institutional and code requirements.
Sustainable (“Green”) Design

Most universities and colleges are quickly adopting sustainable design principles relating to construction projects and maintenance procedures. These can range from designing new buildings according to LEED (Leadership in Energy & Environmental Design) certification requirements as administered by the U. S. Green Building Council, to selecting environmentally-friendly maintenance supplies and application procedures for everyday housekeeping work.

The University of Maine has adopted the LEED program for many of its most recent new construction projects. We recommend that projects affecting the University’s existing buildings be environmentally responsible as well. The USGBC is promoting the use of LEED for Existing Buildings, or LEED-EB for modern existing buildings, in order to improve building performance while reducing operating costs and environmental impact. The LEED rating system is used by Facilities Management as an effective way to benchmark and verify environmental and energy upgrades, improvements and maintenance procedures.

While not specifically oriented toward historic buildings and structures, most of the credits available in LEED-EB can be safely applied to major rehabilitation projects. The application of LEED principles to historic buildings is still evolving and should be approached with care to make sure that character-defining historic materials and features are treated appropriately and respectfully.

Accessibility

The University of Maine is committed to making the campus accessible to people of all ages and abilities. Accessibility can be a major issue in the restoration and rehabilitation of historic buildings, particularly with regard to access from grade to main entrances and vertical access within the building. Accessibility planning should be an integral part of the planning and design process for projects affecting the historic buildings and landscapes of the University of Maine.

The new access ramp at Fogler Library is a fine example of universal design, providing a gracious approach to the main entrance of the building for all building users.
We recommend that the University consider adopting Universal Design as the basis for accessibility improvements. Universal design as applied to buildings and landscapes is the design of environments to be usable by all people to the greatest extent possible, without the need for adaptation or specialized design. Features that make a building or site useable for persons with disabilities should be seamlessly incorporated into building and landscape designs so that they make the building or landscape more easily used by everyone at little or no extra cost.

Some compromises may be required in adopting historic buildings to universal design principles. While every attempt should be made to adhere to ADA and/or universal design guidelines, there may be situations where to do so in every respect would result in the loss of character-defining features. In these situations, accessibility must be balanced with historic preservation. The designer’s and owner’s goal should be to provide the highest level of accessibility while minimizing changes to character-defining features of historic resources.

Preservation Brief #32: Making Historic Properties Accessible, published by the National Park Service, provides guidance with regard to planning accessibility modifications for historic buildings and landscapes. The brief suggests three steps to consider in order to identify and implement accessibility requirements that will protect the integrity and character of historic resources:

1. review the historical significance of the property and identify character-defining features (this has largely been done for Tier One and Tier Two properties in this report);
2. assess the property’s existing and required level of accessibility (Facilities Management and Disability Support Services have inventories of the current status of accessibility for most campus buildings); and
3. evaluate accessibility options within a preservation context.

The highest-priority accessibility improvements for buildings can be summarized as follows:
1. make the main entrance, or a prominent public entrance, and primary public spaces accessible, including a path from ADA-compliant parking to the entrance (typical campus buildings, which often have multiple prominent entrances, may provide some flexibility in meeting this goal);
2. provide access to the services, programs or goods offered in the building;
3. provide accessible restrooms; and,
4. create access to amenities and secondary spaces.

Providing an appropriate accessible entrance to a significant historic building may involve the creation of an entirely new entrance, or the construction of a new addition. The latter often offers the opportunity to solve both entrance and internal circulation issues without substantially altering the historic building itself. New entrances or additions frequently make it possible to improve accessibility while at the same time reducing the extent of change to historic features, materials and spaces.

The need to adopt historic buildings and landscapes to accessibility requirements and universal design over the nearly forty years since the first federal laws regarding accessibility in public places went into effect has resulted in thousands of examples of creative solutions to the needs and expectations of today’s campus occupants and visitors. With proper planning and awareness of the unique attributes of each historic resource, those responsible for the design, construction and maintenance of historic resources can provide a culturally stimulating and functional built environment that benefits everyone.
V. The Historic Landscapes of the University of Maine Campus

Vestiges of the original Olmsted campus plan remain in place today.

A. Introduction

The history and significance of the landscape of the University of Maine campus has never been thoroughly studied. The work of this project included perhaps the first in-depth look at the development and importance of the campus landscape. The fact that the original campus planning was done by Frederic Law Olmsted, the founder of modern American landscape design, has been known and publicized for some time, but the extent of his efforts and their implementation have not been understood.

It had been the hope of the Historic Preservation Master Plan project team to study the early campus plans in depth and to provide, if not a scholarly history, at least a basis for a more detailed and complete investigation. The primary research for either type of study was to be the Olmsted archives at the Frederic Law Olmsted Historic Site at Olmsted’s residence, Fairsted, in Brookline, Massachusetts.
Historic Preservation Master Plan

Historic Landscapes - Introduction

However, the extent of our archival search was limited because the Olmsted archives were closed due to a planned renovation of the facility. Persistence and pleas that this was a once-in-a-lifetime opportunity to reveal important information about an early major Olmsted project resulted in the limited use of the archives and enough new information to allow us to write a history of the campus landscape that tells more than has been told up to this point and that establishes the need for further research.

The Campus Landscape section of the Historic Preservation Master Plan is thus based on this limited new primary research as well as on the resources of campus collections and what remains of the original and subsequent campus landscapes. It is divided into three subsections:

- A History of the Campus Landscape
- Analysis of Existing Conditions
- Design Guidelines and Recommendations

All three subsections are extensively illustrated with historic and contemporary views.

A History of the Campus Landscape

The History of the Campus Landscape offers new insights into the development of the campus from the initial F. L. Olmsted plan, dating from the 1860s and '70s, which led to the creation of the Front Lawn and the orientation of the campus toward College Avenue and the Stillwater River, through subsequent plans by the Olmsted Brothers and the Munson plan, when continued University expansion resulted in the creation of the Mall and the growth of the campus to the south.

The History also contains commentary on campus vegetation, including a discussion of the nature of tree planting and how landscape architects established both utilitarian and picturesque planting programs for the campus. The development of both pedestrian and vehicular circulation over 140 years of campus development is described in detail, revealing interesting development issues relating to national trends as well as the specific character of physical and academic growth of the University. This subsection provides a welcome companion piece to Section III, with its emphasis on the architectural history of the University of Maine.
Analysis of Existing Conditions

The Analysis of Existing Conditions provides a thorough look at today’s University of Maine campus, focusing on what is one of the most intact land grant university core historic campuses. This subsection provides an overview of the campus as it appears today, and is structured around five organizational and character-defining elements:

- Campus Spaces and Views
- Campus Vegetation
- Vehicular Circulation
- Pedestrian Circulation
- Site Structures and Furnishings

Campus Spaces and Views

A discussion of Campus Spaces and Views defines large, medium, and small spaces. Each size of space provides different functions in the life of a campus community. Large spaces, such as the Front Lawn and the Mall, afford long views, serve to orient people to the landscape and buildings, create a social core for the campus, and establish the identity of the campus. Medium spaces, such as the women’s dormitory quad or the open space to the south of the Library, create common spaces and provide identities for subsets or precincts of the campus. Small campus spaces support and foster social interaction at the individual building or building group level. Many of the landscape spaces of the University of Maine campus are described in detail in this subsection. The reader will be afforded many new insights into spaces he/she may experience every day.

Campus Vegetation

Campus Vegetation is described in terms of plant materials that enhance architecture, campus structure, and spaces. Examples are provided of trees and other plants that frame, direct, or restrict views, or that provide structure and enclosure for campus spaces.

Vehicular Circulation

The discussion of Vehicular Circulation offers frank opinions on the realities and importance of moving vehicles through the campus landscape. Analyses of campus entrances, the character of campus roadways, and views
from and to roads, parking areas, and service areas as they are currently defined by and relate to existing landscape features, provide the basis for recommendations for future changes.

Pedestrian Circulation

Pedestrian Circulation receives a similar treatment, with an emphasis on the importance of walkways and paths to the overall look of the campus as well as to the comfort, convenience and safety of people using those pedestrian ways.

Site Structures and Furnishings

Site Structures and Furnishings, such as walls, fences, railings, signs, and lighting, are among the smallest elements of the campus landscape, but they have a large impact on the character, cohesiveness and attractiveness of the campus. Examples of these and other site components are provided to offer the reader the opportunity to evaluate for her/himself the impact they have on the everyday use and look of the campus.

Design Guidelines and Recommendations

Finally, based on the historical and existing characteristics of the campus, this section offers Design Guidelines and Recommendations for applying the principles discussed to the existing conditions of the campus. These are provided in the same format as the previous subsections:

- Campus Spaces and Views
- Campus Vegetation
- Vehicular Circulation
- Pedestrian Circulation
- Site Structures and Furnishings

The guidelines and recommendations are thought provoking, and many of them are controversial. Some are already being implemented based on preliminary presentations and discussions with the Campus Planning Committee and the Campus Arboretum and Beautification Committee. Others must await more comprehensive landscape planning and design in order to shape a University of Maine campus that is at once referential to the illustrious origins of the grounds, accommodating of the
best in contemporary architectural and landscape architectural design for new development, and welcoming, comfortable, safe and convenient for all members of the University community.
B. A History of the Campus Landscape

Looking south down the Mall in the 1930s. Stevens Hall is on the left, Lord and Alumni Halls are on the right. Fogler Library has not yet been constructed to anchor the south end of this major green space.

Each of the three periods of growth at the University that have been identified by this study is characterized by a unique organizing principle. In the earliest years of the campus, during the Heritage Period, 1865 to 1910, all of the buildings were oriented to the river. The second or Growth Period, from 1911 to 1945, is characterized by the orientation of new buildings to newly-created campus spaces, chiefly the Mall, but the development of smaller spaces also typifies the period. Finally, in the current period, the Modern Era, beginning in 1945, new construction is typically oriented to roadways. (Where new projects have included a group of buildings, such as the residential complex of Doris Twitchell Allen Village, the projects have included the creation of interior, organizing spaces; however, the orientation of the complex as a whole is to circulation.)

The change in organizing principles from river to space to circulation chronicles the change in the identity of the University from small agricultural college to large state university. To examine the particulars of this progression, this report proposes that the history of the University landscape be studied through an examination of five organizational and character-defining elements of a
“cultural” landscape, the designation employed by the field of historic preservation that includes college and university campuses. Those five elements—spaces and views, vegetation, vehicular circulation, pedestrian circulation, and site structures and furnishings—are the key elements of a landscape, in addition to the buildings themselves, which give a landscape its unique identity.

Campus Spaces and Views

The spaces of a cultural landscape, and the views that they provide, play the largest role in setting the character of the landscape, and their creation represents a conscious act to restrict the construction of buildings in a certain area. That conscious act can be the result of a larger vision for the landscape, as is the University’s Mall, or it can be the result of natural features of the land that preclude the construction of buildings. It was the presence of limiting natural features that created the first space at the University, the slope to the river, or as we shall refer to it for the purposes of this report, the “Front Lawn.”

The Front Lawn

As the budding University, then known as the College of Agriculture and the Mechanic Arts of the State of Maine, began to plan its development on the banks of the Stillwater River in Orono, the Trustees turned to Frederick Law Olmsted, Sr., the prominent landscape architect from Boston who had already designed the UC Berkeley campus among others, to create a campus plan. While most of this initial plan was not implemented—a letter from Professor Munson to the Olmsted Brothers in 1906 offers that “development along the lines suggested would have been far beyond the possible limits of the exchequer,” and indeed the Annual Report of the Trustees of the State College of Agriculture and Mechanic Arts, dated January 11, 1868 documents the “perplexity” facing the Trustees. “The act of the Legislature limited us to two buildings, while the plan of Olmsted contemplated the erection of three buildings to each class of forty students, making twelve buildings necessary for a course of four years, and even then the laboratory and lecture rooms, the rooms for the cabinets, library and armory, and the chapel would be wanting.”

1
The comprehensiveness of Olmsted’s plan seems to have been a deterrent to its implementation for the fledgling college. However, while the subsequent development of the college did not reflect Olmsted’s plan, insight into the campus’ initial form is provided by the report from Olmsted that accompanied the plan.

It will be convenient, in the first place, to look upon the property as if it were divided into two parts, which I shall designate respectively the eastern section, and the western section.

All of the cleared land on the east side of this dividing line has a surface on which a plough or reaping machine could be conveniently worked. That on the west side of it is considerably more undulating, and has several steep hill sides. If this western section should be further divided into fields...these fields would necessarily be very small, their boundaries very irregular, and their cultivation consequently inconvenient and expensive. This section is therefore much less desirable to be used for the cultivation of staple farm crops than the other.

Olmsted’s division of the campus appears to have guided the development of the young University. While little of Olmsted’s plan was adopted, it seems likely that his analysis of the topography was heeded by the Trustees as they chose the building sites for their new institution. All of the buildings constructed during the Heritage Period were constructed on this slope to the river, creating the “Front Lawn” for the University.

It is interesting to note that Olmsted makes no reference to the river itself as a positive amenity to which the buildings should orient. Yet, the river view appears to have been valued by the young University. When one looks at the map of 1922, it is clear that nearly all of the original buildings have been sited so that each has a view of the river and so that each new building did not obstruct the view of any existing building. The exception to this is the Carnegie Library, which was sited in front of The Maples, but perhaps, given the difference in the stature of the two buildings, this exception was made.
The first reference that has been found to the value of the river view was made in 1932, when the siting of buildings with river views was no longer possible. Carl Parker, the member of the Olmsted Brothers firm who worked with the University, noted on his first visit to the campus in 1932 that one should “consider making of vista across new and old campus to river on axis of Arts and Science Building [Stevens Hall]. Means removal of one old building [Fernald] and considerable grading, but could be made worth while and is only chance left.” In their 1948 revision to the master plan, the firm sought to capture this view for the University union by siting the building on the slope to the river. However, by this time the Mall was established as the heart of the campus, and the Union was constructed on a knoll across from the library.

Olmsted Sr.’s plan for the campus was not based upon securing views for the new college. Having just returned from the Civil War, he was intent upon designing this Morrill Land Grant College as a vehicle for guiding both the economic and social development of the young men of Maine. His plan calls for the creation of a village centre of a library, a museum, a lecture hall, and a chapel, with farm buildings developed to the north in the area of existing farm structures, and with residential villages constructed to the south that would “aid [the students’] education in the art of making a home cheerful and attractive.” West of the village centre, Olmsted sited the Parade Ground, where “the river sweeps in nearer to the farm fields than at any
other point, and between the road and the river there is a piece of low ground which slightly flooded in times of high freshet.”

The wetness of this area, the Front Lawn, persisted through time, and is probably responsible for the continuance of the area as open space. Professor Munson, in the same letter of 1906 noted above, describes the area as “subject to inundation in times of high water.” The 1922 map of the University includes marshy symbols in the area of the Front Lawn. In 1884, a conscious decision was made not to develop this parcel, and not to fill the low-lying area for a building site. In that year, the Trustees voted to keep the area undeveloped for use as a lawn, confirming the value placed on the area by the University. Its value was recognized by the Olmsted Brothers as evidenced by the description of their plan for the area in a letter to the President of the University in 1932: “The old campus as it now exists, with its many stately trees, will not, in the eyes of those familiar with the picture, be materially changed. In fact, the proposed removal of some of the roads and all of the wooden buildings will tend to enhance its picturesqueness and delightful informality.”
While the Beaux-Arts movement, with its grand axes, classical facades, and long alleys, had come into vogue around the turn of the century, replacing the picturesque movement promoted by Olmsted, Sr., the Olmsted Brothers recognized the value of the “old campus” landscape and its picturesque Front Lawn. However, eighteen years later, in 1950, when the firm argued that the new University union should be constructed on the slope to the river, they were less poetic about the space. “Although this has always been considered as the ‘front’ of the Campus, it must be recognized that the Campus has developed towards the east, and that in reality the old ‘front’ has become the western ‘side’ of the new Campus.”

Happily, the union was constructed east of the Library at the new heart of the University, and the Front Lawn remained intact.

Women’s Dormitory Quad

The 1922 map also marks the appearance of two other spaces on the young campus—the first is the space that today forms the lawn area between the original women’s dormitories. As with the Front Lawn, the map suggests with its marshy symbols that the origin of this space was the wetness of the area. This condition is confirmed in the report accompanying the Olmsted Brothers’ 1932 master plan. They describe the area as offering a unique opportunity: “This area is now free of buildings, with a natural water course running through it, and can without unreasonable expense be developed into an interesting bit of park land having a water feature in the two proposed ponds....” Unfortunately, the $25,000 price tag was deemed unreasonable, the ponds were never created, and the area was later filled with excavated material from the construction of the dormitories.

The continuance of this open space is probably attributable to the high cost of footing construction in a wet area (later correspondence indicates that Chadbourne Hall was built west of its original location to avoid costly construction in a “hole or soft bottom” area). However, the creation of the space as a dormitory “quad” is partly due to the continued arguments by Carl Parker of the Olmsted Brothers to locate the women’s dormitories around this central area. The area as envisioned by the firm in 1948 was much more formal in its arrangement than the space is today; Penobscot and Stodder Halls were not constructed on the orthogonal grid of the old campus and the Mall.
reason for the shifting of these two buildings is unknown; however, it did preserve the views from and to Carnegie Hall, a consideration which was not of concern to the Olmsted Brothers in 1945. In a letter to the President of the University on March 7, 1945 they explain: “The old Library…is no longer an important building, and could perhaps at some later date be removed.”

Women’s Athletic Field

The remaining space to appear on the 1922 map is that of the women’s athletic fields, south of Munson Road. Once again this area is identified with marshy symbols on the 1922 map. While the Olmsted Brothers’ plan of 1932 proposed a women’s gymnasium to be built at the northern end of the field along Munson Road, their correspondence with the University indicates the University’s need for more field space for women’s sports, and this is probably the reason that the building was eventually constructed further to the west, preserving the northern end of the open space and permitting views from the campus into the space and to the surrounding woodlands beyond.

The Mall

The Growth Period brought the addition of the second largest space on campus, the Mall. By 1924 the campus had outgrown the available building space along the river, and the University looked eastward for space for new construction. It is interesting to note that despite the fact that a view of the river was no longer possible, both Stevens Hall and Crosby Lab were built maintaining that orientation and anticipating the Mall to come. Carl Parker’s inclination from his first visit as noted above was to regrade the campus as necessary to secure the view for Stevens.

The creation of the Mall represents a deliberate act on the part of the University to create a new organizing space for future growth at the University, but an act that was rather incremental in its realization. The origin of a new focal point for the campus is unknown, although correspondence from the Olmsted Brothers refers to a design for its eastern edge on a plan by the firm of Little and Russell from about 1923. (No record of the plan has been found at this time.) The first reference to the creation of a western edge for the area is in Carl Parker’s notes from his second visit to the
University in 1932, where he suggests that large buildings should be located where Hart Hall and the addition to Aubert Hall have been built, and Lord and Alumni Halls should be removed or receive new eastern facades. It would appear that the Armory was sited to provide a northern terminus for the space, but available sources also do not provide information as to the proposed southern limit of the space on the Little and Russell plan.

With the hiring of the Olmsted Brothers, the successor firm to Fredrick Law Olmsted, in 1932, the Little and Russell plan was incorporated into a larger vision. The Olmsted firm’s plan for the University from 1932 (and its revision in 1948) calls for a grand space extending north and south from a proposed architectural centerpiece for the campus.

In the 1948 revision, both the North Campus and the South Campus, as they were designated, were defined by roadways and by a large building at either end. While the north mall was constructed almost as drawn, the south mall was never fully implemented, probably due to the need for demolishing a number of buildings.
How the Mall would have evolved had the University not hired the Olmsted Brothers’ firm is obviously unknown. However, we know from correspondence that Carl Parker of the firm was a tireless protector of the plan’s featured space, as shown in his letter to the President of the University in 1945: “Both Mr. Crowell and I were disturbed because the Boys’ Dormitory as now laid out will forever prevent another large building from being located on the west side of the Campus opposite the proposed Engineering Building [Boardman Hall] …. This is quite a different arrangement from the one you and I discussed last week, and which we are showing on the general plan.”

Designed during the Beaux-Arts period of campus planning, the Olmsted Brothers envisioned the Mall to be the organizing space for all future growth at the University, which was set at a maximum enrollment of 3,000 students. With time, however, the Mall as an organizing space for future development was also outgrown by the University, and the modern period was ushered in.

Campus Vegetation

In addition to the buildings and the campus spaces, campus vegetation is a critical element of the cultural landscape. The vegetation at the University of Maine represents
several approaches to planting, approaches that chronicle not only the periods of development on the campus but also the periods of American landscape design.

Utilitarian and Vernacular Planting

The importance of trees to the young College from its beginning is apparent from an article in the June 24, 1867 edition of The Bangor Daily Whig & Courier. In this report on the construction of the new College, mention is made that “the Trustees have also caused to be set out upon the College grounds this season nearly 500 shade trees of various kinds.”

Where these new trees were planted is not known; however the earliest documentation of planting at the University, a map from 1891, indicates a scheme that is largely utilitarian in nature. Several rows of trees in lines from east to west suggest their function as wind screens.

Indeed, this seems likely in that Munson’s letter of 1906 cites the planting along the northern boundary, intended by Olmsted Sr. to protect the orchard to the south from northerly winds, as “the only feature ever adopted in the development of the campus.” Other east/west lines of trees are indicated on the southern side of the tennis courts, suggesting that they were intended to screen the courts from the sun’s glare. The majority of trees are planted along roadways and occasionally along front walks to buildings, a pattern certainly familiar to estate drives, as well as farm lanes, at the time.
Nearly a half-century later, the map of 1940 indicates that some wind rows and possibly some sun screening plantings at tennis courts still remain. Clearly in evidence are the lining of roadways, both historic and new, and occasionally the dotting of walkways with trees. A survey of campus trees compiled in 1922 by W. S. Evans and included in the Olmsted Brothers’ correspondence indicates that the street trees were predominantly American elms, with some maples. While the referenced plan is not available, the list of over 700 trees only indicates numerous consecutive trees of the same species for the elms and the maples.22

Picturesque Planting

The map of 1940 also reveals another approach to planting at the University, one that reflects the picturesque movement in landscape design and the approach to planting indicated in Frederick Law Olmsted’s 1867 plan for the college. While it cannot be determined with the available sources whether Olmsted’s approach affected the subsequent planting of trees on the campus, clearly the planting of the Front Lawn of the University reflects the picturesque school of landscape design. It is interesting to note that the planting of street trees along College Road abruptly ends at the two main entrances that define the Front Lawn area. Within the naturally planted Front Lawn, a few sections of roads and walkways are lined with a regular planting of trees, but these sections then yield to the predominant informal grouping of trees beyond.
Beaux-Arts Landscape Planting

Drafted in 1940, the map also documents campus plantings along the Mall that reflect the Beaux-Arts movement in their regular, symmetrical placement within the space. We know from the Olmsted Brothers’ correspondence that these, like most of the street trees, were American elms. Both the 1932 master plan and its 1948 revision call for other areas to receive this grand landscape treatment; however, these areas were not developed. Today, the north mall stands alone as a representative example of the Beaux-Arts movement on the campus.

Special Plantings

The Olmsted Brothers correspondence from 1933 refers to moving five or six “class oak trees.” Just how long this tradition continued is unknown. More apparent today is the tradition from the late 1800s of graduating classes planting ivy at the base of some of the academic halls and its commemoration with a plaque on the side of the building. The length of this tradition is also not documented in the correspondence.

Vehicular Circulation

Throughout its history, the roadways of the University have significantly figured in the character of the campus. For the young agricultural college, there were two roadway systems—the roads for the academic buildings and those
serving the farm and its facilities. Though undocumented by notation, the 1891 map of the campus suggests this dual system. The academic buildings are sited along a roadway that still exists in part today as Sebec Road. This road is lined with street tree plantings on both sides for nearly its entire length between its two intersections with College Avenue. A second roadway, following the alignment of Munson Road today, links the Maples and its barns with the state highway. It does not share the extensive street tree planting of the main campus road.

Roads on the campus grew incrementally, as highlighted on the maps of 1875, 1891, and 1922. By the 1930s, however, more and more automobiles came to the University (in 1932 the Olmsted Brothers were directed to accommodate 600 cars on campus on a daily basis). When the concern for noise, congestion, and safety arose in response to the increased numbers of cars, the Olmsted Brothers proposed the same separation of traffic employed by the young University to resolve the issue: “This new approach drive [Schoodic Road] should be limited to pleasure traffic only, and all farm traffic and service traffic should approach the campus by means of the so-called farm entrance at the south end of the university grounds [Munson Road].”

The College of Agriculture had the same concern for the separation of campus and farm traffic—the intrusion of campus roadways into the agricultural sector of the campus was problematic for the operation of the farm. The Dean of the College of Agriculture was also very concerned about the impact of the noise from the increased numbers of cars on class sessions. In a 1932 letter to Carl Parker he writes, “Streets on which automobile traffic is allowed should not be constructed near classroom buildings. Automobile traffic on the street in front of Winslow Hall frequently disturbs class work in that side of the building.” Other people shared this concern as cars began to change the character of the campus. While it was decided that the noise could be reduced by traffic regulations combined with a minimum distance of 10 to 15 feet between roads and buildings, eventually the University turned to the removal of roads to resolve the problems caused by the increased traffic.
Pedestrian Circulation

An additional problem caused by the appearance of the automobile on the campus was that, up to this point, many of the University roadways had served as walkways. The early maps of the University, from 1875 to 1904, reveal surprisingly few walkways. That number increases on the 1922 map somewhat as walks were added to connect the campus with the trolley line along College Road, and then dramatically increases on the 1940 map, at the same point that the number of roads increased on campus to accommodate the burgeoning number of cars. However, in a 1946 letter from the Olmsted Brothers to the University’s business manager, it is clear that the sharing of roadways by pedestrians and autos was still prevalent. The Olmsted Brothers suggest that the designation of student parking areas at the periphery of the campus, served by “the north and south entrances…would take care of student traffic and leave the rest of the road for service use and for pedestrian use between buildings.”

The later removal of roadways from the Mall and other parts of the campus suggests that this proposal did not adequately address the problem of separating vehicular and pedestrian circulation.

Site Structures and Furnishings

The available resources provide little information on the history of the site furniture on the campus, save for the inclusion of several light fixtures in early photos of the Mall.

1 W.M. Munson to Olmsted Brothers, February 17, 1906, Papers of Frederick Law Olmsted, Library of Congress (hereafter FLO Papers); Laura Wood Roper, FLO: A Biography of Frederick Law Olmsted (Baltimore: The Johns Hopkins University Press, 1973); Trustees’ minutes, 1868.
6 W.M. Munson to Olmsted Brothers, February 17, 1906, FLO Papers.
8 Olmsted Brothers to Dr. H. S. Boardman, November 10, 1932, FLO Papers.
9 Olmsted Brothers to Dr. A.A. Hauck, February 16, 1950, FLO Papers.
10 Olmsted Brothers to Dr. H. S. Boardman, November 10, 1932, FLO Papers.
11 Olmsted Brothers to Edward E. Chase, May 22, 1933; Olmsted Brothers to Dr. A.A. Hauck, March 7, 1945, FLO Papers.
12 Olmsted Brothers to Dr. A.A. Hauck, December 17, 1946, FLO Papers.
13 Olmsted Brothers to C. Parker Crowell, January 29, 1947; Olmsted Brothers to Dr. A.A. Hauck, November 18, 1946 and February 3, 1947, FLO Papers.
14 Olmsted Brothers to Dr. A.A. Hauck, March 7, 1945, FLO Papers.
15 Olmsted Brothers to C. Parker Crowell, January 29, 1947, FLO Papers.
18 Olmsted Brothers to Dr. A.A. Hauck, March 7, 1945, FLO Papers.
 (Second letter of that date.)
20 *The Bangor Daily Whig & Courier*, June 24, 1867.
22 “List of Trees on the University of Maine Campus,” referencing a plan of the campus made in 1922 by W.S. Evans.
23 Olmsted Brothers to Edward E. Chase, January 9, 1933, FLO Papers.
24 Olmsted Brothers to F.S. Youngs, June 7, 1933, FLO Papers.
26 Olmsted Brothers to Dr. H. S. Boardman, November 10, 1932, FLO Papers.
27 Leon S. Merrill to Olmsted Brothers, September 2, 1932, FLO Papers.
28 Leon S. Merrill to Olmsted Brothers, September 2, 1932, FLO Papers.
30 Olmsted Brothers to Henry A. Doten, November 25, 1946, FLO Papers.
C. Analysis of Existing Conditions

The landscapes of the National Register Historic District of the campus remain largely intact. The major campus spaces within the district are virtually unchanged, and the roads and walkways that follow the alignment of those on the earliest maps of the University exist throughout the historic district. The grandeur of many of the trees in the historic district would suggest that they were planted in the campus’ early days. This report of the existing conditions of the University is intended to give an overview of the campus as it appears today, and is structured utilizing the same organizational and character-defining elements of a “cultural” landscape—campus spaces and views, vegetation, vehicular circulation, pedestrian circulation, and site structures and furnishings as was used in the Landscape History. The last section of this report, Design Guidelines and Recommendations, includes further information on the existing conditions that are proposed for improvement.

Campus Spaces and Views

![Analysis of existing campus spaces and views](image)
The collegiate landscape is comprised of three sizes of spaces, each with its unique and essential function in the life of the community. Large campus spaces afford long, orienting views within and beyond campus; create a “common” or a social core for the entire campus; and set the identity or character of the campus. The historic district of the University of Maine and the adjacent grounds contain three of the University’s large spaces—the Front Lawn, the Mall, and the Lengyel Recreation Field—and two of these, the Front Lawn and the Mall, are the most significant spaces on campus today.

Medium campus spaces, such as academic or residential quads, are also essential to the life of a collegiate community and especially a large university. They create a “common” and give an identity to the subset of the university community that they serve. The quad defined by Balentine, Chadbourne, Stodder, and Penobscot dormitories is just such a medium-sized space. Other medium-sized spaces on the campus are not identified with a particular community within the University but, rather, provide the important role of linking major campus spaces and providing longer views and “breathing room” to the density of the campus. An example of this type of space is the lawn area east of the Carnegie Library and the President’s house.

Small campus spaces are equally critical to the University community as they support and foster social interaction at an individual level. These small spaces are usually associated with building entries and are often a subspace of large or medium spaces. At the University of Maine, the sitting area outside Oak Hall and the area between Memorial Union and Fogler Library are examples of important small spaces.

Large Campus Spaces

The Front Lawn

As the oldest space on campus and as the historic front door to the University, the Front Lawn has great significance for the campus, and the permanence of most of the space is a testimony to that importance. The portion of the Front Lawn that has been compromised is the area across College Avenue where the large 350-car Steam Plant parking lot and the smaller College Avenue north lot have been constructed. Both lots are very visible from College...
Avenue and greatly detract from the beauty of the Front Lawn as seen from the road. While the Steam Plant lot is effectively screened by a row of pines from most of the historic buildings, the trees also cut off the view of the river from the buildings and the open space of the historic district.

The quality of the Front Lawn is also diminished by the Alumni Hall parking lot. Entering the campus from the historic entrance drive, Sebec Road, the integrity of the landscape is apparent. The winding, sloping road provides a wonderful sequence of views and sets up a heightened anticipation for the arrival at the campus. However, instead of an expected arrival at a historic building or space, the road terminates with a view of the Alumni Hall parking lot, and the directed sight line renders the lot an even greater intrusion into the landscape.

To the north of this intersection, the integrity of the Front Lawn is also lessened by the proximity of the rear of both Fernald and Wingate Halls to Munson Road. Whereas the portion of Munson Road to the south provides each of the historic buildings along its length with a setting of lawn and trees, the width of Munson Road to the north and the addition of parking spaces between Fernald and Wingate Halls create an austere asphalt setting for these two buildings.

The Front Lawn has many stately trees, including several spruces. However, the branches of most the spruces come to the ground, obscuring views within the space and down the slope to the river. As a consequence, this ground space is subdivided into many smaller spaces.

The Mall

The proportions of the Mall established by the 1932 Olmsted Brothers’ plan and possibly by its predecessor, the Little and Russell plan created ca. 1923, create an impressive space to the north of the Fogler Library that clearly identifies itself as the heart of the University. The Fogler Library and terrace provide an appropriate terminus for the south end of the space. The eastern side is lined with significant buildings, as envisioned in the Olmsted Brothers’ plan. However, the western edge of the Mall is less successful.
Some of the Olmsted Brothers’ concern for the western edge of the Mall remains an issue today. Hart Hall and the Aubert Hall addition provide a strong edge for half of the western side, but a proposed building opposite Stevens Hall was never constructed, leaving the small rear addition to Alumni Hall, the Alumni Hall parking lot, and the rear of Lord Hall to provide an inadequate edge for the most important open space on campus. In addition, the parking area extends beyond the building line of Alumni and Lord Halls, increasing the intrusion of cars into this important pedestrian zone. Further intrusion into the Mall is caused by the large vehicular zone to the west of the Library, formerly Moosehead Road. While the Mall walkway on the east side links to the pedestrian walks outside Memorial Union, the walkway on the west side terminates in a parking lot.

The Mall was originally planted with two rows of stately American elms. After the elms succumbed to disease, the Mall was planted with ash trees, yet these trees are small and misshapen trees that do not provide a canopy and permeable edge to the lawn area. In addition, their placement reflects the original mall design, in which a roadway was located inside of the two walkways. With the elimination of this roadway, the line of trees does not relate to the walkway, and that, coupled with their small size, sets the trees adrift within the lawn area, and weakens the Mall as a grand space.

Lengyel Recreation Field

The campus remains surrounded by Maine woodlands. However, as the University has grown, those woodlands have been cut back and have become more and more remote from the center of campus. This athletic field serves the important role of bringing a long view of the surrounding woodlands to the historic district, close to the heart of the campus, and directly into the residential quad along Munson Road.

Medium Campus Spaces

Original Women’s Dormitory Quad

The space defined by Balentine, Chadbourne, Stodder, and Penobscot dormitories provides a wonderful “common” for this residential community. Its ample size allows for both
active and passive recreation, and for each dorm to have its own identity on the quad. However, the space is compromised by the parking lot on the west side of the quad, because it creates a barrier in the walk that connects the quad with the rest of the campus. While the other dormitories are not separated from the quad by parking, they lack any positive connection with the quad. The need for small gathering spaces outside each dorm entry is discussed below.

Lawn East of Carnegie and the President’s House

The lawn east of the President’s House provides a wonderful sunny breathing space for the historic district, and when coupled with the area east of Carnegie Library, creates a beautiful link to the residential quad from the Mall and the historic district. The informal arrangement of trees east of Carnegie creates one of the loveliest walkways on the campus.

The South Mall

While the South Mall was never developed as the formal space designed by the Olmsted Brothers, the area is not without merit as a medium campus space today. The trees in the space are finer specimens than those to the north of the Library, and the uniqueness of the Cyrus Pavilion lends a special quality to the space and the views across the lawn. The space is compromised, however, on its southern end where it is bounded by the parking lot in front of the greenhouses, an edge that will become even more apparent when the proposed Library addition is constructed. It will be important to ensure that the proposed addition does not reduce the space to the point that it merely feels like a lawn for the Library. Limiting the southerly extension of the Library addition to the southern face of Memorial Union but allowing the addition to extend beyond the current Library façade to the west should be studied.

Small Campus Spaces

Opportunities for informal social interactions are critical to the life of a collegiate community. Small campus spaces where individuals can pause to interact with each other support and strengthen university life. These spaces also serve as prearranged meeting places and outdoor alcoves that feel appropriate for an individual to sit in by his or
herself. The location of these spaces outside building entries provides for the greatest use and success of this type of space. Entry steps, common to historic buildings, are the simplest means of creating a small campus space at a building. Where an entry lacks steps, a small gathering space should be created. Simple in design and incorporated into the pedestrian way, these small spaces serve to connect the community within the building to the space outside the building, thereby enriching both spaces. Where the space outside is shared by other buildings, small campus spaces are most critical outside dormitories, and as noted above, are lacking in the dormitory quad on Munson Road. Small gathering spaces are also lacking at the entry to Hart Hall and other buildings on the Mall. Such a space has been created outside of Oak Hall’s entrance, although modifications to the plantings would make the space more successful. The area between the Library and Memorial Union is a key space on the campus for student gathering. The proposed addition to the Library will more than likely alter pedestrian routes within this space, requiring modification to respond to new areas of activity and new pedestrian desire lines.

Campus Vegetation
When considered comprehensively, the roles of vegetation in a cultural landscape—enhancing architecture, campus structures, and spaces; framing, directing, or restricting views; and providing structure and enclosure for spaces—become as great as the roles of the architecture itself in establishing campus character and in fostering a district as a great asset. Beautiful buildings cannot, by themselves, create a beautiful campus.

Enhancing Architecture, Campus Structures, and Spaces

There are many places within the historic district and in areas proposed for designation where mature trees provide a wonderful setting for the architecture—the front of the President’s House, the north and east sides of Carnegie Hall, the south side of Alumni Hall, the south mall, and the northern end of the Mall—to name a few. There are, however, many instances where plantings, which may have enhanced a building in the past, are now mature specimens that overwhelm the architecture. This is especially true for shrub plantings. While the planting of shrubbery at the base of buildings may have been desirable in the past, given the often-beautiful foundations of older structures, common foundation plantings are in most cases unnecessary, and in many cases detract from the building. Stevens and Boardman Halls provide two examples of historic buildings unnecessarily screened, while the row of shrubs in front of the new Fogler Library terrace is an example of new construction with superfluous plantings.

Plantings can also enhance or diminish campus structures. The plantings at the base of the Black Bear statue in front of the Memorial Gym and the cannon on the Front Lawn once provided a base for these two campus features. Today the plantings overwhelm them, and in the case of the Black Bear, severely restrict the view of the entry to Memorial Gym.

Finally, beautiful mature tree specimens on a college campus are invaluable. At the University, the large numbers of spruce, the “signature tree of Maine,” enrich the sense of place on the campus.
Framing, Directing, or Restricting Views

Street tree plantings play a key role in framing views—along the length of the road as well as to the sides. The impact that they have on the viewer who is within the canopy or shadow of a tree can be seen in comparing two photos of the view from Munson Road to the President’s House. The row of street trees north of Hitchner Hall along Sebago Road is a good example of the effectiveness of street tree plantings to enhance views along the road. Outside the area of the Front Lawn (as discussed in the previous section, the planting of trees within the Front Lawn should be in informal groupings rather than lines)—along the entire length of Munson Road, and along the western end of Sebago Road—deciduous canopy trees are needed to line the campus roads to enhance the character of the historic district. In addition, with the exception of the Front Lawn, street trees should be planted on both sides of College Road for the entire length of the University’s property to enhance the approach to and first impressions of the University. The addition of some deciduous canopy trees along the Front Lawn would enhance the views of this expanse as well, but these should be located to continue the informal planting of this area and preserve views to the river from the buildings along Munson Road.

Both tree and shrub plantings are effective in restricting views of less attractive elements in a landscape. The row of evergreen trees along the edge of the parking lot east of Carnegie Hall and the hedge of evergreen shrubs on the east side of the Stodder lot effectively and attractively screen the two lots. However, other edges of parking and paved areas are unscreened, such as the west sides of the Stodder and Chadbourne lots, the south side of the Balentine lot, the east side of Alumni lot, and the Stodder drop-off, allowing these vehicular areas to intrude into important views within and adjacent to the historic district. Other elements that are in need of screening include the utility structure on the north side of Aubert Hall and the dog run at the President’s House. In the case of the Steam Plant lot, however, while the pine trees effectively screen the lot from above, they also screen an important view to the river from the campus.

Finally, as mentioned in the previous section on campus spaces, due to their low branching, the mature trees within the Front Lawn provide effective screening where it is not
needed. The selective limbing up of some of the trees will improve this important space.

Providing Structure and Enclosure for Spaces

The space-making ability of plants is most critical in areas where people gather. Along the broad expanse of the Mall, a tree canopy is needed along both sides of the main walkways to bring the space to a comfortable scale. The poor quality of the ash trees and their location too far from the edge of the walkway does not allow them to create a canopy over the walkways.

However, plantings can also provide too much enclosure for a space, reducing sight lines to the point where the space does not feel safe. The shrub plantings to the south of Stevens Hall have grown so well that the area does not offer adequate visibility along the walkways and does not feel safe.

![Shrubs south of Stevens Hall](image)

Vehicular Circulation

In today’s world, the vehicular routes through a cultural landscape orchestrate not only the daily experience of members of the community, but also the initial impression of visitors. The alignment of roadways, coupled with the plantings along their edges mete out the views to occupants of the vehicle, directing their attention and restricting their perceptions of the landscape. For the person experiencing the landscape on foot, roadways perform the additional functions of defining the edge of a space and enhancing or diminishing the integrity of architecture through the proximity of the paved way to the building face.
Approaching the campus along College Avenue, the impressions of the campus are mixed. To the south, the line of the utility poles and the absence of trees diminish the views of the campus. To the north, views are limited by the north parking lot, the steep slope at Crossland Hall and the fraternity houses. The middle section is the most successful, with the sweep of the slope pulling ones eye to the mature trees beyond, but the utility poles and the Steam Plant Parking lot detract from the attractiveness of the area.

The three entries to the historic district along College Avenue also provide different impressions of the campus. Entering at Munson Road, one is greeted by an unframed expanse of sun-baked lawns with parking areas viewed from the unshaded straight roadway. Rounding the corner at Colvin Hall, the experience changes as the space becomes more intimate in scale through the proximity of buildings, the canopy of mature trees, and the curve of the roadway. Entering at Sebec or Schoodic Road, one is greeted by an expanse of parking and an intriguing view up the hill. Progressing up Sebec and Schoodic, both of the
curving roadways are framed by mature trees in informal masses on either side of the road.

Within the historic district, Munson Road provides mixed impressions as well. South of its intersection with Sebec Road to Colvin Hall, the road provides, for the most part, attractive views of the campus and its buildings framed by lawn and trees. To the north of its intersection with Sebec Road, the width of Munson Road and small parking and service areas crowd Fernald and Wingate Halls, rendering the transformations of these former rear service entries into front doors unsuccessful. Progressing beyond Oak Hall, the road loses its definition among parking lots, service drives, drop-offs, and uncurbed road edges, and again the former identity of Munson Road as a service drive is revealed.

The view across Munson Road from Sebec Road has been discussed above. A similar experience greets the motorist progressing west along Long Road. The long straight view along the road is terminated by a small parking lot between Hart and Corbett Hall. Not only is the view inadequate and unattractive, it also fails to aid in instructing the visitor to take a sharp right turn. Similarly, the intersection of Munson Road and Sebago Road does not help instruct visitors that they must turn to get to the rest of the campus. Part of the confusion comes with the tightness of the road (originally a farm drive to The Maples); however, the flanking of the road with perpendicular parking belies the importance of this connection. Finally, the terminus of Schoodic Road at Winslow Hall is neither unattractive nor confusing, but the convergence of three roadways and a very long major crosswalk renders this intersection dangerous for pedestrians.
Pedestrian Circulation

For the person walking through a cultural landscape, walkways provide the same orchestration of views and impressions as roads do for motorists; and given the slower rate of passage the impact can be greater. Other issues unique to the quality of the pedestrian experience are the appearance of “goat paths” or “desire lines,” where necessary pathways are lacking; the adequacy of walkway widths; and the placelessness created when pedestrian ways are intercepted by expanses of parking.

Perhaps the most pleasant pedestrian way in the historic district is the walkway east of Carnegie Hall, an important link between the residential quad and the Mall. The pleasant experience is short-lived, however. On the western end, the walkway is intercepted by the Balentine parking lot. On the eastern end, the pedestrian must navigate an extremely long crosswalk through the busy intersection of Schoodic, Moosehead, and Munson Roads. Proceeding northeast through the intersection, the pedestrian way combines with the vehicular way, and the pedestrian must navigate through a parking area and service area before...
entering the Mall. Turning right or left along Munson Road, the pedestrian way along the road again disappears, requiring the pedestrian to walk in the worn “goat path” at the back of curb.

Goat paths through spaces are few in number within the historic district, suggesting that walkways have been appropriately located. The exception to this is the worn path in front of the Black Bear sculpture and the path across the Mall from its southwest corner to the corner of Aubert, the route of one of the diagonal pathways proposed by the Olmsted Brothers for the Mall, but one which does not exist today. Worn patches of lawn along pathways are much more common, suggesting that the walkway width is inadequate for the traffic it receives. These worn edges are in evidence along the Mall walkways, the walk between Stevens and Memorial Union, and the walk west of Rogers Hall.

Site Structures and Furnishings

Although they are the smallest elements of a cultural landscape, site structures and furnishings have a large impact on the character and unity of the campus and provide the quickest and least expensive options for enhancing both the spaces and the buildings of a campus.

Walls, Fences, and Railings

Next to steps, sitting walls are the best surface for sitting on a collegiate campus, offering an informality conducive to casual and impromptu social interaction. The sitting walls outside the Memorial Union are testimony to the success of walls for seating, even though they are narrow in width and in some places covered with growth from the plant beds they contain. The walls of the Library terrace are less popular given their northern exposure and the limited traffic through the area.

The fence at the southern entrance to Memorial Union, coupled with a foreground planting of isolated shrubs, lends a residential look to this area not in keeping with the University landscape or the importance of this location.
Campus Signage

Campus signage conveys much about an institution, establishing an image for the campus, and then unifying the landscape with its repeated usage. Signage at the University of Maine has suffered from the lack of a comprehensive, unified approach. Many different types and styles and designs of signs are currently in use. Those that are in place convey a mixed message in that they have a semi-rustic look. Many of them are poorly located and end up contributing to the confusion of the person seeking information, rather than directing them. According to the Signage and Wayfinding at the University of Maine: Assessment Report by Michael Hermann, published in March of 2005, the major deficiencies of signage on the University of Maine campus include:

- an inconsistent hierarchy of information;
- poor site location;
- no reinforcement of the University of Maine brand;
- unsophisticated design aesthetic; and
- too many signs, both across the campus landscape and at many individual locations.

The number of signs, the location of signs, the design of signs, and the messages conveyed on the signs, all contribute to the perception among members of the campus community and visitors alike that the University of Maine campus is hard to navigate.

Campus Lighting

The ubiquity of light fixtures on a university campus provides an important opportunity to unify and enhance the landscape. The use of at least three different types of light fixtures on the campus represents a lost opportunity. While the lantern fixture atop the concrete pole found throughout the historic district looks outdated, the scale of the fixture is appropriate to the campus. This cannot be said for the vehicular-scaled fixtures along the Mall. The new fixture installed with the renovation of the Library is of a simple design to blend with the variety of architectural styles on the campus, and is of an appropriate scale; however, its installation within the lawn area rather than next to the steps and walks, in front of the Library terrace is an inappropriate use of the fixture.
Emergency Phones

Emergency phones are a necessary phenomenon on today’s collegiate campuses. While their visibility is essential to their function, it is worthwhile to evaluate the University community’s need for visibility during the day afforded by the bright blue color of the existing phones versus the need for visibility at night that can be afforded by a blue light on a pole that is less obtrusive during the day.

Benches

The location, size, and style of the benches on a collegiate campus make a strong statement about the life of the community. The individual benches on the Mall suggest that the space is to be used for individual study and contemplation. Their short length and older design reinforces this impression. Contrast this image with that of the Adirondack chairs on the side of the Memorial Union. Their dynamic nature suggests social interaction and group study.

Bicycle Racks

Bicycle racks are often at their best when they are prevalent yet relatively invisible in the landscape except to the bicyclist. The style of the rack installed at Oak Hall meets this standard; additional racks throughout the historic district are probably needed.

Planters

Planters abound on the campus, suggesting a large input of time and cost for their maintenance. While planters provide an opportunity for the addition of color and texture to a space, they are most effective when located at gathering areas, where the extra care that they represent can be appreciated. They look most appropriate when placed on paved surfaces rather than on the ground where their presence suggests that they are fulfilling another purpose.
Distinctive Features

The cannons, Black Bear statue, and various art installations at the Memorial Union and the Library command attention as singular objects within the landscape. Ideally, these distinctive features should be sited at locations that do not require the manipulation of grades or the addition of plant materials, allowing the landscape to flow, interrupted only by the object itself.

The ivy plaques on some of the historic buildings are lovely reminders of the campus history, and sit unobtrusively on the building face, as a reward for the observant passerby.
D. Design Guidelines and Recommendations

The growth of a cultural landscape reflects the making of countless decisions on a daily basis. A master plan that is created at one point in time cannot anticipate all of the questions that will arise in the future and provide an answer for each of them. It is the role of this section of the Historic Preservation Master Plan for the University of Maine to provide an understanding of the design principles that should guide future decision making about the physical makeup of the campus landscape. Following many of the guidelines listed below, specific recommendations for applying principles to the existing conditions of the campus are provided in italics.

Campus Spaces and Views

Campus spaces, especially large spaces, derive their identity not from the particulars of the area but from the entirety of the space. They should therefore be treated in a comprehensive manner. Regrading, planting, paving, or the enhancement of campus spaces through the addition of signage, memorials, or art should be accomplished only after careful and broad consideration of the space as a whole and its relation to the entire campus landscape. It is recommended that this consideration be made through a consistent design review process that employs a standard protocol for reviewing both small and large site-related projects on campus.

The size of a campus space determines the complexity of the treatment of the landscape that is appropriate to the space. The larger the space, the simpler the treatment should be, so as not to interfere with the perception of the space as a whole. The largest spaces of the Mall and the Front Lawn should receive a treatment of trees, lawn, and pedestrian pavement. While the informal plantings of the Front Lawn could accommodate a few flowering trees for accent, in the formal planting scheme of the Mall, where the tree plantings play a critical role in defining the space, flowering trees, with their space-filling quality, have little or no place. For the mid-sized spaces of residential or academic quads, the use of large canopy trees, lawn, and pavement is also recommended, with limited use of
flowering trees. A more complex landscape treatment is appropriate only for the small, intensively used spaces on campus, such as the area outside Memorial Union. In smaller spaces, the lower “ceiling” provided by a smaller flowering tree may be appropriate for the size of the space.

The Mall and the Front Lawn should receive a treatment of large canopy trees, lawn, and pedestrian pavement.

Vehicular circulation, exclusive of vehicular parking, should be kept to the periphery of campus spaces and important views. Vehicular parking, with the exception of accessible spaces and minimal service parking, should not intrude into or form the edge of a campus space. Where possible, parking areas in such situations should be relocated from the center of the campus. Where it is necessary to maintain a parking area, it is important that the area does not extend beyond the line of the other edges of the space. The parking area should be substantially screened from the space, either with a new building or a mass of tree and shrubs planting.

The Alumni, Steam Plant, College Road north, and the west Balentine parking lots should be considered for removal or substantial reduction. The removal of the Steam Plant lot would restore the historic relationship of the campus to the river, now lost through the presence of the parking lot and its associated planting.

The creation of new campus spaces will be most effective if they are defined by buildings that are sited orthogonally to the other buildings on campus, an orientation that identifies them as part of and connected to the larger campus.

The completion of the western edge of the Mall through the addition of a building or the creation of a significant landscape between Alumni and Lord Halls will also benefit the arrival sequence along Sebec Road and the setting for these two historic and beautiful buildings.

New campus buildings or additions to existing buildings should be carefully studied for their impact on the spaces of the campus.

Limiting the extent of the proposed Library addition to the southern face of Memorial Union but allowing the...
addition to extend beyond the current Library façade to the west should be considered.

Campus Vegetation

Given the presence of the College of Natural Sciences, Forestry, and Agriculture and its program in landscape horticulture on the campus, it is especially appropriate that the plant species selected for the campus promote biodiversity and support the school’s academic mission and the use of the campus as a laboratory. In addition, it is also important from the standpoint of sustainable landscape practices—adaptability to climate, reduced maintenance costs, reduced water consumption, and improved wildlife habitat—that species that are native and well suited to the campus ecosystem be planted on campus. Conversely, invasive exotic species should not be planted on the campus. Where possible, when choosing a flowering plant for the campus, consideration for the time of its blossom should be given, favoring some that flower at the time of important events in the life of the University. The Best Management Practices for University of Maine Campus Arboretum should be consulted prior to the selection and planting of all campus vegetation, and the management practices recommended in that document regarding watering, mulching, fertilizing, and labeling should guide the maintenance of campus plantings.

Trees

As noted earlier, planting within the historic district reflects the picturesque movement—plantings are informal, forming loose groupings rather than allees. This traditional character should be preserved and enhanced. Except for the planting of street trees along College Road beyond the “Front Lawn” area and along Sebago and Munson Roads (a pattern that reflects the original plantings and their original use as farm roads), trees should not be planted along roadways or walkways in a manner that accentuates the circulation route over the space. Rather, tree planting along roads and paths should be planted in informal groupings to the side of the circulation or to span the paved way.

The placement of trees on campus should also support sustainable practices. The deciduous canopy trees’ natural support of sustainable solar energy practices renders them
the optimum choice for southern-facing building facades. Evergreen trees are valuable for their effectiveness in screening winter winds; however, their screening of winter sun should restrict their location along the south-facing wall of a building.

In general, tree species for the campus should be selected for their “space-defining” character, rather than their “space-filling” character.

In the replanting of the Mall, the space-making role of the trees should be the guiding principle for their selection as well as their location. As a large space, the Mall is dependent upon the careful location of the trees, in relation to the walkways, so that the need for openness and enclosure is balanced.

Large deciduous canopy trees are the preferred category of tree species for campus spaces, given their ability to provide both edges and ceilings for “outdoor rooms” through the warmer months, and to a lesser extent, through the winter months. Upright or columnar varieties of deciduous species are not generally recommended for planting on the campus except in unique restricted spaces where vertical accents are desired. In addition, the fall color provided by many deciduous trees increases their value in the landscape.

The tree species selected for the Mall should all be large deciduous canopy trees.

For reasons of sustainability and to maximize the success of the tree plantings on campus, it is recommended that, as much as possible, native species should be selected. Best horticultural practices discourage the planting of monocultures.

For the Mall, where the unity of the space will be determined by the selection of the tree species, it is recommended that a single species predominate, but the plantings should be interrupted by a different species of a similar form to mark the intersections along the Mall walkways.

Large evergreen coniferous trees are valued for their space-making abilities to create an edge for a space; to visually screen an area year-round; and for the winter interest that they provide. Given that they are less successful at creating a “ceiling” for a space, their use in the Mall is not
recommended. It should be noted that young evergreen coniferous trees and those mature species that do not self-prune are “space-breaking” rather than “space-making” elements, and thus their use should be carefully considered.

Mature evergreen trees on the campus should be considered for selective limbing up, especially within the Front Lawn, where views to the river and views within the space have been impinged upon by low branching trees.

Smaller flowering trees should be used selectively, chiefly in small areas that accommodate gathering and that are defined by architectural edges, such as near the entrances of residence halls. It should be recognized, however, that given their smaller size, they often interrupt sight lines, yet are not always of sufficient size to provide an edge or roof to a space. The result is that they fill, rather than create, a space.

Some of the plantings around the gathering space at Oak Hall should be removed and one or two deciduous canopy trees should be added to the area to help define the space in the future.

The flowering trees in front of Aubert Hall should be considered for replacement with large deciduous canopy trees.

Shrubs

Shrub plantings should also be used judiciously on the campus for the reasons described under flowering trees above; for the higher amounts of maintenance that they require; and due to the safety issues that they can create.

While the mature shrub plantings south of Stevens Hall are handsome, they greatly reduce visibility for pedestrians in the area. Selective removal or pruning of the plantings should be considered.

The use of shrubs as foundation plantings around historic structures is, at best, unnecessary given the often-beautiful foundations of older structures. Where foundation plantings are desirable, either due to an unsightly base of a building, or at a building entrance, a simple palette of massing species should be employed. The use of singular vertical plants should be avoided.
The foundation plantings at Stevens and Boardman Halls should be considered for removal. The row of shrubs at the base of the Library terrace wall should be removed.

The use of shrubs as pedestrian deterrents detracts from campus spaces; the control of pedestrian movement should be addressed through careful consideration of campus routes, grading, and tree planting.

The use of shrubs for screening unattractive elements, such as utility structures and trash collection areas, should be treated carefully, to ensure that their use does not call increased attention to the area to be screened through rigid spacing of atypical species for the landscape. Rather, if the element to be screened is situated where the planting of a larger area can rationally extend beyond the unsightly structure, then the addition of an informal shrub mass can be used successfully. If, however, the structure is located in an area that does not lend itself to a larger shrub mass, the use of architectural structures such as masonry walls should be considered. (See guidelines for Campus Structures below.) The need for screening may be eliminated or reduced through the realignment of pedestrian walkways in the area. Relocating walkways to eliminate an unattractive element from the sight line of the walkway user can make costly screening planting unnecessary.

The walkway north of Aubert Hall should be relocated to reflect pedestrian movement and to minimize the impact of the utility structures along the face of the building.

Vines

The seasonal interest provided by the growth of vines on buildings must be weighed against the increased maintenance that they can require and the potential damage that they can cause. It is recommended that vines be kept to a one-story height, a height that can be maintained without the use of special equipment and time-intensive methods.

The vines on Stevens Hall should be maintained at a one-story height.
Flower Beds and Pots

The character of the campus is established by the unity of the majority of its spaces, the flow of the eye from one space to the next, and the spare use of focal points reserved for prominent buildings and building entries themselves. It is the role of the landscape to provide a neutral unified setting for the architecture, of simple expanses of lawn crossed by pedestrian walks and vehicular drives and shaded by the canopy of trees. With the overzealous creation of multiple focal points of a small scale, the sense of a space falls victim to the attention given to the particulars. It is important, for this reason and for the higher amounts of maintenance that they require, that flower beds and flower pots be used only at well-defined areas of intensively-used gathering, and then only adjacent to edges of pavement or buildings, rather than as “floating” beds within lawn areas. Their use to “dress-up” important aspects of the campus, such as entries, should be encouraged only to an extent that the addition of small plantings is appropriate to the scale of the surrounding space.

Floating beds and planters are not appropriate to the scale of the Mall and should be returned to simple lawn areas.

Lawns

Open lawns, on a scale not equaled by typical residential use, epitomizes the American collegiate landscape. The presence of a well-maintained lawn is critical for establishing the value of campus spaces such as the Mall and the Front Lawn, and of course, the athletic fields. The maintenance of lawns, however, presents a challenge to sustainable landscape practices. New developments in Integrated Pest Management, species, and irrigation should be employed to minimize the impact of lawns on the environment. In addition, areas which are not central to the life or image of the University community, but which need to be kept open, should be considered for replanting in species that maintain a short height with only semi-annual mowing.

The open lawn areas along the river west of College Avenue should be planted with a species requiring only semi-annual mowing.
Mow strips should be considered for installation at building perimeters to facilitate maintenance and mowing as well as to protect the building face from maintenance operations. Unit pavers are recommended for historic buildings; the color of the pavers should be selected to match or be compatible with the material of the building’s base.

Special or Memorial Plantings

The tradition of a class gift of an oak tree, mentioned in the Olmsted Brothers’ correspondence in 1933 raises a topic faced by many cultural landscapes and university communities. If this tradition is revived or if memorial tree plantings are proposed, it is recommended that the tree locations and species conform to a preexisting planting plan that in turn conforms to a landscape master plan for the University. In lieu of plaques at the base of plantings, it is recommended that a centrally and prominently located dedication board be instituted at the campus, which can serve to commemorate all of the gifts to the University’s landscape. It is also recommended that the University establish a protocol for the acceptance of memorial plantings that will ensure that the memorial gift is adequate to cover the cost of the selection, purchase, installation, memorialization, and long-term maintenance of the plantings.

Vehicular Circulation

The vehicular routes through the University orchestrate not only the daily experience of members of the community, but also greatly influence the initial impression of visitors, an impression that can only be made once.

The approach to the campus should be enhanced to provide a positive first impression for visitors and prospective students.

College Avenue and the approach to the campus from the northwest and southwest are marred by the line of utility poles along the road. This electrical, telephone and/or cable service should be placed underground.

Street trees should be planted along College Road except for in the Front Lawn area, where trees should be added along the roadside in an informal manner.
The arrival sequence within the campus should provide an opportunity for visitors to pass through the historic district along the original campus drive, in recognition of this area as one of the chief assets of the campus.

Maintain Sebec Road, the historic entry to campus, as a campus entry that serves the University’s administrative offices. Simplify vehicular circulation at the historic entrance through the possible closing of Schoodic Road and the reconfiguration of the Stodder lot parking entry.

Address the areas that are brought into the spotlight by directed views at the termini of roadways.

Remove or reduce the Alumni Hall parking lot to provide an appropriate initial view of the heart of the campus for visitors arriving via Sebec Road.

Screen the parking area north of Hart Hall to provide an appropriate terminus to Long Road. Reconfigure the western end of Long Road to provide a better route around the athletic complex.

Reduce pavement widths as necessary to provide a swath of lawn between the edge of pavement along a vehicular way and the buildings within the historic district.

Restrict Munson Road between Sebec and Long Road to one-way traffic to reduce pavement width along the new “fronts” of Wingate and Fernald Halls.

Remove the small parking area between Wingate and Fernald Halls and the spaces in front of Alumni Hall.

Minimize the service area behind Winslow Hall and the Maples and around the Cyrus Pavilion to provide an appropriate setting for the pavilion.

Clarify the identity of major vehicular ways and increase pedestrian and vehicular safety through the elimination of perpendicular parking along their routes.

Eliminate the parking along Sebago Road between the Maples and Merrill Hall.

Minimize the intrusion of parking areas into major campus spaces.
Reduce the negative impact of the Alumni lot. Five possible solutions to the intrusion of the lot into the Mall are: 1) Remove the Alumni parking lot; 2) Construct a new campus building along the western edge of the Mall between and possibly connecting Alumni and Lord Halls; 3) Construct a significant landscape element, such as a sculpture garden, in the space, with or without architectural components; 4) Reduce the parking area to hold the edge of parking behind the line of the adjacent building faces and substantially screen the lot with shrub and/or tree masses; and 5) Build a campus structure to screen the lot, such as a loggia or masonry wall that is compatible with the adjacent architecture.

Screen parking areas with tall hedges in the manner employed for the east side of Stodder lot or with evergreen trees as on the north side of the Balentine lot. Avoid plantings that do not form a mass planting.

Screen the west side of Stodder lot to lessen its impact on the approach to the University along College Avenue.

Screen the west side of Alumni lot to lessen its impact on the entry to the University along Sebec Road.

Provide vertical granite curbing at the edge of roadways to separate pedestrian and vehicular routes. Install curb with a continuous concrete cradle.

Avoid pavement markings. Address the safety concerns through careful roadway, walkway, lighting and crosswalk design and traffic calming measure of street tree plantings and raised tables at crosswalks.

Pedestrian Circulation

As with campus roadways, walkways at the University orchestrate the views and impressions for visitors and greatly influence the comfort of its community members. And although the expanse of pavement is much narrower than for a roadway, the proximity of the walkway to the face of a building can enhance or diminish the integrity of the building.
Separate pedestrian ways from roadways, serviceways, and parking areas by providing parallel pedestrian routes or by reducing pavement and parking.

Reconfigure Moosehead Road, the parking area behind Holmes Hall, and the service drive for the Library to provide a separate, desirable, pedestrian route through the area.

Reconfigure the parking lot west of Balentine Hall so that the parking area does not interrupt the pedestrian way linking the Mall with the residential quad.

Provide separate pedestrian walks near the back of curbs. Alternate routes closer to the building may be provided, but should not be created in lieu of curbside pedestrian paths.

Provide a sidewalk at the back of curb along Munson Road in front of the Maples.

Provide for pedestrian safety at crosswalks. Utilize raised crosswalks where appropriate to reinforce the identity of the area as a pedestrian zone. Design circulation routes to limit the crossings of major vehicular ways.

With the removal of the Steam Plant lot, the three existing crosswalks could be replaced with one highly visible crossing.

Reconfigure the intersection of Schoodic, Moosehead, and Munson Roads to shorten the crosswalk of this major pedestrian route.

Pedestrian ways should be located a comfortable distance from the face of buildings. The crowding of a building with a walkway detracts from the integrity of the building as well as diminishes the pedestrian’s comfort with the space and the building. This distance increases as the height of the building increases.

As walkways are repaved in the historic district, relocate walkways further from building faces. Relocate the walkways on the west sides of Fernald, Wingate, and Coburn Halls.

Pedestrian ways should be located to reflect current pedestrian needs. Adjustments to walkways to reflect pedestrian desire lines are preferable to the use of plant pots or other devices to direct pedestrian movement.
Provide walks of a sufficient width to accommodate current pedestrian traffic to avoid worn edges of adjacent lawn areas. Widen narrow walkways to the necessary width at the time of repaving. Consider the width of snow removal equipment used on campus in determining the desired width and intersection radii for new walkways. Hold walks 1” above finish grade of adjacent lawn areas to help protect adjacent lawn areas from being scraped by snow removal equipment. Provide adequate radii at all walkway intersections.

As walkways are repaved in the historic district, evaluate their width for appropriateness. Widen the walkways along the Mall, along the South Mall west of Rogers Hall, and between Stevens Hall and the Memorial Union.

Accommodate elevation changes necessary for universal access within buildings during renovation. When grade changes must be accomplished outside buildings, raising the ground form to provide a sloped walkway without handrails is preferable to a steeper ramp with handrails.

Select a material for standard pedestrian ways as well as a special materials, if desired, for use at building entries and gathering spaces. Use the standards consistently across the campus.

Site Structures and Furnishings

The selection of a unified and compatible palette of site furniture for the historic district is critical to maintaining its integrity. The application of this palette to the entire campus is recommended for integrating the historic district into the campus fabric and for the strengthening of the unique character of the whole University. Standards for the location of site furniture should be followed to ensure that the elements are used to promote campus life and safety, rather than to resolve circulation and maintenance problems.

Walls, Fences, Railings, and Bollards

Where sitting and/or terrace walls adjoin a building, the design of the wall should blend with or complement the building, employing the unit masonry, stone, or concrete.
used on the building, without creating a wall that bears no relationship to other walls on campus.

Next to exterior steps, walls are the best solution to integrating seating into the landscape. Their versatility as a seating surface should be maximized by providing ample width (18” to 24”) to accommodate sitting in many directions and positions.

With the construction of the new addition to Fogler Library and the reconfiguration of the entry space between the Library and Memorial Union, the walls included in the design should be wide to promote interaction and gathering.

Walls should be designed to not require foundation plantings.

The new wall surrounding the Library terrace has been carefully detailed and does not require foundation planting. These shrubs should be removed.

Fences should be used cautiously, as their presence lends a residential, rather than collegiate, quality to the landscape.

The area between Memorial Union and Rogers Hall should be studied to determine if the fence in this area can be removed or visually minimized.

Where fences are necessary, sufficient space in front of the fence should be provided to permit the planting of a shrub mass, rather than a single line of shrubs. Plantings in front of the fence should be simple to deemphasize rather than emphasize the fence. Fencing should be designed to be substantial and to permit the support of vines.

The planting in front of the fence at the Memorial Union should be simplified.

Low fencing to control pedestrian movement should be avoided. Where necessary, the design of such fencing should be based on the historic precedent at Alumni Hall.

When railings for site stairs and walls are closely related to a building, their design should be compatible with the architecture and possibly with interior railings. Railings and handrails within a space should reflect a campus standard that has been chosen for its timeless nature and compatibility with the variety of architectural styles on the University of Maine campus.
campus. In general, railings and handrails should be dark in color so that they blend into the landscape.

The railings on the Mall face of Aubert Hall should be repainted a dark color.

A standard bollard for use within the historic district and the campus as a whole should be selected. Its design should be related to the other metal site furnishings on campus, such as light standards, trash and ash receptacles, etc.

Campus Signage

An integrated signage system should be developed for the historic district, and the entire University, to aid in wayfinding as well as to reinforce the identity of the campus. This system should be distinctive and equally appropriate for placement in front of historic as well as new buildings on campus. The system should be comprehensive, including a unified treatment for a wide range of signage for the campus—“You Are Here” signs, directions for vehicles and pedestrians, and building identification (both free-standing and wall-mounted), as well as the smaller signs necessary for the proper functioning of the campus community, such as traffic regulations, parking identification and restrictions, restricted vehicular access, and universally accessible entries. The signage system should include significant new signs at the major campus entries. At present, the entrance signs offer an uninspired, corporate image, certainly not in keeping with the University’s new logo and graphics campaign. New entrance signs should be designed to coordinate with other new campus signs, to establish an identity at the entry that is carried throughout the campus. This consistency can be achieved through the use of the same typeface, color, logo, and/or material.

The signage system should include guidelines for the placement of all of the sign types and a protocol for approving all signage requests and proposals, which considers each request in light of its role within the entire signage system.

Move the Farmer’s Market sign to a less prominent location, to avoid diluting the identity of the campus.
The area around entry signs should be planted in a manner that reflects the large scale of the space in which they are located and the speed with which they are viewed from the road. A simple carpet of lawn or an extensive planting of groundcover is an appropriate treatment of the ground plane. Unless an extensive planting of shrubs can be integrated into the landscape, their use is not recommended; rather, the continuation of large deciduous tree planting already occurring in the area or the planting of a large grouping of flowering trees is suggested.

The area surrounding the existing entry signs should be cleared of other items that detract from the appearance of the sign—traffic signage, light poles, utility poles, and directional signage. A minimal amount of directional information should be considered for inclusion on the entry sign itself, such as the addition of a line of smaller letters below the “University of Maine” that gives the name for the entry. The setting for new entrance signs should likewise be free of distractions and clutter.

Campus Lighting

The ubiquity of light fixtures on a university campus provides an important opportunity to unify and enhance the landscape. This opportunity should be seized by the University, through the adoption of a standard light fixture for use throughout the campus. The fixture should be relatively timeless in design to be compatible with the variety of architectural styles on campus.

If the new light fixture used at the library steps is to be adopted as the campus light standard, the fixture should be reviewed for design features that eliminate light pollution and minimize energy consumption.

Separate fixtures can be utilized for pedestrian versus vehicular ways, or if appropriate, a higher mounting height for the same fixture may be used to differentiate circulation. Building-mounted fixtures should be selected for their compatibility with the freestanding fixtures and the architectural design of the building, to provide a welcoming identity for destination entries and to help light the perimeter of campus open spaces (rather than filling the space with post lights).
The vehicular-scaled fixture along the Mall should be replaced.

Light fixtures should follow pedestrian and vehicular ways, utilizing a standard setback from the edge of pavement or back of curb.

Relocation of light fixtures currently in the lawn at the front of the Library should be considered. If their relocation to the edge of the adjacent pathways fails to provide adequate illumination for the terrace, other fixtures should be considered for the terrace that are integral to the face of the wall or installed on the top of the wall.

Light fixtures should be spaced to provide an adequate and consistent lighting level across the campus that adheres to the light level recommended for college campuses and in response to solicited input from the community. Wherever possible, lighting levels at buildings and building entries should be increased to illuminate the edges of spaces and permit views through the spaces.

Emergency Phones

Emergency phones should be carefully placed on the campus in response to solicited input from the community. Phones should be placed at critical areas; where sight lines may be minimal; where people wait in the evening hours; and for the full length of major pedestrian ways that connect key areas of campus. Emergency phones should be located so that a phone can be seen from any point on campus that is used in the evening hours. Emergency phones should be placed in areas that have adequate lighting.

Emergency phones should be placed on pads which are one foot from the edge of pavement and are adequately sized to accommodate the phone user and meet the requirements of the Americans with Disabilities Act (ADA).

Benches

Site walls should be the primary seating surface at gathering spaces; benches may be added where walls cannot be integrated into the design of the space.
The bench selected for installation in the historic district, as well as the campus as a whole, should be simple, transparent, and timeless in design to be compatible with the variety of architectural styles on campus.

The selected bench should also be available in a backless version, for use in low profile gathering areas at the front of buildings. The bench should provide comfortable seating. The discomfort of metal seats in cold weather may render a metal bench inappropriate for the University.

To promote social interaction, place fixed benches in groupings and at right angles to one another where space permits. In addition, ensure that there is additional space adjacent to bench groupings to accommodate wheelchairs.

Fixed benches should be placed on pavement at gathering spaces or on pads of pavement adjacent to walkway in areas conducive to seating. The pad for the bench should be of the same material as the walkway, or of a standard unit paver selected for its compatibility with the walkway surface. Locate the front of the bench a minimum of two feet from the edge of narrow walkways to prevent seated users from creating a tripping hazard. Size the pavement pad for benches with backs to extend one foot beyond the sides and backs of the bench. For backless benches, the pad should extend two feet beyond the edges of the bench.

The provision of movable seating for use along the Mall and in other major spaces is recommended. Not only can seating be relocated by users to respond to current social needs as well as seasonal changes, but the resulting groupings of benches/chairs and the gatherings they reflect enliven the campus long after their occupants have left.

Bicycle Racks

The size of the campus makes the bicycle an ideal form of transportation during most of the year. The provision of additional bicycle racks and secure, sheltered storage for bicycles should be investigated for their potential encouragement of bicycle use. Bicycle racks should be located on campus in response to solicited input from the community.
The bicycle rack selected for use throughout the historic district and the campus should be attractive, yet as unobtrusive as possible, and lend itself to installation in a variety of situations. If the bicycle rack installed in front of Oak Hall has worked successfully and is to be adopted as the campus standard, current installations should be evaluated to arrive at dimensional and material guidelines for future locations. Racks should be placed on pavement for ease of mowing and maintenance.

Trash Receptacles, Ash Urns, and Dumpsters

The trash receptacle and ash urn selected for use throughout the historic district and the campus should be attractive, yet as unobtrusive as possible.

If the new trash receptacle used at the Memorial Union is to be adopted as the campus standard, the success of the receptacle should be reviewed by the Facilities Department.

Trash receptacles should be located at gathering areas, near building entries, and near groups of benches, but with a minimum of five feet to the nearest bench to avoid detracting from the comfort of the bench. Locate ash urns where they reflect the smoking policy of the University. The ease of access for trash removal by the Facilities Department should be considered in the placement of receptacles and urns.

Trash receptacles and ash urns should be placed on pavement for ease of mowing and maintenance. Where located along walkways, provide a pad of the same material as the walkway, or of a standard unit paver selected for its compatibility with the walkway surface. Position the receptacle or urn so that it is one foot from both the edge of the walkway and the edges of the pad.

The location of dumpsters must be given careful consideration, for often the best location for a dumpster from the standpoint of servicing may be the most visible location. The screening of dumpsters should be undertaken where space is sufficient to enclose the dumpster within a mass of planting. The screening of a dumpster by a single row of vertical evergreens often merely replaces one visual intrusion with another. (See guidelines for shrubs above.) Dumpsters may also be screened with architectural
enclosures that should be constructed of the same materials with the same design aesthetic as the building with which they are associated.

Planters

Due to the intensive maintenance requirements of potted plantings, use planters sparingly at intensively used gathering spaces only, where beds cannot be used to accommodate the planting of flowers. Planters should be placed on pavement rather than on mulched or lawn areas.

Distinctive Features

Opportunities for sharing the history of the University with the community should be sought. The addition of interpretive elements and art can enrich a community’s experience of a landscape, but should be approached in a comprehensive manner to ensure that they enhance rather than interrupt or overwhelm the landscape. Sites for the elements should be selected that do not require the manipulation of grades or the addition of plant materials, allowing the landscape to flow, interrupted only by the element itself.

It is also recommended that the addition of interpretive elements and art to the campus should be undertaken through a consistent design review process, which utilizes a standard protocol for the acceptance, placement, as well as funding the long-term maintenance of the site element, and in the case of temporary installations, the restoration of the site following their removal.

Some of the ivy plaques placed on academic halls in the late 1800s have been removed. Institutional memory should be consulted regarding the location of plaques that have been removed and the circumstances surrounding their removal. If the plaques remain, they should be reinstalled following an evaluation of the effectiveness of their previous mounting detail and a redesign of that detail if necessary.

The copper artichoke finial from the dome of the Carnegie Library has been held for the University by a member of the community since its removal forty years ago. Ideally, this ornament should be returned to the top of the dome as part of a restoration of the original
exterior and interior features of the building. In the interim, or if such a restoration does not take place, when the proposed addition to the Fogler Library is constructed and the surrounding site is redesigned to accommodate new circulation patterns, a location for the finial, either inside the building or outside its entry, should be found.
VI. Recognition and Designation

The University of Maine community views the Orono campus as special. In physical terms, the campus is a collection of buildings and landscapes with strong visual and organizational relationships, creating a sense of place. Each of the individual buildings featured in this plan is an important element within building groups as well as with regard to the campus as a whole. Thus, each building plays several roles by providing interior space for University programs, by relating to other buildings and landscapes, and by playing a part in the physical representation of the University to those who come into contact with it.

The individual buildings and ensembles of buildings, as well as the open spaces around and between them, create the campus context. By recognizing and designating many of the existing buildings and landscapes as historic, and by
advocating for their continued presence and use, we assure that the traditions of the University are preserved. The continuum of buildings and settings reflects the enduring mission of the University and provides an inspirational environment for those who live, learn, teach and work on the campus.

In preservation planning, a historical context is an organizational format that groups information about related historic properties, based on a theme, a common use precinct, geographic limits, or chronological period. There are many contexts to consider on most university campuses, and the University of Maine is no exception. Themes that come to mind include those relating to disciplines or departments (engineering, natural sciences), or to campus development patterns. Geographic contexts might include the core campus or the buildings and landscapes that focus on the Mall. The 19th-century buildings of the Olmsted campus, or buildings constructed during the post-war enrollment boom, suggest a chronological context.

Historic contexts are the cornerstone of the planning process. Future preservation planning, including preparation for the expansion of the historic district, should consider the range of contexts as the basis for research, designation, recognition and protection. Using context to organize preservation activities ensures the preservation of properties that represent the comprehensive history of the University, rather than only a small, biased or incomplete sample of its historic resources.

The existing National Register District represents a significant but limited context. As the district is expanded, additional contexts will need to be researched and

The core campus in the early 1900s. Note the young tree growth and the lack of “goat paths” – pathways created when formal walkways are missing.
documented. An expanded district will encompass a much broader range of attributes and characteristics of the University’s buildings and landscapes, providing a more comprehensive view of the development and interrelationships of the historic resources of the University of Maine.

Recognition

The importance of twelve of the Tier One buildings has been acknowledged by virtue of their being listed on the National Register of Historic Places, either as part of the University of Maine at Orono Historic District or individually. The thirteenth Tier One building, Crossland Hall, has been added to the list of the University’s most important buildings as part of the Historic Preservation Master Plan in recognition of its historical significance and its endangered position. Crossland has been extensively altered over the years both inside and out, preventing it from being listed on the National Register. The building occupies prime real estate overlooking one of the main entrances to the campus and the Stillwater River. Thus it can be considered threatened, though no current or future plans affecting it are known at this writing.

The National Register of Historic Places

The National Register is an inventory of the nation’s historic places, and the national repository of documentation of these places. The Register is administered and maintained by the National Park Service, U. S. Department of the Interior. The criteria that are used to evaluate historic resources for placement in the Register are:

The University is fortunate to possess a wealth of archival material, such as this original drawing of the west elevation of Rogers Hall, to facilitate research and rehabilitation projects.
- significance in American history, architecture, archeology, engineering, and/or culture as embodied in districts, sites, buildings, structures, and objects that possess integrity of location, design, setting, materials, workmanship, feeling, and association; or.
- association with events that have made a significant contribution to the broad patterns of our history; or
- association with the lives of significant persons in our past; or
- embodiment of the distinctive characteristics of a type, period, or method of construction, or that represent the work of a master, or that possess high artistic values, or that represent a significant and distinguished entity whose components may lack individual distinction; or
- possessing or may be likely to possess information important in history or prehistory.

Significance can be at the local, state or national level. The University of Maine District was nominated to the Register at the state level of significance.

Placement of a property in the National Register provides three basic benefits for the historic resource(s):

1. Recognition
2. Documentation
3. Protection

Recognition of the historic and architectural significance of the 19th-century core of the University of Maine campus was formalized by the Maine Historic Preservation Commission, which submitted the National Register Inventory – Nomination Form for the district in 1978. While it is fair to say that there was recognition of the importance of these resources in the campus community in years prior, the National Register District was created at the behest of the Commission, rather than on behalf of the University, in order to formalize such recognition. The creation of the District stimulated interest in the historic buildings and landscapes of the campus within the University community and the towns of Orono and Old Town. At the same time, it caused concerns within the administration, the faculty, and Facilities Management that such designation could interfere with plans for the use of existing buildings and for new construction – concerns that
have not materialized in the almost thirty years since designation.

The individual nominations of the Page Barn and the Patch House were promoted by individuals and groups with special interests in these properties and the people historically associated with them. In the case of the Patch House, listing in the Register probably saved the building from destruction. The recognition of the Page Barn formalized the building’s place in the broader University community and made the non-profit organization that restored the building and operates the Page Farm & Home Museum eligible for a variety of preservation and museum funding programs.

Original drawings are primary resources for rehabilitation projects and for the documentation needed to expand the Historic District. – Courtesy WBRC Architects/Engineers

The documentation of these buildings and sites in the National Register forms provided many members of the campus community with their first glimpse of the history of these resources and explanations of their importance. Until very recently, however, little additional work was done to increase knowledge of the core buildings and landscapes or to begin looking beyond the boundaries of the present district and individual sites. The events leading up to the reactivation of the Campus Planning Committee and to the decision to undertake a historic preservation master plan for the campus, including the important inventory conducted by Sara Martin in 2001, resulted in the successful Getty Campus Heritage Grant application and the creation of significant new documentation of University of Maine historic resources. The Historic Preservation Master Plan includes a wealth of new documentation of buildings and
landscapes up to the modern period, and lays the groundwork for an expansion of the existing National Register District as described later in this section.

The degree of protection offered directly by listing in the National Register is limited to review processes triggered by state and federal environmental laws and by federal licensing and funding requirements. These processes are described in more detail in the next section of this plan.

Recognition and Designation at the University Level

While National Register criteria are recognized throughout the country as a valid method of evaluating the significance of historic properties, they do not reflect many local issues that may have an impact on the day-to-day decisions that must be made at the University level. The aforementioned Crossland Hall is a good example. While it does not currently meet National Register criteria, and may not be considered eligible for the National Register, Crossland represents a structure of importance within the immediate context of the University of Maine. Factors other than the NR criteria should be considered when preservation decisions affecting this building are made.

These factors can be positive or negative. For example:

- serious building code, life safety code, or accessibility deficiencies
- presence of hazardous materials
- existing conditions and degree of functional obsolescence
- reuse potential
- compatibility with the campus master plan
- important location or siting, or contribution to a significant context
- potential for catalyzing further positive development
- development opportunities that will be foregone if the subject building is preserved
- association with University history, culture, and/or campus life
- representative of an important period of campus development

Such factors must be incorporated into the decision-making process with regard to current and future use of University
properties in order to evaluate rationally their utility, function and significance within the University community.

Planners at the University of Minnesota have developed a process for evaluating the significance and importance of historic resources at the system-wide and individual campus levels. In addition to evaluating each resource using National Register criteria, Minnesota determines the University Preservation Value of the building or landscape in question by using a matrix system. The University Preservation Value represents a general analysis of each resource’s importance to the physical and historical development of the University of Minnesota. Using National Register and UPV evaluation matrices, Minnesota preservationists and planners rank the resource in multiple categories and prepare a statement of preservation value to summarize the results.

We suggest that a similar approach be adopted at the University of Maine. Thus in addition to evaluating a building or landscape in terms of National Register criteria, another system of evaluation and designation tailored specifically to the University of Maine should be created and implemented. To establish a local preservation value for each building or landscape, the subject resource should be evaluated according to the ten criteria listed above, using a ranking system such as high, average, or low for each factor.

By assessing each resource against both the National Register criteria and the University criteria, a property might emerge from the process as not necessarily eligible for the National Register, but as having a high level of significance to the University and/or the campus. Crossland Hall might never be listed in the National Register, but if it were assigned a high University-level preservation value, it could be assigned the same level of recognition and protection on campus as a National Register-listed property. This process will allow the University to balance a building’s historic significance and integrity, programmatic value, conformance with the University’s mission, and locational importance, with economic factors.

Once a resource is analyzed in this manner, and a summary report is prepared for it, the building or landscape can be assigned a preservation priority. The University of...
Virginia uses a two-part process to set preservation priorities. The first part examines the importance of the resource to the University, assigning a priority factor from highest to lowest based on the resource being:

1. Fundamental to University history and character
2. Essential to University history and character
3. Important to University history and character
4. Contributing to University history and character
5. Not contributing to University history and character

The second part considers the integrity of the historic resource, again from highest to lowest priority, based on whether the resource is:

1. Intact – unaltered
2. Substantially intact – altered but essential character is clearly discernable
3. Compromised – altered, with essential character still discernable
4. Destroyed – altered, but essential character is completely effaced

If, after going through this process, a National Register building were assigned a low University Preservation Value and a low preservation priority (if, for example, it had code and hazardous material issues that were beyond the fiscal resources of the University to address, was in a prime location, and/or was not suitable for an appropriate reuse in its location), the building might be moved or removed. Thus a procedure is set in place to assure the preservation of the most significant properties while allowing for the selective removal of structures which, after careful analysis, are deemed beyond appropriate rehabilitation.

University Preservation Value can also be used to recognize the importance of newer buildings that do not meet the traditional 50-year age criteria used by the National Register in most cases. Sometimes these buildings were not intended to be permanent, or were designed for a specific and possibly temporary use. Perhaps their technical systems were designed for a particular program and would be challenging to alter. Often they were products of budgetary and programmatic constraints, and were built of low-quality or experimental materials. These factors can be taken into account at the
local level to determine the preservation value of newer existing buildings.

Landscapes should also be carefully reviewed through the prioritization process. Many of the University of Maine campus landscapes are not likely to meet National Register criteria; but there are broad patterns of site development that have evolved over time, as well as small landscape elements that define and characterize the campus. These essential components of the campus environment are often taken for granted and altered without a review of their origins or the legacy they embody. Using a priority-setting process such as that described in this section, University officials can provide a framework for consideration of these landscape elements in campus planning and project development.

Although University Preservation Value should be used to make sure that properties that do not meet National Register criteria but are of great importance to the campus are recognized and protected, properties listed on the National Register should continue to receive the highest level of preservation consideration. Concurrently, those properties that are determined to have the highest preservation priority but are not yet on the Register should be nominated to the NR in order to obtain the appropriate degree of recognition and protection. These buildings and landscapes should be designated as permanent elements of the campus of the future unless a strong case is made, through the process outlined in this and the following section, to justify removal.

By applying both evaluation processes to potential development projects, and then systematically prioritizing its historic resources, the University community can weigh all of the many issues that contribute to a preservation decision in a rational and comprehensive manner.

Public Awareness

The only formal recognition of the significance of the historic architecture and the landscapes prior to the preparation of the University of Maine Historic Preservation Master Plan was the National Register designation of the district and the two individual properties. Therefore, one of the basic goals of the Historic Preservation Master Plan is to expand public awareness of
Recognition and Designation

The University of Maine campus heritage has been accomplished in part through the University of Maine Campus Heritage Lecture Series, four programs held in the winter and spring of 2005; an exhibit entitled “Buildings, Students, Traditions” in the Memorial Union from April to October of 2005; and the publication of this Historic Preservation Master Plan. Recognition efforts will continue with a lecture series planned for the spring and fall of 2007 to be focused on the recommended expansion of the historic district, the promotion of a University Preservation Value designation process, and plans to publish portions of the Historic Preservation Master Plan as a guidebook to campus history, architecture and landscapes.

The increased recognition of the core campus resources and of additional buildings and landscapes beyond those currently listed in the National Register sets the stage for an expanded designation of these resources based on their historical, architectural, and landscape significance as well as their preservation value within the University context. By recognizing these newer structures and landscape features as well as the older ones already listed on the Register, the University can make thoughtful and informed decisions as it responds to the challenges of long-range strategic and campus planning efforts while preserving its irreplaceable cultural and historical legacy.

One of the exhibit panels of the “Buildings, Students, Traditions” exhibit mounted in the Memorial Union as part of the Historic Preservation Master Plan project.

Located at the College Avenue north entrance, Crocker Hall predated the University. Built in 1850 by Colonel John Goddard, then editor of Norway Free, it was one of two farms acquired by the Maine State College in 1866. Renamed North Hall, it was the home of Merritt Permal, the college’s first faculty member and second president. Beta Theta Pi occupied the building until 1915, when the building was moved to its present location. In its long history as a campus building, North Hall has served as a Home Economics Practice House, a women’s cooperative dormitory, a dormitory for freshmen men, the campus infirmary, and the Alumni Center. In 1986, it was renamed for Charles Crocker, former Director of the General Alumni Association and Acting President. When the Alumni Association moved to the Rockefeller Alumni House in 2002, Crocker became administrative offices for a variety of programs.

Built in 1887 as the college farmhouse, The Maples reflects the University’s agricultural heritage. Up to the early 1960s the farm house lived in the house, surrounded by several barns and outbuildings. Students and faculty engaged in farm-related agricultural experiments. In 1964, the house was changed from “Farm House” to “The Maples.” In the early 1990s, agricultural experiments moved from campus to farms in Siddins and Old Town. From the early 1880s to 1990, campus farmland decreased from 370 to 36 acres. The building has housed agricultural professors, a campus hospital, a women’s dormitory and offices and laboratories for the Agriculture Experiment Station and the College of Agriculture. It currently houses the Philosophy Department faculty and administrative offices.

Alumni Hall was built in 1901 as a drill hall, gymnasium and chapel. Attendance at chapel services was required from 1865 to 1924, but many students objected to this requirement. In 1868, seven students were temporarily suspended for their refusal to attend chapel. The students were reinstated after they agreed to follow the rules. In 1914 Alumni Hall was converted to administrative offices, utility shops and the Little Theater. The gym was assigned to female students after the Memorial Gym was built in 1933. In 1965/66 the Alumni Hall gym was torn down to make space for a public television studio.
Balentine Hall is a Tier Two building being recommended for inclusion as a contributing building in an expanded National Register Historic District.

Designation

Based on the documentation of the existing buildings and landscapes of the University of Maine campus compiled during the preservation planning project, the planning team recommends two major steps in recognizing these significant resources.

Expansion of the University of Maine At Orono National Register Historic District

The buildings and landscapes identified in Sections IV and V of this plan as Tier Two resources have been recognized as meeting one or more of the criteria for listing in the National Register of Historic Places. The staff of the Maine Historic Preservation Commission was consulted with regard to an expansion of the existing district to include the fifteen Tier Two buildings, Crossland Hall, the University Mall landscape, and campus landscapes to the south and east of the Fogler Library (see accompanying Tier Two map).
The Commission staff endorsed the proposal, on the basis that these buildings and landscapes “reflect the campus’s important growth period between 1911 and the start of World War II. In our judgment these properties meet the test for integrity and significance required by the criteria for listing in the National Register of Historic Places as an historic district, and as such merit preservation.” The preliminary boundaries of the expanded district, as well as the boundaries of the district as it exists today, are depicted on the map on the following page.

The buildings being added to the district, along with the landscapes that surround them, are as follows:

- Crossland Hall
- Memorial Gym
- Hannibal Hamlin Hall

Tier Two Map. Map by Michael Hermann, UMaine Canadian-American Center
Current and proposed National Register designations. Map by Michael Hermann, UMaine Canadian-American Center
The proposed district expansion also includes the area referred to in the Historic Landscapes section of this plan as the Front Lawn. This green space is located between the core campus and College Avenue, and includes the riverfront sector now occupied by the parking area known as the Steam Plant lot and by the University Dock and Picnic Area. Open spaces at both the Munson Road entrance (adjacent to the Buchanan Alumni House) and the Long Road entrance (at Alfond Arena) are also within the proposed adjusted district boundary.

Adding these buildings and landscapes to the Register is more than a recognition effort – it is a strategic move as well. Several of these buildings figure in current University facilities planning. Therefore, placing them on the Register will assure that projects affecting them are subject to a thorough review potentially including the federal Section 106 process, the state DEP permitting process, and consideration by the Campus Planning Committee and the Arboretum Committee.

Once a process is in place for assigning a University Preservation Value to University historic resources, there may be some buildings or landscapes that are not found to meet NR criteria (thus designated in the Nomination as non-contributing) but which have a high local preservation value. On that basis, these buildings or landscapes would be assigned a high preservation priority and be subject to another layer of designation and protection that could be applied if the expanded National Register district were also designated by the University as a local historic preservation district. In that case, buildings designated as non-contributing in National Register documentation, but having a high local preservation value and a high preservation priority, could be protected by the local district designation.

The process of expanding the NR district should begin with the CPC, representing the University. The CPC should initiate the nomination (initiation by the owner is considered a much more positive beginning to the designation process than initiation by the State Historic Preservation Office, as was the case with the original district) by either inviting the MHPC to prepare the nomination amendment or designating a University group or consultant to conduct necessary research and prepare the documentation.
During and upon completion of the drafting of the amendment, MHPC will review the documentation. The MHPC will request or conduct additional research to fill any gaps in the documentation. The official Inventory – Nomination Form for an amendment to the original district will be submitted for final review by MHPC staff. Finally, the completed amendment form will be reviewed by the MHPC (state level) and by the Keeper of the National Register (federal level). Local preservation organizations should be given the opportunity to review and comment as well.

The expansion of the Historic District is not to be taken lightly. Expanding the district as recommended will more than double the number of designated buildings and quadruple the designated land area. Controls, in the form of review processes, will be applied at the federal, state, and University levels. However, the process of expanding the District will result in a better understanding at the University level of the nature of the institution’s historic resources and their significance in the University-wide campus and Orono contexts. By accepting and utilizing
these review processes, the University will be responsible for considering how best to preserve and use its historic resources while planning for the inevitable changes that, with proper consideration, should be embraced by the University community.

The preservation planning team strongly recommends the expansion of the Historic District and the development of a local preservation value evaluation process. The CPC has already acknowledged the importance of the district expansion and the MHPC has endorsed the effort. It is now up to the University administration to initiate the process (see Section VII: Protection of Historic Campus Resources for more detailed implementation recommendations).

Areas for Further Study

Tier Three Buildings

The buildings identified and evaluated as Tier Three are either relatively modern buildings, such as Boardman Hall; buildings that have been substantially altered, such as Jordan Observatory or Memorial Union; or buildings that have a lesser level of significance than Tier One or Tier Two buildings, such as the Steam Plant. Most of these buildings are in the proposed expanded National Register district and could be designated as contributing buildings (based on further research) or could be non-contributing under NR criteria but with high local preservation value (see map on p. 14). The complete list of Tier Three buildings includes:

Little Hall, occupying prime real estate on the Mall, is an example of a modern building that will soon reach the fifty-year mark. It is designated as a Tier Three building, one that will require further study to determine if it merits inclusion in the historic district.
- Boardman Hall
- Chadbourne Hall
- Corbett Hall
- Deering Hall
- Dunn Hall
- Hart Hall
- Jordan Observatory
- Little Hall
- Memorial Union
- Steam Plant

Tier Three Map. Map by Michael Hermann, UMaine Canadian-American Center
Although some of these buildings may not meet National Register criteria at present, those that are simply newer will meet the 50-year age guideline in the near future and could score high in local preservation value before then. Those buildings that have been altered need to be studied in more detail to ascertain whether their historical and/or architectural importance outweighs the changes they have undergone. The Steam Plant, by virtue of its utilitarian design and use, may not be an obvious choice for recognition and designation, but again, further investigation of its history could lead to a different assessment of its value as an historic resource on the University campus.

The consulting team thus recommends that the Campus Planning Committee revisit the Tier Three buildings by the year 2010, by which time all of the buildings except Little Hall will be more than 50 years old. Additional research should be authorized, beginning with the preparation of the expanded National Register District amendment, to evaluate the National Register eligibility of these structures, and to determine their importance to the University of Maine community for other forms of recognition and protection. We suggest that the evaluation and documentation of Tier Three buildings should be undertaken by a consulting architectural historian or a faculty/student team with a high degree of expertise in modern-era architecture and landscape architecture.

Sorority and Fraternity Houses

There are at least twelve current or former sorority and fraternity houses that were surveyed in the 2002 architectural inventory. The historic names of these houses are as follows:

- Alpha Gamma Rho House
- Alpha Tau Omega House (now Chi Omega)
- Beta Theta Pi
- Delta Tau Delta House
- Sigma Chi House (now Heritage House)
- Lambda Chi Alpha House
- Phi Eta Kappa House
- Phi Gamma Delta House
- Phi Kappa Sigma House
- Sigma Alpha Epsilon House
- Sigma Nu House
- Tau Kappa Epsilon House
Most of these buildings are situated on the banks of the Stillwater River. Many of them have architectural significance, having been designed by notable Maine architects such as Crowell & Lancaster, John Calvin Stevens, and Alonzo J. Harriman, as well as out-of-state architects such as Little & Russell (Boston). In addition, they also have associative significance with regard to the social history of the University and the individual organizations that built them.

Many of these houses have been substantially altered and/or suffer from a lack of maintenance over the years. However, it is likely that several of them would be considered eligible for the National Register upon review. All of those listed above are more than 50 years old; and

The Phi Eta Kappa House, built in 1908 in the Arts and Crafts style, is one of several Greek houses on or near the University campus that merit further study and possibly designation as historic resources.

Historic resources that merit further research. Map by Michael Hermann, UMaine Canadian-American Center
there are other, modern, sorority and fraternity houses that may be worthy of inventory in the future.

The consulting team thus recommends that the Campus Planning Committee undertake a thorough investigation of the fraternity and sorority houses within the next five years so that determinations of eligibility may be made. We suggest that the preparation of Multiple Property Documentation Forms, which are documents that develop the historical context for a property type, be considered for submission to the MHPC. These forms would be used by MHPC and the National Park Service to determine which of the houses would be individually eligible for listing in the National Register.

We understand that several of the houses are owned by the fraternities and sororities, not by the University. With this in mind, the CPC will need to work with the Greek organizations to document the histories of the buildings; to educate the organizations with regard to the significance of the properties; and cooperate with the organizations to obtain permission for listing. The research, documentation and preparation of inventory forms could be placed in the hands of a University faculty/student team of architectural historians as a graduate-level project.

Off-Campus Resources

The University of Maine owns several properties beyond the boundaries of the Orono campus. Some of these include structures and landscapes that may be of significance, while some are recently-constructed and therefore are of no historical interest at this time. The following is a list of these properties, their locations, and their affiliations:

- Aroostook Farm, Presque Isle, Maine Agricultural and Forest Experiment Station (MAFES)
- Blueberry Hill Farm, Jonesboro, MAFES
- Darling Marine Center, Walpole, Marine Resources
- Highmoor Farm, Monmouth, MAFES
- Humboldt Field Research Institute and Eagle Hill Foundation, Steuben, Natural History
- Hutchinson Center, Belfast, Lifelong Learning
- Rogers Farm, Stillwater, MAFES
- Jacob Shur Research Facility, Crystal, MAFES
- Witter Farm, Old Town, MAFES
All of these but the Shur Research Facility and the Hutchinson Center should be inventoried in the near future. The Darling Center and all of the farms are collections of rural buildings, some of which (particularly farmhouses and barns) may be of historical and/or architectural significance.

We recommend that the CPC, with the guidance of the MHPC, create a scope of work and provide University students, under faculty direction, with the opportunity to survey and document these sites. The MHPC should then evaluate the documentation and determine whether any of the structures and/or landscapes at these sites is eligible for the National Register. CPC should then contract with a qualified consultant or with University faculty and students to prepare National Register Inventory-Nomination Forms for any of these resources that are determined to be eligible for the Register, and submit the forms to the MHPC for consideration.

Listing the historic resources of the University of Maine in the National Register of Historic Places is the most fundamental and widely-recognized way to make the many interested parties within the University community, and others with an appreciation of university design and history, aware of their importance and value. Evaluating these significant buildings and landscapes in terms of University-specific contextual issues and according to University-established values will provide the CPC with a powerful tool for managing these resources. Therefore, the expansion of the existing Historic District, and the study of additional campus buildings and landscapes as described earlier, are two of the most important recommendations of the University of Maine Historic Preservation Master Plan.
VII. Implementation: Protection and Process

The University of Maine Historic Preservation Master Plan for the first time collects in one document histories of the oldest buildings and landscapes of the University, as well as analytical summaries of existing conditions, technical preservation information, maintenance and preservation guidelines, and recommendations for adaptive reuse. This information will promote informed decision-making by the University as it implements strategic and master plans, makes day-to-day maintenance and operating decisions, and plans for the preservation of its cultural and physical past.

Winslow Hall exhibits many of the features and materials that define the historic buildings of the University of Maine campus: slate roofs with metal trim; brick walls with stone trim; distinctive wood windows; and dormers, cupolas and towers.
As this information has been discovered or collected and distributed, the University has come to understand the significance of its historic resources, as individual buildings, building groups, and landscapes, within a campus-wide context, and within the broader contexts of institutions of higher education in the State of Maine and of state land grant universities nationwide. The irreplaceable structures and landscape features of the Orono campus have now been recognized as important historical and economic resources. The final pages of this plan provide suggestions for implementing the recommendations of the plan by protecting the resources through an institutional process and using that same process to plan for their continued use as the University evolves and changes in the future.

Protection

The buildings and grounds of the University of Maine campus that are listed in the National Register of Historic Places, either as individual properties or as contributing resources in the Historic District, are protected from unsympathetic changes if the work proposed is funded and/or licensed in whole or in part with federal dollars. The degree of protection offered directly by listing in the National Register is limited to a review process called Section 106 that was established in the National Historic Preservation Act of 1966. This process also comes into play when a property that is considered by the State Historic Preservation Commission to be eligible for the Register could be affected by a project that is funded in whole or in part by the Federal Government. Projects undertaken by the Maine Department of Transportation often trigger this process.

In addition, all campus development projects are subject to review by the Maine Historic Preservation Commission (MHPC) because of the provisions of state and local site environmental and regulatory permitting. The entire campus is subject to the Site Location of Development Law, which is administered by the Maine Department of Environmental Protection (MDEP). Any proposed improvements involving site construction must be reviewed and approved by MDEP.

The law requires that MDEP must evaluate a project’s impact on historic and scenic values and resources (such as buildings, landscapes, or archeological resources).
Typically, this review is referred to the MHPC and is carried out by the Commission’s staff. Projects that are listed on the National Register or that are considered by MHPC to be eligible for the Register are afforded a degree of protection from adverse impacts. Under current practice, the MDEP does not always request MHPC review, and this has led to the damage or loss of historic resources from time to time.

At the local level, depending on the size of the project, proposed improvements may require review, approval, and issuance of a building permit by the Code Enforcement Officer of the Town of Orono. In some cases, review and approval by the town Planning Board may be required, prior to obtaining a building permit. The University and its lands have specific designation in town ordinances as the UNIV zone, with defined allowable uses and space, bulk and dimensional requirements. There is no process currently in place for project review with regard to impact on historic resources at the local level, but the potential exists for such a new level of review with the improved documentation and recommended expansion of the Historic District.

With any proposed development, a determination of size and impact should be made to understand what level and extent of site environmental and regulatory review and approval will be required. Informational or pre-application meetings with local and state regulatory authorities should be held early in the planning and design process to determine what level of permitting will be necessary.

By expanding the district as recommended previously, this level of protection – basically requiring such projects to be subject to a methodical and rational consideration of impact and alternatives – will be applied to the physical resources of the campus that are currently considered to be historically significant by experts in their fields. In addition, the groundwork has been laid for further extending this level of protection, through identification of buildings and landscapes that have potential for future designation.

Although the protections offered by National Register listing are important, it is strongly recommended that the University adopt its own protective mechanism, one that is more specifically tailored to the resources themselves and
to the issues that have an impact on the ongoing operations of the institution and the future changes that affect it. For example, although several buildings (those labeled as Tier Two and Three) have been identified as potentially eligible for National Register listing, planners may have to decide occasionally whether retaining one of these buildings, or replacing it with an important new building, is more consistent with the University’s long term interests and goals.

Section VI of this plan contains suggestions for recognizing the University Preservation Value of campus historic resources. A set of criteria reflecting significant campus issues encountered by project planners on a day-to-day basis would be applied to each affected historic resource to compliment the more academic evaluation procedure of the National Register process.

By combining the National Register process with a rationale based on local preservation values, those entrusted with the care of the University of Maine’s historic resources can set priorities for development projects. The process of applying these two sets of criteria must be developed and institutionalized to allow University planners to determine which historic resources are deserving of the highest level of protection, i.e. which ones must be preserved, versus those that may be considered expendable under certain circumstances.

Each building and landscape element should be evaluated in terms of National Register and University Preservation Value criteria in order to implement the recommended level of protection. A file should be created for each historic resource. Each file would contain the original inventory documentation for that resource, information contained in the Historic Preservation Master Plan pertaining to that resource, a matrix documenting the application of National Register criteria, a matrix documenting the application of University Preservation Values, and a brief summary statement describing the significance, at all levels, of the resource.

A summary database should be created from this information, listing the resource name and category (building, structure, landscape, landscape feature, etc.), a Facilities Management inventory key designation, year of construction, location, architect/engineer/builder, whether

Hauck Auditorium has become part of a larger complex consisting of buildings exhibiting a variety of styles and ages. The building may not be of National Register quality, but it is valued by the University community as one of the primary gathering and cultural venues on campus.
listed on the National Register or eligible for the National Register, and a systematically-applied priority designation based on National Register and University Preservation Value criteria. With this information, project planners can quickly determine an appropriate course of action with regard to any historic resource on campus.

Historic Preservation Committee

Within a local municipal context, this type of protection is typically institutionalized and administered by a local historic district commission, with the power to inventory, evaluate and designate historic resources and to review and approve or deny projects within the district(s) under its purview. Since the University is autonomous, and the campus historic district is not within an Orono historic district, it is up to the institution to design its own authority. We recommend that the Campus Planning Committee create a Historic Preservation Committee (HPC) to address issues relating to the designated buildings and landscapes of the campus.

The CPC itself has too many tasks at hand over the next few years, including administering the University’s master planning process, to take on this responsibility itself. Thus a subcommittee, consisting of those with interest and expertise in the historic buildings and landscapes of the campus, should be entrusted with reviewing and approving all projects within the historic district(s).

The HPC should adopt rules (the general architectural and design guidelines and the individual building and landscape preservation and reuse recommendations of the Historic Preservation Master Plan to start) and designate a campus historic district (the expanded district as recommended) and individual historic resources (such as the Patch House and the Page Barn) to which these rules will apply.

The HPC should be empowered by the administration to review, approve, approve with conditions, or reject projects proposed for buildings, structures, landscapes or features within the district or affecting individually listed resources. It should also be charged with creating detailed design standards and guidelines for application within the historic district(s).
The HPC should be comprised of members of the CPC and others who have expertise and interests that need to be represented in order to review projects in a technical, comprehensive fashion, but all should have an equal voice. Based on our knowledge of the University of Maine, we would suggest the following composition of the HPC for consideration:

- Representative of the Vice President for Administration and Finance
- Representative of the Executive Director of Facilities Management and Institutional Planning
- Faculty member with expertise in the history of the University of Maine
- Faculty member or outside member with expertise in architectural history
- Faculty member or outside member with expertise in archeology
- Faculty member from College of Engineering Construction Management Technology program
- Registered architect with expertise in historic preservation
- Registered landscape architect with expertise in historic preservation (a faculty member with these credentials would be preferred)
- Representative of the Arboretum Committee
- At least one student representative
- Representative of the Orono and/or Old Town Historical Society
- Representative of the Maine Historic Preservation Commission (ex officio)

Nominations for membership on the HPC should be directed to the Vice President for Administration and Finance, with credential review and appointment by the CPC. Appointments should be made for staggered terms and according to provisions that would assure independence for the Committee and immunity from the affects of changes in administration.

It would be the duty of the HPC to review projects based purely on adherence to preservation standards and guidelines and to broader principles of preservation planning as contained in the Historic Preservation Master Plan (and in certain documents which should be specifically incorporated in the HPC rules such as the
Secretary of the Interior’s Standards for the Treatment of Historic Properties and the Secretary of the Interior’s Guidelines for the Treatment of Cultural Landscapes) and the Campus Master Plan.

The many more varied interests and broader constituency groups of the University of Maine community would be represented by the CPC, which would have the opportunity to review and comment on projects under consideration by the HPC according to a priority and appeal system it would establish. While decommissioning or replacement of some of these resources may be inevitable, the decision to replace a historic resource should be made through a public, rational, informed and consistently-applied decision-making process.

With National Register protections based on Section 106 and DEP review, and campus-based protections under the auspices of the HPC, the historic buildings and landscapes should be assured of appropriate treatment as they are preserved, restored, adaptively-reused, and maintained as significant cultural and physical resources, and as valuable partners with new buildings in representing the historic, present and future University of Maine.

Process

To establish firmly the preservation and continued use of the University’s historic structures and landscapes, a multi-faceted process must be crafted to formalize the recognition, designation, and protection of these resources. The formulation of this process should be under the direction of the Vice President for Administration and Finance, with the important involvement of Facilities Management, and overseen by the Campus Planning Committee. The recommended steps in this process are as follows:

Formally Adopt Basic Principles of Historic Preservation as a Component of the University of Maine Campus Planning Process

For the Preservation Plan to be systematically integrated into the mission of the University, the administration must demonstrate a commitment to basic principles of respect for the institution’s historic resources. These principles are:
1. The physical historic resources (including buildings, structures, objects, landscapes, and archeological artifacts) of the University of Maine are part of the institution’s history and traditions and are the physical embodiment of the University to the people of Maine.

2. The preserved historic resources of the University of Maine, including buildings, precincts, complexes, and open spaces, when surrounded by new facilities and spaces of similar design and construction quality, shall contribute to the history and beauty of the Orono campus.

3. The University of Maine will adopt a stewardship role and responsibility for the preservation of the historic resources owned or controlled by the institution.

4. The University will honor its status as Maine’s Land Grant University and its responsibility to provide services to the State by offering the citizens of Maine opportunities to voice their concerns and express their visions for the campus.

5. The physical organization of the historic campus, in the form of the core land grant campus and the campus mall, shall be the point of departure for future planning and design of new development within the historic district(s).

6. The historic resources of the University of Maine represent valuable cultural, economic, environmental, and historical assets that will contribute to future campus development. In general, historic resources shall be preserved unless the Campus Planning Committee prioritization and review process results in a valid case for an alternative approach.

7. The historic buildings and landscapes of the University of Maine will be conserved through the integration of the Historic Preservation Master Plan with campus planning, leading to appropriate management and preservation treatment.
8. All projects affecting contributing buildings and landscapes within designated historic districts or individually designated, whether on the National Register or locally-designated, shall be carried out in accordance with the Secretary of the Interior’s Standards for the Treatment of Historic Properties as minimum standards.

9. New construction on the campus shall be of enduring quality, flexible in order to accommodate changes in use, and sensitively designed to respect existing buildings and landscapes.

10. New buildings should have their own identity (though not necessarily a “signature”), but should also relate to the continuity of the campus and be a part of the campus fabric.

11. In recognition of the inherent economic, historical, and natural resource value of buildings and landscapes in place, and of the need to apply available resources efficiently, the University shall undertake new construction only when it has determined that no suitable existing building or space for the intended function can be found.

12. The University shall use its resources to promote a broader understanding and awareness of its historic buildings and landscapes, and encourage their continued use and enjoyment for the benefit of the University community and the citizens of the State of Maine.

13. Staff and fiscal resources of the University will be made available to continue the assessment of the institution’s historic resources through appropriate identification and research activities.

14. Preservation initiatives shall be consistent with the goals, purposes and mission of the University of Maine.

These principles can be used to guide University planning efforts when supported by management policies as recommended below.
The President of the University of Maine should play a key role in the success of the Historic Preservation Master Plan, and in the legacy of historic buildings and landscapes that is conveyed to future generations of University students.

The role of the President of the University in the success of the Preservation Plan cannot be overstated. He/she will face some significant challenges in implementing the Preservation Plan, including:

- The predilection of campus governing groups to look at each program or building as unique and self-contained. The President should promote an inter-disciplinary approach that integrates campus buildings and landscapes.

- The tendency of those responsible for campus development to look at the costs of preserving and re-using historic buildings in comparison to the costs of new construction without considering the intangible values of tradition, authenticity, sustainability, and student/alumni affection and interest.

- The need for those promoting construction projects to consider the relationships of their projects to the broader campus environment in addition to their desire to provide their programs with as much state-of-the-art space as possible.

- The need to maintain the character of campus buildings and landscapes of historical significance while welcoming the future and the inevitable growth and change that comes with it.

- The need to provide a functional environment that supports the institution’s educational mission that also reflects the architectural and historical evolution of the University.

The President and the governing bodies of the University will set the tone for the treatment of the historic resources of the institution. They will be responsible for balancing the need to maintain tradition and memory, while accommodating the changing needs and varying resources of University programs and students.

Formally Adopt the University of Maine Historic Preservation Master Plan as a Component of the University of Maine Campus Planning Process
The University of Maine Historic Preservation Master Plan will become a valuable reference for the administration and staff as well as University planners and facility managers. Therefore the Preservation Plan should be formally adopted by the administration, and perhaps by the System Office, as official University policy. Prior to adoption, the Preservation Plan team should make sure that the plan’s recommendations are compatible with System and University administrative procedures, and with the policies and procedures of the Maine Historic Preservation Commission.

Introduce the Provisions of the Historic Preservation Master Plan Into Development Project Discussions at the Earliest Opportunity, Using a Process that is Timely, Accountable, and Inclusive

The recommendations of the Preservation Plan should be applied at the beginning of capital budget facilities planning. Both the Vice President for Administration and Finance and the Executive Director of Institutional and Facilities Planning should develop policies and procedures that introduce good preservation practice early in the development process. One possible approach would be to establish that any proposed design or construction project that would have an impact on a building, structure, feature or landscape within the historic district would be subject to approval by the HPC before being sent out for proposals; or, if no request for proposals is involved, reviewed and approved by the HPC before a contract for planning, design or construction services is signed. Consultation with the Maine Historic Preservation Commission should be integrated within this process.

With a properly-composed Historic Preservation Committee, this process will result in creative solutions that meet project requirements while minimizing negative impacts on historic buildings and landscapes and increasing the value of these resources to the University. It will also prevent surprise projects from being executed on campus without the knowledge of concerned constituencies and avoid the embarrassment of administration and facilities staff.

Conservation of architectural, landscape, and archeological resources should become an integral part of academic,
The stone and brick masonry of many historic University buildings requires minimal maintenance.

Wood and stucco react to Maine’s climate and do require cyclical, periodic maintenance.

financial, and project planning as well as master planning and preservation planning.

Introduce the Provisions of the Historic Preservation Master Plan into the Day-to-Day Operations and Maintenance Work of Facilities Management

The University should continue to train management, planning, design, maintenance, and shop/trade employees of Facilities Management to respect and understand the specific attributes and requirements of historic building and landscape components, systems and materials to assure the appropriate treatment and longevity of historic resources.

The administration should promote the “adoption” of older campus buildings by maintenance staff so that they will preserve these structures out of affection and respect for the workmanship of previous generations.

Facilities Management should initiate annual staff meetings that focus on preservation issues that have arisen during the previous year. At each of these meetings, a special topic should be introduced for discussion and training. Specialized training sessions should be arranged on an as-needed basis for staff responsible for the preservation, maintenance and repair of the University’s existing buildings and landscapes.

Once the University maintenance staff has developed a significant body of knowledge with regard to the care of historic buildings and landscapes, they can train their colleagues at other System campuses. Preservation training should be viewed as a job enhancement, reflecting the University’s commitment to the work of the facilities staff and to the historic buildings and landscapes of the campus. The maintenance provisions of the Preservation Plan should serve as the basis for developing maintenance plans for each historic resource, designed to assure the continued integrity of the resource. Facilities Management staff will be responsible for implementing these plans, so it would be appropriate for them to participate in writing the plans as well. Working with consultants to prepare some prototype plans, the technical staff should be able to write most of the maintenance plans themselves.

The digital drawings and photo images that have been collected during the project will be useful tools, available to
Introduce the Provisions of the Historic Preservation Master Plan into Campus Master Planning

As the Campus Planning Committee moves forward with the creation of a Campus Master Plan, provisions of the Preservation Plan should be included in the various components and precinct plans that may be created. For example, recommendations contained in the Preservation Plan will have an impact on traffic and parking, landscape, land use, infrastructure, public use, and many other aspects of campus planning. As one of the major recommended components of a Campus Master Plan to be completed, the Preservation Plan presents the University with the opportunity to integrate preservation planning into the upcoming comprehensive University-wide planning effort.

Establish the Campus Planning Committee as the Ultimate Authority on Historic Preservation on the University of Maine Campus

The Campus Planning Committee currently represents a wide array of constituent groups on the University campus. Members include senior administrators as well as students, faculty members and department heads. The CPC has been heavily involved in the execution of the Historic Preservation Master Plan project, and will be directing the upcoming campus master planning work. Based on its broad representation, the CPC will provide an inclusive environment for the consideration of historic preservation
issues as they may interact with other aspects of the campus environment and campus life.

In many instances, a committee such as the CPC is a high-level body serving in an advisory capacity to the President. An alternative would be for the CPC to serve the highest-level facilities and/or planning officer of the University.

With this important duty assigned to it, the CPC should consider its current makeup to determine if any additional constituencies should be represented, and whether any rebalancing is necessary to assure that power is equally shared, that all voices are heard, and that consensus can be achieved.

The CPC may also be called upon to function as a design review board for all projects, both new construction and rehabilitation, within the historic district(s) or affecting designated historic resources and, potentially, for all new construction. In that capacity, the CPC should be involved at least in concept generation, site selection, and schematic design; and also when changes are proposed during the remaining stages of the project.

The CPC should deal only with preservation planning policies and procedures, and delegate the writing and enforcement of standards and guidelines and the administration of specific historic preservation projects and issues to the Historic Preservation Committee (see next paragraph).

Establish a Historic Preservation Committee to Evaluate Development Projects that will Affect Historic Buildings and/or Landscapes and Advise on Historic Preservation Issues

The CPC should establish the Historic Preservation Committee (HPC). The HPC should designate University of Maine historic districts and individual sites, and develop and administer rules and design guidelines and standards to be applied to all projects within the district, including new buildings as well as historic rehabilitations and adaptations, according to the recommendations of the Historic Preservation Master Plan.

HPC members will be appointed by the CPC to include representatives with certain areas of expertise and interest.
as described previously. We recommend that the HPC have the power to approve or deny projects after appropriate review procedures have been followed. An alternative would be to have the HPC act in an advisory capacity to the CPC, though this would result in more work for the CPC and the opportunity for the approval process to be subject to a wider range of influences. Appeal strategies could be considered as well, as the CPC develops its vision for the HPC.

The HPC should be responsible for creating and enforcing design standards and guidelines for preservation projects and for new construction within historic districts. These standards and guidelines should establish a framework for continuing use and/or adaptive use of historic structures and for new construction, resulting in construction of enduring quality. The HPC should identify areas where new construction needs to be particularly sensitive to historic buildings and to evaluate the impact of new construction on surrounding historic contexts. The members of the HPC should bring sufficient local knowledge of the historic resources of the campus to take advantage of the potential that historic buildings, even idiosyncratic specimens, can offer for aligning opportunities, underutilized resources, and unexpected funding sources.

The guidelines and standards should be based on the Secretary of the Interior’s Standards for Historic Preservation Projects. Their application should take economic and technical feasibility into account, in concert with the local preservation value analysis process. Landscape standards and guidelines should be based on the Secretary of the Interior’s Guidelines for the Treatment of Cultural Landscapes.

Designate a Historic Preservation Coordinator

The University should designate a Historic Preservation Coordinator. The Coordinator could be a University employee, or a consultant on retainer. The primary responsibility of the Coordinator would be to serve as staff to the HPC. In that capacity, he/she would be responsible for assuring compliance with the Preservation Plan and other applicable guidelines and regulations. She/he would also serve as a liaison between the MHPC and the CPC. The Coordinator would be supported by the campus.
planning and facilities staff, and would reside organizationally with Facilities Management or with the Vice President for Administration and Finance. The duties of the Coordinator could include, but not be limited to, the following:

- provide administrative support for the Historic Preservation Committee and the Campus Planning Committee;
- maintain and update the inventory and historic resource files;
- undertake additional research;
- prepare reports on buildings and landscapes to be affected by development projects;
- develop design guidelines and standards for historic resources and for building reuse studies;
- serve as liaison to the MHPC;
- provide recommendations to the CPC/HPC for maintenance, rehabilitation, reuse, and decommissioning of historic resources;
- develop strategies for matching users, programs, and existing buildings as alternatives to new construction;
- train other University personnel with regard to appropriate preservation methods and practices;
- prepare educational outreach programs; and
- prepare annual reports on preservation activities at the University.

Make the Adoption, Implementation, and Administration of the Historic Preservation Master Plan an Inclusive Process

The process of adopting and administering the Preservation Plan may be one of the few times that the University seeks input from a diverse group of constituencies with regard to a major policy-making effort that will have a wide-ranging and long-term impact on the campus. Therefore, the process, as outlined by the Preservation Plan, should include targeted outreach efforts to publicize (via website, newspapers, etc.) open meetings, workshops, presentations at board meetings and to other campus groups, and perhaps focus groups, to allow these constituencies to participate in a meaningful way. These groups and interests should include:

The adoption, implementation and administration of the Historic Preservation Master Plan should be an open process, presented to the University community in public forums.
• experts in related disciplines;
• interested individuals, groups and committees:
 - neighborhood groups
 - preservation groups
 - environmental and natural resource groups
 - campus organizations
 - others requesting notice;
• prospective users of the Preservation Plan;
• individuals who can help coordinate with other planning efforts at all levels, within and outside the University; and
• individuals who can help identify and resolve conflicts.

The process should be set up to benefit from both the insider’s knowledge and the outsider’s point of view.

Those groups not given seats at the committee table should be given the opportunity to offer input before plans or documents are prepared, to attend public meetings and workshops, and to review draft documents during public review and comment periods. The CPC may want to consider labeling meetings of the HPC as “campus community meetings” rather than “public meetings” in order to encourage attendees to learn about the issues, exchange ideas, and become a positive part of the process, rather than to only offer formal testimony on controversial issues.

By involving all interested groups early in the planning process, the business of the committee can move beyond the narrow focus of each group on its own set of values. Such a process may be more time-consuming, but serves to head off roadblocks. The committee should foster genuine participation, allowing constituent groups to play a meaningful role in defining the values to be applied to preservation planning issues and to the historic resources of the University. Using the participatory process simply to review or rubber stamp decisions already made should be avoided.

Community-wide input may be obtained in a variety of ways, including alumni meetings, on-campus meetings with students, faculty and staff, website surveys, and direct mail questionnaires. Project information may be distributed via website, newsletters, a video or print annual report, and letters and articles in campus newspapers and magazines.
If the HPC is charged with responding to environmental and other permitting issues (Facilities Management and its consultants may want to take on this role), then a different group of players may come to the committee’s table. This group will have the potential for producing conflicts and requiring time-consuming negotiation; but the mechanisms that exist in state and federal review processes for resolving these conflicts provide additional opportunities for protecting historic resources. Section 106 of the National Historic Preservation Act can serve to bring conflicting issues into the open, foster new alliances, and educate campus officials. The formal adoption of the Historic Preservation Master Plan by the University, and its endorsement by the MHPC, should make these reviews and consultations less time consuming.

Commit Sufficient Staff and Budgetary Resources to the Implementation of the Historic Preservation Master Plan

The CPC, HPC, and Facilities Management should be assured of sufficient staff and financial resources to implement the provisions and policies incorporated within the adopted Preservation Plan. Staff support will be needed to:

- assist the CPC, HPC, and Historic Preservation Coordinator with the implementation, administration, and updating of the Historic Preservation Master Plan.

Financial resources will be needed to:

- obtain input from appropriate professionals when necessary to ensure that projects are in conformance with the Preservation Plan;
- obtain consulting services for research and documentation of historic resources;
- promote and publicize historic preservation on campus, including preparing publications on University of Maine architectural, landscape, and archeological history;
- if necessary, obtain consultants to serve as CPC/HPC technical appointments; and
- obtain consulting services to conduct training programs.
Provide for the Stabilization of Historic Properties That May Be Un-Used or Underutilized While Awaiting Rehabilitation

Quite often, major projects at large institutions take some time to move from initial idea to the beginning of construction. On more than one occasion, a significant preservation project has been abandoned in favor of new construction because the cost of rehabilitation increased due to deterioration of the resource during a longer-than-anticipated planning and/or fund-raising period.

If a pending project might take a long time to move from feasibility to construction, Facilities Management should prepare a stabilization plan and make the necessary, often minimal, investment to protect the asset from deterioration. Stabilization should include:

- a sound roof;
- positive site drainage;
- sealed windows and doors;
- 24-hour smoke, fire and intrusion detection;
- scheduled periodic walk-throughs by facilities and/or security personnel; and
- ventilation.

Such measures will ensure that the resource is in acceptable condition when the time comes to launch the project, and that costs remain in accord with estimates.

Distribute the Historic Preservation Master Plan throughout the University Community

Hard copies of the Historic Preservation Master Plan shall be made available to members of the administration, members of the CPC, members of the HPC, and appropriate staff at Facilities Management. Copies should be made available to “front line staff” from departments who present the University story to the public. These University representatives can use newly-documented information about campus history and preservation to enhance their outreach activities. The following are some of the departments and offices that would benefit from including historic preservation in their mission:

- Admissions
- Alumni Association
Implementation

• Art Department
• History Department
• School of Engineering
• Conference Services Division
• Summer Session
• Human Resources
• Library
• Lifelong Learning
• Marketing & Public Affairs
• University of Maine Foundation
• Office of University Development

Facilities Management and/or the Office of the Vice President for Administration and Finance will have a CD of the report and will be able to provide hard copies to faculty members and others with an interest.

The Preservation Plan shall be presented to the campus community at appropriate workshops, meetings and presentations upon its formal completion and periodically after updates are completed.

The exhibit “Buildings, Students, Traditions,” designed and mounted as part of the Historic Preservation Master Plan project, should be updated and possibly expanded, and displayed at appropriate locations across the campus and in the Old Town and Orono communities from time to time.

The complete Preservation Plan, including archived photos, drawings and maps, shall be placed on the University’s website. Visitors to the website should have the option of printing select portions of the plan for their own use.

Portions of the Historic Preservation Master Plan Shall Be Designed to be Self-Contained for Use by a Variety of University Departments

The History of the University of Maine Campus, Historic Campus Landscapes, and Historic Campus Architecture sections of this plan are designed to be self-contained. They can be taken individually from the context of the plan for a variety of specific uses. For example, the History section could become the basis for a brief history of the physical campus in booklet form that could be widely distributed; or perhaps expanded to a full-fledged illustrated history of the development of the University campus. Another publication possibility is the creation of
an architectural and landscape walking tour of the campus, incorporating some of the History section, building descriptions from the Campus Architecture section, and landscape feature descriptions from the Campus Landscape section of the plan.

The various subsections of the Landscape and Architecture sections likewise can be used individually. The Tier One and Tier Two individual building write-ups can be printed and supplied to architects and others involved in planning, design, maintenance or construction projects relating to that building or adjacent buildings. The design guidelines contained in both of these subsections should be excerpted and printed for wide distribution to planners and designers working on the campus. Likewise the Maintenance Plan is intended for day-to-day use by Facilities Management.

Share the Preservation Plan with Other Maine Colleges and Universities and Other Land Grant Institutions

The University of Maine shall provide the System Office and the other institutions of the System with copies of the Preservation Plan for their information and use. The University has already held a successful conference for planners and facility managers of other Maine colleges and universities, called “Maine’s Campuses, Maine’s Heritage: Strategies for Historic Preservation in Higher Education” focused on historic preservation planning. With the completion of the Preservation Plan, we suggest that another conference on campus preservation, focusing on implementation, be convened in the fall and winter of 2007, once recognition, designation, protection and process recommendations of the plan have been considered by the CPC and a course of action for implementation of the University plan has been set.

We also suggest that as the Orono facilities staff becomes a source of expertise with regard to preserving historic campus buildings and landscapes, Facilities Management should consider hosting education and training sessions for their counterparts throughout the University of Maine system.

Share the Preservation Plan with Surrounding Communities

The University will make copies of the Preservation Plan available to appropriate agencies of the Town of Orono, the City of Old Town and the City of Bangor. Officials will be

The program from a conference held in the spring of 2005 to introduce other Maine colleges and universities to the UMaine historic preservation master planning process.
given the opportunity to comment. Elements of the plan that are of interest to officials, commissions and boards shall be noted, and the University shall endeavor to offer opportunities for input by interested parties when issues of interest arise.

The Preservation Plan should be coordinated with the comprehensive plans of Old Town and Orono. The highest level of protection and recognition is achieved when the Preservation Plan is adopted by the highest governing board of the University and by local governments. If the University must comply with local plans, then the Preservation Plan must definitely be integrated with local comprehensive plans.

Update the Preservation Plan on a Regular Basis

The University of Maine Historic Preservation Master Plan represents a comprehensive examination of current conditions and thinking. However, a university campus is constantly evolving and changing due to a variety of forces, both man-made and natural. Opportunities and constraints constantly present themselves. A plan such as this is a tool for managing these changes. Therefore, the plan itself must be capable of change.

The process of updating should incorporate a continuous process of basic research and evaluation. Resources that are assigned high local preservation values should be documented, and additional properties identified for evaluation. Historic contexts and themes should be further developed, at both on-campus and off-campus sites. Archeological resources should be identified and documented.

The Preservation Plan should be updated by the CPC/HPC on a regular basis, perhaps in concert with updates to the Campus Master Plan. Annual inserts should reflect projects that are underway or completed. Digital photos of buildings and landscapes that have changed can easily be added in the form of appendices or amendments to sections of the plan. With the exception of the maps in the landscape analysis, all of the maps in this plan were created by the UMaine Canadian-American Center on the Orono campus, and can be quickly updated “in-house.”

On a five-year cycle, the Preservation Plan should be comprehensively reviewed and revised to reflect the work of the HPC with regard to the research and designation.
recommendations of this plan. A suggested scenario would be that the first five-year update would reflect the documentation and listing of the expanded historic district. The second five-year update would document the Greek house historic resources; while the third five-year update would add research materials on the Tier Three buildings and landscapes.

We expect that the CPC and HPC, as well as the administration and Facilities Management, will be using this plan frequently. The research findings, assumptions, analyses, and recommendations contained in it will be revisited based on day-to-day application. Ideas for improving the plan will surface and should be incorporated. Thus we have provided the plan in the forms of a three-ring binder and a CD, both media that are easily modified, allowing the Preservation Plan to respond to an evolving and vital University.

Financial Issues

The analyses of individual buildings provided in Section IV for Tier One and Tier Two buildings can be used to develop scopes of work for remediating deferred maintenance and planning future maintenance activities. Suggestions for reuse may guide University planners as they resolve space issues on campus. Together, this information will be valuable for developing preservation and new construction project concepts and requests for proposals within the existing and proposed historic district.

Minor projects will continue to be funded through periodic capital budgeting. Major projects will require publicly-funded bond issues, bonds secured through a finance authority, and/or private fund-raising. The Preservation Plan can be used to supplement grant applications and other funding avenues through sources that may have an interest in historic preservation or sustainable design.

On many campuses, those entrusted with the care of historic resources often think that the preservation and reuse of significant older buildings costs more than new construction. This may sometimes be the case when restoration of landmark buildings is involved. But most projects on a university campus will fall into the realm of rehabilitation, where a museum-quality approach is not necessary. Often, a small addition of money or financial...
flexibility over the minimum is all that is needed to allow a preservation project to succeed.

The recent rehabilitation of Lord Hall on the University campus is a perfect example of the creative reuse of a significant 100-plus-year-old building for a cost that would likely be less than a new building of similar size, use and quality. The cost of a rehabilitation project reflects the amount of research and documentation necessary to prepare an appropriate scope of work; the complexity of the building’s details and the nature of its materials; the existing condition of the structure; and the program requirements of the entities that will occupy the building. Renovation costs are often lower than new construction; and if not, departments are often willing and eager to accept somewhat higher costs in return for the quality and amenities offered by historic buildings.

Another perception popular among administrators is that growing programs require new and bigger facilities, and that high-tech programs cannot be inserted into historic buildings. There is a growing list of successfully-rehabilitated historic buildings that house cutting-edge, dynamic and growing programs, many of which are noted green building efforts, including complex science and medical departments.

The Preservation Plan identifies future research projects. These efforts should be underwritten by the University, possibly with specialized grant funds from preservation organizations, using University faculty and students as primary researchers. The University should also expect to have funds available for mitigation and documentation components of rehabilitation projects. Some projects involving the more significant buildings would normally merit historic structures reports. Section IV of this plan contains abbreviated historic structures reports for the Tier One and Tier Two buildings that should be sufficient for project scoping and planning.

When the project is ready to move beyond the concept or schematic design stage, additional research into materials, detailing, and structural and other systems may be required. Any contributing buildings that may be targeted for relocation or removal will need to be documented using procedures advocated by the Historic American Buildings Survey or the Historic American Engineering Record.

The Machine Tool Lab is an example of a building that was originally designed to be open and flexible, and as a result, potential contemporary uses are many.
The best way to minimize the costs of basic restoration or rehabilitation of significant features of historic buildings, such as the exterior envelope or interior materials, is to eliminate deferred maintenance and then take the necessary measures to maintain buildings on a continuing and cyclical basis to prevent premature failures or other problems. The training programs advocated previously in this plan should enable building maintenance staff and groundskeepers to carry out the routine day-to-day maintenance activities that will eliminate the need for periodic expensive corrective measures.

The Preservation Plan represents the first major research into and analysis of the University of Maine’s historic landscapes. The documentation assembled represents a testament to the significance of these landscapes at the local, state, and, perhaps, national levels, due to the involvement of the Olmsted firms and to the historic integrity of the original land grant grounds. Landscaping budgets for individual building projects are often cut when bids come in over budget. We suggest that dedicated landscape preservation and restoration projects, not related to building construction, be conceptualized, prioritized and implemented with an annual budget allocation. This should be one of the first activities undertaken by the CPC once the Preservation Plan is formally adopted.

Historic preservation issues often focus on unique and sometimes high-profile work items that lend themselves to specialized funding sources such as foundations and individual donors. Examples would be the vine pots that remain on one or two buildings on campus (they used to be more common); and the potential restoration of Wingate Hall (including the tower) as a focal point of the core campus. The Preservation Plan can be used to identify and prioritize such projects as a basis for fund-raising activities.

The Preservation Plan recognizes the opportunities inherent in the heritage of existing buildings, as policies and patterns of need and use change. Using an existing building more intensively and sympathetically may obviate the need to construct a new building, saving the lifetime costs of maintaining and operating it. Many of the University’s buildings have accommodated changes in use over and over, their inherent flexibilities of plan and structure allowing them to do so.
Conclusion

The physical environment of a university campus represents an anchor in times of constant, and sometimes tumultuous, change. The fact that the core campus of the University of Maine looks much as it did 100 years ago, while across the Mall can be found contemporary buildings housing state-of-the-art technology in a number of disciplines, offers students the opportunity to experience the full range of history and learning available in a campus environment. The day-to-day encounters of students, faculty, staff, and the other constituents of the University community with the wide range of building types, styles and ages and the open spaces that surround them provide opportunities to learn about campus development as well as experiences that they will always remember.

The challenge to campus planners is to provide, over centuries of time, an enriching environment that promotes a learning and living community, preserving existing historic resources while responding to constant change. With the implementation of the principles, policies, and processes as suggested in this Historic Preservation Master Plan, the University of Maine will enable the continued presence of the irreplaceable historic buildings and landscapes of the Orono campus. Those who come to the University to learn, teach, live, work or benefit from University outreach and public service will be surrounded by a rich environment that respects the past and welcomes the future.
I. ACKNOWLEDGEMENTS

The project team would like to thank the following individuals and organizations for their assistance and support:

Noni Ames
Margaret Baker
Bangor Museum and Center for History
Darleen Bay
Kathleen Bell
Susan Brawley
Chris Campbell
Hans Carlson
Joseph Carr
Bill Charland
Shawn Collier
Joseph Cota
Robert Dana
Roxanne Eflin
Gretchen Faulkner
Special Collections, Fogler Library
Todd Gabe
Matthew Gagnon
Douglas Gelinas
Laura Geoghegan
Suzanne Goodie
Michael Grillo
Bonita Parent Grindle
Paul Groth
Matthew Harmon
Sherman Hasbrouck
Jeannine Hashey
Laurie Hicks
Theo Holtwijk
Betsy Igleheart
Tamara Jones
Claude Junkins
Robert Kennedy
Al Kezix
Bill Kuykendall
Eric Landis
S. Katherine Longley
Maine Historic Preservation Commission
Maine Olmsted Alliance
Maine Preservation

Wayne Maines
Susan March
Kathleen McIntyre
Christi Mitchell
William Mitchell
Carol Nichols
Frederie Law Olmsted National Historic Site
Barbara Ouellette
Max Page
Harry Payne
Susan Pinette
Benjamin Proud
Michael Pullen
Peter Reid
E. J. Roach
Liam Riordan
John Robichaud
Chet Rock
Donovan Rypkema
Todd Saucier
Christa Schwintzer
Earle Shettleworth, Jr.
Donne Sinderson
Peter Simons
David Smith
Elaine Smith
J. Alice Smith
David Struck
Robin Toderian
Christopher Tuthill
University of Maine Alumni Association
University of Maine Business School
University of Maine Campus Beautification and Arboretum Committee
University of Maine Campus Planning Committee
University of Maine Facilities Management
University of Maine History Department
WBRC Architects Engineers
Anita Wihry
Scott Wilkerson
Valerie Williams

The project team offers its sincere appreciation to Janet Waldron, Vice President for Administration and Finance, University of Maine, for her enthusiastic support and belief in the importance of this work and for providing us with access to the resources of the University of Maine.

Special thanks to Brian Foley of University of Maine Facilities Management, and Michael Hermann of the University of Maine Canadian-American Center.