
The University of Maine The University of Maine

DigitalCommons@UMaine DigitalCommons@UMaine

Honors College

Spring 5-2024

Autonomous Fish Identification for the Remotely Operated Vehicle Autonomous Fish Identification for the Remotely Operated Vehicle

Control System Control System

Jacob Wildes
University of Maine - Main, jacob.c.wildes@maine.edu

Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors

 Part of the Hardware Systems Commons, and the Robotics Commons

Recommended Citation Recommended Citation
Wildes, Jacob, "Autonomous Fish Identification for the Remotely Operated Vehicle Control System"
(2024). Honors College. 862.
https://digitalcommons.library.umaine.edu/honors/862

This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted
for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information,
please contact um.library.technical.services@maine.edu.

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/honors
https://digitalcommons.library.umaine.edu/honors?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/263?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/honors/862?utm_source=digitalcommons.library.umaine.edu%2Fhonors%2F862&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu

AUTONOMOUS FISH IDENTIFICATION

FOR THE REMOTELY OPERATED VEHICLE CONTROL SYSTEM

by

Jacob Wildes

A Thesis Submitted in Partial Fulfillment
of the Requirements for a Degree with Honors

(Computer Engineering)

The Honors College

University of Maine

December 2024

Advisory Committee:
Vikas Dhiman, PhD., Assistant Professor of Electrical and Computer Engineering,
Advisor
Prabuddha Chakraborty, PhD., Assistant Professor of Electrical and Computer
Engineering
Melissa Ladenheim, PhD., Associate Dean of The Honors College
Gregory Studer, PhD., Staff at The Advanced Structures and Composites Center

ABSTRACT

A Remotely Operated Vehicle was designed, constructed, and programmed as a

senior design project in Electrical and Computer Engineering by Dyllon Dunton and

Jacob Wildes. The system was intended to be an alternative means to inspect the

underside of ships. Given the small footprint of the system, it can be easily extended into

other applications. In this thesis project, the observation system is modified to detect if a

fish is present or not, classify the species, localize where in the image the fish is, and

mask the fish by separating fish pixels from non-fish pixels. Additionally, the original

design will be analyzed and compared with the new system. Finally, existing issues with

both systems and next steps are discussed. Open-source solutions were systematically

searched, and several candidate solutions were found. The candidates were then evaluated

in terms of ease of use and similarity to the goals of this project. Eventually, custom

solution using the YOLOv8 backbone, and a custom labeled dataset was developed which

achieved a precision of 86.5%, and a mAP-50 of 91%.

iii

DEDICATION

To my family and friends for supporting me through the entire process. I could

not have done it without the support of each and every one of you.

iv

ACKNOWLEDGEMENTS

Dyllon Dunton – For having my back all throughout our time as undergraduates, and for

being part of the senior project.

Dr. Vikas Dhiman – For taking me under his wing early in my undergraduate career and

supporting me through the rest of the way.

My Honors Thesis Committee – Without the support of all of you this project would not

have gotten to the stage that it has.

Dr. Bob Klose – For supporting me through the complexities of academia the last four

years.

My Hannaford Crew – I could not have asked for better people in my corner. The

outpouring of support for all of my pursuits and letting me vent about the complexities of

navigating the academic world.

v

TABLE OF CONTENTS

LIST OF FIGURES .. vi

LIST OF TABLES ... vii

LIST OF EQUATIONS .. viii

INTRODUCTION .. 1

LITERATURE REVIEW ... 3

Finding Related Work ... 3

METHODOLOGY ... 9

Selecting a Neural Model Framework .. 9

Acquiring a Dataset ... 10

Annotating Data .. 11

Training the Model .. 12

RESULTS ... 14

ETHICAL ANALYSIS ... 17

DISCUSSION ... 20

CONCLUSION ... 24

BIBLIOGRAPHY ... 25

APPENDICES .. 27

Appendix A: Additional Results ... 27

AUTHOR BIOGRAPHY ... 29

vi

LIST OF FIGURES

Figure 1. YOLO Architecture developed by Redmon et al [4] ... 5

Figure 2. On left, the general "Fish" class. On right, the "Perch" Class 11

Figure 3. "Fish" Class Annotation on Left, "Perch" Class Annotation on Right 12

Figure 4. Model Accurately Identifying Fish. ... 14

Figure 5. Model Unable to Detect Fish in Habitat. ... 15

Figure 6. Box loss of the Model during Training and Validation 16

Figure 7. Fish being identified by the Model. ... 17

Figure 8. TOP Readout from the Controller Raspberry Pi .. 22

Figure 9. Class loss during Training and Validation ... 27

Figure 10. Segmentation loss during Training and Validation .. 27

vii

LIST OF TABLES

Table 1. Performance Metrics ... 28

viii

LIST OF EQUATIONS

Equation 1. 2D Convolution ... 5

Equation 2. 2D Convolution with multiple input channels ... 6

Equation 3. 2D Convolution with multiple input and output channels 6

Equation 4. 2D Maxpooling .. 7

Equation 5. Fully Connected Layers ... 7

1

INTRODUCTION

Native Maine fish are at constant risk of being outcompeted and run out by

invasive fish, such as the Bluegill infestation in Savade Pond discovered in 2017 [1].

During a fishing excursion, wildlife biologists discovered over 30 Bluegill fish, while

only two native fish were caught. In 2018 the biologists returned and discovered that in a

mere few hundred yards of habitat, dozens of Bluegills had amassed, and the native

Pumpkinseed sunfish had been entirely run out of the area. The Maine Department of

Inland Fisheries and Wildlife (MDIFW) is unsure of when the Bluegills were first

introduced, but the invasion began years ago, undetected [2]. To address this problem, the

design of an underwater ROV capable of detecting invasive fish early is described. Other

than the MDIFW, it can be used by other lake goers should there be concern of an

infestation. This spreads the effort of verifying infestations can be spread to those who

use the watersheds as well, not just wildlife authorities. This increases the potential to

catch these silent infestations before they grow to the point that native species are run out

of their habitat.

 The ROV was a senior design project designed by Dyllon Dunton and Jacob

Wildes in the Electrical and Computer Engineering department at the University of

Maine at the start of the Spring 2023 semester [3]. The project was designed to dive

underneath ships and inspect hulls for damage, mitigating the hazard of human divers or

the cost of putting a ship in dry dock. During the research phase of the project, it became

clear that commercially available ROV systems were incredibly expensive. As such, cost

cutting decisions were made that limited what the ROV could accommodate. Most

notably, the sensing equipment was extremely limited, using a cheap IMU, budget lights

2

and a cheap camera. These hardware limitations directly impact the primary focus of this

thesis project. The initial ROV was only capable of passing images from the camera to

the operator with the goal of simply allowing the operator to decide if the hull was in

operating condition. This project aims to address invasive fish detection by using the

existing ROV platform and extend it to identify fish while still maintaining the core

hardware components. Such an extension requires determining what new functionalities

are needed, and how to mesh them with the existing system. Additionally, ethical

concerns such as privacy and security will be explored. Finally, the two designs will be

compared with each other for similarities, differences, and drawbacks.

 The original design of the ROV included two primary systems – the controller

hardware and software which consisted of a Raspberry Pi 4B and an STM32L452RE-P

microcontroller with custom software, and the submarine hardware and software which

also featured a Raspberry Pi 4B, as well as an STM32L4R5ZI microcontroller. For the

purpose of this project, only the controller hardware and software received any

modification, as the submarine hardware and software was primarily under Dyllon

Dunton’s purview and are therefore outside the scope of this thesis project.

 This thesis paper is divided into seven sections. In the second section, a review of

relevant literature will be discussed to provide pertinent technical information and

context. Subsequently, ethical implications of the ROV will be discussed, followed by the

methods employed to design the neural network residing on the ROV for fish detection

and identification. Results from the design will be covered next. Finally, future work and

closing thoughts will be given to provide a thorough summary of the ROV project in

totality.

3

LITERATURE REVIEW

 Automated object identification is not a new field of study. Brief searches for

“automated object detection” yield quite literally thousands of results. However,

narrowing the focus down to specifically identifying fish brings the results down from

11,000+ to around 1,000 results (gathered from the University of Maine’s OneSearch

tool). This is still a vast amount of research related to fish detection, but this is an

umbrella term. Many of these works are related to identifying fish once they are outside

of their natural habitat. Another issue commonly faced, which will be discussed later in

this section, is that some of the software that is more in line with this project is rather

outdated. The goal of this project is to provide a model built using modern tools capable

of identifying a fish in each image frame while the fish is still in its natural habitat.

Finding Related Work

 One of the first steps taken to accomplish this project was a search for existing

projects in an attempt to see what preexisting work was already available. In stark

contrast to the amount of research done regarding fish identification, searches on the

ubiquitous code sharing platform GitHub yielded a shockingly small number of existing

projects to gain inspiration from, let alone potentially build from – that number being a

meager 97 results. Of those results, some were incomplete or far removed from the focus

topic. Of the yielded results, only 12 were deemed to have potential to mesh well with

this project. These decisions were based off a few criteria. The first was documentation:

the selected works either referenced one another or referenced a research paper (or a

combination of both). Additionally, the documentation was deemed considerably better if

it detailed the training methodology, or at minimum the data used by the author to

4

complete the project. Secondly, two features of GitHub – “Issues” and “Pull Requests”

were reviewed. It is often difficult to determine if a system will work for a use case from

simply reviewing the provided information. However, the “Issues” tab allows prospective

users to review concerns other users have found, as well as actual issues with the project.

Finally, age of the software was a determining factor. The tools used to build these

projects are consistently being updated. As such, as age increases, the likelihood for

incompatibility with some existing dependency also increases. For example, TensorFlow

(a neural network programming library) underwent a massive overhaul in 2019 which

effectively made all projects built using a previous version of TensorFlow break.

 Neural networks are a set of algorithms that are modeled loosely after the human

brain and designed to recognize patterns. There can be multiple layers in a neural

network, and each layer consists of neurons. Broadly, artificial neurons work by receiving

one or more input signals. These signals can be from other neurons, or raw data. They

then perform calculations and send output signals to neurons in subsequent layers through

a synapse. It is important to note that not all neurons must have synapses that feed into

subsequent neurons. Additionally, there are weights associated with each neuron. These

are factored into the calculations done in each neuron and dictate the value of the data

provided by the neuron. As such, the weights are optimized during the network training.

Increasingly complicated neural networks require more computational power. Since this

project is built using an NVIDIA Orin Nano, the lack of computational power is

compensated for by an increase in inference time. You Only Look Once (YOLO) is a

neural network architecture that was introduced by Redmon et al in 2016 [4]. Since its

introduction there have been several iterations which have improved the overall

5

implementation and architecture. The latest version, YOLOv8, by Ultralytics, was used.

The architecture of the initial version is shown in Figure 1.

Figure 1. YOLO Architecture developed by Redmon et al [4]

As shown in the above figure, the YOLO architecture is quite extensive. From left to

right, the input image is 448 pixels wide, 448 pixels tall, and 3 pixels (red, green, and

blue) deep. This is then convolved and maxpooled to extract features from the image. A

two-dimensional (2D) convolution operating between finite dimensional kernel weights

g ∈ ℝ!×# and a finite image f ∈ ℝ$×%	is denoted as 𝑓 ∗ 𝑔 ∈ ℝ$&!'(,%&#'(and defined as

(𝑓 ∗ 𝑔)(𝑥, 𝑦) = - - 𝑓(𝑖, 𝑗)𝑔(𝑥 − 𝑖, 𝑦 − 𝑗)
*&('#

+,*&(

-&('!

.,-&(

for	all	𝑥 ∈ {1, … , 𝐼 − 𝐾 + 1}, 𝑦 ∈ {1, … , 𝐽 − 𝐾 + 1}	

Equation 1. 2D Convolution

Normally these images have a third dimension which is the channel dimension (red,

green, blue). In most neural network libraries, the convolution kernel over the third

dimension is the same as the channel dimension. If the input is f ∈ ℝ$×%×/ , the kernel

weights are g	∈ ℝ!×#×/ 	where C is the number of input channels, then the output

6

𝑓 ∗ 𝑔 ∈ ℝ$&!'(×%&#'(is two-dimensional,

(𝑓 ∗ 𝑔)(𝑥, 𝑦) = - - -𝑓(𝑖, 𝑗, 𝑐)𝑔(𝑥 − 1, 𝑦 − 𝑗, 𝑐)
/

0,(

	
*&('#

+,*&(

-&('!

.,-&(

for	all	𝑥 ∈ {1, … , 𝐼 − 𝐾 + 1}, 𝑦 ∈ {1, … , 𝐽 − 𝐿 + 1}	

Equation 2. 2D Convolution with multiple input channels

To generate multiple output channels, as many kernels as output channels needed are

initialized. Let 𝐶1	be output channels, and 𝐶. 	be input channels. Kernel weights are then

initialized of size 𝑔 ∈ ℝ/!×!×#×/" 	and the input image is of size 𝑓 ∈ ℝ$×%×/". The output

size is 𝑓 ∗ 𝑔 ∈ ℝ$&!'(×%&#'(×/# 	

(𝑓 ∗ 𝑔)(𝑥, 𝑦, 𝑐2) = - - -𝑓(𝑖, 𝑗, 𝑐.)𝑔(𝑐2 , 𝑥 − 𝑖, 𝑦 − 𝑗, 𝑐.)
/

0",(

*&('#

+,*&(

-&('!

.,-&(

for	all	𝑥 ∈ {1, … , 𝐼 − 𝐾 + 1}, 𝑦 ∈ {1, . . . , 𝐽 − 𝐾 + 1}, 𝑐 ∈ {1, … , 𝐶2}

Equation 3. 2D Convolution with multiple input and output channels

This step is responsible for extracting a feature map of the input. The next step is the

maxpooling step, which helps make the network resilient to small shifts in the position of

the features in an image. Additionally, it reduces the number of parameters in the

network. The maxpooling 2D layer takes in an image of size 𝑓 ∈ ℝ$×%×/ 	where C is the

channel dimension and a kernel size of K, L, and outputs another image 𝑀 ∈ ℝ3 $%4×3
&
'4. In

this case, ⌊𝑥⌋ denotes the largest integer smaller than x. The maxpooling operation is

𝑀(𝑥, 𝑦, 𝑐) = 	𝑚𝑎𝑥(.,+)∈	9(,* 	𝑓0(𝑖, 𝑗, 𝑐)	

𝑓𝑜𝑟	𝑎𝑙𝑙	𝑥 ∈ J1, … , K
𝐼
𝐾LM , 𝑦 ∈ J1, … , K

𝐽
𝐿LM 	𝑤ℎ𝑒𝑟𝑒

7

𝒲-,* = {(𝑖, 𝑗)|(𝑥 − 1)𝐾 ≤ 𝑖 ≤ 𝑥𝐾, (𝑦 − 1)𝐿 ≤ 𝑗 ≤ 𝑦𝐿, 𝑖 ≤ 𝐼, 𝑗 ≤ 𝐽, 𝑖 ∈ ℤ, 𝑗 ∈ ℤ}

Equation 4. 2D Maxpooling

In the above equation, 𝑀0 represents the output of the maxpooling layer, for a particular

channel, c. 𝑓0 is the input from the three-dimensional feature map, and 𝑊-* is the window

of the pooling operation over the input. The maximum value in the window is selected as

it slides across the input. The convolution process is done a total of ten times in the data

flow from input to output. After each a leaky rectified linear unit (ReLU) activation

function is applied. The maxpooling process is applied four times. Finally, there are two

fully connected layers at the end which allows for non-linear combinations of high-level

features pulled from the convolutional layers. The fully connected equation is shown in

Equation 5.

y = Wx + b

Equation 5. Fully Connected Layers

In the above equation, 𝑥	is the input. In this case, that input is flattened into a vector since

it is three-dimensional. 𝑦	is the output vector, 𝑏 is the bias vector. Each element in the

output vector is the sum of the elements in 𝑥 with the bias term. Convolution is a linear

operation. Combinations of linear functions result in linear results, and solely linear

models are not as effective in image recognition tasks as non-linear models. Additionally,

real-world data is typically not linear. To fix this, activation functions like the leaky

ReLU after each convolution introduce some non-linearity. Activation functions

introduce the non-linearity.

The cumulative knowledge gained from these individual works was crucial in the

development of the custom model. Of the five related works, Calvo [5], Anar [6], and

8

Govostes [7] all relied on the third version of YOLO as the basis of the model. As

discussed by Abdulla [8] and empirically confirmed by Calvo, it is absolutely necessary

to have a large number of images per class when training a multi-class neural model. In

order to make the dataset, an online tool was used to annotate and augment the data.

Additionally, the commonality of architecture among the works was heeded, and the

YOLO architecture was selected, as it is claimed to be a state-of-the-art model which is

fast, accurate, and easy to use [9].

9

METHODOLOGY

 In order to accomplish this project, there were three primary steps that had to be

taken. First, a framework for the neural model had to be chosen. Next, a practical dataset

had to be found, as well as a method to label and outline the fish. Finally, a training

method had to be chosen and executed. The detail behind each process is detailed below.

Selecting a Neural Model Framework

 As discussed in the Literature Review, there is not much recent work regarding

underwater fish identification. In addition, much research involves having the fish out of

its natural habitat or is based on much older frameworks. Since this system is designed

with intent to identify fish in their natural habitat as quickly as possible, it was necessary

to find a model framework capable of accomplishing that task. As previously discussed,

YOLO was the most popular framework used in other projects. As a result, the newest

version, YOLOv8 was used in this project. Accompanying this version are a multitude of

different pretrained model weights. YOLO offers a variety of operational modes:

detection, segmentation, pose, oriented detection, and classification. Under each of these

categories, there are five options for each mode. There are nano, small, medium, large,

and extra-large models. These models tradeoff accuracy with speed and size. According

to Jocher et al., the smallest YOLO model had a single frame prediction time when

running on a Central Processing Unit (CPU) of 96.1 ms [10]. In order to maintain a

somewhat visually appealing framerate when making predictions, a rate of 15 frames per

second was chosen. This means that a frame must be processed approximately every 67

ms. Unfortunately, the desired framerate was unobtainable, at least with a CPU only. The

speed of predictions on individual frames increases significantly with the introduction of

10

a graphics processing unit (GPU). However, the YOLO models were evaluated on an

NVIDIA A100 GPU – hardware significantly more powerful than what would be

available on a single board computer such as a Raspberry Pi or Jetson Orin Nano.

Currently a Raspberry Pi runs the controller. As a result, the less accurate, yet faster

model was chosen.

Acquiring a Dataset

 Training neural models well requires a vast array of images, as discussed in the

Literature Review. Additionally, since the ROV was not yet fit for underwater

deployment and there was no budget to purchase underwater photography equipment,

online databases of fish images were the next best alternative. This was not the ideal

outcome, as the images are not necessarily local to Maine, and the orientation and

visibility of the fish are unable to be controlled. However, it was the second-best option

for getting fish images. After extensive research, the dataset hosting website Kaggle had

the most applicable dataset developed by Lampa et al [11] of fish, which was chosen for

this project. This was done because the fish are not local to Maine – originating from

Cabuyao City, Philippines. The more universal fish - such as perch and tilapia - were

selected from the dataset to train with as they are also located in the United States, and

more particularly, Maine. Figure 2 shows a sample image of the Perch and more general

Fish class from the dataset.

11

Figure 2. On left, the general "Fish" class. On right, the "Perch" Class

Annotating Data

 After completing the task of acquiring data, the next step was to prepare it for use

in the model. This included labeling each individual image and drawing a bounding box

around each fish in each image. Given that there were so many images to annotate

(approximately 700 raw images in the final working dataset), standard methods for

annotating using tools such as AnyLabeling [12], OpenLabeling [13], and Labellmg [14]

would be far too time consuming. Alternatively, there are expensive automated tools such

as Adobe Acrobat, but it is unsuitable for reaching the proper format the neural network

seeks when training. Similarly to how Kaggle [15] functions as a dataset hosting website,

there is another website dedicated to generating neural network training datasets called

Roboflow [16]. This tool vastly sped up the process of readying the dataset as it offered

some “smart” bounding options which would automatically place bounding boxes over a

desired area with relatively good accuracy. Figure 3 shows an example of both the Fish

and Perch classes and their annotations.

12

Figure 3. "Fish" Class Annotation on Left, "Perch" Class Annotation on Right

This allowed a significant speedup in annotation time, as in most cases the only step was

to add a label to the image and continue to the next one. Next, Roboflow facilitated

further augmentation of the images by randomly orienting images to encourage a more

robust model which is less prone to overfitting. It also publicly hosted the annotated

dataset for easy training and validation access.

Training the Model

 After determining the type of framework to use as well as constructing a dataset

complete with annotations, the final step was training the model. As previously discussed,

the dataset suffered from being on the small side, and unfortunately not entirely diverse.

As a result, the Adaptive Moment Estimation (Adam) optimizer introduced by Kingma

and Ba in 2016 [17] was used. Optimizers are used to optimize weights of a neural

network to minimize the loss function. This was in part because it is popular, but also

because it is less sensitive to hyperparameters. This saved time in tuning the

hyperparameters, especially where the project is currently at a smaller scale. Additionally,

it converges quickly, resulting in faster training. This in turn helps to protect the model

from overfitting, where the model does not learn any meaningful patterns and instead

memorizes the training data.

13

 Using a dropout rate of 25% was useful, as it allowed the model to understand

what a fish is from only viewing small parts of it by randomly deactivating neurons in

each layer. This made the model much more robust, as it would allow it to potentially

identify a fish even if a piece was missing. Additionally, a cosine annealing learning rate

schedule was introduced in an effort to help the model escape local minima and explore

different regions of loss. This creates a cyclic learning rate. It follows the cosine curve

downward from the maximum learning rate until it reaches the minimum learning rate,

where the cycle continues. This helps the model escape local minima and potentially find

a more optimal solution.

14

RESULTS

 The model performs generally as expected in real-world tests. As shown in Table

1, the model is reasonably precise, measuring 86.5% accurate during training and

validation over 25 epochs. Figure 4 shows an example of the model working well.

Figure 4. Model Accurately Identifying Fish.

As shown in Figure 4, the model works excellently on these fish which it has never seen

previously. However, these fish are not in their natural habitat. The model is able to

predict these fish very accurately because they are broadside to the camera, and all

defining features of a fish are present. As discussed extensively to this point, the model

struggles to identify fish that do not look similar to the fish that it was trained on. This is

most certainly due to the fact that there simply were not diverse enough images for the

model to train with. In order to remedy this, the dataset needs to be extensively added to.

15

Despite this, the model still functions well for a baseline prototype. Notice in Figure 5,

the model struggles severely to predict any fish.

Figure 5. Model Unable to Detect Fish in Habitat.

These fish are “in situ,” where the defining features are not readily obvious to the model,

and as a result the ability for the model to accurately predict in this situation is severely

hindered. Notice that the fish that it was only 28% certain was a fish is primarily

uncovered. Its physical features are clear and unobstructed by any other fish in the image.

Additionally, the fish are of similar color relative to themselves and to the environment,

so the defining features are further lost. To expand upon the extensive addition to the

dataset, images such as these are a must. Without them, the model will continue to suffer

from being unable to reliably identify fish when they are not perfectly aligned with the

camera.

 It can be safely argued that the model does not overfit. Figure 6 shows the loss of

the model in training and validation over a period of 25 epochs with an image batch size

of eight.

16

Figure 6. Box loss of the Model during Training and Validation

 As shown in the above figure, both the training and validation losses trend

downward, which is the desired result. Notice, however, that the loss is still decreasing.

Further training would decrease loss and increase accuracy. Key signs of overfitting

include the validation loss massively increasing while the training loss continues to

decrease. In the figure above, after the sixth epoch, both the training and validation trend

downward at a similar rate. As such, the model is suffering less from poor optimization,

and more from a poorly constructed dataset. The data is not diverse enough to give the

model enough data points to accurately infer fish in multiple different orientations. In the

technical sense, the model does not overfit. It does, however, overfit in the sense that the

data is biased. This means that this overfit cannot be solved with optimizations outside

reworking the dataset.

17

ETHICAL ANALYSIS

This project is autonomous observation based, which leads to certain ethical questions. In

order to better analyze the ethics of this project, some questions proposed by Green [14]

are answered. Of note, there are questions of technical safety, transparency and privacy of

the data being collected, beneficial use capacity, and malicious use capacity. It is

imperative that the system be completely transparent about the data it collects, how and if

it stores data, and the potential damages of a compromised system.

 Under the umbrella of “technical safety” the goal is to assert that the neural

network will function as detailed. If it does fail, answer what the fallout of a failure

would entail. At the forefront, as will be discussed in greater detail in the Results section,

the neural network does function as intended, albeit in a more limited capacity. If the

network is shown an image of a fish, it is about 50% successful in identifying the fish as

a fish, as shown in Figure 7.

Figure 7. Fish being identified by the Model.

18

As shown in the above figure, the network is able to identify fish if the majority of the

fish is visible and largely uncovered. The worst case scenario is that the model fails and

displays some unexpected output. This model solely takes images in, and if applicable,

draws a box and labels around a fish. If it were to fail, the worst thing that it could do is

improperly label, improperly box, or simply not do anything. The system has no other

data to work with than that in the image, so the operator is also safe from any harm in the

network having a catastrophic failure.

 Thankfully, this system has little foreseeable for malicious use. The neural

network is incredibly naïve, able to only take images in, make a prediction based on what

is in the image, and save the image. Malicious use of the system would struggle to do

anything outside of its operating parameters. Assuming that this system was

compromised, and the images were lost continuously, fish invasions would continue to

remain undetected. As such, this system is designed to be used as one tool in a

multifaceted approach at fish invasion detection. Pre-existing approaches to detection,

such as electrofishing, are still imperative to employ.

 Regarding data use and collection, this system solely saves images where a fish is

predicted to be in the frame. If there is no fish, the image is not saved at all. Those images

that are saved do not have any other information on them than what the model appends to

it, such as that in Figure 2. Additionally, no data is transmitted. When implemented on the

ROV, the entire system is disconnected from the internet, so any data transaction must be

done locally.

 This model is also entirely transparent. The method for fine tuning the model is

entirely open source [19], and YOLO [10], the framework with which the model was

19

built on, is also entirely open source. The dataset found on Kaggle is also entirely open

source [15]. Additionally, the dataset used to fine tune the model was used under the

Community License Agreement – Sharing – Version 1.0. The method by which the fish

images were collected is not publicized by the dataset authors, but permission to use the

images is provided under the license agreement.

20

DISCUSSION

 The autonomous ROV was a device intended to autonomously identify fish as it

patrols an aquatic environment. Realistically, this system is capable of identifying fish,

but the network falls victim to poor generality of the training data. As discussed in the

Methodology section, there are not many applicable preexisting databases of fish images

that are local to Maine. Gathering images manually is a long and strenuous task, and time

was a major factor in the project. As such, fish that do not look similar to a tilapia or

perch tend to go unnoticed by the model. Ideally, this model would have been built off a

preexisting model, such as those built by the Fishial.AI group [20]. This would have

provided a foundation for the model to start from, as opposed to a model built from

scratch. Additionally, the training data would have been built off of fish images in situ,

not those taken on dry land. As discussed in the Literature Review, water is a poor

medium for identification. Water refracts light, and this is magnified by particularly

contaminant filled watersheds, such as the Androscoggin River or Etna Pond.

Additionally, environmental factors such as algal blooms were not taken into account

when training the model. Each of these factors drastically impact the model’s ability to

make accurate predictions on images, as each frame has the potential to be obfuscated.

 Since this project builds on top of the old system, it still shares the physical

shortcomings of the initial ROV. Firstly, it is sparsely equipped. As discussed previously,

cost was the determining factor in a lot of decisions made for the ROV. This is most

apparent with the choice of lights and camera. The camera is a simple universal serial bus

(USB) webcam with 720p resolution. This is fine for the model predicting, but a primary

issue with the webcam is that anything that moves quickly across the frame is incredibly

21

blurry. The lights are more than bright enough, but the issue is that the team was not

aware of the implications of light layout at the time of construction, so there is no

empirical evidence that the lighting would benefit or detract from the model’s ability to

make inferences on an image. Barring an inertial measurement unit (IMU) used for

stability control, there are no other sensors aboard the ROV.

 A secondary issue is that the software was built to be modular. The hardware was

built less so. This makes hardware changes a much more involved process. For example,

the Raspberry Pi running the controller side is already under massive load from the

controller graphical user interface (GUI) rendering as well as sending and receiving data

to and from the ROV as shown in Figure 8. Alternative hardware choices such as phones,

tablets, and laptops were decided against primarily due to the use of an ethernet for

connection from controller to ROV. Phones and tablets can connect to an ethernet cable

via dongle, but then the controller software would have to be ported from Linux to iOS or

Android. Laptops could be used instead as well, but then a few possible issues arise;

currently the ROV takes analog inputs to trim the propellers. Using a laptop without

external interfaces would make the inputs entirely binary – on or off. Alternatively, if

external interfaces are used, the user interface becomes clunky and usage environments

for an ROV such as this do not lend themselves to spreading out with multiple wires

being exposed. Finally, battery life can no longer be guaranteed. The laptop would be

provided by the user, and it is entirely of unknown age and operating system. That being

the case, the Raspberry Pi was decided upon since it can be purchased cheaply and loaded

with the software designed prior to this project.

22

Figure 8. TOP Readout from the Controller Raspberry Pi

For context, the USER column shows multiple “control+” running programs. The

controller software to run the ROV is run in the user space, and the username of the

controller Raspberry Pi is called “controller.” The last three letters are truncated to a “+.”

The data shown is slightly misleading. The Raspberry Pi has four cores, and each core

represents 100% under the %CPU column. However, The GUI alone utilizes one core

and then some, at 105.9%. This necessitates two hardware overhauls on the controller

side. First, the Raspberry Pi would need to be swapped for a more powerful edge

computing device, such as a NVIDIA Orin Nano. This device has a much higher power

requirement, so the battery pack would need to be bulked out to support the new

computer. This in turn would result in a new battery management system (BMS). All of

this means the price of the system increases. In the case of the Orin Nano, significantly

23

so. The changes are going to be made to the controller instead of the ROV for a couple of

reasons. With the addition of an Orin Nano, that would be the single most expensive

piece of hardware in the entire system at almost $500. Since this is a budget project,

placing such expensive equipment in an environment where water exposure is a constant

threat is a poor idea at best. This decision sacrifices detection speed due to ethernet

latency, but speed is less of a concern than system reliability and robustness.

24

CONCLUSION

 There is a lot of future work left in this project. Firstly, the dataset needs to be

massively overhauled to faithfully depict what the model would encounter in practice.

This involves adding species of fish found in Maine watersheds, and introducing diverse

photos of each species, as no two fish are identical. The data worked with is largely

imperfect as it comes from outside of the geographical focus area. This step involves a

potentially multi-season process, capturing images of fish from multiple different Maine

watersheds. The most time consuming part of the process can be compared to fishing.

Each fish species needs to have multiple images taken, and different times of day result in

different fish species activity. Additionally, some fish species, like Brook Trout, are much

more active during their spawning season from mid-November to early January [21].

Secondly, in order for the system to be fully integrated, the controller hardware needs to

be overhauled to integrate the model with the ROV control system. However, a publicly

available baseline model is available on Jacob’s GitHub [19] to be extended to whatever

needs necessary and has the potential to eventually better identify Maine local aquatic

fauna at.

25

BIBLIOGRAPHY

[1] “An Undetected Fish Invasion | IFW Blogs,” www.maine.gov.
https://www.maine.gov/ifw/blogs/mdifw-blog/undetected-fish-invasion (accessed Nov.
10, 2023).

[2] Maine Department of Inland Fisheries and Wildlife, “Fish Invasions Take A Toll On
Native Fisheries”, 2016. https://www.maine.gov/ifw/blogs/mdifw-blog/fish-invasions-
take-toll-native-fisheries (accessed Nov. 10, 2023).

[3] D. Dunton and J. Wildes, “Submersible Drone for Hull Inspections Senior Project
Report,” 2024.
https://github.com/jacobcwildes/Submarine_Capstone/blob/main/Capstone_Final.pdf
(accessed Apr. 9, 2024).

[4] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,
Real-Time Object Detection,” 2016. Available: https://www.cv-
foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR
_2016_paper.pdf (accessed Apr. 9, 2024).

[5] R. Calvo, “rocapal/fish_detection,” GitHub, Feb. 02, 2024.
https://github.com/rocapal/fish_detection?tab=readme-ov-file (accessed Nov. 22, 2023).

[6] Y. C. Anar, “Fjolnirr/fish_tracker,” GitHub, Mar. 04, 2024.
https://github.com/Fjolnirr/fish_tracker/tree/master (accessed Nov. 22, 2023).

[7] R. Govostes, “WHOIGit/FishDetector,” GitHub, Feb. 28, 2024.
https://github.com/WHOIGit/FishDetector (accessed Oct. 23, 2023).

[8] Waleed Abdulla, "Mask R-CNN for object detection and instance segmentation on
Keras and TensorFlow", Github, 2017. https://github.com/matterport/Mask_RCNN
(accessed Dec. 13, 2023).

[9] G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics YOLO. 2023.
https://github.com/ultralytics/ultralytics?tab=readme-ov-file (accessed Mar. 10, 2024).

[10] Ultralytics, “Instance Segmentation,” docs.ultralytics.com.
https://docs.ultralytics.com/tasks/segment/ (accessed Apr. 7, 2024).

[11] M. D. Lampa, R. C. Librojo, and M. M. Calamba, ‘Fish Dataset’. Kaggle, 2022.
https://www.kaggle.com/ (accessed Jan. 1, 2024).

[12] V. A. Nguyen, AnyLabeling - Effortless data labeling with AI support, Github.
https://github.com/vietanhdev/anylabeling (accessed Mar. 2, 2024).

26

[13] Cartucho, “OpenLabeling: open-source image and video labeler,” GitHub, Nov. 30,
2022. https://github.com/Cartucho/OpenLabeling (accessed Mar. 2, 2024).

[14] “HumanSignal/labelImg,” GitHub, Aug. 17, 2023.
https://github.com/HumanSignal/labelImg (accessed Mar. 2, 2024).

[15] ‘Kaggle’. [Online]. Available: https://www.kaggle.com (accessed Jan 1, 2024).

[16] Dwyer, B., Nelson, J., Hansen, T., et. al. (2024). Roboflow (Version 1.0) [Software].
Available from https://roboflow.com (accessed Mar. 12, 2024).

[17] D. P. Kingma and J. Ba, ‘Adam: A method for stochastic optimization’, arXiv
preprint arXiv:1412. 6980, 2014. https://arxiv.org/pdf/1412.6980 (accessed Apr. 22,
2024).

[18] B. Green, “Artificial Intelligence and Ethics: Sixteen Challenges and Opportunities,”
www.scu.edu, Aug. 18, 2020. https://www.scu.edu/ethics/all-about-ethics/artificial-
intelligence-and-ethics-sixteen-challenges-and-opportunities/ (accessed Feb. 6, 2024).

[19] “GitHub - jacobcwildes/Submarine_Capstone at honors_thesis,” GitHub.
https://github.com/jacobcwildes/Submarine_Capstone/tree/honors_thesis (accessed Apr.
10, 2024).

[20] F. A. Project, “fishial/fish-identification,” GitHub, Mar. 12, 2024.
https://github.com/fishial/fish-identification/tree/main (accessed Nov. 21, 2023).

[21] “Brook Trout: Species Information: Fisheries: Fish & Wildlife: Maine Dept of
Inland Fisheries and Wildlife,” www.maine.gov. https://www.maine.gov/ifw/fish-
wildlife/fisheries/species-information/brook-trout.html (accessed Mar. 15, 2024).

[22] Juan Carlos Ovalle, Carlos Vilas, Luís T. Antelo, On the use of deep learning for
fish species recognition and quantification on board fishing vessels, Marine Policy,
Volume 139, 2022, 105015, ISSN 0308-597X,
https://doi.org/10.1016/j.marpol.2022.105015.
(https://www.sciencedirect.com/science/article/pii/S0308597X22000628) (accessed Nov.
10, 2023).

27

APPENDICES

Appendix A: Additional Results

Figure 9. Class loss during Training and Validation

Figure 10. Segmentation loss during Training and Validation

28

Precision Recall mAP50 mAP50-95

.8649 .8876 .9106 .8031

Table 1. Performance Metrics

29

AUTHOR BIOGRAPHY

 Jacob Wildes was born in Bangor, Maine on July 5th, 2002. He spent the entirety

of his childhood living in Carmel, Maine and graduated from Hermon High School in

2020. He majored in computer engineering and minored in computer science. Jacob is an

avid runner and outdoorsman. In 2019 he began working at Hannaford Supermarkets, and

in 2022 he began working at the Advanced Structures and Composites Center. When not

at work, he can be found with family or building model ships.

 In the future, Jacob plans to wind down to one job and start his career in computer

engineering, most likely in the field of embedded system software development or cluster

computing.

	Autonomous Fish Identification for the Remotely Operated Vehicle Control System
	Recommended Citation

	Jacob Wildes Thesis

