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Maintaining amphibian populations in fragmented landscapes depends on 

preserving functional connectivity for animals that need to transit multiple vegetation 

types to satisfy habitat requirements.  For many pool-breeding amphibians, successful 

dispersal is essential for gene flow; thus, quantifying the ability of juveniles to locate and 

reach suitable habitat in the terrestrial matrix is necessary to predict the consequences of 

landscape configuration for populations.  I evaluated if different open-canopy vegetation 

types alter the behavior of juvenile wood frogs (Lithobates sylvaticus).  First, I quantified 

the relative permeability of different open-vegetation types by experimentally releasing 

frogs in 35 x 3 m enclosures extending from forest edge into five treatments.  Based on 

an index that compounds four metrics and scales relative to mature forest, permeability 

varied:  row crop<hayfield<clearcut<open lawn<moderate-cover lawn.  Results indicated 

that juveniles may make forays into the open, assess habitat, and change directionality.  

Second, I tested juvenile orientation at silvicultural edges in heavy partial harvests (31-



 

 
 

 

60% retention).  Overall, a slightly greater, statistically insignificant, percentage of 

individuals entered control; harvester trails running perpendicular to the edge of uncut 

forest may represent a partial filter to movements.  Finally, I quantified the fine-scale 

movements of individuals released on five substrates (asphalt, corn, forest leaf litter, hay, 

lawn), and the directionality of frogs released at different distances from forest using 

fluorescent-powder tracking.  Movement performance differed: frogs demonstrated 

straighter paths, and greater net movements, path lengths and velocities through 

treatments with lower structural complexity.  Frogs exhibited directionality toward forest 

in asphalt, lawn, and corn, indicating that differing characteristics of the non-forest 

matrix may influence the ability of frogs to traverse open cover and orient toward forest 

from distances of 40-55m.  Differences in the willingness of animals to enter treatments, 

coupled with motility and residency times, support the differing roles of open-canopy 

vegetation as filters and conduits to movement.  Thus, it may be overly simplistic to 

estimate matrix permeability as uniformly low in models that predict movement in 

fragmented landscapes.  To promote functional connectivity, modification of vegetation 

composition and configuration may provide an underutilized tool for conservation 

practitioners to reduce the effective isolation of habitat patches for post-metamorphic 

amphibians. 
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CHAPTER 1 

DIFFERENT OPEN-CANOPY VEGETATION TYPES AFFECT  

MATRIX PERMEABILITY FOR A DISPERSING  

FOREST AMPHIBIAN 

 

Abstract 

 Population viability often depends on conserving functional connectivity in 

fragmented landscapes.  For pool-breeding amphibians, population connectivity is largely 

maintained through juvenile dispersal, often through various vegetation types that may 

differ as filters or conduits to movement.  We quantified the relative permeability of 

different types of open-canopy vegetation to juvenile wood frogs (Lithobates sylvaticus) 

to determine if this influences functional connectivity during dispersal.  We conducted 

experimental releases of juveniles (n = 561) in ten runways representing five treatments: 

hayfield; moderate-cover lawn (45–85% cover); open lawn (0% cover); row crop (forage-

corn); and recent clearcut.  Runways consisted of 35 x 2.5 m enclosures, located 

perpendicular to a forest edge and extending into treatment areas with tracking stations at 

10, 20 and 30 m.  As indices of permeability, we measured the number of animals 

traversing each station, the proportion changing direction, movement timing, and 

movement rates.  Based on an index that compounds four metrics and scales them 

relative to mature forest as a control, permeability varied among open-canopy cover types 

in the following order: row crop < hayfield < clearcut < open lawn < moderate-cover 

lawn.  The highest proportions of individuals changed direction (toward forest) in the 

hayfield, moderate-cover lawn, and clearcut, suggesting that juveniles may make forays 
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into the open and subsequently assess habitat.  Nonetheless, individuals could eventually 

transit entire runways, indicated by overall recaptures at 30 m (e.g. hayfield, 29%; 

moderate-cover lawn, 24%; and clearcut, 20%) at the end of our six-week experiment.  

We provide quantitative evidence that open-canopy cover types may act as differential 

ecological filters to ranging movements, and ultimately dispersal.  Differences in the 

willingness of animals to enter treatments, coupled with motility and residency times, 

support the differing roles of open-canopy vegetation as both filters and conduits to 

movement.  Thus, it may be overly simplistic to estimate matrix permeability as 

uniformly low in models that predict movement in fragmented landscapes.  To promote 

functional connectivity, modification of vegetation composition and configuration may 

provide an underutilized tool for conservation practitioners to reduce the effective 

isolation of habitat patches for post-metamorphic amphibians. 

 

Introduction 

 For many species, quantifying functional connectivity among preferred habitats is 

critical for understanding the mechanisms that drive long-term population persistence in 

fragmented landscapes (Revilla et al., 2004; Van Buskirk, 2012).  It is widely recognized 

that population viability is maintained by dispersal among breeding sites (Hudgens et al., 

2012), and further, that successful dispersal depends on the characteristics of the matrix 

that intervenes between suitable habitats and the interaction of landscape structure with 

species-specific behavior (Burgess et al., 2012).  Despite this critical relationship, 

conventional assumptions of patch-matrix models often oversimplify the matrix of non-

preferred habitats as singularly unsuitable (Kuefler et al., 2010).  In reality, the type of 
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matrix may influence the probability of an animal entering the matrix, the speed of 

movement, and ultimate dispersal success.  Researchers increasingly acknowledge that 

there are grades of matrix condition that differ as filters or conduits for movement (Zeller 

et al., 2012).  However, quantifying this variation in matrix permeability (or conversely, 

resistance) remains a fundamental challenge. Furthermore, some species might prefer 

matrix conditions during dispersal even though they differ from preferred conditions for 

settlement.  In this context, it would make sense to refer to “dispersal habitat” and 

“breeding habitat” instead of a matrix of non-habitat interspersed by patches of suitable 

habitat. 

 The accelerating conversion of natural ecosystems to human-dominated land 

cover (Desrochers et al., 2011) heightens the need to consider diverse cover types that 

may constitute dispersal habitat.  It is possible that for some species human-determined 

open-canopy cover types may be acceptable for dispersal (i.e., low travel costs) and thus 

maintain functional connectivity.  In particular, Kuefler and colleagues (2010) have 

pointed out that deterrents to movement at boundaries (e.g., perceived risks of entering an 

open-canopy cover type due to predation) might be mitigated by faster locomotion after 

these edges are crossed.  Furthermore, animals of the same species may prefer different 

vegetation types for movements depending on the behavioral context (e.g., risk of 

predation versus thermal stress in a particular time or place).  There is need to quantify 

vegetation-type specific movement and boundary behaviors. 

Amphibians are appropriate taxa for studying this issue because their movements 

are typically at tractable scales and because many species rely on aquatic and terrestrial 

habitat connectivity.  In particular, juveniles typically emerge into the terrestrial 
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environment from their natal pool soon after metamorphosis, sometimes emigrating to a 

new breeding pool (dispersal) and sometimes returning to breed in their natal pool 

(philopatry).  Both dispersing and philopatric juveniles may need to transit heterogeneous 

vegetation, but dispersers are likely to cover greater distances and be more likely to 

encounter diverse vegetation (Clobert et al., 2009).   

Most permeability studies have relied on expert-derived estimates for models and 

simulations of structural and functional connectivity (e.g., Hudgens et al., 2012).  Some 

studies have quantified the relative permeability of habitats to juvenile amphibians, 

especially in forests (e.g., Rothermel and Semlitsch, 2002; Rittenhouse and Semlitsch, 

2006), but none have directly measured the permeability of different open-canopy cover 

types.  Prior dispersal research in agricultural, recreational (e.g., golf course), or 

urbanizing landscapes has focused on individual orientation (Vos et al., 2007), landscape 

and site-specific factors affecting occupancy (Revilla et al., 2004), or resistance of the 

matrix to gene flow (Van Buskirk, 2012).  If habitat permeability declines for forest 

amphibians after timber harvest, at least temporarily (Semlitsch et al., 2008), it is 

reasonable to presume that the conversion of forest to agricultural or suburban lands 

might reduce functional connectivity.     

 

Study species and goal 

In this study, we quantified the relative permeability of open-canopy cover types 

to juvenile wood frogs (Lithobates sylvaticus) during the post-metamorphic period when 

they leave natal pools.  They are highly sensitive to forest removal and avoid proximity to 

forest edges (deMaynadier and Hunter, 1998).  Dispersal success (i.e., juveniles surviving 
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to breed in new sites) has been estimated at 18–20% (Berven and Grudzien, 1990).  

Dispersal distances have been recorded at > 1000 m (females: 1140 ± 324 m; males: 1276 

± 435 m), with a maximum of 2530 m (Semlitsch and Bodie, 2003). The scale of 

overland movements may make this species particularly vulnerable to loss of 

connectivity.   

We undertook experiments on the movements of juvenile L. sylvaticus in open-

canopy cover as an extension of a prior study on movements through forestry treatments 

(Popescu and Hunter, 2011).  Our goal was to document movement patterns through five 

types of open-canopy vegetation resulting from forest (clearcutting), suburban (open-

canopy and moderate-cover lawns), and agricultural (row crop, hayfield) practices.  Our 

guiding hypothesis was that these open-canopy cover types differ as filters or conduits for 

dispersal.  In the next section, we describe how movement behavior leads to dispersal.  

Then, we develop a predictive framework for permeability (or conversely, resistance), in 

which we specify a priori hypotheses about differences in post-metamorphic movements 

among treatments. 

 

Post-metamorphic movements 

Increasingly, animal ecologists employ a behavioral landscape view in which 

movement is an adaptation to spatiotemporal variation in resource distribution (Bélisle, 

2005).  As such, dispersal movement is shaped both by external factors and individual 

traits, including morphological, life history-based, behavioral, or physiological attributes, 

often likened to a dispersal “syndrome” (Clobert et al., 2009).  To conceptualize post-

metamorphic movement of L. sylvaticus, we first recognize two types of movement, 
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based on Dingle (1996), which can be construed as opposite ends of a continuum.  

Migration movements tend to be toward distant resources and are not directly responsive 

to proximate resources (e.g., Dingle and Drake, 2007; Pittman et al., 2014).  For example, 

annual journeys of adult wood frogs from hibernaculum to breeding pools are migrations 

primarily because they are directed toward breeding sites and not resources along the 

route.  In contrast, movements that are directed toward an animal’s need for immediate 

resources are termed “station-keeping;” seeking a suitable microclimate is an example.   

An intermediate form of movement is “ranging,” in which an individual departs from a 

location, travels moderate distances seeking resources, and occupies the first suitable 

patch of habitat encountered.  We speculate that post-metamorphic frogs are largely 

driven by “ranging,” in which individuals leave their natal pool, make exploratory 

movements seeking food and an appropriate microclimate, and cease when suitable 

habitat is found (Bowler and Benton, 2005).  Over time, ranging movements that are 

relatively long or repeated may ultimately lead to dispersal to a new breeding pool; 

shorter ranging movements may result in philopatry.  The exploratory nature of ranging 

suggests that movements may be highly influenced by the ability of individuals to detect 

environmental conditions from some distance and move toward or away from them.  Key 

environmental factors probably include vegetation structure, microclimate, food, 

predators, and conspecifics. 

 

A predictive framework for permeability 

At the study outset, we predicted that several factors might influence the observed 

patterns of permeability, or resistance.  We defined permeability and resistance as broad, 
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converse measures of the degree to which the vegetation (or larger landscape) either 

facilitates or impedes (respectively) an organism’s movement between resources or 

preferred habitat patches (e.g., Bélisle, 2005).  Broadly, we predicted that movements 

would be facilitated (i.e. more willingness to enter or traverse greater distances at greater 

velocities) through vegetation that was more similar to forest, the species’ terrestrial 

settling habitat (Eycott et al., 2012).  Prior studies indicate that amphibians modify 

movements (e.g. velocity, latency, path tortuosity, willingness to enter habitats) in 

response to ground substrate, habitat extent (Rothermel and Semlitsch, 2002), vegetation 

structure, microclimate (Rittenhouse et al., 2008), and physiological factors such as 

stress-hormone levels (Janin et al., 2012).   

Specifically, we predicted that the most open and least structurally complex cover 

types (open lawn, row crop) would be less permeable than types with greater canopy 

cover and structural complexity (moderate-cover lawn, hayfield, and clearcut).  

Permeability in this context has three key elements that we can measure, which depend 

on the interaction between individual behavior and vegetation structure: (1) willingness 

to enter a vegetation type; (2) probability of crossing the vegetation type; and (3) 

velocity.  There are some likely trade-offs between the factors that collectively influence 

movement success.  For example, a frog may be more willing to enter dense vegetation 

with a lower risk of desiccation even though thick vegetation will impede its velocity and 

thus increase the time it is outside the forest.   

Recognizing these trade-offs, we predicted that frogs in open lawns or row crops 

would: (1) demonstrate low willingness to enter; (2) traverse only short distances; and (3) 

move faster, compared to moderate-cover lawns, hayfields, or clearcuts.  More 
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specifically, we expected to observe a greater proportion of animals returning to the 

nearest forest edge when released in our most open treatments (lawns or cornfields), 

while a greater proportion of animals would be recaptured or tracked at distances 

extending into hayfields or clearcuts, where increased habitat structure might afford cool 

moist microclimates or cover from predators.  However, we also predicted high 

movement rates for (and large distances traversed by) the proportion of animals venturing 

into cornfields and lawns, if simplified vegetation structure represented low impedance 

for locomotion.  Finally, we predicted that the timing of movements in hayfield and 

clearcut might be protracted if locomotion was slow due to thick ground vegetation and 

individuals perceived these treatments as a refuge with suitable microclimates and lower 

predation risk. 

 

Materials and Methods 

Study sites and experimental design 

We conducted this experiment in Penobscot County, Maine, USA on lands 

managed by the University of Maine’s Agricultural and Forest Experiment Station 

(MAFES).  Extensive forest management in the Acadian Forest region has generated a 

mosaic of mixed-wood stands of various age classes.  Our study area is in the lower 

Penobscot River watershed (9,974 km
2
), where 78.3% of the landscape is forested (of 

which 20.4% has recently been cut), 3.9% is urban, 3.9% is agriculture, and the balance 

is water bodies and wetlands.  We selected five open-canopy treatments that typify the 

region: (1) hayfield; (2) moderate-cover lawn (~ 45–85% cover by ornamental trees); (3) 

open lawn (0% cover); (4) row crop (silage corn); and (5) recent clearcut (3–5 years).  
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The hayfield constituted a mixture of grasses and legumes, with average stem height of 

0.87 m; baling occurred on 23 July 2010, but a continuous swath of hay was retained 

within and between treatments and extending > 10 m in all directions from edges.  The 

lawn treatments (hereafter, open lawn or moderate-cover lawn) comprised exotic grasses; 

no mowing occurred during the study (7 July – 5 August 2010).  The row crop treatment 

(hereafter, cornfield) comprised feed corn, sown in late May.  The inter-row distance 

averaged 1.1 m (range: 0.40–2.58 m).  The forest clearcut (hereafter, clearcut) was 

characterized by complete overstory removal (0% canopy cover), an herbaceous stratum 

< 50 cm, and lacked tree regeneration. 

 

Experimental runways 

Runways were a modification of the design of Popescu and Hunter (2011):  35 x 

2.5 m silt-fence enclosures (60 cm height; 15–20 cm into ground).  Our experimental 

units constituted individual batches of frogs (released in six batches over six weeks), 

nested within five treatments and ten runways (two per treatment). Each runway was 

located along a perpendicular edge between closed-canopy forest (not harvested in > 20 

yrs) and each treatment.  Location of each runway along the edge was selected randomly 

and 35–50 m from its replicate.  Inside each runway, we constructed three identical 

tracking stations at 10, 20, and 30 m from the forest edge.  Tracking stations constituted 

plastic containers (45 x 65 x 20 cm), placed in the mouth of a silt-fence funnel (Figure 

1.1).  Each station sheltered two pieces of paper:  a waterproof paper coated in a mix of 

mineral oil and orange fluorescent powder, placed just in advance of a white sheet of 

paper (20.3 x 43.2 cm).  Frogs passing through stations would leave their tracks



 

 
 

 

Figure 1.1.   Experimental design for evaluating the permeability of five open-canopy cover types to juvenile wood frogs Lithobates 

sylvaticus during post-metamorphic dispersal. The top panel depicts four of the five treatments tested: (a) hayfield; (b) lawn (two 

treatments: 0%; 45–85% cover); (c) row crop (feed corn); and (d) clearcut. The middle panel illustrates tracking station design; x 

indicates initial release (drawing not to scale; adapted from Popescu and Hunter, 2011). The bottom panel depicts fluorescent-powder 

tracks; the arrow denotes runway directionality. 
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on the white paper; the 20-cm height of the box ensured that frogs could not jump over 

stations.  Each sheet was changed daily, and we employed double-observer methods to 

record the unidirectional passages of individuals through stations.     

Each runway contained 10 pitfall traps (Figure 1.1): two at the start and two at the 

end, and two at the junction of each silt-fence funnel and runway wall.  We used pitfalls 

to estimate the number of individuals reaching the end of runways (35 m, i.e., indicative 

of open-cover permeability), versus returning to the edge (0 m) or changing movement 

direction (10 or 20 m), all indicative of open-cover avoidance. 

 

Juvenile amphibian rearing and release 

We collected L. sylvaticus egg masses from the University of Maine’s Penobscot 

Experimental Forest, Maine, USA and raised these in plastic wading pools at a forested 

site until hatching.  When larvae reached Gosner (1960) stages 21–23, we moved them to 

1500-L cattle tanks (80 per tank) established as semi-natural mesocosms.  At larval stages 

≥ 42, individuals were moved into large plastic bins (200-L, lined with moist leaf litter) 

until metamorphosis (Gosner stage 47).  Prior to each release, we measured (snout-vent 

length: SVL), marked (single toe clip per batch), and randomly assigned frogs to 

treatments.  We released 561 L. sylvaticus across six batches.  Within each runway, we 

released 7–12 animals per batch (consistent within batches).  Frogs were released 5.5 m 

from forest edge in the center of each runway (~ 2.5 m from the side walls) 1–2 hours 

after sunset; we released a subsequent batch only after track sheets denoted no new tracks 

(≥ 1 day).  By waiting 3–6 days before beginning a new batch, most frogs from prior 

releases had been recaptured or had moved beyond the first runway compartment 
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(minimizing the possibility of density-dependent effects; e.g., Patrick et al., 2008).  

Runways were monitored 06:30–11:00 h (9 July – 7 August 2010). 

 

Microhabitat and microclimate variables 

We collected temperature, relative humidity, and daily precipitation in our five 

treatments using 26 iButton data loggers (Maxim, Inc., Dallas Texas, USA).  In the 

middle compartment of each runway (10–20 m), we measured hourly temperature at: (1) 

ground-level; (2) under refugia (i.e. 5–8 cm below coarse woody material in clearcut, 

under root masses in hayfield, etc.); and (3) 120 cm above ground in shade.  We also 

measured (4) relative humidity (ground-level).  Refugia temperatures were not obtained 

in lawn treatments due to lack of microcover.  We also collected microhabitat data, 

characterizing vegetation in terms of ground cover, canopy closure, vegetation height, 

stem density, and inter-row distance.  Habitat characteristics of the hayfield, cornfield, 

and lawn were collected on 16, 22, and 29 July 2010 to account for vegetation growth. 

 

Statistical analyses 

Our experimental design generated four indices to quantify permeability of 

treatments: (1) the proportion of tracks at each station (10, 20, and 30 m); (2) the 

proportion of animals captured in pitfall traps; (3) movement timing; and (4) movement 

rate.  The first two metrics indicate an individual’s willingness to enter a given treatment; 

the third and fourth metrics are joint estimates of velocity within that cover type.  All four 

metrics collectively comprise a measure of cover-type permeability. 
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 For the first index, our dependent variable was the proportion of frogs that reach 

each station (using tracks to infer the number of single passages of individuals) out of the 

total released per runway.  We assessed whether (a) treatment; (b) individual runway; or 

(c) batch affected the number of tracks recorded (10, 20, and 30 m from forest edge) 

using our observed values, generalized linear mixed-effects models (GLME), and 

generalized linear models (GLM).  Thus, we ran models for each distance (10, 20, and 30 

m) to avoid autocorrelation (i.e., the same individuals counted in successive stations).  

Appendix A in Supporting Information provides our model methods and results. 

We analysed our second index (i.e., the proportion of animals recaptured among 

treatments) by distance classes (0, 10, 20, and 30–35 m), using three-way contingency 

tables and pairwise tests for proportions.  We quantified this as the proportion of 

juveniles that were recaptured at each distance (0, 10, 20, and 30–35 m), out of the total 

reaching each station (from track-counts; index #1).  Because the pitfall traps at 30 and 

35 m were located in the same compartment (Figure 1.1), we pooled their data.  Further, 

the number of animals captured within the 0 m and 30–35 m classes was compared to the 

total number of released for that runway.  We evaluated the relationship between capture 

frequency and distance, testing for non-independence.  We employed pairwise tests for 

proportions and chi-square tests to estimate differences in capture frequency between 

treatments at each distance.   

Finally, we evaluated potential differences in movement timing and rate (indices 

#3–4, or velocity).  First, we evaluated movement timing 1–5 days following release 

using the number of tracks in each station as a proportion of the total number of tracks 

recorded per runway.  We only used data from juveniles (n = 54) captured past the first 
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(10 m) station.  We evaluated potential differences in timing between treatments using a 

non-parametric (chi-squared) Kruskall-Wallis test for proportions (R package [coin]; 

Hothorn et al., 2008).  Secondly, we evaluated velocity in each treatment (m day
-1

) using 

data from 294 individuals that were tracked past the first stations.  We used total track 

counts (i.e., the series of tracks comprising the passage of a single individual through 10, 

20 or 30 m stations) to determine the total minimum distance traversed across the entire 

experiment (this constituted 4740 total m in 10 runways and 27 tracking days, and did not 

represent a single individual’s passage through consecutive stations).  We then pooled 

distances by treatment to obtain average rates (i.e., the total number of m traversed in 

each treatment divided by the number of days during which movement occurred), and 

investigated potential differences among treatments using a one-way analysis of variance 

(ANOVA, R package [car]; Fox and Weisberg, 2011).  We modeled rate (m day
-1

) as a 

correlate of the willingness of individuals to enter using a simple linear regression model 

(Pearson’s linear correlation coefficient r).  We parameterized willingness to enter using 

the observed proportion recaptured at 10, 20, or 30–35 m (but not those that demonstrated 

avoidance at 0 m), out of the total released in that treatment.   

We computed a composite index of permeability that incorporated all four 

movement metrics, giving equal weight to each.  We assumed that juvenile wood frog 

movements would be facilitated (i.e., have highest permeability values) through mature 

forest (i.e., terrestrial settling habitat) based on Popescu and Hunter (2011) and thus used 

their results (obtained using the same methodology and species in the same locale) as a 

benchmark of permeability.  See Appendix B. 
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We assessed potential differences in the size of metamorphs (SVL) released 

among treatments using a one-way analysis of variance (ANOVA; program R, version 

2.13.2).  All statistical tests were deemed significant at P < 0.05. 

 

Results 

We quantified differences in the relative permeabilities of open-canopy types 

(hayfields, lawns, row crops, and clearcuts) to juvenile L. sylvaticus during post-

metamorphosis using four metrics of movement as described in the next three sections. 

An index derived from these four metrics suggested the following order of permeability 

(lowest to highest): 1. row crop (0.40); 2. hayfield (0.47); 3. forest clearcut (0.55); 4. 

open lawn (0.58); and 5. moderate-cover lawn (0.67; see Appendix B).  Across 

treatments and experimental releases (batches), the average size (SVL) of juveniles was 

16.2 ± 1.1 mm, with no differences among treatments (ANOVA; F4, 176 = 1.57, P = 

0.183).  

 

Willingness to enter:  Proportion of animals reaching tracking stations 

Across the five treatments, the number of frog tracks recorded differed at all 

distances (Figure 1.2), indicating an effect of cover type on the willingness of frogs to 

enter a given treatment (e.g., ANOVA for 10-m track model predictions; F4, 59= 2.73, P = 

0.03).  The proportion of tracks was consistently highest in the cornfield and the 

moderate-cover lawn, while the hayfield was the least permeable (ANOVA for 30-m 

model predictions; F4, 49= 2.25, P = 0.07; Figure 1.2).  The clearcut and open lawn results 

were consistently similar and intermediate (observed proportions and model predictions; 
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Figure 1.2, Appendix A).  Using the proportion of animals reaching 30 m to infer 

movement success, the cornfield was 5.3 and 8.4 times more permeable than the open 

lawn and hayfield, respectively, while the moderate-cover lawn was 5.9 times more 

permeable than the hayfield.  

 

Willingness to enter:  Proportion of recaptures 

We released 561 juvenile frogs and recaptured 349 (62.2%) across treatments and 

runways (Table 1.1).  Recapture rates ranged from 37.7% (hayfield) to 80.7% (cornfield), 

with intermediate rates in the clearcut (49.5%), moderate-cover lawn (69.6%), and open 

lawn (73.2%).  

Classified by distance (0, 10, 20, and 30–35 m), the percentage of captures varied 

by treatment (χ
2

12 = 92.6, P < 0.001) indicating an effect of cover type on the willingness 

of frogs to enter.  The majority of recaptures occurred at 0 m in the cornfield (68%), 

lawns (open and moderate-cover; 64% and 51% respectively), and clearcut (47%), 

indicating a propensity for individuals to return to the forest (Table 1.1 and Figure 1.3).  

The hayfield results contrasted sharply; among treatments, it had the lowest overall 

recapture rate at 0 m (33%), and the highest rate for all other distances (Table 1.1).  Thus, 

frogs in the hayfield were significantly less likely to move toward the edge (i.e., 0 m) 

compared to the cornfield (P < 0.001) and open lawn (P < 0.001).  Furthermore, once in 

the hayfield, a significantly greater percentage (29%) travelled the entire runway (35 m) 

compared to the cornfield (P = 0.002; Figure 1.3).  The percentage of frogs traveling the 

entire runway was also high in the moderate-cover lawn (24%), yet recapture rates were 
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Figure 1.2. Observed proportions of juvenile L. sylvaticus reaching: (a) 10-m; (b) 20-m; 

and (c) 30-m tracking stations in five open-cover types (mean ± SE).  Values on y-axis 

are observed proportions of released individuals moving through stations averaged across 

runways and batches (mean ± 1 SE). 

 

relatively low at 35 m in the cornfield (7%) and open lawn (10%, Figure 1.3; Table 1.1), 

where ground vegetation structure was simple, but canopy was largely absent.   

The distribution of recaptures at intermediate stations (10 and 20 m) is noteworthy 

because they indicate animals changing directionality after entering a treatment (Figure 

1.3).  Higher percentages of individuals were recaptured at 10 m in the hayfield (67%) 

and lawn (open 42%; moderate-cover 36%) than in the clearcut (6%) and cornfield (24%, 

Table 1.1).  At 20 m, the hayfield maintained the highest capture rate (33%); in contrast, 

the most exposed cover types (open lawn, cornfield) had the lowest recaptures (8% and 

11%, respectively).



 

 
 

 

Table 1.1.  Percentage (%) of juvenile wood frogs Lithobates sylvaticus recaptured in experimental runways, categorized by five 

open-canopy cover type (treatments) in 2010, and 2 reference treatments (forest clearcut and mature forest) in 2008–09. 

 

    Individuals recaptured (%), by tracking distance (m) 

Open-canopy cover type 

(treatment) 

No. juveniles 

released 
0 m 10 m  20 m 

30 and 35 m (2010)  

40 and 50 m (2008–09) 

2010 recapture 349 (561) 
    

    Forest clearcut* 109   47
A
 6 22 20 

    Hayfield 114  33
B
 67 33  29

A
 

    Row crop (feed corn) 114    68
AB

 24 8   7
AB

 

    Lawn (0% cover) 112  64
B
 42 11  10

A
 

    Lawn (~45–85% cover) 112  51
B
 36 27  24

B
 

2009 recapture           

    Forest clearcut* 118 48 24 5 7 

    Mature forest 117 18 11 0 31 

2008 recapture           

    Forest clearcut* 112 30 23 13 11 

    Mature forest 133 19 5 0 29 

* Forest clearcut treatments comprise the same experimental runways and sites across both studies (2008–10) 

Notes:  Observed values at 10 and 20 m represent the number of individuals recaptured relative to the number of animals that reached 

those respective distances; thus sums across rows do not equal 100%.  Superscript letters (A, B) identify similarity or dissimilarity 

among treatments for each distance, based on pairwise tests for proportions.  Recapture sample sizes at 10 and 20 m distances were 

too small for statistical analysis; similarly, 2008–09 reference data were not analysed (see Table 1 in Popescu & Hunter 2011). 

1
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Figure 1.3.  Proportion of juvenile L. sylvaticus reversing movement direction in runways, categorized by five treatments and four 

distances.  Values on the y-axis are observed proportions of released animals that were recaptured in pitfall traps (mean ± 1 SE, across 

runways and batches) at four distances (0, 10, 20, 30–35 m).  Recaptures at 0 m indicate low matrix permeability (high resistance); at 

35 m indicate high permeability (low resistance), and at intermediate stations denote a change in direction (forest edge).  Percentage 

values  indicate the proportion of individuals reaching 35 m out of total released for each treatment (n = 109–114). 
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Velocity:  Movement rates and timing of movements 

Across all treatments, we obtained movement rates for 294 individuals recaptured 

past 10 m (which collectively traversed 4740 m during the 27-day experiment).  Average 

movement rates ranged between 8.9 and 55.6 m day
-1

 (Figure 1.4), and differed 

significantly by cover-type (ANOVA; F4,5 = 199.5, P < 0.001).  We observed highest 

motility in the open and moderate-cover lawn treatments (55.6 and 54.1 m day
-1

, 

respectively), and lower rates in the clearcut (30.4 m day
-1

), cornfield (26.7 m day
-1

), and 

hayfield (8.9 m day
-1

; Figure 1.4).  There was a strong negative relationship between the 

observed proportion of juveniles entering a treatment and the movement rate within that 

treatment (Figure 1.4; R
2
 = 0.44; r = -0.66; d.f. = 4; P < 0.01).  For example, the hayfield 

represented the least permeable treatment according to velocity (8.9 m day
-1

); yet, we 

observed the highest proportion of released frogs enter this cover type (0.68 out of total 

released; Figure 1.4). 

Most movements occurred within the first 3 days post-release, but within this 

period we found differences in the timing of movements by treatment (Figure 1.5a–c).  

Individuals in the cornfield, clearcut, and moderate-cover lawn made the earliest (and 

longest) forays into runways, while the hayfield and open lawn were permeated slowly 

(only 5.3% reaching 20 m in the hayfield by day 3; Figure 1.5a–c).  Across all treatments 

(and on average), 7.5% reached 30 m.  Juveniles moved quickly once a direction was 

selected, with the exception of the hayfield (Figure 1.5c).  The majority of recaptures 

occurred within the first three days post-release (91%) with only 33 animals spending > 3 

days in runways (12: hayfield; 10: cornfield; 6: moderate-cover lawn; 4: open lawn; 1: 

forest clearcut).   
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Figure 1.4.  Relationship between the observed proportion of juvenile L. sylvaticus 

entering a treatment and movement rate within that treatment.  The observed proportion 

entering a treatment is the proportion recaptured at 10, 20, or 30–35 m (but not 0 m) out 

of the total released (mean ± 1 SE averaged across runways and batches).  The movement 

rate (m day
-1

) is the average for 294 individuals tracked past 10 m. 

 

Microclimate and microhabitat features 

We observed moderate differences in microclimate among treatments (Table 1.2).  

Compared to the mature forest stands studied by Popescu & Hunter (2011), our ground-

level maximum daily temperatures were, on average, 10.2–12.6 ⁰C higher (2008–09, 

Table 1.2).  The highest ground temperature was 42.3⁰C, recorded in the cornfield (13:00 

h on 9 July 2010).  The clearcut, hayfield, and moderate-cover lawn treatments were the 

driest (% relative humidity; Table 1.2).  All treatments had 0% tree cover, except the 

moderate-cover lawn (45–85% canopy).  In clearcuts, the herbaceous stratum had the
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Figure 1.5.  Timing of movements of juvenile L. sylvaticus experimentally released in 

five open-canopy treatments.  The proportion of released individuals (y-axis) denotes the 

number moving through each station (averaged across runways and batches) relative to 

the total number of tracks recorded per runway (mean ± 1 SE).  The first three days post-

release accounted for the majority of movement, with the exception of hayfield (note 

scale-bar difference for days 1 vs. 2 and 3).  Because some individuals remained in the 

runways from earlier releases it is possible for the numbers at distant stations to exceed 

those at close stations (e.g., compare 10 m and 20 m in open lawn in panel c). 
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greatest coverage (55.0%) and shrub cover was 11%.  In the cornfield, the average inter-

row distance was 1.1 m; average crop height grew from 1.6 to 2.8 m (16–29 July 2010).  

The hayfield had a tall, dense sward of grasses and legumes, with average stem height of 

0.87 m (negligible differences between sampling dates) and density of 3280 stems m
-2

.   

The lawns had high stem-densities (10,760 in moderate-cover; 12,880 in open lawn) but 

were much shorter: the open lawn grass grew from 10.7 to 17.4 cm between 16–29 July 

2010 while the moderate-cover lawn was lower (8.6 and 11.4 cm on 16 and 22 July 2010, 

respectively; Table 1.2).   

 

Discussion 

In contrast to the traditional habitat-matrix paradigm, in which “habitat” is 

classified as hospitable and “matrix” as uniformly hostile (Hudgens et al., 2012), it is 

now recognized that species may perceive landscapes in complex ways, for example, by 

using resources from different land-cover types during dispersal.  We tested the 

movements of juvenile L. sylvaticus in open-cover habitat types to evaluate how 

vegetation type affects permeability during dispersal, a critical stage for population 

connectivity.  Few empirical studies have measured the effects of open cover on 

amphibian ranging and most of these have compared the permeability of forest to one 

type (e.g., old fields: Rothermel and Semlitsch 2002; grasslands: Rittenhouse and 

Semlitsch, 2006; clearcuts: Popescu and Hunter, 2011).  In agroecosystems, crop-specific 

dispersal was compared for Ambystoma tigrinum (Cosentino et al., 2011) and Rana 

temporaria (Vos et al., 2007).  This study is among the first to measure relative 

permeabilities across a broad spectrum of land-uses that generate open cover, with our



 

 
 

 

Table 1.2. Mean daily maximum temperature (⁰C) and relative humidity (%) of five open-canopy cover types (treatments) during 

experimental amphibian releases. Microclimate data are compiled for dates inclusive of frog movement through experimental runways 

(8 July–7 August 2010), and were recorded at ground- and refugia-levels in each runway. 

      

 

Mean daily maximum temperature (⁰C)   Relative humidity (%) 

Treatment Ground level Refugia Air   Ground level 

2010 

           Forest clearcut 33.5 27.3 34.9 

 

60.0 ± 3.2 

      Hayfield 29.7 25.4 32.8 

 

58.8 ± 3.3 

      Row crop (feed corn) 31.6 26.3 31.9 

 

69.6 ± 3.5 

      Lawn (0% cover) 33.2 … 32.8 

 

75.3 ± 3.6 

      Lawn (moderate, ~45–85% cover) 31.1 … 32.5 

 

60.2 ± 3.6 

2008 Reference           

      Forest clearcut 31.6 23.4 … 

 

62.9 ± 6.3 

      Mature forest 23.0 18.7 … 

 

78.7 ± 4.5 

2009 Reference           

      Forest clearcut 26.3 22.1 … 

 

86.3 ± 1.9 

      Mature forest 20.9 17.0 …   96.8 ± 1.0 
 

Notes:  Ellipses denote no data collected for: (1) refugia-level mean daily maximum temperature in 2010 (due to lack of micro-cover 

in lawn treatments); and (2) air temperature in the 2009–09 forest chronosequence stands (see Popescu & Hunter 2011).  Relative 

humidity (%) was recorded at ground-level only (mean ± SE). 
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index (Appendix B) suggesting that permeability was lowest in row crops, increased in 

hayfields, clearcuts, and open lawns, and was highest in moderate-cover lawn.  This 

pattern indicates that these are differential ecological filters to movements, and thus it is 

overly simplistic to assume dispersal success is singularly low across all open-cover 

types.  

 

Habitat structure and locomotion 

Our results suggest that the hayfield and forest clearcut may constitute physical 

filters to movement (i.e., locomotion constrained by dense ground vegetation), while the 

openness of the lawn and cornfield may have allowed faster movement.  Although we 

predicted that open treatments would afford increased velocities for juvenile frogs, we 

did not anticipate the observed negative relationship between movement rate and an 

individual’s willingness to enter a given treatment (Figure 1.4).  Taken together, this 

suggests that simplified vegetation structure represented low impedance for locomotion, 

but that other factors (such as perceived predation or desiccation risk) may also shape 

entry decisions at the forest edge.  In not one case did we observe a juvenile reach the 35-

m mark during a single-night foray in the hayfield or clearcut.  Moreover, velocities in 

the hayfield suggest that individuals may persist in this cover-type up to three days, post-

release; this is a prolonged residency that we predicted for dense vegetation, although this 

result was rarely observed in other treatments (Figure 1.5c).  Conversely, frogs in the 

cornfield and lawn exhibited more movement, evidenced by: (1) higher overall recapture 

rates at 30–35m, a result that was not predicted (Table 1.1); (2) greater number of single-

night forays to the end of runways (Figure 1.5a, Table 1.1); and (3) greater average 
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velocity (Figures 1.4 and 1.5).  Accordingly, previous studies have demonstrated that 

locomotor performances of amphibians depends on the nature of the surface component 

crossed (e.g. Eycott et al. 2012).     

 

Potential influence of microclimate on permeability 

Microclimate conditions play a role in the spatial ecology of amphibians (e.g., 

Dall’Antonia and Sinsch, 2001; Rittenhouse et al., 2008), but our results suggest limited 

links between temperature, humidity, and the physiology of frog performance.  Our 

observed high temperatures and dry microclimates in the clearcut (Table 1.2) are 

consistent with low observed and predicted permeability in that treatment (Appendix A; 

Table 1.1). However, another low-permeability cover type, open lawn, had the highest 

relative humidity values and temperatures similar to other treatments, an unexpected 

result.  Overall, most of our observed differences in microclimate were modest (Table 

1.2), perhaps due to the relatively cool, moist climate of Maine, or perhaps due to the 

scale of our measurements (three per runway, one each for ground, air, and refugia).  This 

contrasts with a number of studies suggesting that microclimate is a primary influence 

driving amphibian movements (e.g., Rittenhouse et al., 2008).   

 

Direct mortality in open-canopy matrix habitats 

Both microclimate and predation risk may influence the frequency and causation 

of direct mortality for post-metamorphic frogs, and these factors shaped our predictions 

for juvenile movements.  For example, we expected open-canopy cover to have high risks 

of desiccation mortality if individuals could not find cool, damp refuge during 
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afternoons; anecdotally, we observed 6 deaths by desiccation in open lawn and 11 in 

cornfield.  In open lawn, our most open treatment, this issue was avoided, at least by 

some frogs, which were released in the evening and captured at 35-m the following 

morning.  As predicted, this never occurred in our least permeable and coolest treatment 

(hayfield: Table 1.2).  We speculate that hayfield frogs could not travel through 35 m of 

thick vegetation in one night but that this treatment offered diurnal refugia for short-term 

persistence (Figures 1.4 and 1.5c).  Predation is also likely to be higher in open cover 

than in forests (Barbasch and Benard, 2011; Lillywhite and Brischoux, 2012).  We did 

not measure predator abundance, but anecdotally, we detected numerous Thamnophis 

sirtalis (garter snakes) in the hayfield, clearcut, and cornfield sites and we observed 

diurnal and nocturnal raptors (e.g., Strix varia, Buteo jamiacensis) near our agricultural 

treatments.  If predation risk influences dispersal success, the occurrence of T. sirtalis in 

the clearcut and hayfield would align with their low permeability (Figures 1.1 and 1.4). 

 

Single factors do not explain juvenile movements 

We predicted that animals will respond to the interactive effects of vegetative 

cover, microclimate, presence of predators, and other factors such as landscape 

configuration during dispersal; thus, we would be unlikely to explain juvenile movements 

based on single factors.  For example, the hayfield and open lawn represented the 

strongest filters to movement (Figure 1.2), yet these treatments had the greatest difference 

in relative humidity (58.83% and 75.30%, respectively) and understory vegetation, and 

the second-greatest difference in maximum daily ground temperatures (29.7⁰ and 39.2⁰) 

among cover types (Table 1.2).  Thus, there may be a conflicting role of the hayfield as a 
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filter and conduit to dispersal, since it may afford more cover, but at the cost of: (1) 

increased desiccation risk (i.e., low humidity, due to increased water-use efficiency of 

hay-crop species); and (2) greater impediments to locomotion (Figure 1.4).  We posit that 

frogs were responding to an interplay of ecological pressures that reach beyond the 

factors discussed above to include density-dependent effects (Patrick et al., 2008), food 

availability (Nicieza, 2000), stress hormones (Janin et al., 2012), agrochemical or 

pollutants (Rohr et al., 2013), floral composition (Prevedello and Vieria, 2010), or range 

of perception (Vos et al., 2007).   

 

The Evacuation Hypothesis and the fate of non-detected juveniles 

Our data suggest that individuals may enter open cover during ranging, assess 

habitat quality, and subsequently change their decision.  This is consistent with the 

“evacuation hypothesis” following clearcutting (Semlitsch et al., 2008), as well as our 

prediction that a greater proportion of animals would return to the forest edge when 

released in our most open treatments (i.e., lawns, cornfields; Figure 1.3).  However, 

relatively high recapture rates at 35 m in the hayfield (29%), moderate-cover lawn (24%), 

and clearcut (20%) also suggest that individuals can travel an entire runway, once they 

made the decision to travel past 10 and 20 m.  Furthermore, some of the longest single-

distance movements (i.e., 35 m per night) occurred during dry ambient conditions.  This 

indicates that juveniles may depart and move quickly through open treatments, once a 

direction is selected, corroborating results in clearcuts (see Table 1 in Popescu and 

Hunter, 2011).  Lower recapture and track rates in the hayfield and clearcut indicated that 

they probably served as sources of refuge or mortality, a result that aligns with 
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predictions (Table 1.1, Figure 1.2). In our experiment, we cannot distinguish the fate of 

missing frogs with respect to mortality, trespass, and settling in the runway; or assess 

realized connectivity (i.e., survival to reproduction). 

 

Future studies and management implications 

To fully understand dispersal in heterogeneous, complex landscapes, we need 

long-term studies of individual ranging behavior in different cover types, both those 

typically deemed suitable habitat, as well as those that might facilitate dispersal but not 

be used during other life stages.  Our study only provides a one-season window into the 

processes driving movements in human-altered landscapes.  Our runway “self-tracking” 

design provide a minimally invasive way to record fine-scale ranging behavior, but a 

more complete understanding of the effects of open cover on dispersal requires long-term 

monitoring of individual fitness and behavior using direct tracking, although this remains 

a challenge for small-bodied organisms.  We also need to assess how land management 

practices such as crop-rotation, thinning, harvest, mowing, pesticide application, or 

frequency of human disturbance or entry can be best designed (and situated within larger 

landscapes and across time) to facilitate dispersal.  Disturbance intervals range from 

weeks in lawns to decades in clearcuts, and some disturbances happen during dispersal 

periods and some only in other seasons.  

We have demonstrated that open-canopy cover types may differ as ecological 

filters to juvenile movements and these distinctions may inform land-use planning; for 

example, how the composition and configuration of these cover types should be 

integrated with forest distribution to reduce the “effective” isolation of (and not just 
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Euclidean distance between) preferred habitats.  These distinctions are also important 

because many landscape population dynamics analyses use expert-based permeability 

values that are a one-size-fits-all measure for open cover (Kupfer et al., 2006; Yackulic et 

al., 2011; Hudgens et al., 2012).  Our study provides a repeatable assessment of 

permeability at the scale of individual cover types and a quantitative permeability index, 

which can be used to parameterize models for amphibians, although we urge caution in 

the widespread application of this numeric index to other study species or regions (see 

Appendix B).  Future research could use our understanding of the mechanistic aspects of 

permeability to explore movement through assemblages of different cover types 

(“landscape heterogeneity” scale), once technological capacity permits direct tracking of 

individuals over long distances.  Thus, we also need field-based, direct measures of the 

mechanisms that influence ranging behavior and dispersal success in heterogeneous 

settings, in order to predict and effectively maintain functional connectivity in 

fragmented landscapes. 
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CHAPTER 2 

HEAVY PARTIAL HARVESTS AND THE INITIAL MOVEMENTS  

OF A DISPERSING FOREST AMPHIBIAN IN THE  

ACADIAN FOREST OF MAINE, USA 

 

Abstract 

Maintaining amphibian populations in managed forests requires a balance 

between timber extraction and preserving functional connectivity for animals that need to 

transit multiple vegetation types to satisfy habitat requirements, particularly in regions 

where extensive harvesting may increase forest fragmentation.  For pool-breeding 

amphibians, population viability is maintained through juvenile dispersal; thus, 

quantifying the willingness of dispersers to enter harvested areas across high-contrast 

edges adjacent to unlogged forest remains a fundamental need.  We tested the initial 

dispersal orientation of juvenile wood frogs (Lithobates sylvaticus) at silvicultural edges 

in partial harvests (31-60% retention standwide) in the Acadian forest region (Maine, 

USA) to evaluate if dispersers would enter harvested areas.  We conducted experimental 

releases of juveniles (n = 621) in nine 10m diameter arena enclosures spanning 

silvicultural edges between control forest and partial harvests in order to document their 

selection of initial habitat.  Uncut control forest (~ 70-75% closed canopy) was contrasted 

to one of three possible conditions in the partially-harvested stand: (1) harvester trails 

(0% retention) running parallel to the edge of uncut forest; (2) harvester trails running 

perpendicular to the edge; or (3) residual strips of partially-cut matrix forest (~30% 

retention) between trails.  Overall, we observed a slightly greater, statistically 
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insignificant, percentage of individuals enter control (54.8%) relative to combined 

treatments (45.2%; p-value = 0.113).  Perpendicular harvester trails may represent a 

partial filter to movements as juveniles showed near significant selection of control forest 

within that treatment (59.8% versus 40.2%; p-value = 0.068).  Lower recapture 

percentages in treatments adjacent to residual strips of partially-cut forest relative to 

parallel harvester trails (35.2% versus 53.1%; p-value = 0.013) also suggest that residual 

strips (but not trail) treatments may afford cover.  From a management standpoint, 

juveniles may occupy partial harvests (>30% canopy retention) at rates similar to intact 

forest during dispersal, but the spatial configuration of trails and residual strips may 

affect amphibian population connectivity.  

 

Introduction 

Integrating timber management goals with biodiversity conservation often 

involves linking management of unlogged areas with appropriate forest practices on 

harvested areas, especially for relatively mobile animals that navigate multiple vegetation 

types to meet habitat needs (Hunter and Schmiegelow, 2011; Driscoll et al., 2013).  For 

amphibians in managed forest landscapes, quantifying the willingness of natal dispersers 

to enter harvested areas across high-contrast (“hard”) edges adjacent to unlogged forest 

remains a critical challenge to predicting their population responses to forest harvesting.  

This issue gains additional traction as silvicultural methods shift away from intensive 

clearcutting toward partial harvesting, since the cumulative effects of multiple stand 

entries implemented over large areas may only increase the effects of habitat 

fragmentation, and impacts on amphibian populations remain unknown (e.g., Vanderwel 
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et al., 2009; Homyack and Haas, 2013).  Successful dispersal often depends on the 

characteristics of the matrix that intervenes between suitable habitats (Kuefler et al., 

2010; Burgess et al., 2012); thus, quantifying the habitat selection of individuals as they 

encounter logging-induced edges could have important implications for maintaining 

functional connectivity as harvest practices trend away from even-aged management. 

In recent decades, understanding the effects of forest management on amphibian 

populations has been of particular concern to due to their demonstrated sensitivity to 

habitat loss or fragmentation (deMaynadier and Hunter, 1995), biphasic lifestyles linking 

terrestrial and aquatic systems (Cushman, 2006), and potential keystone role in forest 

ecosystems as abundant apex predators in detrital food webs (Walton, 2005).  Many 

studies have documented the long-term negative impacts of complete canopy removal 

(i.e., clearcutting) on amphibian distribution and abundance (e.g., Karraker and Welsh, 

2006; Popescu et al., 2012a, etc.).  Similarly, high-contrast edges between recently cut 

and mature forests have low permeability to  movements (Stamps et al., 1987; Popescu 

and Hunter, 2011; Cline and Hunter, 2014), likely due to higher levels of sunlight, wind 

speeds, and greater variation in humidity and temperature found at the edge relative to the 

forest interior (Harper et al., 2005).  Yet, there remains a critical need to assess 

amphibian movement across forested landscapes that may be fragmented by logging 

because long-term population viability depends on juvenile dispersal, or the 

unidirectional movement of some juveniles from the pool where they hatched to a new 

breeding pool (Semlitsch, 2008; Walston and Mullin, 2008).  In contrast to conventional 

assumptions of patch-matrix models that oversimplify the non-forested matrix as 

inhospitable, recent evidence suggests that frogs may transit various (including open-



 

37 
 

 

cover) vegetation types during dispersal, even if they are unsuitable for settling (Cline 

and Hunter, 2014).  Therefore, behavioral studies are necessary to elucidate the factors 

influencing juvenile movements in forests fragmented by logging – and specifically, to 

quantify the willingness of dispersers to enter and transit various harvested and non-

harvested vegetation types within the matrix (Revilla et al., 2004; Van Buskirk 2012). 

The need to assess amphibian dispersal behavior in forestry settings is particularly 

pressing in northeastern North America, where harvesting practices have shifted from a 

heavy reliance on intensive clearcutting in distinct patches to extensive partial harvesting.  

Typically, such partial harvests are implemented in herring-bone patterns of parallel 

harvester machine trails (3-4 m wide) spaced 15-20 m apart; often 40-60% of the matrix 

stand between the trails is also removed (Sader et al., 2003; Bataineh et al., 2013; Figure 

2.1).  Partial harvesting is currently the predominant form of timber extraction in Maine, 

accounting for 176,579 of the total 186,703 harvested hectares during 2012 (Maine Forest 

Service 2013).  This trend has been attributed to changes in forest policy, market 

conditions, equipment technology, silvicultural knowledge, and land ownership (Sader et 

al., 2003; Homyack and Haas, 2013).  Multiple harvesting entries using a diversity of cut-

to-length and forwarding equipment results in variable stocking, stand structure, and 

fragmentation patterns.  Thus, the term “partial harvest” is an umbrella term, broadly 

described as any harvest that removes a portion of the stand, often implemented in 

multiple entries during a single rotation (Brissette, 1996). 

However defined, there is a limited understanding of how heavy partial harvesting 

implemented in a herringbone pattern affects regeneration, future stand structure, or 

landscape-level forest composition.  Given the increasingly common use of this harvest 
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practice in northeastern forests, the dearth of information further hinders our ability to 

devise silvicultural prescriptions, project future wood supplies, and assess impacts on 

biodiversity (Driscoll et al., 2013).  For example, in a review of wildlife responses to 

partial harvesting (sensu lato), researchers found that 38 of 65 vertebrate species 

associated with mature or old boreal forest decreased in abundance following high-

intensity harvesting (30% retention; Vanderwel et al., 2009; also see Rosenvald and 

Lõhmus, 2008), a result corroborated by other studies that document a negative 

relationship between harvest intensity and amphibian habitat use (e.g., Harpole and Haas, 

1999; Homyack and Haas, 2009).  However, few studies provide a mechanistic or 

modeling basis for linking the patterns of structural change to faunal response (e.g., 

Vanderwel et al., 2011), and thus there is a need to investigate species responses through 

experimental studies of behavior.  Throughout the Acadian region, partial harvesting is 

increasing fine-scale spatial heterogeneity (as depicted in Figure 2.1) at widely varying 

harvesting intensities, which raises concerns about the effects of this form of forest 

management on amphibian dispersal behavior and consequent population response.     

 

Study species 

We studied the wood frog (Lithobates sylvaticus) due to its widespread 

distribution in North America and its dependence on closed-canopy forest.  This species 

has demonstrated high sensitivity to forest removal (Cushman, 2006) and avoids 

proximity to forest edges (deMaynadier and Hunter, 1998; Semlitsch et al., 2008).  

Following emergence from natal pools, juveniles inhabit moist terrestrial landscapes, 

foraging on invertebrates and hibernating within refugia (e.g., burrows, tree root 
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channels, leaf litter, and coarse woody material).  Dispersal success (i.e., juveniles 

surviving to breed in new sites) is estimated at 18–20% (Berven and Grudzien, 1990).  

Dispersal distances have been recorded at > 1000 m (females: 1140 ± 324 m; males: 1276 

± 435 m), with a maximum of 2530 m (Semlitsch and Bodie, 2003).  Post-breeding 

movements of adults have been estimated at 102-340 m (Baldwin et al., 2006), and > 300 

m (Vasconcelos and Calhoun, 2004).  Thus, the scale of overland movements may make 

this species particularly vulnerable to loss of connectivity during the juvenile phase. 

 

Study goal and hypotheses 

In this experiment, our goal was to document the short-term behavioral response 

of juvenile wood frogs in their selection of initial dispersal habitat.  Uncut control forest 

was contrasted to one of three possible conditions in the partially-harvested stand: (1) 

harvester trails running parallel to the edge of the uncut forest; (2) harvester trails running 

perpendicular to the edge; or (3) residual strips of partially-cut matrix forest between 

trails (Figure 2.1). 

Given that partial harvesting: (1) reduces canopy cover overall; and (2) eliminates 

canopy cover completely in the harvester trails (cumulatively comprising >20% of the 

managed forest stand), our guiding hypothesis was that juveniles would prefer 

unharvested controls over partially-cut stands.  We further hypothesized that the duration 

of responses would be more protracted in the control forest, if some frogs were able to 

occupy suitable microhabitats in the experimental area.  We also speculated that harvester 

trail orientation might influence responses. Specifically, we conjectured that parallel trails 

would be more permeable to movements than perpendicular trails.



 

 
 

 

Figure 2.1.  Experimental design for evaluating the initial dispersal orientation of juvenile wood frogs (Lithobates sylvacticus) in 2011 

along three types of linear edges between our partial harvest treatments and intact forest (closed-canopy mixed-wood stands directly 

adjacent to heavy partial harvests).  Silvicultural edge treatments included tracts of uncut control forest located:  (a) parallel to 

harvester trail (trail within cut; 100% canopy removal); (b) perpendicular to harvester trail (trail within cut; 100% canopy removal); 

and (c) adjacent to residual strips of partially-cut forest (off-trail).  Each experimental arena (two replicates of each edge treatment, for 

a total of n= 9 arenas in two study landscapes) consisted of a 5-m radius (10-m diameter) circular silt-fence enclosure (40-50 cm 

height), extending 10-15 cm in the ground.  Two pitfall traps (indicated by circles above) were buried on the fence interior of each 

arena, located in opposite cardinal directions and extending into each edge treatment to test initial frog orientation following 

experimental release (mark-recapture). 
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Materials and Methods 

Study sites 

Our experiment was conducted in Penobscot County, Maine, USA on harvests 

prescribed by American Forest Management, Inc. (AFM).  We are confident that these 

were representative of current practices in the region, in part because AFM’s Northeast 

Region currently manages greater than 400,000 hectares in Maine and New Hampshire 

(T. Massey; pers. comm.; <www.afmcorporate.com>).  We used two study sites in 

Titcomb Pond and Great Pond Townships, Maine (44.94⁰N, 68.43⁰W and 44.99⁰N, 

68.31⁰W, respectively) that had similar prescriptions, but edges that were oriented in 

different cardinal directions relative to trails.  Multiple harvesting entries occurred on our 

sites; intensive even-aged harvesting was conducted in the late 1980s, but more recent 

harvests were broadly categorized as 2
nd

 or 3
rd

 stage shelterwoods with harvesting traffic 

concentrated in parallel strips (Figure 2.1).  The most recent timber removal occurred in 

2008 or 2009, with final shelterwood removal pending.  All harvests were performed 

using whole-tree removal (Timbco 425 track harvester and grapple skidder) with de-

limbing off-site; trails were devoid of canopy and diminished in cover objects that might 

serve as refuge for amphibians. 

Our study region is characterized by a humid continental climate (Kӧppen 

classification Dfb; Peel et al., 2007), with warm-hot, humid summers and cold-severely 

cold winters, and is part of the Acadian Forest region (Seymour, 1995), a transitional 

zone between the temperate forest and boreal forests.  Partial disturbances from insect, 

wind, and natural senescence and small-scale gap dynamics likely characterized the 

presettlement natural disturbance regime (Seymour et al., 2002; Fraver et al., 2009).  
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However, extensive forest management has generated a mosaic of mixed-wood stands of 

various age classes (e.g., Olson and Wagner, 2010; Arseneault et al., 2011).   

 Our sites comprised a mixture of northern conifers and tolerant hardwoods: red 

spruce (Picea rubens), balsam fir (Abies balsamea), eastern hemlock (Tsuga canadensis), 

eastern white pine (Pinus strobus), northern white cedar (Thuja occidentalis), red maple 

(Acer rubrum), bigtooth aspen (Populus grandidentata), paper birch (Betula papyrifera) 

and American beech (Fagus grandifolia).  The stand composition in partially-cut forest 

indicated a shift toward hardwood dominance (30-70% basal area).  The prescription goal 

was to maintain 80% forested conditions, with 20% occupied in trails and a stand-wide 

nominal goal of 31-60% crown closure (with 0% closure in the center of harvester trails 

this would mean 39-75% in the residual strips).  We documented 27.4 – 30.4% average 

canopy cover across residual strips, suggesting a stand-wide closure of about 23%.  The 

width of skid trails ranged 4.9 – 5.5 m, depending on size of equipment and trees.  The 

distance between harvester trails (center to center, not edge to edge) was 22.8 – 27.4 m.  

Our closest experimental arenas were 124 m apart, and the farthest 12.7 km apart. 

 

Experimental design and arenas 

We constructed nine experimental arrays at the edge of intact forest and partially-

harvested stands representing our three treatments (i.e., closed-canopy control forest 

located at an edge: adjacent to residual strips of partially-cut forest between trails, 

perpendicular to harvester trail, or parallel to harvester trail; Figure. 2.1).  We built 10m 

diameter arenas (completely enclosed) using partially opaque polyethylene silt-fence 40-

50 cm in height plus10-15 cm buried in the ground.  We buried two pitfall traps along the 
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inner perimeter of fence walls, one in the middle of the control forest portion of the fence, 

and another directly opposite.  Pitfalls consisted of two 10-cm aluminum coffee cans 

taped together and buried 24 cm in the ground, with a 10-cm deep funnel extending into 

buckets.  We checked traps daily between sunrise and 10:30 AM and assigned each frog 

to control forest or partial-harvest treatment based on location of capture (Figure 2.1). 

 

Juvenile amphibian rearing and release 

Prior to the experiment, we collected L. sylvaticus egg masses from the University 

of Maine’s Dwight B. Demeritt Experimental Forest, Maine, USA (44.92⁰N, 68.67⁰W) 

during the spring egg-laying season (April – May 2011) and raised these in plastic 

wading pools at a forested site until hatching using methods described in chapter 1 and 

published in Cline and Hunter (2014).    

Prior to each release, we measured (snout-vent length), marked (single different 

toe clip per batch), and randomly assigned frogs to one of our two study sites, three 

treatments, and nine arenas.  We released 7–18 frogs per batch; frogs were placed at the 

forest edge and in the arena center 1–2 h after sunset.  We released 621 L. sylvaticus 

across five batches (6, 12, 15, 18, and 26 July 2011).  We released subsequent batches 

only after recapture rates were > 40% of the total number released in prior batch.  By 

waiting 3–8 days between batches, most frogs from prior releases had been recaptured 

(minimizing density-dependent effects).  Arenas were checked daily 06:30–11:00 h (7 Jul 

– 6 Aug 2011); frogs were returned to forest near their pools of natal origin.   
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Microclimate and habitat sampling 

We characterized microclimate, microhabitat, and stand-scale vegetation within 

arenas and adjacent control and partially-cut forests.  We recorded hourly temperatures 

(⁰C) and relative humidity (%) using 36 iButton hygrochron data loggers for the duration 

of the experiment (Maxim, Inc., Dallas Texas, USA).  Temperatures were measured at 

the center of each arena at: (1) ground-level; (2) under refugia (i.e., 5–8 cm below coarse 

woody material or slash); and (3) 120 cm above ground in shade; we also measured 

ground-level relative humidity (4).  In addition, we sampled hourly temperature in control 

forest and partial-harvested treatments 15 m from the edge. 

We characterized vegetation and microhabitat in terms of ground cover, canopy 

closure, vegetation height, dominant species composition, leaf litter depth, and soil 

moisture.  Sampling occurred in 54 3 x 3m (9 m
2
) plots positioned (1) within each arena 

(2 plots per arena; 1 in control, and 1 in partial-harvest treatment semi-circle); and (2) 

outside of each arena, 10 m into each control or treatment (4 plots per arena).  We 

measured percent vegetation cover in four height classes (0-0.5, 0.5-1, 1-2, and > 2 m), 

and dominant composition at the tree, shrub, and herb level.  We estimated percent 

canopy cover using a densitometer (Moosehorn CoverScopes, Medford, OR, USA).  We 

estimated ground cover as the percentage of 3 x 3 m plots classified as: leaf litter, moss / 

lichen, herbaceous, slash, bare soil, and rocks.  We collected leaf litter depths and soil 

moisture (FieldScout TDR 100 soil moisture meter; Spectrum Technologies, Aurora, IL, 

USA) at 3 randomly-determined locations per plot.   
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Analytical approach 

To assess the initial dispersal orientation of each frog relative to the forest edge 

and recapture outcomes, our dependent variable was the proportion of frogs that was 

recaptured in the control versus treatments out of the total released per treatment, arena, 

and batch.  We employed pairwise tests for proportions and chi-square tests to estimate 

differences in proportions of recaptures at the individual and batch levels.   

We also evaluated potential differences in movement timing (1-25 days following 

release).  For each recaptured frog, we calculated the number of days that had passed 

between the date of initial release and final recapture and evaluated differences using a 

non-parametric (chi-squared) Kruskall-Wallis test for proportions (R package [coin]; 

Hothorn et al. 2008).  We examined the goodness of fit of our observed movement timing 

data (i.e., the number of individuals recaptures on days 1-25 post-release, pooled by 

treatment) relative to predicted values using a nonlinear mixed-effects model, allowing 

for nested random effects and assuming a non-linear exponential decay function (R 

package [NLME]; Lindstrom and Bates, 1990; Pinheiro and Bates, 2000).   

We assessed potential differences in the size of metamorphs (SVL) released 

among treatments and arenas using a one-way analysis of variance (ANOVA) and 

Tukey’s honestly significant difference (HSD) single-step test  for multiple comparisons.  

Statistical tests were deemed significant at P < 0.05 and marginally significant at P < 

0.07.  All statistical tests were conducted in Program R Version 3.0.2 (R Development 

Core Team, 2013). 
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Results 

Our experimental design generated three simple metrics to quantify the initial 

dispersal orientation of juvenile L. sylvaticus released at partially-harvested forest edges: 

1) the initial choice of movement direction for individuals recaptured; 2) the percentage 

of recaptures; and 3) movement timing and latency (described below).  The average size 

(snout-to-vent length; SVL) of juveniles was 15.4 ± 0.1 mm (Figure 2.2), with no 

significant differences among batches 2-5 (i.e., 12, 15, 18, and 26 July 2011).  However, 

batch one individuals (6 July) were significantly smaller (13.9 ± 0.1 mm; F1,243 = 4.27, p-

value < 0.001; ANOVA; Tukey’s HSD; Figure 2.2). 

 

Willingness to enter harvests:  Initial dispersal orientation and proportion of 

recaptures 

Overall, we observed a greater proportion of individuals enter control forest 

(54.8%) than partial harvests (45.2%; Figure 2.3; based on the distribution of 270 

recaptured individuals out of 621 released). However, a test for global significance (i.e., 

forest captures vs. treatment captures summed across sites, arenas, and batches) was not 

significant (  
  = 2.504, p-value = 0.113).  Analysis by individual treatment revealed a 

near-significant difference for the edges that were oriented perpendicular to harvester 

trails (captures = 52:35 for forest vs. treatment;   
 = 3.322, p-value = 0.068; Figure 2.3), 

but none in arenas located adjacent to parallel harvester trails (57:53 for control forest 

and treatment, respectively;   
 = 0.146, p-value = 0.703), or at the confluence with 

residual strips (39:34 for control vs. treatment;   
  = 0.343, p-value = 0.558). 

 



 

 
 

 

 

Figure 2.2. Lengths (snout-vent-length) of juvenile L. sylvaticus experimentally released along silvicultural edges in partial harvests 

during five batches in 2011 (6, 12, 15, 18, and 26 July).  Only individuals released early in the juvenile emergence period (i.e., batch 

1) were significantly different in size from the other batches (F1,243 = 4.27, p-value < 0.001; ANOVA; Tukey’s HSD). 
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Figure 2.3.  Observed proportions of juvenile L. sylvaticus recaptured in forest or partial 

harvest treatments, following experimental releases along three types of silvicultural 

edges between contiguous control forest and heavy partial-harvested stands in 2011 

(mean ± SE).  Silvicultural edge treatments included tracts of uncut control forest located:  

(1) parallel to harvester trail (trail within cut; 100% canopy removal); (2) perpendicular 

to harvester trail (trail within cut; 100% canopy removal); and (3) adjacent to residual 

strips of partially-cut forest (without harvester traffic) within the harvested stand.  Values 

on y-axis are observed proportions of released individuals recaptured in pitfall traps 

averaged across treatments (n = 3 arena types), individual arenas (n = 9 arenas), and 

experimental batches (constituting 621 individual frogs released during 5 batches 

between 7 Jul and 2 Aug 2011).  Differences in the orientation of recaptured juvenile 

frogs approached significance in the edge treatment with perpendicular trail configuration 

(middle bars in above graph; χ
2
 = 3.322; p-value = 0.068).
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Willingness to depart harvest edge:  Percentage of frogs recaptured in experimental 

arenas 

Across all treatments and arenas, the percentage of recaptures (out of total 

released) was 43.2% (270/621; Table 2.1).  We observed the lowest proportion of 

recaptures in the control versus residual strip arenas (30.4 – 36.2%); in contrast, we 

observed the highest number of recaptures (and potentially lower frog settling rates) 

within arenas located at the edge of harvester trails (mean % recaptures = 42.0% for 

perpendicular trails and 53.2% for the parallel trails;   
 = 19.20, p-value = 0.013; Table 

2.1).  Among batches, the percentage of recaptures was greater earlier in the emergence 

season (43.1 – 51.0% between 6-18 Jul versus 27.8% for those released on 26 Jul) 

although these differences were insignificant (  
 = 0.7.51, p-value = 0.111). 

 

Latency at the edge:  Movement timing and potential short-term residency 

Most movements (92.5%) occurred within the first 8-10 days following an 

experimental release and the timing of movement did not differ significantly between 

control forest and partial-harvest treatments (Figure 2.4; p-value = 0.693 for comparison 

of GLNS models).  However, it is noteworthy that individuals could persist along the 

forest edge (presumably in a period of temporary settling or latency) for up to 25 days, 

post-release.  It is also worth noting that treatment side captures occurred first (59.2% by 

day 2 vs 46.6% for control side; Figure 2.4) although the difference was not significant 

(  
 = 1.501, p-value = 0.221). 
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Figure 2.4.  Timing of movements of juvenile L. sylvaticus experimentally released in 

three treatments in enclosed arenas along silvicultural edges between control forest and 

partially-harvested stands.  The number of recaptured individuals (y-axis) denotes the 

number recaptured in either the forested (panel a) or partially-harvested (panel b) semi-

circle of each experimental arena out of the total released for that treatment and arena 

(mean ± SE).  Each line of the response designates one of five experimental release dates, 

or batches (constituting 621 individual frogs released during 5 batches on 6, 12, 15, 18, 

and 26 Jul 2011). The first 8-10 days accounted for the majority of movements as 

detected by recaptures (however, note the scale bar difference for the response variable 

between graphs).  Individuals not recaptured by the conclusion of the experiment (2 Aug 

2011) may have suffered direct mortality or settled in the arena. 
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(A) 

 

(B) 



 

 
 

 

Table 2.1.  Numbers of juvenile wood frogs (L. sylvaticus) recaptured in experimental arenas following releases in enclosed arenas 

located along three types of silvicultural edges between control forest (CF) and three partial-harvest treatments (parallel harvest trail; 

perpendicular harvest trail; residual strips of partially-cut forest between trails) in 2011.  Harvest trails have complete overstory 

removal; residual strips are off-trail (~ 30% retention).  Data are proportion of recaptures in either the forested or partially-harvested 

treatment out of the total released, further categorized by individual arena and batch. 

 

 

 

 

 

 

 

 

5
3
 



 

 
 

 

  
  

    Individuals recaptured by site, treatment, and arena 

Site  Treatment Arena # 
 No. juveniles 

released 
No. juveniles recaptured Proportion recaptures   

Titcomb CF - Parallel 1 69 46 0.667 
 

 
CF - Perpendicular 2 69 31 0.449 

 

  CF - Residual strips (cut) 3 69 25 0.362   

Great Pond CF - Parallel 1 4 69 32 0.464 
 

 

CF - Parallel 2 5 69 32 0.464 
 

 

CF - Perpendicular 1 6 69 30 0.435 
 

 

CF - Perpendicular 2 7 69 26 0.377 
 

 

CF - Residual strips (cut) 8 69 27 0.391 
 

 

CF - Residual strips (cut) 9 69 21 0.304 
 

 

 Totals: 9 621 270     

  
  

    Individuals recaptured by batch (date of experimental release) 

Batch # Release date   
 No. juveniles 

released 
No. juveniles recaptured Proportion recaptures   

1 6-Jul-11 
 

65 33 0.508 

 2 12-Jul-11 
 

144 67 0.465 

 3 15-Jul-11 
 

153 66 0.431 

 4 18-Jul-11 
 

162 77 0.475 

 5 26-Jul-11 
 

97 27 0.278 

 

 

 Totals:   621 270     

Mean recapture proportion: 

   
0.432 

 

Table 2.1. 

5
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The harvested and forested edge:  Microclimate and microhabitat features 

As expected, we observed a > 10⁰C difference in average daily maximum 

temperatures between control forest and partially-cut forest stands at points 10m from the 

forest edge (23.7⁰C vs. 33.9⁰C, respectively; Table 2.2).  Within arenas, we observed the 

lowest daily maximum air, ground, and refugia temperatures in the residual strips 

between trails (31.8⁰, 33.9⁰, and 30.7⁰, respectively; Table 2.2), and the highest average 

daily maximum at ground level in arenas within the harvester trails (40.4⁰ and 38.8⁰ in 

parallel and perpendicular treatments, respectively).  On average, treatment edges 

maintained similar levels of relative humidity at ground level (84.3% - 88.6%), although 

the mean daily minimum humidity values showcase the wide range of possible moisture 

levels (driest in the parallel trail treatments at 37.8%; Table 2.2). 

By design, the control had high canopy cover, both within and outside of arenas 

(68% and 73%, respectively; Table 2.3).  Tree canopy constituted moderate cover in the 

residual strip treatments (27% and 30% within and outside of arenas), which was below 

the prescribed target range (31-60% crown closure).  In contrast, low vegetation layers 

(0.5 – 2 m) dominated harvester trails; herbaceous and shrub layers constituted 24 - 35% 

of cover, concordant with overstory removal (tree canopy cover: 19.6% and 6.4% within 

and outside of arenas, respectively; Table 2.3).     

For ground cover, the leaf litter and moss categories together accounted for > 70 – 

89% in control forest, while herbaceous vegetation and slash comprised high coverage in 

trails (31% and 21%, within arenas; 21% and 40% outside arenas; Table 2.3).  

Treatments in the residual strips had moderate leaf litter (45% and 28% within and 

outside arenas, respectively) and greatest slash coverage (20% and 14%).  Soil moisture



 

 
 

 

Table 2.2.  Mean daily maximum temperature (⁰C) and relative humidity (%) of control forest and three partial-harvest treatments 

during experimental amphibian releases along silvicultural edges.  Microclimate data are compiled for dates inclusive of frog 

movement within experimental arenas (7 July – 10 August 2011), and represent the mean values across all days and arenas.  

Temperature data were recorded at air-, ground- and refugia-levels in each arena and extending > 10 m into each adjacent edge 

(outside of arena).  Relative humidity data were recorded at ground level in each arena.  

 

    Mean daily maximum temperature (⁰C)   Relative humidity (%) 

Treatment   Ground level Refugia Air   
Mean daily 

(%) 

Mean daily minimum 

(%) 

    
 

  
 Within arena 

   
 

  
 At edge (control forest |treatment) 

   
 

  
 CF | parallel trail 

 
40.43 ± 1.51 34.83 ± 1.05 32.60 ± 1.09 

 
85.03 ± 2.59 37.84 ± 5.28 

CF | perpendicular trail 
 

38.79 ± 1.73 31.54 ± 0.79 34.19 ± 1.12 
 

88.60 ± 4.71 59.21 ± 7.11 

CF | residual cut strips 
 

33.93 ± 1.34 30.71 ± 0.81 31.77 ± 0.97 
 

84.27 ± 2.35 47.48 ± 4.21 

Outside arena               

Control forest 
 

23.70 ± 0.41 … … 
 

… … 

Residual strips of cut forest    33.91 ± 1.23 … …   … … 
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Table 2.3.  Habitat characteristics of control forest and three partial-harvest forestry treatments in central Maine during experimental 

amphibian releases along silvicultural edges (mean ± SE) in 2011 (6 July – 10 August). 

 

 

a
  Tree canopy in harvester trails constitutes average cover estimates across the entire width of trails (i.e., estimates are derived from data in 

randomly located plots within trails to incorporate the forest edge influence, despite 0% harvest retention in the center of harvester trails). 

 

 

 

Treatment ≤ 0.5 m 0.5 - 1 m 1-2 m
Tree 

canopy
Leaf litter

Moss / 

lichen
Herbaceous Slash

Bare 

ground
Rocks

Within arena 

Control forest 23.3 ± 8.1 22.3 ± 6.4 19.4 ± 5.0 67.9 ± 7.6 48.1 ± 10.8 28.0 ± 9.1 9.8 ± 1.5 7.0 ± 1.5 6.7 ± 6.3 0.4 ± 0.3 2.4 ± 0.5 15.9 ± 1.7

Residual cut forest 3.7 ± 1.3 6.3 ± 2.7 7.0 ± 4.2 30.4 ± 10.4 45.0 ± 18.9 26.7 ± 2.9 7.7 ± 2.8 19.7 ± 5.2 0.7 ± 0.6 0.3 ± 0.3 2.5 ± 0.6 13.9 ± 1.6

Harvester trail 32.5 ± 7.7 24.2 ± 7.9 12.8 ± 4.0 19.6 ± 7.9
a 22.2 ± 6.9 14.5 ± 6.0 30.5 ± 7.2 21.2 ± 6.7 9.2 ± 4.4 0.8 ± 0.7 1.4 ± 0.3 20.8 ± 3.2

Outside arena 

Control forest 10.8 ± 2.9 17.7 ± 5.0 21.9 ± 5.4 72.9 ± 4.6 45.1 ± 7.9 43.6 ± 7.8 6.2 ± 0.9 4.3 ± 1.0 0.3 ± 0.2 0.6 ± 0.6 2.1 ± 0.3 23.2 ± 3.3

Residual cut forest 6.8 ± 1.9 5.3 ± 2.1 6.8 ± 3.5 27.4 ± 6.9 27.5 ± 5.4 22.8 ± 11.4 18.0 ± 9.7 13.8 ± 4.1 17.8 ± 1.0 0.2 ± 0.3 1.8 ± 0.3 9.1 ± 1.4

Harvester trail 34.8 ± 9.4 29.8 ± 10.4 14.6 ± 7.1 6.4 ± 3.8
a 26.1 ± 4.5 5.6 ± 1.8 21.3 ± 5.3 40.0 ± 10.4 5.3 ± 1.8 1.7 ± 0.9 1.7 ± 0.4 18.3 ± 3.3

Cover of vegetation layers (%) Ground cover (%)
Leaf litter 

depth (cm)

Soil 

moisture 

(%)
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was highly variable among sites (9.1 – 23.2%) and greatest in control forest outside of 

arenas.  The greatest average soil moisture was in harvester trails (21%), presumably due 

to reduced transpiration.  Leaf litter depth ranged from 1.4 – 2.5 cm, but was deepest in 

control and partial cuts (e.g., 2.4 and 2.5 cm within arenas, respectively) and < 1.8 cm in 

all trails (Table 2.3). 

 

Discussion 

Despite the well-established body of knowledge on the effects of even-aged 

silviculture on amphibian populations (e.g., deMaynadier and Hunter, 1999; Todd et al., 

2014), there is still much to learn about effects on natal dispersal as part of a larger effort 

to document the ecological effects of the partial-harvesting practices that have become 

prevalent in the Acadian region (Thorpe and Thomas, 2007; Turner et al., 2013).  Some 

prior studies suggest that many species decreased in abundance following high-intensity 

(30% retention) partial harvesting (Vanderwel et al., 2009; also see Steventon et al., 

1998; Morneault et al., 2004; Tilghman et al., 2012.  Thus, it is important to examine 

mechanistic links between the patterns of forest structure in partial harvests and 

consequent wildlife responses.  In this study, we tested the initial and short-term dispersal 

orientation of juvenile wood frogs at the edge of heavy partial harvests (average: 30.4% 

retention, Table 2.3; nominal goal: 31-60%) to evaluate if dispersers would enter 

harvested areas.  Overall, we observed greater proportions of individuals enter control 

forest than partial harvests, although the only difference that even approached 

significance was for selection of forest versus perpendicular-oriented trail.  This pattern 

suggests that the vegetative structure and microclimatic regime of partially-harvested 
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stands are not as likely to be avoided by dispersing juveniles as clearcuts (e.g., 

deMaynadier and Hunter, 1995; Semlitsch et al., 2008). 

 

Comparisons with prior studies of partial canopy removal and dispersing 

amphibians 

In accord with several past studies of partial harvests and amphibians (e.g., 

Perkins and Hunter, 2006; Popescu et al., 2012a; Todd et al., 2014), our experimental 

animals showed little difference in the use of control and partial-cut treatments (Figure 

2.3).  For example, one study found similar abundances of western slimy salamanders 

(Plethodon albagula) in uncut control forest and partially-harvested forest with 60% 

stocking density retained (Hocking et al., 2012).  Yet, a recent meta-analysis on the 

effects of timber harvest on terrestrial salamanders highlights the considerable variation 

in response: Tilghman and colleagues (2012) found that short-term population declines 

ranged from 29% in partial harvests (95% CI = -2% - 51% for 108 species and 24 

studies) to 62% for clearcutting (95% CI = 29% - 80%).  Thus, patterns of amphibian 

response to partial cutting are confounded by wide variation in harvest intensities (when 

reported, range: 30-70% canopy and 4 – 59 m
2
/ha basal-area retention; Tilghman et al., 

2012).  Our study occurred in heavy harvests with low canopy retention (average 30.4 %; 

Table 3.3), and the focus of our experiment on initial dispersal decision-making provided 

only a short-term window into behavior.  Behavioral studies of individual movements 

across a range of harvest intensities will be critical for elucidating dispersal success and 

survival (Semlitsch et al., 2009), and responses may differ from studies of abundance.  

For example, in a study of the effects of partial canopy removal (~75% canopy retention) 
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on survival of ambystomatid salamanders in three regions of North America, Todd and 

colleagues (2014) found that adults survived as well or better in partially-harvested stands 

as in controls, but juvenile survival in partial harvests was significantly lower.  Low 

juvenile survival in partially-cut stands could mean that they constitute an ecological trap 

if individuals in our study were willing to enter harvests but then suffered high mortality.   

It is not surprising that by retaining some structural features of more mature 

forests, partial harvests may exhibit a weaker effect on populations than intensive 

clearcutting (e.g., Steventon et al., 1998; Semlitsch et al., 2009).  However, empirical 

evidence suggests that there may be cumulative negative impacts of partial harvesting 

due to repeated-stand entries (e.g., Riechenbach and Sattler, 2007).  In Virginia, the 

abundance of eastern red-backed salamanders (Plethodon cinereus) in partially-harvested 

stands declined twice, first after the initial shelterwood cut; then, after the population 

recovered, it was reduced a second time by an overstory removal cut 13 years later 

(Homyack and Haas, 2013).  If amphibian populations cannot recover quickly between 

entries, partial-harvest methods that require multiple stand entries within a rotation may 

depress abundances on decadal scales, but responses may vary by species and region.  

For example, the interval estimated for recovery of salamander populations to pre-

disturbance levels varied between 30-100 years in the Pacific Northwest (e.g., Karraker 

and Welsh 2006; Tilgman et al., 2013) and 25-70 years in the southern Appalachian 

region (e.g., Petranka et al., 1993; Harper and Guynn, 1999). 
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Effects of partial-harvest landscape configuration on juvenile orientation 

Consistent with predictions, our results suggest that the perpendicular trail 

orientation may represent a filter to juvenile movements (captures = 52:35 for forest vs. 

treatment; p-value almost significant at 0.068; Figure 2.3).  If frogs rely on visual cues for 

orientation, animals may have perceived an increase in predation or desiccation risk when 

facing a perpendicular trail stretching away from them; this is consistent with prior 

evidence that dispersing amphibians can perceive forest habitat from at least 10 m away 

(Pittman and Semlitsch, 2013a) and a recent study of our target species suggesting that 

juveniles released in open cover may orient toward forest from 40-55 m away (Cline and 

Hunter, in review).   

Prior studies also indicate that the spatial configuration of harvest edges may 

influence amphibian movements and diversity (Janin et al., 2012).  For example, pool-

exiting juvenile salamanders (Ambystoma texanum) and wood frogs exhibited non-

random orientation influenced by the width and shape of surrounding forest (Walston and 

Mullin, 2008).  At our sites, the harvest pattern resulted in a high perimeter-to-area ratio 

for strips within the stand (< 6 m wide skid trails; < 28 m wide residual strips) and two 

different configurations of edge to adjacent control forest: 1) where trails were 

perpendicular about 20% of the edge would be trail: forest; and 2) for parallel trails 100% 

of the edge would be trail: forest.  Studies indicate that amphibians modify movements 

(i.e., willingness to enter habitats) in response to ground substrate (Semlitsch et al., 

2013), habitat extent (Walston and Mullin, 2008), vegetation structure, microclimate 

(Rittenhouse et al., 2008), and physiological factors (Janin et al., 2012).  Although 

longer-term studies of dispersers in partially-harvested forests are needed, our results 



 

62 
 

 

suggest that habitat selection may be influenced by the spatial configuration of logging 

trails and residual strips.  

 

Potential effect of microclimate and microhabitat on edge effects and forest 

influence 

It is well established that timber harvesting modifies microclimatic regimes for 

amphibians (Feder, 1983; Karraker and Welsh, 2006) and thus may affect orientation and 

habitat selection for dispersers (e.g., Baker et al., 2013).  Given that partial harvesting 

reduces canopy cover overall and eliminates it completely in trails, we hypothesized that 

juveniles would avoid our treatments.  Overall, our results suggest only limited links 

between humidity, temperature, and the ecophysiology associated with frog behavior 

(i.e., the willingness to enter partial harvests), since the microclimate regime of our 

treatments did not deter a significantly greater percentage of frogs from entering (with 

possible exception of the perpendicular-oriented trails).  However, limited evidence 

suggests a possible link between microclimate and frog behavior:  For example, frogs in 

the treatment side of arenas were captured first (59.2% by day 2, Figure 2.4) perhaps 

locomoting quickly due to risk of desiccation; in contrast, fewer were recaptured in the 

control by day two (46.6%), suggesting that it provided better habitat for temporary 

settling.  Accordingly, we observed lower mean daily maximum temperatures at all levels 

in residual strip arenas (range: 30.7⁰ - 33.9⁰) relative to trails.   

Although microclimate appeared to play a limited role in frog behavior, the slight 

differences in preference for control forest among our treatments may be explained by 

differences in vegetation and ground cover (Table 2.3).  As expected in the control forest, 
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we recorded higher levels of canopy cover (67.9% and 72.9% within and outside of 

arenas, respectively), leaf litter coverage (48.1% and 45.1%) and depth (2.4 and 2.1 cm), 

and low percentage of bare ground (6.7% and 0.3%; Table 2.3).  In the arenas adjacent to 

residual strips, we recorded moderate levels of canopy (30.4% and 27.4%) and leaf litter 

coverage (45% and 27.5%) and depth (2.5 and 1.8 cm), and intermediate percentages of 

bare ground (0.7% and 17.8%), suggesting that frogs might find temporary refuge at this 

level of canopy retention.  This contrasts sharply with the harvester trails, where we 

observed the lowest canopy cover (19.6% and 6.4% within and outside of arenas, 

respectively), leaf litter cover (22.2% and 26.1%) and depth (1.4 and 1.7 cm), and highest 

(or near highest) bare ground coverage (9.2% and 17.8%; Table 2.3) across the 

experiment. 

 

Post-metamorphic orientation and juvenile ranging behavior 

In our experiment, we focused on a short-term behavioral response – the initial 

habitat selection of dispersers – because dispersal potentially involves large-scale 

overland travel, when naïve frogs may rely primarily on proximate cues for deciding 

where to go (Pittman et al., 2014).  Thus, individuals may be willing to enter open trails 

(0% cover) or residual strips even if they differ from preferred conditions for settlement 

(Cline and Hunter, 2014).  Given our short time frame, we urge caution in extrapolating 

our results to adult life stages or other seasons when the behavioral context may involve 

prior experience, site fidelity, or non-random directionality (Walston and Mullin, 2008; 

Driscoll et al., 2013).  Indeed, research suggests that use of partial harvests and 

subsequent survival may differ between adults and juveniles (see Table 3 in Popescu et 
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al., 2012a).  In a study of the matrix permeability of open-canopy vegetation types, 

dispersing juvenile wood frog made forays > 30 m into treatments and then changed 

direction to return to forest (Cline and Hunter, 2014).  In our study, animals showed little 

difference in the use of control and treatments; however, we constrained movement 

within 10 m and thus could not evaluate the ability of individuals to enter treatments, 

assess habitat, and change directionality.  Longer-term tracking is needed to elucidate 

behavioral strategies (e.g., search mechanisms, relative velocities, path tortuosity) and to 

determine the scale over which decisions are made and the particular matrix types and 

configurations that might enable juveniles to disperse. 

 

Management implications 

Current forest practices in the Acadian forest region are creating unprecedented 

configurations of partial harvests (i.e., extensive strips of trails and logged matrix), and 

the effects of this spatial structure on wildlife populations remains relatively unknown 

(Fuller et al., 2004; Reichenbach and Sattler, 2007, Graham-Sauvé et al., 2013).  Partial 

harvesting may result in increased: (1) forest edge and fragmentation; (2) harvester trail 

coverage; (3) variation in harvest intensity; and (4) frequency of stand entry (e.g., Baker 

et al., 2013), all of which may affect population connectivity. Our results indicate the 

relative permeability to juvenile frogs (willingness to enter) of three types of silvicultural 

edges; as such, it is among the first to empirically test individual behavior in partial 

harvests.  Collectively, our three short-term measures of dispersal movements suggest 

that partially-harvested stands are not as likely to be avoided by dispersing juveniles as 

clearcuts.  Perpendicular-oriented harvester trails may have decreased permeability to 
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juvenile movements relative to our other treatments (based on low willingness of 

individuals to enter).  However, we also recognize that perpendicular trails may comprise 

only about 25% of available edge at the stand periphery in many cases, and longer term 

behavioral studies are necessary to elucidate dispersal outcomes.  Ultimately, the habitat 

value of partially-harvested stands for pool-breeding amphibians will depend on if 

remnant populations and dispersing juveniles are capable of persisting and moving to 

new breeding sites across a complete cycle of harvests. 

For forest managers, the goal of our study is to provide recommendations for 

harvest layout that both sustains timber production and conserves functional connectivity 

of amphibian populations across highly spatially-structured managed forests (e.g., partial 

harvests implemented in herring-bone patterns of strip cuts).  Within the pool, amphibian 

reproductive effort (i.e., egg mass densities) has been shown to be positively associated 

with the amount of forest cover extending to 164 m from the pool edge (~ 65% reduction 

in egg masses in ponds surrounded by cut [70% removal] vs. uncut forest; Scheffers et 

al., 2013).  Considering habitat connectivity beyond the pool, our initial findings imply 

that the spatial configuration of trails and residual strips may affect juvenile frog 

movements as they move from natal sites; thus, management should consider these 

patterns to retain canopy cover between breeding pools and adjacent terrestrial habitat 

(e.g., Popescu et al., 2012; Tilghman et al., 2012).  This would start with an area 

immediately around the pool with very little or no harvesting (i.e., 25% limited harvest 

within the first 30 m of pool; 50% partial harvest within the subsequent 91 m) and from 

there the key issue would be how to arrange residual strips to facilitate emigration.  As a 
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theoretical ideal, leaving residual strips like radiating spokes of a wheel, would allow 

frogs to travel away from the pool in multiple directions under continuous forest cover.     

Given the realities of efficient harvesting operations and site factors, however, it 

would be more practical to consider the pool and immediately surrounding forest as a 

“node” of increased diameter within a partially-cut strip, thus allowing frogs to avoid 

machine trails and leave the pool in two directions (180⁰ difference) under continuous 

cover of a harvested strip.  Using this approach, managers could still maintain best 

management practices during harvest operations near vernal pools.  For example, 

adequate canopy could be retained in the cumulative 122-m radius zone around a pool 

(Calhoun et al., 2005) by keeping trails narrow and widely spaced, and limiting harvests 

within the residual strips and the “node” surrounding each pool.  Temporal issues could 

also be significant.  Managers could extend the harvest over a greater number of entries 

(e.g., 3 or 4 per rotation instead of 2) to retain more structure and harvest during winter 

(i.e., outside of the dispersal window); however, the effects of increased re-entry 

frequency versus lower harvest intensity on amphibians is uncertain (Homyack and Haas, 

2013).   

Finally, predicting wildlife responses to partial harvesting is hindered by the 

dearth of direct, long-term studies of stand composition and structural changes over time 

(e.g., Saunders and Wagner, 2008; Bataineh et al., 2013), and the wide variation in 

practices underscores the need to develop a classification scheme to better describe 

harvest intensity, stand re-entry, and landscape configuration.  The discrepancies among 

studies on the effects of partial harvesting on amphibians (Tilghman et al., 2012) may 

well be rooted in the wide variation in basal area retained (e.g., Vanderwel et al., 2009).  
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Further, few (if any) studies assess the ability of individuals to survive within harvested 

stands (see Todd et al., 2014), re-colonize regenerating partial harvests between entries 

(e.g., Homyack and Haas, 2009), or disperse.  While our study suggests that landscape 

configuration may influence initial movements of dispersing amphibians, it is only a brief 

window into individual behavior.  To conserve functional connectivity in landscapes 

where partial-harvest silviculture is predominant, we will need to integrate more refined 

classifications of harvest practices with studies of individual behavior (e.g., Bélisle 2005) 

across a range of harvest intensities and stand re-entries. 
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CHAPTER 3 

MOVEMENT IN THE MATRIX:  SUBSTRATES AND DISTANCE  

TO FOREST EDGE AFFECT JUVENILE WOOD FROG  

(LITHOBATES SYLVATICUS) DISPERSAL 

 

Abstract 

Population persistence often depends on functional connectivity for animals that 

transit multiple vegetation types to acquire resources, particularly for dispersers 

navigating a landscape matrix fragmented by agriculture, forestry, or urbanization.  For 

many pool-breeding amphibian species, population viability depends on the ability of 

juveniles to locate and reach suitable habitat in the terrestrial matrix; identifying the scale 

and orientation of these movements is necessary to predict the consequences of landscape 

configuration for populations.  We conducted two experiments to evaluate if different 

vegetation types alter the behavior of dispersing juvenile wood frogs (Lithobates 

sylvaticus).  We measured the: (1) fine-scale movement (velocity, latency, path length, 

net displacement, path tortuosity, and orientation) of individuals (n = 150) released on 

five natural and anthropogenic substrates (asphalt, corn, forest leaf litter, hay, lawn); and 

(2) directionality of frogs (n = 168) released at different distances from forest in two 

open-cover types (lawns and hayfields).  Using fluorescent powder to monitor 

movements, we mapped 318 paths.  Movement performance differed: frogs demonstrated 

straighter paths, and greater net movements, path lengths, and velocities through 

treatments with lower structural complexity (asphalt > lawn > corn > forest leaf litter > 

hay).  Frogs exhibited directionality toward forest in asphalt, lawn, and corn (random 
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orientation in forest control and hay).  Juveniles in the second, distance-to-forest 

experiment exhibited differences in displacement and orientation attributed to treatment 

as well as direction and distance to forest edges.  We observed more forest-oriented 

movement in lawn and random directionality in hayfields.  Results indicate that the 

characteristics of the non-forest matrix may influence the ability of frogs to traverse open 

cover and orient toward forest from distances of at least 40-55 m.  Thus, it is overly 

simplistic to assume movement performance is uniform across all matrix types, an 

important distinction because many landscape-population models use expert-based values 

that are a one-size-fits-all measure for open cover.  Our study provides field-based, 

mechanistic approximations of dispersal that can be useful for predicting how the 

composition and configuration of the matrix might be managed to maintain or restore 

functional connectivity. 

 

Introduction 

Conservation strategies for many species use the patch-matrix model of 

landscapes (Forman, 1995) with the goal of maintaining patches of preferred habitat 

embedded in a matrix that allows some degree of connectivity among patches (Driscoll et 

al., 2013).  Operationally, practitioners often focus on conserving patches but have little 

information on matrix quality; thus, they can only assume that the matrix is singularly 

inhospitable for even temporary settlement and that the size and spatial arrangement of 

the surrounding matrix will allow animals to access conserved patches (Kupfer et al., 

2006; Prevedello and Vieira, 2010; Janin et al., 2012a).  In reality, there may be a 

continuum of matrix conditions that vary as filters or conduits to movement, and the 
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quality of these cover types may influence the probability of an animal entering the 

matrix, the efficiency of movement, and dispersal success (Kuefler et al., 2010; Cline and 

Hunter, 2014).  However, quantifying this variation in matrix quality remains a scientific 

and management challenge, in part because researchers need frameworks that integrate 

behavioral experiments with landscape-scale studies.  The underpinning assumption is 

that successful movement depends on the characteristics of the matrix and how these 

interact with species-specific behavior (Bélisle, 2005; Haynes and Cronin, 2006; Burgess 

et al., 2012).  Using this lens of behavioral landscape ecology, it then becomes possible to 

identify: (1) the probability of an animal entering the matrix (i.e., “willingness to enter,” 

e.g., Popescu and Hunter, 2011; Zeller et al., 2012); and (2) its subsequent (finer-scale) 

movement performance within each matrix type.  Many modeling studies rely on expert-

derived values to simulate connectivity (e.g., Hudgens et al., 2012), but these may be 

insufficient for adequately predicting the consequences of landscape configuration for 

population persistence.   

 It is widely understood that population viability is maintained by dispersal among 

breeding sites (Semlitsch, 2008); thus, the ongoing conversion of natural ecosystems to 

human-dominated land cover (Desrochers et al., 2011) amplifies the need to consider 

differential permeability of diverse cover types during dispersal.  Studies suggest that 

matrix type can exert a strong influence on species movements.  For example, sharp 

edges between habitat patches and matrix may decrease dispersal (i.e., a “fence” effect; 

Schtickzelle and Baguette, 2003; Nams, 2011), due to the perceived risk of predation 

upon entering an open-canopy cover type. However, the risk of predation may be 

mitigated if individuals move rapidly once edges are crossed.  While a number of studies 
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have quantified the willingness of forest-dwelling species to enter open vegetation during 

dispersal (e.g., McDonough and Paton, 2006; Cosentino et al., 2011; Popescu and Hunter, 

2011), much remains unknown about the mechanisms by which the matrix (directly or 

indirectly) influences individual behavior and the consequent distribution of patch-

dependent species in fragmented landscapes (Driscoll et al., 2013).   

Forest-dwelling amphibians are ideal taxa for this research because their 

movements occur at tractable scales and because many species have demonstrated 

sensitivity to habitat loss and fragmentation (deMaynadier and Hunter, 1998).  Further, 

many species rely on aquatic and terrestrial habitat connectivity because juveniles 

typically emerge into the terrestrial environment from their natal pool following 

metamorphosis; some will emigrate to a new breeding pool (dispersal) while others return 

to breed in their natal pool (philopatry; Semlitsch, 2008; Clobert et al., 2009).  Pittman 

and colleagues (2014) propose a unifying paradigm of juvenile amphibian movement in 

which dispersal is a multi-phase process during which individuals adjust movement and 

habitat responsiveness based on internal physiological state and environmental factors.  

Initially, juveniles are in an “away” mode to move from the pool edge, and they are 

probably relatively unresponsive to external cues such as microclimate or habitat 

structure.  As juveniles become more responsive to habitat features, they enter a 

“directed” or ranging mode (Dingle, 1996; Barraquand and Benhamou, 2008), and they 

are likely to exhibit exploratory behavior at large spatial scales shaped by their ability to 

evaluate potential habitat from a distance (Bartoń et al., 2009; Pittman et al., 2014).  

Finally, individuals enter a “settlement” mode; searching for a suitable refuge, they likely 

respond to habitat features at very close range (Patrick et al., 2008).  We hypothesize that 
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juveniles are most likely to cross boundaries and enter open-canopy vegetation types 

during the exploratory, directed movement phase, since they may orient to landscape 

features at scales greater than their very local or immediate range. 

Prior amphibian dispersal studies in agricultural or urbanizing landscapes have 

focused on individual orientation (Vos et al., 2007; Pittman and Semlitsch, 2013a), 

resistance of the matrix to gene flow (Van Buskirk, 2012), or small-scale locomotor 

ability on different substrates without regard to landscape setting (e.g., Baughman and 

Todd, 2007; Semlitsch et al., 2012).  Researchers have estimated the permeability of 

different open-canopy cover types to juvenile movements (e.g., Cline and Hunter, 2014), 

but none has paired these with measurements of fine-scale movement once matrix 

boundaries are crossed and in relation to landscape configuration (e.g., orientation to the 

nearest forest edge). 

 

Study species and objectives 

Our goal was to test whether different substrates and open-vegetation cover 

typically found in fragmented forest landscapes alter the behavior of juvenile amphibians 

during post-metamorphic movements.  To accomplish this, we studied the wood frog 

(Lithobates sylvaticus) due to its widespread distribution in North America and its 

dependence on closed-canopy forest.  This species avoids proximity to forest edges 

(deMaynadier and Hunter, 1998; Semlitsch et al., 2009) and is highly sensitive to forest 

removal (Cushman, 2006).  Dispersal success (i.e., juveniles surviving to breed in new 

sites) is estimated at 18–20% (Berven and Grudzien, 1990), with mean net dispersal 

distances of 1140 ± 324 m for females and 1276 ± 435 m for males and maximum 
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distances of 2530 m (Semlitsch and Bodie, 2003).  In contrast, movement estimates of 

post-breeding adults are an order of magnitude lower:  102-340 m (Baldwin et al., 2006) 

and > 300 m (Vasconcelos and Calhoun, 2004).   

 We conducted two experiments to measure: (1) fine-scale movements (velocity, 

latency, path length, net displacement, path tortuosity, and orientation) of individuals 

released on five substrates (asphalt, corn, forest leaf litter, hay, lawn); hereafter, substrate 

experiment; and (2) movement outcomes and directionality of individuals when released 

at different distances from forested corners in two open-cover types (lawns, hayfields); 

hereafter, distance-to-forest experiment (Figure 3.1).  We undertook these experiments to 

extend a prior study  in which permeability to wood frogs was estimated in clearcut, 

open-canopy and moderate-cover lawns, row crops, and hayfields (permeability:  row 

crop < hayfield < clearcut < open lawn < moderate-cover lawn; Cline and Hunter, 2014).  

In this study, we refine these population-level permeability estimates with detailed 

measurements of fine-scale movements by individuals.  Our guiding hypothesis was that 

movement performance would differ among treatments due to structural differences in 

cover, refuge availability, and physical impediments to locomotion. 

 

Predictions for post-metamorphic movements and orientation 

Prior to our experiments, we predicted that five environmental factors (i.e., 

vegetation structure, microclimate, food, conspecifics, and predators) might influence 

observed juvenile movement performance.  Amphibians have been shown to alter 

movement behavior in response to habitat extent (Rothermel and Semlitsch, 2002), 

substrate (Baughmann and Todd, 2007; Semlitsch et al., 2012), vegetation structure



 

 
 

 

 

 

Figure 3.1.  Experimental design for evaluating the movement of juvenile L. sylvaticus in: (A) five substrates (asphalt, corn, forest 

leaf litter, hay, lawn); and (B) two open-cover vegetation types during dispersal. Panel (A) depicts the substrate experiment design 

constituting a 2.4 m radius arena; diamonds indicate where ten frogs were simultaneously released and tracked (see embedded photo 

of remote release mechanism: inverted cup, fluorescent powder, and string).  Panel (B) depicts the design for distance-to-forest 

experiment: three transects emanating (30⁰, 45⁰, and 60⁰, respectively) from an ~ 90⁰ interface of two straight forest edges creating a 

corner framing lawn or hayfield.  Along each 80 m transect frogs were released at seven 12 m intervals. (Note: figure not to scale). 
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(Stevens et al., 2004), physiological stress factors (Janin et al., 2012b), microclimate 

(Rittenhouse et al., 2008), and predation risk (Pittman et al., 2013b).  We speculated that 

frogs in our study were largely in a directed mode: individuals had already departed their 

natal pool and would exhibit exploratory movements in search of food, cover, ease of 

locomotion, and appropriate microclimate.  We assumed they were not yet made in 

settlement mode. 

In our substrate experiment, we predicted that velocity, path length, and net 

displacement of individual movements would be greater in substrates with less structural 

complexity (asphalt, lawn, perhaps corn) because these would directly impede 

locomotion less.  We anticipated that path tortuosity (i.e., the sinuosity of movement) 

would be greater in substrates with more structural complexity (forest litter, hay, perhaps 

corn) and thus cool moist microclimates or cover.  We further predicted that the time to 

first movement following release (latency period) would be greater in substrates with 

more settling habitat (forest litter) and physical cover (hay, corn) if frogs perceived these 

as a refuge from thermal stress or predators.  We expected that directionality would be 

random in forest (i.e., ample preferred habitat) and perhaps hay (where thick vegetation 

provides cover and may restrict the ability to see a distant forest), but that frogs would 

orient toward the nearest forest when the edge contrast was stark (lawn, asphalt, corn). 

In the distance-to-forest experiment, we predicted that net displacement would be 

greater in lawns than hayfields, where thick vegetation may limit locomotion. Similarly, 

we predicted that frogs released farther from the forest edge would be less able to detect 

the edge and thus would move relatively shorter distances.  Finally, we expected that 

directionality in hayfields would be random at all but the shortest distances to forest edge 



 

76 
 

 

(e.g., < 10-15 m; Rothermel and Semlitsch, 2002; Pittman and Semlitsch, 2013a) due to 

decreased visual range toward a subtler edge.  In contrast, we predicted that juveniles in 

lawns would exhibit greater forest-oriented directionality overall; especially at greater 

distances (e.g., > 35 m; Cline and Hunter, 2014) due to wider visual range toward a stark 

edge. 

 

Materials and Methods 

Study sites 

Our study was conducted in Penobscot County, Maine, USA on University of 

Maine lands (Demeritt Forest, Witter Farm, athletic fields, and parking lots) and the 

Penobscot Valley Country Club (44⁰51'41.87" N, 68⁰41'14.42" W).  In the lower 

Penobscot River watershed (9,974 km
2
), anthropogenic landscape fragmentation involves 

forestry, and to a lesser degree, residential development, and agricultural practices (i.e., 

78.3% of the landscape is forested, of which 20.4% has been recently cut; 3.9% is urban; 

3.9% is agriculture, and the remainder comprises freshwater bodies).   

We selected five treatments for the substrate experiment: asphalt, regularly cut 

lawn, forest leaf litter; a row crop (silage corn); and unmowed or recently mowed hay.  

We selected reasonably flat surfaces to avoid slope and aspect bias and used each 

location only once.  Treatment patches averaged 3.44 ± 0.43 hectares in size and were 

abutted by at least one forest edge ≥ 135 m long (with the exception of forest controls).  

Locations for all trials were 35-40 m from the nearest forest edge.  For the distance-to-

forest experiment, we selected locations where an ~ 90⁰ interface of two straight forest 

edges (range of lengths: 135-295 m) created a corner framing a lawn (N = 4) or an uncut 
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hayfield (2 sites, used twice; see Experimental design and Figure 3.1B).  We avoided 

slope bias (by using flat areas) and directional bias (by selecting corners facing different 

cardinal directions).   

Vegetation characteristics for all treatments were recorded in July-Aug 2013.  

Asphalt treatments consisted of 100% impervious surface with 0% canopy cover with 

forest along at least one edge and residential or campus land-uses in other directions.  

Hayfields constituted a mixture of grasses and legumes, with average stem height of 1.1 

m; mowing and baling occurred on 17 July but there were no differences in observed 

movements before or after that date (per analyses by trial date described below).  Lawn 

treatments were exotic grasses mowed once per week to retain an average stem height of 

10.3 ± 0.23 cm.  Row crop treatments (hereafter corn) comprised feed corn sown in mid-

May; inter-row distance averaged 0.95 ± 0.16 m, and the substrate underneath corn stalks 

consisted of bare tilled soil, interspersed with weeds.  Forested controls (not recently 

harvested; natural regenerated with ~ 75% canopy cover) were characterized by mature 

mixed coniferous and deciduous forest.  Ground cover was undisturbed and characterized 

by leaf litter interspersed with rocks, coarse woody debris, moss, and lichen, and a fairly 

consistent herb layer (hereafter forest). 

 

Experimental design 

Our substrate experiment was performed in a circular release scheme (Figure 

3.1A) constituting a 4.8 m diameter open area in which two observers were positioned 

centrally (back-to-back) to record the initial movement behavior and directionality of 

juveniles released at fixed-interval locations along the circle (i.e., 10 individuals spaced 
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at 1.5 m intervals along the 15.1 m circumference).  We released frogs simultaneously ~ 

5-8 minutes after sunset and tracked their movements using fluorescent powder and black 

light over the subsequent night (n = 10 frogs per trial in three replicates of five 

treatments, for a total of n = 150 tracked; Figure 3.1A).  Our substrate trials occurred on 

15 dates during the height of post-metamorphic dispersal in July 2013 (replicate 1: 6-10 

Jul; replicate 2: 13-17 Jul; replicate 3: 21-24 and 28 Jul).  The substrate surface 

surrounding each release container was sprayed with well water just before each trial to 

eliminate differences in moisture-holding capacity of the different substrates (Semlitsch 

et al., 2012).  Thus, we intended to induce similar experimental conditions (i.e., 

microclimate) for the initial break of latency for each frog in each substrate.   

Frog release containers consisted of an inverted opaque plastic container (SKS 

Bottle & Packaging, Inc., Watervliet, NY, USA; model 0610-08: 8.5 cm diameter x 6.6 

cm height) with two ventilation holes, containing one of our 10 different color fluorescent 

powders (Figure 3.1A).  Powder tracking techniques have been widely applied in 

herpetological studies; these pigments are harmless to amphibian skin (Eggert, 2002; 

Rittenhouse et al., 2006) and degrade when exposed to water and weather.  The powders 

were mixed with mineral oil in a 40:1 ratio of powder to oil so that each frog would “self-

coat” with the powder prior to release.  We used an ECO series of powders, composed of 

a polymer free of carcinogens, formaldehyde, or other toxins (DayGlo Color Corp, 

Cleveland, OH, USA).  Each release container was inverted on its lid and connected to 

string that extended to the center of the release circle and allowed observers to open all 

10 containers remotely simultaneously.   
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Following a 15-min acclimation period (Turchin, 1998), frogs were released and 

observers recorded time to first movement; after break of latency, frogs were left to 

traverse each substrate without interference for a period of 60-90 minutes (Semlitsch et 

al., 2012) and we observed them using only black lights (Inova X5 ultraviolet LED: 365-

400 nm).  If all frogs had departed release locations after the initial 60 minutes, two 

observers would approach and begin mapping two of the 10 frog paths; we would delay 

tracking up to an additional 30 minutes if latency was still unbroken for   two frogs.  

The order of tracking was determined randomly for the first frog and observer; the second 

observer would begin at an interval of five release locations away (e.g., if frog three was 

selected at random, the second observer would begin tracking frog eight).  Researchers 

moved along each path slowly and quietly, extending a length of fluorescent string along 

the frog’s path as indicated by a trail of powder (until the frog was observed visually or 

path deteriorated).  Each frog’s stopping location was marked with a wire flag, and the 

time required for it to move to its final location was recorded to calculate velocity.  Our 

goal was to obtain five movement metrics for each frog after the break of latency:  (1) net 

displacement (m), or the straight-line distance from start to end location; (2) total path 

length (m), or the length of string extended along the exact path; (3) velocity (cm/s), or 

the net distance / total time spent moving; (4) path tortuosity (= net displacement / total 

path length); and (5) directionality (azimuth from start to end location, ⁰).  We used 

directionality measures to derive each frog’s orientation relative to the nearest forest edge 

(except in the forested control, where an edge with open-cover was > 125 m away and we 

assumed orientation would be random).     
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We conducted our distance-to-forest experiment using a landscape configuration 

of roughly a ~ 90⁰ interface of two straight forest edges creating a corner framing a lawn 

or hayfield (Figure 3.1B).  At each lawn or hayfield site, we delineated three transects 

(30⁰, 45⁰, and 60⁰ from one edge at each corner); each transect constituted an 80 m vector 

along which seven frogs were released at evenly spaced intervals (8, 20, 32, 44, 56, 68, 

and 80 m from corner) and subsequently tracked using powder and black light.  Distance-

to-forest trials occurred over four consecutive nights (31 Jul, 1-3 Aug 2013); we 

conducted simultaneous trials in paired lawn and hayfield sites on each date (n = 21 frogs 

per trial with two treatments and four replicates, for a total of n = 168 tracked). We used 

the same “powder” release containers described above. Following release (~5-8 min after 

sunset), all frogs were permitted to transit at will until 2:00 AM, when observers would 

return to map frog paths using black light and obtain the following metrics: (1) net 

displacement (m); and (2) directionality from frog start to end location, which we later 

used to derive individual frog orientation relative to the nearest forest edge(s) at each site. 

 

Juvenile amphibian rearing and release 

Prior to our experiments, metamorph frogs were reared by collecting eggs from 

natural vernal pools, roadside ditches, and skidder ruts in Penobscot County, ME and 

raising larvae in artificial pools using methods described in chapter one and published in 

Cline and Hunter (2014).  Before each release, we measured (snout-vent length [SVL]: 

mm; weight: g), marked (one of 10 fluorescent powder colors in release cup), and 

randomly assigned frogs to one of our study sites and treatments.  At the conclusion of 
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trials, each frog was collected (if observed at path end) and returned to a forested location 

within 50-100 m of its natal pool. 

 

Microclimate and habitat sampling 

We collected temperature (⁰C) and relative humidity (%) in our substrate 

experiment using iButton data loggers (Maxim, Inc., Dallas Texas, USA).  Within each 

substrate and cover type across all study site replicates, we measured temperature and 

humidity at 1-minute intervals at: (1) ground-level within each release circle; and (2) 

under thermal refugia located 15 m outside of the circle (i.e., 5–8 cm below coarse woody 

material in forest, under root masses in hay, etc.) to represent potential cover for a 

dispersing frog.  We also collected microhabitat data, characterizing vegetation in terms 

of ground cover, canopy closure (using densitometer), vegetation height, stem density, 

and inter-row distance (corn).  We estimated ground cover as the percentage of 3 x 3 m 

plots classified as: leaf litter, moss / lichen, herbaceous, slash, bare soil, and rocks.  

Habitat characteristics of the hayfield, cornfield, and lawn were collected three times 

(July 12-13, 17-18, and 22-25) to account for vegetation growth. 

 

Data analysis and statistical approach 

Each frog was used once at one location, and thus constituted our experimental 

unit of analysis.  In the descriptions that follow, the comparisons of movement path 

parameters includes both the substrate and distance-to-forest experiments.   

We compared the mean net displacement, latency, path tortuosity, path length, 

and velocity of movement paths among treatments using a one-way analysis of variance 
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with treatment as the main effect (ANOVA, R package [car]; Fox & Weisberg 2011).  

We log transformed net displacement, latency, and velocity to achieve normality in our 

data distributions prior to each analysis; path tortuosity is presented on a scale of 0-1 

(greater values indicate straighter paths).  When ANOVA tests proved significant, we 

performed Tukey’s honestly significant differences (HSD) test to investigate pairwise 

dissimilarity between treatments while controlling for multiple comparisons.  

Correlations of frog size versus movement responses were performed using Pearson’s 

simple correlations.  We investigated possible additive effects of transect and frog start 

location in our distance-to-forest experiment using a two-way ANOVA.   

For juvenile orientation, we used circular statistics to test if individuals moved 

toward the nearest forest edge.  Orientations were standardized so that 0⁰ represented the 

nearest forest edge(s) adjacent to treatments for all release sites and trials.  We used 

Rayleigh’s test of uniformity (general unimodal alternative with unknown mean direction 

and vector length) to determine whether orientation deviated significantly from a random 

distribution for each treatment, transect, or distance (Fisher, 1993).  To test if frog 

movement deviated significantly from a hypothesized mean angle (i.e., the bearing 

toward the nearest forest edge), we used a V-test and a Rayleigh test of uniformity with 

specified mean direction.  We analyzed orientation propensity for animals that moved > 

0.1 m from initial release locations.   

We assessed potential differences in the size of metamorphs (SVL) released 

among treatments, trial dates, transects, or frog start locations in each experiment 

separately using a one-way ANOVA.  All ANOVAs and Tukey’s HSD tests were 

conducted in Program R (version 2.15.3; R Development Core Team, 2013).  Circular 
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statistics were conducted in Program R (R packages [CircStats]: Jammalamadaka and 

Sengupta 2001; and [circular]: Lund and Agostinelli, 2013), and Oriana (version 3: 

Kovach Computing Services; Anglesey, Wales, UK, 2014).  Circular histograms were 

created using Rose.Net (version 0.10.0.0, Todd A. Thompson Software, 2012).  All 

statistical tests were deemed significant at P < 0.05. 

 

Results 

We quantified significant differences in the fine-scale movements of juvenile L. 

sylvaticus when released in natural and anthropogenic substrates (asphalt, lawn, forest, 

corn, hay) and at varying distances from forest edges using six metrics (velocity, latency, 

path length, net displacement, path tortuosity, and orientation).   

The average SVL of juveniles in the substrate experiment was 16.59 ± 0.11 mm 

with no significant differences among treatments (F4,145 = 0.51, p-value = 0.74; ANOVA; 

Tukey’s HSD).  However, metamorphs released later in the season (i.e., trial 3: 21-28 Jul 

2013; 15.71 ± 0.17 mm) were significantly smaller than those released during trial one 

(6-10 Jul; 17.42 ± 0.19 mm) or two (13-17 Jul; 16.62 ± 0.14 mm; F1,148 = 51.59, p-value 

<  0.001).  The overall average mass was 0.55 ± 0.02 g and tracked the same pattern 

observed for SVL.  In the distance-to-forest experiment, the average SVL of juveniles 

was 14.11 ± 0.09 mm, with no differences among treatments (Welch two sample t-test: t 

= -0.53, P = 0.31) or trials (F1, 166 = 3.73, P = 0.06).  We released 150 metamorphs (30 on 

each substrate type) in the substrate experiment, mapped all their powder trails, and 

visually relocated 89% (Table 3.1).  In the distance-to-forest experiment, we released 168



 

 
 

 

Table 3.1.  Movement metrics for frogs released and relocated in: (1) five substrate types across two sites and three trials per substrate 

(first six rows of data); and (2) distance-to-forest experiment in lawns and hayfields across six sites and four trials (final three rows).  

See Appendix 1 for the breakdown of distance-to-forest results by trial and transect. 

 

1. Substrate 
# 

Released 

Observed 

at path end 

% paths     

> 1 m 
Total path length (m)* Net displacement (m)* Range path length (m) 

        Mean ± SE Mean ± SE   

Asphalt 30 26 100.0 39.50 ± 3.81
 A

 26.10 ± 2.69 
A
 5.57 - 106.35 

Lawn 30 23 86.7 9.37 ± 1.87
 AB

 5.12 ± 0.88 
AB

 0.70 - 43.07 

Forest 30 25 90.0 9.44 ± 2.11
 AB

 5.33 ± 1.16 
AB

 0.59 - 38.20 

Corn 30 29 86.7 6.02 ± 1.25
 AB

 3.60 ± 0.86 
AB

 0.34 - 33.12 

Hay 30 30 70.0 2.18 ± 0.47
 B

 1.24 ± 0.35 
B
 0.27 - 14.67 

Total 150 133 88.0 13.30 ± 1.47 8.28 ± 0.97 0.27 - 106.35 

2. Matrix type            
Range net displacement 

(m) 

Lawn 84 62 34.5 … 2.18 ± 0.42 ** 0.00 - 19.95 

Hayfield 84 62 13.1 … 0.73 ± 0.20 ** 0.00 - 14.88 

Total 168 124 23.8 …           1.46 ± 0.24 0.00 - 19.95 
 

* These metrics varied significantly by treatment (ANOVA; F4, 145 = 38.06; P < 0.0001); superscript letters indicate significant differences among 

groups after controlling for multiple comparisons (Tukey’s post hoc HSD at α ≤ 0.01).  
** Net displacement varied significantly by treatment (ANOVA; F1, 166 = 14.38; P < 0.0001). Path length was not measured in distance-to-forest 

experiment. 
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metamorphs (84 in each matrix type), mapped all their powder trails, and visually 

relocated 74% (Table 3.1 and Appendix C). 

 

Substrate experiment 

As hypothesized, fine-scale movement performance differed significantly among 

substrates: frogs demonstrated significantly greater net movements (F4, 145 = 38.06, P < 

0.001; Figure 3.2A) and total path lengths (F4, 145 = 39.38, P < 0.0001; Table 3.1),  

straighter paths (path tortuosity: F4, 145 = 3.23, P = 0.01; Figure 3.2C), and faster rates of 

movement (velocity: F4, 145 = 26.34, P < 0.001; Figure 3.2D) through treatments with the 

least structural complexity (overall trend: asphalt > lawn > corn > forest > hay; Figure 

3.2).  We observed that frogs on pavement exhibited significantly straighter movement 

trajectories (0.76 ± 0.03l vs. 0.59 ± 0.14; P = 0.007), net displacements (26.10 ± 2.69 m 

vs. 1.24 ± 0.35; P < 0.0001), and velocity (0.76 ± 0.08 cm/s vs. 0.08 ± 0.01 cm/s; P < 

0.0001, Figure 3.2) than frogs on hay (Tukey’s HSD test).  We failed to detect significant 

differences in latency among substrates (F4, 145 = 2.04, P < 0.09) due to high variability 

within treatments.  Average latency was longest in the lawn and asphalt (208 ± 50 s and 

173 ± 51 s, respectively), intermediate in the corn (123 ± 61 s), and shortest in the hay 

and forest (94 ± 31 s and 61 ± 13 s; Figure 3.2B).  We found scant evidence of a 

correlation between frog size (weight or SVL) and any movement response; the strongest 

relationship was between latency and body length in lawn (y = 391.05 x 
2.67

; R
2 
= 0.29). 

As outlined in our predictions, we observed strong target-oriented movement 

toward the nearest forest edge in our most open cover types (asphalt > lawn > corn), 

corroborating our prediction (Figure 3.3; asphalt: Rayleigh’s (R-test): P = 0.09; V-test:



 

 
 

 

Figure 3.2.  The observed movement behavior of L. sylvaticus (n = 150) during releases in five types of substrate.  Panels depict: (A) 

net distance traveled (m); (B) latency (i.e., the time from release to first movement in s); (C) path tortuosity (net distance / total path 

length); and (D) velocity (cm/s, based on total path length).  All responses were log transformed to achieve normality except tortuosity 

(scale 0-1: greater values indicate straighter paths).  Reported significance values (global tests of treatment effect) are from analyses of 

variance (ANOVA); letters A and B indicate similarity or dissimilarity among substrates after controlling for multiple comparisons 

(Tukey’s post hoc HSD α ≤ 0.01). 
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Figure 3.3.  Orientation of L. sylvaticus (n = 150) during experimental releases in five types of substrate.  Orientations were 

standardized so that 0⁰ represents the nearest forest edges (range: 35-40 m away).  Bold solid lines indicate the mean direction of all 

frogs released in that substrate (mean direction in parentheses) and the length of the wedges represents the percentage of animals (5% 

increments) with orientations that fell within the designated 20⁰ bin (standard deviations indicated by arcs external to each circular 

histogram).  Asterisks indicate treatments in which frogs demonstrated statistically significant directionality toward the nearest forest 

edge(s) according to a Rayleigh Test of Uniformity with specified mean direction (μ0 = 0⁰). 
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P = 0.01; lawn: R-test: P = 0.12; V-test: P = 0.03; corn: R-test: P = 0.08; V-test: P = 

0.03).  We observed random (non-target-oriented) directionality in the control forest 

where there may be ample preferred settling habitat (R-test: P = 0.47; V-test: P = 0.11) as 

well as in the hay (R-test: P = 0.56; V-test: P = 0.12), supporting our hypothesis that 

greater structure may impede detection of forest at 40 m distances (Figure 3.3).    

 During our substrate experiment, microclimates were relatively cool and moist at 

night in most substrates (e.g., 19-29⁰C and > 45-99% relative humidity, Figure 3.4), but 

reached potentially lethal daytime temperatures (35⁰C and 31⁰C within refugia in the 

asphalt and lawn, respectively), after 14:00 hours.  Notably, during nocturnal trials (19:00 

– 24:00 h; Figure 3.4A), temperatures ranged widely in the forest (~19⁰C Δ in 

temperature) and asphalt (almost 30⁰C Δ in temperature) and humidity fluctuated from 

43-98% (Figure 3.4A; also see inset for nocturnal period in Figure 3.4B).  In plausible 

frog refugia locations, the hay, corn, and forest treatments consistently demonstrated the 

most benign microclimates (15.5 – 26.8⁰C; 60-99%; Figure 3.4B). 

 

Distance-to-forest experiment 

 Frogs released in the distance-to-forest experiment exhibited differences in net 

displacement and directionality that could be attributed to treatment (lawn, hayfield) as 

well as direction  and distance to the nearest forest edge (see Figure 3.1B for transect 

design).  First, patterns of net displacement corroborated the substrate experiment: 

average net displacement varied significantly (F1, 166 = 14.38, P < 0.001; Figure 3.5A), 

with far greater movement in lawns (2.18 ± 0.42 m, comparable to 5.12 ± 0.88 m in 

substrate experiment) than hayfields (0.73 ± 0.20 m vs. 1.24 ± 0.35 m in substrate



 

 
 

 

 

Figure 3.4.  Temperatures (⁰C) and relative humidity (%) of five substrates averaged across 21 days (6-26 July) during substrate 

experiment.  Panel (A) depicts microclimate for random surface locations within the 2.4 m radius release circle and panel (B) 

illustrates the microclimate at potential refugia within each substrate.  Data are compiled from time of release through the conclusion 

of tracking on the subsequent day.  Note the difference in scale for panels (A) and (B). 
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experiment). Net displacement ranged from 0-19.95 m and varied by treatment (F1, 166 = 

4.37, P = 0.04), but not by transect (30⁰, 45⁰, 60⁰: F2, 165 = 0.59, P = 0.56; Appendix D). 

The combined effects of distance and direction to forest (i.e., transect and frog start 

distance) did not significantly influence the scale of movement (F8, 159 = 1.60, P = 0.13); 

although there was a possible trend of increased displacement at greater distances 

(Appendix D).   

As hypothesized, the orientation of juveniles toward the nearest forest edge 

differed by treatment and distance from the edge (Figure 3.5, Appendix E).  On the lawn, 

frogs moved toward forest from transects 1 and 3 but not from the middle transect (T1: 

V-test: P < 0.01; T3: P = 0.02; Figure 3.5A).  In contrast, frogs exhibited random 

orientation on transect 1 and 3 in the hayfield (T1: P = 0.59; T3: P = 0.24), and moderate 

directionality toward one of the forest edges (180⁰ but not 270⁰) along the middle transect 

(T2: V-test [μ0] = 180⁰ or 270⁰: P = 0.03 and 0.35; Table 3.2, Figure 3.5B).   

 Distance to forest also influenced orientation (Table 3.2, Appendix E), although 

patterns are less clear.  Juveniles in the lawn demonstrated strong directionality toward 

forest at shorter release distances (8-44m) along Transect 1 and 3 (T1: V-test: P = 0.03; 

T3: V-test: P = 0.05; Table 3.2); as expected, this effect was decreased at more distant 

locations (56-80m) along all three lawn transects (T1: V-test: P = 0.067; T2: V-test[μ0] = 

180⁰ or 270⁰: P = 0.069 and 0.84; T3: V-test: P = 0.062; Table 3.2, Appendix EA).  In 

contrast, hayfield frogs only exhibited strong target-oriented movement at the near 

stations on transects 2 and 3 (T2: V-test[μ0] = 180⁰ or 270⁰: P = 0.02 and 0.58; T3: V-

test: P = 0.01, Table 3.2) and the 56-80 m distance classes on transect 1 (T1: V-test: P = 

0.04; Table 3.2, Appendix EB).



 

 
 

 

Figure 3.5.  Orientation of L. sylvaticus (n = 168) released along three transects emanating from forest corners (i.e., ~ 90⁰ interface of 

contiguous forest and open-canopy vegetation) in: (A) lawns; (B) hayfields.  Along each 80 m transect frogs were released at seven 12 

m intervals.  Symbols, significance tests, and notation in the circular rose diagrams are parallel in structure to Figure 3.3 (see legend).  

The directions of nearest forest edge(s) are: (1) 270⁰ for Transect 1; (2) equidistant to 180⁰ and 270⁰for Transect 2; and (3) 180⁰ for 

Transect 3. 
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Figure 3.5(A)  Lawns.  Transect 1:  Rayleigh’s test: P = 0.050; V-test (μ0 = 270⁰): P = 0.008, n = 27; Transect 2:  Rayleigh’s test: P = 0.399; V-

test (μ0 = 180⁰ or 270⁰): P = 0.087 and 0.150, n = 27; Transect 3:  Rayleigh’s test: P = 0.065; V-test (μ0 = 180⁰): P = 0.019, n = 27. 
 

Figure 3.5(B) Hayfields.  Transect 1:  Rayleigh’s test: P = 0.548; V-test (μ0 = 270⁰): P = 0.588, n = 26; Transect 2:  Rayleigh’s test: P = 0.057; 

V-test (μ0 = 180⁰ or 270⁰): P = 0.349 and 0.027, n = 25; Transect 3:  Rayleigh’s test: P = 0.348; V-test (μ0 = 180⁰): P = 0.237, n = 25. 
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Table 3.2.  Analysis of L. sylvaticus orientation in distance-to-forest experiment. 

 

Treatment  
Transect 

(⁰) 
Distance class        

(m) 

Sample 

size 

Mean 

direction 

(⁰) 

SD      

(⁰) 
Vector 

magnitude   

Consistency 

ratio (r)  

Rayleigh's 

Test  

(R-Test)† 

Test of Uniformity: 

Specified mean dir           

(V-Test)‡ 

Lawn 30⁰ (1) All 27 280.3 66.3 8.94 0.33 0.050** 0.008** 

 
45⁰ (2) All 27 229.9 73.1 5.00 0.19 0.399 (1) 0.087; (2) 0.150 

  60⁰ (3) All 27 206.6 66.9 8.55 0.32 0.065* 0.0190** 

Hayfield 30⁰ (1) All 26 248.2 76.4 3.01 0.11 0.548 0.588 

 
45⁰ (2) All 25 269.3 66.0 8.42 0.34 0.057** (1) 0.027**; (2) 0.349 

  60⁰ (3) All 25 172.8 72.2 5.16 0.21 0.348 0.237 

Lawn 1 Class 1 (8, 20, 32, 44) 15 305.0 61.9 6.24 0.42 0.072* 0.031** 

 
1 Class 2 (56, 68, 80) 12 241.8 65.4 4.18 0.35 0.237 0.067* 

 
2 Class 1 16 255.2 76.8 1.61 0.10 0.854 (1) 0.301; (2) 0.518 

 
2 Class 2 11 218.9 66.4 3.61 0.33 0.312 (1) 0.069*; (2) 0.841 

 
3 1 15 199.4 67.3 4.65 0.31 0.240 0.055* 

  3 2 12 214.9 66.3 3.97 0.33 0.274 0.062* 

Hayfield 1 1 15 34.1 78.7 0.86 0.06 0.953 0.412 

 
1 2 11 242.3 61.2 4.72 0.43 0.132 0.037* 

 
2 1 15 254.0 63.5 5.78 0.39 0.107 (1) 0.024**; (2) 0.584 

 
2 2 10 297.4 66.7 3.23 0.32 0.362 (1) 0.268; (2) 0.193 

 
3 1 13 179.8 59.3 6.04 0.46 0.058** 0.008** 

  3 2 12 34.3 77.2 1.11 0.09 0.906 0.664 

†  Rayleigh’s Test of Uniformity (R-Test):  Assesses if orientation significantly deviated from a random distribution (i.e., a general unimodal distribution with 

unknown mean direction and vector length). 

‡  V-Test (Alternative with Specified Mean Direction):  Assesses if orientation significantly deviated from a unimodal distribution with specified mean 

direction.  We hypothesized that animals would move toward nearest forest edge(s): 270⁰ at Trans 1; either 180⁰ (1) or 270⁰ (2) at Trans 2; and 180⁰ at Trans 3.  
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Table 3.2. (continued) 

 

Notes:  The first six rows combine all replicates along entire transects (30⁰, 45⁰, and 60⁰).  Distance classes comprise two categories of 

frog release locations along transects measured in meters from forest corner (Class 1: 8, 20, 32, and 44 m; Class 2: 56, 68, and 80 m).  

Circular statistics were used to test if frogs significantly oriented movements toward the bearing of the nearest forest edge(s): Transect 1: 

270⁰; Transect 2: equidistant to 180⁰ and 270⁰; Transect 3: 180⁰).  Statistics included:  mean direction (i.e., average azimuth of resultant 

vector); vector magnitude (i.e., r, or length of the mean vector); and consistency ratio (% of normalized magnitude of the resultant vector 

ranging from 0-1; larger r values indicate that observations were clustered more closely around the mean).  Data included n = 157 frogs 

(of 168) that moved > 0.1 m.  Statistical tests were deemed significant at P ≤ 0.05 (**); marginal significance is indicated at P ≤ 0.08 (*).
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Discussion 

 To predict functional connectivity for species in fragmented landscapes, many 

researchers reject the traditional views of the matrix as homogeneously inhospitable 

(Revilla et al., 2004; Eycott et al., 2012), and instead recognize that it may comprise a 

continuum of conditions that tend to filter or facilitate movement (Kuefler et al., 2010).  

If matrix vegetation influences the probability of entry and transit success, then how the 

matrix is managed may shape dispersal and many conservation outcomes (Driscoll et al., 

2013).  We studied the movement of juvenile L. sylvaticus released in different open-

cover types and determined that matrix condition affects behavior.  Prior studies have 

quantified either the overall permeability of open-canopy cover types to juvenile 

movements (e.g., Rothermel and Semlitsch, 2002; Cline and Hunter, 2014) or fine-scale 

locomotor ability on different substrates (e.g., Stevens et al., 2004; Baughman and Todd, 

2007).  Our study bridges this previous work to provide direct estimates of fine-scale 

movement once matrix edges are crossed and in relation to landscape configuration.  In 

treatments with lower structural complexity, juveniles adopted straighter paths, exhibited 

greater overall scales and rates of movement, and oriented toward forested cover types 

from distances as great as 40-55 m (asphalt > lawn > corn > forest > hay; Figures 3.2 and 

3.3).  This finding indicates that these are different ecological filters to juvenile 

movements, and therefore it may be overly simplistic and inaccurate to assume 

movement performance is uniform across all matrix types. 
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Substrate structure and locomotion 

 Juveniles moved differently across different substrate types.  As predicted, hay 

constituted the greatest physical filter, while asphalt and grass permitted faster movement 

(Figure 3.2D), greater overall displacement (Figure 3.2A), and straighter trajectories 

(Figure 3.2C) toward suitable habitat.  Metamorphs in the forest and corn demonstrated 

similar and consistently moderate movement patterns for all five metrics, which could 

suggest that some level of overhead cover may mitigate microclimate (Figure 3.4) and 

decrease perceived predation risk.  Previous studies have demonstrated that locomotor 

ability depends on the surface crossed (e.g., Eycott et al., 2012), but results vary.  

Juveniles of three species differed in their response to old-field matrix and forest, with 

two species (Anaxyrus americanus and Ambystoma maculatum) moving greater distances 

with higher survival in the forest (Rothermel and Semlitsch, 2002).  In a laboratory study 

of natterjack toads (Epidalea calamita), the vertical structure of substrates inhibited 

hopping (grass, field, and forest), while sand and cement increased the length and speed 

of moves (Stevens et al., 2004).  Researchers also found that movements of southern 

graycheek salamanders (Plethodon metcalfi) were greater in substrates with less 

structural complexity (lawn, gravel, asphalt compared to leaf litter and bare soil: 

Semlitsch et al., 2012).  Taken together, these results support the hypothesis that 

simplified vegetation structure represents low impedance, but there may be other factors 

(e.g., desiccation and predation risk) that influence movement performance.  For 

example, a recent study of juvenile amphibian movement in agroecosystems found that 

water loss was greater in corn and soybean fields compared to forest or prairie, thus 

suggesting resistance costs of movement due to desiccation may not be uniform in all 
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agricultural settings (Consentino et al., 2011).  However, we found little evidence that 

frog weight or SVL were correlated with movement metrics.  Thus, it was unlikely that 

larger frogs in our study perceived lower desiccation risk than small individuals on 

substrates like asphalt or lawn where temperature and humidity fluctuated most (Figure 

3.4; Peterman et al., 2013). 

 

Latency not predicted by substrates or single factors 

 Prior to our experiments, we predicted that latency would be longer in substrates 

with greater “settling” habitat (forest) and physical cover (hay, corn) assuming that frogs 

perceived these as a refuge from thermal stress or predators.  In actuality, we observed 

high variation within treatments, and could not predict latency based on substrate types.  

Among treatments, the average latency was longest in the lawn and asphalt (208 ± 50 s 

and 173 ± 51 s, respectively), intermediate in the corn (123 ± 61 s), and shortest in the 

hay and forest (94 ± 31 s and 61 ± 13 s, respectively) although, the high within-treatment, 

but low between-treatment variability (Figure 3.2B) made this pattern statistically 

insignificant and difficult to interpret.  In contrast to our prediction, results suggest that 

open substrates could present greater perceived predation risk, causing frogs to crouch 

and cease motion in response to lack of cover.  Indeed, our other metrics showcase the 

ability of frogs to evacuate quickly over long distances in lawn and asphalt, moving 

toward forest (Figure 3.3).  Recent studies have quantified substantial predation risks to 

juveniles during initial movement from ponds; e.g., 23% of ringed salamanders (A. 

annulatum) were consumed by predators during their first night in terrestrial habitat 

(Pittman et al., 2013b). Although we need more information (e.g., predator abundance), 
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our latency results suggest that predation alone is not driving patterns of substrate-

specific movement (e.g., Lillywhite and Brishcoux, 2011).  For frogs deciding when to 

make initial movements, we posit that they were responding to an interplay of ecological 

pressures that reach beyond the microclimate and predation factors discussed above (e.g., 

to include food availability: Nicieza, 2000; density-dependent behavior: Patrick et al., 

2008; or physiological stress: Janin et al., 2012b). 

 

Distance to forest-edge and orientation 

 Our directionality data suggest that juveniles ranging through non-forested matrix 

may be able to locate settling habitat at scales that are relevant to landscape 

configuration.  Specifically, we determined that juveniles were able to orient toward the 

nearest forest 35-40 m away when released in asphalt, lawn, or corn, but not hay (Figure 

3.3 and Appendix E).  This pattern was corroborated in our second experiment with 

greater directionality toward forest in lawn (Figure 3.5A) than in hay (Figure 3.5B).  

These findings are consistent with: (1) the “evacuation” hypothesis (Semlitsch et al., 

2008), which suggests that individuals evade inhospitable conditions in open vegetation; 

and (2) our prediction that forest-targeted directionality would be greatest in treatments 

with lower structural complexity.  Prior studies have demonstrated that vegetation 

structure and surrounding landscape configuration may affect juvenile orientation 

(Walston and Mullin, 2008); for example, juvenile spotted salamanders (A. maculatum) 

exhibited greater forest-targeted orientation in field versus early-successional vegetation 

(Pittman and Semlitsch, 2013a).  Similarly, Rothermel and Semlitsch (2002) found that 

juvenile American toads (but not small-mouthed salamanders, or adults of either species) 
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in old-fields moved toward forest (Bufo americanus and A. texanum, respectively).  Such 

results suggest that species-specific studies are necessary and that juveniles and adults 

may employ different movement mechanisms. 

 There may also be distance thresholds at which individuals no longer orient to 

forest due to decreased perceptual range.  Frogs in lawns tended to exhibit forest 

directionality at greater distances compared to hayfields (i.e., up to 44-56 m and nearly 

significant at distances extending to 80 m; Appendix EA).  Amphibians have been shown 

to rely on a diversity of orientation mechanisms including, but not limited, to olfaction 

(Popescu et al., 2012b), visual cues or light polarization (Dall’Antonia and Sinsch, 2001; 

Phillips et al., 2010), acoustic cues (Bee, 2013), and magnetic reception (Landler and 

Gollmann, 2011), although we were unable to test these mechanisms.  In addition, there 

may be compounding factors that we were unable to measure, such as the locomotive 

costs of moving through dense hay.  Metamorphs may balance the costs of long-distance 

movement decisions against assessing local resources for food and cover, and it is 

possible that frogs in hayfields sought temporary refuge rather than attempt a single long-

distance movement to forest edge overnight (see Cline and Hunter, 2014).  From our 

observations in forest, we know that frogs in suitable habitat will move at random (Figure 

3.3) and initially only at moderate distances (~ 9.44 ± 2.11 mean path length) and 

velocities (Table 3.1, Figure 3.2).  Results support the notion that some open-cover types 

may afford temporary settling habitat (“retreat” hypothesis; Semlitsch et al., 2008) and 

that juveniles did not immediately move toward forest.  This line of reasoning suggests 

that our hayfield orientation results may not be meaningful if frogs adopted a settling 

strategy at least initially. 
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Potential influence of microclimate on movements:  Nocturnal refugia in the matrix 

 It is well established that microclimate influences the physiological ecology of 

amphibians, and juveniles may be particularly vulnerable to desiccation risk in open 

cover due to their small size and increased surface area to volume ratios (Lillywhite, 

1970; Rittenhouse et al., 2008).  Our microclimate data (Figure 3.4) suggest that 

nocturnal regimes were mild and moist enough in all five substrates to allow successful 

transit.  However, average daytime values consistently peaked at > 30-35⁰C and < 45-

50% at refugia in the asphalt and lawn, suggesting that physiological stress would be 

greatly increased for a frog by day and could represent an ecological trap.  This was in 

stark contrast to patterns in the corn, forest, and hay, where humidity was consistently 

between 80-95% and daily temperature fluctuated least (16-30⁰C).  Our observed high 

temperatures and dry microclimates in the asphalt and grass (Figure 3.4) are consistent 

with our prediction that frogs would exhibit the straightest paths and greatest velocities to 

evacuate substrates with the most thermoregulatory risk. 

 

Future studies and management implications 

To predict amphibian population connectivity in fragmented landscapes we need 

to better integrate field-based measurements of individual movements in a diversity of 

matrix types with data on how movement is influenced by landscape configuration 

(Bélisle, 2005, Driscoll et al., 2013).  Both types of information are necessary for 

parameterizing individual-based models of dispersal (e.g., Nathan et al., 2002; Hudgens 

et al., 2012).  This study provides direct measures of fine-scale movements of a critical 

life stage (dispersing juveniles; Pittman et al., 2014) in five vegetation types, and 
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quantifies orientation to the nearest forest.  Paired with prior estimates of frog willingness 

to enter the non-forest matrix (i.e., the degree to which matrix type either impedes or 

facilitates frog entry from a forest edge; Cline and Hunter, 2014), our results could 

provide the basis for predicting how the composition and configuration of the matrix 

might be managed to reduce the effective isolation of habitat patches.  Our distinctions 

among non-forest matrix types are important because many landscape population models 

use expert-based values that are a one-size-fits-all measure for open cover (Yackulic et 

al., 2011).   

 We have demonstrated that open-canopy cover types may differ as filters or 

conduits to juvenile movements, and this fills a critical gap in our understanding of the 

behavioral mechanisms that underpin the relationship between matrix structure and the 

distribution of a patch-dependent species.  These distinctions may inform land-use 

planning; for example, how the composition and configuration of these cover types 

should be integrated with forest distribution to reduce the “effective” isolation of (and not 

just Euclidean distance between) patches of preferred habitats for dispersing amphibians.  

Our tracking design provides a minimally invasive way to record fine-scale directed 

movement behavior, but a more complete understanding of dispersal requires long-term 

monitoring of individual fitness and behavior. This will require new technology for direct 

tracking of small animals over long periods.  Additionally, our study only provides a 

limited assessment of the processes that could shape juvenile movements.  For example, 

we also need to assess how seasonal land management practices such as crop-rotation, 

thinning, harvest, mowing, pesticide application can be best designed (including 

distribution in time and space) to facilitate dispersal.  Research on the mechanisms that 
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influence ranging behavior over multiple seasons and longer time scales will provide a 

better understanding of when juveniles switch between movement modes (i.e., away, 

directed, and settlement; Pittman et al., 2014), and thus how juvenile dispersal can be 

facilitated to maintain functional connectivity in fragmented landscapes. 
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APPENDICES 

 

APPENDIX A:  OBSERVED AND PREDICTED PROPORTIONS OF RELEASED 

JUVENILE LITHOBATES SYLVATICUS REACHING 10-, 20-, AND 30-M 

DISTANCES IN FIVE OPEN CANOPY-COVER TREATMENTS  

 

Observed and predicted proportions of released juvenile Lithobates sylvaticus reaching 

10-, 20-, and 30-m distances (from perpendicular interface with forest edge) in five open 

canopy-cover treatments in 2010, and 2 reference treatments (forest clearcut and mature 

forest) in 2008-09 (see Appendix 1; A021-059-A1 in Popescu and Hunter, 2011).  Forest 

clearcut treatments comprise the same experimental runways across both studies (2008-

10).  GLMEs include both fixed effects (sources of experimental variance) and random 

effects (variance from experimental units selected at random, Bolker et al., 2009), and are 

widely used to treat non-normal data.  We inspected GLME model deviance, and found 

no evidence of block random effects for models with variables treatment and runway as 

fixed effects, and batch as a random effect (program R version 2.13.2, package [lme4]; 

Bates et al., 2011).  Thus, we generated predictions using generalized linear models 

(GLM), using a quasi-binomial distribution for proportions (logit canonical-link 

function).  We ran simple models followed by the first-order interaction of treatment x 

runway, due to (1) ambiguity interpreting coefficients of complex models; and (2) 

relatively low sample sizes (i.e., 147 tracks and 349 captures out of 561 released).  We 

assessed model fit using plots of (1) quantile-quantile; (2) constant leverage; and (3) 

predicted vs. observed values.  We fit final models by inspecting overdispersion and F-

tests (ANOVA) for model comparison.  Among all distances, simplified models had 
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greatest support.  Interaction terms (treatment x runway) were not significant, suggesting 

no differences in the number of tracks among runways (n=2) within treatments.  Our 

GLMs for 10- and 30-m included treatment; it was only at 20-m where we found additive 

effects (treatment + runway).    



 

 
 

 

Table A.1 Observed and predicted proportions of released juvenile L. sylvaticus reaching 10-, 20-, and 30-m distances in five open 

canopy-cover treatments in 2010, and 2 reference treatments (forest clearcut and mature forest) in 2008-09. 

Distance 

from 

edge (m) 

 
Treatment (2010) Reference Treatment (2008-09) 

 
Clearcut Hayfield 

Row crop 

(corn) 

Lawn            

(0% cover) 

Lawn                 

(45-85% 

cover) Clearcut Mature forest 

10 - m 

Mean ± SE* 0.15 ± 0.03 0.05  ± 0.02 0.18  ± 0.04 0.11  ± 0.03 0.20  ± 0.04 0.31 ± 0.06 0.67 ± 0.06 

Coefficient 

± SE** 
-1.653 ± 0.271 -1.128 ± 0.504 0.118 ± 0.376 -0.385 ± 0.413 0.226 ± 0.370 0.877 ± 0.215 0.628 ± 0.212 

Predicted 

95% CI *** 
(-2.220, 1.150) (-2.198, -0.188) (-0.621, 0.864) (-1.216, 0.419) (-0.499, 0.962) (-1.300, -0.454) (0.212, 1.045) 

20 - m Mean ± SE* 0.08 ± 0.03 0.03 ± 0.01 0.11 ± 0.03 0.08 ± 0.03 0.13 ± 0.03 0.23 ± 0.05 0.61 ± 0.08 

Coefficient 

± SE** 
-2.442 ± 0.419 -1.041 ± 0.789 0.186 ± 0.571 0.106 ± 0.580 0.546 ± 0.538 -1.265 ± 0.221 0.416 ± 0.204 

Predicted 

95% CI *** 
(-3.374, -1.702) (-2.840, 0.404) (-0.941, 1.343) (-1.046, 1.276) (-0.490, 1.656) (-1.698, -0.832) (0.0154, 0.817) 

30 - m 

Mean ± SE* 0.02 ± 0.01 0.00 ± 0.00 0.09 ± 0.03 0.02 ± 0.01 0.06 ± 0.02 0.19 ± 0.05 0.55 ± 0.07 

Coefficient 

± SE** 
-3.880 ± 0.642 

-16.687 ± 

1603.687 
1.505 ± 0.720 -0.245 ± 0.967 1.110 ± 0.748 -1.555 ± 0.249 0.113 ± 0.222 

Predicted 

95% CI *** 
(-5.456, -2.829) 

(0.000, 

100.139) 
(0.233, 3.177) (-2.355, 1.714) (-0.249, 2.818) (-2.044, -1.066) (-0.323, 0.549) 

 

* Observed proportions of released L. sylvaticus reaching each tracking station (10-, 20-, 30-m). 

** Treatment (2010): Untransformed logit coefficients ± SE are those of the TREATMENT effects from the best (ANOVA F-test) quasi-binomial 

generalized linear model (GLM) fitted for each tracking distance.  Reference treatment (2008-09):  Untransformed logit coefficients ± SE are those 

of the fixed effects from the best (lowest AIC) mixed effects binomial model (GLME; see A021-059-A1 in Popescu and Hunter 2011).  

*** 95% confidence intervals for the predicted logit coefficients (GLM for 2010; GLME for 2008-09).

1
2
0
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APPENDIX B:  QUANTITATIVE INDEX OF THE PERMEABILITY OF FIVE 

OPEN-CANOPY VEGETATION TYPES TO JUVENILE MOVEMENTS  

OF LITHOBATES SYLVATICUS DURING THE  

POST-METAMORPHIC PERIOD  

 

This appendix describes a quantitative index of the permeability of our five open-canopy 

vegetation types to juvenile movements of Lithobates sylvaticus during the post-

metamorphic period in 2010, with mature forest as a control (permeability = 1.0).  Forest 

reference data were derived from the same experimental design and species in the same 

locale, using forest vegetation tested in 2008-09 (see Appendix 1 in Popescu and Hunter, 

2011; Ecological Archives A021-059-A1).  We assumed that juvenile wood frog 

movements would be facilitated (i.e., have highest permeability values) through mature 

forest (i.e., vegetation similar to the species’ terrestrial settling habitat) and thus used 

mature forest as benchmark of permeability (index = 1.0).  The index values for open-

cover vegetation were (lowest to highest permeability):  1. row crop (0.40); 2. hayfield 

(0.47); 3. forest clearcut (0.55); 4. open-lawn (0.58); and 5. moderate-cover lawn (0.67; 

see Table B.1 below).   

Our composite index of permeability was based on four movement metrics:  (1) 

the proportion of frog tracks at the last station (30- or 40- m); (2) the proportion of 

animals captured in the last runway section; (3) movement timing; and (4) movement 

rate.  The first two metrics indicate an individual’s willingness to enter a given treatment; 

the third and fourth metrics are estimates of velocity within that cover type.  Without a 

strong sense of which of these metrics was the best measure of permeability, we opted for 

the simple default decision of giving equal weight to each.  All individual metrics were 
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scaled to the highest value observed in that category prior to calculating our overall 

index.  In only one case (metric #4, velocity) was an individual metric in the forest 

exceeded in absolute value by another treatment (i.e., velocity was greater in the open-

lawn, moderate-cover lawn, forest clearcut, and corn field than in the mature forest 

treatment; see row 7 for velocity in Table B.1, below).   

For metric #1 (proportion tracked out of total released), we used the values from 

the final tracking station (i.e., 30 m for 2010; 40 m for forest) (highest value was for 

forest: 0.50 proportion tracked at the final station).  For metric #2 (proportion recaptured 

out of total released), we used the pitfall data from the distal compartments (i.e., 30-35 m 

for 2010; 40-45 m for forest).  For metric #3 we identified the stations at which the 

greatest proportion of released animals moved on day 1, 2, and 3 post-release and 

averaged their values (highest value was for forest, where the greatest proportion of 

released animals were observed at the greatest distance:  0.75 proportion of the 40-m 

runway length).  Velocity values (metric #4) were scaled to the highest value observed 

(i.e., 55.6 m/d in the open-lawn).  Finally, we computed the average of all metrics for 

each treatment.  The resulting index was expressed as a proportion of the benchmark 

forest value with an assumed permeability of 1.0 (as expected, the highest absolute 

permeability value prior to scaling was for mature forest: 0.83).   

Our study provides a repeatable assessment of permeability at the scale of 

individual cover types, and the applicability of our results for conservation biology and 

management could be enhanced with our proposed quantitative permeability index.  

Specifically, it is plausible that our index could be used to parameterize demographic 

models of individual movement for juvenile L. sylvaticus (and potentially, similar 
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species) during dispersal in open-cover vegetation or fragmented landscape settings.  

However, we urge caution in the widespread application of this index to other study 

species or regions without careful consideration.  For example, we only estimated 

permeability for one type of row crop (feed corn), and it is possible that juvenile 

movements would differ in other agricultural cover types or seasons, for other species, or 

as the dispersal period progresses and individual behavior changes.  Further, our four 

movement metrics were weighted equally in the overall index of permeability, yet it is 

possible that in a biological sense each factor contributes differently to permeability as 

experienced by the frogs.  Future studies or applications could consider alternate 

weighting scenarios that reflect a more nuanced understanding of permeability.   

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

 

 

 

 

 
Reference Treatment       

(2008-09) 

Treatment                                                                                                                    

(2010) 

Movement Metrics 

Mature forest* 

Lawn                 

(45-85% 

cover) 

Open-lawn 

(0% cover) Clearcut Hayfield 

Row crop 

(corn) 

1.  Proportion tracks out of total released             

final station (30 or 40 m) 1.00 0.12 0.04 0.04 0.00 0.18 

              

2.  Proportion recaptures out of total released           

  end of runway (30-35 or 40-45 m) 1.00 0.80 0.33 0.67 0.97 0.23 

              

3.  Movement Timing**           

 station at which largest proportion moved            

 day 1 0.25 0.25 0.50 0.25 0.25 0.25 

day 2 1.00 0.25 0.25 0.50 0.50 0.25 

day 3 1.00 0.25 0.50 0.50 0.25 0.50 

average of days 1-3 0.75 0.25 0.42 0.42 0.33 0.33 

days 1-3 (scaled to forest = 1.0) 1.00 0.33 0.56 0.56 0.44 0.44 

              

4.  Velocity 0.31*** 0.97 1.00 0.55 0.16 0.48 

              

Overall Permeability Index (Unscaled) 0.83 0.56 0.48 0.45 0.39 0.33 

Overall Permeability Index Scaled to Forest = 1.0 1.00 0.67 0.58 0.54 0.47 0.40 

Order of Permeability (5 = highest; 1 = lowest) Reference (1.0) 5 4 3 2 1 

 

* Mature forest values are based on Popescu and Hunter 2011 (also see Ecological Archives A021-059-A1). 

** The station distance at which the largest proportion of animals were moving on day 1, 2, and 3 following an experimental release expressed as a portion of 

runway length (e.g., 15 m station in 30 m runway = 0.5). Values were averaged across the three days then scaled to 1.0 for forest.    

*** The only case when an individual metric in the forest was exceeded in absolute value by other treatments.

1
2
4
 

Table B.1. Composite quantitative index of the permeability of five open-canopy vegetation types to juvenile movements of L. 

sylvaticus, with mature forest as a control (permeability = 1.0). 
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APPENDIX C:  MOVEMENT METRICS FOR FROGS (LITHOBATES 

SYLVATICUS) RELEASED AND RELOCATED IN  

DISTANCE-TO-FOREST EXPERIMENT  

IN LAWNS AND HAYFIELDS 

 

 

 

 

 



 

 
 

 

Table C.1.  Movement metrics for frogs released and relocated in distance-to-forest experiments in lawns and hayfields across six sites 

and four trials. 

Treatment 
# 

Released 

# observed at 

path end 

% net 

movements                

> 1 m 

% net 

movements            

< 1 m 

Net displacement (m) 
Range:                                 

Net displacement (m) 

         Trial          Transect         Mean ± SE Mean ± SE 

Lawn 84 (total) 62 34.5 65.5     2.18 ± 0.42** 0.00 - 19.95 

        Trial 1 (31 Jul) 21 14 23.8 76.2 1.31 ± 0.63 0.00 - 13.62 

        Trial 2 (1 Aug) 21 17 57.1 42.9 4.09 ± 1.05 0.05 - 19.95 

        Trial 3 (2 Aug) 21 14 42.9 57.1 2.87 ± 1.02 0.00 - 19.80 

        Trial 4 (3 Aug) 21 17 14.3 85.7 0.46 ± 0.10 0.00 - 1.72 

Transect 1 (30⁰) 28 21 39.3 60.7 1.73 ± 0.45 0.00 - 8.60 

Transect 2 (45⁰) 28 20 35.7 64.3 2.75 ± 0.90 0.00 - 19.80 

Transect 3 (60⁰) 28 21 28.6 71.4 2.07 ± 0.77 0.00 - 19.95 

Hayfield 84 (total) 62 13.1 86.9     0.73 ± 0.20** 0.00 - 14.88 

        Trial 1 (31 Jul) 21 10 42.9 57.1 1.96 ± 0.74 0.08 - 14.88 

        Trial 2 (1 Aug) 21 20 0.0 100.0 0.19 ± 0.04 0.01 - 0.86 

        Trial 3 (2 Aug) 21 19 0.0 100.0 0.17 ± 0.04 0.00 - 0.60 

        Trial 4 (3 Aug) 21 13 9.5 90.5 0.62 ± 0.18 0.05 - 3.83 

Transect 1 (30⁰) 28 21 17.9 82.1 1.27 ± 0.58 0.00 - 14.88 

Transect 2 (45⁰) 28 21 3.6 96.4 0.31 ± 0.06 0.00 - 1.28 

Transect 3 (60⁰) 28 20 17.9 82.1 0.62 ± 0.17 0.00 - 4.51 

Total 168 124 23.8 76.2 1.46 ± 0.24 0.00 - 19.95 
 

Notes:  Net displacement (m) by transect and frog start location are shown in Appendix D.  All metrics above are based on net displacement (initial start to final 

location) and not total path length, and thus constitute conservative estimates of individual movements.  Frogs observed at path end represents the number of 

juveniles relocated visually at conclusion of experiments.   

** Net displacement varied significantly by treatment (ANOVA; F1, 166 = 14.38; P < 0.0001).

1
2
6
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APPENDIX D:  OBSERVED NET DISPLACEMENT OF LITHOBATES 

SYLVATICUS RELEASED ALONG THREE TRANSECTS  

EMANATING (30, 45⁰, AND 60⁰, RESPECTIVELY) FROM  

FOREST CORNERS IN TWO TREATMENTS  

(LAWNS; HAYFIELDS) 

 

 

Observed net displacement (m) of L. sylvaticus (n = 168) released along three transects 

emanating (30⁰, 45⁰, and 60⁰, respectively) from forest corners (i.e., ~ 90⁰ interface of 

contiguous forest and open-canopy vegetation) in two treatments (lawns; hayfields).  

Panel (A) depicts effect of treatment on net displacement; panel (B) illustrates the effects 

of start location along each transect (8, 20, 32, 44, 56, 68, and 80 m from corner)  (log-

transformed to achieve normality). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

128 
 

 

Figure D.1.  Observed net displacement (m) of L. sylvaticus (n = 168) released along 

three transects emanating (30⁰, 45⁰, and 60⁰, respectively) from forest corners (i.e., 90⁰ 

interface of contiguous forest and open-canopy vegetation) in two treatments (lawns; 

hayfields). 
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APPENDIX E:  ORIENTATION OF JUVENILE LITHOBATES SYLVATICUS 

RELEASED ALONG THREE TRANSECTS EMANATING FROM  

FOREST CORNERS AT TWO DISTANCE CLASSES 

 

Orientation of juveniles (L. sylvaticus) released along three transects emanating from 

forest corners at two distance classes (Class 1: 8m, 20m, 32 m, 44m; and Class 2: 56m, 

68m, 80m) in: (A) lawn; (B) hayfield.  Bold solid lines in rose diagrams indicate the 

mean direction of frogs released on that transect; the length of the wedges represents the 

percentage of animals (5% increments) with orientations that fell within the designated 

20⁰ bin.  Orientations were standardized so that 0⁰ and 90⁰ represent the two forest edges 

adjacent to treatments.  Asterisks indicate transects and distance classes at which frogs 

demonstrated statistically significant directionality (Rayleigh Test of Uniformity or V-

test); see Table 3.2. 

 

 

 

 

 

 

 

 

 



 

 
 

 

Figure E.1.  Orientation of juvenile L. sylvaticus released along three transects emanating from forest corners at two distance classes 

(Class 1: 8m, 20m, 32m, and 44m; and Class 2: 56m, 68m, and 80m) in (A) lawn; and (B) hayfield. 

 

Dir to nearest forest:           ← 270⁰                         ← 270⁰ and ↓ 180⁰                    ↓ 180⁰ 
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Figure E.1. (continued) 

 

 

Dir to nearest forest:           ← 270⁰                         ← 270⁰ and ↓ 180⁰                    ↓ 180⁰
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