
Chapter 2

DIELECTRIC PERMITTIVITY AND CONDUCTIVITY

2.1 Dielectric Permittivity and Conductivity Extraction Method

2.1.1 Complex Permittivity and Losses

The dielectric extraction process in this work considers the effect of the dielectric

permittivity as well as polarization and conductivity losses because of the expected

increase in losses at high temperatures [345, 351, 352]. The polarization and conduc-

tivity losses are both temperature dependent and are material dependent so for any

particular crystal being investigated it is difficult to determine a priori at which

temperatures these losses would become significant. For some insulators the losses

are not significant below a few hundred degrees Celsius, but for others the losses are

relevant at room temperature [345, 352]. For a complete study of a new crystal, it is

better to consider both forms of loss relevant to the measurement of the real dielectric

permittivity.

Prior studies of LGT conductivity indicate that the conductive losses do increase

with temperature [42, 162, 219, 221, 279, 280] and should be included in the dielectric

extraction above around 350 ◦C [279]. The LGT and LGS polarization losses are

typically not separated from the conductivity losses [178, 279], so it was not known

before hand if the polarization of LGT would be measurable. For the measurement

process in this work, described in the following sections, the consideration of both

the polarization losses and conductivity required no modification of the measurement

equipment and are included in the modeling and constant extraction, described in

Section 2.1.2.

The electrical losses from conductivity and polarization originate from different

physical phenomena. Conductivity losses are caused by energy lost to the flow of

mobile charge carriers, such as electrons, holes, and ions. The imaginary component
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coated with a ground plane and the top side has a round electrode, as shown in Fig.

2.1. The radius of the top electrode, r, was increased in subsequent fabrications on

the same sample, allowing multiple measurements with decreasing ratios of thickness

to radius, h/r. A curve can be fit to the data and the permittivity data extrapolated

to h/r = 0, thus removing the fringing effect.

The total measured capacitance, Cmeas of a circular parallel-plate capacitor is [110,

357]

Cmeas =
ǫ′Rǫ0πr

2

h
+ 2πrα′ (2.8)

where α′ is the electric field fringing parameter for the real permittivity and has units

F m−1.

A measured permittivity, ǫ′meas, is defined to be directly calculated from the

capacitance by

Cmeas =
ǫ′measǫ0πr

2

h
(2.9)

where ǫ′meas is the true relative permittivity plus the fringing effect, given by

ǫ′meas = ǫ′R +
2α′

ǫ0

(
h

r

)
. (2.10)

The dielectric losses are also affected by the fringing of the electric field which

increases the effective area of the capacitor. The measured imaginary permittivity,

ǫ′′meas, is extracted from the admittance in (2.5) and given by

ǫ′′meas = ǫ′′R +
2α′′

ǫ0

(
h

r

)
, (2.11)

where α′′ is the fringing parameter for the imaginary permittivity.

The electrical current is be increased by the fringing electric field and the measured

conductivity is

σmeas = σ + 2ασ

(
h

r

)
. (2.12)

where ασ is the fringing parameter for the conductivity.
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doesn’t need to be scaled because the density is only used in the scalar calculation of

the frequencies from the eigenvalues, as shown in (3.25).

The condition number of a matrix is used to quantify the sensitivity of the matrix

to small errors in the elements and thus the accuracy of the calculations using the

matrix, where the condition number is equal to or greater than 1 and the lower the

number the better conditioned and more stable the matrix is [396]. The sensitivity

of the eigenvalues to errors in the eigenmatrix is given by the condition number of

the matrix of eigenvectors, not the condition of the matrix being solved [397]. In

the LGT RUS calculations the eigenvector matrices of each orthogonal mode group

had a condition number of 1, indicating a well-conditioned eigenvalue problem. The

uncertainty in the extracted constants is estimated using the curvature of the fitting

function and is discussed in Section 3.3.3.

3.3 RUS Experimental Process

The RUS measurement process is used to calculate the elastic and piezoelectric

constants from a LGT crystal sample heated in a furnace, the process is described in

the following sections and in [328, 330, 331]. The first step in the experimental process

is the fabrication of a rectangular parallelepiped crystal sample. Then the sample is

heated in a custom furnace that allows for the access of the acoustic resonance by

high-temperature capable buffer rods connected to the RUS transducers outside the

furnace. The resonance frequencies are determined from the RUS spectrum and used

in the minimization calculations to extract the elastic and piezoelectric constants of

the crystal at the measurement temperature.

3.3.1 RUS Sample Preparation

Six LGT parallelepiped samples were fabricated at the University of Maine

(UMaine) Microwave Acoustic Material Laboratory from a boule purchased from
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The Jacobian matrix, which is derived in Appendix C.6, is used by the lsqnonlin

function to determine how modifying the optimized parameters will change the error

between the calculated and measured frequencies. The (m,n) element of the Jacobian

matrix is partial derivative of the mth resonant frequency with respect to the nth opti-

mized parameter, which are the elastic and piezoelectric constants. The minimization

program uses the Jacobian to find an improved constants set to reduce the difference

between the measured and calculated resonance frequencies.

The acoustic constants fit to the measurements in this work could be either

the elastic constants only or both the elastic and piezoelectric constants together.

The non-fit constants are the sample dimensions, dielectric constants, and thermal

expansion, which are included as fixed values in the minimization process along with

their respective measurement uncertainties.

The piezoelectric RUS calculations require dielectric permittivity at constant

strain, ǫS, as discussed in Section 3.2, but the capacitor measurements in Chap-

ter 2 resulted in the the permittivity for constant stress, ǫT . The RUS process in this

work was extended from the process described in the literature [316, 318] to calculate

ǫS at each step in the minimization process utilizing ǫT and the trial set of elastic and

piezoelectric constants with (2.6). The extracted elastic constants from RUS are the

constant electric field constants, cE.

Consideration of the electrical losses, represented by σ and ǫ′′, in the dielectric

extraction discussed in Chapter 2 was fundamental to extract the proper value of

the real part of the permittivity, ǫ′. For the RUS elastic and piezoelectric extraction

performed in this section only ǫ′ was used, since the losses due to σ, ǫ′′, and viscoelas-

tic losses are not of first-order importance to the behavior of the resonance modes

analyzed [398], would add significant complexity to the data extraction [323, 399]

and a careful analysis of the relative importance of the losses mechanisms for device

performance in such environment is beyond the scope of this work.
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In the minimization process, the elastic constants were only constrained to be

positive, as required for positive energy density [297] but are otherwise allowed to

vary freely to achieve the best fit of measured and calculated modes. The sign of the

piezoelectric constants are not set by the energy requirements [297] but the convention

from the 1949 Standards on Piezoelectric Crystals [400] is followed, which specifies

that for right-handed class 32 crystals e11 is negative and e14 is positive.

The root-mean-square of the residual error (RMSE) of (3.27) is used to judge

the quality of the best-fit set of constants determined by the minimization. The

RSME allows comparison of the quality of fit for different sets of resonant frequen-

cies. From experience with room-temperature LGT spectra fitting in this work, it

was found that good quality fits, with results similar to reported room-temperature

LGT constants [236], typically have RSME less than 2× 10−3, agreeing with the

suggested RSME from [316]. When some of the calculated and measured modes

were mismatched in this work, the minimization was found to take more iterations

to converge and the RSME was found be around 5× 10−3 to 1× 10−2, thus a fitting

with RSME > 5× 10−3 was investigated for incorrect mode identification.

Uncertainty in the extracted constants is estimated using the curvature of the

objective function (3.27) at the best fit solution. As recommended in [316], the error

in each of the fit constants is calculated as the variation of the constant that produces a

2% change in F using the process described next. Thus constants that have a strong

effect on the objective function have a steeper curvature and less error, where as

constants that only weakly affect F have lower curvature and increased uncertainty.

The uncertainty covariance matrix for the RUS minimization problem is 1/(2G),

where G is calculated from the Jacobian matrix, J , by [316, 368]

G = (J ′J)
−1
. (3.28)

102



The eigenvalues, σ2
µ, and eigenvectors, ŷµ of the covariance matrix are the principal

axes of curvature and are found by

Gŷ = 2σ2ŷ. (3.29)

The variation of parameter pµ in the ŷµ direction is

δpµ = δ~pµ · ŷµ = σµ
√
2δF (3.30)

where δF = 0.02F is the allowed change in the objective function residual. The

uncertainty in a particular parameter is the combined variation along each principal

axis,

Upα =

√∑

µ

δpµ
2. (3.31)

According to Migliori and Sarrao [316], a good quality fit with RMSE below

2× 10−3 also has predicted uncertainty in the elastic constants between 0.1% and

3%, where only non-piezoelectric materials were considered. In this work, for LGT

fitting at room temperature with RSME ≤ 2× 10−3 the elastic constants typically

had less than 1.5% uncertainty and the piezoelectric constants e11 and e14 had around

7% and 20% relative uncertainty, respectively, reflecting their reduced effect on the

resonance spectra compared to the elastic constants.

In the literature [316], the calculated and measured modes are typically matched

and compared only by looking at the mode order; however, this method will confuse

modes that are close in frequency to each other and may switch order during the fitting

process as new sets of constants are tried, creating a mode mismatch that cannot be

corrected by the user. In this work, mode identification utilizes group theory and

matches modes based on the order within group. By including the mode groups, the

mode switching is much less common because the modes are spaced further apart.

This reduces the sensitivity of the fit constants to the start values. The inclusion

of group identification is very important to the extraction of constants at elevated
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(i) = Ωpp′ =

(1) e11G11 − 2e11G22 − e14G32

(2) e14G31 − e11G21 − 2e11G12

(3) e14G21 − e14G12

(C.39)

Λpp′ = ǫ11G11 + ǫ22G22 + ǫ33G33 (C.40)

C.3 Group Theory for Resonant Modes

Group theory has been applied to RUS to separate the eigenvalue problem into

separate orthogonal problems by using the symmetry of the crystal sample [316, 318,

319, 377–380, 395]. When the RUS sample shape and crystal lattice have common

symmetries the basis functions can be grouped into smaller orthogonal sets. This

splits the eigenvalue problem into separate smaller matrices and reduces calculation

time because the computational cost scales with the cube of the matrix rank [316,

318, 319, 377–380, 395]. The separate matrices are solved independently to determine

the resonant modes that belong to the particular mode group and are combined to

determine the resonant modes of the RUS sample.

For a rectangular parallelepiped fabricated from a class 32 crystal, such as LGT,

the basis functions and resultant vibration modes can be divided into four groups

when the sample faces are aligned along the crystalline axes [318, 319, 379], as was

the case in this work discussed in Section 3.2. The mode groups are denoted Ag,

Bg, Au, and Bu by [379] and are separated by the symmetry operations of the

displacements and electric potential. In this work, the groups are simply labeled

by number, 1 through 4, for the groups Ag, Bg, Au, and Bu. When using Legendre

polynomial basis functions, defined in (3.11), the groups are found using the symmetry

or antisymmetry about the origin of the function, which are given by the parity of

the Legendre polynomial degree in Table C.2, after [318, Table 1].
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Mode Group Displacement Electric potential

u1 u2 u3 φ

α β + γ α β + γ α β + γ α β + γ

1 Ag O E E O E O O E

2 Bg E O O E O E E O

3 Au E E O O O O E E

4 Bu O O E E E E O O

Table C.2. Mode grouping of the Legendre polynomial basis functions. Given by the
polynomial degrees (α, β, and γ) parity with E=even, O=odd. After [318, Table 1]

The basis functions are sorted by into four groups according to Table C.2 and

used separately to define independent elastic, piezoelectric, and dielectric interaction

matrices ((3.15), (3.16), and (3.17)), which are used to define independent eigenvalues

problems. The problems are solved separately and the resultant resonant frequencies

are combined to form the spectra.

C.4 RUS Sample Fabrication Process

The RUS sample fabrication overviewed in Section 3.3.1 is discussed with further

detail in this section. The UMaine LGT samples were aligned with a PANalytical

X’Pert Pro MRD X-ray diffractometer (PANalytical Inc., Natick, Corp., Waltham,

MA) and cut with an inner diameter saw (Meyer-Berger, Steffisberg, Switzerland) to

nominal dimensions of (2.9mm, 12.6mm, 18.6mm). The process starts by epoxying

the crystal boule to the chuck on the saw and manually aligning the cut to the

faces of the boules, which correspond to the crystal axes. A thin crystal wafer is

cut and the orientation is determined by XRD. The misalignment from the desired

orientation is precisely determined and corrected on the inner diameter saw, which

has two degrees of freedom to correct rotation without removing the samples from

the chuck [237, 408, 409]. Once the orientation is corrected, new cuts are made to

define one side of the parallelepiped and the process is repeated until all sides of the
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The term a
t (ρω2I − (Γ + ΩΛ−1Ωt)) is the left-eigenvector equation so is equal to zero

and the terms on the right-hand side of (C.43) can be equated.

ρ
∂ω2

∂xn
=
∂ (Γ + ΩΛ−1Ωt)

∂xn
a

8π2ρf
∂f

∂xn
=
∂ (Γ + ΩΛ−1Ωt)

∂xn
a

(C.45)

Thus the derivative of the mth resonant frequency is

∂fm
∂xn

=
1

8π2ρf
am

t

(
∂Γ

∂xn
+
∂Ω

∂xn
Λ−1Ωt + Ω

∂Λ−1

∂xn
Ωt + ΩΛ−1 ∂Ω

∂xn

t)
am. (C.46)

The derivative of Λ−1 is found using

Λ−1Λ = I

∂Λ−1

∂xn
Λ + Λ−1 ∂Λ

∂xn
=

∂I

∂xn
= 0 (C.47)

∂Λ−1

∂xn
= −Λ−1 ∂Λ

∂xn
Λ−1.

Recall that ǫS is in general a function of ǫT , c, and e, as shown in (2.6).

Combining the above, interaction matrices and their derivatives given in (C.38),

(C.39),and (C.40) for class 32 crystals can be easily used to calculate the derivative

of each frequency with respect to each acoustic parameter by

∂fm
∂xn

=
1

8π2ρf
a
t

m

(
∂Γ

∂xn
+
∂Ω

∂xn
Λ−1Ωt − ΩΛ−1 ∂Λ

∂xn
Λ−1Ωt + ΩΛ−1 ∂Ω

∂xn

t)
am. (C.48)
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