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A prominent question of topological graph theory is "what type of surface can a

nonplanar graph be embedded into?" This thesis has two main goals. First to provide

a necessary background in topology and graph theory to understand the development

of an embedding algorithm. The main purpose is developing and proving a direct

constructive embedding algorithm that takes as input the graph with a particular

order of edges about each vertex. The embedding algorithm will not only determine

which compact surface the graph can be embedded into, but also determines the

particular embedding of the graph on the surface. The embedding algorithm is then

used to investigate surfaces into which trees and a class of the complete bipartite

graphs can be embedded. Further, the embedding algorithm is used to investigate

non-surface separating graph embeddings.
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Chapter 1

INTRODUCTION

The study of topology and graph theory began in the eighteenth century with

Leonhard Euler's solution to the famous Konigsberg Bridges Problem. In the city

of Konigsberg, Prussia, the Pregel River �owed such that the river separated the

city into four di�erent regions. There were seven bridges that crossed the river

and connected the regions. Many people in the city of Konigsberg considered the

problem of whether one could walk through the city and cross each bridge exactly

once. In 1735, Euler proved that it was impossible to do such a walk through the

city [1]. The Konigsberg Bridge problem relates to graph theory because the bridges

and pathways in the city represent the edges of a graph and the intersections of these

pathways represent the vertices of the graph. Today Euler's solution is characterized

as a particular type of graph that contains a �walk� that only uses each edge exactly

once. Throughout the following centuries, after Euler's solution in 1735, many

mathematicians made major advances in the �eld of topological graph theory.

Beginning in the nineteenth century, mathematicians began using graphs to de-

sign and analyze electrical circuits [1]. A circuit can be modeled as a graph by using

the components of the circuit as vertices and the wires connecting the components as

the edges. In circuit design, it is of concern to have a minimum number of crossings

between the wires. One can use the theory developed in topological graph theory

to determine if it is possible to place a circuit on a planar circuit board such that

the wires do not cross. This question is directly related to a fundamental problem

in graph theory. Given a graph, how do we determine if we can draw the graph on

the plane without having any edges cross? If we cannot draw a graph on the plane

without crossings, then what is the minimal number of crossings we can have in
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such a drawing? If one cannot draw a graph on a planar surface without any edges

crossing, then what type of surface could one draw the graph such that the edges

do not cross?

In the 1940s, while Paul Turán, a Hungarian mathematician, worked at a labor

camp loading bricks from a kiln on a rail cart to transport the bricks to a storage

area, the ine�ciency of the transport method led him to the second question. In

particular, there were a number of kilns where the bricks were made and a number

storage yards where the bricks were stored. Each kiln was connected by rail to every

storage yard and each storage yard was connected to each kiln. Turán and other

labor camp workers were responsible for loading bricks onto a cart and pushing the

cart along the rails to a designated storage area. However, an issue arose at the

crossing of the railroads; frequently the carts would tip over at the crossings and

cause loss of time and productivity. Turán thought, to optimize the e�ciency of

the brick transport method, the number of rail crossings ought to be minimized.

Turán quickly realized this was a relatively simple task for the �xed number of kilns

and storage areas at the brick factory; but given m kilns and n storage areas the

di�culty of the problem increased immensely [13]. Ultimately, Turán posed the

still unsolved problem of the minimum number of crossings in what is known as the

complete bipartite graph on m and n vertices.

In the following chapters, the last question of the type of surface on which a

graph can be drawn will be addressed by developing a constructive algorithm that

embeds graphs into compact surfaces. For G a graph, we can choose a particular

ordering of edges about each vertex, this is called a rotation system. The rotation

system of the graph acts as the input for the embedding algorithm. The algorithm

will construct an embedding by �rst forming the components of the surface such

that the boundary of these components is given by edges in the graph. We can then
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glue together these components with the edges, as prescribed, to create the surface

with a particular drawing of the graph such that the edges do not cross.

In the �rst chapter, a brief introduction with necessary background and termi-

nology of topology, graphs, and compact surfaces will be presented. Next, the Topo-

logical Graph chapter will provide a detailed introduction to graph theory and graph

embeddings. The Constructing and Classifying Compact Surfaces chapter contin-

ues with the brief introduction to constructing compact surfaces and discusses a

proof of the Compact Surface Classi�cation Theorem. In the Embedding Algorithm

Chapter, a constructive algorithm is developed that will determine an embedding

of a graph into a particular compact surface. Finally, in the Consequences chapter

some results regarding embedding of trees and the complete bipartite graphs K3,n

are proved using the embedding algorithm. The texts Graphs on Surfaces by Mohar

and Thomassen [10] and Topological Graph Theory by Gross and Tucker [7] provide

further reading on some of the materials presented in this thesis.

1.1 Introduction to Topology

A topological space X is a set with a collection of open subsets that establishes

a notion of proximity on X. The collection of open sets is called a topology and

satis�es the following properties

(i) ∅ and X are open sets;

(ii) the intersections of �nitely many open sets is an open set;

(iii) the union of any collection of open sets is an open set.

A topological space can have a smaller collection of open sets, called a basis, that

determines the topology. A basis is any collection of open sets, called basis elements,

with the property that all open sets in the topology can be expressed as a union of

sets in the basis. For instance, the plane, R2, is a topological space with a basis of
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Figure 1.1. The plane R2 with basis elements that are open balls.

all open balls. In Figure 1.1, a collection of some basis elements are shown.

Figure 1.2. An open set in the subspace topology on A = [0, 1] inherited from R.

Given a topological space X, we can create other topological spaces that will

inherit certain properties from the underlying topology. In particular, a subspace

of X is a subset A ⊂ X with a topology on A. The topology is given by de�ning

open sets of A to be the intersection of A with the open sets of X. For example,

consider the real line R where open sets are de�ned to be unions of open intervals.

Let A = [0, 1] ⊂ R be a subspace of the real line. To determine the open sets of A,

we must intersect A with sets of the form I = (a, b), where a < b ∈ R. Sets of the

form (c, d) where 0 < c < d < 1 are open in A = [0, 1] and sets of the form [0, c) and
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(c, 1] where 0 < c < 1 are open in A (see Figure 1.2). All open sets in [0, 1] then are

unions of open sets of these three types.

An important subspace of R2 that will play a role in the following chapters is

called the open disk. The open disk, denoted D, is de�ned to be the points in the

plane distance less than one away from the origin (see Figure 1.3).

Figure 1.3. The open disk in R3.

Let X and Y be topological spaces. We can take the product of the two spaces

and denote this set X×Y . We call X×Y the product space of X and Y . Because X

and Y each have associated topologies, the set X × Y will inherit a topology called

the product topology from this construction. A basis element for X × Y is of the

form U × V where U is open in X and V is open in Y (see Figure 1.4). The plane

can be thought of as a topological space formed under the product topology, R×R

where the open sets in R are unions of open intervals. Thus the basis elements for

the product topology on R × R are given by open rectangles formed by taking the

product of two open intervals in R.
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Figure 1.4. Examples of basis elements for the product topology on the set X × Y .

Open sets of topological spaces help de�ne many important topological proper-

ties. We de�ne a closed subset of X to be a set whose complement in X is open. A

topological space X is compact if for every open cover of X there exists a �nite open

subcover. When a topological space is a subset of Euclidean space compactness can

be characterized as being closed and bounded. A topological space X is called con-

nected if there does not exist a pair of disjoint nonempty open sets whose union is X.

There are many ways a topological space can be broken down into its fundamental

pieces. One way that we have already seen is a basis set of a topological space.

Another way we can look at a topological space is by de�ning components, where

a component is a maximal connected subset of the topological space. In topology

the study of open sets allows us to formulate alternate de�nitions of fundamental

concepts in analysis. One such example is a continuous function. In particular, let

f be a function mapping a topological space X to a topological space Y . Then f

is said to be a continuous function if the preimage of every open set is open. Infor-

mally, a continuous function sends points that are close in one space to points that

are close in the other; this allows for studying topological spaces with continuous
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functions to understand the structure and properties of the spaces. For instance,

continuous functions preserve certain topological properties, like connectedness and

compactness. If X is a connected topological space and f : X → Y is a continuous

function, then the image of X under f is a connected subset of Y . For another exam-

ple, the fundamental equivalence relation in topology, homeomorphism, is de�ned

using continuous functions. In detail, let X and Y be topological spaces. De�ne a

homeomorphism h to be a continuous bijection h : X → Y with continuous inverse

h−1 : Y → X.

Figure 1.5. Under a homeomorphism open sets of X are mapped to open sets of Y

Two topological spaces are said to be homeomorphic or topologically equiva-

lent if there exists a homeomorphism between the spaces (Figure 1.5). Continuous

functions can also be used to study how one topological space sits within another

topological space. This is accomplished via a function called an embedding. Such a

function f : X → Y will homeomorphically map X to the subspace f(X) in Y but f

is not necessarily onto Y . Continuous functions can also be used to construct a new

topological space from some topological space X. To see this, we will �rst de�ne a

partition on the topological space X. Let X
′
be the set of equivalence classes given

by the partition on X, then de�ne a function q : X → X
′
such that q identi�es

collections of points in X to a new point in the constructed topological space X
′
.
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The function q essentially partitions the space X into equivalence classes such that

an equivalence class is mapped to a single point in the new space X
′
. A topology,

called the quotient topology, is de�ned on X
′
such that U is open in X

′
if and only

if q−1(U) is open in X. A topological space constructed using the quotient topology

is called a quotient space.

Figure 1.6. Each subset of X is collapsed to a single point in the quotient space
X

′
.

For example, let X be an arbitrary topological space and let A,B,C,D,E be

subsets of X as pictured in Figure 1.6. De�ne a function q : X → X
′
such that

q maps each subset of X to a single poin;, for instance q(A) = a where a ∈ X
′
.

Therefore the quotient space X
′
is de�ned as the image of X under the function q

where a set is open in X
′
if and only if its preimage under q is open in X. Now with

a basic understanding of the importance of open sets and continuous functions in

topology, we can delve into the study of topological graph theory.

1.2 Graph Theory

In graph theory, a graph G is considered to be a combinatorial object, meaning

G = {V,E} where V is the set of vertices and E is the set of unordered edges such

that E consists of two-element subsets of V . [2]. When the edge set E and vertex

set V of a graph are �nite, then the graph is considered �nite. In the combinatorial
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de�nition of a graph one is not concerned with how to represent these edges and

vertices; but more so, that given i, j ∈ V such that {i, j} ∈ E then the vertices are

considered to be connected by an edge. In this de�nition an edge does not have any

associated properties besides connecting vertices. In topology, a topological graph

is considered to be a set of vertices with a set of edges; however, the topological

graph is considered to be a topological space with speci�c properties due to its

construction. In the following chapters, whenever the term graph is used, one can

assume it is referring to the topological graph rather than the combinatorial graph.

Additionally, we can assume each graph considered is �nite.

Figure 1.7. Some examples of graphs

A graph can be pictured as a collection of vertices and edges, where the edges

are drawn as lines or curves and the vertices are drawn as points. Some examples

of graphs can be seen in Figure 1.7. The top left graph in Figure 1.7 is called the

Petersen graph which was constructed by Julius Petersen in 1898 and is a useful

example of a small graph that provides counterexamples to many problems in graph

theory [1]. The top right graph is called a tree; a tree is characterized as a graph
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that contains no cycles where a cycle is a path along edges in the graph such that

the path begins and ends at the same vertex with no other vertices nor any edges

repeated within the path. The bottom left graph is a complete bipartite graph which

is described so that each vertex in the top row is connected to every vertex in the

bottom row and vice versa. Lastly, the bottom right graph does not belong to any

signi�cant family of graphs, but it is simply a collection of vertices and edges.

In topological graph theory, the graph is treated as a topological space which

allows for the study of embedding graphs into topological spaces. In particular,

topological graph theory is concerned with embedding graphs into compact surfaces.

In the Topological Graph chapter, some results regarding graph embeddings are

explored. In order to study embeddings into compact surfaces, it is necessary to

introduce some preliminary de�nitions regarding surfaces and their construction.

1.3 Compact Surfaces

A surface is a topological space S that satis�es the following three properties:

(i) Every x ∈ S is contained in an open set that is homeomorphic to the open

disk.

(ii) For every x1, x2 ∈ S there exist disjoint open sets u1 and u2 such that x1 ∈ u1

and x2 ∈ u2.

(iii) There is a basis for the topology on S consisting of countably many open

sets.

Condition (i) indicates that a surface locally looks like an open disk (see Figure

1.8). Conditions (ii) and (iii) are technical requirements that restrict the class of

surfaces to the simplest examples. The plane is an example of a surface.

All �nite graphs can be embedded into a closed and bounded surface in Euclidean

space, which is equivalent to compactness, thus the focus in this thesis will be
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Figure 1.8. The torus is locally homeomorphic to the open disk.

compact surfaces. The examples of surfaces we present in the remainder of this

section are all compact, however this is not a comprehensive list of all possible

compact surfaces.

Figure 1.9. The 2-Sphere is on the left and the Torus is on the right.

First we will consider the 2-sphere, denoted S2, de�ned by the set of points

distance one away from the origin in R3, see Figure 1.9. It is a compact surface.

Here the sphere is considered to be a subspace of R3 and is given by

S2 = {(x1, x2, x3) ∈ R3|x1
2 + x2

2 + x3
2 = 1}.

Another compact surface is called the torus, denoted T , viewed as a product space

it is S1 × S1, where S1 is the unit circle. The torus is formed by starting with one

circle S1 and for each point in the �rst circle there is a corresponding circle, thus

forming the torus, as shown in Figure 1.9.
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Figure 1.10. A single hole torus, a two hole torus, and a three hole torus.

Compact surfaces can be glued together, using an operator called the connected-

sum that acts like addition on surfaces. Informally, we could create a torus with two

holes by gluing together two tori (see Figure 1.10). Similarly, we can create an n

hole torus by adding together n tori. A surface that is homeomorphic to an n hole

torus is said to have genus n. The idea of gluing together di�erent surfaces will be

made precise in the Compact Surface chapter.

A compact surface can be represented in many di�erent ways. For example,

every compact surface can be represented as a quotient space where a partition is

de�ned on a polygon. To see this consider the torus again. Not only can the torus

be formed as described above, but it can be formed using a partition on the unit

square that will identify the opposite edges of the square together (see Figure 1.11).

Informally, the torus can be formed by gluing opposite sides of the square to-

gether. After one of the pairs of sides is glued together the result is a cylinder with

two circle boundaries remaining to be glued. Lastly, to glue the circle boundaries

together it amounts to essentially pulling one circle around, stretching the cylinder,

until the two circle boundaries meet. This gluing can be made precise by de�ning a
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Figure 1.11. The construction of a torus from the unit square.

quotient topology that is induced by a partition on the unit square. To begin, take

the product space [0, 1] × [0, 1], where [0, 1] is the unit interval in R, to form the

unit square. Then we de�ne the partition on the unit square as follows:

Ax,y = {(x, y)} for every x and y such that x, y ∈ (0, 1);

By = {(0, y), (1, y)} for every y such that y ∈ (0, 1);

Cx = {(x, 0), (x, 1)} for every x such that x ∈ (0, 1);

D = {(0, 0), (0, 1), (1, 0), (1, 1)}.

Then de�ne q : [0, 1]× [0, 1]→ T . Under the function q the �rst pair of opposite

sides to be glued together is given by the set By which identi�es the vertical sides

of the square to a single edge in the torus. Similarly with the sets Cx and D the

function q maps the horizontal edges of the square together and the corners of the

square to a single point. The function q acts as the identity map on points in the
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Figure 1.12. A partition on the unit square showing that every point in the torus
is contained in an open-disk neighborhood.

set Ax,y. Figure 1.12 shows how this partition on the unit square results in a torus

and how every point in the torus is in an open set homeomorphic to the open disk.

Figure 1.13. The construction of a sphere from the unit square.

Another compact surface that can be constructed in this way is the sphere. To

see this, begin with a unit square with the edges labeled as they are in Figure 1.13.

Then we will relabel the edges such that a new edge c represents the two edges of edge
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a going into edge b. Finally, the c edges must be glued together. To visualize this

imagine zipping up the boundary of a bowl along the c edges to create the sphere.

As we will see in the Compact Surfaces Chapter, the sphere and torus are not the

only compact surfaces that can be constructed by gluing pairs of edges together in

polygons. In fact, we will see that every compact surface is homeomorphic to a

polygon with pairs of edges identi�ed together. When studying graph embeddings

into surfaces it will be convenient to represent the compact surfaces in this way.
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Chapter 2

THE TOPOLOGICAL GRAPH

A topological graph is constructed as a quotient space with the partition function

de�ned on the sets of edges and vertices. Here we will not explicitly de�ne the

partition function; but, instead we will discuss the gluing of points that results from

de�ning such a function. Let EG denote the set of edges and let VG denote the set

of vertices of some graph G. Let I = [0, 1] ⊂ R. Suppose i and j are vertices in VG

connected by an edge; denote this edge ei,j. To form the edge ei,j in the topological

graph G, we will glue the 0 end point of I to vertex i and we will glue the 1 end

point of I to vertex j; creating an edge connected to vertices i and j. Each edge of

the graph will be formed in this way. The set of edges EG will describe the gluing

that must occur to create a picture of the graph G. Since each edge is a closed and

Figure 2.1. A graph is obtained by gluing the end points of the edges to the
corresponding vertices

bounded interval with vertices glued to the end points, the speci�c vertices prescribe

how the edges will be glued together creating G. For instance, let ei,j, ej,k ∈ EG be

edges in the graph G. Since both of the edges ei,j and ej,k are formed in the way

described, we know these edges are incident to vertices i and j and vertices j and k,

respectively. Notice, these two edges contain a shared vertex, so the two edges are
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glued together on the shared vertex j. In other words, two edges of the graph will

be glued together only if the edges contain a shared vertex as a subspace. Consider

the vertex and edge sets presented in Figure 2.1. Here VG consists of 6 vertices, each

labeled with a number, and EG has 8 edges. For instance, the �rst edge shown in

Figure 2.1 has vertex 1 at each end. This implies that both ends of the edge are

glued to vertex 1 forming a loop. Similarly, the second edge is labeled with vertex

1 and vertex 2, so this edge will also glue to vertex 1 but the other end of the edge

will glue to vertex 2. We can continue gluing all of the edges together in this way

to create the graph G as shown in Figure 2.1.

Figure 2.2. Some open sets of the graph G.

Since a graph constructed as described is a topological space, we can de�ne a

basis set, B, that determines the open sets of a graph. The basis elements of a graph

are open intervals in each edge and open stars about each vertex (see Figure 2.2).

The open stars of a graph are considered to be subsets of the graph about each vertex

where it contains part of every edge incident to that vertex but no other vertices. In

Figure 2.2, the open stars about vertices 1 and 6 are shown and some open intervals
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in edges are shown as well. Notice that every graph can be reconstructed by its basis

elements; speci�cally, if one takes the union of all open stars and open intervals in

the edges then the whole graph is the result. This implies that every graph is both

an open and closed set.

Figure 2.3. The graph shown is an example of disconnected graph with three
components

The graph shown in Figure 2.2 is considered to be a connected graph. Connected

graphs only have one component, however a graph does not necessarily have to be

connected. The graph shown in Figure 2.3 is disconnected and is a union of �nitely

many components. In general, the graphs considered here will be connected. For

further reading on the graph theory background see [2], [7], and [1].

2.1 Introduction and Terminology

In the following section, it is necessary to introduce some basic de�nitions of a

graph in order to study the embedding of graphs into other topological spaces. A

graph is considered to be �nite if both the vertex set and the edge set are �nite

sets. It can be assumed that every graph mentioned here is �nite. Let G be a graph

and let ei,j ∈ EG denote an edge connecting the vertices i, j ∈ VG. The edge ei,j is

said to be incident to vertices i and j and similarly vertex i and vertex j are said

to be incident to edge ei,j. In a graph, one can travel from a vertex to another by
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traversing a path of edges in a particular order within the graph. In graph theory,

such a path is called a walk. More formally, a walk in graph G from vertex i to

vertex j is given by a sequence of edges, ei,nen,l . . . ek,mem,j, such that ei,n indicates

traveling from vertex i to vertex n along the edge incident to the two vertices. A

walk is considered to be closed if it begins and ends on the same vertex. Further, a

walk is considered to be directed if each edge in the walk has an associated direction.

In particular, in a walk the edges ei,j and ej,i are representing the same edge of the

graph but the edges are traversed in opposite directions.

In a graph, if l is an edge that connects a vertex to itself then the edge l is said

to be a loop. If two edges, e and e∗ are incident to the same pair of vertices, then

e and e∗ are called parallel edges. A graph G is said to be simple if it contains no

parallel edges and no loops. For each vertex v ∈ VG, the degree of vertex v is given

by the number of edges incident to the vertex v, counting an edge twice if it is a

loop. Finally, two graphs, G and G
′
, are said to be topologically equivalent if there

exists a homeomorphism, h : G → G
′
. On the other hand, two graphs are graph

equivalent if there exists a homeomorphism, f : G → G′ such that f bijectively

maps the vertex set of G to the vertex set of G′.

Theorem 2.1.1. For every graph G there exists a simple graph G
′
such that G is

homeomorphic to G
′
.

Proof. Let G be a graph and let v1 and v2 be vertices that are incident to an edge e.

Suppose there is another edge, call it h, that is parallel to the edge e. To construct

the simple graph G′ so that there are no parallel edges, replace the edge e with two

distinct edges e1 and e2 and add another vertex v3, as shown in Figure 2.4.i. The

edges are placed in G′ so that e1 is incident to v1 and v3 and e2 is incident to the

vertices v3 and v2. In the resulting G′, the edges e1 and e2 with the three vertices

will be homeomorphic to the original edge e with the two vertices in the graph G.
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Figure 2.4. The process of turning a graph with parallel edges or loops into a
simple graph.

Now suppose the graph G has an edge l joining vertex v1 to itself, making the edge

a loop. To construct the simple graph G′ replace l with three distinct edges l1,

l2, and l3 and add two distinct vertices v3 and v4, as shown in Figure 2.4.ii. The

edge l is replaced so that the edge l1 is incident to vertices v1 and v3, the edge l2 is

incident to vertices v3 and v4, and the edge l3 is incident to vertices v4 and v1. So in

the resulting G′ the edges l1, l2, and l3 with associated vertices, taken together, is

homeomorphic to the original loop, l, in G. Use this construction of a simple graph

G′ whenever parallel edges or loops appear in the graph G creating a homeomorphic

simple graph.

As a consequence of the previous theorem, it can be assumed without loss of

generality that every graph considered here is a simple graph. In graph theory, any

collection of edges and vertices can form a graph; however, throughout the history

of graph theory certain families of graphs have been a focus of study. One such

family consists of the complete graphs, where a graph G is complete if each pair of

distinct vertices is connected by an edge. If G has n vertices then it is said to be the

complete graph on n vertices, denoted Kn [2]. The graph K1 consists of the single

vertex set, K2 is given by two vertices connected by a single edge, and K3 consists
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of 3 vertices and 3 edges making a triangle (see Figure 2.5). From this de�nition, it

follows that each vertex in Kn has degree n− 1.

Figure 2.5. (i)The complete graphs K3, K4, and K5 are shown on the right.
(ii)The complete bipartite graphs K1,3, K2,3, and K3,3 are shown on the left.

Another family of graphs is the set of bipartite graphs. LetG be a bipartite graph.

Here vertex set VG is partitioned into two disjoint subsets, V1, V2 ⊂ VG such that

each edge has one end point contained in V1 and the other end point contained in V2

[2]. As a consequence, no two vertices in the same set V1 or V2 will be connected by

an edge. A more commonly studied family of graphs is the complete bipartite graphs

on m and n vertices, denoted Km,n. For the complete bipartite graphs the vertex

set VKm,n consists of m+ n vertices partitioned into two subsets Vm consisting of m

vertices and Vn consisting of n vertices. As in the previous de�nition of complete

graph, every distinct pair of vertices v and w such that v ∈ Vm and w ∈ Vn is

connected by an edge and no other edges. From this de�nition of Km.n, each vertex

v ∈ Vm has degree n and each vertex w ∈ Vn has degree m.

The complete bipartite graph on three vertices K3,3 is commonly referred to as

the utility graph due to its role in the Water, Gas, Electric Problem �rst published
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in 1917 in Amusements in Mathematics authored by Henry Dudeney [3]. In this

problem, Dudeney asks if it is possible in a two-dimensional setting to have three

houses connected on paper to three utilities (electric, gas, and water) such that the

connections between the houses and utilities do not intersect. This brain teaser

is impossible and this is a consequence of an important result indicating that the

complete bipartite graph K3,3 cannot be embedded in the plane.

2.2 Planar Graphs and Some Embedding Results

Let X and Y be topological spaces. Recall, an embedding of X in Y is a function

f : X → Y that maps X homeomorphically to the subspace f(X) in Y . Here it

is of interest to embed topological graphs into compact surfaces. An embedding of

a graph G into a surface S can be considered to be a picture of the graph on the

surface such that edges in f(G) only intersect in shared vertices and do not intersect

in any other way. Let G be a graph embedded into a compact surface, and de�ne a

face of the embedded graph to be a component of the complement of the graph in

the surface. An embedding of a graph is called a 2-cellular embedding if each face

of the graph is homeomorphic to an open-disk. For instance, an embedding of a

graph is not 2-cellular if there exists a face that is not homeomorphic to the open

disk. To see this, consider embedding the graph K3 into the torus. We could embed

the graph directly onto the side of the torus and not have the edges of the graph go

through the hole. In this case, the embedding will not be 2-cellular because there

exists a face of the embedded graph that contains the hole of the torus and hence

is not homeomorphic to the open disk. The task of embedding graphs in compact

surfaces requires determining the appropriate surface for each picture of a graph,

however if one wanted to embed a graph into three-space we can do so without too

much di�culty.
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Figure 2.6. An embedding of graph in R3.

Theorem 2.2.1. Every graph can be embedded in R3.

Proof. Let G be a graph with n vertices v1, v2, . . . , vn and m edges e1, e2, . . . , em. We

will de�ne an embedding f : G→ R3. To begin, de�ne f on each of the vertices to be

f(vi) = (0, 0, i) for all i = 1, 2, . . . , n. Thus f maps the set of vertices bijectively to

{(0, 0, i)|i = 1, . . . , n} in the z-axis in R3. Let P1, P2, . . . , Pm be distinct half-planes

emanating from the z-axis. If ei is an edge incident to vertices vj and vk, then

extend f to the edge ei such that it maps ei homeomorphically to the semi-circle in

the half-plane Pi adjoining f(vj) = (0, 0, j) and f(vk) = (0, 0, k). See Figure 2.6 for

an illustration of this embedding. The map f , as de�ned, is an embedding of the

graph G into R3.

Because embeddings are bijective mappings, the previous theorem allows us to

embed any graph G into R3 such that no edges intersect. As has been shown, it

is a relatively simple task to construct an embedding for a graph into three-space;

however, it is more challenging to determine whether or not a graph can be embedded

into the plane. A graph G is considered to be planar if G can be embedded into R2.
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Later we will see another equivalent de�ntion of a planar graph, namely one that

can be embedded into the 2-sphere.

Figure 2.7. The graphs K4 and K2,3 are embeddable in the plane and the graphs
K5 and K3,3 are not embeddable in the plane.

Consider the complete graph on n vertices, Kn. If n ≤ 4 then Kn is planar (see

Figure 2.7); however, if n ≥ 5 then Kn is nonplanar. Also, Figure 2.7 shows how

K2,3 can be embedded in the plane. However, for the complete bipartite graph on

m and n vertices, Km,n, if m,n ≥ 3 then Km,n is nonplanar. See the Figure 2.7

for examples of embeddings of K4 and K2,3. Because our functions g : K5 → R2

and h : K3,3 → R2 in Figure 2.7 fail to be embeddings, that does not prove no such

embeddings exist. That is asserted by the following result �rst proved by Jazimierz

Kuratowski in 1930 [9].

Theorem 2.2.2 (Kuratowski's Theorem). A graph is planar if and only if it con-

tains no subspace homeomorphic to K3,3 and no subspace homeomorphic to K5.

The proof will be omitted here but can be found in [9], [12]. This result is a

powerful tool to determine whether a graph is planar. However, it is rather di�cult
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to determine if a graph contains no subspace homeomorphic to K3 or contains no

subspace homeomorphic to K3,3. So, the converse of the result is much easier to

apply to determine when a graph is nonplanar. In other words, for any graph G, if

K3,3 or K5 can be embedded in the graph, then G cannot be embedded in the plane.

Recall Dudeney's Water, Gas, and Electric problem. As mentioned previously, it is

impossible in two-dimensions to connect each house to each utility without crossing

the lines. This is because the water, gas, and electric problem is modeled by the

complete bipartite graph K3,3. By Kuratowski's Theorem, K3,3 is nonplanar and

hence Dudeney's brain teaser is impossible to solve.

Figure 2.8. The Heawood graph.

Consider the Heawood graphH shown in Figure 2.8.To determine if the Heawood

graph is planar or not, we can apply Kuratowski's Theorem. If either K5 or K3,3

can be embedded in the Heawood graph, then H contains one of those graphs as a

subspace and would hence be nonplanar. It turns out that the complete bipartite

graph K3,3 can be embedded into H. Notice, H cannot contain K5 as a subspace

since each vertex in the complete graph K5 has degree 4, but in the Heawood graph

each vertex has degree 3. An embedding of K3,3 into the Heawood graph is shown

in Figure 2.9, where the embedded K3,3 graph is indicated by bolded edges.
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Figure 2.9. An embedding of K3,3 into the the Heawood graph is shown,
indicating the Heawood graph is nonplanar by Kuratowski's Theorem.

Another important result involving planar graphs is what is known as Euler's

formula, and later we will see a generalization of this formula regarding compact

surfaces.

Theorem 2.2.3 (Euler's Formula for Planar Graphs). Let G be a nonempty graph

in the plane having C components. If there are V vertices, E edges, and F faces

associated with G, then V − E + F = C + 1.

The proof of Euler's Formula for Planar graphs will be omitted here but can

be found in [1]. Euler's Formula for planar graphs is not a test for planarity since

it requires an embedding of the graph to determine the number of faces. Consider

the embedded graph shown in Figure 2.10. The graph G has one component, 12

vertices, and 14 edges. Lastly, we need to determine the number of faces of this

embedded graph; to do so, take the complement of the graph in the plane and what

remains are four pieces, each labeled with fi where i = 1, . . . , 4. Now we can apply

Euler's Formula for planar graphs to see that V − E + F = C + 1 for this planar

graph. Every graph considered in the remainder of this paper is connected, so each

graph will only have one component. Thus from Euler's Formula for Planar graphs,

if a graph is planar then V − E + F = 2.
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Figure 2.10. A graph G embedded into the plane that satis�es Euler's Formula for
planar graphs.

Another useful tool that allows us to determine which graphs are planar and

where these nonplanar graphs can be embedded is the crossing number of a graph.

First, we must make precise the idea of a drawing of a graph to understand the

crossing number. Given a graph G, a drawing of G is a continuous function d :

G → R2. Let d be a drawing of a graph. The drawing, d, is considered to be

a good drawing if it satis�es the following conditions: no point in the image of d

corresponds to more than two points of the graph; there are only �nitely many

points in the image of d that correspond to two points of the graph, these are called

the crossing points of the graph; and no crossing point of the drawing corresponds

to a vertex of the graph. See Figure 2.11 for some examples of good drawings of

graphs.

Theorem 2.2.4. Every graph G has a good drawing.

Proof. Let G be a graph. Embed G into R3 using the embedding f as de�ned in

the proof of Theorem 2.2.1 so that the vertices are mapped to the z-axis and the
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edges map to semi-circles in half-planes emanating from the z-axis. To obtain a

good drawing of G, compose the embedding of G in R3 with a projection onto a

plane P in R3. Note that this does not necessarily produce a good drawing of G at

this point. However, if the plane P is chosen such that it is parallel to the z-axis and

not perpendicular to any of the half-planes containing the images of the edges of G,

then the resulting drawing of G will satisfy two of the three necessary requirements

for a good drawing. In particular, this drawing of G only has �nitely many crossing

points and none of these crossing points correspond to vertices of G. However, if any

of the points in the resulting drawing of G correspond to more than two points in

the graph G, then simply deform the semi-circles in the drawing such that any point

in the drawing of G corresponds to no more than two points in the graph G. Thus,

this drawing of G satis�es the requirements for a good drawing of a graph.

Since it is known that all graphs have good drawings, we can now de�ne an

important property of a graph known as the crossing number. Let the crossing

number of a graph G, denoted ν(G), be the minimum number of crossing points in

any good drawing of G. Any good drawing of a graph provides an upper bound for

the crossing number of a graph. For example, from Figure 2.11 we can see that the

complete graph K4 has a crossing number of 0, while K5 has a crossing number at

most 1 and K6 has a crossing number at most 3. Similarly, the complete bipartite

graph K1,n has a crossing number of 0 for every n but the graph K3,4 has a crossing

number of at least 1 and at most 2 by the good drawing shown in Figure 2.11.

The crossing number of a graph is an important property of the graph when

studying graph embeddings, as the following theorems illustrate. The proof of the

following theorem follows the proof presented in [1].

Theorem 2.2.5. (i) Crossing number is a topological invariant of graphs; that is,

if graphs G1 and G2 are homeomorphic then, ν(G1) = ν(G2).
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Figure 2.11. Good drawings of the graphs K4, K5, K6, and K3,4 showing each
graph's crossing number.

(ii) A graph can be embedded in the plane if and only if its crossing number is 0.

Proof. The second part is immediate; if the crossing number of a graph is zero then

it is trivial to construct an embedding of the graph in the plane and vice versa.

Consider the �rst part. Let G1 and G2 be homeomorphic graphs. Suppose that

d1 : G1 → R2 is a good drawing of G1. We claim that there exists a homeomorphism

h : G2 → G1 such that the function d2, given by d2 = d1◦h, is a good drawing of G2.

Thus, for every good drawing d1 of G1 there is a corresponding good drawing d2 of

G2 such that the images of d1 and d2 are identical. It follows that ν(G1) = ν(G2).

It remains to show the existence of such a homeomorphism h : G2 → G1. Given

h∗ : G2 → G1, a homeomorphism, the only way that d1 ◦ h∗ could fail to yield a

good drawing is if h∗ maps one or more degree-2 vertices of G2 to points of G1

that correspond to the crossing points of the drawing d1. If this were to occur, the

homeomorphism h∗ can be adjusted to a homeomorphism h mapping all degree-2

vertices of G2 to points of G that do not correspond to crossing points of d1.

An immediate result of this theorem is that a graph G is nonplanar if and only if

ν(G) ≥ 1. The previous theorem allows us to determine if a graph can be embedded

in the plane, however it does not allow one to determine where a nonplanar graph

could be embedded. The following theorem begins the task of determining what

sort of surface into which a nonplanar graph could be embedded.
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Theorem 2.2.6. If a graph G has crossing number n, then G can be embedded in

a surface homeomorphic to a torus with n holes.

Proof. Let G be a graph with an associated good drawing with n crossings. Using

an embedding of the plane in the sphere, we can map the good drawing of G from

the plane to the sphere. In a neighborhood of each crossing in the resulting image

in the sphere, put a tube, with one of the crossing strands running over the tube

and the other crossing strand running through the tunnel in the surface that results

from the addition of the tube, as shown in Figure 2.12.

Figure 2.12. The addition of a tube to the sphere to eliminate a crossing in the
embedding of the graph.

Continue this process until all of the crossings are removed by adding tubes. The

resulting embedding of G maps into a sphere with n tubes, a surface homeomorphic

to a torus with n holes.

The complete graph K5 and the complete bipartite graph K3,3 both have a

crossing number of 1, and by the previous theorem we know that these graphs are

embeddable on a torus (see Figure 2.13). To see how these graphs are embedded

on the torus, we will construct the embedding directly for K5. To do so, we use the

quotient space representation of the torus, in other words the unit square [0, 1]×[0, 1]

with the opposite edges identi�ed together to form the torus. First map the set of

5 vertices to the circle of radius 0 < ε < 1/2 centered in the unit square. Map the

5 edges that connect the vertices to their immediate neighbors on the circle in the

torus and for the remaining edges we will use the gluing of the opposite sides of the

unit square to avoid any crossings in the embedding of K5 in the torus (see Figure
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Figure 2.13. An embedding of the complete graph K5 and the complete bipartite
graph K3,3 on a torus.

2.13). As shown in Figure 2.13, a similar construction of an embedding can be done

for the complete bipartite graph K3,3.

However, this theorem does not provide conditions for determining the minimal

genus-m surface that a graph with crossing number n can be embedded. To see this,

consider the complete bipartite graph K3,4. As previously shown the graph K3,4 can

be drawn with only two crossings (see Figure 2.11). To see that the crossing number

of K3,4 is indeed two, suppose we could remove one of the two crossings in the good

drawing of K3,4. However, removing an edge from a crossing would not change the

fact that we can embed K3,3 into the resulting graph. Since we know K3,3 is a

subspace of K3,4, this implies ν(K3,4) > 1, and as observed previously ν(K3,4) ≤ 2.

Therefore the crossing number of K3,4 is 2. Thus, Theorem 2.2.6 implies that K3,4

can be embedded in torus with two holes. But an embedding can be constructed

for K3,4 such that it embeds in a torus with a single hole (see �gure 2.14).

Theorem 2.2.6 guarantees the existence of an embedding into a compact surface

for any given good drawing of a graph. In Theorem 2.2.6, its usefulness is limited
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Figure 2.14. An example of the graph complete bipartite graph K3,4 embedded
into a torus.

since it requires a good drawing of a graph in order to determine the crossing number

of the graph. In general, it is a di�cult problem to determine the crossing number

of an arbitrary graph and in fact it is an incomplete problem for many well-known

families of graphs.

2.3 Rotation Systems of Graphs

In this section, we will introduce a combinatorial approach to embedding graphs

and this approach will be useful in the development of an embedding algorithm

in chapter 4. Let G = {V,E} where V = {1, 2, 3, . . . , n} and E is given by E =

{ei,j : for some i, j ∈ V }. Recall that an edge labeled ei,j indicates that the edge

is incident to the vertices i and j. Any given good drawing of a graph determines

a cyclic ordering of edges about each vertex. De�ne a rotation system of a graph

Π = {πi : i ∈ V } where the vertex code πi is given by a cyclic permutation of edges

about vertex i [10].

A rotation system is a combinatorial object of the graph, only recording in-

formation about the order of edges about each vertex. However, a single rotation

system of a graph may correspond to many di�erent good drawings of the graph.

Alternatively, we could obtain a rotation system from any good drawing of a graph;

we may even produce the same rotation system from di�erent drawings of a graph.

Most importantly, we will use rotation systems to produce an embedding of a graph

32



without having knowledge of the associated drawing of the graph. We will show

in the Embedding Algorithm chapter how a rotation system can be used to create

an embedding of a graph. The di�erent rotation systems of a graph may result in

embeddings of the graph into di�erent surfaces. For example, consider the complete

Figure 2.15. A rotation system Π1 of K3,3 that records the particular
counterclockwise ordering about each vertex and produces a good drawing of the

graph.

bipartite graph K3,3. A rotation system Π1 = {πi : i = 1, . . . , 6} of this graph is

given by the following:

π1 : (e1,4; e1,5; e1,6) π4 : (e4,3; e4,2; e4,1)

π2 : (e2,4; e2,5; e2,6) π5 : (e5,3; e5,2; e5,1)

π3 : (e3,4; e3,5; e3,6) π6 : (e6,3; e6,2; e6,1)

The rotation system Π1 for K3,3 can be represented as the good drawing of the

graph seen in Figure 2.15.

The distinct rotation systems of a graph may induce embeddings of the graph

into di�erent surfaces. For instance, we can de�ne another rotation system, Π2 =

{πi : i = 1, . . . , 6} for the complete bipartite graph K3,3 as follows:

π1 : (e1,5; e1,6; e1,4) π4 : (e4,1; e4,3; e4,2)
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Figure 2.16. Another rotation system Π2 of K3,3 that induces a di�erent good
drawing of the graph

.

π2 : (e2,4; e2,6; e2,5) π5 : (e5,2; e5,1; e5,3)

π3 : (e3,5; e3,4; e3,6) π6 : (e6,3; e6,2; e6,1)

The vertex codes of this new rotation system of K3,3 also record a cyclic coun-

terclockwise ordering of edges about each vertex. The rotation system Π2 can be

visualized via the good drawing of K3,3 in Figure 2.16. Even though the drawings of

K3,3 appear di�erent in Figures 2.15 and 2.16, the graphs are of course topologically

equivalent. We will see in the Embedding Algorithm Chapter that the two rotation

systems Π1 and Π2 will induce embeddings of K3,3 into distinct surfaces via the

embedding algorithm.

Using the notion of rotation systems of a graph, an embedding algorithm for

graphs will be developed in the succeeding chapters. A rotation system of a graph

will determine an embedding of a graph in a compact surface. Further, the em-

bedding algorithm will identify the faces of the embedded graph and enable us, by
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gluing the faces together, to determine the surface in which the graph is embeddable.

However, in order to identify which surface the embedding algorithm constructs for

a given graph, it is necessary to understand the classi�cation of compact surfaces

theorem which is discussed in the following chapter.
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Chapter 3

CONSTRUCTING AND CLASSIFYING COMPACT SURFACES

For further reading on the materials presented regarding compact surfaces and

the compact surface classi�cation theorem see [6], [1], and [7].

3.1 Construction of Surfaces

Many familiar and unfamiliar compact surfaces can be constructed using the

notion of quotient spaces and gluing edges of polygons together. Recall, the torus

can be constructed from the unit square when the opposite edges of the square are

identi�ed together. In a similar way, we also saw how the sphere can be constructed

from gluing pairs of edges in a square. The torus and sphere are not the only

compact surfaces that can be created by gluing di�erent pairs of edges of a square

together; in fact, there are two more distinct compact surfaces that can be created

from a quotient topology on the unit square. One such compact surface is called the

Klein bottle, denoted K. To construct the Klein bottle start with the unit square

[0, 1]×[0, 1] and glue the right and left edges of the square together as in the partition

for the torus (see Figure 3.1). Next we glue the top and bottom edges together such

that the right side of the top edge glues to the left side of the bottom edge, and the

left side of the top edge glues to the right side of the bottom edge.

The quotient space for the Klein bottle �rst forms a cylinder by identifying the

left and right edges of the square together, as shown in Figure 3.1. Then when

identifying the top and bottom edges together, one must bend the top edge of

the cylinder down and pass it through the side of the surface to connect it to the

bottom edge so that the arrows match properly. Note that, the Klein bottle does

not actually exist in 3-space since there is no circle of intersection when the top of
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Figure 3.1. The construction of a Klein bottle using a quotient topology on the
unit square.

the cylinder passes through, so the Klein bottle can only be constructed in 4-space

without self-intersection.

In a similar fashion we can create the last fundamental compact surface, the

projective plane, denoted P . Once again we start with the unit square with opposite

sides identi�ed together (see Figure 3.2). In this case, both pairs of edges a and b

are identi�ed together in opposite directions. Notice that the edge a points towards

the edge b in both pairs. As shown in Figure 3.2, we can identi�y the two edges

a going into b as a single edge, denoted c, resulting in a circle with two edges

identi�ed together in opposite directions. In particular, the pair of edges c will be

glued together with the top part of the left semicircle gluing to the bottom part of

the right semicircle and vice versa. Let p be the points at the north and south poles

of the unit disk, also denoting the division between the two semicircles, then as
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Figure 3.2. The construction of the projective plane using a quotient topology on
the unit square.

with the sphere we start with a bowl-like shape. First, we glue together the points

p such that the bowl is pinched in the middle along the rim. It remains to glue

together the two circles by gluing the back half of the left circle to the front half

of the right circle, and gluing the front half of the left circle to the back half of the

right circle. However as with the Klein bottle, the gluing of the two circles requires

passing part of the surface through itself so that at the seam between the two circles,

the surface is intersecting itself. Hence the projective plane only exists in 4-space

without self-intersection. When creating compact surfaces with a quotient topology

on a polygon allowing for gluing pairs of edges together, we call this a polygonal

representation of the compact surface.

A diverse collection of compact surfaces can be formed by gluing together other

surfaces. This idea is made precise by using the connected-sum operator. Given

two surfaces S1 and S2, the connected-sum of S1 and S2, denoted S1#S2, is the

surface obtained by removing the interior of a disk from each surface and gluing the
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Figure 3.3. The connected-sum of surfaces S1 and S2.

two circle boundaries together (see Figure 3.3). The connected-sum of two compact

surfaces is a compact surface.

Lemma 3.1.1. Let S be a compact surface. S#S2 = S.

Figure 3.4 illustrates Lemma 3.1.1. Since the connected-sum of a sphere, S2,

with any compact surface, S, is homeomorphic to the original compact surface S,

the sphere acts like an identity when thinking of the connected-sum as an additive

operator on surfaces. Recall, in Section 1.3 the n-hole torus was introduced, and we

were able to glue together n tori to form the n-hole torus by using the connected-sum

operator.

Figure 3.4. The connected-sum of a compact surface with the 2-sphere will be
homeomorphic to the original compact surface.
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Unfamiliar compact surfaces can be created with the notion of connected-sums,

such as the surface S2#P#T#T#K#P . However, we will see that these unfamiliar

compact surfaces are ultimately homeomorphic to either a sphere, a connected-sum

of projective planes, or a connected-sum of tori. Notice that the Klein bottle is not

included in the list of possibilities just mentioned. The following Lemma shows that

the Klein bottle is the connected-sum of projective planes.

Lemma 3.1.2. The Klein bottle is homeomorphic to the connected-sum of two pro-

jective planes.

Proof. Begin with two copies of the polygonal representation of the projective plane

and we want to perform a connected-sum operation on these two compact surfaces.

To do so, we must remove the interior of a disk from each projective plane and we

will represent this by the edge 3 shown in Figure 3.5.

Figure 3.5. The removal of disks from the polygonal representation of projective
planes to perform the connected-sum operation.

Once the interior of the disks is removed, we can open up each projective plane

on the edge 3 and glue the two projective planes together on edge 3, as shown in

Figure 3.6. The result is the polygonal representation of the connected-sum of two

projective planes.

To �nish, we must cut P#P on the new edge 4, as shown in Figure 3.7, and

then glue the resulting two pieces together on edge 1. After the gluing is completed
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Figure 3.6. A polygonal representation of the connected-sum of two projective
planes.

Figure 3.7. Cutting P#P along the introduced edge 4 and gluing the resulting
pieces together on edge 1.

on edge 1, we see that the result is a polygonal representation of the Klein bottle as

in Figure 3.1.

The following lemma allows us to represent a surface that contains a combination

of a connected-sum of tori and projective planes as a connected-sum of projective

planes.

Lemma 3.1.3. The connected-sum of a torus with a projective plane is homeomor-

phic to the connected-sum of three projective planes.

Proof. Begin with the polygonal representation the torus, T , and the projective

plane, P . To construct T#P we must remove the interior of a disk from both T and
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P and then glue the disk boundaries together. In Figure 3.8, the disk boundaries

are represented by edge 4.

Figure 3.8. Applying the connected-sum operator to the polygonal representations
of a torus and projective plane, resulting in the polygonal representation of T#P .

Next, it is necessary to open up the torus and projective plane along the edge 4

and then glue the two pieces together along that edge, as shown in Figure 3.8. The

result of this gluing is the polygonal representation of the connected-sum of these

two compact surfaces, T#P .

Now, it is necessary to manipulate the polygonal representation of T#P through

Figure 3.9. Cutting T#P along a new edge 5 and gluing the resulting pieces
together on edge 3.
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a series of cutting and gluing operations. First, we will cut along a new edge 5 and

this will turn T#P into two polygons that can be glued together on edge 3.

We will introduce another new edge, labeled 6, cutting apart the polygon into

two pieces. The resulting two pieces can be glued together along the edge labeled 1,

as shown in Figure 3.10. The polygon that is formed by this gluing represents the

connected-sum of a Klein bottle with a projective plane. To see this, the twist pair

of edges, edges 6, will form the projective plane. The alternating pairs of edges, 2

and 5, form the Klein bottle because the pair of edges 2 are glued with a twist but

the pair of edges 5 are glued straight across, as we had with the construction of the

Klein bottle from a square.

Figure 3.10. Transforming T#P into P#K by cutting along a new edge 6 and
gluing the pieces together on edge 1.

So, T#P = P#K. As we saw in Lemma 3.1.2, the Klein bottle is homeomor-

phic to the connected-sum of two projective planes, and hence T#P = P#K =

P#P#P .

Lemmas 3.1.2 and 3.1.3, allow us to represent compact surfaces that involve

combinations of Klein bottles, tori, projective planes, and spheres as simply the

connected-sum of a collection of projective planes as long as there is at least one

projective plane or one Klein bottle involved.
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Corollary 3.1.4. Let m,n, p, r ∈ Z+. If m 6= 0 or r 6= 0, then the compact surface

nT#mP#pS2#rK is homeomorphic to (2n+m+ 2r)P .

Proof. For any p ∈ Z+, the surface nT#mP#pS2#rK is homeomorphic to

nT#mP#rK by Lemma 3.1.1. By Lemma 3.1.2, rK is homeomorphic to (2r)P .

Thus, it su�ces only to consider the surface nT#(m+ 2r)P . The result will follow

by induction on n. Let n = 1, we will be considering the surface T#(m + 2r)P .

Using Lemma 3.1.3, we see the result holds in the case n = 1 as follows:

T#(m+ 2r)P = (T#P )#(m+ 2r − 1)P

= (P#P#P )#(m+ 2r − 1)P

= (2 +m+ 2r)P.

Assume the result holds for n = k, so kT#mP#rK#pS2 = (2k +m+ 2r)P . Now

let n = k + 1. The result follows from the induction hypothesis and Lemma 3.1.3.

(k + 1)T#(m+ 2r)P = kT#T#P#(m+ 2r − 1)P

= kT#3P#(m+ 2r − 1)P

= kT#mP#2P

= (2k + 2r +m)P#2P

= (2(k + 1) +m+ 2r)P

The ultimate goal is to create a complete classi�cation of all the possible com-

pact surfaces and this is realized with the following theorem. In the Embedding

Algorithm chapter, the Compact Surface Classi�cation Theorem will be important

because it allows us to easily identify and distinguish the di�ernt resulting embed-

ding surface for a graph.
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Theorem 3.1.5 (Compact Surface Classi�cation Theorem). Every compact surface

is homeomorphic to exactly one of the following:

(i) S2

(ii) P#P# · · ·#P denoted nP for some integer n.

(iii) T#T# · · ·#T denoted nT for some integer n.

The proof of the compact surface classi�cation theorem is completed in two

major parts by �rst identifying all the possible types of compact surfaces and then

distinguishing between the possibilities. The distinguishing portion of the proof will

be omitted since it is the ideas behind identifying the surfaces that are important

to us when we are investigating graph embeddings in the Embedding Algorithm

Chapter. The distinguishing part is done using tools of algebraic topology that

enable us to conclude, for example, that 4T is not homeomorphic to 9T , that 4T is

not homeomorphic to 4P , and that 4P is not homeomorphic to 9P . A proof of the

distinguishing part can be found in [6] or [10].

3.2 Polygonal Representations of Compact Surfaces

First it is necessary to understand the polygonal representations of these com-

pact surfaces. To do so, we must introduce triangulations of compact surfaces. Let

τ be a triangular region in the plane, and let S be a compact surface. If f : τ → S is

an embedding, then the image of τ under f is a triangle in the surface S (see Figure

3.11). Also, the images of the edges and vertices of τ under f are the edges and

vertices, respectively, of the triangle in S. This leads to the de�nition of a triangu-

lation T of a compact surface S, which is a collection of �nitely many triangles that

cover S such that any two triangles in T either do not intersect, intersect in a shared

vertex, or intersect in a shared edge. A surface with a trianglulation is called a tri-

angulated surface. It is desirable to treat every compact surface as a polygon with
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pairs of edges glued together in order to identify all the di�erent compact surface

possibilities. We discuss below how this can be done via a triangulation.

Figure 3.11. The embedding of the triangle τ into the surface.

Theorem 3.2.1 (Radó's Theorem). Every compact surface is homeomorphic to a

triangulated compact surface.

This result was �rst proved by Tibor Radó in 1925; the details of the proof are

omitted here, but can be found in Radó's original paper [11]. Another proof of this

result can be found in [10]. The proof of Radó's Theorem uses techniques from

geometric topology but the general ideas behind the proof are discussed as follows.

Because a compact surface is locally homeomorphic to R2 we can cover it with

triangles. Since it is compact, we can cover it with �nitely many triangles. The

result is not necessarily a triangulation because some triangles may not intersect

properly. But it is possible to rearrange and subdivide the triangles so that the

result is a triangulation of the compact surface.

It follows from Radó's Theorem that every compact surface can be realized as a

polygon with pairs of edges identi�ed together via quotient mappings. To see how

a triangulated surface leads to the polygonal representation, consider the following

argument. Let S be a compact surface with a given triangulation. Begin with one

triangle and identify a single edge of that triangle with the one of the edges it shares

with another triangle. Glue these triangles together along the edge; the result is

a four-sided polygon that is topologically equivalent to a disk. Now, among the

remaining triangles in the surface, at least one will glue to a side of the four-sided
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polygon's boundary. Take this triangle and glue it to the appropriate side. Again,

the result is topologically equivalent to a disk. We continue this process until all

Figure 3.12. The process of constructing a polygonal representation of a surface
from a triangulation.

the triangles have been identi�ed together into a polygon homeomorphic to a disk

with pairs of edges in the boundary still to be identi�ed together. The result is

called the polygonal representation of the compact surface S. Figure 3.12 illustrates

the process of forming a polygonal representation of a triangulated compact surface,

where the collection of dark gray triangles are identi�ed together on shared edges and

the result is topologically equivalent to a disk. As shown previously, the polygonal

representation of a torus is obtained from a square with opposite edges identi�ed

together.

This leads into the de�nition of the Euler characteristic of a compact surface.

Let T be a triangulation of a compact surface S. The Euler characteristic of T is

given by χ(T ) = V − E + F where V is the number of vertices, E is the number

of edges, and F is the number of triangles in the triangulation. It can be shown

that the Euler characteristic of a triangulated surface only depends on the surface,
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rather than the chosen triangulation. In particular, the following theorem proves

this claim.

Theorem 3.2.2. Let T1 and T2 be triangulations of a compact surface S. Then

χ(T1) = χ(T2).

A detailed proof of this result can be found in [1]. The idea behind the proof

is as follows. First, given a triangulation of a compact surface, a homeomorphic

triangulation will have the same Euler Characteristic. Also, given a triangulation,

subdividing the triangles does not change the Euler Characteristic. Furthermore,

given two triangulations of a compact surface, there exists subdivisions of each

triangulation that are homeomorphic. Hence, the Euler Characteristic of a surface

is independent of the choice of triangulation.

Thus, we can de�ne the Euler characteristic of a surface S to be χ(S) = V −

E + F for any triangulation of S. We will also adjust the de�nition of F to the

number of faces where a triangulated surface can be thought of as a collection

of triangular faces. Examples of triangulations of the sphere, torus, Klein bottle,

and projective plane are shown in Figure 3.13. We can use these triangulations to

calculate the Euler characteristic for each of these surfaces. We'll go through the

details of calculating the Euler characteristic for the sphere; on the triangulation

shown in Figure 3.13 there are 18 triangles, 13 vertices, and 29 edges. Now we will

apply the formula, χ(S2) = V − E + F = 13 − 29 + 18 = 2. Similarly, from the

other triangulations, we see that χ(T ) = 0, χ(K) = 0, and χ(P ) = 1.

The connected-sum operator allows us to construct interesting compact surfaces,

and the following theorem indicates how we can calculate the Euler characteristic

of surfaces constructed in this way.

Theorem 3.2.3. If S1 and S2 are compact surfaces, then χ(S1#S2) = χ(S1) +

χ(S2)− 2.
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Figure 3.13. Triangulations of the sphere, torus, Klein bottle, and projective plane.

Proof. Since the Euler characteristic is independent of the triangulation, we can

choose triangulations of S1 and S2 such that the disks whose interiors will be removed

under the connected-sum operation correspond to triangles in the triangulations.

The connected-sum operation corresponds to removing the interior of a triangle

from each surface and identifying the boundaries of the triangles together, gluing

vertices to vertices and edges to edges. Notice, each triangle has three edges, three

vertices, and one face. When we glue the two triangles together, three pairs of

vertices and three pairs of edges will be identi�ed, and two faces will be removed.

When χ(S1#S2) is compared to χ(S1) + χ(S2), we see that the resulting surface,

S1#S2, will have three fewer edges, three fewer vertices, and two fewer faces than

the original two surfaces. Therefore, the resulting Euler characteristic of S1#S2 is

given by the following:

χ(S1#S2) = χ(S1) + χ(S2)− 3 + 3− 2

= χ(S1) + χ(S2)− 2.

The following result is a direct consequence of Theorem 3.2.3.

Corollary 3.2.4. Let n ∈ Z. For the compact surfaces nT and nP , the Euler

characteristic is given by χ(nT ) = 2− 2n and χ(nP ) = 2− n.
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Notice, V −E +F appears in both the Euler characteristic formula for compact

surfaces and Euler's formula for planar graphs. In the following chapter we will see

how these two formulas are useful for determining the surface into which a graph

can be embedded. As seen in the proofs of Lemmas 3.1.1-3.1.3, it is advantageous

to manipulate these compact surfaces as polygons with pairs of edges glued together

in order to identify all the di�erent possible compact surfaces. In the next chapter

when embeddings of graphs onto compact surfaces are discussed, we will use the

polygonal representations of the compact surfaces considered.

3.3 Identi�cation and Classi�cation of Compact Surfaces

In this section we will complete the �rst part of the proof of the Compact Surface

Classi�cation Theorem (Theorem 3.1.5) by identifying all of the di�erent compact

surfaces that can be created when gluing pairs of edges in a polygon. We have

discussed previously how every compact surface can be represented as a n-gon with

pairs of edges glued together. Because we are gluing pairs of edges in the n-gon, it

can be assumed that n is even. In those representations there are two di�erent types

of pairs of edges being glued. The �rst type is a straight pair of edges (see Figure

Figure 3.14. The two types of pairs of edges being glued within a 2n-gon.

3.14.i) where the edges are glued straight across and the second type is a twist pair
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of edges (see Figure 3.14.ii) where the gluing creates a twist in the surface. Two

pairs of edges a and b are said to be alternating pairs of edges if they are arranged

as shown in Figure 3.15. The alternating pairs can be of both twist pairs, both

straight pairs, or a straight and a twist pair of edges. We will see below that an

alternating pair of straight-edge pairs will contribute a torus in the connected-sum

of the resulting surface while a single twist pair of edges will contribute a projective

plane.

Let the distance between edges a, denoted Da, be the minimum number of edges

between the pair of a edges.

Figure 3.15. Alternating pairs of straight edges.

The following theorem identi�es the di�erent possible compact surfaces that

can be constructed by gluing pairs of edges together of a 2n-gon. However, it is

important to note that this theorem does not distinguish between these compact

surfaces.

Theorem 3.3.1 (The Identi�cation of Compact Surfaces Theorem). If S is a 2n-gon

with edges glued together in pairs, then S represents either a sphere, a connected-sum

of projective planes, or a connected-sum of tori.

Before beginning the proof of the identi�cation of compact surfaces, we need to

introduce a technical lemma.
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Lemma 3.3.2. Let S be a 2n-gon with pairs of edges glued, and assume that S

contains no alternating pairs of edges. Then in S there is a pair of edges, i, for

which Di = 0.

Proof. The proof will follow by induction on n. Let n = 1. Then S is a 2-gon with

the edges, i, glued as a pair. Clearly, as shown in Figure 3.16, the distance between

Figure 3.16. The two 2-gons with a pair of edges such that Di = 0.

edges i is zero. Now assume the result holds for n = k. Let S∗ be a 2(k + 1)-gon

containing no alternating pairs. Remove a pair of edges j to obtain a 2k-gon S. The

surface S has no alternating pairs, so there exists a pair of edges i such that Di = 0.

Figure 3.17. The two cases of S∗ when obtained by adding the j pair of edges
back into S.

Replace the removed edges, j, to obtain S∗. Because there are no alternating

pairs of edges in S∗, there are two possible locations for the pair of edges j. As
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shown in Figure 3.17, either both j edges are inserted directly between the i edges

resulting in Di = 2 and Dj = 0 or the pair j are inserted such that Di = 0.

Now we have the necessary tools to proceed with the proof of the Identi�cation

of Compact Surfaces Theorem. The proof will follow by induction on n, where the

compact surface is represented as a 2n-gon with pairs of edges glued.

Proof. To begin, we will consider the base cases of n = 1 and n = 2.For the case

where n = 1 there are two di�erent possibilities for the resulting compact surface, a

2-sphere or a projective plane (see Figure 3.18).

Figure 3.18. The two compact surfaces that result from a 2-gon with the pair of
edges identi�ed together.

Consider the case where n = 2. In Figure 3.19, we demonstrate that the result

holds. In other words, a 4-gon with pairs of edges glued constructs either a torus, a

connected-sum of projective planes, or a 2-sphere.

Assume the result holds for all 2n-gons with edges glued in pairs where n ∈

{1, 2, . . . , k}. Let S∗ be a 2(k + 1)-gon with edges glued in pairs.

First consider the case where there is a twist pair of edges, a. If Da = 0 in

S∗ then the pair of a edges identi�es to a projective plane. To see this, recall the

construction of the projective plane from the square. In the second step, after the

two pairs of edges are identi�ed to be a single pair of edges, the result was a circle
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Figure 3.19. The six cases that arise from a 4-gon with pairs of edges glued
together.

formed by two twist pair of edges glued together. Therefore S∗ is M#P , where M

is a 2k-gon with pairs of edges glued and P is a projective plane (see Figure 3.20).

Figure 3.20. The case where S∗ contains a twist pair of edges, a, such that Da = 0.

By the induction hypothesis and Corollary 3.1.4, S∗ is homeomorphic to one of

the following:

(i) S2#P = P ,

(ii) rP#P = (r + 1)P for some integer r, or

(iii) rT#P = (2r + 1)P for some integer r.
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Now assume Da 6= 0 in S∗ (see Figure 3.21). Let b be an edge on the interior

of S∗ going from the left side of the edge a in the top half of S∗ to the right side

of the second edge a in the bottom half of S∗, as shown in Figure 3.21. If we cut

along the edge b and glue along the edge a, we see that Db = 0. As in the previous

Figure 3.21. The case where S∗ contains a twist pair of edges, a, such that Da 6= 0.

case, S∗ = M#P , where M is a 2n-gon with pairs of edges glued. As argued above,

S∗ = mP for some integer m. Thus assuming the result holds for 2n-gons with

n = 1, . . . , k, it holds in the case where S∗ is a 2(k + 1)-gon containing a twist pair

of edges.

Next consider the case where there are no twist pairs of edges in S∗. By Lemma

3.3.2, we know that S∗ has either an alternating pair of edges or a pair of edges with

distance zero. Assume there is a pair of edges, i, in S∗ such that Di = 0. These

edges must be a straight pair since we are assuming there is no twist pair (see Figure

3.22). Thus S∗ = M#S2, where M is a 2k-gon. By Lemma 3.1.1 S∗ = M and by

the inductive hypothesis it follows that S∗ is homeomorphic to either S2, rT , or rP

for some integer r.

Now assume there is an alternating pair of edges in S∗. Call the edges in the

alternating pairs a and b (see Figure 3.23). To begin, we will make a cut along an

edge c that runs from the bottom of edge b across S∗ to the bottom of the other
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Figure 3.22. The case where compact surface S∗ contains no alternating pairs and
no twist pairs.

b edge, as shown in Figure 3.23. Once we cut along edge c, we will glue the two

pieces along edge a. One more cutting and pasting is necessary, along a new edge

d which runs from the top left side of edge c and once again down across S∗ to the

right bottom edge of c, and we will glue the resulting two pieces together along edge

b. Here we see that after the cutting and pasting, S∗ becomes M#T where the

Figure 3.23. The case where S∗ contains alternating pairs of straight edges and no
twist pairs.

torus is formed by the introduced alternating pair of edges c and d. We know that

the pairs of edges c and d form a torus since they are straight alternating pairs of

edges. By the inductive hypothesis, Lemma 3.1.1, and Lemma 3.1.4 the surface S∗

is homeomorphic to one of the following:

(i) S2#T = T ,

(ii) rT#T = (r + 1)T for some integer r, or

(iii) rP#T = (r + 2)P .
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Assuming that the result holds for 2n-gons with n = 1, . . . k, it holds in the case

where S∗ is a 2(k + 1)-gon containing no twist pairs of edges. Now by induction it

follows that the result holds for all 2n-gons, n ∈ Z+.

This proof completes the identi�cation of all the di�erent compact surfaces that

can be constructed by gluing pairs of edges in a 2n-gon. As mentioned previously

to �nish the classi�cation of compact surfaces we need to distinguish between these

compact surfaces. It can be shown using some techniques from algebraic topology

that nT 6= mT whenever n 6= m, nP 6= mP whenever n 6= m, nT 6= mP , nT 6= S2,

and nP 6= S2 for integersm and n. A proof of the remaining portion of the Compact

Surface Classi�cation Theorem can be found in [6], [10], or [1].

3.3.1 Compact Surface Identi�cation Codes

Given a compact surface represented as a 2n-gon with edges glued in pairs, we can

use the method of cutting and gluing pairs of edges to identify the surface. However,

we can de�ne compact surface identi�cation codes that represent the cutting and

gluing used in the previous section. These compact surface identi�cation codes can

be applied to the collection of 2n-edges. The collection of 2n-edges records the

clockwise ordering of edges about the 2n-gon. If an edge is oriented in the counter-

clockwise direction it will be denoted with an inverse. Consider a surface M with a

straight pair of edges a with Da = 0. In the collection of 2n-edges, this pair of edges

will appear as aa−1 and will identify to a sphere in a connected-sum representing

the surface.

For instance, consider a surface M that contains a twist pair of edges as shown

in Figure 3.24. The twist pair of edges, a, will identify to a projective plane when

the distance between the two edges is zero. In Figure 3.24, we will represent the

left picture of M as a collection of edges recorded in the clockwise direction, aXaY ,
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Figure 3.24. The cutting and gluing of surface M that results in the projective
plane identi�cation code.

where X and Y are collections of arbitrary edges glued in pairs. We introduce the

edge b and cut along it, splitting M into two pieces. We will glue these two pieces

together on edges a and the result is a surface homeomorphic toM with a twist pair

of edges b such that Db = 0. Now M = bbY −1X where the pair of edges b identi�es

as a projective plane and Y −1 is given by the edges in Y in the opposite order. In

detail, if Y = a1a2 · · · an, then Y −1 = a−1
n a−1

n−1 · · · a−1
1 . Thus, the projective plane

identi�cation code is given by

M = aXaY
P I.D.−−−−−→ bbY −1X.

In other words, given a compact surface that contains a twist pair of edges a with

Da 6= 0, we can apply the projective plane identi�cation code to pull o� the projec-

tive plane produced by the twist pair of edges.

Now, consider a surface M with alternating pairs of straight edges labeled a and

b in Figure 3.25. To derive the torus identi�cation code, let M = aWbXa−1Y b−1Z.

Then we will introduce an edge c and cut along this edge, as shown in Figure 3.25.

The two pieces that result from cutting on edge c will be glued along edges a. At

this step, M is homeomorphic to c−1XWbcb−1ZY . Next another edge will be in-

troduced and cut along, call this edge d. Once we cut along edge d we will glue the
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Figure 3.25. The cutting and gluing of surface M that results in the torus
identi�cation code.

resulting two pieces together along edge b. The result is a surface homeomorphic to

M given by XWZY dcd−1c−1 where dcd−1c−1 identi�es to a tours. Therefore, the

torus identi�cation code is given by

M = aWbXa−1Y b−1Z
T I.D.−−−−−→ XWZY dcd−1c−1.

Applying the torus identi�cation code to a collection of 2n-edges containing alter-

nating pairs of straight edges will pull out a single torus from the 2n-edges.

For example, consider the surface given by M = abcda−1bc−1defghef−1gh−1.

We will use the compact surface identi�cation codes to identify the surface M as

either a connected-sum of tori, a connected-sum of projective planes, or a sphere.

First we will apply the torus identi�cation code. In the example below, we will

indicate with brackets the edges to which the compact surface identi�cation code

is being applied. In particular, the code being applied to the bracketed edges is

determined by the label on the arrow the line below the bracketed edges.

M = abcda−1bc−1de f︸︷︷︸ g h︸︷︷︸ e f−1︸︷︷︸ g h−1︸︷︷︸
Here, W = g, X = e, Y = g, and Z = abcda−1bc−1de. Now, we can apply the torus

identi�cation code to M.
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1T I.D.−−−−−→ egabcda−1bc−1degjij−1i−1

The new edges jij−1i−1 created by applying the torus identi�cation code form a

torus. We can pull these edges identi�ed as a torus to the end of the collection of

edges and rewrite M as follows:

M = egabcda−1bc−1deg#T.

Now, we will apply another torus identi�cation code to the edges labeled with brack-

ets in the representation of M below.

M = eg a︸︷︷︸ b c︸︷︷︸ d a−1︸︷︷︸ b c−1︸︷︷︸ deg#T.

Next, we will apply the projective plane identi�cation code to edges d, where X = b

and Y = egegb.

1T I.D.−−−−−→ d︸︷︷︸ b d︸︷︷︸ egegb#T#T

Notice, in the collection of edges yet to be identi�ed, the edges b−1b will identify to

be a sphere.

1P I.D.−−−−−−→ b−1︸︷︷︸ g−1e−1g−1e−1 b︸︷︷︸#T#T#P

Finally, we will apply the projective plane identi�cation code and then the sphere

identi�cation code.

1S2 I.D.−−−−−−→ g−1︸︷︷︸ e−1 g−1︸︷︷︸ e−1#T#T#P#S2

1P I.D.−−−−−−→ ee−1︸︷︷︸#T#T#P#P
1S2 I.D.−−−−−−→ #T#T#P#P = 2T#2P

Therefore, by Lemma 3.1.4 the compact surfaceM = 2T#2P = 6P . In the following

chapters, when identifying compact surfaces using the method of cutting and gluing,

we will apply the compact surface identi�cation codes as described above.

Now that the proof of the Compact Surface Classi�cation Theorem has been

discussed, we can begin constructing an embedding algorithm using the rotation

systems of a graph to determine surfaces into which the graph can be embedded.
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Chapter 4

EMBEDDING ALGORITHM

In this chapter an embedding algorithm will be developed that uses a rotation

system of a graph as input and will determine the surface into which the graph and

corresponding rotation system can be embedded. The algorithm discussed here is

analogous to the He�ter-Edmonds Algorithm and has its origins in the 1890's with

He�ter's work [8]. In 1960 Jack Edmonds, unaware of He�ter's work, invented a

parallel algorithm using a vertex form of a graph for producing an embedding [5].

Today the algorithm is attributed to both He�ter and Edmonds. The algorithm

discussed below takes a direct approach to the derivation by using the compact

surface identi�cation codes and constructing the actual embedding of the graph,

rather than simply guaranteeing existence.

4.1 2-Cellular Embedding Algorithm

Let G = {V,E} be a connected simple graph with vertex set V = {i : i =

1, 2, 3, . . . , n} and edge set E = {ei,j : for some i, j ∈ V } containing M edges. The

edge ei,j indicates a directed edge that is incident to vertices i and j and when the

edge ei,j is traversed in a walk one starts at vertex i and travels to vertex j. The

edge denoted ej,i will represent the same edge as ei,j only the direction is reversed.

Suppose G has an associated rotation system Π = {πi : i ∈ V } such that each πi

records a particular counter-clockwise cyclic permutation of the edges incident to

vertex i. We call πi the vertex code for vertex i. Denote the graph G with rotation

system Π as ΠG. Each vertex code will be of the form:

πi : (ei,m1 ; ei,m2 ; ei,m3 ; ei,m4 . . . ei,mj
)
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for each i = 1, 2, 3, . . . , n (see Figure 4.1). The order in which the edges appear

in the vertex code, πi, gives an ordering of edges about vertex i in G that we will

realize in an embedding of G in a compact surface. Each edge will appear exactly

twice, once in each direction, in a rotation system described in this way.

Figure 4.1. The vertex code, πi, of a particular rotation system of a graph G that
records a counterclockwise cyclic ordering about the vertex i

Recall, given a graph embedded into a surface S, if one takes the complement of

the embedded graph in S then the result is a collection of components called faces.

Further, the boundary of each face is a collection of edges of the embedded graph.

Given a rotation system, in order to determine the embedding of the graph asso-

ciated to the rotation system we construct what are known as boundary walks. Each

boundary walk is a cycle of directed edges in the graph and corresponds to a clock-

wise walk around the boundary of a face of the embedding. We show below how, by

identifying the faces and how to glue them together, the boundary walks determine

a polygonal representation of the surface into which the graph is embedded.

Each boundary walk will be constructed as follows:

LetW denote a closed walk in the graphG starting from vertex w(1) on the �rst edge

appearing in πw(1), call it ew(1),w(2). To determine the next edge in the walk, locate

the edge ew(2),w(1) in the vertex code πw(2). Because we are walking clockwise around
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a face of the embedding, the next edge in the walk will be the edge immediately

following ew(2),w(1) in the vertex code πw(2). We denote that edge by ew(2),w(3), as

shown in Figure 4.2. Continue constructing the boundary walk W in this way until

a directed edge repeats. Note, this must occur at some point since there are �nitely

many edges.

Figure 4.2. The construction of a boundary walk, clockwise around a face of the
embedded graph.

We claim that the �rst directed edge to repeat is the �rst edge in the boundary

walk. Notice that each directed edge occurs exactly once among all the vertex codes

in a rotation system. SupposeW∗ is a boundary walk with a repeated directed edge.

However, in this boundary walk W∗, the edge preceding the repeated edge must be

the edge preceding it in the vertex code. Therefore, if the repeated edge in W∗ is

an edge other than the �rst one, we know the edge preceding it must also repeat.

Hence, the �rst edge must be the �rst edge that repeats in a boundary walk. Thus

the boundary walk W will be of the form

W = (ew(1),w(2)ew(2),w(3) . . . ew(p−1),w(p)ew(p),w(1)).

Continue constructing boundary walks from the rotation system until each di-

rected edge appears in one. The boundary walks are determined by the graph and

rotation system and provide us a way to construct a surface and embedding of the
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graph in the surface. Let WΠ denote the collection of boundary walks formed from

rotation system ΠG. The number of edges in the collection of boundary walks will

be twice the number of edges in the graph. The directed edges in the boundary

walks bound the faces of the graph embedded in the surface. In order to determine

the surface into which the graph G with rotation system ΠG can be embedded, it is

necessary to glue together the collection of boundary walks. In other words, because

each face is a polygon with edges determined by the graph and rotation system, if

one identi�es all of the edges together, you will e�ectively construct the surface with

the graph embedding.

For example, let W1, W2 ∈ WΠ such that

W1 = (ew1(1),w1(2)ew1(2),w1(3) . . . ew1(p−1),w1(p)ew1(p),w1(1)) and

W2 = (ew2(1),w2(2)ew2(2),w2(3) . . . ew2(m−1),w2(m)ew2(m),w2(1)).

An illustration of the boundary walks can be seen in Figure 4.3.

Because we would like to glue these two boundary walks together, we will assume

Figure 4.3. Boundary walks, W1 and W2, of a graph G with rotation system Π.

the edges ew2(1),w2(2) and ew1(p),w1(1) represent the same edge, in opposite directions.

We will relabel these edges so that w(1) := w2(1) = w1(1) and w(p) := w2(2) =

w1(p). The boundary walks W1 and W2 with the relabeled edges are shown as

follows
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W1 = (ew(1),w1(2)ew1(2),w1(3) . . . ew1(p−1),w(p)ew(p),w(1))

W2 = (ew(1),w(p)ew(p),w2(3) . . . ew2(m−1),w2(m)ew2(m),w(1)).

Below we discuss how we can glue generally boundary walks to obtain a single

polygon with edges glued in pairs.

A boundary walk can start at any of the edges within it. For instance, suppose we

are given two boundary walks W and W ′
, formed from the same rotation system,

that contain the same collection of directed edges but start on di�erent directed

edges. The two boundary walks, W and W ′
, are cyclic permutations of each other.

However, given a rotation system that produces more than one boundary walk, we

need to glue together the boundary walks to determine the surface. Let W1 and

W2 be boundary walks of GΠ such that W1 contains an edge ei,j and W2 contains

the edge ej,i. We can glue together the two boundary walks on this edge, and the

gluing results in a single polygon obtained by gluing the two polygons along the

corresponding edges. If the shared edges are not at the beginning or end of W1

or W2, then we can take cyclic permutations of these boundary walks so that the

edge ei,j is at the end of W1 and the edge ej,i is at the beginning of W2. After

this is accomplished, the two boundary walks can be glued together forming the

polygon denoted by W1 ◦ W2. Whenever a collection of boundary walks must be

glued together to construct a surface with an embedded graph, we will use this

gluing method.

Using the boundary walk gluing method, we can glue the boundary walks to-

gether along the beginning and ending directed edges. Now consider W1 and W2,

as given above. Notice that W2 starts with the relabeled edge ew(1),w(p) and that

W1 ends with the relabeled edge ew(p),w(1). This allows for the two boundary walks

to be glued together on these directed edges, as shown in Figure 4.4. The resulting
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polygon is given by the following:

W1 ◦W2 = (ew(1),w1(2)ew1(2),w1(3) . . . ew1(p−1),w(p)

ew(p),w2(3) . . . ew2(m−1),w2(m)ew2(m),w(1))

Figure 4.4. The boundary walks W1 and W2 glued together on a shared edge.

The edges ew(1),w(p) and ew(p),w(1) are not included in the collection of edges,

W1 ◦ W2, but when realizing the graph embedding in the surface, these edges will

still be present as an edge of the embedded graph. In particular, when the edges

ew(1),w(p) and ew(p),w(1) are identi�ed together inW1 ◦W2, the two edges will form an

edge of the graph embedded in the surface. Thus continuing with W3, W4 etc., the

boundary walks of ΠG can be glued together to form a polygon with pairs of edges

identi�ed together.

We claim, that all of the boundary walks in W can be glued together to form

one polygon with edges glued in pairs. To see this, suppose we cannot glue every

boundary walk together. Let W ∗ be a maximal collection of boundary walks in W

that can be glued together. Notice, this collection of boundary walks W ∗ represents

a polygon with edges glued in pairs. Then there must there exist at least one

boundary walk W ′ ∈ W such that W ′
is not contained in W ∗ and further that it

does not share any edges with the polygon W ∗. If such a boundary walk exists this
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implies that the resulting space into which the graph can be embedded with a given

rotation system must be disconnected. However, recall every graph, G, considered

here is simple and connected. Then the existence of a boundary walk W ′
implies

that G, a connected topological space, is embedded into a disconnected topological

space, with edges of the graph in each component of the disconnected space and this

is a contradiction. Therefore, no such boundary walkW ′
exists and every boundary

walk in W can be glued together forming one polygon. We know that this polygon

with edges glued in pairs will identify to a compact surface in which the graph G

with rotation system Π can be embedded. From the polygon with edges identi�ed

in pairs, we can construct the surface and the actual embedding of the graph on

the surface because the edges in the boundary walks prescribe the embedding of the

graph in the corresponding surface.

There are a few ways in which we can identify the surface produced by the

embedding algorithm. First, as previously described, we can go directly from the

gluing of boundary walks into a single polygon with pairs identi�ed together to a

surface with an actual embedding of the graph. Second, we could use the Compact

Surface Identi�cation Codes presented in Chapter 3. A disadvantage of using the

second method is that we lose the result of knowing what the embedding of the graph

in the surface looks like and instead just recover the surface that is constructed rather

than the surface with the corresponding embedding. We will see a third method for

identifying the surface in Remarks section of this chapter.

To identify the surface produced by the embedding algorithm, it is �rst necessary

de�ne how the pairs of edges are glued. Let ei,j be a directed edge in the polygon.

Then the edge ej,i, in the polygon, will represent the same edge as ei,j, only in

the opposite direction. Thus, the edges ei,j and ej,i correspond to a straight pair

of edges in the polygon (see Figure 3.14). Then the sphere, torus, and projective
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plane identi�cation codes can be applied to the polygon with pairs of edges glued

to identify the surface.

In fact, the embedding algorithm will always result in a surface homeomorphic to

either a sphere or a connected-sum of tori. To see this, recall one of the fundamental

compact surfaces, the projective plane. Refer to Figure 3.2 and notice in the second

picture that to create the projective plane we are identifying a twist pair of edges

together. The twist made in the identi�cation of the edges together is what causes

the self-intersection characterizing the projective plane. Now, consider the polygon

glued in pairs produced by the embedding algorithm. Recall, for any rotation system

Π of a graph G each directed edge of G is contained exactly once in the rotation

system. Speci�cally, the boundary walks constructed via the embedding algorithm

contain each directed edge, ei,j and ej,i.

Suppose the resulting polygon with edges glued in pairs contains a pair of twist

edges. Then this corresponds to some edge ek,l that appears twice in the same

direction. This means that the directed edge el,k will not be contained in any

boundary walk since the same edge in the opposite direction, ek,l, is repeated twice.

However, it is impossible for there to be a twist pair of edges in any boundary walk

constructed via the embedding algorithm because the rotation systems are de�ned

to contain each directed edge exactly once. This implies that every pair of edges in

the 2M -gon are glued in straight pairs therefore the algorithm will always produce

a surface homeomorphic to a sphere or a connected-sum of tori.

4.2 Examples

In this section, we will go through the details of using the embedding algorithm

to produce an embedding of some graphs with particular rotation systems. We will

focus on the complete graph on six vertices and the complete bipartite graph, K3,3.
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4.2.1 Two Embeddings of the Complete Bipartite Graph K3,3

In the Rotation Systems of Graphs section in the Graphs chapter, two distinct

rotation systems of the complete bipartite graphK3,3 were introduced. We will show,

using the embedding algorithm, that the rotation systems will induce embeddings

of the graph K3,3 into distinct surfaces. Recall, the �rst rotation system of K3,3,

Π1 = {πi : i = 1, . . . , 6}, where the vertex codes are given by the following:

π1 : (e1,4; e1,5; e1,6) π4 : (e4,3; e4,2; e4,1)

π2 : (e2,4; e2,5; e2,6) π5 : (e5,3; e5,2; e5,1)

π3 : (e3,4; e3,5; e3,6) π6 : (e6,3; e6,2; e6,1)

The rotation system Π1 results in three boundary walks via the Boundary Walk

Construction method. The collection of boundary walks, denoted WΠ1 , is as follows:

W1 = (e1,4e4,3e3,5e5,2e2,6e6,1)

W2 = (e1,5e5,3e3,6e6,2e2,4e4,1)

W3 = (e1,6e6,3e3,4e4,2e2,5e5,1)

Figure 4.5. The resulting three boundary walks for K3,3 with Π1.

The three boundary walks are shown in Figure 4.5, where W1 is shaded dark

gray, W2 is shaded light gray, and W3 is dashed.
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Now we can use the Boundary Walk Gluing method to glue the three boundary

walks together. The third boundary walk, W3, ends with edge e5,1 and the second

boundary walk, W2, begins with edge e1,5, so we can glue the two boundary walks

together on those edges. Similarly, we can glue the �rst boundary walk onto the end

ofW3 ◦W2, becauseW2 ends with edge e4,1 andW1 begins with e1,4. Thus the three

boundary walks glued together form a collection of pairs of edges identi�ed to each

other, which will determine the surface of the embedding. Note that W3 ◦W2 ◦W1,

Figure 4.6. The three boundary walks for K3,3 with Π1 glued together forming one
polygon.

as shown in Figure 4.6, represents a polygon with its edges glued together in pairs

to form a surface in which the graph is embedded according to rotation system Π1.

We will identify the resulting surface by applying the torus and sphere identi�cation

codes introduced in the Compact Surface Chapter.
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W3 ◦W2 ◦W1 = e1,6︸︷︷︸ e6,3e3,4e4,2e2,5e5,3e3,6e6,2e2,4e4,3e3,5e5,2e2,6 e6,1︸︷︷︸
1S2 I.D.−−−−−−→e6,3 e3,4︸︷︷︸ e4,2 e2,5︸︷︷︸ e5,3e3,6e6,2e2,4 e4,3︸︷︷︸ e3,5 e5,2︸︷︷︸ e2,6

T I.D.−−−−−→ e5,3︸︷︷︸ e3,6e6,2 e2,4e4,2︸ ︷︷ ︸ e2,6e6,3 e3,5︸︷︷︸#T

2S2 I.D.−−−−−−→ e3,6︸︷︷︸ e6,2e2,6︸ ︷︷ ︸ e6,3︸︷︷︸#S2#S2#T

2S2 I.D.−−−−−−→#S2#S2#S2#S2#T → T

Therefore, the complete bipartite graph, K3,3, with rotation system Π1 will embed

into a torus via the embedding algorithm. We will now realize the same embedding

of K3,3 by gluing together the edges of the polygon in Figure 4.6. This process will

not only identify the corresponding surface for the polygon representing the three

boundary walks glued together, but also show us the actual embedding of the graph

in the surface.

Figure 4.7. A visual construction of the embedding of K3,3 with Π1.
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We begin this proces by �rst forming a cylinder by gluing together the edges e3,5

to e5,3 and e5,2 to e2,5, as shown in Figure 4.7. Next, it is necessary to glue the top

and bottom edges of the cylinder together to form the torus with K3,3 embedded

according to the rotation system Π1. The resulting embedding is shown in Figure

4.8.

Figure 4.8. The embedding of K3,3 with Π1 on the torus.

Now recall the second rotation system Π2 = {πi : i = 1, . . . , 6} of the graph K3,3.

The vertex codes of this rotation system are as follows:

π1 : (e1,5; e1,6; e1,4) π4 : (e4,1; e4,3; e4,2)

π2 : (e2,4; e2,6; e2,5) π5 : (e5,2; e5,1; e5,3)

π3 : (e3,5; e3,4; e3,6) π6 : (e6,3; e6,2; e6,1)

The rotation system Π2 ofK3,3 will induce an embedding of the graph into a di�erent

surface when compared to the rotation system Π1. In this case, the rotation system

Π2 results in a single boundary walk for the graph. The boundary walk is given by

the following:

W : (e1,5e5,3e3,4e4,2e2,6e6,1e1,4e4,3e3,6e6,2e2,5e5,1e1,6e6,3e3,5e5,2e2,4e4,1)
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Since the rotation system Π2 of K3,3 only resulted a single boundary walk, we

can immediately apply the torus and sphere identi�cation codes to the boundary

walk to identify the resulting surface.

W = e1,5︸︷︷︸ e5,3e3,4e4,2e2,6e6,1 e1,4︸︷︷︸ e4,3e3,6e6,2e2,5 e5,1︸︷︷︸ e1,6e6,3e3,5e5,2e2,4 e4,1︸︷︷︸
T I.D.−−−−−→e4,3e3,6e6,2e2,5e5,3e3,4e4,2e2,6 e6,1e1,6︸ ︷︷ ︸ e6,3e3,5e5,2e2,4#T

1S2 I.D.−−−−−−→e4,3 e3,6︸︷︷︸ e6,2 e2,5︸︷︷︸ e5,3e3,4e4,2e2,6 e6,3︸︷︷︸ e3,5 e5,2︸︷︷︸ e2,4#S2#T

T I.D.−−−−−→ e5,3︸︷︷︸ e3,4e4,2 e2,6e6,2︸ ︷︷ ︸ e2,4e4,3 e3,5︸︷︷︸#S2#T#T

2S2 I.D.−−−−−−→ e3,4︸︷︷︸ e4,2e2,4︸ ︷︷ ︸ e4,3︸︷︷︸#S2#S2#S2#T#T

2S2 I.D.−−−−−−→#S2#S2#S2#S2#S2#T#T → T#T

Thus, by the embedding algorithm the graph K3,3 with rotation system Π2 will

embed into a connected-sum of two tori. By the Compact Surface Classi�cation

Theorem, we know that T and T#T are not homeomorphic and hence the two

embeddings of K3,3 are into distinct surfaces. In Figure 4.9, the embedding of the

graph K3,3 with rotation system Π2 into T#T is shown.

Figure 4.9. An embedding of K3,3 with rotation system Π2 into T#T such that
the graph does not separate the surface.
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4.2.2 An Embedding of the Complete Graph K6

This section will go through the details of using the algorithm to produce an

embedding of the complete graph on 6 vertices with a speci�c rotation system. Let

Π = {πi : i = 1, . . . , 6} be a rotation system of the complete graph K6, where the

speci�c vertex codes are given by:

π1 : (e1,2; e1,5; e1,4; e1,3; e1,6) π4 : (e4,5; e4,2; e4,1; e4,6; e4,3)

π2 : (e2,3; e2,6; e2,5; e2,4; e2,1) π5 : (e5,4; e5,1; e5,2; e5,3; e5,6)

π3 : (e3,4; e3,1; e3,6; e3,5; e3,2) π6 : (e6,1; e6,4; e6,3; e6,2; e6,5).

Figure 4.10. A rotation system of K6.

This rotation system corresponds to the picture of K6 found in Figure 4.2.2.

Next, it is necessary to construct the boundary walks of the this rotation system
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using the Boundary Walk Construction method. The boundary walks are as follows,

W1 = (e1,2e2,3e3,4e4,5e5,1e1,4e4,6e6,3e3,5e5,6e6,1)

W2 = (e1,5e5,2e2,4e4,1e1,3e3,6e6,2e2,5e5,3e3,2e2,6e6,5e5,4e4,2e2,1)

W3 = (e1,6e6,4e4,3e3,1)

Then we can glue together the three boundary walks using the methods described

previoulsy. Notice, the boundary walk W2 ends on edge e2,1 and W1 begins on edge

e1,2, thus we can glue the two boundary walks together on that edge; denote this

W2 ◦ W1. In a similar manner, we can glue the third boundary walk to the �rst to

obtain W2 ◦W1 ◦W3.

W2 ◦W1 ◦W3 =e1,5e5,2e2,4e4,1e1,3e3,6e6,2e2,5e5,3e3,2e2,6e6,5e5,4e4,2e2,3e3,4e4,5e5,1

e1,4e4,6e6,3e3,5e5,6e6,4e4,3e3,1

−→ e1,5︸︷︷︸ e5,2e2,4e4,1e1,3 e3,6︸︷︷︸ e6,2e2,5e5,3e3,2e2,6e6,5e5,4e4,2e2,3e3,4e4,5 e5,1︸︷︷︸
e1,4e4,6 e6,3︸︷︷︸ e3,5e5,6e6,4e4,3e3,1

T I.D.−−−−−→ e6,2︸︷︷︸ e2,5︸︷︷︸ e5,3e3,2 e2,6︸︷︷︸ e6,5e5,4e4,2e2,3e3,4e4,5 e5,2︸︷︷︸ e2,4e4,1e1,3

e3,5e5,6e6,4e4,3e3,1e4,1e4,6#T

T I.D.−−−−−→e6,5 e5,4︸︷︷︸ e4,2 e2,3︸︷︷︸ e3,4 e4,5︸︷︷︸ e5,3 e3,2︸︷︷︸ e2,4e4,1e1,3e3,5e5,6e6,4

e4,3e3,1e1,4e4,6#2T

T I.D.−−−−−→e5,3e3,4e4,2e2,4e4,1 e1,3︸︷︷︸ e3,5 e5,6︸︷︷︸ e6,4e4,3 e3,1︸︷︷︸ e1,4e4,6 e6,5︸︷︷︸#3T

T I.D.−−−−−→ e6,4︸︷︷︸ e4,3 e3,5e5,3︸ ︷︷ ︸ e3,4 e4,1e1,4︸ ︷︷ ︸ e4,6︸︷︷︸#4T

3S2 I.D.−−−−−−→ e3,4e4,3︸ ︷︷ ︸T#T#T#T
1S2 I.D.−−−−−−→ T#T#T#T

Therefore by the embedding algorithm K6 with rotation system Π, de�ned above,

embeds into the connected-sum of four tori.
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4.3 Remarks

Recall, the Euler Characteristic of a triangulated surface S, χ(S) = V −E + F ,

where V is the number of vertices, E is the number of edges, and F is the number

of triangles in the triangulation of S. A triangulation of a surface can be looked

at as a collection of edges, vertices, and triangles that covers the surface. So if one

takes the complement of the edges and vertices in a triangulated surface, the result

is a collection of faces that are homeomorphic to open disks. One can think of a

triangulation as a graph that is embedded in the surface such that the embedded

graph segments the surface into triangles. In a similar fashion, we can de�ne the

Euler Characteristic for a graph embedded into a surface. Let G be a connected,

simple graph with rotation system Π such that G has V vertices, E edges, and F

boundary walks or faces. Let χ(Π) denote the Euler Characteristic of the graph ΠG

embedded via the algorithm, where we de�ne χ(Π) as

χ(Π) = V − E + F .

Then the following lemma allows us to relate the Euler characteristic of an embedded

graph to the genus of the surface in which the graph is embedded through the

algorithm.

Lemma 4.3.1. Let S be a surface and G be a connected graph that is 2-cellular

embedded in S, with V vertices, E edges, and F faces. Then S is homeomorphic to

the connected-sum of k−tori, kT , where k is de�ned by

V − E + F = 2− 2k.

If k = 0 then 0T is de�ned to be a sphere.

A proof of this result can be found in [10]. Every cellular embedding is uniquely

determined by its rotation system, so Lemma 4.3.1 can be extended to a graph
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G that is embedded via a rotation system and the Embedding Algorithm. When

using the algorithm to embed a graph, the value of F is determined by the number

of boundary walks produced by the speci�c rotation system. This leads to the

de�nition of the genus of an embedding of a graph G with rotation system Π. The

genus is given by

g(Π) = 1− 1
2
χ(Π).

Where the genus of the surface, g(S), of the embedded graph is given by g(S) :=

g(Π). This formulation of the genus of the embedding allows us to identify the

surface produced by the Embedding Algorithm by counting the number of boundary

walks, which corresponds to F . Therefore we can identify the surface without the

use of the compact surface identi�cation codes, as shown previously.

4.4 Minimal and Maximal Graph Embeddings

Consider the two embeddings of K3,3 presented in the Examples Section, pre-

viously. Recall, the crossing number of the complete bipartite graph K3,3 is 1 and

hence by Theorem 2.2.6 the graph can be embedded into a torus. Notice, in the

case of K3,3 with rotation system Π1, we produce an embedding of the graph into

a torus. Because the crossing number of K3,3 is ν(K3,3) = 1 this implies the graph

cannot be embedded into a sphere and hence the torus is the smallest genus surface

in which we can embed K3,3. This observation leads to the idea of the minimum

genus of a graph. The minimum genus of a graph G, denoted g(G), is de�ned to be

the minimum integer n such that G can embed into a connected-sum of n tori. The

following proposition provides a lower bound for the genus of an arbitrary connected

graph. For more details on minimum and maximum graph embeddings see [10] and

[7].
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Proposition 4.4.1. Let G be a connected graph with V ≥ 3 vertices and E edges.

Then a lower bound for the minimum genus of a graph G is given by

g(G) ≥ dE
6
− V

2
+ 1e.

Proof. Let Π be an arbitrary rotation system of the graph G. Suppose the embed-

ding algorithm produces f boundary walks. The sum of the number of edges in the

collection of boundary walks of ΠG will be 2E. Since V ≥ 3 each boundary walk of

ΠG must contain at least three or more directed edges. This implies that 2E ≥ 3f .

By the Euler characteristic of the embedded graph ΠG,

3χ(Π) = 3V − 3E + 3f

≤ 3V − 3E + 2E = 3V − E

In this case, the genus of the embedding of GΠ is the same as the genus of the graph

G. So given the genus of an embedded graph, g(Π) = 1− 1
2
χ(Π), and the fact that

the genus of a graph must be an integer, we have the following

g(Π) = 1− 1

2
χ(Π)

≥ 1− 1

2
(V − E

3
)

= 1− V

2
+
E

6

g(Π) = g(G) ≥ d1− V

2
+
E

6
e

Similarly, we could also �nd a the non-trivial maximal genus surface in which

a graph can be embedded. Now, consider the embedding produced of K3,3 with

rotation system Π2 (see Figure 4.9). In this case, we saw that K3,3 embeds into a

connected-sum of two tori. Coincidentally, the maximal genus surface in which K3,3

can be embedded is T#T . Of course, we could embed K3,3 into 5T , for example,
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but such an embedding of the graph will contain faces that are not homeomorphic

to the open disk. The maximum genus of a graph G, denoted gM(G), is the largest

integer m such that G can be embedded into a connected-sum of m tori where

each face of the embedded graph is homeomorphic to the open disk. It is necessary

to include the requirement that each face of the embedded graph be an open disk

in its maximal surface because we could always embed the graph into a surface

that contains extra holes but then it would not necessarily produce a 2-cellular

embedding. Further, if one were to use the Embedding Algorithm to investigate

di�erent rotation systems of a graph to create the maximal embedding, the resulting

embedded graph will always have faces that are homeomorphic to the open disk due

to the construction of boundary walks. Once again, consider the embedding of K3,3

with rotation system Π2. Notice, K3,3 with Π2 produced one boundary walk via the

Embedding Algorithm. This implies the embedding of K3,3 → T#T only contains

a single face and that when one takes the complement of K3,3 in T#T the graph

does not separate the surface.

The following proposition establishes an upper bound for the maximum genus

of an embedded graph G.

Proposition 4.4.2. Let G be a connected graph with V vertices and E edges. Then

an upper bound for the maximum genus of a graph G is given by the following

gM(G) ≤ bE−V +1
2
c.

Proof. Let G be a connected graph with a rotation system Π. Suppose GΠ is em-

bedded into a surface S via the embedding algorithm. Let f denote the number of

boundary walks for the embedding of GΠ. We know that for any rotation system

Π of G that f ≥ 1. By the Euler characteristic of an embedded graph we have the

following,

χ(Π) = V − E + f ≥ V − E + 1.
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Thus by the genus of the embedding of GΠ and the fact the maximum genus of

a graph is an integer, the result holds.

g(Π) = 1− 1

2
(χ(Π))

≤ 1− 1

2
(V − E + 1)

g(Π) =gM(G) ≤ bE − V + 1

2
c

In Proposition 4.4.2, equality holds if and only if the rotation system of G con-

structs, via the Embedding Algorithm, exactly one boundary walk or exactly two

boundary walks. The following theorem, attributed to Richard A. Duke [4], illus-

trates how we can construct embeddings of a graph G for every surface between its

minimum and maximum genus surfaces.

Theorem 4.4.3. A connected graph G has embeddings in all surfaces gT where

g ∈ Z+ such that

g(G) ≤ g ≤ gM(G).

Proof. Every rotation system Π
′
can be obtained from any other rotation system

Π of a graph G. This can be achieved by successively exchanging the order of two

consecutive edges in some vertex code of a rotation system of G. Such an exchange

will a�ect at most three boundary walks when producing an embedding of GΠ via

the Embedding Algorithm. Either three boundary walks will be transformed into

one boundary walk, one boundary walk will be transformed into three boundary

walks, or the number of boundary walks remains the same. This will change the

genus of the embedded graph by at most one, regardless of the change that occurs

within the boundary walks. Therefore, going from a minimum genus embedding to

a maximum genus embedding by exchanging pairs of consecutive edges in a vertex

code will result in embeddings into all intermediate genus surfaces.
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One can search for the minimum or maximum embeddings of a graph G by using

the methods described in the proof of Theorem 4.4.3. However, it can be di�cult

to search all the possible rotation systems of a graph G in e�orts to construct

the minimum or maximum embedding since the number of rotation systems for a

graph increases exponentially with the number of edges. In the following chapter,

maximum embeddings of the complete bipartite graph K3,n are investigated using

the Embedding Algorithm.
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Chapter 5

CONSEQUENCES OF THE EMBEDDING ALGORITHM

The embedding algorithm allows us to draw many conclusions about the types

of surfaces that various types of graphs can be embedded into.

5.1 Embedding Trees

A tree is a graph that is connected and contains no cycles. Further, trees are

minimally connected, meaning that if an edge is removed then the graph will become

disconnected. It is relatively straightforward to prove that a tree is planar. However,

we also have the following result as a corollary to the embedding algorithm.

Theorem 5.1.1. Let T be a tree with n ≥ 1 edges. Let ΠT be a rotation system of

the tree. Then, using the embedding algorithm, ΠT will result in a single boundary

walk that corresponds to embedding T into the sphere.

Before we can prove this corollary, we must introduce the following result about

trees.

Lemma 5.1.2. If a tree has 1 or more edges then it has at least 2 vertices of degree

1.

Proof. Let T be a tree with n ≥ 1 edges. The proof will proceed by induction on n,

the number of edges of the graph.

Let n = 1. Then T is a tree with 1 edge that is incident to two vertices. Clearly,

there exists two vertices of degree 1 in T .

Assume the result holds for a tree with n ≤ m − 1 edges. Let T be a tree with

n = m edges. Remove an edge from T , to form a new graph T ∗. There are two cases

to consider for the resulting graph T ∗. First consider the case where the resulting
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Figure 5.1. A tree is separated into two smaller tree components when an edge is
removed.

graph T is split into two smaller components, both of which are trees with fewer

edges than m−1, see Figure 5.1. So by the inductive hypothesis, in each component

of the graph T ∗ there must be at least two vertices with degree 1. Now if we replace

the removed edge, we connect the two components of T ∗ and recover the tree T ,

having at least two of the vertices of degree 1 from T ∗ remain.

Figure 5.2. A tree is separated into a smaller tree and a singleton vertex when a
edge incident to a vertex of degree 1 is removed.

Alternately, the graph T ∗ may consist of two components where one component

is an isolated vertex, call it j, and the other component is a tree with m− 1 edges,

see Figure 5.2. The component of T ∗ that is a tree satis�es the inductive hypothesis.

However, the only way we could have an isolated vertex j in T ∗ is if vertex j had

degree 1 in the tree T . Therefore, if we replace the removed edge in T ∗ to recover
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the graph T , we see there must be at least two vertices of degree 1, namely j and

at least one of the vertices from T ∗.

Now we can proceed proving Theorem 5.1.1.

Proof. Let T be a tree with n edges. The proof will follow by induction on n. Let

n = 1. Then T is a tree with one edge and two vertices. Let ΠT be a rotation system

of T . The rotation system is given by ΠT = {(e1,2), (e2,1)}. Use the embedding

algorithm to construct a boundary walk, we will see there is only one boundary

walk. The boundary walk is as follows

W = (e1,2e2,1)
S2 I.D.−−−−−→ S2.

Therefore, a tree with one edge will embed into the sphere.

Assume the result holds for a tree T with n− 1 edges with rotation system ΠT .

Let G be a tree with n edges and let ΠG be a rotation system of the tree. By

Lemma 5.2, we know that in G there exists at least two vertices with degree 1.

Remove an edge connected to one of the vertices of degree 1, call it ei,j where vertex

j was of degree 1. Then the result will be a graph with two components, an isolated

vertex j and a component G∗ that is a tree with n − 1 edges. The graph G∗ has

an induced rotation system Π
′
, which is found by removing the edges ei,j and ej,i

from the rotation system ΠG. By the inductive hypothesis the rotation system Π
′

for G∗ will result in a single boundary walk, W∗, when the graph is embedded via

the embedding algorithm, and the resulting embedding will be into the sphere. If

we add the deleted edge ei,j back into G∗ we recover the tree G; in the boundary

walk W∗ this corresponds to adding the edges ei,jej,i to obtain a boundary walk W

for the tree G according to the rotation system ΠG. The addition of the edges ei,jej,i

is the same as adding a connected-sum of a sphere to the surface obtained from W∗

and hence the additional edges do not modify the surface in which we could embed
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the tree G. Therefore, by induction, every rotation system for every tree will result

in a single boundary walk and an embedding into the sphere via the embedding

algorithm.

5.1.1 Remarks

As shown in the proof of Theorem 5.1.1, every tree with any rotation system will

produce, using the Embedding Algorithm, a single boundary walk. It follows, by

Theorem 4.4.2, that an embedding of a tree into the sphere is a maximal embedding.

Therefore, every such embedding of a tree will be both maximal and minimal. Fur-

ther, because each rotation system for each tree will only produce a single boundary

walk, we know the embedded tree does not separate the sphere. Also note if a graph

that contains a cycle embeds into the sphere, by the Jordan Curve Theorem [1] it

separates the sphere. The smallest graph that can be embedded into a sphere and

Figure 5.3. A drawing of the complete graph K3 that corresponds to the rotation
system ΠK3 .

separate the surface is the complete graph on three vertices, K3. To see this, let

ΠK3 be a rotation system of the graph given by the following vertex codes:

π1 : (e1,2; e1,3) π2 : (e2,3; e2,1) π3 : (e3,1; e3,2).
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This rotation system corresponds to the drawing of K3 shown in Figure 5.3. The

Embedding Algorithm will produce two boundary walks for the graph with rotation

system ΠK3 .

W1 = (e1,2e2,3e3,1) W2 = (e1,3e3,2e2,1)

Then we can glue the two boundary walks together and apply the sphere identi�ca-

tion code.

W2 ◦W1 = (e1,3e3,2e2,1e1,2e2,3e3,1)
3S2 I.D.−−−−−−→ S2

The corresponding embedding ofK3 with rotation system ΠK3 is shown in Figure

5.4.

Figure 5.4. The surface-separating embedding of K3 into the sphere via the
embedding algorithm.

Again, the resulting embedding of K3 with the embedding algorithm is both

minimal and maximal. However, because the rotation system ΠK3 produced two

boundary walks, we cannot adjust the rotation system, as described in Theorem

4.4.3, to produce a single boundary walk forK3. If we were to switch two consecutive

edges in any vertex code of ΠK3 , we would not change the rotation system because

each vertex has degree 2. Therefore, there is no rotation system embedding of K3

into the sphere such that the graph does not separate the surface.
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5.2 Embedding the Complete Bipartite Graphs K3,n

In this section, we will prove, using the Embedding Algorithm and a speci�c

�standard" rotation system, the types of surfaces into which the complete bipartite

graph K3,n embeds for any n ∈ Z+. We will de�ne the standard rotation system of

K3,n as follows

ΠK3,n = {πI , πi : I = A,B,C and i = 1, . . . , n}.

where

πI = (eI,1; eI,2; . . . ; eI,n) for I = A,B,C and

πi = (ei,C ; ei,B; ei,A) for i = 1, . . . , n.

The standard rotation system ΠK3,n results from the good drawing of K3,n shown

in Figure 5.5.

Figure 5.5. The drawing of K3,n that corresponds to the standard rotation system,
ΠK3,n

In Theorem 5.2.1, the only rotation system considered for K3,n is the standard

rotation system. Recall, the vertex codes in the standard rotation system record

the counter-clockwise cyclic ordering about each vertex.
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Theorem 5.2.1. For k = 1, 2, . . . , given the complete bipartite graph on 3 and n

vertices, where n depends on k as below, with the standard rotation system we have

the following:

(i) For n = 3k, we obtain three boundary walks in the form:

W1 :(e1,CeC,2e2,B . . . e3k−1,BeB,3ke3k,AeA,1)

W2 :(e1,BeB,2e2,A . . . e3k−1,AeA,3ke3k,CeC,1)

W3 :(e1,AeA,2e2,C . . . e3k−1,CeC,3ke3k,BeB,1)

and the graph K3,3k embeds into (3k − 2)T .

(ii) For n = 3k − 1, we obtain one boundary walk in the form:

W : (e1,CeC,2 . . . e3k−2,CeC,3k−1e3k−1,BeB,1e1,AeA,2 . . . e3k−2,A

eA,3k−1e3k−1,CeC,1e1,BeB,2 . . . e3k−2,BeB,3k−1e3k−1,AeA,1)

and the graph K3,3k−1 embeds into (3k − 2)T .

(iii) For n = 3k − 2, we obtain one boundary walk in the form:

W : (e1,CeC,2 . . . e3k−3,AeA,3k−2e3k−2,CeC,1e1,BeB,2 . . . e3k−3,CeC,3k−2

e3k−2,BeB,1e1,AeA,2 . . . e3k−3,BeB,3k−2e3k−2,AeA,1)

and the graph K3,3k−2 embeds into (3k − 3)T .

Proof. The result will follow from induction on k. First let k = 1. For case (i),

n = 3(1) = 3. Consider the graph K3,3 with the standard rotation system, ΠK3,3 =

{πI , πi|I = A,B,C and i = 1, 2, 3} given by the following vertex codes:

πi : (ei,C ; ei,B; ei,A) for i = 1, 2, 3 and

πI : (eI,1; eI,2; eI,3) for I = A,B,C.
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Using the embedding algorithm, we obtain three boundary walks as follows:

W1 : (e1,CeC,2e2,BeB,3e3,AeA,1)

W2 : (e1,BeB,2e2,AeA,3e3,CeC,1)

W3 : (e1,AeA,2e2,CeC,3e3,BeB,1).

We can glue together the three boundary walks to obtain W = W2 ◦ W1 ◦ W3

corresponding to an 18-gon with edges glued together in pairs. Using the compact

surface identi�cation codes, W can be manipulated to construct the surface that

K3,3 embeds into.

W = e1,B︸︷︷︸ eB,2e2,AeA,3e3,CeC,2e2,BeB,3e3,AeA,1e2,CeC,3e3,B eB,1︸︷︷︸
S2 I.D.−−−−−→ eB,2︸︷︷︸ e2,A eA,3︸︷︷︸ e3,CeC,2 e2,B︸︷︷︸ eB,3 e3,A︸︷︷︸ eA,2e2,CeC,3e3,B

T I.D.−−−−−→ e3,CeC,2 e2,AeA,2︸ ︷︷ ︸ e2,CeC,3 e3,BeB,3︸ ︷︷ ︸#T

2S2 I.D.−−−−−−→ e3,C︸︷︷︸ eC,2e2,C︸ ︷︷ ︸ eC,3︸︷︷︸#S2#S2#T

2S2 I.D.−−−−−−→ #S2#S2#S2#S2#T = T

Thus the graph K3,3, with the standard rotation system, embeds into (3− 2)T = T .

Next, consider case (ii) where n = 3(1) − 1 = 2. We are considering the graph

K3,2. The standard rotation system for K3,2 is given by ΠK3,2 = {πI , πi : I =

A,B,C and i = 1, 2}. Where

π1 = (e1,C ; e1,B; e1,A) π2 = (e2,C ; e2,B; e2,A)

πA = (eA,1; eA,2) πB = (eB,1; eB,2) πC = (eC,1; eC,2).

The Embedding Algorithm produces a single corresponding boundary walk,

W(e1,C eC,2︸︷︷︸ e2,BeB,1 e1,A︸︷︷︸ eA,2 e2,C︸︷︷︸ eC,1e1,BeB,2e2,A eA,1︸︷︷︸)
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for ΠK3,2 . Because there is one boundary walk in this case, W = W corresponding

to a 12−gon with edges glued in pairs. The torus and sphere identi�cation codes

applied to W identify the corresponding surface, as follows:

W =(e1,C eC,2︸︷︷︸ e2,BeB,1 e1,A︸︷︷︸ eA,2 e2,C︸︷︷︸ eC,1e1,BeB,2e2,A eA,1︸︷︷︸)
1T I.D.−−−−−→ (e1,AeA,2 e2,BeB,2︸ ︷︷ ︸ e2,AeA,1 e1,CeC,1︸ ︷︷ ︸)#T
2S2 I.D.−−−−−−→ (e1,AeA,2e2,AeA,1)#S2#S2#T

2S2 I.D.−−−−−−→ S2#S2#S2#S2#T = T.

Therefore, K3,2 with the standard rotation system embeds into (2− 1)T = T .

Finally, consider case (iii) where n = 3(1)− 2 = 1. Here, we consider the graph

K3,1. The standard rotation system of K3,1 is given by

ΠK3,1 = {(e1,C ; e1,B; e1,A), (eA,1), (eB,1), (eC,1)}.

The embedding algorithm produces one corresponding boundary walk for ΠK3,1 ,

W = (e1,CeC,1e1,BeB,1e1,AeA,1)

Applying the sphere identi�cation code, we see that K3,1 embeds in the sphere.

W = (e1,CeC,1︸ ︷︷ ︸ e1,BeB,1︸ ︷︷ ︸ e1,AeA,1︸ ︷︷ ︸) 3S2 I.D.−−−−−−→ S2.

Therefore, K3,1 with the standard rotation system embeds into (1− 1)T = S2.

Now suppose the result holds for k = 1, 2, . . . ,m. We prove that the result holds

for k = m+ 1. First, consider case (i). So n = 3(m+ 1), and we are considering the

graph K3,3(m+1). It is necessary to show that we obtain 3 boundary walks from the

Embedding Algorithm and that K3,3m+3 embeds into ((3m+ 3)− 2)T = (3m+ 1)T .

The Embedding Algorithm results in the following boundary walks:

W1 : (e1,CeC,2e2,B . . . e3m−1,BeB,3me3m,AeA,3m+1e3m+1,C

eC,3m+2e3m+2,BeB,3m+3e3m+3,AeA,1)
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W2 : (e1,BeB,2e2,A . . . e3m−1,AeA,3me3m,CeC,3m+1e3m+1,B

eB,3m+2e3m+2,AeA,3m+3e3m+3,CeC,1)

W3 : (e1,AeA,2e2,C . . . e3m−1,CeC,3me3m,BeB,3m+1e3m+1,A

eA,3m+2e3m+2,CeC,3m+3e3m+3,BeB,1)

Next, we will glue together the three boundary walks such that W3m+3 =W3 ◦W2 ◦

W1. We apply the sphere and torus identi�cation codes, along with the induction

hypothesis, to identify the surface into which K3,3(m+1) embeds in this case.

W3m+3 = ( e1,A︸︷︷︸ eA,2e2,C . . . e3m−1,CeC,3me3m,BeB,3m+1e3m+1,AeA,3m+2e3m+2,C

eC,3m+3e3m+3,BeB,2e2,A . . . e3m−1,AeA,3me3m,CeC,3m+1e3m+1,BeB,3m+2

e3m+2,AeA,3m+3e3m+3,CeC,2e2,B . . . e3m−1,BeB,3me3m,AeA,3m+1

e3m+1,CeC,3m+2e3m+2,BeB,3m+3e3m+3,A eA,1︸︷︷︸)
1S2 I.D.−−−−−−→ (eA,2e2,C . . . e3m−1,CeC,3me3m,B eB,3m+1︸ ︷︷ ︸ e3m+1,A eA,3m+2︸ ︷︷ ︸ e3m+2,CeC,3m+3

e3m+3,BeB,2e2,A . . . e3m−1,AeA,3me3m,CeC,3m+1 e3m+1,B︸ ︷︷ ︸ eB,3m+2 e3m+2,A︸ ︷︷ ︸
eA,3m+3e3m+3,CeC,2e2,B . . . e3m−1,BeB,3me3m,AeA,3m+1e3m+1,C

eC,3m+2e3m+2,BeB,3m+3e3m+3,A)#S2

1T I.D.−−−−−→ (e3m+2,C eC,3m+3︸ ︷︷ ︸ e3m+3,BeB,2e2,A . . . e3m−1,AeA,3me3m,C eC,3m+1︸ ︷︷ ︸ e3m+1,A

eA,3m+3 e3m+3,C︸ ︷︷ ︸ eC,2e2,B . . . e3m−1,BeB,3me3m,AeA,3m+1 e3m+1,C︸ ︷︷ ︸ eC,3m+2

e3m+2,BeB,3m+3e3m+3,AeA,2e2,C . . . e3m−1,CeC,3me3m,BeB,3m+2)#T#S2

1T I.D.−−−−−→ (e3m+1,A eA,3m+3︸ ︷︷ ︸ e3m+3,BeB,2e2,AeA,3 . . . e3m−1,AeA,3me3m,C eC,3m+2︸ ︷︷ ︸
e3m+2,BeB,3m+3 e3m+3,A︸ ︷︷ ︸ eA,2e2,C . . . e3m−1,CeC,3me3m,BeB,3m+2 e3m+2,C︸ ︷︷ ︸
eC,2e2,B . . . e3m−1,BeB,3me3m,AeA,3m+1)#T#T#S2
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1T I.D.−−−−−→ ( e3m+2,B︸ ︷︷ ︸ eB,3m+3e3m+3,B︸ ︷︷ ︸ eB,2e2,AeA,3 . . . e3m−1,AeA,3me3m,CeC,2

e2,B . . . e3m−1,BeB,3me3m,A eA,3m+1e3m+1,A︸ ︷︷ ︸ eA,2e2,C . . . e3m−1,C

eC,3me3m,B eB,3m+2︸ ︷︷ ︸)#T#T#T#S2

3S2 I.D.−−−−−−→ (eB,2e2,AeA,3 . . . e3m−1,AeA,3me3m,CeC,2e2,B . . . e3m−1,BeB,3m

e3m,AeA,2e2,C . . . e3m−1,CeC,3me3m,B)#(3T )#(4S2)

Notice, the edges remaining to be identi�ed in W3m+3 correspond to the edges in the

boundary walks produced by the Embedding Algorithm for the graph K3,3m. Thus

by the inductive hypothesis we have the following:

W3m+3 =W3m#T#T#T = (3m− 2)T#(3T ) = (3m+ 1)T

Therefore, with the standard rotation system we obtain 3 boundary walks, and the

graph K3,3m+3 embeds into (3m+ 3− 2)T = (3m+ 1)T , as needed.

Next, consider case (ii), where n = 3(m+1)−1 = 3m+2 and we are considering

the graph K3,3(m+1)−1 with the standard rotation system. Here, it is necessary to

show that the Embedding Algorithm produces one boundary walk, W , and that

K3,3m+2 will embed into (3m + 1)T . It is not di�cult to see that the embedding

algorithm results in one boundary walk. We denote it by W3m+2 and present it

below. Also, to W3m+2 we apply the torus and sphere identi�cation codes and the

induction hypothesis to show that W3m+2 = W3m−1#3T .

W3m+2 = (e1,CeC,2 . . . e3m−2,CeC,3m−1e3m−1,B eB,3m︸ ︷︷ ︸ e3m,A︸ ︷︷ ︸ eA,3m+1e3m+1,CeC,3m+2

e3m+2,BeB,1e1,AeA,2 . . . e3m−2,AeA,3m−1e3m−1,CeC,3m e3m,B︸ ︷︷ ︸ eB,3m+1

e3m+1,AeA,3m+2e3m+2,CeC,1e1,BeB,2 . . . e3m−2,BeB,3m−1e3m−1,A eA,3m︸ ︷︷ ︸
e3m,CeC,3m+1e3m+1,BeB,3m+2e3m+2,AeA,1)

92



1T I.D.−−−−−→ ( eA,3m+1︸ ︷︷ ︸ e3m+1,CeC,3m+2e3m+2,BeB,1e1,AeA,2 . . . e3m−2,AeA,3m−1e3m−1,C

eC,3me3m,C︸ ︷︷ ︸ eC,3m+1e3m+1,BeB,3m+2 e3m+2,A︸ ︷︷ ︸ eA,1e1,CeC,2 . . . e3m−2,C

eC,3m−1e3m−1,BeB,3m+1 e3m+1,A︸ ︷︷ ︸ eA,3m+2︸ ︷︷ ︸ e3m+2,CeC,1e1,BeB,2 . . . e3m−2,B

eB,3m−1e3m−1,A)#T

1S2&1T I.D.−−−−−−−−−→ (eA,1e1,CeC,2 . . . e3m−2,CeC,3m−1e3m−1,B eB,3m+1︸ ︷︷ ︸ e3m+1,CeC,3m+2 e3m+2,B︸ ︷︷ ︸
eB,1e1,AeA,2 . . . e3m−2,AeA,3m−1e3m−1,CeC,3m+1 e3m+1,B︸ ︷︷ ︸ eB,3m+2︸ ︷︷ ︸
e3m+2,CeC,1e1,BeB,2 . . . e3m−2,BeB,3m−1e3m−1,A)#T#T#S2

1T I.D.−−−−−→ (eB,1e1,AeA,2 . . . e3m−2,AeA,3m−1e3m−1,C eC,3m+1e3m+1,C︸ ︷︷ ︸
eC,3m+2e3m+2,C︸ ︷︷ ︸ eC,1e1,BeB,2 . . . e3m−2,BeB,3m−1e3m−1,A)#T#T#T#S2

2S2 I.D.−−−−−−→ (eB,1e1,AeA,2 . . . e3m−2,AeA,3m−1e3m−1,CeC,1

e1,BeB,2 . . . e3m−2,BeB,3m−1e3m−1,A)#T#T#T#3S2

As before, the edges that remain to be identi�ed together correspond to the edges

in the boundary walk for the graph K3,3m−1 which identify to (3m − 2)T by the

inductive hypothesis. Therefore we have the following:

W3m+2 = W3m−1#(3T )#(3S2) = (3m− 2)T#(3T ) = (3m+ 1)T.

Finally, consider case (iii). Here, n = 3(m + 1) − 2 = 3m + 1 and the graph

K3,3(m+1)−2 with the standard rotation system is considered. The Embedding Al-

gorithm will produce a single boundary walk, denoted W3m+1. We show, using the

Emedding Algorithm and compact surface identi�cation codes, that W3m+1 identi�es
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to (3(m+ 1)− 3)T .

W3m+1 = (e1,CeC,2e2,B . . . e3m−3,AeA,3m−2e3m−2,C eC,3m−1︸ ︷︷ ︸ e3m−1,BeB,3me3m,A

eA,3m+1e3m+1,CeC,1e1,B . . . e3m−3,CeC,3m−2e3m−2,BeB,3m−1e3m−1,AeA,3me3m,C

eC,3m+1 e3m+1,B︸ ︷︷ ︸ eB,1e1,AeA,2 . . . e3m−3,BeB,3m−2e3m−2,AeA,3m−1 e3m−1,C︸ ︷︷ ︸
eC,3me3m,B eB,3m+1︸ ︷︷ ︸ e3m+1,AeA,1)

1T I.D.−−−−−→ (eB,1e1,AeA,2 . . . e3m−3,BeB,3m−2e3m−2,A eA,3m−1︸ ︷︷ ︸ e3m−1,B eB,3m︸ ︷︷ ︸ e3m,A

eA,3m+1e3m+1,CeC,1e1,B . . . e3m−3,CeC,3m−2e3m−2,BeB,3m−1 e3m−1,A︸ ︷︷ ︸ eA,3me3m,C

eC,3m+1e3m+1,AeA,1e1,CeC,2e2,B . . . e3m−3,AeA,3m−2e3m−2,CeC,3me3m,B)#T

1T I.D.−−−−−→ (e3m,AeA,3m+1 e3m+1,C︸ ︷︷ ︸ eC,1e1,B . . . e3m−3,CeC,3m−2e3m−2,B eB,3m−1e3m−1,B︸ ︷︷ ︸
eB,1e1,AeA,2 . . . e3m−3,BeB,3m−2e3m−2,AeA,3m e3m,C︸ ︷︷ ︸ eC,3m+1︸ ︷︷ ︸ e3m+1,A

eA,1e1,CeC,2e2,B . . . e3m−3,AeA,3m−2e3m−2,C eC,3m︸ ︷︷ ︸)#T#T

1S2&1T I.D.−−−−−−−−−→ (eC,1e1,BeB,2 . . . e3m−3,CeC,3m−2e3m−2,BeB,1e1,AeA,2 . . . e3m−3,BeB,3m−2

e3m−2,A eA,3me3m,A︸ ︷︷ ︸ eA,3m+1e3m+1,A︸ ︷︷ ︸ eA,1e1,CeC,2

e2,B . . . e3m−3,AeA,3m−2e3m−2,C)#T#T#T#S2

2S2 I.D.−−−−−−→ (eC,1e1,BeB,2 . . . e3m−3,CeC,3m−2e3m−2,BeB,1e1,AeA,2 . . . e3m−3,B

eB,3m−2e3m−2,AeA,1e1,CeC,2e2,B . . . e3m−3,A

eA,3m−2e3m−2,C)#T#T#T#S2#S2#S2

Once again, W3m+1 has been reduced to the connected-sum of tori, spheres, and

the collection of pairs of edges that correspond to the edges in the boundary walk

K3,3m−2. By the inductive hypothesis, we know that the remaining edges identify to

a connected-sum of 3m−3 tori. Thus, W3m+1 = W3m−2#(3T ) = (3m−3)T#(3T ) =

3T , as needed.
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5.2.1 Remarks

As shown in the proof of Theorem 5.2.1, the surface in which K3,n, with the

standard rotation system, can be embedded depends on whether 3 divides n. In the

case where 3 - n, the Embedding Algorithm only produces a single boundary walk

for ΠK3,n . By Theorem 4.4.2 we know that the embedding of K3,n is maximal and

K3,n does not separate the surface. However, in the case where 3|n, we see that

the Embedding Algorithm produces three boundary walks for ΠK3,n and hence the

resulting embedding is not maximal.

We can adjust the standard rotation system of K3,n, via the methods described

in the proof of Theorem 4.4.3, to obtain all embeddings between the minimal and

maximal embeddings of the graph K3,n. De�ne a new rotation system, denoted

Π∗K3,n
, obtained from the standard rotation system by switching two consecutive

edges in the vertex code πA and having all other vertex codes remain the same. The

new rotation system is given by the following vertex codes:

πA : (eA,2; eA,1; eA,3; . . . ; eA,n) πB : (eB,1; eB,2; . . . ; eB,n) πC : (eC,1; eC,2; . . . ; eC,n)

πi : (ei,C ; ei,B; ei,A) where i = 1, . . . , n.

In the case where 3|n the rotation system Π∗K3,n
, using the Embedding Algorithm,

will construct one boundary walk.

W = (eA,2e2,CeC,3e3,B · · · eC,nen,BeB,1e1,AeA,3e3,C · · · eB,n

en,CeC,1e1,BeB,2e2,AeA,1e1,Ce2,BeB,3 · · · eB,nen,A)

In fact, the embedding of K3,n with rotation system Π∗K3,n
when 3|n will always

be a maximal embedding. To see this, recall that equality held in Theorem 4.4.2

when the embedding algorithm produced one boundary walk. Using the genus of an

embedding, g(Π) = 1− 1
2
(χ(Π)), we can determine which surface K3,n embeds into.

Here K3,n has 3 + n vertices, 3n edges, and 1 boundary walk. Thus, g(Π∗K3,n
) =
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1 − 1
2
((3 + n) − 3n + 1) = n − 1. Therefore, when 3|n, the maximal surface into

which K3,n embeds is a connected-sum of n− 1 tori.

Alternatively, we can apply the new rotation system Π∗K3,n
to the graphK3,n when

3 - n. In this case, the graph K3,n with the standard rotation system embedded into

a surface homeomorphic to a connected-sum of n− 1 tori and this was the maximal

embedding of the graph. In the case where 3|(n−1), we will see that K3,n with Π∗K3,n

will embed into a surface that is between the minimal and maximal embeddings.

To see this, we must �rst construct boundary walks that correspond to the new

rotation system. In this case, K3,n will have 3 boundary walks, as shown below.

W1 :(eA,2e2,C2C,3e3,BeB,4 · · · eB,nen,A)

W2 :(eC,1e1,BeB,2e2,AeA,1e1,CeC,2e2,B · · · eA,nen,C)

W3 :(eB,1e1,AeA,3e3,CeC,4 · · · eC,nen,B)

Using the genus of an embedding, we can calculate the surface into which we can

embed the graph K3,n with rotation system Π∗K3,n
when 3|(n− 1). Thus, g(Π∗K3,n

) =

1− 1
2
((3 + n)− 3n+ 3) = n− 2. Therefore, in this case the surface into which K3,n

can be embedded is homeomorphic to a connected-sum of n− 2 tori.

Interestingly, in the case where 3|(n + 1), the rotation system Π∗K3,n
does not

change the number of boundary walks produced via the Embedding Algorithm. So,

here the graphK3,n will still embed into a connected-sum of n−1 tori. In both cases,

if we were to �nd the minimal surface via changing the rotation system, we would

have to switch another pair of consecutive edges in Π∗K3,n
to continue the search.

5.3 Future Work

The proof of Theorem 5.2.1 brought to light many interesting characteristics

of the complete bipartite graph embedded with the standard rotation system. For
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instance, if 3 divides n, then ΠK3,n produces three boundary walks using the embed-

ding algorithm. Similarly, if 3 does not divide n, then ΠK3,n produces one boundary

walk. To see if this pattern continues with the complete bipartite graph Kp,n, where

p is a prime, the graphs K5,n and K7,n are considered.

K5,n

n
Number of
Boundary
Walks

Surface

1 1 S2

2 1 2T
3 1 4T
4 1 6T
5 5 6T
6 1 10T
7 1 12T
8 1 14T
9 1 16T
10 5 16T

Table 5.1. Investigating embedding K5,n with the standard rotation system.

Applying the Embedding Algorithm to the graphK5,n with the standard rotation

system, we see that this boundary walk pattern continues. Particularly, for the

cases explored, when 5 divides n there are 5 associated boundary walks and when

5 does not divide n there is one boundary walk for K5,n. The resulting embedding

surfaces are identi�ed using the compact surface identi�cation codes. To continue

the exploration into Kp,n with the standard rotation system, the complete bipartite

graph K7,n is investigated (see Table 5.2)

As expected, in the cases explored of K7,n, we see that when 7 divides n the

Embedding Algorithm produces 7 boundary walks and that when 7 does not divide

n there is one boundary walk. Thus, the following conjecture is made given the

patterns observed in the cases of K3,n, K5,n, and K7,n with the standard rotation

system.
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K7,n

n
Number of
Boundary
Walks

Surface

1 1 S2

2 1 3T
3 1 6T
4 1 9T
5 1 12T
6 1 15T
7 7 15T
8 1 21T

Table 5.2. Investigating embedding K7,n with the standard rotation system.

Conjecture 5.3.1. Let p be a positive prime and n any positive integer. The

complete bipartite graph Kp,n with the standard rotation system will embed into

1
2
(2− 2p− n+ pn) tori if p|n or into 1

2
(1− p− n+ pn) tori if p - n.

K4,n

n
Number of
Boundary
Walks

Surface

1 1 S2

2 2 T
3 1 3T
4 4 3T
5 1 6T
6 2 7T
7 1 9T
8 4 9T
9 1 12T
10 2 13T
11 1 15T
12 4 15T

Table 5.3. Investigating embedding K4,n with the standard rotation system.

Next, the graph K4,n with the standard rotation system is explored in e�orts to

investigate the relationship between the number of boundary walks associated with

Km,n in the standard rotation system and gcd(m,n) (see Table 5.3).
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As shown in Table 5.3, in the cases considered, we see that when gcd(4, n) = 4 the

Embedding Algorithm produces 4 boundary walks. Similarly, when gcd(4, n) = 2

there are 2 associated boundary walks and when gcd(4, n) = 1 there is 1 associated

boundary walk for the graph K4,n. Clearly, for the complete bipartite graph Km,n

with the standard rotation system the number of boundary walks produced by the

embedding algorithm is closely related to gcd(m,n).

Conjecture 5.3.2. Let m and n be any positive integers, then via the Embedding

Algorithm Km,n with standard rotation system will result in gcd(m,n) boundary

walks.

In future work, the Kp,n conjecture may be proved similar to the proof of The-

orem 5.2.1. The Km,n boundary walk conjecture may be a result of having each

vertex code of the vertices in Vm having the same cyclic permutation of the edges;

likewise for the vertex codes of the vertices in Vn.
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