








diffusion) is above a threshold value. This supports the theory that filaments are formed 

during sublimation and are not frozen ice veins (Baker and Cullen, 2008). 

Figure 3.10. Filament around soluble impurity at facet peak from 07-4 at 11.3 m. 

While the formation of filaments requires the presence of salts, the formation of 

filament tufts or tangles (TAN) is positively associated with the presence of dust species 

(Al, Si). One possible explanation for this association is that the tuft or tangle-like 

morphology is only possible if there is a dust particulate nucleus for the filament (formed 

from salt) to tangle around. Cullen (2000) showed SEM images of a diamond shaped 

inclusion (consisting of Mg and S) both before and after a nearby filament (also 

consisting of Mg and S) became wrapped around it. Although no such progression was 

captured in the study described in this paper, it provides a likely analog. Cullen (2000) 

also reported that the grain boundary filaments in the Byrd core versus those in the 
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GISP2 core were compositionally different, containing primarily Mg and S versus Na and 

CI, respectively. Both cores had similar physical appearance, soluble lattice 

(intragranular) chemistry, and soluble impurity levels as determined by ion 

chromatography (IC), thus Cullen (2000) attributed the differences in filament chemistry 

to either the presence of non-ionic dust species (e.g. Al and Si) or to unknown 

environmental differences at the core sites. Filaments (FIL) observed in this study 

unilaterally contained CI, while filament tufts unilaterally contained Si, but also 

commonly contained CI. These chemical characterizations in conjunction with Cullen's 

(2000) photos indicate that filaments may be attracted to nearby particulates thereby 

forming filament tufts. 

Bright white spots (BWS) are the most prevalent impurity type and previous 

research has shown that the BWS in a sample allowed to sublimate for a greater length 

of time becomes both larger and more numerous in accordance with the theory of 

concentration via localized surface diffusion (Cullen and Baker, 2001). An association 

between BSW and any particular element or combination of elements was not observed 

in this study. This lack of association may be due to incorrect categorization as a result 

of the limited sublimation time in the SEM chamber. It is possible that some impurities 

placed in this category were insoluble particulates (INC) that had not been fully exposed 

by sublimation, thus only appeared as bright white spots (BWS). Both dust elements (Al, 

Si) and marine components (CI, S) have been reported in bright white spots (Cullen and 

Baker, 2001; Barnes and others, 2002a,b; Baker and Cullen, 2003; Obbard and others, 

2003; Baker and others, 2005). Rempel and others (2001) found that dust particles may 

be coated with a liquid film in association with interfacial premelting. If the dust 
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particles are associated with soluble impurities, this phenomenon could also explain the 

lack of association between BWS and any particular set of elements. 

Triple junctions (TJ) have a negative association with continental/dust species 

(Ca, Al, Si) in two cores and are negatively associated with Ca and S in a third. One 

possible explanation for this opposing relationship is that dust particles may not move 

into triple junctions. However, previous research has shown that soluble impurities 

within ice grains will be swept into grain boundaries as they migrate, particularly during 

recrystallization (Glen and others, 1977, Iliescu and Baker, 2008). A shear strain of 

-1.15 was imparted upon the samples used in Iliescu and Baker (2008), whereas the 

samples used in this study were collected from a shallow part of the ice sheet and have 

very little accumulated strain history. The strain induced grain boundary migration in 

Iliescu and Baker (2008) is therefore unlikely to be consistent with the strain experienced 

by the samples used in this study. The lack of accumulated strain history in this study's 

samples means less grain boundary migration and therefore fewer opportunities for 

continental/dust species to be swept into the boundaries. These differences in strain 

history may explain why the relationship seen here is in opposition with the relationship 

previously reported. 

Very few triple junctions (TJ) were analyzed in core 07-4 and therefore no 

association with dust species could be determined, however evidence of the influence of 

dust species on grain size was found by other means. Although the impurities analyzed 

in core 07-4 had the lowest concentrations of contintental/dust species (Fig. 3.5) the 

sampling frequency of continental/dust species (i.e., Si and Al,—Fig. 3.6) was higher 

than in any other core. Core 07-4 has the smallest overall grain size, given the high 
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continental/dust sampling frequency; it is possible that decreased grain size is a result of 

increased dust loading. Dust content and porosity are positively related while grain size 

and porosity are negatively related, indicating that in these cores, grain size is partially 

controlled by dust content. However, there are also several alternate explanations for the 

decreased grain size at site 07-4, including mean annual temperature, therefore, the 

relationship between grain size and dust content may be from a combination of factors or 

coincidental. 

There were no apparent associations between any elements or combination of 

elements and INC (large inclusions), ICE (background) and GB (grain boundaries). Very 

few impurities were identified as INC and some INC may have been identified as BWS 

as discussed above, possibly explaining the lack of association between the 

characteristics examined and this impurity type. Grain boundaries placed in the GB 

category did not contain filaments, but rather were characterized by grain boundary 

ridges or grooves. Most contained no detectable elemental chemistry, however, this does 

not indicate there were no impurities in the grain boundaries, but rather that 1) impurity 

levels were below the instrumental detection limit or 2) the depth of the grain boundary 

groove caused the emitted x-rays to be absorbed by the surrounding ice thereby 

preventing detection (Cullen and Baker, 2001; Barnes and others, 2002). 

3.5.4 Comparison with other Methodologies 

Chemical characterization of ice cores is typically done using IC or inductively 

couple plasma mass spectrometry (ICMPS). Because the microstructural characterization 

of impurities has implications for the interpretation of IC and ICPMS data, it is important 

to understand the relationships between the types of measurements. For example, most 
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recently both of these methods have been utilized in the analysis of discrete samples 

collected using continuous melter systems (see Osterberg and others, 2006). A fraction 

collector is used to separate samples, which can have as high as 1 cm resolution. IC is 

used to measure the dissolved chemistry of major ions (Na+, K+, Mg2+, Ca2+, CH3SO3", 

CI", NO3". and SO4 "). IC-PMS is used to measure the trace element chemistry (e.g. 27A1, 

44Ca, 3Te, "JCu, e tc . ) , which requires the acidification of meltwater samples in order to 

dissolve particulates. IC-PMS therefore measures total bulk chemistry. 

Previous research (Cullen, 2000) showed that despite having similar chemistry, as 

measured by IC, the Byrd and GISP2 cores had very different filament chemistry as 

determined using EDS. As discussed earlier, these differences may be attributable to the 

presence of non-ionic (insoluble) particulates. IC-PMS has not yet been completed on 

the cores used in this study, however data from two cores located to the east (03-1) and 

west (02-5) (unpublished, D. Dixon) of core 07-4 (Fig. 3.1) are compared. 

Factor analysis of the concentrations of elements found using both EDS and IC-

PMS in the three South Polar cores (Na, Ca, Mg, Al, CI, and S) revealed site specific 

differences in elemental aerosol and particulate loading (Table 3.5). Core 02-5 appears to 

be more closely related to core 07-4 than core 03-1. Numerical simulations of the 

wintertime surface wind-field over Antarctica indicate that low level winds at 02-5, 03-1, 

and 07-4 come from the same source area (Parish and Cassano, 2003), however, the 

winds at 02-5 and 07-4 follow a more similar trajectory explaining the increased 

similarity in elemental chemistry between 02-5 and 07-4. The differences in factor 

loading between the three cores may not be related to differences in the methodology as 

cores 06-1, 06-2, and 06-3 were as close together as 07-4, 02-5 and 03-1 and, despite all 
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three (06-1, 06-2, and 06-3) having been analyzed by EDS, still exhibited differences that 

could be attributed to either dissimilarities in aerosol/particulate deposition or 

incorporation into the ice sheet owing to micro-meteorological effects. 

Table 3.5. Factor Analysis of Elemental Variables in cores 07-4 (EDS) and 03-1 and 
02-5 (IC-PMS).  

A CORE 07-4 B CORE 02-5 C CORE 03-1 

Fl F2 Fl F2 Fl F2 
Al -0.44 -0.68 Al -0.72 Al 0.87 

Ca 0.82 Ca -0.74 Ca 
CI 0.72 CI 0.92 CI -0.46 -0.64 

Mg 0.89 Mg Mg 

Na Na 0.95 Na -0.77 

S 0.97 - S -0.59 0.82 S - 1.00 

% of % of %of 
Variance 32.60 28.08 Variance 46.98 22.90 Variance 28.74 26.32 

Selected ratios (NaS, CaS, CaAl, NaCa, CINa, SCI) of several common elements 

from both measurement types were compared. Ratios were used because it is not 

possible to directly compare counts to concentration. The combination of elements 

presented in ratios was chosen based on the correlation matrices for the three samples. 

Histograms of the frequency with which each of the elemental ratios occurred in the 

samples are presented in Fig. 3.11. Data from core 06-1 are included as well. 

As illustrated in the discussion of the first factor analysis (Table 3.4) cores 06-1 

and 07-4 are quite different. The relationships seen in Fig. 3.11 may indicate that the 
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Figure 3.11. Histogram of the frequency of occurrence of elemental ratios. Ratios 
from EDS are shown for cores 07-4 and 06-1. 03-1 and 02-5 were analyzed using 
IC-PMS. 
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differences between EDS analysis and IC-PMS analysis render the comparison of these 

data impossible. However, it should be taken into consideration that EDS sampling of 

impurities was very random. 

A more detailed centimeter by centimeter comparison of IC-PMS and EDS 

chemistry from core 07-4 is being completed in order to better assess the differences 

between EDS and IC-PMS analysis. In addition to answering these questions, those data 

will be used to look in more depth at the relationship between the physical and chemical 

characteristics within shallow firn. 

3.5 CONCLUSIONS 

The characterization of physical properties in four cores from the US ITASE 

traverses of 2006 and 2007 (06-1, 06-2, 06-3 and 07-4) revealed site-specific details that 

would have been missed if only chemical characterization had been completed. Erratic 

porosity values in core 07-4 indicate this site may be located in one of East Antarctica's 

vast megadunes areas. While this area has not yet been identified as such using satellite 

imagery, these data suggest that advanced physical properties measurements using SEM 

can assist in the identification of dune areas not classified as such using other methods. 

This capability increases the likelihood of accurately determining the quality of core 

sites. 

Characterization of internal surface volume (Sv) at site 07-4 and others showed 

that the progression from firn to ice is not entirely linear, as would be assumed if only 

grain size or porosity were considered. Further investigation of changes in Sv with depth 

may aid in the understanding of the processes of firn densification and metamorphism in 
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the ice sheet. Both of the findings described above indicate the importance of 

characterizing multiple parameters to the understanding of ice cores as climate proxies. 

A- and c-axis orientation data from 4 samples from approximately 90 m depth and 

indicated only limited preferential orientation. The c-axis is the primary axis of rotation 

in all four samples as a result of the overburden pressure. The high degree of clustering 

of poles in sample 06-1-97 and the inclusion of a great number of low angle 

misorientations indicate subgrain formation. Subgrains are not typically expected to form 

in the shallow parts of the ice sheet, however visual evidence of subgrain formation was 

found in samples as shallow as 50 m. These findings indicate that SEM and EBSD are 

valuable techniques for investigations of strain in the shallow parts of ice sheets. 

The inter-regional trends in aerosol/particulate loading determined by EDS 

analysis of impurities are in accord with those previously published from IC and IC-PMS 

data. The previously established patterns of Na and Ca deposition at Taylor Dome (Ca is 

continental, Na is marine) and South Pole (both are marine) were accurately determined 

using EDS. The differences in patterns of S04
2" between the sites also indicate dissimilar 

SO42" sources (i.e. volcanic versus oceanic). In addition to accurately characterizing 

differences in loading and incorporation into the ice sheet, EDS analysis also identified 

the general trend of decreasing concentration with movement inland. 

The morphology and microstructural location of impurities was found to be 

dependent upon the elements present. As was determined in previous studies the 

formation of filaments (FIL) was found to require the presence of sea-salt or marine 

species, bright white spots (BWS) were found to contain both marine and continental 

66 



species. Not reported elsewhere is the characterization of filament tufts (TAN), which 

require the presence of continental (dust) species for their formation. 

The analysis of both the soluble and insoluble chemistry and physical properties 

within a single firn or ice specimen suggests that both properties can provide valuable 

insights regarding environmental conditions at the time of deposition (temperature, 

atmospheric chemistry, atmospheric circulation patterns, etc.) and conditions affecting 

post-depositional alteration (micro-meteorological differences, shallow firn 

metamorphism, accumulation hiatuses). Many of these properties are intricately linked 

and investigations of their relationships using SEM, EDS, and EBSD will advance our 

understanding of the spatial and temporal changes in the climate of Antarctica in a way 

that no other instrumentation or technique could. 
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Chapter 4 

SUMMARY 

The physical and chemical characterization of firn and ice cores presented in this 

thesis illustrate the utility of scanning electron microscopy (SEM) and the necessity of 

complete characterization in the interpretation of paleoclimate proxies. 

In chapter 2, a new method of grain size measurement was presented. This 

method utilized digital SEM images of unprocessed firn and ice samples to create a 

skeleton outline of the grain network from which the area of grains and pores can be 

calculated using a pixel counting routine. The resulting average grain size was smaller 

than those previously reported due, in part, to the use of pore filler which obscures the 

true grain size in traditional methods. The decrease in grain size was most obvious in 

very small grains (less than 0.4mm2 in size). The ability to more accurately determine 

grain size will aid in the identification of stratigraphic anomalies secondary to a number 

of environmental factors including changes in particulate loading, accumulation rate, 

temperature, or strain. Additional parameters can be characterized with this technique 

including porosity, internal surface volume, crystallographic orientation and chemical 

composition of impurities. 

Future work in the study of grain size should involve the creation of an automated 

outlining program that will work with SEM images. Currently, each grain has to be 

manually outlined. The creation of an automated procedure will significantly decrease 

processing time and increase accuracy. The degree of detail captured by the SEM will 

make the automation of this process difficult. For example, sublimation textures can be 

on the same scale as grain boundaries making simple digital filtering difficult. 
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Automated raster to vector conversion programs created for GIS, mapping and computer 

automated design (Wu, 2000) could potentially be used in the development of new 

software. 

The ability to characterize multiple parameters of a single sample was 

demonstrated in chapter 3 using the physical and chemical microstructure of several 

samples from four East Antarctic cores. This analysis yielded several unexpected results 

showing the importance of characterizing both chemical and physical properties. 

Orientation data and visual inspection of SEM images indicate the formation of subgrains 

shallower in the ice sheet than expected. Variable porosity values indicated possible 

changes in accumulation regimes suggesting that core 07-4 may be located in one of East 

Antarctica's vast megadunes areas. This area has not been previously identified as a 

megadunes area based on satellite imagery. 

Site-specific differences in aerosol and particulate loading can be captured by 

EDS analysis. Factor analysis on the EDS spectra from site 06-1 indicated a marine Na 

source and a continental/dust Ca source, consistent with IC/IC-PMS analysis. Site 07-4 

was found to have a primarily marine source for both Ca and Na, as indicated elsewhere 

for the South Polar region. 

The morphology and microstructural location of impurities is determined by the 

elements present in the ice cores. For example, filaments, which form in rapidly 

sublimating areas, indicate the presence of salts; whereas filament tufts require dust 

elements (i.e., Al and Si) to form. This may have implications for post-depositional 

alteration. 
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This research has shown that accurate characterization of both chemical and 

physical properties can be achieved using scanning electron microscopy. Future research 

should involve a more focused and in depth comparison of the chemical and physical 

properties to better reveal their complex relationship. For example, mapping of 

impurities and misorientations may be particularly useful. In addition, a larger study 

including more continuous sampling and encompassing sites with more dissimilar strain 

history and environmental variability is suggested. Doing so will lead to a greater 

understanding of the relationship between the chemistry used to infer paleoenvironmental 

conditions and the resultant physical manifestation in ice cores. 
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